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Exploiting disorder for perfect focusing
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We demonstrate experimentally that disordered scattering can be used to improve, rather than
deteriorate, the focusing resolution of a lens. By using wavefront shaping to compensate for scat-
tering, light was focused to a spot as small as one tenth of the diffraction limit of the lens. We show
both experimentally and theoretically that it is the scattering medium, rather than the lens, that
determines the width of the focus. Despite the disordered propagation of the light, the profile of
the focus was always exactly equal to the theoretical best focus that we derived.

Optical microscopy and manipulation methods rely on
the ability to focus light to a small volume. However, in
inhomogeneous media, such as biological tissue, light is
scattered out of the focusing beam. Disordered scatter-
ing is thought to fundamentally limit the resolution and
penetration depth of optical methods [T}, [2, B]. Here we
demonstrate in an optical experiment that this very scat-
tering can be exploited to improve, rather than deterio-
rate, the sharpness of the focus. Surprisingly, the result-
ing focus is even sharper than in a transparent medium.
By using scattering in the medium behind a lens, light
was focused to a spot as small as one tenth of the diffrac-
tion limit of that lens. Our results, obtained using spatial
wavefront shaping, are valid for all methods for focus-
ing coherent light through scattering matter, including
phase conjugation[4] and time-reversal[5]. We anticipate
that disorder-assisted focusing will improve the imaging
resolution of microscopy in inhomogeneous media.

The starting situation of the experiment is shown in
Fig. 1a: a lens focuses a beam of light onto a CCD cam-
era. In this ‘clean’ system without disorder, the sharp-
ness of the focus is limited by the numerical aperture and
the quality of the lens. We now disturb the light propa-
gation by placing a non-transparent scattering object in
the beam path. Although initially the focus disappears,
the focus can be restored by shaping the wavefront of
the incident light using a spatial light modulator[6] (see
Fig. 1b). Here we report and analyze a surprising prop-
erty of the restored focus: the experimentally obtained
focal spot is smaller than the diffraction limit of the clean
system. We show both experimentally and theoretically
that it is the scattering medium, rather than the lens or
the quality of the reconstruction process, that determines
the width of the focus.

In Fig. 2a we show the measured intensity distribution
in the focal plane of the clean system. Ideally, the lens
would focus light to an Airy disk with a full width at half
maximum (FWHM) of w = 1.03Af1/D;. In our exper-
iment, A = 632.8nm, f; = 200mm, and D; = 2.1 mm,

FIG. 1: Schematic of the experiment. Light coming from a
phase modulator is imaged on the centre plane of a lens, L
(modulator and imaging telescope not shown). The numerical
aperture of the lens is controlled by a pinhole. A CCD camera
is positioned in the focal plane of the lens. (a), ‘Clean’ system
without disorder. Light is focused to a spot that is, at best,
equal to the diffraction limit of the lens. (b), System with
disorder. A disordered sample randomly changes the direction
of the incident light. The scattering object can be moved
to change the distance to the camera. When the incident
wavefront is shaped to create a focus through the sample, the
resulting focus is sharper the best focus the lens can create
without disorder.

which gives a diffraction limited spot size of 62 pm In re-
ality [7], the focus has a slightly larger width of 7643 pm.

When the beam path is blocked by a disordered medium
(a 6 um layer of opaque white airbrush paint), the image
on the camera changes dramatically. Instead of a focus,
we now record a disordered speckle pattern (see Fig. 2b).
Typically, the light is scattered and diffracted about a
hundred times before reaching the other side of the sam-
ple. Therefore, the transmitted wave has lost all cor-
relation with the incident wavefront[8], and the efficient
wavefront correction systems that have been developed



FIG. 2: Measured intensity distribution in the focal plane
at 200 £ 3mm from the glass lens. (a), Clean system with
an unmodified incident wavefront. The focal width is of the
order of the diffraction limit (62 pm, white bar). (b), System
with the 6 um layer of airbrush paint present, unmodified in-
cident wavefront. No focus is discernible. (c), System with
the sample present, wave was shaped to achieve constructive
interference in the target. A high-contrast, extremely sharp
focus is visible. (d), Pattern on the spatial phase modulator
for the situation in Fig. c. The intensity plots are normalized
to the brightest point in the image.

in adaptive optics cannot be used[9].

We recover the focus using an approach that was designed
specifically for strongly scattering environments. A spa-
tial light modulator shapes the wavefront of the light
that impinges on the lens. The surface area of the light
modulator was subdivided into 64 x 64 square segments,
which are phase-modulated[I0] and controlled by a learn-
ing feedback algorithm|[7]. The algorithm adjusts the rel-
ative phases of the segments so that the transmitted light
interferes constructively in a chosen target, thereby cre-
ating a focus at that point. In this case, the target was
formed by a single 6.45 um x 6.45 ym CCD pixel in the
centre of the desired focus. The algorithm finds the op-
timal wavefront for focusing on this target (see Fig. 2d).
The optimal wavefront is completely disordered, which
confirms that the sample is strongly scattering.

In Fig. 2c we show the intensity distribution after running
the algorithm. The scattered light now focuses to a tight
spot, even though the algorithm did not optimize the
shape of the focus explicitly. What is more, the width
of this spot is approximately one tenth of the diffraction
limit of the lens: scattering has greatly improved the
focusing resolution.

To analyze this striking effect, we placed the sample at
different distances fo from the camera. In Fig. 3 we show
the width of the focus in these experiments. The widths
decrease as the sample is moved closer to the camera,
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FIG. 3: Focal width w, relative to the diffraction limit of
the glass lens (wo = 62 um, dashed line), as a function of
the distance f2 between the scattering sample and the focal
plane. Diamonds, measured values with a sample present;
solid curve, theoretical effective diffraction limit (no free pa-
rameters); dotted line, size of a single pixel of the camera.

and are always smaller than the width of the diffraction
limited spot of the clean system. At distances of 25 mm
or smaller, the width of the focus is smaller than a single
camera pixel, almost a factor ten below the diffraction
limit of the lens.

We proceed to quantitatively define an effective diffrac-
tion limit for a scattering system. We will show below
that the width of the smallest achievable focus is given
by the FWHM of an Airy disc

w = 1.03)\f2/D2, (1)

with f5 the distance between the scattering layer and the
focal plane and Ds the diameter of the illuminated area
on the scattering layer[7].

In Fig. 3 we plot our theoretical effective diffraction limit
as a function of the distance between the scattering layer
and the focal plane. The theoretical limit decreases al-
most linearly as the sample is moved closer to the chosen
focus. With no adjustable parameters, the experimen-
tally observed focal widths equal the theoretical lower
limit that our model predicts.

To understand why the scattered light focuses to exactly
the theoretically smallest possible focus - even though
no effort is made to explicitly minimize the width of the
focus - we now calculate how a shaped wavefront prop-
agates through a scattering sample. The propagation
of light from a source at r, to a target at rg through
a sample is described by the stochastic Green function
G(rs,r,). Theoretically[IT, 12], the maximum intensity
transmission is achieved when the incident field E(r,) is
modulated spatially so that E(r,) o< G*(rg,r,), where
* denotes the complex conjugate. Our algorithm con-
structs this wavefront by maximising the intensity at
point rg. This is the same wavefront that one would



get when one would phase conjugate the light[4] coming
from a (hypothetical) source at rg.

If all channels on both sides of the sample could be con-
trolled, the light would form a perfect spherical wave[IT]
that converges to point rg. In a transmission geome-
try, only a finite number of channels on one side of the
sample are controlled. Therefore it is, even in principle,
impossible to perfectly focus all incident light. However,
since the sample completely scrambles the incident wave-
front, any deviation from the perfect wave is randomly
distributed over all outgoing angles. Therefore, the aver-
age field at the back of the sample still constitutes a con-
verging spherical wave originating from the illuminated
part of the sample|7]

(E(rk;rp)) = 9" (rg — 1) Colo(ry), (2)

where E(ry;r3) denotes the field at point ry on the back
of the sample after programming the modulator to opti-
mize the intensity in target rz. g is the Green function
for propagating through air, Cy is a constant to normal-
ize the total incident power, and Ip(ry) is the ensemble
averaged intensity distribution at the back of the sam-
ple. Equation [2| shows that experimental limitations do
not change the shape of the focus, they merely cause the
contrast with the speckle background to decrease.

The term Iy(ry) in Eq. [2] acts as an effective aperture
function for the scattering ‘lens’. In our experiments
Iy(ry) is approximated well by a top hat disk with a
diameter of Ds. In this case, Eq. [2| describes diffrac-
tion limited focusing at point rg by a lens with a clear
aperture of Dy. This result explains the experimental
observation in Fig 3 that the focal width always equals
the theoretical minimum.

The intensity distribution in the focal plane is found from
Eq. [2| by paraxially propagating the field. We derived|[7]

I(ry;rg) = S7|F {To(ri)} 2, (3)

with F {} the two-dimensional Fourier transform, and
S; a normalization constant that is fixed by the condi-
tion that I(rg;rg) = Io(rg)(m(N — 1)/4 4+ 1), with N
the number of independent modulator segments and Iy
the average intensity of the diffuse background before
optimization[6], 12]. The intensity in the focus increases
linearly with the number of segments, until N is equal
to the total number of degrees of freedom of the optical
field.

Equation [3] predicts the shape of the reconstructed focus.
Surprisingly, this equation takes the same form as the van
Cittert-Zernike theorem[I3], 14} [I5]. This theorem tells
us that the speckle correlation function is proportional
to |F {Io(rg)}|*. Our derivations suggest an alternative
interpretation of this decades-old theorem: the theorem
predicts the exact shape to which a disordered sample
will focus an optimized wavefront.

5
> =
= 13
8 100 e
9] =)
g
c c
= S
> kS
= (]
< 50 052
- P
o o
= o
2 °
S 3
& g

0 0 &

-100 100

0
X (um)

FIG. 4: Intensity profile of the focus at y = 0 (solid curve)
and speckle correlation function (dashed curve) for an 6 um
thick layer of airbrush paint creating a focus at 10.0cm dis-
tance. The speckle correlation function was measured with a
randomly generated incident wavefront.

To test this remarkable result, we compare the measured
shape of the reconstructed focus to the measured auto-
correlate of the background speckle. In Fig. 4 the two
normalised curves can be seen to overlap perfectly. We
repeated this experiment in different geometries and with
different samples and found that the shape of the focus is
always in agreement with the shape that the van Cittert-
Zernike theorem predicts.

In conclusion, scattering in a medium behind a lens can
be used to improve the focusing resolution to beyond the
diffraction limit of that lens. We found that, surprisingly,
the shape of the focus is not affected by experimental lim-
itations of the wavefront modulator: the focus is always
exactly as sharp as is theoretically possible.

Disordered scattering has been applied to improve res-
olution and bandwidth in imaging and communication
with ultrasound, radio waves and microwaves|[d], [16} [17],
and significant sub-wavelength effects have been demon-
strated [I8]. Our results are the first demonstration that
similar resolution improvements can be obtained in pho-
tonics. Calculations [19] 20] indicate that useful optical
superresolution will be achieved using disordered plas-
monic nanostructures.
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