Vortices and field correlations in the near-field speckle of a three dimensional
photonic crystal
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We present an experimental study of near-field speckle observed from photonic crystals and an-
alyze this speckle from different perspectives. We observed vortices in these speckle patterns and
analyze their statistical properties and morphological parameters. This allows to make a comparison
between speckle from photonic crystals and that from completely random systems. Analysis of the
field correlation functions allows to determine important sample parameters like the transport mean
free path, diffusion constant, and effective refractive index.

Photonic crystals, no matter how accurately prepared,
contain a certain level of disorder due to size fluctuations
of the scattering elements and other structural imperfec-
tions. This disorder can be small but it usually plays an
important role in determining their optical properties, es-
pecially in the case of three dimensional photonic crystals
[1]. Disorder does not destroy interference, but it makes
the optical behavior of photonic crystals much more com-
plex and it gives rise to multiple scattering which leads
to intensity patterns, known as speckle [2]. The phase
and amplitude distributions of a speckle pattern contain
important information like the local density of states [3],
and exhibit interesting features like phase singularities
[4-7]. Even if the understanding of speckle patterns in
terms of amplitude and phase for disordered systems is
rapidly growing [8-12], little is know about their behav-
ior in partially ordered systems like photonic crystals. In
pioneering theoretical work on this topic, it was shown
that the speckle generated by the intrinsic disorder in
a photonic crystal contains a lot of useful information,
in a particular on the strength of the photonic bandgap
[13]. No experiments have been reported up to today on
speckle from photonic crystals.

Here we report on the experimental study and anal-
ysis of speckle patterns generated by three dimensional
photonic crystals with a certain degree of disorder. We
have performed this study in the near-field using a phase
sensitive technique, to maximize the amount of informa-
tion that one can obtain. We observe and analyze dif-
ferent properties of the speckle patterns that are known
to exist in random systems but have not been observed
in periodic structures so far. We find, for instance, that
these speckle patterns contain phase singularities (vor-
tices), and we have characterized their morphological and
statistical parameters. We highlight both the aspects
that are and are not in agreement with the far-field the-
ory of phase vortices for random system. The complete
characterization of the electric field in terms of ampli-
tude and phase enabled us to analyze the spatial and the
spectral correlation function of the field, which can be

used to determine sample parameters like the average re-
fractive index, mean free path, and diffusion constant of
photonic crystals.

The sample under investigation is a silica synthetic
opal grown using a dip coating technique [14]. The micro-
spheres that constitute the photonic structure have a
diameter of 730nm. A Scanning Electron Microscope
(SEM) image of the sample is provided in the inset (I) of
Figure 1(a). Reflection measurements, performed along
the I' direction of the opal, exhibit a Bragg peak centered
at 1550nm with a reflectivity of roughly 30%. See inset
(IT) in Figure 1(a). This low value of reflectivity indicates
that the opal has an appreciable degree of disorder. We
have performed a set of measurements in the same zone
of the sample for different incident wavelengths ranging
from 1440nm to 1590nm using a Scanning near-field Mi-
croscope (SNOM) combined with a Mach-Zehnder type
interferometer. This technique has been shown to be
very efficient in analyzing the optical properties of pho-
tonic materials and in particular photonic crystals [15-
17]. Figure 1(b) provides a schematic description of the
setup. Linearly polarized laser light along the x direc-
tion is coupled into the structure by focussing it at one
side of the [111] plane of the opal. An aluminum-coated
tapered fiber with a sub-wavelength aperture (near-field
probe) [18] is kept at ~ 20nm of distance from the sam-
ple. A minute fraction of the evanescent field of the light
propagating through the sample is coupled to the probe
and detected. Combining a near-field microscope with
a interferometer provides amplitude and phase informa-
tion of the light for every position of the probe. In this
way both the amplitude and the phase distributions are
achievable with sub-wavelength resolution [19, 20] allow-
ing us to reconstruct the field as:

F((E, y) = A(SL', y) eXp Z(p(fL', y) = fRe(xJ y) + if[m(m7 y)7
(1)
where A and ¢ indicate the amplitude and the phase of
the optical field, and fr. and fr,, its Real and Imaginary
parts, respectively.
Figure 1(c) shows a typical map of the electric field
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FIG. 1: (a) (I) Scanning Electron Microscope image of at the
edge of the opal. (II) Reflection measurement along the T’
direction. (b) Schematic representation of the experimental
setup. A tunable laser light source is coupled into the three-
dimensional photonic crystal. The probe of the microscope (a
scanning electron microscope image is provided in the inset)
collects a fraction of the field inside the sample. This light is
interferometrically mixed with the reference light of the same
laser. Only the resulting interference signal is recorded. (c)
Example of the the electric field amplitude distribution col-
lected by the near-field microscope at A = 1442nm. The red
dots in correspondence of the zero values of the field ampli-
tude correspond to the position of vortices. The dimension
of the red box is 4 by 4um. (d) and (e) are two zooms in
the zone indicated by the red square. In particular, (d) is the
map of the phase as a function of position, (e) is the map of
the zero lines of the real part and the imaginary part of the
field. The intersections of these two lines, indicated with the
colored circles, represent the position of vortices.

amplitude collected by the near-field probe where the
speckle fluctuations characteristic of random systems are
clearly recognizable. Figure 1(d) provides the map of
the phase collected in the red square. Focusing our at-
tention on this image, we can easily recognize the phase
singularities. To locate the vortex position accurately in
the maps we identify the lines where both fr. and f7,,
are zero. The vortex centers are located at the crossing
points of these lines. In Figure 1(e), the zero crossing

map of fre (grey line) and fr,, (black line) is provided.
Now the vortex positions are indicated by the colored
circles at the intersections between these lines. Freund
et al. showed that these vortices must obey a fundamen-
tal sign-principle, namely that nearest neighbors on the
same zero crossing line should be of opposite sign [6].
This means that, when a certain vortex has an increas-
ing phase when rotating clockwise, its adjacent on a zero
crossing should have a decreasing phase when rotating
in the same direction. The reason behind this concept
is topological, and should therefore hold for any type of
vortex field, including that one generated by a partially
disordered photonic crystal. To verify the sign princi-
ple, we calculated along the two directions in the plane,
the derivatives of the phase at the position of the vor-
tices. This method provides a simple way of determin-
ing whether the phase increases or decrease when rotat-
ing around the phase singularity. We find that nearest
neighbors are indeed anti-correlated. As much as 85% of
the identified vortices have nearest neighbors of opposite
sign. The fact that we do not find an anti-correlation
of 100% can be attributed to errors in the identification
of vortices itself, due to the finite spatial resolution. To
provide a more detailed characterization of the vortex
field, we calculated from the experimental data the vor-
tex morphological parameters and their statistical prob-
ability densities. We compare our experimental results
with the theoretical results for fully disordered structures
[21, 22]. Tt is convenient to investigate the statistical be-
havior of the geometrical parameters associated to the
tangent planes of fr. and fr,, at the vortex position.
In particular, we define pr. and py,, as the angles be-
tween the normal of the tangent planes and the z axis,
and with tan ¢r. and tan ¢, their slopes. Figure 2(a)
provides a schematic representation of these parameters.
In Figure 2(b) the angular distribution pg. is presented.
This distribution shows two well-defined maxima in cor-
respondence of £7. For the angular distribution of pr,,
which is not reported here, the same behavior is obtained.
The fact that the vortices are predominantly orientated
along the y axis (that is, perpendicular with respect the
polarization direction) can be attributed to the polariza-
tion dependence of the speckle pattern in the near-field
[23-26]. Figure 2(c) shows the probability distribution
of the vortex amplitude ¢ = tan ¢g.. This probability
is analogous to the one calculate for the isotropic ran-
dom case. Finally in Figure 2(d) the probability distri-
bution of the vortex anisotropy (o = %) is reported.
The obtained values for « are extremely small and con-
sequently in the histogram the bin that contains most
counts is the one that also contains a = 0, indicating
that in most cases the vortices present a substantial de-
gree of anisotropy. The same statistical behavior of these
parameters is observed for the entire wavelength range
that we have investigated in the experiments. To im-
prove the signal to noise ratio of the analysis, the prob-



ability distributions reported in Figure 2 are therefore
averaged over all wavelengths. In addition to the mor-
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FIG. 2: (a) Schematic representation of the geometry of the
real imaginary tangent plane: the angle that measure the ori-
entation of the plane respect to the = axes is p, while the
slope of the plane is ¢. (b)-(d) Vortex morphological param-
eters distributions for p, a and « , respectively.

phological proprieties of the vortices, it is important to
consider their spatial distribution as well [27]. First of all
we observe that their density is comparable, within the
error, with the half of the inverse of the coherence area
as expected for the far-field case. Figure 3(a) presents
the histogram of the distance distribution between vor-
tex centers for the first, second and third neighbors. In
order to highlight effects of spatial correlation, we com-
pare these distances with the case of a completely random
distribution. After defining 8 = d,,,/d, as the ratio of the
measured average n-th nearest neighbor separation(d,,)
to that calculated for the random distribution (d,.), we
notice that the vortices are systematically spaced more
widely apart than would be expected for a purely ran-
dom distribution. Figure 2(b) shows the values of § for
the first seven neighbors, which reveals that the vortices
appear to weakly repel one to another, as expected the-
oretically [6].
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FIG. 3: (a) Histogram of the distances distribution between
vortex centers for the first, second and third neighbors. (b)
Value of 3 for first to seventh nearest neighbors, in the inset
the total number of vortex is reported as the wavelength is
varied.

A polarization dependencies of the speckle pattern it
is present in the spatial correlation of the electric field,
defined as Cg(Az,v) = < E(z,v)E*(z + Az,v) >.

This quantity yields information about the transport
proprieties of the sample that are usually hidden inside
the speckle pattern. Figure 4(a) shows the spatial cor-
relation function obtained from the measurements, at
A = 1442nm. In the figure we observe an evident radial
anisotropy. In particular we can recognize principally
two aspects: first, the spatial correlation length of the
field is much larger in the direction of the polarization
(z) than in the perpendicular direction. Second, there
are other anisotropic features that depends on the se-
lected direction and on the wavelength. The first type
of anisotropy of the correlation function is independent
from the wavelength and so we exclude that it is induced
by the photonic structure. While in the second case, the
other anisotropic features in the image are wavelength
dependent and indicate an underlying spatial periodic
structure. In fact, for a complete random sample they
are expected to vanish exponentially with the distance
from the center. Since a complete theory that describes
the near-field speckle pattern of an ordered medium with
an appreciable degree of disorder is still missing, we com-
pare our results with the ones obtained for a fully ran-
dom structure. This comparison can still give some in-
sight by looking at the similarities and differences. The
fact that the correlation length is larger along the polar-
ization direction respect to the perpendicular direction
is well explained considering that speckle pattern in the
near-filed is polarization dependent [25, 26]. Moreover,
we find that the experimental spatial correlation profile
along the y axis matches very well the theoretical curve
for random systems, given by Freund et al. in [28]. See
Fig.4(b). This allows us to perform a fit to the value
of the effective refractive index which gives the value:
n= 1.07 + 0.07. This value is constant within the error
for all the wavelengths considered and it is in agreement
with Maxwell-Garnett theory.

The profile along the x axis, on the other hand, does
not have the same shape and it is not possible to find
a match with the same theory. Figure 4(b) also pro-
vides the profile along the y axes of the imaginary part
of the spatial correlation function. This imaginary part
should vanish in a homogeneous isotropic system, as
can be easily seen as follows. In this case we have
Cp(Az) = Cg(—Az), due to translational invariance,
so that Cg(Az) = C%(—Ax). In our case we can clearly
see that the imaginary part is not zero but exhibits os-
cillations. These oscillations are most likely due to the
underlying photonic crystal structure, which is spatially
periodic. By calculating the spectral correlation function
Cp(Av) =< E(v)E*(v + Av) >, it is in principle pos-
sible to determine the diffusion constant and mean free
path of a system. The brackets denote an ensemble aver-
age. We have calculated this correlation function for our
data, taking the average over different (distant) positions
on the sample. Figure 4(c) provides the spectral correla-
tion function obtained this way from the measurements,
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FIG. 4: (a) Real part of the spatial correlation function of
the electric field. (b) The dotted black line reports the cut
along the y direction of the real part of the correlation func-
tion, while the gray dotted line represent the imaginary part
of the correlation function. The black straight line is the fit of
the real part of the correlation function obtained considering
the theory for random systems reported in [11]. The dotted
line in panel (a) (dimension of total scan is 8 by 8um) rep-
resents the position where the dotted black cut in figure (b)
is taken. (c) The dashed black line is the theoretical spectral
field correlation (as presented in [11]) while the dots represent
the experimental data.

compared with theory for random systems [11]. We find
a good agreement between the two curves if we consider
a mean free path of [ = 2.2+ 0.5pum and a diffusion con-
stant of D = 70 + 10m? /s fixing for the refractive index
the value n = 1.07 obtained from the spatial correlation
function, and considering the minimum sample dimen-
sion of L =12 4+ 2um. From the comparison we also can
estimate that the absorbtion length in the sample, which
is found to be of the order of 10> mm.

In conclusion we have studied the phase and ampli-
tude of speckle generated by photonic crystals, in the
near-field regime. We observe vortices and by studying
the statistical properties of their morphological parame-
ter find analogies and differences with respect to random
systems. In addition, we measured and analyzed the field
correlations of the near-field speckle and estimated from
that the amount of disorder in the system. In order to
develop a complete theory that can take into account
both the effects of random multiple scattering and the
underlying photonic crystal order one would have to cal-
culate the Green’s function for propagation taking into
account both effects. Ideally this calculation should in-
clude also the polarization, since this is expected to by
very important in a photonic crystal based structure.
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