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Abstract: The local dispersion relation of a photonic crystal waveguide
is directly determined by phase-sensitive near-field microscopy. We readily
demonstrate the propagation of Bloch waves by probing the band diagram
also beyond the first Brillouin zone. Both TE and TM polarized modes were
distinguished in the experimental band diagram. Only the TE polarized
defect mode has a distinctive Bloch wave character. The anomalous disper-
sion of this defect guided mode is demonstrated by local measurements of
the group velocity. The measured dispersion relation and measured group
velocities are both in good agreement with theoretical calculations.
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1. Introduction

Photonic crystals [1] (PhCs) exhibit the unique potential to manipulate the flow of light at the
wavelength scale and ultimately fabricate highly integrated optical devices [2]. PhCs consist of
periodic arrangements of dielectric materials. With the proper geometric and material proper-
ties, a range of optical frequencies is forbidden to propagate for all possible crystallographic di-
rections: a photonic bandgap. By selectively changing the local geometry of the PhC, localized
states can be created. Specifically, an ordered series of defects can act as a waveguide for light,
at otherwise forbidden frequencies [3, 4]. In practice, photonic crystal waveguides (PhCWs)
are generally created in planar structures, where one is able to tailor the dispersion relation and
hence properties like group velocity and transmission and reflection spectra [5, 6, 7, 8, 9, 10].

In a PhCW, the propagation of light is governed by Bloch’s theorem due to the interplay
between the light and the surrounding periodic structure [11]. Experimentally, this Bloch wave
character of a PhCW mode has been deduced by detecting the out-of-plane leakage of light [12].
Using far-field input-output methods also modified transmission characteristics, pulse disper-
sion, and group-velocity alteration have been studied [7, 8]. However, an important drawback
of these approaches is that the PhCW dispersion relation is averaged throughout the full length
of the PhCW. As a result, any local information on the non-radiative modes within the PhCW is
lost in input-output methods. The full picture can only be acquired by probing locally along the
PhCW. Indeed recently, PhCW dispersion has been addressed by local evanescent field probing.
This was demonstrated by either investigating the evanescent field coupling between a tapered
optical fiber and a PhCW [13] or by local near-field probing of the intensity distribution in a
PhCW [14]. Unfortunately, in both cases only a small portion of the total band diagram was
obtained.

Here we present the full band structure of a PhCW by employing a truly field sensitive
near-field optical microscope. By probing both the local phase and amplitude of the light prop-
agating, the full range of wavevectors in the PhCW can be uncovered [15]. The dispersion
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relation of the PhCW is experimentally determined and allows the various modes to be dis-
criminated by their propagation mode. The propagation of light through a single-line defect is
studied. This simple geometry allows an accurate comparison between theory and experiment.
Moreover, the frequency dependence of the group velocity (group velocity dispersion) of the
bandgap guided mode is investigated, demonstrating the anomalous dispersion of the photonic
crystal waveguide mode.

2. Photonic crystal and near-field experiment

The photonic crystal waveguide consists of a silicon nitride membrane containing a hexagonal
lattice of air holes. One row of holes is not perforated in the close-packed crystal direction
(Γ−K). This specific linear arrangement of defects is commonly referred to as a W1 waveguide.
Fabrication details can be found elsewhere [16]. The resulting structure is an air-bridge photonic
crystal slab of silicon-rich nitride (n=2.16) of 160 nm thickness, 293 nm lattice periodicity (a)
and a hole radius of 100 nm (0.34a).

The geometric parameters of the PhCW have been determined experimentally and are used
to calculate the photonic band diagram of the PhCW. The results of a 3D FDTD simulation
are presented in Fig. 1, for TE and TM polarized modes. In the crystal region, a PhC bandgap
opens up in the visible spectrum for TE polarization (E-field in the plane of the crystal). Within
the TE bandgap (λ = 575−690 nm) two defect modes are allowed to propagate. For the TM-
polarization, no bandgap exists and light can only be confined to the waveguide by refractive
index contrast, both in-plane and out-of-plane. By selecting only the modes with a high quality
factor from the FDTD simulation, two TM modes are found. Both modes show good correspon-
dence to a ridge-waveguide approximation, were one mode is confined to the waveguide and

Fig. 1. Calculation of the dispersion relation of the W1 waveguide by 3D FDTD simula-
tion for both TE (a) and TM polarization (b). In both figures, the solid dots represent the
simulation results. (a) For TE polarization, the continuous curves represent the suggested
dispersive modes. In the TE crystal bandgap, between ω=0.425 and 0.510 (575-690nm),
two modes are allowed to propagate. They are denoted even and odd by their in-plane
symmetry. The shaded region depicts the crystal modes. (b) For TM polarization, the band
diagram is dominated by crystal modes. The index guided waveguide mode and dominant
crystal slab mode are drawn in red (solid and dashed lines, respectively). These bands are
identified by mode solving and correspond to the modes with the lowest temporal decay in
the FDTD simulation.
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the other mode propagates within the slab. Therefore we assign the suggested modes to purely
index-guided modes. These index-guided modes are highlighted by the red lines in Fig 1(b).
However, for PhCW modes, it is probable that mini-stopgaps exist. These avoided crossings
can in principle not be observed in the ridge-waveguide approximation.

Femtosecond laser pulses (250± 50 fs, near-Fourier limited) are provided by a frequency
doubled Ti:Sapphire laser pumped optical parametric oscillator. This versatile laser system with
tunability from 597 up to 675 nm enables a large part of the bandgap to be investigated. The
laser light was coupled into the W1 waveguide by a 0.4 NA objective. In order to obtain the
complete band diagram in the first experiment, both TE and TM polarized light were coupled
in. For the measurements on group velocity dispersion, the TE polarization is selected.

In our near-field experiments an aluminum-coated fiber probe with a sub-wavelength aperture
of approximately 90 nm is used to pick up the light from the structure. The optical field is
recorded while scanning over the sample. The fiber probe is kept in close proximity (2-20 nm)
to the PhCW surface by a shear-force feedback mechanism based on a tuning fork sensor. In this
proximity region, the local evanescent field tail of the light propagating in the photonic structure
is coupled to the probe. The collected light is mixed with a reference beam in a heterodyne
interferometric arrangement. This way, the interference between the two branches is obtained,
which allows both phase (φ ) and amplitude (A) to be determined [17]. As raw data, the optical
measurement yields the spatial distribution of Acosφ and Asinφ . From these two parts of the
raw data, the spatial amplitude distribution is calculated.

Also for a pulsed source we obtain the interference of the pulses, provided the collected and
reference pulse overlap in time when they are mixed. In previous work [18, 19, 20], the arrival
time of the reference pulse is fixed, i.e. the length of the reference branch is fixed while scanning
an image. Thus a scan results in the spatial distribution of the interference. By varying the
length of the reference branch between images, we can control the position of the interference
maximum and thus track the femtosecond pulse through the PhCW.

3. Band diagram

In Fig. 2, the results of a near-field measurement at λ=674 nm (ω=0.435) is depicted together
with the corresponding electron micrograph of the PhC structure as a reference. The propaga-
tion of light within the PhCW is clearly visible in the field amplitude distribution as a bright
horizontal line in Fig 2(c). On close examination of the optical field in the waveguide, the lattice
periodicity can be recognized in the amplitude distribution. Another striking feature is the field

Fig. 2. Image sizes: 41 μm x 4 μm (a) SEM image of the W1 waveguide under investiga-
tion. (b,c) Result of a near-field measurement on a PhCW with λ = 674 nm. (b) Measured
distribution of Acosφ . (c) Normalized distribution of the amplitude of the evanescent opti-
cal field.
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amplitude modulation along the waveguide with a period of approximately 6 lattice spacings.
The beat pattern indicates the presence of multiple modes in the waveguide. Note that due to the
simultaneous detection of TE and TM polarized light, quasi-interference can be observed in the
measurements between perpendicular polarizations [21]. Therefore, the amplitude modulations
are not necessarily caused by modes of equal polarization.

Each mode has a different phase velocity with a corresponding periodicity of phase fringes
and spatial wavevector. From the combined amplitude (A(x,y)) and phase (φ(x,y)) information
(Acosφ ) in Fig. 2(b), the contributing wavevectors are directly recovered by examining the
spatial frequencies along the waveguide [17].

The retrieved optical data contain both A · cos(φ) and A · sin(φ) and thus describe the full
complex field A · exp(iφ) in the structure. A complex Spatial Fourier Transformation (SFT) of
the measured field is performed in order to retrieve both the wavevector (k x) and amplitude (A)
of the field propagating. The SFT of the complex optical field also reveals the sign of k x, i.e.
both positive and negative wavevectors. This approach provides more insight in the wavevector
spectrum compared to our previous work [15, 17], where the real part of the field was Fourier
transformed, projecting all kx values on the positive axis.

The Fourier transforms are calculated for all horizontal lines in the scanned area (x-direction
in Fig. 2,) and subsequently summed to retrieve the SFT representing the full measurement at
a single optical frequency. A series of SFT results is depicted in Fig. 3 for measurements in
the vacuum wavelength range from 597 nm (ω = 0.491) up to 675 nm (ω = 0.434). Each SFT
is drawn in a false-color representation at its corresponding optical frequency. In this way, the
spatial Fourier components are shown both as a function of the spatial frequency (k) and the
temporal frequency (ω), resulting in the band diagram of the PhCW [15].

Several separate dispersion curves are visible in Fig. 3. By comparing the experimental band
diagram to the calculated diagram of Fig. 1, we can assign a propagation mode to each disper-
sion curve. The curve denoted “Air” in Fig. 3 corresponds simply to the theoretical light line
(ω = ckx). The curve is therefore the result of light skimming the surface, but still travelling
through the air.

The results of the 3D FDTD simulation and the suggested dispersion curves are also shown in
Fig. 3. For clarity, the simulation points for TM polarization are not shown. The measured band
diagram matches the simulation results very well. In order to achieve good overlap between
simulation and experiment, the FDTD results for TE polarization are plotted at 97% of their
original frequency. This minor difference between experiment and simulation can be attributed
to small deviations in the measurement of the geometrical parameters of the PhC structure.

The most striking feature in the measured dispersion relation are the positions of the curves
which are assigned to a mode with TE polarization. An exact copy of this dispersion curve is
present in both the negative and positive part of the band diagram. Because the waveguide is
embedded in a photonic crystal, the propagating light experiences a periodic modulation of the
dielectric constant. Therefore, the light must obey Bloch’s theorem. Hence, a waveguide mode
is composed of multiple wavevectors, spaced 2π/a apart in reciprocal space. A fundamental
mode with wavevector kx has higher and lower harmonics at kx + n(2π/a), where n ∈ Z. All
together these harmonics form a single Bloch mode [11, 15]. Multiple harmonics in a structure
together lead to a periodic amplitude modulation that coincides exactly with the periodic mod-
ulation of the dielectric constant (a). In our experiment, the even TE mode is found at spatial
frequencies kx and kx−2π/a. Hence, we have direct proof of the Bloch-wave light propagation
in PhCWs.

Also the odd-symmetric TE mode can be recognized in the experimental dispersion relation.
This mode is found at frequencies ∼0.005 lower than the simulated band. The odd mode is
particularly strong around ω=0.45 and can be seen clearly around the wavevectors -0.4 and 0.6.
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Note also the very strong Bloch wave character, attributed to the strong harmonic with negative
wavevector.

In addition to the TE modes in the bandgap, we also observe two index guided TM modes,
denoted “TM” in Fig. 3. It is remarkable that, these modes have a much weaker component
in the negative k-region. Since the TM modes propagate through the same structure, they also
experience the periodic structure of the photonic crystal, and one would expect a Bloch-mode
character also for index-guided TM modes. In Fig. 3, we clearly see that the even TE mode has
a much stronger Bloch harmonic in the negative part of the dispersion relation compared to the
TM modes. Apparently, the effective index modulation experienced by the TM modes is much
lower compared to the TE mode, resulting in considerably stronger Bloch harmonics for TE
polarization [11]. Therefore, we conclude that index guiding is dominant for the propagation of
the TM modes.

By Fourier filtering we found that one TM propagation mode is localized in the defect area,
like a waveguide mode, whereas the other resides in the crystal region. Due to the complex TM
band structure (Fig. 1(b)), it is difficult to assign a specific TM crystal mode. Still, the found
mode shows good correspondence to planar waveguiding, with an average refractive index
of 42% air (n=1) and 58% silicon-rich nitride (n=2.16). Remarkably, the TM polarized light

Fig. 3. Measured photonic band diagram of the W1 PhCW. Spatial Fourier Transforms
(SFTs) of the measured Acosφ of the optical field along the waveguide direction. The
SFTs are represented by a linear false-color scale at their corresponding optical frequen-
cies. Peaks represent the resonant wavevectors in the waveguide. The calculated disper-
sion relations of the TE modes are plotted in blue. The even and odd waveguide modes
(TE polarization) are represented by the dashed blue lines. The index guided TM modes
(waveguide and crystal) are both indicated by dashed green lines. Finally the light line
(ω = ckx) is drawn in solid black.
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couples preferentially to index guided modes, which we attribute to a large overlap between the
mode symmetry of the index guided modes and the incoming plane wave.

Note the apparent Bloch character of the air-guided light. A copy of the light line is present
at ω = c(kx −2π/a). This is a measurement artefact. Since the air guided light skims over the
sample surface, it scatters at the lattice sites. This spatial periodic scattering causes an artificial
amplitude modulation, similar to what is observed for Bloch waves. This measurement artefact
causes the copy of the light line at ω = c(kx −2π/a). In contrast to this, the Bloch harmonics
for the TE and TM modes are not an artefact as here the SFT along the waveguide line still
shows the harmonics, while the scattering loss is negligible. In ref. [15], the spatial distribution
of Bloch harmonics is investigated in greater detail.

Interestingly, the simulation shows a dramatically reduced group velocity for the even
TE-polarized waveguide mode at the zone edge, around a vacuum wavelength of 700 nm
(ω = 0.42). Unfortunately, our laser system was not tunable beyond 675 nm. Therefore, the
corresponding flattening of the photonic band could not be observed in the measured disper-
sion relation (Fig. 3). However, with a direct measurement of the group velocity, the initial
group velocity reduction due to the band flattening can be investigated, since the group velocity
determines the slope of the dispersion curve.

4. Probing the group velocity dispersion

To this end we exploit the femtosecond pulses in our near-field experiment to retrieve the group
velocity of the light propagating. In our heterodyne set-up we obtain the interference of the
pulse travelling though the PhCW (signal) and a reference pulse travelling through the air. In
contrast to the previous experiment, we keep the fiber probe at a fixed position on the waveguide
and vary the length of the reference branch. Thus we obtain a field cross-correlation function of
the two pulses in time instead of space. The arrival time of the signal pulse can be determined
directly by measuring the position of the maximum of the interference envelope. We repeat
the experiment at different sample positions, for which the pulse arrival time will be different.

Fig. 4. Group velocity determined by measurement of the propagation distance through the
waveguide as a function of pulse delay. The squares and solid circles represent measure-
ments at wavelengths 612 nm and 675 nm respectively. The straight lines are linear fits
through the data. The group velocity found at λ = 612 nm is c/(2.0± 0.6). For the red-
shifted pulse at 675 nm, the group velocity is c/(3.4±0.4).
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By evaluating the probe position as a function of the arrival time, we readily obtain the group
velocity of the pulse propagating in the waveguide. Since we are specifically interested in the
even TE mode, the light coupled into the waveguide is selected to be purely TE-polarized.

The relative arrival time of the signal pulse is plotted in Fig. 4 as a function of the propagation
distance through the waveguide. We observe a linear dependence of the propagation distance
on the pulse delay, with the slope corresponding to the group velocity. The straight line devia-
tions in Fig. 4 and hence the error in group velocity is mainly due to the signal decay along the
waveguide and the width of the cross-correlation function (500−600 fs). (The cross-correlate
is slightly symmetrically broadened due to the non-equal group velocity dispersion in the sig-
nal and reference branch [19].) The measurement is performed at the wavelengths 612 nm
(ω=0.479) and 675 nm (ω=0.434). For λ = 612 nm we find a group velocity of c/(2.0±0.6).
The slope of the theoretical dispersion curve suggests a group velocity of c/2.5. For λ = 675
nm, the group velocity is determined to be reduced to c/(3.4±0.4). The theoretical dispersion
curve just starts to flatten off at this wavelength. A quantitative comparison is complicated by
the 97% frequency match and limited amount of wavevectors of the FDTD simulation. From
the presented data, we derive that the group velocity is reduced to a range between c/2.7 and
c/4.6, which is confirmed by the measurement.

The comparison of both measurements clearly indicates that the group velocity of the TE
mode at 612 nm exceeds the value at 675 nm. Since the pulse with the lowest frequency is also
the slowest, the dispersion is anomalous [22]. In fact, anomalous dispersion (d 2k/dω2 < 0)
is typical for the propagation of the even TE mode in W1 PhCWs, in contrast to normal dis-
persion in conventional index guided waveguides. The anomalous dispersion is also observed
as the flattening of the waveguide mode around ω = 0.42 in the theoretical dispersion rela-
tion. Hence also the group velocity dispersion shows good correspondence between theory and
direct measurement.

5. Conclusion

In conclusion, we have directly measured the local dispersion relation of a PhCW through-
out the first two Brillouin zones by employing a phase-sensitive near-field microscope. Fourier
transformation of the measured complex field yielded both the amplitude and wavevectors of
the modes present in the structure. With this novel approach, we found both positive and nega-
tive phase velocities, though only positive group velocities were observed. In the experimental
dispersion relation, three waveguide modes are distinguished: two defect guided TE-polarized
modes and an index guided TM mode. In the experimental band diagram, two wavevectors
were found corresponding to the same TE mode: a direct proof of the propagation of opti-
cal Bloch waves, having spatial harmonics in every Brillouin zone. The observed TM-mode
however, did showed a much weaker Bloch wave behavior. This is attributed to a smaller effec-
tive index modulation of the TM mode compared to the TE mode. Group velocity dispersion
was addressed by measuring two group velocities of the TE mode. The slower propagating
red-shifted pulse demonstrates the anomalous dispersion as is confirmed by the calculations, a
conclusion which could not be drawn solely by judging the experimental dispersion relation.
Both the measured band diagram and the group velocity measurements are in good agreement
with 3D FDTD simulations.
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