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We study the linear phenomenological Maxwell’s equations in the presence of a
polarizable and magnetizable medium �magnetodielectric�. For a dispersive, non-
absorptive, medium with equal electric and magnetic permeabilities ���� and ����,
the latter can assume the value of �1 �+1 is their vacuum value� for a discrete set
of frequencies ��̂n, i.e., for these frequencies the medium behaves as a negative
index material �NIM�. We show that such systems have a well-defined time evolu-
tion. In particular, the fields remain square integrable �and the electromagnetic
energy finite� if this is the case at some initial time. Next we turn to Green’s
function G�x ,y ,z� �a tensor�, associated with the electric Helmholtz operator for a
set of parallel layers filled with a material. We express it in terms of the well-known
scalar s and p ones. For a half space filled with the material and with a single
dispersive Lorentz form for ����=����, we obtain an explicit form for G. We find
the usual behavior for NIMs for �= ��̂, there is no refection outside the evanes-
cent regime and the transmission �refraction� shows the usual NIM behavior. We
find that G has poles in ��̂, which lead to a modulation of the radiative decay
probability of an excited atom. The formalism is free from ambiguities in the sign
of the refractive index. © 2010 American Institute of Physics.
�doi:10.1063/1.3374670�

I. INTRODUCTION

Often magnetization plays a minor role in situations where the phenomenological Maxwell’s
equations apply. But in recent years negative index materials �NIMs�, also called left handed
materials, have become of increasing interest, in particular, due to the work of Veselago1 and
Pendry.2 Here the magnetization is not negligible at all. In general, a NIM system is defined by the
property that for certain frequencies � the electric permeability �permittivity� ���� or the magnetic
permeability ���� becomes negative. Of particular interest is the case where both become nega-
tive at the same frequency �̂, the NIM frequency, and are equal to the opposite of their vacuum
value, i.e., �1 instead of +1. Below we refer to this case as the NIM situation.

For an introduction, containing an extensive set of references, see Ref. 3 �there are also NIM
systems based on specific properties of photonic crystals, which are not considered here�.

The existence of NIMs has been debated in the theoretical literature at various occasions.4 In
particular, the sign of the index of refraction, which involves taking a square root, has been a
subject of discussion. Naively it equals +1, in both vacuum and a NIM system but this result is
challenged for the NIM situation. For experimental verification, see Ref. 5. Calculations based
upon a simple model, where one part of space is vacuum ��=�=1� and the other filled with a NIM
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��=�=−1, frequency independent� tend to give ambiguous results. This is sometimes remedied by
adding a small imaginary part to one of the permeabilities but on the whole the situation is rather
unclear.

The use of the phenomenological Maxwell’s equations should solve possible ambiguities but
it seems that so far this approach has not been taken and here we intend to fill this gap. Since
fabricated materials, intended to study NIM behavior, are usually anisotropic, we take the �space
and frequency dependent� susceptibilities �which relate the polarization and magnetization to the
electric and magnetic fields� to be tensors rather than scalars.

The first matter to be solved is the existence of a proper time evolution. In view of the time
convolutions in the constitutive equations this is not directly obvious. The next task is to see if a
NIM situation can exist. This being the case, the following point of interest is obtaining the
Helmholtz Green’s function and scattering amplitudes for specific configurations. The former is
important since its imaginary part enters the radiative decay rate of an atom or nanostructure close
to the material. Hence experimental results on such decay rates can give information about the
properties of the material. In addition Green’s function, or rather the associated transition operator,
is required to describe scattering phenomena, such as reflection and transmission in layered sys-
tems.

Thus we start with the phenomenological Maxwell’s equations with general frequency-
dependent permeability tensors, satisfying the usual causality and passivity conditions. After pro-
viding some relevant background and a summary of the properties of the electric and magnetic
susceptibilities we introduce the auxiliary field formalism �AFF�. The latter was presented earlier
by one of us �Tip in Ref. 6� for dielectrics ��=1�. The idea is to introduce an additional set of
fields, the auxiliary fields, to remove the time convolutions in Maxwell’s equations. This has a
number of advantages.

�1� The combined set of electromagnetic and auxiliary fields satisfies a unitary time evolution,
thus insuring a proper time evolution for the electromagnetic fields.

�2� Such a system is easily quantized, leading to a second quantization formalism that is rigor-
ously valid for both absorptive and dispersive systems.

�3� The formalism implies that the inverses of the electric and magnetic Helmholtz operators
exist as bounded operators, so the associated Green’s functions are square integrable.

�4� Setting up a scattering formalism is straightforward.

The AFF leads to a proper time evolution, notwithstanding the possibility that for specific
frequencies �̂ we can have a NIM situation, ���̂�=���̂�=−1. In case the initial fields are square
integrable they remain so for all later times. In Appendices A and C we give a rigorous proof of
this important fundamental property.

Another relevant piece of information is that the susceptibilities for general dispersive, non-
absorptive, systems consist of a �possibly infinite� sum of Lorentz contributions �Tip in Ref. 7�.
This immediately gives a positive answer to the existence of NIMs. In case we are dealing with a
single dispersive Lorentz contribution,

���� = ���� = 1 −
�2

�2 − �0
2 , �1.1�

we note that for the NIM frequencies �= ��̂, �̂2=�0
2+�2 /2 we have ����̂�=����̂�=−1. Thus,

theoretically, the NIM case can be realized for dispersive, nonabsorptive, systems, contrary to
what is sometimes claimed.4 Adding more Lorentz terms gives more frequency values with this
property but it remains a discrete set and in between the values of ���� and ���� vary wildly. In
fact, between two subsequent NIM frequencies there is always a frequency for which total reflec-
tion takes place �for �=�0 in the above example�, precisely the opposite of the NIM case, where
no reflection is thought to be the situation. Thus it seems that obtaining an extended frequency
interval for which the permeabilities are approximately equal to �1 is not possible. In fact, it was
already noted by Veselago1 that a system showing NIM behavior must be dispersive. In case there
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is absorption, ����=����=−1 cannot be realized for real � as can be seen by adding absorption
to the above case,

���� = ���� = 1 −
�2

�2 + i�� − �0
2 . �1.2�

Next we introduce the Laplace-transformed Maxwell’s equations and the tensor Green’s function
G�x ,y ,z� related to the electric Helmholtz operator. G�x ,y ,z� features most of the properties of
the system. As said the radiative decay rate of excited atoms is proportional to its imaginary part.
We then turn to layered systems and express G�x ,y ,z� into a set of two scalar ones for s and p
polarization, respectively. Subsequently Green’s function for the half space case, mentioned
above, is studied. In particular, we obtain an explicit expression for G�x ,y ,z�. Then E�x , t� is
given by the inverse Laplace transform of

Ê�x,z� =� dyG�x,y,z� · g�y,z� , �1.3�

where g�y ,z� is some square integrable initial field configuration or an external current density. At
this point the square root of z2��x ,z���x ,z�−�2, with � a two-dimensional wave vector, must be
evaluated as 	
0 in z=�+ i	 tends to 0. Depending on the values of x and � different results are
obtained, it can be positive, negative, or imaginary. We find that reflective contributions to
G�x ,y , ��̂+ i0� vanish in the radiative regime, �̂
�, and transmission is also modified substan-
tially. This confirms the results by Pendry.2 In the evanescent regime G�x ,y ,z� has poles in z
= ��̂, giving finite contributions, proportional to exp��i�̂t�, to the electric field E�x , t�. It turns
out that K, the generator of the time evolution in the AFF, has ��̂ as eigenvalues with infinite
degeneracy, the latter giving rise to the above poles. Although we do not discuss quantization, we
note that this feature gives rise to an interesting structure of the associated field Hamiltonian. In
addition to the eigenvalue 0, associated with the vacuum state, now ��̂ are also eigenvalues. This
affects radiative decay constants of excited atoms, as is discussed in Sec. VII.

A word about notation: With a dispersive system we mean a dispersive, nonabsorptive system.
Inner products are denoted as �f ,g�= �g � f�. The unit vector along a�R3 is ea=a /a, a= �a�. The
three Cartesian axes are denoted by X1, X2, and X3 with corresponding unit vectors e1, e2, and e3.
The component of a�e3 is denoted by a�. U is the unit 3�3 matrix. Transposes of matrices are
indicated by means of the superscript T and their Hermitean adjoints by †. Square roots are
defined in the usual way with non-negative imaginary part. IA�x� is the characteristic function for
the set A, IA�x�=1 for x�A and IA�x�=0 for x�A.

II. BACKGROUND

Starting point is the set of linear phenomenological Maxwell’s equations for the case that
permanent polarization and magnetization are absent �we set �0=�0=1 for brevity�,

�tD�x,t� = �x � H�x,t�, �tB�x,t� = − �x � E�x,t� ,

�x · D�x,t� = 0, �x · B�x,t� = 0, �2.1�

with the constitutive equations

D�x,t� = E�x,t� + P�x,t�, P�x,t� = �
t0

t

ds�e�x,t − s� · E�x,s� ,
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H�x,t� = B�x,t� − M�x,t�, M�x,t� = �
t0

t

ds�m�x,t − s� · H�x,s� . �2.2�

Here �e�x , t� and �m�x , t� are the electric and magnetic susceptibility tensors. We also introduce
the current densities Je�x , t�=�tP�x , t� and Jm�x , t�=�tM�x , t�. Causality requires that the suscep-
tibilities �e�x , t� and �m�x , t� vanish for t�0. Assuming no initial surges in P�x , t� and M�x , t� at
t= t0, so Je�x , t0�=Jm�x , t0�=0, we also have �e�x , t0�=�m�x , t0�=0. Indeed, currents are due to the
motion of charged, massive, particles and their velocity cannot be changed instantaneously. This
property is found in linear response expressions and also, for instance, for the Lorentz case.
Denoting �t��t�=���t�, we then obtain

Je�x,t� = �
t0

t

ds�e��x,t − s� · E�x,s�, Jm�x,t� = �
t0

t

ds�m� �x,t − s� · H�x,s� . �2.3�

As a matrix, �e,m�x , t� are assumed to be symmetric �this property explicitly holds for linear
response expressions if the unperturbed matter Hamiltonian is time-reversal invariant�.

Remarks:

�1� The initial time t0 can have any value, in particular, t0=−
. However, in view of the Laplace-
transformed equations, introduced later on, t0=0 is a convenient choice. This case is often
realized in practical situations. For instance, in describing scattering of an electromagnetic
wave packet with bounded support from a material object, the wave packet is initially, as
t→−
, well separated from the object and, in view of the hyperbolic nature of Maxwell’s
equations, the support remains bounded and, contrary to the Schrödinger case, it takes a
nonzero time for the support to reach the object. Thus the polarization and magnetization
vanish for times smaller than some finite t0, which we set equal to 0.

�2� It is customary8 to relate M to H, rather than B, although B is the more fundamental field.
Indeed, interactions with atoms are in terms of the microscopic vector potential A, which is
related to the microscopic B-field. But note that if the particles are in vacuum, sufficiently far
away from the medium, the microscopic B-field equals the macroscopic one and both equal
H at the particle coordinates. We note further that linear response expressions usually relate
the magnetization to the �microscopic� B-field.

Next we introduce the Fourier decomposition,

�e,m� �x,t� =� d� exp�− i�t��e,m�x,�� ,

�e,m�x,�� =
1

2�
� dt exp�i�t��e,m� �x,t� =

1

2�
�

0




dt exp�i�t��e,m� �x,t� . �2.4�

Since �e,m� �x , t� are real, we have �e,m�x ,−��=�e,m�x ,�� in the sense that this relation holds for
each component of these tensors. We also assume that the system is passive. This means that the
electromagnetic energy,

Eem�t� =
1

2
� dx	E�x,t�2 + H�x,t�2
 , �2.5�

cannot increase as a function of time. So initial population inversions in the material system are
excluded. Then
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Eem�t� − Eem�t0� = �
t0

t

ds�sEem�s�

= − �
t0

t

ds� dx	Je�x,s� · E�x,s� + Jm�x,s� · H�x,s�


= − �
t0

t

ds�
t0

s

du� dx	�e��x,s − u�:E�x,u�E�x,s� + �m� �x,s − u�:H�x,u�H�x,s�


= − �
t0

t

ds�
t0

t

du� dx	�e��x,s − u�:E�x,u�E�x,s� + �m� �x,s − u�:H�x,u�H�x,s�


= −� dx��e�x,��:��
t0

t

du exp�i�u�E�x,u�
��
t0

t

ds exp�− i�s�E�x,s�

+ �m�x,��:��

t0

t

du exp�i�u�H�x,u�
��
t0

t

ds exp�− i�s�H�x,s�
� � 0,

�2.6�

so

�e,m�x,�� � 0. �2.7�

This result also emerges in linear response expressions if the initial density operator for the
material system is a function of its Hamiltonian and the level population decreases with increasing
energy as is the case for a canonical distribution. Now �e,m�x ,−��=�e,m�x ,���0, leading to

�e�x,t� =� d�
sin��t�

�
�e�x,��, �m�x,t� =� d�

sin��t�
�

�m�x,�� ,

�e��x,t� =� d� cos��t��e�x,��, �m� �x,t� =� d� cos��t��m�x,�� . �2.8�

We introduce Laplace transforms according to �Im z
0�,

f̂�z� = �
0




dt exp�izt�f�t�, f�t� =
1

2�
�

�

dz exp�− izt� f̂�z� , �2.9�

where � is a path running from −
 to +
 at some distance 	
0 parallel to the real axis. Then, for
t0�0, performing a partial integration and using �e,m�t�=0, t�0,

�̂e,m�x,z� = �
t0




dt exp�izt��e,m�x,t�

= �
0




dt exp�izt��e,m�x,t�

= −
1

iz
�

0




dt exp�izt��e,m� �x,t�

= −
1

iz
�

0




dt exp�izt�� d��e,m�x,��exp�− i�t�

=� d��e,m�x,��
1

�2 − z2 . �2.10�
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Causality and passivity imply that these are the most general expressions for �̂e,m�x ,z� �Ref. 7�
�the latter, being analytic in the upper half plane, are the so-called Herglotz functions, which can
always be represented in the above form�. In general, �e,m�x ,�� is made up of integrable functions,
leading to absorptive systems, and of 	-function contributions. The second give rise to a set of
dispersive Lorentz terms. In fact, we can say that causal, passive, dispersive susceptibilities consist
of a �possibly infinite� sum of dispersive Lorentz terms.7 Then, in the isotropic and dispersive case,
�̂�x ,z�= �̂�x ,z�U,

�e,m�x,�� = �
n

�e,m
n �x�2	�� − �e,m

n �, �̂e,m�x,z� = − �
n

�e,m
n �x�2

z2 − ��e,m
n �2 . �2.11�

Here we recall that, disregarding x-dependencies, an absorptive Lorentz contribution is given by

�̂��z� = −
�2

z2 + i�z − �0
2 , ���t� = �2 exp�−

�t

2
� sin �1t

�1
, �1 =��0

2 +
�2

4
, �,�0,� 
 0.

�2.12�

For ��R,

�̂e,m�x,�� = �
0




dt exp�i�t��e,m�t� =
1

�
� d�

1

� − � − i0
�e,m�x,�� ,

Im �̂e,m�x,�� =
�

�
�e,m�x,�� . �2.13�

In the dispersive case, �=0,

�̂�� + i0� = −
�2

�2 − �0
2 + i�	��2 − �0

2�, ��t� = �2sin �0t

�0
. �2.14�

Here the 	-function insures the validity of the Kramers–Kronig relations although it does not play
a further role.7 Negative index systems are characterized by negative real permeabilities for some
real frequencies. In the Lorentz case this can happen at a few discrete values of z. Indeed, for a
single dispersive Lorentz term, setting

1 + �̂�z� = − 1, �2.15�

we find

z = � �̂, �̂ =��0
2 +

�2

2
, �2.16�

but if absorption is present, only complex solutions with negative imaginary part are obtained.

III. TIME EVOLUTION

In this section we extend the AFF to include magnetization. Let A�R3 be the set containing
the medium, so �e,m�x ,�� vanish if x�A as do F2, F3, F5, and F6 below. In Ref. 6 E and B were
used as the electromagnetic components. It is possible to do so in the present situation, but
choosing E and H gives somewhat more symmetric formulas. We introduce
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F1�x,t� = E�x,t� ,

F2�x,�,t� = IA�x��
t0

t

ds sin	��t − s�
E�x,s� ,

F3�x,�,t� = IA�x��
t0

t

ds cos	��t − s�
H�x,s� ,

F4�x,t� = H�x,t� ,

F5�x,�,t� = IA�x��
t0

t

ds sin	��t − s�
H�x,s� ,

F6�x,�,t� = IA�x��
t0

t

ds cos	��t − s�
E�x,s� . �3.1�

Then

Je�x,t� =� d��e�x,�� · �
t0

t

ds cos	��t − s�
F1�x,s� =� d��e�x,�� · F6�x,�,s� ,

Jm�x,t� =� d��m�x,�� · �
t0

t

ds cos	��t − s�
F4�x,s� =� d��m�x,�� · F3�x,�,s� , �3.2�

and

�tF1�x,t� = �x � F4�x,t� −� d��e�x,�� · F6�x,�,t� ,

�tF2�x,�,t� = �F6�x,�,t� ,

�tF3�x,�,t� = IA�x�F4�x,t� − �F5�x,�,t� ,

�tF4�x,t� = − �x � F1�x,t� −� d��m�x,�� · F3�x,�,t� ,

�tF5�x,�,t� = �F3�x,�,t� ,

�tF6�x,�,t� = IA�x�F1�x,t� − �F2�x,�,t� . �3.3�

Note that

F2,3,5,6�x,�,t0� = 0. �3.4�

In condensed notation,

�tF�t� = − iK · F�t� . �3.5�

Let �� ��e,m�=�e,m�x ,��, � be the Levi–Civita symbol, and p=−i�x so �� ·p� · f= i�x� f. Then
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F =�
F1

F2

F3

F4

F5

F6

� , K =�
0 0 0 � · p 0 − i��e�
0 0 0 0 0 i�

0 0 0 iIA�x� − i� 0

− � · p 0 − i��m� 0 0 0

0 0 i� 0 0 0

iIA�x� − i� 0 0 0 0

� = � 0 Kem

Kme 0
� .

�3.6�

Thus, as in the dielectric case, K is symplectic. Let now

Ee�t� =
1

2
� dx� d��e�x,��:	F2�x,�,t�F2�x,�,t� + F6�x,�,t�F6�x,�,t�
 ,

Em�t� =
1

2
� dx� d��m�x,��:	F3�x,�,t�F3�x,�,t� + F5�x,�,t�F5�x,�,t�
 . �3.7�

Then, with Eem�t� as given by Eq. �2.5�,

�tEem�t� = −� dx	Je�x,t� · F1�x,t� + Jm�x,t� · F4�x,t�
 ,

�tEe�t� =� dx� d��e�x,��:F6�x,�,t�F1�x,t� =� dxJe�x,t� · F1�x,t� ,

�tEm�t� =� dx� d��m�x,��:F5�x,�,t�F4�x,t� =� dxJm�x,t� · F4�x,t� , �3.8�

so, with

E�t� = Eem�t� + Ee�t� + Em�t� , �3.9�

we have

�tE�t� = 0, �3.10�

i.e., E�t� is conserved in time. At this point we note that the standard expression for the conserved
energy is

�tE =� dx	E�x,t� · �tD�x,t� + H�x,t� · �tB�x,t�
 = �tEem�t� +� dx	E�x,t� · Je�x,t�

+ H�x,t� · Jm�x,t�
 , �3.11�

so the two expressions agree.
We introduce the inner product,
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�F,G� =� dx�F1�x� · G1�x� + F4�x� · G4�x�� + �
A

dx� d��e�x,��:�F2�x,��G2�x,��

+ F6�x,��G6�x,��� + �
A

dx� d��m�x,��:�F3�x,��G3�x,�� + F5�x,��G5�x,��� ,

�3.12�

which defines the Hilbert space

K = � j=1
6 K j, K1 = K4 = L2�R3,dx;C3� ,

K2 = K6 = L2�A,dx;C3� � L2�R,�ed��, K3 = K5 = L2�A,dx;C3� � L2�R,�md�� . �3.13�

Then

�F�t��2 = �F�t�,F�t�� = 2E �3.14�

is conserved in time. In Appendices A and C it is shown �for simpler notation the isotropic case is
considered� that K is self-adjoint in K under some mild conditions on the susceptibilities
���e,m� �x ,0���c�
�, which we assume to hold from now on. In fact, in

K = K0 + K1, �3.15�

where

K0 =�
0 0 0 � · p 0 0

0 0 0 0 0 i�

0 0 0 0 − i� 0

− � · p 0 0 0 0 0

0 0 i� 0 0 0

0 − i� 0 0 0 0

� , K1 =�
0 0 0 0 0 − i��e�
0 0 0 0 0 0

0 0 0 i 0 0

0 0 − i��m� 0 0 0

0 0 0 0 0 0

i 0 0 0 0 0

� .

�3.16�

K1 is a bounded self-adjoint operator. Thus we are dealing with a unitary time evolution on K,

W�t� = exp�− iKt� . �3.17�

As mentioned before it implies that the time evolution of the electromagnetic fields is properly
defined. In case the electromagnetic fields are square integrable at the initial time, this remains true
at all later times �note the passivity condition above�. This is not evident in the original formula-
tion which contains time convolutions.

Remark: Note that passivity is not required to obtain the conservation of E�t�. Since Eem�0�
�0 and Ee�0�=Em�0�=0 we still have E�t�=E�0��0. However, without it, Eem�t� may increase in
time and Ee�t� and Em�t� become negative for t
0 ��e,m�x ,�� may no longer be non-negative�. We
still can introduce the inner product �F ,G� but the associated norm is also no longer non-negative
definite.

For dispersive systems �e,m�x ,�� becomes a sum of 	-functions. Let us assume that only one
dispersive Lorentz contribution is present in both �’s and that the medium is homogeneous and
isotropic over A. Then �e,m�x�=�e,mIA�x�, so in K2,3,5,6 the x-integration is over A and
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�e�x,t� = �e
2IA�x�

sin �et

�e
, �e��x,t� = �e

2IA�x�cos �et ,

�m�x,t� = �m
2 IA�x�

sin �mt

�m
, �m� �x,t� = �m

2 IA�x�cos �mt ,

�̂e�x,z� =
�e

2

�e
2 − z2 IA�x�, �̂m�x,z� =

�m
2

�m
2 − z2 IA�x� , �3.18�

so

Je�x,t� = �e
2IA�x��

t0

t

ds cos	�e�t − s�
E�x,s� ,

Jm�x,t� = �m
2 IA�x��

t0

t

ds cos	�m�t − s�
H�x,s� . �3.19�

In this case, with F1=E, F4=H, and

F2�x,t� = IA�x��
t0

t

ds sin	�e�t − s�
E�x,s�, F3�x,t� = IA�x��
t0

t

ds cos	�m�t − s�
H�x,s� ,

F5�x,t� = IA�x��
t0

t

ds sin	�m�t − s�
H�x,s�, F6�x,t� = IA�x��
t0

t

ds cos	�e�t − s�
E�x,s� ,

�3.20�

once more,

�tF�t� = − iK · F�t� , �3.21�

where now

K =�
0 0 0 � · p 0 − i�e

2

0 0 0 0 0 i�e

0 0 0 iIA�x� − i�m 0

− � · p 0 − i�m
2 0 0 0

0 0 i�m 0 0 0

iIA�x� − i�e 0 0 0 0

� , �3.22�

whereas K2,6 and K3,5 reduce to L2�A ,�e
2dx ;C3� and L2�A ,�m

2 dx ;C3�, respectively. In case there
are more dispersive Lorentz terms in the susceptibilities the number of auxiliary fields increases
accordingly.

IV. LAPLACE-TRANSFORMED FIELDS

The equations of motion can equivalently be expressed in terms of Laplace transforms. Setting
t0=0, we obtain
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F̂�z� = i�z − K�−1 · F�0� = iR�z� · F�0�, Im z 
 0. �4.1�

From this the relations for the various components of F̂�z� can be obtained in terms of those of
F�0� by projecting upon the appropriate subspace, see Appendices A and C. However, a direct
approach involves less calculations. Thus,

− izD̂�x,z� − D�x,0� = − i�� · p� · Ĥ�x,z� ,

− izB̂�x,z� − B�x,0� = + i�� · p� · Ê�x,z� . �4.2�

Since

D̂�x,z� = ��x,z� · Ê�x,z�,B̂�x,z� = ��x,z� · Ĥ�x,z� , �4.3�

we obtain, noting that D�x ,0�=E�x ,0� and H�x ,0�=B�x ,0�,

Le�z� · Ê�x,z� = ge�x,z�, Lm�z� · Ĥ�x,z� = gm�x,z� , �4.4�

where

Le�z� = z2��x,z� + �� · p� · ��x,z�−1 · �� · p� ,

Lm�z� = z2��x,z� + �� · p� · ��x,z�−1 · �� · p� ,

ge�x,z� = izE�x,0� + i�� · p� · 	��x,z�−1 · H�x,0�
 ,

gm�x,z� = izH�x,0� − i�� · p� · 	��x,z�−1 · E�x,0�
 . �4.5�

Here Le�z� and Lm�z� are the electric and magnetic Helmholtz operators. Let now

Re�z� = Le�z�−1, Rm�z� = Lm�z�−1. �4.6�

Then

Ê�x,z� = Re�z� · ge�x,z�, Ĥ�x,z� = Rm�z� · gm�x,z� . �4.7�

Note that

�x · Le�z� · Ê�x,z� = z2�x · 	��x,z� · Ê�x,z�
 = z2�x · D̂�x,z� = iz�x · E�x,0� = 0, �4.8�

as it should be.
We can make the identification �see Appendices A and C�,

P1R�z�P1 = zRe�z�P1. �4.9�

Since the left hand side is a bounded operator, it follows that Re�z�, Im z
0, has a closed densely
defined extension, which is, in fact, bounded and the same is true for Rm�z�. Note that, since
��x ,z�=��x ,−z̄� and ��x ,z�=��x ,−z̄�, Re�z��=Re�−z̄�. Next we introduce Green’s functions,

Ge,m�x,y,z� = �x�Re,m�z��y� . �4.10�

They are square integrable in x and y, respectively, are analytic in the open upper half plane and
have the following further properties:

052902-11 Macroscopic Maxwell’s equations J. Math. Phys. 51, 052902 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



G�x,y,z� = G�y,x,− z̄�†,
1

2�
�

�

dzG�x,y,z� = 0,
1

2�i
�

�

dzzG�x,y,z� = − 	�x − y�U .

�4.11�

Now

Le,m · Ge,m�x,y,z� = 	�x − y�U . �4.12�

Note that, although �x ·Le · Ê�x ,z�=0, this is a special case since

�x · Lx
e ·� dyG�x,y,z� · h�y� = �x · h�x� , �4.13�

which need not vanish for general h.
The spatially piecewise constant situation is the case where R3= 	� jM j
� 	interfaces
, with

the M j’s disjoint open sets separated by sufficiently regular interfaces �so boundary conditions
can be imposed�, whereas the susceptibilities are constant over M j,

��x,z� = � j�z�, ��x,z� = � j�z�, x � M j . �4.14�

V. LAYERED SYSTEMS

A. General

In the sequel we only consider the electric Green’s function and we drop the superscript e. We
also assume that the system is isotropic �in the anisotropic case the reduction to an expression
featuring the scalar Green’s functions for s and p polarization is not possible, in general�. Here we
consider the situation that the M j’s are a number of layers parallel to the X1X2-plane. Then the
permeabilities only depend on x3,

��x,z� = ��x3,z�, ��x,z� = ��x3,z� . �5.1�

We exploit the translational invariance in the X1 and X2 directions. Let k= �k1 ,k2 ,k3� and �
=�e�=k�= �k1 ,k2 ,0��e3,

G�x,y,z� = �2��−2� d� exp�− i� · �x� − y���G��x3,y3,z� ,

G��x3,y3,z� = �2��−2� dx� exp�i� · �x� − y���G�x,y,z� ,

m��x3,z� =� dx� exp�i� · x��m�x,z� , �5.2�

where m can be E, B, ge,m, etc. Then

E�x,t� = �2��−1�
�

dz exp�− izt�Ê�x,z�

= �2��−3�
�

dz exp�− izt�� d� exp�− i� · �x� − y���� dy3G��x3,y3,z� · g��y3,z� .

�5.3�

Omitting the subscript 3 in x3, etc., from now on, Ê��x ,z��H=L2�R ,dx ;C3�,
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g��y,z� = izE��y,0� − �i� + �ye3� �
1

��y,z�
B��y,0� ,

L� · Ê��x,z� = g��x,z� , �5.4�

and

G��x,y,z� = �x�L�
−1�y�, L� · G��x,y,z� = 	�x − y�U . �5.5�

L� is obtained from Le by replacing p by �+ pe3=�e�+ pe3, p=−i�x. Denoting

��x,�,z�2 = z2��x,z���x,z� − �2, �5.6�

we obtain

L� = � ��x,�,z�2

��x,z�
− p

1

��x,z�
p
e3 � e�e3 � e� + �z2��x,z� − p

1

��x,z�
p
e�e� +

��x,�,z�2

��x,z�
e3e3

+ p
�

��x,z�
e�e3 +

�

��x,z�
pe3e� = L�

s + L�
p , �5.7�

where L�
s is the s-polarization part �the term with e3�e�e3�e�� and L�

p , the p-polarization part,
the remainder. The corresponding decomposition for G� is

G��x,y,z� = G�
s �x,y,z� + G�

p�x,y,z� = �x��L�
s �−1�y� + �x��L�

p�−1�y� . �5.8�

It is customary to consider the scalar Green’s functions associated with the electric and magnetic
s-polarization parts. However, the latter is transverse, whereas G�

p also contains a longitudinal
component. In addition, in obtaining atomic radiative decay rates, the full tensorial expression for
Green’s function is required and there is no simple relation between �the transverse part of� G�

p

and the magnetic s-polarized Green’s function. Thus we calculated G�
p in Appendices A and C

with the result

G��x,y,z� = Gs�x,y,z,�� + Gp�x,y,z,�� ,

Gs�x,y,z,�� = Gs�x,y,z,��e3 � e�e3 � e�,

Gp�x,y,z,�� = �e� +
i�

��x�2�xe3��e� −
i�

��y�2�ye3�Gp�x,y,z,�� , �5.9�

where Gs and Gp satisfy

�z2��x,z� − p
z2��x,z�
��x,�,z�2 p
Gp�x,y,z,�� = 	�x − y� ,

� ��x,�,z�2

��x,z�
− p

1

��x,z�
p
Gs�x,y,z,�� = 	�x − y� . �5.10�

In order to obtain Gp and Gs we have to supplement these differential equations with the boundary
conditions at an interface. Since �x�� /�2��xGp must make sense, �xGp must exist, so we can choose
Gp to be continuous in x. In addition �� /�2��xGp must be differentiable, so it must also be
continuous in x. Similarly we find that Gs must be continuous in x, as well as �−1�xGs and again
the same applies with x and y interchanged. These boundary conditions can be shown to corre-
spond to the usual boundary conditions for D and E. In addition, in view of the square integra-
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bility in x and y, there are no exponentially increasing contributions for layers that extend to x
= �
.

B. Two half spaces filled with different materials

We consider the situation where the half spaces x
0 and x�0 are filled with media charac-
terized according to

��x,z� = ��+�z� , x 
 0

�−�z� , x � 0,

 ��x,z� = ��+�z� , x 
 0

�−�z� , x � 0.

 �5.11�

We denote

�+��,z�2 = z2�+�z��+�z� − �2, �−��,z�2 = z2�−�z��−�z� − �2,

K���,z� =
����,z�

2iz2���z�
, L���,z� =

���z�
2i����,z�

�5.12�

and introduce the Fresnel reflection coefficients,

rp =
�−�+ − �+�−

�−�+ + �+�−
, rs =

�−�+ − �+�−

�−�+ + �+�−
. �5.13�

Using square integrability in x and y and the boundary conditions on the interface, we obtain in the
usual way

Gp�x,y,z� = K+	exp�i�+�x − y�� − rp exp�i�+�x + y��
��x���y� +
1

iz2

�+�−

�+�− + �−�+

�	exp�i�+x − i�−y���x���− y� + exp�− i�−x + i�+y���− x���y�


+ K−	exp�i�−�x − y�� + rp exp�− i�−�x + y��
��− x���− y� �5.14�

and

Gs�x,y,z� = L+	exp�i�+�x − y�� + rs exp�i�+�x + y��
��x���y� − i
�+�−

�+�− + �−�+

�	exp�i�+x − i�−y���x���− y� + exp�− i�−x + i�+y���− x���y�


+ L−	exp�i�−�x − y�� − rs exp�− i�−�x + y��
��− x���− y� , �5.15�

from which the x and y derivatives of Gp�x ,y ,z�, etc., present in Gp�x ,y ,z ,��, can be obtained in
explicit form.

The case where the region x
0 consists of vacuum and the initial state is contained in this
region is of particular interest. It applies to the situation where an electromagnetic wavepacket in
vacuum is traveling toward the medium. Then, labeling vacuum quantities with the subscript 0 and
deleting the subscript—for quantities associated with the medium,

K+��,z� = K0��,z� =
�0��,z�

2iz2 , L+��,z� = L0��,z� =
1

2i�0��,z�
,

�0��,z� = �z2 − �2, rp0 =
��0 − �

��0 + �
, rs0 =

��0 − �

��0 + �
, �5.16�

so, for y
0,
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Gp�x,y,z� = K0	exp�i�0�x − y�� − rp0 exp�i�0�x + y��
��x� +
1

iz2

�0�

� + ��0
exp�− i�x + i�0y���− x� ,

Gs�x,y,z� = L0	exp�i�0�x − y�� + rs0 exp�i�0�x + y��
��x� − i
�

� + ��0
exp�− i�x + i�0y���− x� .

�5.17�

VI. THE NIM SITUATION

We continue our investigation of the half space case, assuming that

��z� = ��z� = 1 −
�2

z2 − �0
2 , �6.1�

the dispersive Lorentz case, and rewrite

��z� =
1

���,z� + ��z��0��,z�
=

� − ��0

�2 − �2�0
2 =

� − ��0

�z2�2 − �2� − �2�z2 − �2�
=

� − ��0

�2

1

� − 1

1

� + 1
.

�6.2�

Note that this expression can become infinite if �2=1. In the case �=1 we are back to the vacuum
case and �−��0=0. But if �=�=−1, the NIM case,

z = �̂� = � �̂, �̂ =��0
2 +

1

2
�2, �6.3�

and ��z� can become infinite. Now

1

��z� + 1
=

1

2

z2 − �0
2

�z − �̂��z + �̂�
, ��z� =

� − ��0

�z − �̂��z + �̂�
z2 − �0

2

2�2	��z� − 1

, �6.4�

so we encounter poles in z= ��̂. Next we study the behavior of ��z�=���+ i	� as 	↓0. We start
with ��z�. In order to obtain the square root in the limit 	↓0, we must know the signs of ����2 and
������2 in

��� + i	�2 = ����2 + i	������2 + O�	2� , �6.5�

where

��z�2 = z2�1 −
�2

z2 − �0
2�2

− �2, �z��z�2 = 2z�1 −
�2

z2 − �0
2��1 +

�2

z2 − �0
2 +

2�0
2�2

�z2 − �0
2�2� .

�6.6�

Since both quantities have definite parity it suffices to consider the case ��0. We note that
��0�2=−�2 and that ����2 increases to +
 as � approaches �0. Then it decreases again to reach the
value −�2 for �= �̃=��0

2+�2. Beyond this value it increases again to tend to +
 as �→+
. Thus
����2 has three zero’s, �a� �0,�0�, �b� ��0 , �̃�, and �c
�̃. Since ����2=0 corresponds to a
third order equation in �2, these are the full set of zero’s. ������2 vanishes in �=0, then tends to
+
 as � reaches �0, where it switches sign and increases to 0 in �̃, whereupon it remains positive
and eventually tends to +
. Denoting
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���� =���2�1 −
�2

�2 − �0
2�2

− �2� , �6.7�

we obtain �+ indicates that a quantity is positive and � that it is negative�

�� 
+ �c �+ �̃,+ �c� �+ �b,+ �̃� �+ �0,+ �b� �+ �a,+ �0� �0,+ �a�
���,��2 + − − + + −

Im ���,� + i	�2 + + − − + +

���,�� ���� i���� i���� − ���� ���� i����

�� �− �c �− �c,− �̃� �− �̃,− �b� �− �b,− �0� �− �0,− �a� �− �a,0�
���,��2 + − − + + −

Im ���,� + i	�2 − − + + − −

���,�� − ���� i���� i���� ���� − ���� i����

�6.8�

In comparison, with �0���=���2−�2�, so ���̂�=�0��̂�,

�� 
� �0,+ �� �− �,0� �− �

�0��,�� �0��� i�0��� i�0��� − �0���
�6.9�

Since �̂=��0
2+ � 1

2
��2 we have �̂� ��0 , �̃�. For �̂
�, ��� , �̂�2= �̂2−�2
0 and �̂� ��0 ,�b�,

��� , �̂�=−���̂�=−��̂2−�2, whereas for �̂��, ��� , �̂�2�0 and �̂� ��b , �̃�, ��� , �̂�= i���̂�. Simi-
lar results follow for −�̂ resulting in

�̂� 
� �0,+ ��
���,+ �̂� − ���̂� i���̂�
���,− �̂� + ���̂� i���̂�
�0��,+ �̂� + ���̂� i���̂�
�0��,− �̂� − ���̂� i���̂�
�−��̂� − ���̂��0��̂� 0 2i���̂�
�−�− �̂� − ��− �̂��0�− �̂� 0 2i���̂�
���̂� + ���̂��0��̂� − 2���̂� 0

��− �̂� + ��− �̂��0�− �̂� + 2���̂� 0

�6.10�

For �̂
� and y
0 we obtain

Gp�x,y, � �̂� = �
���̂�
2i�̂2 	exp��i���̂��x − y����x� + exp��i���̂��x + y����− x�
 ,

Gs�x,y, � �̂� = �
1

2i���̂�
	exp��i���̂��x − y����x� + exp��i���̂��x + y����− x�
 . �6.11�

On the other hand, for �̂��, ��z� becomes infinite for z= ��̂ since ��� ,z�+��z��0�� ,z� vanishes
in ��̂. Now

��z� =
� − ��0

�z − �̂��z + �̂�
z2 − �0

2

2�2	��z� − 1

�

z→��̂���̂��2

4i�2

1

�z − �̂��z + �̂�
, �6.12�

so we encounter poles in ��̂. Thus
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Gp�x,y,z� = K0�exp�i�0�x − y�� +
� − ��0

� + ��0
exp�i�0�x + y��
��x� +

1

iz2

�0�

� + ��0
exp�− i�x + i�0y���− x�

= K0 exp�i�0�x − y����x� +
1

� + ��0
��0�� − ��0�exp�i�0�x + y����x�

+
1

iz2�0� exp�− i�x + i�0y���− x�

�

���̂�
2�̂2 exp�− ���̂��x − y����x� +

���̂�3�2

4�̂2�2

1

�z − �̂��z + �̂�
	exp�− ���̂��x + y����x�

+ exp�+ ���̂��x − y����− x�
 ,

Gs�x,y,z� = L0�exp�i�0�x − y�� −
� − ��0

� + ��0
exp�i�0�x + y��
��x� − i

�

� + ��0
exp�− i�x + i�0y���− x�

= L0 exp�i�0�x − y����x� −
1

� + ��0
	�0�� − ��0�exp�i�0�x + y����x� + i� exp�− i�x

+ i�0y���− x�


�
z→��̂

−
1

2���̂�
exp�− ���̂��x − y����x� + i

���̂��2

4i�2

1

�z − �̂��z + �̂�
	exp�− ���̂��x + y����x�

+ exp�+ ���̂��x − y����− x�
 . �6.13�

Hence, in the reflection case x ,y
0, and for �̂
�,

Gp�x,y, � �̂� = �
���̂�
2iz2 	exp��i���̂��x − y��
, Gs�x,y, � �̂� = �

1

2i���̂�
	exp��i���̂��x − y��
 ,

�6.14�

where the term responsible for reflection is absent, i.e., there is no reflection at the frequencies ��̂
for which ��z�=��z�=−1.

On the other hand, for �̂��, x ,y
0,

Gp�x,y,z� �
z→��̂���̂�

2�̂2 exp�− ���̂��x − y�� +
���̂�3�2

4�̂2�2

1

�z − �̂��z + �̂�
exp�− ���̂��x + y�� ,

Gs�x,y,z� �
z→��̂

−
1

2���̂�
exp�− ���̂��x − y�� +

���̂��2

4�2

1

�z − �̂��z + �̂�
exp�− ���̂��x + y�� ,

�6.15�

so now the reflection term is still present but we encounter the damped behavior, typical for the
evanescent situation. Next we consider refraction �transmission into the lower half space�. Here
y
0
x, and for �̂
�,

Gp�x,y, � �̂� = �
���̂�
2i�̂2 exp��i���̂��x + y��, Gs�x,y, � �̂� = �

1

2i���̂�
exp��i���̂��x + y�� .

�6.16�

Now
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i�

���̂�2�xGp�x,y,z� = �
�

���̂�
, �6.17�

leading to

G��x,y,z� →
z→��̂

�
1

2i���̂�
exp��i���̂��y + x��

�����̂�2

�̂2 �e� �
�

���̂�
e3��e� �

�

���̂�
e3� + e3 � e�e3 � e�
 , �6.18�

whereas in the vacuum case,

G��x,y, � �̂� = �
1

2i���̂�
exp��i���̂��y − x��

�����̂�2

�̂2 �e� �
�

���̂�
e3��e� �

�

���̂�
e3� + e3 � e�e3 � e�
 . �6.19�

Comparing the two we note that x has changed to −x and � /���̂� to −� /���̂�, showing the
anomalous behavior found earlier for NIM systems. This behavior becomes more direct in a
scattering formalism where it would show up in the corresponding scattering amplitude. However,
setting up a scattering formalism, although a straightforward matter using the auxiliary field
approach �the dielectric case was treated earlier in Ref. 6�, involves a substantial amount of
bookkeeping. This is mainly due to the existence of two different scattering channels for reflection
and transmission. The scattering situation is somewhat less complicated for a single NIM layer,
where the transmitted wave eventually is moving in vacuum again.

If �̂��, for y
0
x,

Gp�x,y,z� �
z→��̂ ���̂�3�2

4�̂2�2�z2 − �̂2�
exp�− ���̂��y − x��, Gs�x,y,z� �

z→��̂ ���̂��2

4�2�z2 − �̂2�
exp�− ���̂��y − x�� ,

�6.20�

once more showing evanescent behavior. In retrieving E�x , t�, the pole contributions in Green’s
function give rise to terms oscillating in time according to exp��i�̂t�, so no damping occurs in the
time dependence, a property observed earlier by Pendry2 for the case of a single layer.

VII. DISCUSSION

A. Summary of results

We started off with a system characterized by general causal, passive, susceptibilities �e�x , t�
and �m�x , t� and showed, using the auxiliary field approach, that E�x , t� and H�x , t� have a proper
time evolution. If they are square integrable at the initial time this remains true at all later times so
possible singularities are square integrable and the electromagnetic energy remains finite. We then
specialized to layered systems using a Laplace transformed formalism. We expressed Green’s
function, which is a tensor, in terms of the two scalar functions Gs�x ,y ,z� and Gp�x ,y ,z�. A
consequence of the auxiliary field setup is that the Helmholtz Green’s function is square integrable
in both coordinates. In particular, this is true in the evanescent case.

We then studied the special situation where one half space is vacuum and the other filled with
a medium. Restricting ourselves to scalar permeabilities given by a single dispersive Lorentz term,
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��z� = ��z� = 1 −
�2

z2 − �0
2 , Im z 
 0, �7.1�

which take on the value of �1 for z= ��̂= � ��0
2+ 1

2�2�1/2, we then evaluated Gs�x ,y ,z� and
Gp�x ,y ,z� as z approaches these values and found, for the nonevanescent case, a typical NIM
behavior, the reflected field vanishes whereas the transmitted field behaves anomalously, in accor-
dance with earlier results on NIM systems. As is well known, although n2=����̂�����̂�=1, the
NIM case is different from the vacuum situation as is seen from the refractive behavior. But the
absence of reflection in the radiative regime is shared by both.

On the other hand Green’s function has poles at ��̂ in the evanescent situation. They lead to
oscillating terms proportional to exp��i�̂t� and the reflective part of Green’s function no longer
vanishes. There is no damping in the temporal behavior as noted earlier by Pendry.2 This is
obvious since the former only occurs in absorptive media, the spatial fall-off occurring in evanes-
cent situations is completely unrelated to the temporal decay found in the absorptive case.

Note that in the present setup the NIM case is a special situation occurring for two discrete
frequencies ��̂ among a whole set where no NIM behavior takes place. The general expression
for the permeabilities of a dispersive, nonabsorptive, system for equal � and � is a �possibly
infinite� sum of dispersive Lorentz terms,

��z� = ��z� = 1 − �
n

�n
2

z2 − �0n
2 , �7.2�

and in this case there is a larger set of frequencies �̂n for which �=�=−1. But between these
frequencies � and � vary wildly, in particular, there is always a �0n �for which there is no
transmission� between two subsequent �̂n’s. This may spoil the idea of obtaining an interval for
which this relation is approximately valid. Indeed, if in z=�+ i	, � approaches �0n, then

��z��
	↓0 i�n

2

2�0n

1

	
. �7.3�

In the half space case this results in

1

� + ��0
→
	↓0

0,
� − ��0

� + ��0
→
	↓0

− 1, �7.4�

so G��x ,y ,z� vanishes in this limit if x�0 and y
0. Thus the situation is opposite to the NIM
case. In that case there is no reflection, whereas here the transmission vanishes �perfect reflector�.

We did not consider absorption in the NIM case. This is straightforward to do along the same
lines but since the medium extends over a half space, the transmitted field will die out. The two
poles ��̂ now acquire a negative imaginary part, so Green’s function remains finite for all
frequencies and the reflection term in Green’s function no longer vanishes. We intend to come
back to this situation for the single layer case, where a transmitted field, although attenuated, is
still present. Moreover, this case can fairly easily be treated in terms of a scattering formalism,
leading to scattering amplitudes for reflection and transmission, which should show NIM behavior
in the dispersive case for appropriate frequencies.

B. Discrete eigenvalues of K, surface modes, and radiative atomic decay

We found earlier that the Helmholtz Green’s function of a NIM system had poles in z= ��̂.
Usually poles in Green’s function originate from discrete eigenvalues of the original operator and
this is precisely what happens here. In the more general case that �e��m and �e��m, the
condition ��z���z�=1 again gives the solutions z= ��̂ but now
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�̂2 =
�e

2�m
2 + �m

2 �e
2 + �e

2�m
2

�e
2 + �m

2 . �7.5�

It is straightforward to show that in the half space case ��̂ are eigenvalues of K with associated
eigenfunctions proportional to

exp�i� · x��exp�− ��2 − �̂2�x3��, � 
 �̂ , �7.6�

i.e., surface modes. Since �̂ does not depend on �, a general theorem about direct integral
decompositions tells us that ��̂ are discrete eigenvalues of K with infinite degeneracy. This can
also be seen directly since by superposition we can construct an infinite orthonormal set of square
integrable functions 	fn�x�
,

fn�x� =� d��n���exp�i� · x��exp�− ��2 − �̂2�x3�� . �7.7�

Here the question arises as to what happens if there are whole sets of dispersive Lorentz terms in
the susceptibilities. Then there will be sets of solutions 	��̂n
, but the condition �
�̂ needs
refinement.

Excited atoms in vacuum decay by photon emission providing there is no selection rule
forbidding the transition. It is well known that the radiative decay constant �vac changes if we no
longer have vacuum. Examples are atoms in a cavity or near a material such as a dielectric. This
is caused by alterations in the field modes relative to the vacuum case. In simple situations,
making the dipole and isotropic approximation, � can be expressed in terms of the imaginary part
of the trace �Tr� of Green’s function as a matrix,

� � Im Tr G�x,x,�tr� , �7.8�

where x is the atomic position and �tr the atomic transition frequency. In case the permeabilities
are frequency independent, Im Tr G�x ,x ,�� is the local density of states. In Ref. 6 the above
result was obtained for dielectrics. The same procedure, involving quantization of the fields, can
be used in the present case with the same result �the case of an atom embedded in a magnetodi-
electric material was considered by the Jena group9�. Here we make a few remarks about the
layered case. We have

Im Tr G�x,x,�tr� =� d� Im Tr G��x,x,�tr� �7.9�

and consider the dispersive half space situation with the atom in vacuum close to the interface.
Since Green’s function for x ,y
0 is the sum of a vacuum and reflective part, we can write �
=�vac+�ref. At the NIM frequency, �tr= �̂, there is no reflection in the propagating regime so in
the �-integral only �
�̂ can contribute. Since Im G��x ,x ,�tr+ i0� becomes infinite for �tr= �̂,
due to the presence of the 	-functions 	����̂�, we obtain an infinite result for �ref. Such an
infinite local density of states was also encountered in Ref. 10, where a so-called perfect corner
reflector was considered. However, this result is incorrect. Upon quantization, an excited atom
with �tr= �̂ can decay radiatively but also transitions to the above bound states of K are possible.
The latter process is an oscillatory one and we expect decay but modulated by oscillations.
However, there are no infinities.

Another point is that the situation is highly anisotropic so the isotropy approximation, which
is used to obtain Eq. �7.8�, becomes doubtful. Clearly the radiative decay problem needs further
study.

C. Fixed frequency model

In Sec. I we mentioned that using a simple model with fixed, i.e., frequency independent �
=�=−1 can give rise to problems in calculating Green’s function. Indeed, our formalism indicates
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that, in the evanescent case, there are poles in ��̂, so Green’s function becomes infinite and the
simple model breaks down. As we have seen, in retrieving E�x , t� a finite result emerges and the
responsible frequency integration mechanism is absent in the model. In addition there is a second
flaw. With

� = � = ��x3� = ��x3� = �+ 1, x3 
 0

− 1, x3 � 0,

 �7.10�

the conserved energy

E =
1

2
� dx	��x3�E�x,t�2 + ��x3�B�x,t�2
 �7.11�

is no longer positive definite and we can no longer base an inner product and associated Hilbert
space formalism on this quantity. We still can use the inner product,

�f,g� =� dxf�x� · g�x� , �7.12�

but now the candidate for the generator of the time evolution, determined by the usual boundary
conditions, is no longer self-adjoint, so the existence of a time evolution comes into question. Of
course it is possible to introduce a Krein space with inner product based on E but this does not
solve this problem. An alternative is to restrict K to the eigenspaces associated with ��̂, which
leads to a correct time evolution. Then we have a fixed frequency model but now the part of K,
relevant for radiative decay, is missing.

D. Response to an external source

We consider the time evolution due to an external source. In general, the source is given by
charge and current densities �ext�x , t� and Jext�x , t�, which are related by the conservation law,

�t�ext�x,t� + �x · Jext�x,t� = 0. �7.13�

We assume that the source quantities vanish for t� t0, so the same holds for the fields. Then

�tD�x,t� = �x � H�x,t� − Jext�x,t�, �tF�t� = − iK · F�t� − G�t� , �7.14�

where G1�t�=Jext�x , t�, whereas its other components vanish. Since F�t0�=0, Duhamel’s formula
gives

F�t� = �
t0

t

ds exp�− iK�t − s�� · G�s� . �7.15�

We are interested in the behavior of F�t� for large t. This depends on the nature of the spectrum
of K. We assume that K does not have singular continuous spectrum, so

K = �
n

�nPn +� �Eac�d�� = �
n

�nPn + �
�
� d���u����u��� . �7.16�

At this point we set t0=0 and assume that

G�t� = f�t�G0, G0 � K , �7.17�

where the Fourier transform f̃��� in
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f�t� =� d� exp�− i�t� f̃��� �7.18�

is a smooth function of �. Then

Pn · F�t� = �
0

t

ds exp�− i�n�t − s��f�s�Pn · G0,

Pac · F�t� = �
0

t

ds�
�
� d� exp�− i��t − s��f�s��u����u���G0� ,

�u���Pac · F�t�� = �
0

t

ds exp�− i��t − s��f�s��u���G0� , �7.19�

and

Pn · F�t� = �
0

t

ds exp�− i�n�t − s��Pn ·� d� exp�− i�s�G̃���

= exp�− i�nt�� d�
exp�i��n − ��t� − 1

i��n − ��
f̃���Pn · G0

= exp�− i�nt�� dv
1 − exp�− iv�

− iv
f̃��n +

v
t
�Pn · G0

�
t→
�

2
exp�− i�nt� f̃��n�Pn · G0, �7.20�

whereas

�u���Pac · F�t�� �
t→
�

2
exp�− i�t� f̃����u���G0�, �Pac · F�t��2 →

t→
��

2
�2

�
�
� d�� f̃����2��u���G0��2.

�7.21�

We see that for large times Pn ·F�t� oscillates at the frequency �n, a familiar situation for musical
instruments excited by a pulse �playing a piano, ringing a bell�. We have seen that in the dispersive
half space case K has eigenvalues ��̂. Hence E�x , t� has contributions that oscillate at these

frequencies. Whether or not other contributions eventually die out depends on the nature of f̃���
and �u�� �G0�. If the two have disjoint supports in �, this will indeed be the case. However, the
continuous spectrum of K typically covers the whole real axis.

Actual sources always have a finite bandwidth �although it can be quite small as for single
mode laser sources�. In practice monochromatic sources �which are usually simplified to a point

source� are often considered. Thus if, for instance, f�t�= f0 sin �0t, then f̃���= �2i�−1f0		��−�0�
−	��+�0�
. Now Pn ·F�t� vanishes if �n� ��0 and diverges for �n= ��0. Also

�u���Pac · F�t�� =
f0

2i
exp�− i�t�� exp�i�� − �0�t� − 1

i�� − �0�
−

exp�i�� + �0�t� − 1

i�� + �0� 
�u���G0� ,

�7.22�

and Pac ·F�t� diverges unless �u�,� �G0� vanishes in a neighborhood of ��0. Such divergent
behavior is typical for undamped systems driven by a harmonic force. The external source situa-
tion with a monochromatic point source is sometimes used as the starting point for the calculation
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of Green’s functions. Then, with G�x , t�=G0 exp�−i�0t�	�x−x0�, taking Fourier transforms,

�� − K� · F̃��� = i	�� − �0�	�x − x0�G0. �7.23�

However, �−K does not have an inverse, � being in the spectrum of K. This problem is avoided
by using Laplace transforms, in which case

F̂�z� = i�z − K�−1 · Ĝ�z�, Im z 
 0. �7.24�

Returning to the half space case, we conclude that for large times E�x , t� has oscillating contri-
butions at the frequencies ��̂ but that there is also an additional contribution associated with the
continuous spectrum of K.

E. Final remarks

The philosophy of our approach is to study special properties that occur for specific frequen-
cies, the NIM case being the primary example. But, as already noted, in the half space case with
a single scalar Lorentz contribution, transmission tends to 0 if �→�0. For this to happen, ��z� and
��z� need not be identical, as can be seen from the expression for Green’s function. This feature
remains valid if there are more Lorentz contributions present. It suggests the experimental study of
reflection properties as a function of frequency. Dips will occur if a NIM situation can happen
�absorption will prevent obtaining an exact zero� and maxima at the frequencies �0n in Eq. �7.2�.
In the idealized single Lorentz case �0 and �̂ can both be obtained in this way.

Although we concentrated on the situation where the electric and magnetic susceptibilities
were given by the same single dispersive Lorentz form, the situation where they consist of
different sets of Lorentz contributions can also give rise to NIM situations, the fundamental
requirement being the existence of some frequencies �̂ for which ���̂�=���̂�=−1.

An important question is in how far such systems can be realized. On a microscopic level it
seems not to be possible to obtain this property �for some further considerations on the suscepti-
bilities of magnetodielectric systems, see Ref. 11�. On a larger scale, small structures, involving
split rings and other configurations, lead to a more favorable situation. But if the electric and
magnetic modes are coupled, complications arise �von Neumann’s noncrossing rule�. Another
point is that, due to the employed manufacturing methods, fabricated materials are not isotropic.
But this may change in the future. There is an extensive experimental literature concerning the
fabrication of such devices.5 A further complication is often the occurrence of losses. The latter
can spoil the delicate effects essential for “perfect lenses.” In principle such lenses can consist of
a single NIM slab. In the present work we did not consider this case, a simple form of a layered
system. However, in a quite recent publication, Collin12 made a precise analysis of this specific
case. He took into account field contributions not considered by Pendry2 and the effect of fields
switched on for only a finite time interval and found that taking these into account spoils the
perfect lens behavior. We also encountered such contributions in the half space case, the back-
ground part in addition to the pole terms in Green’s functions.

Losses will blur the NIM behavior originating from pole contributions in a dispersive case,
since the poles now acquire an imaginary part. This raises the question if adding some gain can
improve the situation. Typically losses arise from a coupling of the electromagnetic field to
material modes that have continuous spectrum. As an example, if the material consists of a single
atom, this coupling is the one to atomic continuum states �ionization�. In macroscopic media,
among other possibilities, couplings to phonon modes and the occurrence of Förster processes can
cause absorption. In such situations electromagnetic energy is converted to material modes where
the energy leaks away in space. It will be clear that compensating all losses by means of adding
gain �this would convert the system to a dispersive, nonabsorptive one� will not be possible. But
compensating loss at a few specific frequencies, for instance, by pumping the system to create
level inversions in the material subsystem, may be feasible. Here the gain must be controlled
precisely in order to maintain passivity and avoid undesirable instabilities. This situation was
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analyzed by Stockman,4,13 who applied a causality argument to the square of the refraction func-
tion n�z�2=��z���z�. He concluded that negative refraction cannot be accomplished by adding
gain.

Finally, we mention an approach based on space-time transformations leading to a simpler set
of field equations but in a curved space-time frame.14 In particular, the detailed work by Leonhardt
and Philbin, using methods borrowed from general relativity, should be mentioned. So far this
approach is restricted to frequency independent � and �. Taking the AFF as a starting point it may
be possible to extend it to the general frequency-dependent case.
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APPENDIX A: SELF-ADJOINTNESS OF K

The idea is to split K into a zero order part K0 and a perturbation K1,

K = K0 + K1, �A1�

where

K0 =�
0 0 0 � · p 0 0

0 0 0 0 0 i�

0 0 0 0 − i� 0

− � · p 0 0 0 0 0

0 0 i� 0 0 0

0 − i� 0 0 0 0

� , K1 =�
0 0 0 0 0 − i��e�
0 0 0 0 0 0

0 0 0 i 0 0

0 0 − i��m� 0 0 0

0 0 0 0 0 0

i 0 0 0 0 0

� .

�A2�

Proposition: Assume that ��e,m� �x ,0��
=supx��e,m� �x ,0���c�
. Then K1 is bounded so K is self-
adjoint with domain D�K0�.

Proof: For notational simplicity we give the proof for scalar susceptibilities and the absorptive
case �so �e,m�x ,��1/2 are properly defined, the dispersive situation must be handled slightly differ-
ently�. Let f�D�K0�. Then

g =�
g1

g2

g3

g4

g5

g6

� = K1 · f =�
− i� d��e�x,��f6�x,��

0

if4�x�

− i� d��m�x,��f3�x,��

0

if1�x�

� . �A3�

Now
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�g1�1
2 =� dx� d��e�x,��f6�x,�� ·� d��e�x,��f6�x,��

=� dx� d��e�x,��1/2� d��e�x,��1/2�e�x,��1/2f6�x,�� · �e�x,��1/2f6�x,��

�� dx�� d��e�x,���1/2�� d��e�x,���1/2

��� d��e�x,���f6�x,���2�1/2�� d��e�x,���f6�x,���2�1/2

=� dx� d��e�x,��� d��e�x,���f6�x,���2 =� dx���x,0�� d��e�x,���f6�x,���2

� ����0��
�f6�6
2 � d�f6�6

2. �A4�

Also

�g4�3
2 =� dx� d��m�x,���f3�x��2 � d�f3�4

2, �A5�

and similar for the other components. Thus

�K1 · f� � �d + 1�f� , �A6�

so K1 is a bounded self-adjoint operator and hence K is self-adjoint with domain D�K0�. �

Remark: Note that the proof does not require �e,m�x ,�� to be non-negative or even real.
However, if this is not the case the inner product on K is altered and the norm no longer
non-negative.

APPENDIX B: PROJECTIONS OF R„z…

We assume the susceptibilities to be scalar and consider P1�z−K�−1P1=P1R�z�P1, where P j

projects upon the jth component of f�K, P jf= f j.We have

�z − K�−1 = �z + K��z2 − K2�−1

= �z + K���z2 − Kem · Kme�−1 0

0 �z2 − Kme · Kem�−1 �
= �z + K���z2 − He�−1 0

0 �z2 − Hm�−1 � ,

He = �h0 + �e��x,0� − ��e�� − i� · p��m�
− � �2 0

− i� · p 0 �2 + �0���m�
�, Hm = �h0 + �m� �x,0� − ��m�� i� · p��e�

− � �2 0

i� · p 0 �2 + �0���e�
� ,

�B1�

so

P1�z − K�−1P1 = zP1�z2 − He�−1P1. �B2�

According to the Feshbach projection formula with A an operator and P=1−Q a projector,

A−1 = �QAQ�−1Q + 	P − �QAQ�−1QAP
GP	P − PAQ�QAQ�−1
 ,
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PA−1P = GPP, GP = �PAP − PAQ�QAQ�−1QAP�−1,

QA−1Q = GQQ, GQ = �QAQ − QAP�PAP�−1PAQ�−1. �B3�

In our case P=P1=1−Q1=1−P2−P3, A=z2−He, and we obtain

P1�z2 − He�−1P1 = �z2 − h0 − �e��x,0� − P1HeQ1�z2 − Q1HeQ1�−1Q1HeP1�−1P1. �B4�

Here

P1HeQ1�z2 − Q1HeQ1�−1Q1HeP1 = P1HeP2�z2 − P2HeP2�−1P2HeP1

+ P1HeP3�z2 − P3HeP3�−1P3HeP1

= ��e��2�z2 − �2�−1�0� − � · p��m��z2 − �2 − �0���m��−1�0� · � · p

�B5�

and

��e��2�z2 − �2�−1�0� = − �e��x,0� − z2�̂e�x,z� ,

��m��z2 − �2 − �0���m��−1�0� = − 1 + �1 − ��m��z2 − �2�−1�0��−1 = − 1 + ��x,z�−1, �B6�

leading to

P1�z2 − He�−1P1 = �z2��x,z� + �� · p���x,z�−1 · �� · p��−1P1 = Re�z�P1 �B7�

so

P1�z − K�−1P1 = zRe�z�P1. �B8�

Similarly

P4�z − K�−1P4 = zRm�z�P4. �B9�

APPENDIX C: DECOMPOSITION OF GREEN’S FUNCTIONS FOR THE LAYERED
CASE

We express R�
e,m�z� in terms of the inverses of scalar operators. Using the Feshbach formula,

Eq. �B3�, with A=L�
e,m�z� and

Ps = e3 � e�e3 � e�,

Qs = U − Ps = e�e� + e3e3, �C1�

we find, noting that

�e3 � e�� · �� · p� = �e3 − pe�,

�� · p� · �e3 � e�� = − �e3 + pe�

� · p · Qs = �� · p� · �e�e� + e3e3� = �e3 � e����e3 − pe�� , �C2�

etc., that �we skip the subscript � for brevity�

Ps · Le · Ps = � �2

�
− p

1

�
p�Ps,
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Ps · Le · Qs = 0,

Qs · Le�z� · Qs = Lp
e = �z2��x,z�UQ − �pe� − �e3�

1

��x,z�
�pe� − �e3�� · Qs �C3�

and similar for L�
m �interchange � and ��, where

��x,�,z�2 = z2��x,z���x,z� − �2. �C4�

Thus,

Re,m�z� = Rs
e,m�z� + Rp

e,m�z� , �C5�

where, with

Rs
e�z� = �z2� −

�2

�
− p

1

�
p�−1

, Rs
m�z� = � �2

�
− p

1

�
p�−1

, �C6�

Rs
e�z� = Rs

e�z�Ps, Rs
m�z� = Rs

m�z�Ps,

Rp
e�z� = �z2�UQ − �pe� − �e3�

1

�
�pe� − �e3��−1

Qs,

Rp
m�z� = �z2�UQ − �pe� − �e3�

1

�
�pe� − �e3��−1

Qs. �C7�

Now let

Rp
e�z� = Ae�e� + Be�e3 + Ce3e� + De3e3. �C8�

Since

Lp
e · Rp

e = Qs = e�e� + e3e3, �C9�

we find by comparing coefficients that

�z2� − p
1

�
p�A + p

�

�
C = 1,

�2

�
D +

�

�
pB = 1,

�

�
pA +

�2

�
C = 0,

�z2� − p
1

�
p�B + p

�

�
D = 0. �C10�

Let

Rp
e�z� = �z2� − p

z2�

�2 p�−1

, Rp
m�z� = �z2� − p

z2�

�2 p�−1

. �C11�

Then
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A = Rp
e�z�, B = − Rp

e�z�p
�

�2 , C = −
�

�2 pRp
e�z� ,

D =
�

�2 +
�

�2 p�z2� − p
z2�

�2 p�−1

p
�

�2 , �C12�

with similar results for the magnetic case. Hence

Re�z� = Rs
e�z�e3 � e�e3 � e� + �e� −

�

�2 pe3�Rp
e�z��e� − p

�

�2e3� +
�

�2e3e3,

Rm�z� = Rs
m�z�e3 � e�e3 � e� + �e� −

�

�2 pe3�Rp
m�z��e� − p

�

�2e3� +
�

�2e3e3. �C13�

Note that

Rp
e�z� =

1

p

�2

z2�
Rs

m�z�p
1

�
, �C14�

so Rp
e�z� can be expressed in terms of the scalar magnetic s-polarized Green’s function but the

vectors in front and behind are quite different. From the above expressions the corresponding
Green’s functions, introduced in Sec. V, now follow.
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