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Providing Positional Information with Active Transport
on Dynamic Microtubules
Christian Tischer,* Pieter Rein ten Wolde, and Marileen Dogterom
Institute for Atomic and Molecular Physics, Foundation for Fundamental Research on Matter, Amsterdam, The Netherlands
ABSTRACT Microtubules (MTs) are dynamic protein polymers that change their length by switching between growing and
shrinking states in a process termed dynamic instability. It has been suggested that the dynamic properties of MTs are central
to the organization of the eukaryotic intracellular space, and that they are involved in the control of cell morphology, but the actual
mechanisms are not well understood. Here, we present a theoretical analysis in which we explore the possibility that a system
of dynamic MTs and MT end-tracking molecular motors is providing specific positional information inside cells. We compute the
MT length distribution for the case of MT-length-dependent switching between growing and shrinking states, and analyze the
accumulation of molecular motors at the tips of growing MTs. Using these results, we show that a transport system consisting
of dynamic MTs and associated motor proteins can deliver cargo proteins preferentially to specific positions within the cell.
Comparing our results with experimental data in the model organism fission yeast, we propose that the suggested mechanisms
could play important roles in setting length scales during cellular morphogenesis.
INTRODUCTION
Microtubules (MTs) are stiff protein polymers whose poly-
merization dynamics are characterized by a switching
between distinct growth and shrinkage states, a phenomenon
that is termed dynamic instability (1,2). MTs are involved in
the organization of the eukaryotic intracellular space and the
control of cell morphology (3,4). Specifically, MTs are
essential components of the mitotic spindle, a structure
mediating the redistribution of DNA during cell division.
In addition, there is evidence for a role of MTs in steering
cell growth in such diverse systems as fission yeast (4),
neurons (5,6), fibroblasts (7), and plant root hair cells (8).
In these systems, genetic or drug-induced perturbations of
MTs affect the directionality of cell growth and correspond-
ingly lead to changes in cell morphology. Similarly, there is
experimental evidence that not only the mere presence of
MTs, but also the details of MT growth and shrinkage
dynamics are important for providing positional information
during cell growth. For example, the locomotion rate of
NRK fibroblasts is significantly altered by application of
low doses of both stabilizing and destabilizing MT drugs
that do not lead to a detectable change in the MT level
(7). In addition, inhibition of MT dynamics, both by depo-
lymerization and stabilization, causes a wavy growth pheno-
type in Arabidopsis (9). On a mechanistic level, it is,
however, not yet well understood how MT dynamics are
linked to cell growth.

In fission yeast (Schizosaccharomyces pombe), which is
arguably the best-studied model system for investigating
the relationship between MTs and cell morphology (4,8),
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sites of future cell growth are determined by the localized
delivery of a marker protein (Tea1) by dynamic MTs
(Fig. 1 A) (10,11). This marker protein is delivered to the
tips of growing MTs by a motor protein (Tea2) (Fig. 1 B)
(12,13). When MTs undergo a catastrophe (a transition
from growth to shrinkage), the motor and its cargo are
released (see, for instance, Fig. 1 B in (10)) and locally
captured by the membrane (14). Importantly, recent experi-
ments have demonstrated that perturbation of MT dynamics
by the application of different doses of an MT destabilizing
drug systematically alters the distance at which new growth
zones formwith respect to the cell center (15). It thus appears
that a transport system composed of dynamic MTs and cargo
delivered by motor proteins plays an important role in
providing positional information for cellular morphogenesis.

In this article, we theoretically investigate how a system
of dynamic MTs and associated motor proteins could
provide such positional information. We start by analyzing
the distribution of MT lengths which results from the
process of dynamic instability. In a simple two-state model,
dynamic instability is characterized by four parameters: the
growth and shrinking velocities, and the catastrophe (switch
from growth to shrinkage) and rescue (switch from
shrinkage to growth) frequencies (Fig. 2 A). For the simplest
case of constant dynamic instability parameters it has been
demonstrated that MT lengths are distributed exponentially
(16,17). However, there is experimental evidence that in a
cellular context, catastrophe and rescue frequencies are
not necessarily constant, but can depend on MT length
(our own observations in fission yeast (18) and in mitotic
Xenopus extracts (19)). Recent computer simulations show
that such a spatial dependence of the dynamic instability
parameters can in fact be advantageous for MT-related
processes during cell division (20–23). Inasmuch as, to
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FIGURE 1 (A) Schematic drawing of a fission yeast cell. (Upper MT)

Motor-mediated protein accumulation at the tip of a growing MT. (Lower

MT) The MT undergoes a catastrophe and the proteins are locally delivered

at the position of catastrophe. (B) Space-time-plot, showing the tip of a

growing MT in fission yeast, decorated with the motor protein Tea2-GFP.
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our knowledge, no analytical treatment of the effects of
spatially varying dynamic instability parameters has been
published, we revisit the two-state model to include this
possibility.

In a separate step, we examine the accumulation of motor
proteins at the tips of growing MTs. This is not only neces-
sary to determine the rate of local cargo delivery (see
below), but also motivated by the fact that the length-depen-
dence of the MT catastrophe frequency itself could be
caused by the accumulation of motor proteins at MT tips
(18). Quantifying the MT length-dependence of motor
accumulation can thus also serve as a basis for under-
standing the relation between MT length and catastrophe
frequency. The dynamic distribution of motor proteins along
MTs has been studied quite extensively. However, previous
theoretical work mainly considered the distribution of
motors on polymers of fixed length, focusing on traffic
jam phenomena, the effects of diffusion of unbound motors
in closed compartments, and on effects due to specific
arrangements of multiple MTs (see for instance (24–28)).
More recently, systems with growing and shrinking poly-
mers have been analyzed as well. In these studies, it was,
however, assumed that motors arriving at the end of a poly-
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mer either stimulate polymer growth (29,30) or promote
shortening of the polymer (31,32,33). Thus, MT growth or
shrinkage was directly coupled to motor density. For the
purpose of our study, we need to analyze a situation in which
motor proteins accumulate at the ends of growing MTs of
finite length, where both motors and MT tips move with
constant (but independent and different) velocities (see,
e.g., (34,35)). In addition, we include the possibility that
the kinetics of motor binding/unbinding is different for the
MT lattice and the tip. This relatively general case has, to
our knowledge, not been addressed before and leads to
a model that can be solved analytically.

Finally, using the results obtained by the above analyses
we investigate how a transport system, composed of
dynamic MTs and molecular motors, could provide posi-
tional information during cellular morphogenesis. We
formulate a model of localized protein delivery by MTs,
which we analyze in the context of the fission yeast system
(11,15).
RESULTS

MT length distributions with spatially varying
switching frequencies

To investigate how spatially varying dynamic instability
parameters affect the steady-state length distribution of
MTs, we analyzed the two-state dynamic instability model
(16,17) for MT length-dependent catastrophe and rescue
frequencies, fc(L) and fr(L). For simplicity and by following
experimental observations (18,19), however, we assumed
that growth and shrinkage velocities vg and vs do not depend
on MT length, which yielded the following system of
coupled differential equations:

vtpgðL; tÞ ¼ �vgvLpgðL; tÞ � pgðL; tÞfcðLÞ þ psðL; tÞfrðLÞ;
vtpsðL; tÞ ¼ þ vsvLpsðL; tÞ þ pgðL; tÞfcðLÞ � psðL; tÞfrðLÞ:

(1)

Here pg and ps are the probability distributions of growing
and shrinking MTs. By using these equations, we find the
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FIGURE 2 MT length distributions. (A) Sche-

matic drawing ofMT length (L) changes, according

to the two-state model of dynamic instability.

Dynamic instability is commonly characterized by

four parameters (63): the growth and shrinkage

velocities vg and vs, as well as the catastrophe and

rescue frequencies fc and fr, which are the rates at

which microtubules switch from the growing to

the shrinking state and vice versa. (B) MT length

distributions according to Eq. 2 for different

parameter settings. Exponential: fc ¼ 0.5/min, fr ¼
0/min, vg ¼ 2 mm/min, and vs ¼ NA. Mitotic

Xenopus (Gaussian): fc(L) ¼ L � 0.19/mm/min,

fr(L)¼2.7/min�L�0.21/mm/min, vg¼10mm/min,

and vs¼ 15 mm/min. Fission yeast (half-Gaussian):

fc(L) ¼ L � 0.05/mm/min, fr ¼ 0/min, and

vg ¼ 2 mm/min.
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following expression for the steady-state distribution of MT
lengths (see Appendix A),

pðLÞ ¼ pð0Þexp
0
@ZL

0

fr
�
L

0�
v�1
s � fcðL0Þv�1

g dL
0

1
A; (2)

where p(L)¼ pg(L)þ ps(L) is the probability that an MT has
length L. This result is only valid under the assumption that
the parameters are such that the MT length distribution is
bounded, i.e., p(L) / 0 as L / N (see Appendix A).
For constant fc and fr, Eq. 2 reduces to the exponential length
distribution that was found by Verde et al. (16) (Fig. 2 B):

pðLÞ ¼ pð0Þexp
�
� L

lMT

�
;

with
lMT ¼ vsvg

frvg � fcvs
:

(3)

It can be argued that such rather broad exponential length
distributions, which peak at zero length, would not be well
suited to provide positional information inside cells.
However, Eq. 2 shows that if fc and/or fr depend on L, there
can be a peak in the MT length distribution at L > 0, at the
position L, where

fcðLÞv�1
g ¼ frðLÞv�1

s : (4)

As a simple general case, we discuss the properties of
Eq. 2 for a rescue rate that decreases linearly with L,
fr(L) ¼ fr

0 � krL, (physically meaningful only for L smaller
than f 0r =kr) and a catastrophe rate that increases linearly
with L, fc(L) ¼ kcL. In this case, one obtains a Gaussian
distribution of MT lengths:

pðLÞ � exp

 
� ðL� mÞ2

2s2

!
with

m ¼ f 0r vg
vskc þ vgkr

and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vgvs
vskc þ vgkr

r
:

(5)

The expression for the peak position m reflects that both
high growth velocities and high rescue rates promote long
MTs, whereas rapid shrinkages and many catastrophes
promote short MTs. The expression for the width s says
that the distribution is narrow when the excursions that MTs
make during growth and shrinkage periods are short; this is
achieved through low growth and shrinkage velocities and
high switching frequencies. Eq. 5 also shows that—within
the limits of biologically realizable parameter values—it is,
in principle, possible to obtain an arbitrarily sharp distribution
of MT lengths with a freely tunable peak position.

In mitotic Xenopus frog extract (19), it has indeed been
found that both fc and fr depended linearly on MT length,
whereas growth and shrinkage velocities were constant
(vg z 10 mm/min and vs z 15 mm/min). Revisiting the
data from Dogterom et al. (Fig. 10 a and 11 a in (19)) we
found that, within the experimentally assessed length
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regime, the measurements of the switching frequencies
could be fitted to linear functions with the following
parameters: kc ¼ 0.19 min�1 mm�1, f 0r ¼ 2.7 min�1, and
kr ¼ 0.21 min�1 mm�1. Assuming that these linear relations
can be extrapolated to L ¼ 0, we show in Fig. 2 B the ex-
pected Gaussian length distribution for the experimentally
assessed regime of L < 13 mm. For the experimentally
observed parameters, both m and s result to be ~5.5 mm.
Comparison with Fig. 8 in Dogterom et al. (19) indicates
that this model is indeed consistent with the experimentally
observed MT length distribution.

In the fission yeast system, the catastrophe frequency
was also found to increase linearly with MT length (18).
However, in this system, there are no rescues detected—
and in this case, Eq. 5 predicts a half-Gaussian distribution,
which is peaked at L ¼ 0. This distribution is also plotted in
Fig. 2 B for the experimentally observed parameters in
fission yeast: kc ¼ 0.05 min�1 mm�1, fr ¼ 0 min�1, and
vg ¼ 2 mm/min.
Distribution of motors on a growing MT

To examine the accumulation of motor proteins at the tips of
MTswefirst have to consider the distribution ofmotors along
the MT. In our theoretical description of the motor distribu-
tion on growing MTs, we will follow the conventional
nomenclature in the experimental literature, by calling a
special region at the growing MT end the tip, whereas the
rest of the MT is called the MT lattice (Fig. 3 A). Our model
then includes the following ingredients:

1. An MT of finite length, growing with constant velocity.
2. Binding and unbinding of motors along the whole MT.
3. Motor movement on the MT with constant velocity.
4. The possibility for motors to bind to and unbind from the

MT tip with rates that are different from those on the rest
of the MT lattice.

We model the density r(x,t) of molecular motors on the
MT lattice by the equation

vtr ¼ a Q
�
vgt � x

�� br� vmvxr: (6)

In this equation, vg is the MTelongation velocity and vm is
the motor velocity. The rate constants a and b describe
binding to and unbinding from the MT, respectively. To
model MT growth, the binding constant a is multiplied
with a step function Q(vgt � x), which is 1 for 0 < x <
vgt and 0 otherwise. The step function captures the fact
that motors can only bind to the currently existing part of
the growing MT, which at time t extends until x ¼ vgt. To
begin with, we consider motors walking beyond the current
length of the MT (x > vgt) as being lost. In the next section,
we will compute how these motors instead accumulate at
the tip. Furthermore, we use the boundary condition
j(0,t) ¼ r(0,t)vm ¼ 0, which captures the fact that there
can be no flux of motors onto the MT from x < 0. As an
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FIGURE 3 Motor lattice-distribution and tip-accumulation on growing MTs. (A) Schematic drawing of the model, showing binding with rate a, motor

motion with velocity vm, motor dissociation with rate b, and MT growth with velocity vg. In addition, motors can bind to the MT tip with rate at or they

can walk into theMT tip via theMT lattice. At theMT tip, motors dissociatewith rate bt. (B) Average number of motors per 0.2 mm ofMT lattice on a growing

MT, including accumulation at the MT tip (according to Eqs. 9 and 12). Different shaded values correspond to density profiles at different time points. Param-

eters: a ¼ 4 mm�1 min�1, b ¼ 1/min, vm ¼ 4 mm/min, vg ¼ 2 mm/min, at ¼ 0/min, and bt ¼ 2/min. (C) Motor accumulation at MT tip according to Eq. 12.

Schematic drawings correspond to panel A. (Dotted line) The value n0, i.e., the number of motors at infinite length. (Solid curve) Motor proteins bind only to

the lattice and walk into the tip: a¼ 10 mm�1 min�1, b ¼ 0.5/min, vm ¼ 3 mm/min, vg ¼ 2mm/min, at ¼ 0/min, and bt ¼ 2/min. (Dashed curve) Motors bind

only to the tip: a ¼ 0, b ¼ NA, vm ¼ 3 mm/min, vg ¼ 2 mm/min, at ¼ 5/min, and bt ¼ 0.5/min.
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initial condition, we use r(x,0) ¼ 0, consistent with the fact
that the MT has zero length at t ¼ 0.

Before solving Eq. 6, we want to point out some simpli-
fications that this model makes. For instance, it does not
contain diffusive terms that can arise through explicit
stochastic bidirectional motion but also through stochastic
unidirectional motion. By using computer simulations
with biologically meaningful parameters, however, we
found that fluctuations arising from stochastic unidirectional
MT growth and/or motor motion only ‘‘smoothen’’ the
motor distribution on short length scales and do not lead
to different behavior on the micrometer scales in which
we are interested. Moreover, we assume the binding rate
a to be temporally and spatially constant (this is a good
approximation when the volume of a cell is relatively large
and diffusion of unbound motors is relatively fast). In addi-
tion, we do not take into account saturation effects that are
due to the fact that the motor density has an upper limit (the
experimental data of which we are aware suggest that motor
densities on the MT lattice are, in vivo, rather low).

Using the method of Laplace transforms, Eq. 6 can be
solved analytically and one obtains (see Appendix B)

rðx; tÞ=r0 ¼Q
�
vgt � x

��
1� exp

�
x � LðtÞ
lgm

��

�Qðvmt�xÞ
�
exp

�
� x

lm

�
� exp

�
x � LðtÞ
lgm

��
:

(7)

The shape of this distribution is characterized by the
following quantities:

r0 ¼ a=b;
lm ¼ vm=b;
LðtÞ ¼ vgt;
lgm ¼ �

vg � vm
�	

b:

(8)
Here, r0 is the equilibrium density of motors due to
binding and unbinding kinetics. The run-length lm is the
average distance that motors walk on an MT before dissoci-
ation and L(t) is the MT’s current length. The parameter lgm
is a length scale that characterizes the shape of the motor
density close to the MT tip for the case that the motors
walk slower than the MT grows (see Appendix B).

Within the context of this article, the most relevant case is
when the motor velocity is larger than the MT growth
velocity (vm > vg), as this allows for an accumulation of
motors at the MT tip. When motors are walking faster
than the velocity at which the MT grows, the expression
for the motor density within the physically relevant regime
0 < x < vgt simplifies to

rðx; tÞ=r0 ¼ rðxÞ=r0 ¼ 1� expð�x=lmÞ;
0%x < vgt:

(9)

Fig. 3 B shows how the motor density along the MT
develops in time. The profile is a result of the fact that the
motors which bind close to the nongrowing end (at x ¼ 0)
move toward the right; however, there is no influx of motors
from the left (x< 0) such that there is depletion of motors at
the nongrowing MT end. Interestingly, the motor density at
a given position x on the MT does not change with time. The
situation vm > vg is thus a true adiabatic limit in which the
density distribution is always in steady state with respect
to the current system size, i.e., MT length (this is not the
case if the motors walk slower than the MT grows as
discussed in Appendix B).

To our knowledge, there are no quantitative experimental
data yet on the distribution of motor proteins on growing
MTs. The experiments that come closest were performed
in vitro using stabilized (nongrowing) MTs (36). The
authors observed a monotonically increasing profile of the
Biophysical Journal 99(3) 726–735
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kinesin-8 motor protein Kip3 along the MT (see Fig. 3 b in
(36)). However, as the MTs used were relatively short
(<5 mm) compared with the measured motor run length
(~12 mm), it is difficult to decide whether the experimental
data followed the exponential shape that is predicted by our
theory.
Motor accumulation at the growing MT tip

To determine the motor accumulation at the growing MT
tip, we include in our model a special MT-tip region
(Fig. 3 A) in which motors that reach the end of the MT
can accumulate (given that motors walk faster than the MT
grows). In addition, motors can bind directly to this region
with rate at and unbind with rate bt. The equations for the
motor density at the MT lattice remain the same as before,
and, again neglecting saturation effects, we now add the
following equation to compute the number of motors at the
MT tip:

vtntip ¼ at � btntipðtÞ þ jðtÞ: (10)

The first two terms account for the association/dis-
sociation kinetics directly at the tip. One may include the
possibility of a limited number of tip-binding sites (satura-
tion effects) by replacing at with at (1 – ntip(t)/nmax),
yielding

vtntip ¼ at � b�
t ntipðtÞ þ jðtÞ;

with

b�
t ¼ ðat=nmax þ btÞ:

For simplicity and inasmuch as we are not aware of
experimental data on nmax, we assume nmax ¼ N and
therefore set b�t ¼ bt. The third term in Eq. 10 accounts
for the flux of motors into the tip, which for vm > vg is given
by the density of motors at the end of the MT lattice,

r
�
L ¼ vgt; t

� ¼ a

b

�
1� exp

�� vgt=lm
��

(see Eq. 9), multiplied by the relative speed of the motors
with respect to the MT tip,

jðtÞ ¼ �
vm � vg

�
r
�
vgt; t

�
¼ �

vm � vg
�a
b

�
1� exp

�� vgt=lm
��
: (11)

Note that ntip is a number, whereas r is a line density
(number/length). The units of at and a are different as
well: [at] ¼ s�1 and [a] ¼ m�1 s�1.

Using the initial condition ntip (0) ¼ 0, one obtains an
expression for the number of motors at the tip of an MT
of length L,

ntipðLÞ ¼ n0½1� jexpð�L=lmÞ � ð1� jÞexpð�L=ltÞ�;
(12)
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where L ¼ vgt. The shape of ntip(L) is characterized by the
quantities

n0 ¼ 1
bt



a
b

�
vm � vg

� þ at

�
¼ ðj0 þ atÞ=bt;

lm ¼ vm=b;
lt ¼ vg=b;

j ¼ ð1 þ at=j0Þ�1ð1� lt=lmÞ�1

(13)

where

j0 ¼ a

b

�
vm � vg

�
is the motor influx from the MT lattice into the tip of an infi-
nitely long MT and n0 is the number of motors at the tip
of an infinitely long MT. Furthermore, two length scales
emerge:

1. The motor run-length lm, which governs the influx from
the MT lattice.

2. The length scale lt, which governs the motor dynamics at
the tip.

Finally, j is a dimensionless quantity that can take any
value from �N to þN, which determines the way both
length scales contribute to the profile.

Twomechanisms contribute to theMT length-dependence
of motor accumulation at the tip (Fig. 3 C). First, the influx
of motor proteins from the MT lattice increases as the MT
elongates, and leads to an accumulation at the MT tip that
is mainly determined by the motor run length lm. Second,
there is a length-dependence related to the time it takes the
motor density to equilibrate at the tip. In the case that motors
can only bind to the tip region, this equilibration is solely
determined by unbinding from the tip (with rate bt). Because
the MT grows with velocity vg, this converts into the
length-scale lt ¼ vg/bt.
Localized cargo delivery by a system of MTs
and motor proteins

Combining the results obtained above for MT length distri-
butions and the accumulation of motors at growing MT tips,
we can now formulate a mathematical model for the spatial
distribution of cargo delivery by a transport system com-
posed of dynamic MTs and molecular motors. In the context
of the fission yeast system, we assume that MTs have no
rescues, fr ¼ 0, and we assume that the nongrowing
minus-ends of the MTs are at the cell center (37), i.e., the
distance from the cell center equals MT length L (Fig. 1 A).
Under these assumptions, we model the rate r(L) at which
proteins are released at a position L as

rðLÞ � ntipðLÞpgðLÞfcðLÞ: (14)

This equation states that the rate of cargo delivery at posi-
tion L is proportional to the amount of cargo that sits on the
tip of an MTof length L, i.e., ntip(L), and proportional to the



TABLE 1 Ranges of experimentally determined parameters in

different in vitro and in vivo systems

Microtubule dynamics

vg [mm min�1] vs [mm min�1] fc [min�1] fr [min�1]

2–17 5–30 0.2–5 0–10

Motor protein dynamics

vm [mm min�1] a [mm�1 min�1] b [min�1] at [min�1] bt [min�1]

1–90 ND 0.3–10 ND 2–7

Values for microtubule and motor protein dynamics are from the literature

(19,35,50–58) (35,36,38,40,59–62). ND, not determined.
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probability that a growingMT has length L, i.e., pg(L), where
pg(L) ~ p(L) is the length distribution for growing MT ends
(see Appendix A). Furthermore, the rate of delivery is
proportional to the probability that an MT of length L
releases the cargo by undergoing a catastrophe, i.e., fc(L).
We will assume for simplicity that the transport to the tip
is motor-dominated such that the amount of cargo at the
MT tip can be approximated by the expression (see Eq. 12)

ntipðLÞzn0½1� expð�L=lmÞ�:
This simplifies the mathematical expressions but does not

affect our main conclusions, as those only depend on the fact
that ntip(L) is a monotonically increasing function. As dis-
cussed above, the catastrophe rate in fission yeast increases
linearly with MT length, and the lengths of growing MTs
(consequently) follow a half-Gaussian distribution,

pgðLÞ � exp
�� L2=2s2

�
with

s ¼
ffiffiffiffiffiffiffiffiffiffiffi
vg=kc

q
(Fig. 4 A). The rate of cargo delivery thus reads

rðLÞ � ð1� expð�L=lmÞÞexp
��L2=2s2

�
kcL: (15)

Fig. 4 B shows this function for parameters that were
experimentally determined in fission yeast (the lattice
unbinding rate b and hence the motor run-length lm are
not known in this case; we therefore plotted the distribution
for two different values of b covering typical values
observed experimentally, see Table 1). Although in this
case the MT length distribution itself has a peak at L ¼ 0
(see Fig. 4 A), the cargo delivery rate peaks at ~5–7 mm,
which corresponds to the typical cell center to pole distance
B
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at the end of interphase. The reason for this peak of cargo
delivery is that both the number of motors and the catas-
trophe rate are low for short MTs. However, the increasing
catastrophe rate prevents the occurrence and thereby the
cargo delivery from long MTs.

In wild-type fission yeast, the growth of long MTs is
additionally restricted by the cell pole such that it becomes
difficult to validate experimentally whether there really is
a drop in cargo delivery at large L. Interestingly, however,
Castagnetti et al. (15) measured the spatial distribution of
cellular growth zones as potentially induced byMT-mediated
cargo delivery in overly long cells. The authors found that the
distributions of growth zones were peaked at positions
between the cell center and the cell pole. Most importantly,
when adding different amounts of an MT destabilizing
drug the spatial distribution of growth site formation changed
its shape and the peak position shifted: the more drug was
added (i.e., the shorter the MT were on average), the closer
the peak was to the cell center (see Fig. 5 in (15)).

These findings prompted us to test the effect of a reduced
average length of MTs on the distribution of cargo delivery
within the framework of our model. As it is not known how
the added drug exactly affects MT dynamics, we plotted
(Fig. 4 C) the cargo delivery distribution for different
C
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s ¼ ffiffiffiffiffiffiffiffiffiffiffi
vg=kc

p
, which is the effective parameter governing the

average MT length in Eq. 15. As observed in the experi-
ments, the peak distance of cargo delivery decreases for
decreasing MT length (Fig. 4 C), and the shapes of the
curves in our model are similar to the experimentally
observed distributions (see Fig. 5 B in (15)).

For simplicity, we made the assumption that the
nongrowing (minus) ends of MTs are strictly at the center
of the fission yeast cell. In reality, there is, however, a certain
spread (~1 mm) of the position of the MT minus-ends (36).
Taking this into account by convoluting the cargo delivery
function with a Gaussian spread of 1 mm produces, in fact,
an even better agreement with the data by Castagnetti
et al. (15) (our data not shown).

Note that, in general, one may assume that cargo proteins,
once released from the MT tip, undergo some three-dimen-
sional diffusive spread before binding to their target recep-
tors. This could be accounted for in our model, for instance
by convolution with the propagator of the diffusion equa-
tion. The geometry in fission yeast is, however, such that
the tips of MTs grow in general close to the cell membrane
where the receptor proteins for the cargo reside (14).
Concomitantly, the available experimental data suggests
that there is hardly any diffusive spread of Tea1 in between
release from MTs and binding to the cell boundary (our own
observations and Fig. 1 B in (10)).
DISCUSSION

We analyzed a transport system composed of motor proteins
that accumulate at the tips of growing MTs, and are released
upon MT catastrophes. We find that such a system has the
ability to deliver a peak amount of cargo to a tunable
distance L from the MT nucleation point even when the
MT length distribution itself is peaked at L¼ 0. This finding
demonstrates how a limited number of commonly occurring
cellular components (i.e., molecular motors and MTs) can
provide positional information within the cell.

To compute the effects of MT length-dependent catas-
trophe (and rescue) rates (see Eq. 2), we extended the clas-
sical two-state dynamic instability model (16), in which it
was assumed that all parameters (vg, vs, fc, and fr) are
constant. We find that when fc(L) and fr(L) are MT length-
dependent, it is possible to obtain peakedMT length distribu-
tions. This could be important not only in transport processes
but may also facilitate the formation of intracellular struc-
tures of a defined size such as the mitotic spindle during
cell division (20–23). It will be interesting to see whether
quantitative measurements during mitosis will indeed reveal
spatially varying dynamic instability parameters in mitotic
Xenopus extract (19) as well as in other systems.

We further computed how motor proteins accumulate at
the tips of growing MTs. Besides being relevant for the local
delivery of cargo proteins, the accumulation of motor
proteins could be responsible for the experimentally
Biophysical Journal 99(3) 726–735
observed MT length-dependence of the catastrophe
frequency itself. Experiments indicate that there are specific
motor proteins such as the plus-tip directed kinesin-8 that
enhance the frequency at which MTs undergo catastrophes
(18, 38). Because the amount of motors at MT tips increases
as the MTs grow (see Eq. 12), one would therefore predict
that kinesin-8 proteins preferentially enhance the catastrophe
frequency of longMTs. Recent experiments have shown that
GMPCPP-stabilized MTs are depolymerized by kinesin-8
(Kip3) proteins at a rate that depends on the flux of these
proteins to the MT tip, as motor proteins at the MT tip
‘‘bump off’’ each other and in the process remove one or
two tubulin dimers (39). However, dynamic MTs have an
intrinsic tendency to depolymerize after a catastrophe
event, which is different from the slow protein-driven
depolymerization observed for GMPCPP-stabilized MTs
(36,39,40). The effect of kinesin-8 proteins on dynamic
MTs could thus instead be to promote catastrophes preferen-
tially of longMTs (18), possibly by driving depolymerization
of a stabilizing structure at theMT tip (2). Quantitative exper-
iments using kinesin-8 proteins together with dynamic MTs
will be necessary to determine the exact relation between the
amount (or flux) of motor proteins and the probability of a
catastrophe to occur.

In this article, we did not examine the distribution of
motor proteins along shrinking MTs. The reason is that
we mainly aimed to model data from experiments in fission
yeast where the rescue rate fr appears to be zero and the
majority of the cargo appears to be delivered upon the
moment of a catastrophe (10). In this system, it therefore
seems a reasonable approximation that MTs start growth
at zero length with zero motors bound. In case of a signifi-
cant rescue rate, an analysis is in general more complicated
because the amount of motors at MT tips will depend on the
history of the MT. For instance, an MT that reached length L
through growth from length zero will have accumulated a
certain number of motors. On the other hand, an MT that
starts growth at length L through a rescue event may not
have any motors on its tip. How quickly the motor concen-
tration at the tip recovers will in general depend on the
equilibration timescale b�1

t . If the equilibration is fast, it
may be possible to neglect history effects; otherwise, addi-
tional mathematical analyses will be required.

In summary, we presented a theoretical study that shows
how MTs and motor proteins can provide positional infor-
mation inside cells. We show that our model can explain
recent experimental findings on cellular morphogenesis in
fission yeast, which is a leading model system for investi-
gating the relationship of MTs and cellular growth zone
formation. To compare our theory with experiments directly,
we explicitly aimed to formulate our models in a way that
they only depend on parameters that can be readily
measured inside living cells. We hope that this approach
will encourage researchers to perform quantitative experi-
ments to test the predictions of our model.
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APPENDIX A

Solution of the two-state dynamic instability
model with spatially varying switching
frequencies

Within the framework of the two-state model of dynamic instability, the

length distribution of microtubules is governed by the system of coupled

differential equations (16,17),

vtpg ¼ �vgvLpg � pgfc þ psfr;
vtps ¼ þ vsvLps þ pgfc � psfr;

where pg(L,t) and ps(L,t) are the probabilities to find a growing or

a shrinking MTof length L. The form of these equations implicitly assumes

that the growth and shrinkage velocities are constants. Dogterom et al. (19)

solved these equations assuming that fc and fr are spatially constant. We

extend this analysis by allowing for spatially varying fc(L) and fr(L).

At steady state, this yields

0 ¼ �vgvLpgðLÞ � pgðLÞfcðLÞ þ psðLÞfrðLÞ;
0 ¼ þ vsvLpsðLÞ þ pgðLÞfcðLÞ � psðLÞfrðLÞ:

Adding both equations yields a flux balance for growing and shrinking

MTs:

vsvLpsðLÞ � vgvLpgðLÞ ¼ 05psðLÞ � vgv
�1
s pgðLÞ ¼ const:

As we are only interested in bounded solutions, ps(N)¼ pg(N) ¼ 0 and

the constant on the right side of the equation must be zero. This implies

psðLÞ ¼ vgv
�1
s pgðLÞ;

leaving us with one equation,

0 ¼ �vgvLpgðLÞ � pgðLÞfcðLÞ þ vgv
�1
s pgðLÞfrðLÞ;

which can be rearranged to

vLpgðLÞ
pgðLÞ ¼ frðLÞ

vs
� fcðLÞ

vg
:

Integration yields that

pgðLÞ ¼ pgð0Þexp
0
@ZL

0

frðL0Þv�1
s � fcðL0Þv�1

g dL0

1
A:

The probability to find an MT with length L is given by the sum of the

probabilities to find a growing or a shrinking MTwith respective length L:

p(L) ¼ pg(L) þ ps(L). Using

psðLÞ ¼ vgv
�1
s pgðLÞ

yields

p ¼ pg þ ps ¼ pg
�
1 þ vgv

�1
s

�
;

and we thus obtain

pðLÞ ¼ pð0Þexp
0
@ZL

0

frðL0Þv�1
s � fcðL0Þv�1

g dL0

1
A:

This equation allows one to compute p(L) by a simple integration. In the

case where the experimentally determined fc(L) and fc(L) cannot be approx-

imated by analytically integrable functions, onemay have to resort to numer-
icalmethods to solve the integral.Wewould like to note that there are already

(theoretical) studies that includemicroscopic details of the catastrophemech-

anism and/or more states than the two growing and shrinking states (41,42),

as well as effects due to closed systems and/or due to a cell edge and/or due to

a limited pool of free tubulin (17,43–47). Including those effects also leads, in

general, to nonexponential (peaked) MT length distributions, whose shapes

are, however, implicit to the assumptions of each model. Our analysis is

different in that we allow for an arbitrary space-dependence of fc and fr.
APPENDIX B

Solution of the motor distribution along
a growing MT

To solve Eq. 6,

vtr ¼ a H
�
x < vgt

�� br� vmvxr;

weused themethodofLaplace transformsasdescribed inKreyszig (48),where

the Laplace transform of r(x,t) with respect to the variable t is defined as

Lðrðx; tÞÞ ¼
ZN
0

rðx; tÞexpð�stÞdt:

Using this definition, the Laplace transform of Eq. 6 reads

sLðrðx; tÞÞ � rðx; 0Þ ¼ a

s
exp
�� ðx sÞ=vg

�
� bLðrÞ � vmvxLðrÞ:

Using the initial condition r(x,0) ¼ 0, the above equation becomes

a first-order differential equation for L(r), which can be solved using stan-

dard methods. The general solution reads

Lðrðx; tÞÞ ¼ a vg� �exp�� s
x

�

s bvg þ s vg � vm vg

þ AðsÞexp
�
� s þ b

vm
x

�
:

The free parameter A(s) is determined by the boundary condition

rðx ¼ 0; tÞvm ¼ 0;

which for vm > 0 implies r(x ¼ 0,t) ¼ 0, and thus L(r)(x ¼ 0,t)) ¼ 0.

Inserting the condition L(r)(x ¼ 0,t)) ¼ 0 in the above equation yields

0 ¼ a

s

vg
bvg þ svg � svm

þ AðsÞ;

which determines A(s).

Using standard methods for computing inverse Laplace transforms (48),

one obtains the expression for r(x,t) (i.e., Eq. 7 in the main text):

rðx; tÞ=r0 ¼ Q
�
vgt � x

��
1� exp

�
x � LðtÞ
lgm

��

�Qðvmt � xÞ
�
exp

�
� x

lm

�
� exp

�
x � LðtÞ
lgm

��
:

Note that, for the special case vm ¼ 0, the term in Eq. 6 that includes the

derivative with respect to x vanishes, such that there is no need to specify

a boundary condition; the solution in this case is

rðx; tÞ=r0 ¼ H
�
x < vgt

��
1� exp

�ðx � LðtÞÞ=lgm
��
:
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MTs according to Eq. 7. Shaded areas correspond

to different time points (at t ¼ 0, MTs have zero

length and there are no motors bound). In all

panels: a ¼ 4 mm�1 min�1, b ¼ 4 min�1, and

vg ¼ 8 mm/min. (A) The value vm ¼ 11 mm/min,

assuming that motors reaching the end of the MT
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Density profile for motors that walk slower than
the MT grows

In the case that the motors are walking slower than the MT grows (vm < vg),

the motor density can be written in two parts:

rðx; tÞ=r0 ¼ 1� exp


� x

lm

�
; 0%x%vmt

rðx; tÞ=r0 ¼ 1� exp


x�LðtÞ
lgm

�
; vmt < x < vgt:

Thus, for valuesof x smaller thanvmt, the systembehavesasdiscussedabove

(Eq. 9). However, for vmt < x < vgt, the profile is a result of the fact that the

corresponding part of the MT only existed for a relatively short time (see

Fig. 5, B and C); the system has thus not yet equilibrated with respect to the

binding/unbinding kinetics. In addition, the profile at the MT end is affected

by the flux of motors. The emerging length scale lgm thus depends both on

the velocity of MT growth and on the motor velocity (see Eq. 8). In contrast

to the case vm > vg, the density profile is not in steady state with respect to

the current system size for vmt < x < vgt: when the MTwould stop growing,

the density would need some time to relax to the steady state given by Eq. 9.

Note added in proof: We point out a recent theoretical study on the induc-

tion of microtubule catastrophes by walking depolymerases (49).
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