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This review provides a perspective on the recent developments on the transmission of light through
subwavelength apertures in metal films. The main focus is on the phenomenon of extraordinary
optical transmission in periodic hole arrays, discovered ten years ago. It is shown that surface
electromagnetic modes play a key role in the emergence of the resonant transmission. These modes
are also shown to be at the root of both the enhanced transmission and beaming of light found
in single apertures surrounded by periodic corrugations. Additionally, the cases of slit arrays
and single apertures are addressed. This review covers both the theoretical and the experimental
aspects of the subject. Furthermore, the physical mechanisms operating in the different structures
considered are analyzed with a common theoretical framework. Several applications based on the
transmission properties of subwavelength apertures are also described.
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I. INTRODUCTION

A. Historical background

The optical properties of subwavelength apertures in
metallic films have been the focus of much research ac-
tivity around the world since the extraordinary optical
transmission (EOT) phenomenon was reported ten years
ago (Ebbesen et al., 1998). This phenomenon was dis-
covered serendipitously for arrays of subwavelength aper-
tures in metal films and later extended to single aper-
tures surrounded by periodic corrugations. The initial
surprise and interest was generated by the fact that light
of wavelength much larger than twice the diameter of the
holes were being transmitted with greater than unit ef-
ficiency (normalized the area of the hole) while under
such conditions light cannot freely propagate through
the aperture. Bethe had already shown in the 1940s
(Bethe, 1944) that the optical transmission through sub-
wavelength holes should be orders of magnitude smaller
even for an infinitely shallow hole. When considering the
real depth of the holes, this transmittance is further re-
duced (Roberts, 1987). Indeed, the holes were milled in
optically thick metal films and the electromagnetic (EM)
waves could only tunnel through the holes in the trans-
mission process. As tunnelling processes are highly in-
efficient and exponentially sensitive to the depth of the
holes (Degiron et al., 2002; Martin-Moreno et al., 2001),
something had to be boosting the transmission over the
earlier theoretical predictions. This, it turned out, was
the role of the surface plasmon polaritons (SPPs) gen-
erated at the metal surface of these periodic structures
which provide tremendous field intensities at the aper-
tures. Other resonant modes (e.g. Fabry-Perot modes,
localized surface plasmons) can also be involved in the
transmission process depending on the size and shape of
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the individual apertures. Even isolated subwavelength
apertures in optically thick films have a resonance mode
just below cutoff which boosts the transmission at the
corresponding wavelength.

Periodic arrays start resembling, as the holes become
larger and propagative, and the metal becomes very thin
relative to the wavelength (e.g. < 1/10), metallic mesh
filters, which are characterized by a very broad peak at
normal incidence near the periodicity. One-dimensional
(1D) mesh filters were already in use in the 19th century
for microwaves, most notably by J.C. Bose in Calcutta
(Emerson, 1997). In the 1950 and 1960s, two-dimensional
(2D) metallic grids were studied extensively to obtain
bandpass filters in the far infra-red (Renk and Gensel,
1962; Ulrich, 1967). They were treated either as trans-
mission line equivalent circuits (e.g., inductive grids) or
analyzed as diffraction gratings (Chen, 1971; Eggiman
and Collin, 1962). Transmission properties of the mesh
filters were eventually analyzed (Ulrich, 1974) by consid-
ering the surface waves at the metal interface, the so-
called Zenneck waves (Zenneck, 1907), in line with metal
grating theory (Hessel and Oliner, 1965). Transmission
resonances for metal gratings and coupled surfaces can
be observed even in the absence of holes if the metal film
is sufficiently thin and translucent (on the order of the
skin depth) (Dragila et al., 1985; Gruhlke et al., 1986).

FIG. 1 Various types of aperture structures that are consid-
ered in this review paper.

The interest in EOT stems in great part because of
the opposite feature: the structures provide high con-
trast between the opaque metal and the bright subwave-
length aperture, be there one or many. This gives rise to
relatively narrow transmission peaks. Furthermore, the
metal can be sculpted not only on the incident surface to
control the coupling of the incident light and its scatter-
ing dynamics at the surface but also on the exit surface
to modify, for instance, the re-radiation and propagation
of light into free space or the launching of SPPs.

Here we review the extensive work on subwavelength
aperture optics that the EOT process has stimulated
considering both the fundamental aspects as well as ap-
plications. On the fundamental side, we review the

present understanding of the optical properties of in-
dividual apertures (section II), arrays of subwavelength
apertures (section III) and apertures surrounded by cor-
rugations (section IV). We compare theoretical analysis
and the experimental results, showing that the transmis-
sion phenomenon can be quite intricate and involve mul-
tiple processes. In section V, we discuss several EOT
applications that have been investigated, in particular in
the area of spectroscopy and molecular probes as well
as stand alone photonic devices. Finally, we consider the
extension of these ideas to other types of waves and spec-
ulate about the future trends in section VI.

B. Theoretical modelling

Although the equations that govern electromagnetic
phenomena in metallo-dielectric structures are well es-
tablished (Maxwell equations plus the constitutive re-
lations describing material properties), solving them is
a very difficult task due to the highly different length
scales present in metals. In the optical regime, an im-
portant role is simultaneously played by the free-space
wavelength, λ (400−800nm), the skin depth of the metal
(of the order of 30nm), the dimensions of the scatterers
placed on the metal (tens to hundreds of nm) and the
device dimensions (several microns).

Several methods have been used to compute the trans-
mission of EM fields through apertures, each one pre-
senting their own advantages and disadvantages. In gen-
eral, no computational tool is best in all circumstances.
In what follows we briefly summarize the theoretical ap-
proaches that have been used to study of transmission
through subwavelength apertures. Later on, we present
an approximate method that will be applied throughout
this review in order to give a unified view of the operating
physical mechanisms in the different structures.

The theoretical study of single apertures in a real
metal can be treated by a variety of methods, such as (i)
the Multiple Multipole Method (MMP) (Wannemacher,
2001), the (ii) Green’s Dyadic Method (GDM) (Colas des
Francs et al., 2005; Sepúlveda et al., 2008) and (iii) Fi-
nite Difference Time Domain (FDTD) method (Chang
et al., 2005; Popov et al., 2005). The first two cases
are very computationally demanding (MMP due to the
large number of multipoles needed in order to achieve
convergence and GDM due to the difficulty in evaluat-
ing the Sommerfeld integrals involved). FDTD is faster,
but its applicability is sometimes limited by the small
grid sizes needed to reproduce the rapid variations of the
EM fields at the metal-dielectric interfaces. Additionally,
some technical problems due to the finite simulation win-
dow must be overcome (for instance, the implementation
of plane wave illumination in finite systems is not trivial).

The theoretical analysis of the optical response of ar-
rays of apertures is greatly simplified if the arrays are
considered infinite and periodic. Then, with the help of
Bloch’s theorem, only EM fields within one unit cell need
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be computed. This allows for a very accurate calcula-
tion of the transmission properties of arrays of apertures
using different numerical techniques as: (i) the Rigorous
Coupled Wave Method (RCWM) (Li, 1997), based on the
modal expansion of the fields, in which the eigenmodes in
the perforated metal film are computed after expansion
of the dielectric constant in harmonics (Lalanne et al.,
2005b; Popov et al., 2000). Actually, a modification of
this general method has been recently used to study also
single apertures (Lalanne et al., 2005a) (ii) a differential
method (Salomon et al., 2001), borrowed from the tradi-
tional method for analyzing metallic gratings, has been
used to study extremely thin films (metal thickness of
the order of 20nm) (iii) Transfer Matrix Method (Bell
et al., 1995; Pendry and MacKinnon, 1992), in which the
EM fields are discretized in space at a given frequency.
This method is very computationally demanding and has
only been applied in 1D systems (Porto et al., 1999) and
(iv) FDTD method (Baida and Van Labeke, 2003; Chen
et al., 2008; Miyamaru and Hangyo, 2005; Müller et al.,
2004; Rodrigo et al., 2008). A number of approximate
techniques have also been used. One of them is based on
the RCWM, but considers only a few harmonics in the
expansion for the dielectric constant of the metal (Dar-
manyan et al., 2004; Dykhne et al., 2003; Kats et al.,
2005; Kats and Nikitin, 2004). The advantages of this
method is that it can be worked out analytically and that
it can treat resonant optical transmission through corru-
gated continuous metal films (Chen et al., 2008; Gruhlke
et al., 1986); its disadvantage is that the accurate treat-
ment of holes in a metal film requires a very large number
of harmonics.

The computation of properties of arrays of apertures
beyond these two limiting cases (isolated apertures and
infinite periodic arrays) is much more difficult and the
calculation must, in general, be done with approximate
methods. Collin and Eggimann (1961) developed a for-
malism, based on the coupling of the electric and mag-
netic dipoles that represent the hole in this limit (Bethe,
1944), valid for extremely small circular holes (λ >> 2πr,
where r is the radius of the hole). In its original for-
mulation, the method could only treat holes in an im-
penetrable screen of zero thickness. Recently, the ex-
tension to metal films of finite thickness has been pre-
sented (De Abajo, 2007; De Abajo et al., 2005). Another
method, which can be considered as a extension of the
RCWM, considers the hole as a finite portion of a finite
waveguide; correspondingly, the EM fields inside the per-
forated metal are expanded in terms of waveguide modes.
This approach is not restricted neither to small holes nor
perfect conductors, and is valid when all distances be-
tween apertures and the thickness of the metal film are
a few times the skin depth of the metal (i.e., when the
apertures can not interact across the bulk of the metal).

The theoretical formalism used throughout this review
is included into this last category. We present here the
basic ingredients and, in order to improve the readabil-
ity, we leave the detailed derivation for Appendix A. An

important asset of this formalism is that the same equa-
tions can deal with the physics of very different struc-
tures. In a first approximation, the metal is treated as
a perfect electrical conductor (PEC), i.e. ε = −∞. The
main advantage of this approximation is that the EM
modes inside the apertures (slits or holes) coincide with
the waveguide modes of the apertures, which are ana-
lytically known for some geometries. This PEC model
is quasi-exact for metals in the terahertz or microwave
ranges of the EM spectrum. Moreover, the finite di-
electric constant of metals at optical frequencies can be
approximately incorporated into the formalism by using
the surface impedance boundary conditions (SIBC) (Lan-
dau et al., 1960). Within this approach, the theoretical
modelling based on the modal expansion also has semi-
quantitative value in the optical regime, for good con-
ductors like silver or gold.

Figure 2 renders a schematic picture of a general sys-
tem under study. A set of apertures or indentations
placed on a metallic film of thickness h. In this sec-
tion we present the general formalism for the 2D geom-
etry comprising a set of holes and/or dimples. The im-
plementation for the 1D case (slits and/or grooves) is
straightforward. Depending on each case, this set can be
formed by just one isolated aperture (as in section II), an
infinite periodic array (section III) or a single aperture
flanked by a finite array of indentations (section IV). The
system can be divided in three regions. Regions I (re-
flection) and III (transmission) are dielectric semi-spaces
characterized by positive dielectric constants, ε1 and ε3,
respectively. Region II represents the perforated metal
film with a frequency-dependent dielectric function εM .
We assume that the structure is illuminated by EM plane
waves coming from region I.

Eα

Eβ

Eγ

Ly

Lx h
Gβγ

V
Gα

'
Eα

Iα

αΣ

FIG. 2 Schematic representation of a unit cell of lengths Lx

and Ly containing a finite set of indentations perforated on a
metallic film of thickness h. The different terms appearing in
the set of equations (1) are also schematically depicted.

We expand the EM fields on the eigenmodes of each
region (EM plane waves in regions I and III and waveg-
uide modes inside the apertures), and match the parallel
components of the electric and magnetic fields at the two
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interfaces (z = 0 and z = h). After some algebraic ma-
nipulations, we end up with a coupled system of equa-
tions for Eα and E′

α, which essentially are the modal
amplitudes of the electric field at the input and output
sides of the apertures, respectively (α is an index that
labels all waveguide modes in all apertures considered in
the calculation). The set that {Eα, E′

α} must satisfy is:

(Gαα − Σα)Eα +
∑

β 6=α

GαβEβ −GV
α E′

α = Iα

(G′γγ − Σγ)E′
γ +

∑

ν 6=γ

G′γνE′
ν −GV

γ Eγ = 0 (1)

This is the basic set of linear equations that will be
used throughout this review to describe the transmis-
sion properties of different structures containing sub-
wavelength apertures. Details of the derivation, as well
as the mathematical expressions for the different magni-
tudes can be found in Appendix A. In this section we sim-
ply give their physical meaning. The independent term,
Iα, takes into account the direct initial illumination over
object α. Σα is related to the bouncing back and forth
of the EM-fields inside object α whereas GV

α accounts for
the coupling between the EM fields at the two sides of
the aperture. The term Gαβ controls the EM-coupling
between objects α and β in region I. This “propagator”
takes into account that each point in object β emits EM
radiation, which can be ”collected” by object α. The
propagator G′γν differs from Gαβ only in the constituents,
i.e., G′γν is a function of ε3 whereas Gαβ depends on ε1.
Formally the propagator Gαβ can be written as:

Gαβ = i
∑

~kσ

Y~kσ < α|~kσ >< ~kσ|β > (2)

with a similar expression for G′αβ . In Eq.(2), Y~kσ is the
admittance of the plane wave: Y~ks = kz/kω and Y~kp =
ε1kω/kz, for s- and p- polarization, respectively, being
kω = ω/c = 2π/λ (ω the frequency and c the speed of
light) and |k|2 + k2

z = k2
ω.

As stated above, the finite conductivity of the metal
can be incorporated into this modal expansion framework
by introducing SIBC instead of perfect metal boundary
conditions. Within this approximation, the set of Eqs.(1)
is still valid but with magnitudes that now depend on the
surface impedance of the metal, ZS = 1/

√
εM (ω), where

εM (ω) is the frequency-dependent dielectric function of
the metal. Expressions for Iα, GV

α , Σα and Gαβ within
the SIBC approach can also be found in Appendix A.

Once the self-consistent {Eα, E′
α} are found after solv-

ing Eqs.(1), the EM fields in all regions can be then cal-
culated, and from them the total transmittance. There-
fore, the modal expansion method reduces the calculation
of the EM fields everywhere into finding the EM field
distribution just at the aperture openings, which is ex-
tremely efficient when the openings cover a small fraction

of the metal surface. Convergence (as a function of num-
ber of waveguide modes needed) is reached very quickly,
specially in the subwavelength regime. In fact, in this
regime, a very accurate result for the transmittance can
be achieved by considering only the fundamental waveg-
uide mode inside each aperture. For the case of a single
aperture or an infinite periodic array, this single mode
approximation (α = 0) allows a quasi-analytical treat-
ment of the set of equations (1) that now transforms into
a set of just two linear equations:

(G− Σ)E −GV E′ = I, (G′ − Σ)E′ −GV E = 0 (3)

where G ≡ G00, G′ ≡ G′00, Σ ≡ Σ0, GV ≡ GV
0 and

I ≡ I0. The solution of this set of equations is:

E =
(G′ − Σ)I

(G− Σ)(G′ − Σ)− (GV )2

E′ =
GV I

(G− Σ)(G′ − Σ)− (GV )2
(4)

When surface EM modes are present in the structure,
it is useful to consider a multiple scattering technique.
Within this framework, the scattering coefficients of a
stratified media can be obtained in terms of the scat-
tering coefficients related to isolated interfaces. In all
cases analyzed in this review, the structures are formed
by three layers (reflection and transmission regions plus
the perforated metal). Therefore, three different scatter-
ing problems involving two semi-infinite media must be
solved (see Figure 3).
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FIG. 3 Schematic definition of the different scattering coef-
ficients for the EM fields at isolated interfaces dividing two
semi-infinite media. (a) A plane wave impinging from medium
I into medium II. (b) Incidence from a waveguide mode α in
medium II into medium III. (c) As in (b) but now the waveg-
uide mode α is back-scattered in medium II or transmitted to
medium I.

In Figure 3(a), the incident plane wave coming from
reflection region (medium I), characterized by ~k0σ0 and
unit amplitude, impinges at medium II (perforated
metal). The incoming field is reflected back into the dif-
ferent diffraction modes in medium I with amplitude ρ12

~kσ
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and transmitted into object α of medium II with am-
plitude τ12

α . The second two-media scattering problem
is schematically depicted in Figure 3(b): a waveguide
mode α coming from medium II impinges at the interface
with medium III. It is reflected back at the interface into
waveguide mode β with amplitude ρ23

αβ and transmitted
into the different plane waves of medium III, ~kσ, with
amplitude τ23

α,~kσ
. The third scattering process is simi-

lar to the previous one changing medium III by medium
I (see panel (c) of Fig. 3). Detailed expressions for the
two-media scattering coefficients can be also found in Ap-
pendix A.

The total transmission process can be seen as an infi-
nite sum of scattering processes involving the two inter-
faces plus light propagation inside medium II. The infi-
nite series is geometric and can be summed up yielding
for transmission coefficient, t~kσ:

t~kσ =
∑

α,β,γ

τ12
α eα[δαβ − ρ21

αγeγρ23
γβeβ ]−1τ23

β,~kσ
(5)

where eα ≡ exp(iqzαh), qzα being the propagation con-
stant associated with mode α.

II. TRANSMISSION THROUGH SINGLE APERTURES

A. 1D aperture: single slit

We start our study of the transmission properties of
subwavelength apertures by analyzing the simplest case:
a single 1D slit perforated on a metal film of thickness
h illuminated by a plane wave (see Fig. 4). We assume
that the incident wavector has a null component in the y-
direction. The width of the slit is a and the film thickness
is h. Since this structure presents translational symmetry
along the direction parallel to the slit, the analysis can
be restricted to the perpendicular plane where both light
polarizations (s and p) are decoupled. For p-polarized
light, the magnetic field is parallel to the slit (y-direction)
and the electric field has non-zero x and z components.
For s-polarized light, the E-field is pointing to the y-
direction and H-field lies in the x− z plane.

The transmission properties of a single slit perforated
on a thick metal film was theoretically study within the
electrical engineering community during the 70’s and 80’s
of the last century (Auckland and Harrington, 1978; Har-
rington and Auckland, 1980; Hongo, 1971; Kashyap and
Hamid, 1971; Lehman, 1970; Neerhoff and Mur, 1973).
These authors predicted the appearance of transmission
resonances for incident p-polarized radiation, by using
different theoretical approaches (Fourier transforms, ma-
trix techniques or the method of moments). The interest
on this type of 1D structures was renewed after theoreti-
cal studies found that EOT phenomenon also emerges in
1D periodic arrays of slits (Porto et al., 1999; Schroter
and Heitmann, 1998). Takakura (2001) revisited the ex-
istence of transmission resonances in single, isolated slits

a

Air ( =1)

Air ( =1)

Metalh

x

z

E

H

k
0

FIG. 4 Schematic picture of a single slit of width a perforated
on a metal film of thickness h illuminated by a p-polarized ra-
diation. For the case of s-polarized incident radiation, vectors
E and H are interchanged.

for p-polarized illumination, finding analytical expres-
sions for the total transmittance. One year later, Yang
and Sambles (2002) verified experimentally the existence
of transmission resonances in the microwave regime.
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FIG. 5 Transmission (in arbitrary units) as a function of fre-
quency (in GHz) for a single slit of width 75µm perforated on
a metal film of thickness 28.2mm, as reported by Yang and
Sambles (2002). Inset: calculated normalized-to-area trans-
mittance for p-polarized light through a single slit with the
same geometrical parameters of the main panel.

In what follows we present the theoretical foundation
of these transmission resonances by using the general for-
malism described in section I.B. We first analyze the case
of p-polarized light. In this case, the objects α in Eqs.(1)
are the TM waveguide modes inside the slit (the TE
modes can be neglected because they do not couple to
the incident p-polarized radiation). Note also that now
the only non-zero component of the E-field bivector is
the x-component. The mathematical expression for Ex

associated with mode α is:
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< x|α >=

√
Cα

a
cos[

απ

a
(x + a/2)]θ(a/2− |x|) (6)

where α is an integer ≥ 0 and the normalization con-
stant, Cα, is 1 for α = 0 and Cα = 2 otherwise.
The propagation constant associated with mode α is
qzα =

√
k2

ω − π2α2/a2. Strictly speaking, mode α = 0 is
a TEM mode (both the electric and magnetic fields are
transversal) that does not present cutoff.

As we are dealing with a non-periodic structure, the
coupling term between TM waveguide modes in Eqs.(1),
Gαβ , has to be evaluated as an integral over vacuum
plane waves, Gαβ =< α|Ĝ|β >, where the operator Ĝ
in real space is the one described in Appendix A [see
Equation (A18)]. For instance,

G00 =
iπ

aλ

∫ a/2

−a/2

dx

∫ a/2

−a/2

dx′H(1)
0 (kω(x− x′)) (7)

where H
(1)
0 is the zero-order Hankel function of the first

kind.
In the inset of Figure 5 we render the normalized-

to-area transmittance (transmittance normalized to the
amount of light that is impinging directly at the slit
opening) versus wavelength for a single slit of width
a = 75µm, perforated onto a metallic film of thickness
h = 28.2mm, as obtained by Bravo-Abad et al. (2004b).
As in the experiment, a series of transmission peaks dom-
inate the spectrum and the peak height decreases as the
resonant frequency is increased. In order to gain physical
insight, we consider the extreme subwavelength regime,
a << λ, in which a very good approximation to the final
transmittance spectrum can be achieved by considering
only the TEM waveguide mode (α = 0) inside the slit.
Within this approximation, we must solve Eqs.(3) where,
for this particular case: G = G′ = G00, Σ = cot(kωh),
GV = 1/ sin(kωh), and I = 2i for a normal incident plane
wave whose energy flux integrated over the slit opening
is 1. In this way, T = Re[GV E∗E′], directly gives the
normalized-to-area transmittance.

The spectral locations of the transmission peaks are
associated with the resonant condition of the denomina-
tor for E and E′ in Eqs.(4), |G−Σ| = |GV |. After some
straightforward algebra, this condition can be re-written
as:

tan kωh =
2ReG

|G|2 − 1
. (8)

In the limit of extremely narrow slits (G → 0), this
last equation predicts the appearance of transmission
peaks close to the Fabry-Perot condition, sin kωh = 0.
This shows that cavity resonances inside the single slit
are responsible for the emergence of transmission peaks
for p-polarized light. The analytical expression for the
normalized-to-area transmittance at resonance, Tres, can

be obtained using the resonant condition, |G−Σ| = |GV |,
in the equation for T . We obtain Tres = |I|2/[4Im(G)].
A very accurate estimation for Tres can then be obtained
by taking the limit a << λ in the expressions for Im(G)
as given in Eq.(7), leading to T slit

res = λ
πa . This analytical

result predicts a linear increase of Tres with the resonant
wavelength, as observed in Figure 5. This analytical ex-
pression for Tres was firstly derived by Harrington and
Auckland (1980) by using a circuit model and is strictly
valid within the PEC approximation. However, Suck-
ling et al. (2004) demonstrated that, even at microwave
frequencies, the transmission enhancement is limited by
the finite conductivity of the metal. In an ideal PEC,
the modal size of the fundamental mode inside the slit
is always equal to the slit’s width, which can be made
arbitrarily small. But, in a real metal, the modal size is
limited to roughly two times the skin depth of the metal,
thus limiting the total transmittance through the slit.
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FIG. 6 Normalized-to-area transmittance versus wavelength
(in units of the cutoff wavelength of the fundamental TE
mode, λC = 2a) through a single slit of width a perforated
on a PEC film of different thicknesses, h, ranging from h = 0
to h = 3a. The normal incident plane wave is s-polarized.

A similar theoretical analysis can be done when the
single slit is illuminated by s-polarized light. Now, only
the TE modes inside the slit need to be considered. The
mathematical expression for the y-component of the E-
field associated with mode α is:

< x|α >=

√
2
a

sin[
απ

a
(x + a/2)]θ(a/2− |x|) (9)

with α ≥ 1. The propagation constant of mode α is
qzα =

√
k2

ω − π2α2/a2. Therefore, conversely to TM
modes, these TE waveguide modes present cutoff. The
electromagnetic coupling between TE modes is governed
by Gαβ terms that, due to the different boundary con-
ditions, are different to those of the p-polarized case.
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The expression in real space of the s-polarization Green’s
function is:

< x|Ĝ|x′ >= G(x, x′) =
i

2π

∫ ∞

−∞
dk

√
k2

ω − k2

kω
eik(x−x′)

(10)
In Figure 6 we render the normalized-to-area transmit-

tance spectra for slits with the same width a but different
thicknesses, ranging from h = 0 to h = 3a. Note that, in
contrast to the p-polarized case, the transmission process
is dominated by the existence of a cutoff wavelength for
TE modes, λC = 2a. For λ > λC and thick enough films,
the transmission is strongly attenuated due to evanescent
character of the EM fields inside the slit. Fabry-Perot
resonances similar to those found for p-polarized light
appear in the spectrum for λ < λC .

B. 2D single apertures

1. Circular holes

Although the curiosity and technological interest on
the phenomenon of transmission of light through small
holes in a opaque screen started centuries ago, the
first accurate treatment of the electromagnetic coupling
through small holes was presented by Bethe (1944) in
the idealized case of a zero-thickness perfect conduc-
tor film. In his calculation, the screen and the aper-
ture were replaced by two emitting electric and mag-
netic dipoles. Bethe derived a very simple expression
for the normalized-to-area transmittance in the extreme
subwavelength limit (kωr ¿ 1):

TBe =
64(kωr)4

27π2
(11)

where r is the radius of the hole. This equation implies
that TB scales as (r/λ)4 and a rapid drop of the optical
transmission as λ is increased is expected. Six years later,
Bouwkamp (1950) found that the transmittance could
be written as a series in kωr, in which the expression
obtained by Bethe was just the first term. Bouwkamp
derived the following expression for the normalized-to-
area transmittance, TBo:

TBo = TBe{1+
22
25

(kωr)2+
7312
18375

(kωr)4+O(kωr)6} (12)

Notice that this series seems to diverge if λ ≤ 2πr. There-
fore, the expressions given by Bethe and Bouwkamp have
limited value for the EOT phenomenon, in which the
resonant wavelength is typically 2 − 3 times the diam-
eter of the holes. Furthermore, TBe and TBo were ob-
tained for a opaque screen with negligible thickness. The
transmission efficiency is further exponentially attenu-
ated for metallic films of finite thickness for wavelengths

longer than the cutoff wavelength of the hole, λC = 3.4r.
This hypothesis was quantitatively verified by Roberts
(1987), who presented the first full calculation of the
transmission properties of a single circular hole perfo-
rated on a PEC film of finite thickness. Figure 7 shows
the normalized-to-area transmittance spectra obtained
with the modal expansion formalism described in sec-
tion I.B, which is equivalent to the one used by Roberts
in her seminal paper. As seen in the figure, Bethe and
Bouwkamp expressions [Eqs.(11) and (12)] are reason-
able approximations in the extreme sub-wavelength limit
(kωr << 1) for h = 0 but overestimate the total trans-
mission for h 6= 0 in all ranges of kωr.
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FIG. 7 Normalized-to-area transmittance for a normal inci-
dent plane wave versus kωr for a circular hole of radius r
perforated on PEC films with several values of their thick-
nesses, h. Dashed and dotted lines show the predictions of
Eq.(11) and Eq.(12), respectively. The cutoff wavelength of
the hole waveguide, kωr = 1.85 is also depicted in the figure.

The invention of the scanning near-field optical micro-
scope (SNOM) in the eighties of last century (Lewis et al.,
1984; Pohl et al., 1984) and the discovery of EOT phe-
nomenon (Ebbesen et al., 1998) stimulated new experi-
mental and theoretical studies on both the total inten-
sity and the spatial distribution of the light transmitted
through a small circular hole. The first accurate numer-
ical calculation of the transmittance through a circular
hole perforated in a real metal at optical frequencies was
reported by Wannemacher (2001). By using the MMP
numerical method, this author was able to predict the
appearance of transmission resonances in very thin silver
films (50 − 150nm). Wannemacher (2001) ascribed this
resonant enhancement of the transmission to a general
SPP excitation.

The EM fields emerging from single circular subwave-
length apertures have been experimentally mapped with
single molecule detection (Betzig and Chichester, 1993;
van Hulst et al., 2000; Moerland et al., 2004; Sick et al.,
2001; Veerman et al., 1999). Through their dipole na-
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ture, the single molecules act as subwavelength detectors
of the vector EM fields behind the aperture, which is in
this case the aperture of a near-field microscope probe.
The molecular fluorescence of the molecule yields direct
insight into the local EM fields: the fluorescence inten-
sity Ifl of the molecule is related as Ifl ∝ ~µ. ~E, with ~µ. ~E

the vector dot product of the local electrical field ~E and
the transition dipole of the molecule ~µ. As a result, the
fluorescence is not only a measure of the magnitude of
the electric field, but it is sensitive to its direction with
respect to the dipole (van Hulst et al., 2000; Moerland
et al., 2004; Sick et al., 2001; Veerman et al., 1999). As a
result, the full vectorial field emerging from the aperture
can be accessed.

Regarding the issue on the spatial distribution of the
light emerging from a single subwavelength circular hole,
angular measurements at the exit of the holes (Degiron
et al., 2004; Obermuller and Karrai, 1995) have revealed
that the angular distribution is far from being uniform,
i.e., light diffracts less than expected for a subwavelength
hole perforated in a PEC film. This non-uniform angu-
lar diffraction makes the measurement of the total trans-
mittance through the single hole a delicate task. This
type of measurements was presented by Degiron et al.
(2004), for circular holes with radius r = 135nm milled
in suspended silver films of various thicknesses, ranging
from h = 200nm to h = 800nm. The total transmis-
sion spectra obtained are rendered in Figure 8, showing
the presence of a transmission resonance, with an inten-
sity that decreases rapidly with increasing h. Due to
the finite dielectric function of silver at this wavelength
range, the cutoff wavelength of the hole waveguide is
larger than the PEC prediction, 460nm. Detailed cal-
culations showed that in this case the cutoff wavelength
is enlarged to 600nm (Moreno, 2008). Therefore, the ob-
served transmission peak appears at a wavelength larger
than the cutoff so the physical origin of this resonance
can not be ascribed to the general kind of cutoff reso-
nances that will be discussed later on when analyzing
the transmission properties of rectangular holes. Based
on measurements of the spatial and spectral characteris-
tics of the light emission induced by a high energy elec-
tron beam, Degiron et al. (2004) concluded that this res-
onance stems from the excitation of a localized surface
plasmon at the edges of the hole. In a different exper-
imental study, Prikulis et al. (2004) showed that both
scattering and extinction spectra of optically thin gold
films perforated by subwavelength circular holes exhibit
an optical resonance in the visible range. These authors
also assigned the resonance to a dipolar localized surface
plasmon at the hole circumference.

Subsequent theoretical investigations (Chang et al.,
2005; Popov et al., 2005) corroborated the localized na-
ture of those transmission resonances. In particular,
Popov et al. (2005) concluded that there are two main
contributions to the transmitted EM field: localized sur-
face plasmon excitation produced by the ridges of the
hole, which is almost normal to the E-field vector of the

Wavelength (nm)

FIG. 8 Inset: SEM micrograph image of a single circular
hole of radius r = 135nm perforated on a suspended silver
film. Main panel: transmittance spectra for normal incident
radiation for a range of film thicknesses, h. Each curve is an
average of spectra obtained for several isolated holes of the
same size. Figure taken from (Degiron et al., 2004).

incident field, and a much weaker radiation from the elec-
tric dipole formed by the charge accumulated at the same
points. FDTD calculations (Chang et al., 2005) indicated
that the spectral position of the transmission maximum
red shifts with increasing hole diameter and blue shifts
with increasing film thickness.

Another theoretical works (Catrysse et al., 2005; Webb
and Li, 2006) have investigated the existence of propa-
gating waveguide modes for arbitrarily small diameters of
a cylindrical hole. In these two references, it was demon-
strated that the cutoff wavelength of the hole waveguide
(perforated on a metal characterized by Drude dielectric
function) does not approach zero when the hole radius
tends to zero (as it occurs in a PEC), but to a constant
value,

√
2λp, λp being the wavelength of the bulk plas-

mon.
Very recently, using terahertz-light excitation, Adam

et al. (2008) were able to measure the time- and fre-
quency dependent E-field in the vicinity of subwavelength
circular holes (perforated in a 200nm-thick gold film de-
posited on a GaP substrate), with sub-wavelength spa-
tial and sub-cycle temporal resolution. As expected from
the calculations of Bouwkamp (1950) for a circular hole
perforated on a PEC film, the E-field is highly concen-
trated near the edges of the hole. Interestingly, they also
report the emergence of a transmission resonance that
is spectrally located close to the cutoff frequency of the
lowest order mode, the TE11 mode, calculated as if the
hole were filled with a material whose refractive-index
coincides with that of the substrate. Further theoretical
investigations are needed in order to reveal the physics
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behind this resonance and its relation with the cutoff
transmission resonances appearing for rectangular and
annular holes, as described in section II.B.2.

Apart from their transmission properties, circular
holes have been also studied as nanometric generators
of SPPs (Baudrion et al., 2008; Chang et al., 2005; Son-
nichsen et al., 2000; Yin et al., 2004). The holes act as
point-like sources of SPPs and the coupling efficiency can
be as large as 20% (Baudrion et al., 2008) by a proper
design of the geometrical parameters.

2. Rectangular holes

To the best of our knowledge, the only experimental
study of the optical transmission properties of a single
rectangular hole perforated on a metal film was carried
out by Degiron et al. (2004). These experiments demon-
strated that the transmission properties of a single rect-
angular hole are very sensitive to the polarization of the
incident light. Figure 9 shows the evolution of the trans-
mission spectrum of a rectangular aperture (short side:
ax = 210nm, long side: ay = 310nm) in a 700nm thick
silver film for various incident linear polarizations. When
the angle is 00, the E-field is pointing along the long side
of the rectangular hole, whereas for 900, the direction of
the E-field coincides with that of the short side of the
rectangle. Two distinct peaks can be observed by simply
changing the polarization of the incident field. As the
angle varies from 00 to 900, one switches from a mode at
around 450nm to another one at 750nm.

FIG. 9 Transmission spectra of an isolated rectangular aper-
ture for various linear polarizations. The thickness of the
free-standing silver film is h = 700nm and the sides of the
rectangle are: ax = 210nm and ay = 310nm. Figure taken
from (Degiron et al., 2004).

Degiron et al. (2004) also analyzed the dependence of
the transmission resonances with the aspect ratio of the
rectangular hole. The experiments showed that the peak
height increases and its spectral location shifts to larger
wavelengths as the ratio between the two sides of the
rectangle, ay/ax, is enlarged (see Figure 10). In all these
spectra, normal incident light is linearly polarized and
is pointing along the short side of the rectangular hole
(x-direction).

a
x
= 260 nm

a
x
= 225 nm

a
x
= 185 nm

a
x
= 145 nm

a
x
= 105 nm

Wavelength (nm)

FIG. 10 Transmission spectra of isolated rectangular aper-
tures with fixed h = 300nm and ay = 270nm with various ax

(105nm < ax < 260nm), perforated in silver films. All the
structures are illuminated by a normal incident plane wave
whose E-field points along the short side of the rectangle.
Figure taken from (Degiron et al., 2004).

In order to underpin the physical origin of these trans-
mission resonances, we theoretically analyze the proper-
ties of a single rectangular hole of sides ax and ay perfo-
rated on a metallic film of thickness h (see inset of Fig.
11) by using the modal expansion formalism as described
in section I.B. In the first part of this analysis the metal is
treated as a PEC (Garcia-Vidal et al., 2005b). Then, the
effect of a finite dielectric constant on the resonant trans-
mission properties of a single rectangular hole will be ad-
dressed (Garcia-Vidal et al., 2006a). We focus on the
case of p-polarized incident radiation, with the in-plane
E-field component pointing to the x-direction (short side
of the rectangle).

Figure 11 depicts the calculated normalized-to-area
transmission spectra for rectangular holes in which the
aspect ratio (ay/ax) is varied between 1.0 (square hole)
and 10. For the calculation of these spectra we assume
that the dielectric constants in all regions (reflection,
transmission and inside the holes) is ε = 1. The thick-
ness of the PEC film is fixed in all cases at h = ay/3. As
we will show below, this is not an important parameter
regarding the emergence of transmission resonances. As
the ratio ay/ax is increased, a transmission peak develops
close to the cutoff wavelength (λC = 2ay), with increas-
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ing maximum transmittance and decreasing linewidth.
In all cases, above cutoff the transmittance decreases
strongly with wavelength, due to both the evanescent
decay of the EM fields inside the hole and to the poor
coupling of the incident wave with the waveguide modes
in this limit.
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FIG. 11 Inset: schematic picture of a single rectangular hole
of sides ax and ay perforated on a metallic film of thickness
h. The structure is illuminated by a p-polarized plane. Main
panel: normalized-to-area transmittance versus wavelength
(in units of the cutoff wavelength, λC = 2ay) for a normal in-
cident p-polarized plane wave impinging on single rectangular
holes, for different ratios ay/ax. Metal thickness is fixed at
h = ay/3. Figure taken from (Garcia-Vidal et al., 2005b).

As in the case of a single slit, a very good approxi-
mation to the final result can be achieved by considering
only the first TE waveguide inside the hole, |TE > in
the Dirac notation. Its normalized in-plane E-field com-
ponents are:

< ~r |TE >=
√

2/(axay) sin[
π

ay
(y + 1/2)](1, 0)T (13)

Within the single mode approximation, the set of
Eqs.(3) also applies for this case. The magnitudes
appearing in those two equations are now: Σ =
YTE/ tan(qzh) and GV = YTE/ sin(qzh) where the prop-
agation constant of the TE mode, is given by qz =√

k2
ω − (π/ay)2. Its associated admittance is YTE =

qz/kω. Normalizing the incident p-polarized plane wave
such that the incoming energy flux over the hole area is
unity, we obtain for the illumination term:

I =
4i
√

2
π

sinc[kωax sin θ/2]√
cos θ

(14)

where θ is the angle of incidence and function sinc(x) ≡
sin /x. The expression for the self-illumination of the

fundamental TE mode via vacuum modes, G, for the
case of a rectangular hole is:

G =
iaxay

8π2kω

∫ +∞

−∞

∫ +∞

−∞
dkx dky

k2
ω − k2

y√
k2

ω − k2
sinc2(

kxax

2
)

× [sinc(
kyay + π

2
) + sinc(

kyay − π

2
)]2 (15)

where k2 = k2
x + k2

y.
For the case of a rectangular hole, the resonant condi-

tion |G− Σ| = |GV | reads:

tan(qzh) =
2YTERe(G)
|G|2 − Y 2

TE

. (16)

This equation marks the spectral position of Fabry-
Perot resonances. Due to the coupling to free-space
modes, these resonances are shifted from those predicted
from the approximate expression tan(qzh) = 0, which
would arise if the optical path inside the hole were only
taken into account. Equation (16) is satisfied at cutoff,
when qz = YTE = 0. Therefore, the physical origin of the
transmission resonances appearing for rectangular holes
at λ ≈ λC stems from the excitation of Fabry-Perot res-
onances in which the propagation constant is zero.

Notice that the only dependence of the transmittance
on the angle of incidence stems from the illumination
term, I. Then, the location of the resonant peaks ob-
served in Figure 11 does not depend on θ. Moreover, in
the extreme subwavelength limit, the term sinc in I [see
Eq.(14)] approaches 1 yielding to a simple 1/ cos θ de-
pendence for the peak heights in the normalized-to-area
transmittance spectra.

An accurate analytical approximation for the trans-
mittance at resonance, Tres, can be obtained by making
use of the general expression previously derived, Tres =
|I|2/[4ImG]. In the extreme subwavelength regime, we
obtain from Eq.(15), Im(G) ≈ 32axay/(3πλ2), leading
to:

Tres ≈ 3
4π

λ2
res

axay
. (17)

This expression predicts that, for the transmis-
sion peak located near the cutoff wavelength, Tres ≈
(3/π)ay/ax, explaining the numerical results shown in
Fig. 11, in which an almost linear increase of the peak
height versus ratio ay/ax is observed.

Additionally, even for a fixed aspect ratio ay/ax, Eq.
(17) gives us a clue for further enhancing the transmis-
sion: namely, by filling the hole with a material with
dielectric constant ε > 1, as this increases the cutoff
wavelength. Now, the propagation constant of the funda-
mental TE mode is qz =

√
εk2

ω − (π/ay)2 and its cutoff
wavelength is λC = 2

√
εay. According to Eq.(17), this

should lead to a linear increase of Tres with ε. Note that



11

this increase of the transmission when the hole by filled
with material with ε > 1 also occurs for the case of cir-
cular or square holes (De Abajo, 2002). Remarkably,
in rectangular holes, this mechanism acts almost inde-
pendently to the “geometric” enhancement appearing at
large aspect ratios, so Tres is proportional to both ay/ax

and ε.

Associated with this resonant phenomenon, there is
an enhancement of the EM fields. A direct evaluation of
|E|2 = |E′|2 at the resonant condition yields:

|E|2res = |E′|2res =
|I|2

4[Im(G)]2
, (18)

leading to an enhancement of the intensity of the E-field
at the hole (with respect to the incident one) that scales
with λres as λ4

res/(ayax)2, much larger than the enhance-
ment in the transmittance. This implies that, in the pro-
cess of resonant transmission, light is highly concentrated
on the entrance and exit sides of the hole and only a small
fraction of this light is finally transmitted. Still, as we
have seen, the transmitted light is larger than the one
directly impinging in the hole.

Experimental verification of the existence of cutoff
transmission resonances in rectangular holes was recently
reported by Lee et al. (2007), in the THz regime of the
EM spectrum. These authors considered sets of rectan-
gular holes where all holes had the same dimensions and
orientation, but were randomly positioned. The mea-
sured transmission spectra confirmed the existence of res-
onances associated with the cutoff. In Figure 12, three
representative transmission spectra are displayed, that
show the predicted increase in the transmittance as the
aspect ratio of the rectangular hole is increased.

It is clear that the transmission resonances appearing
for a rectangular hole perforated on a PEC film have
strong similarities with those found experimentally by
Degiron et al. (2004) in the optical regime. In partic-
ular, the experimentally observed increase in the trans-
mittance at resonance with increasing aspect ratio sug-
gests that their physical origin also stems from the excita-
tion of Fabry-Perot cavity resonances of zero-propagation
constant. This hypothesis was theoretically verified by
Garcia-Vidal et al. (2006a). By combining a modal ex-
pansion formalism in which SIBC were applied along with
FDTD numerical simulations, these authors found the
close correspondence between the spectral location of the
transmission peak with the cutoff wavelength of the hole
waveguide perforated on a real metal. This cutoff wave-
length is red-shifted with respect to its PEC-value, due
to the penetration of the EM-fields inside the metal at
optical frequencies (Gordon and Brolo, 2005).
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FIG. 12 Normalized transmission amplitudes, at normal inci-
dence, of random arrays of holes with dimensions: (a) Square
holes with ax = ay = 200µm. (b) Rectangular holes with
ax = 70µm and ay = 390µm. (c) Rectangular holes with
ax = 70µm and ay = 655µm. In the three cases the metal
thickness is fixed at h = 17µm. Insets are SEM images of the
2D random arrays. Figure taken from (Lee et al., 2007).

III. TRANSMISSION THROUGH ARRAYS OF
APERTURES

A. 1D periodic arrays of slits

1. General results

Before the discovery of the EOT phenomenon in peri-
odic arrays of subwavelength holes (Ebbesen et al., 1998),
there had only been a few theoretical and experimental
works on the resonant transmission features of the so-
called transmission gratings, i.e., periodic arrays of 1D
slits perforated on metallic films (see Fig. 13). An in-
teresting experimental and theoretical study was carried
out by Lochbihler (1994) in gold wire gratings illumi-
nated by p-polarized radiation. This author reported the
emergence of very narrow transmission dips in the zero-
th diffraction order. Lochbihler modelled the scattering
process using a modal formalism, and was able to relate
the spectral location of the transmittance dip with the
dispersion relation of the SPPs supported by the gold
surface.

After 1998, many theoretical works have been devoted
to analyzing the emergence of EOT phenomenon in 1D
transmission gratings for p-polarized light. Notice that
no transmission resonances are expected to appear for
s-polarized radiation. Schroter and Heitmann (1998)
presented the first numerical study, based on the Chan-
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denzon method in combination with the point matching
method. They studied the case of p-polarized light find-
ing that, as in the case of the experiments in the 2D struc-
tures, the transmission spectrum presented peaks, whose
spectral locations indicated that SPPs were involved in
the resonant transmission behavior.

d

h
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z

x

p-polarized

light

k
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E

FIG. 13 Schematic picture of a periodic array of slits (period
d, width of the slits, a) perforated on a metallic film of thick-
ness h. The structure is illuminated by p-polarized radiation,
with the E-field lying in the x− z plane.

In a posterior development, Porto et al. (1999) demon-
strated that there are two possible ways of transferring
p-polarized light efficiently from the upper surface to the
lower one: by the excitation of coupled SPPs on both
surfaces of the grating (very similar to the 2D case) or
by the coupling of the incident plane wave with cavity
resonances located inside the slits (similar to those found
in the single slit case described in section II.A). The ex-
istence of these two channels for enhancing the transmit-
tance through a periodic array of subwavelength slits has
been corroborated by many posterior theoretical studies
(Astilean et al., 2000; Collin et al., 2001, 2002; Garcia-
Vidal and Martin-Moreno, 2002; Hooper and Sambles,
2003; Lalanne et al., 2000; Lee and Park, 2005; Liu and
Tsai, 2002; Marquier et al., 2005). Different names have
been used to call them: horizontal and vertical reso-
nances, surface and cavity resonances, etc... The two
resonant mechanisms are mixed in a way that depends
strongly of the geometrical parameters of the structure
(Collin et al., 2001, 2002; Marquier et al., 2005). This
is due to the existence of a propagating mode inside the
slit for p-polarized light (the TEM mode previously dis-
cussed in section II.A). A criticism to this point of view
regarding the origin of the transmission resonances has
been supported by different authors (Cao and Lalanne,
2002; Crouse and Keshavareddy, 2005; Xie et al., 2005).
Based on the existence of a transmission minimum ap-
pearing at the spectral location of the SPP in a flat,
un-corrugated metal surface, these authors have claimed
that the excitation of SPPs is detrimental for the trans-
mission. We will show later on in section III.A.2 that the
dispersion relation of the SPPs changes when the metal
film is perforated with a 1D array of slits and, indeed,
the transmission peaks emerge at the spectral locations
of the SPPs for the corrugated surface. A different per-
spective has been put forward by Treacy (Treacy, 1999,

2002) who argues that the transmission anomalies can
be better explained in terms of a dynamical diffraction
theory, in which SPPs are an intrinsic component of the
diffracted EM fields.

Up to now, there have been far fewer experimental
studies on the transmission properties of 1D arrays of
slits than of 2D arrays of holes. In the microwave regime,
Sambles and co-workers (Hibbins et al., 2001; Went et al.,
2000) reported the appearance of selective transmission
at resonant wavelengths associated with the excitation
of cavity resonances. Barbara and colleagues (Barbara
et al., 2002) presented the first study in the optical regime
with a gold coated silica gratings and they were able
to interpret their results by invoking the excitation of
both SPPs and slit-cavity resonances. In a posterior
development, two different experimental groups (Steele
et al., 2003; Sun et al., 2003) reported the emergence of
transmission resonances associated with the excitation of
SPPs in very thin metallo-dielectric gratings. The trans-
mission properties of THz radiation pulses were studied
in very thick transmission gratings containing subwave-
length slits (Xing et al., 2006)

More recently, Pang et al. (2007) have measured the
dispersion relation of the transmission resonances ap-
pearing in 1D arrays of subwavelength slits, both in the
visible and near infrared ranges of the EM spectrum. The
inset of Figure 14 renders a SEM image of a slit array
perforated in a gold film of thickness h = 400nm de-
posited on a glass substrate. The period of the array is
d = 750nm and the width of the slits is 100nm.

The experimental transmission spectra rendered in
Fig. 14 corroborate the theoretical predictions regarding
the existence of two different channels that enhance the
transmission through a 1D periodic array of slits. Panel
(a) shows a zero-order transmission spectra for two differ-
ent thicknesses h = 400nm and h = 450nm. Due to the
presence of a substrate, the resonant features associated
with the SPPs of the metal-substrate interface appear at
λ ≈ d

√
εglass = 1125nm. On the other hand, the spectral

location of the slit cavity resonance is expected to appear
at a wavelength larger than 2h = 800− 900nm. The two
main transmission peaks emerging in the spectrum re-
sult from the strong interplay between these two types
of resonances (Collin et al., 2001, 2002; Marquier et al.,
2005). This interaction is better visualized in panel (b)
where a dispersion diagram of the transmission peaks as
a function of parallel momentum is presented. The SPP
mode of the glass-metal interface (SM-1) overlaps with
the cavity resonance at ca. 1.1eV (marked by a dashed
line, FP), provoking the opening of a gap of ca. 280 meV.
Full lines display the dispersion relation of the different
SPP modes of the flat interfaces.

Similar transmission resonances to those described
above have also been observed in transmission gratings
perforated on doped semiconductors at THz frequencies
(Gomez-Rivas et al., 2005; Parthasarathy et al., 2007)
and on SiC films at NIR wavelengths (Marquier et al.,
2004). In this last case, it has been demonstrated how
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FIG. 14 (a) Inset: SEM image of one of the 1D arrays an-
alyzed in these experiments. Main panel: zero-order trans-
mittance of a 1D slit array illuminated by a normal incident
p-polarized plane wave. The period of the array is d = 750nm,
the width a = 100nm and two different thicknesses are ana-
lyzed, h = 400nm and h = 450nm. (b) Dispersion diagram
[spectral locations of the transmission peaks versus energy (in
eV) and parallel momentum (in units of 2π/d)] for the sam-
ple analyzed in panel (a) with h = 400nm. Figure taken from
(Pang et al., 2007).

surface phonon polaritons play the same key role as
SPPs do in the metallic case. Finally, some interesting
transmission properties emerging in compound gratings
(formed by slit arrays in which the unit cell is composed
by more than one slit) have been recently reported (Fong
and Hui, 2006; Hibbins et al., 2006; Skigin and Depine,
2005, 2006). By adding slits to the period, new phase
resonances appear as sharp dips within the transmission
maxima associated with the excitation of Fabry-Perot
modes (Hibbins et al., 2006; Skigin and Depine, 2005).

2. Theoretical modelling

In what follows we describe the theoretical foundation
of the transmission resonances appearing in a periodic
array of 1D slits illuminated by p-polarized light by using
the modal expansion formalism described in section I.B.
We first consider the case of a perforated PEC film (in
which no SPPs can be excited and there is no absorption).
In the second part of this study, we shall show how this
PEC picture is slightly modified when a real metal in the
optical regime (and its associated SPPs) is considered.

As in previous cases, the system of equations (1) is
also valid for describing the transmission properties of
the structure depicted in Figure 13. Now objects α are
just Bloch combinations of TM waveguide modes inside
the slits. As we are dealing with a periodic array, Gαβ can
be written as a discrete sum over p-polarized diffracted
modes:

Gαβ = i
∑

~k

kω

kz
< α|~kp >< ~kp|β > (19)

where ~k = ~k0 + ~kR, ~kR being a reciprocal lattice vec-
tor (~kR = 2πn/d). In Figure 15 we show the transmit-
tance spectra for a 1D array of slits of period d, width
a = 0.2d and different values of h (ranging from h = 0.2d
to h = 0.8d). Note that as the PEC approximation is
considered, d can be used as a unit length of the struc-
ture. The system is illuminated by a normal incident p-
polarized plane wave and the modal expansion of the EM
fields inside the slits contains 10 TM modes (full lines).
A series of transmission peaks (reaching 100% transmis-
sion) dominate the spectrum. Two types of transmission
resonances can be distinguished: very narrow transmis-
sion peaks appearing at a wavelength close to d and wider
peaks emerging at larger wavelengths. These are the two
types of transmission resonances previously discussed.
An interesting point is that the transmission peak emerg-
ing close to d also appear in a perforated PEC film which,
in principle, does not support SPPs. As we shall show
later, the physical origin of this resonant feature stems
from the excitation of geometrically-induced surface EM
modes that mimic the behavior of SPPs in perforated
PEC structures.

A quasi-analytical treatment of this problem can be
carried out (Garcia-Vidal and Martin-Moreno, 2002) by
realizing that considering only the TEM mode (α = 0)
inside the slits already leads to very accurate results for
the transmittance (see dotted lines in Fig.15). Within the
single mode approximation, the zero-order transmission
coefficient can be obtained from the multiple scattering
expression described in section I.B; see Eq.(5):

t0 =
τ12eikωhτ23

1− e2ikωhρ2
(20)

where t0 ≡ t~0p, τ12 ≡ τ12
0 , ρ ≡ ρ23

00 = ρ21
00 and τ23 ≡ τ23

0,~0p
.
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FIG. 15 Total transmittance (normalized to the unit cell of
the array) of a normal incident p-polarized plane wave versus
wavelength (in units of d) for periodic arrays of slits of fixed
width, a = 0.2d, and several thicknesses, h = 0.2d, 0.4d, 0.6d
and 0.8d. Full lines show the calculations in which 10 TM
waveguide modes are considered whereas dotted lines render
the results when only the TEM mode (α = 0) is included.

All these scattering magnitudes can be related to G ≡
G00:

ρ = −G− i

G + i
, τ12 =

I0

G + i
, τ23 =

2i < ~k0p|0 >

G + i
(21)

where the overlap integral, < 0|~kp >=
√

a
d sinc(kxa/2).

The complex two-media reflection coefficient, ρ, is char-
acterized by its modulus (R) and phase, θ. Then, we can
define a total phase, φ = 2θ+2kωh, sum of the scattering
(associated with ρ) and geometrical (determined by the
optical path) phases. As a function of this total phase,
the zero-order transmission coefficient in Eq.(20) can be
expressed as:

t0 =
τ12eikωhτ23

1−R2eiφ
(22)

Equation (22) resembles the formula governing the
transmission properties of a Fabry-Perot interferometer.
In contrast to the canonical case in which the phase of
the EM fields inside the cavity is determined by the op-
tical path (2kωh), a periodic array of 1D slits presents
an additional ingredient for the phase accumulated in a

round trip inside the slit, the one associated with the
phase of ρ. Figure 16 analyzes the behavior of R and θ
for three different values of a/d. Both the modulus and
the phase of ρ present singular behavior at wavelengths
d, d/2, d/3,...This is due to the fact that G diverges at
the condition kz = 0 [see Eq.(19)] that, for normal inci-
dence, coincides with λ = d/n, with n integer. At those
particular wavelengths, Eq.(21) predicts τ12 = τ23 = 0
and ρ = −1, provoking the appearance of zeroes in the
transmittance, as shown in Fig.15. An interesting point
is that there is a phase jump between 0 and π in ρ when
λ crosses those singular conditions [see Fig.16].

(a)

0,2

0,4

0,6

0,8

1,0

 

 

 

R
 a=0.20d
 a=0.10d
 a=0.05d

0,4 0,6 0,8 1,0 1,2 1,4 1,6
0,0

0,2

0,4

0,6

0,8

1,0

 

 

/

Wavelength (in units of d)

(b)

FIG. 16 Dependence of ρ versus wavelength for three different
values of the ratio between the width of the slits and period
of the array, a/d. Panel (a) shows the modulus of ρ (R) and
panel (b) renders its phase (θ), in units of π.

Given that for narrow slits R ≈ 1, it is found that
whenever φ is an integer times 2π, there would be a trans-
mission peak associated with a resonant condition for the
denominator in Eq.(22). For thin PEC films, the total
phase is dominated by the scattering phase; correspond-
ingly, the spectral location of the transmission resonance
appears at a wavelength slightly larger than d (see the
case h = 0.2d in Fig.15). When h is increased, the situ-
ation is more complex and the geometrical phase (2kωh)
can also lead to the appearance of transmission peaks
emerging at λ À d. The physical origin of these trans-
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mission resonances stems from the excitation of cavity
resonances, similar to the ones emerging in single slits as
discussed in section II.A.

However, there is a fundamental question regarding
the origin of the transmission peak at λ close to d. No-
tice that, up to this point, we have discussed the situ-
ation within the PEC approximation and, hence, there
are no SPPs involved. However, in a PEC film, when
the metal is perforated with a periodic array of indenta-
tions, surface EM modes can built-up (Munk, 2000). Let
us now describe the link between the transmission reso-
nances previously reported and the existence of surface
EM modes in the structure.

The surface EM modes relevant to the transmission
process must be leaky modes (otherwise they could not
be excited by an incident plane wave). However, in a first
approximation, we can look for the existence of truly-
bound surface EM modes by working with a parallel mo-
mentum kx longer than kω and ignoring diffraction effects
(which are incorporated in a second step). The disper-
sion relation (frequency versus kx) of the p-polarized EM
modes supported by the structure can be calculated us-
ing Eq.(3). Within these conditions, G in Eq.(3) is a real
magnitude, G = a

d
kω√

k2
x−k2

ω

. In this limit, the denom-

inator of Eqs.(4) can be exactly zero at the condition
G − Σ = ±GV , leading to the following dispersion rela-
tion for the EM modes supported by the structure:

√
k2

x − k2
ω

kω
=

a

d

sin kωh

cos kωh± 1
(23)

where the sign (+) must be taken when sin kωh > 0 and
sign (−) when sin kωh < 0. This equation gives the dis-
persion relation of the bound EM modes supported by the
structure within the effective medium limit (λ À d, a).

Figure 17 illustrates the close link between the spectral
locations of these EM modes and the peaks in the trans-
mittance spectrum, as a function of kx. In panel (a) we
analyze the case h = 0.2d. Here, the dispersion relation
(white line) runs close to the light line (ω = ckx). The
important point to realize is that if λ < 2d and diffraction
effects are taken into account, these EM modes become
leaky and can be excited by an impinging propagating
plane wave. In the left part of panel (a), the transmit-
tance versus wavenumber and kx within the light cone is
rendered. It is clear that the location of the transmis-
sion peak at λ ≈ d at normal incidence can be obtained
by folding the dispersion relation inside the light cone.
Therefore, we conclude that the physical origin of the
transmission peak located at λ ≈ d is related to the ex-
citation of an EM guided mode. Due to the fact that the
two surfaces of the PEC film are always connected via a
propagating wave (the TEM mode), the thickness of the
film is a key factor. Correspondingly, this EM mode is
not a true surface mode but a guided mode; it is a mode
bound to the film, guided inside the metal and decaying
away from it. It resembles more a guided mode in a di-
electric slab. In fact, it has been demonstrated that a 1D

array of subwavelength slits can be considered as a meta-
material and can be rigorously mapped into a high refrac-
tive index dielectric slab (Shen et al., 2005). We shall see
later that the case of a 2D hole array is different: the
geometrically-induced EM modes are truly surface EM
modes, due to the existence of a cutoff wavelength in 2D
apertures (see section III.B.2). The close correspondence
between dispersion relation of the EM modes and trans-
mission peaks also occur for thicker films (see Fig.17(b),
h = 1.0d). For large enough h, the dispersion relation
presents flat parts, associated with the Fabry-Perot con-
dition cos kωh = ±1, which dominate the transmission
spectrum.
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FIG. 17 Left panels: Transmittance spectra as a function of
both wavenumber and wavevector for p-polarized light im-
pinging at two different arrays of slits. Right panels: dis-
persion relation for the EM guided modes as obtained from
Eq.(23). Upper panel (a): a = h = 0.2d. Lower panel (b):
a = 0.2d and h = 1.0d.

What occurs to these transmission resonances when
the metal is not a PEC? As explained before, within
the modal expansion formalism, the dielectric function
of the metal can be approximately considered by using
the surface impedance boundary conditions (SIBC) when
matching the EM fields at the two horizontal interfaces
of the structure. In this way, the system of Eqs.(1) still
holds but now the different magnitudes depend on the
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surface impedance of the metal, ZS . Detailed expressions
for Σα, Iα and GV

α can be found in appendix A. The most
important change resides in the propagator Gαβ , which
for a 1D array of slits reads:

Gαβ = i
∑

~k

Y~kp

1 + ZSY~kp

< α|~kp >< ~kp|β > (24)

Due to that, now the minimum of the transmittance
would not emerge at λ = d, as in the case of a PEC film,
but at a slightly larger wavelength. This can be easily
understood by realizing that the divergence of G now
appears at the condition 1 + ZSY~kσ = 0. This last con-
dition is just the condition for the existence of SPP on a
flat metal surface within the SIBC approach. Therefore,
in a real metal, the spectral locations of the transmis-
sion minima are related to the SPP condition for a flat
(with no indentations) metal film. The peak appearing
at a wavelength slightly larger than d is then associated
with the excitation of a guided EM mode whose disper-
sion relation has both dielectric (linked to a finite ε) and
geometry contributions (due to the presence of the slits).
The important point to realize is that the linewidth of
these transmission resonances are much smaller than the
Fabry-Perot ones and, therefore, are much more sensi-
tive to the presence of absorption in a metal at optical
frequencies. More details on the dependence of the trans-
mission peaks with the absorption in the metal were dis-
cussed by Garcia-Vidal and Martin-Moreno (2002).

As described above, the two types of transmission
resonances previously discussed also appear in a real
metal at optical frequencies. Several theoretical analysis
(Catrysse et al., 2006; Collin et al., 2001, 2002; Marquier
et al., 2005) have demonstrated that transmission and
absorption peaks coincide, and can be then attributed to
resonances of the structure. As in the case of a PEC film,
these resonances can be viewed as the result of a strong
hybridization between cavity modes (Fabry-Perot) and
SPPs. Moreover, Marquier et al. (2005) characterized
this hybridization between cavity modes and SPPs in the
transmission resonances. Fig. 18 presents their results
for a free-standing silver film with d = 500nm, a = 50nm
and h = 400nm. Panel (a) shows the transmission versus
both frequency and parallel momentum. The similarities
between this plot and the ones obtained for a perforated
PEC film (see Fig.17) are remarkable. Panel (b) renders
the branch B-C of the dispersion relation of the mode re-
sponsible for enhanced transmission is rendered, whereas
panel (c) shows the surface-cavity ratio (SC) as a func-
tion of parallel momentum. This SC ratio is calculated
by comparing the EM energies associated with the cavity
and SPP components of the guided mode. This is quan-
titatively done by integrating the EM energy within the
slit (cavity component) and on both interfaces (SPP com-
ponent), respectively. As shown in Fig.18, for kx = 0, the
character of the mode is mainly cavity-like (75% for the
geometrical parameters considered in this study). As the

(a)

(c)

(b)

FIG. 18 (a) Transmission efficiency as a function of ω and kx.
Period of the grating, d = 500nm, width of the slits, a = 50nm
and thickness h = 400nm. (b) Branch B-C of the dispersion
relation and (c) surface-cavity ratio (SC) for the transmission
branch displayed in (b). Figure taken from (Marquier et al.,
2005).

parallel momentum is increased, the character is evolving
to SPP-like.

B. 2D periodic arrays of holes

1. General results

The first observation of EOT phenomenon through
subwavelength hole arrays was made on 200 nm thick
gold and silver films perforated with a square lattice of
circular subwavelength holes (Ebbesen et al., 1998). Fig-
ure 19 presents a SEM image of a typical 2D hole array
exhibiting EOT. In this first experiment, transmissions
twice as high as the open air fraction were observed.
This observation was all the more surprising as con-
ventional theory for light transmission through subwave-
length apertures (Bethe, 1944; Bouwkamp, 1950) predicts
a transmission normalized to the hole area that is sub-
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stantially less than 1 (see section II.B.1). A typical EOT
transmission spectrum is characterized by a sequence of
maxima and minima (see Figure 20).

FIG. 19 SEM image of a 2D hole array of circular holes (diam-
eter 150nm) milled in a 260nm thick Au film that is deposited
on a glass substrate. The hole arrays count 30× 30 holes and
the period of the square array is 460nm. Image courtesy of
Eric Laux.

In order to place EOT in a historical perspective, it
must be noted that 2D hole arrays had been extensively
studied before 1998, mainly due to their applications as
selective filters. For this, the high-pass filtering prop-
erties are provided by the evanescent decay of the EM
fields inside the holes for wavelengths larger than the cut-
off wavelength, and the poor coupling of radiative EM
modes to subwavelength holes. The low-pass filtering
arises from the redistribution of energy caused by the pe-
riodic array when a new diffraction order becomes prop-
agating, therefore carrying away energy at angles differ-
ent from the incident one. More precisely, hole arrays
were known to act as band-pass filters for d < λ < λC ,
where λC is the hole cutoff wavelength and d the lattice
parameter. This property has been studied in several
frequency regimes, such as microwave (Keilmann, 1981),
far infrared (Mitsuishi et al., 1963), mid infrared (Ulrich,
1967) and infrared (Rhoads et al., 1982). However, the
EOT phenomenon presented two main differences with
previous works. First, experiments were performed in
the optical regime, where there are EM modes bound to
the metal surface (SPPs), which could play an important
role in the transmission process. Second, the geomet-
rical parameters defining the structure were such that
λC < d < λ, i.e., the holes were at cutoff where EOT
peaks occurred. This is not a minor point as, combined
with the mentioned weak coupling of subwavelength holes
to radiation modes, it is responsible for the appearance

of well defined narrow resonant peaks. The EOT param-
eter range could, certainly, have been considered before
1998. However, after extensive literature searches, these
authors have been unable to find any study on hole ar-
rays in the regime λC < d < λ prior to 1998. Perhaps
the EOT parameter range was not explored before be-
cause nothing remarkable was expected for wavelengths
beyond cutoff.

The observation of the EOT phenomenon sparked a
huge amount of research trying to unveil the underly-
ing mechanisms. The first report (Ebbesen et al., 1998)
already suggested a crucial role of SPPs and presented
dependencies on: hole size, lattice spacing, metal film
thickness and angular dispersion. Later, several other
important parameters and observations were made: type
of metal, the role of symmetry in the dielectric-metal-
dielectric layer stack, the finite-size effects of the lattice
and the role of hole shape.

The first key observation was the clear spectral depen-
dence on lattice period of the minima and maxima for
transmission. The position of the minima exhibit a lin-
ear dependence of the lattice period. In the first experi-
mental report, the position of the minimum was ascribed
to the spectral location of the so-called Wood-Rayleigh’s
anomaly. At this condition, a diffraction order is exactly
parallel to the plane of the metal film. On the other hand,
transmission maxima exhibit almost the same scaling be-
havior with lattice period as the minima. Ghaemi et al.
(1998) suggested that maximum transmission occurs for
those optical frequencies for which the wavevector of a
SPP is equal to a vector of the reciprocal lattice associ-
ated to the geometry of the array. More generally speak-
ing, transmission maxima could be obtained when the
following condition is fulfilled:

~ksp = ~kin + ~kR, (25)

where ~ksp and ~kin are the wavevectors of the SPP and
the incident plane wave, respectively; ~kR = n~b1+m~b2 is a
wavevector of the reciprocal lattice (expressed as a linear
combination of the primitive vectors, ~b1 and ~b2). There
are SPP modes bond to both metal-dielectric interfaces.
Hence, two sets of transmission maxima occur, one for
each interface, when the dielectrics on either side of the
metal film are different. The dispersion relation for a
SPP on a flat metal-dielectric interface is given by

ksp =
ω

c

√
εM εd

εM + εd
, (26)

where εM and εd are the electric permittivities of the
metal and dielectric, respectively.

This implies that the spectral location of the Wood-
Rayleigh’s anomaly is very similar to the condition for
SPP excitation on a flat metal-dielectric interface of a
good metal: notice that for |εm| À εd, ksp ≈ kph, where
kph is the photon wavevector in the dielectric. As seen
in Figure 20, the assignment of the maxima to SPP exci-
tation and of the minima to Wood-Rayleigh’s anomalies
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as done in the first studies of EOT in 2D hole arrays was
sound but not completely accurate.

FIG. 20 Zero-order transmission of subwavelength hole ar-
ray in a Ag film on a quartz substrate for normal incidence;
the lattice period is 600nm, the film thickness is 200nm and
the diameter of the circular holes is 150nm. The markers
indicate positions for the maxima and minima expected for
SPP modes on either the silver-quartz or the silver-air in-
terface (solid markers) and the Wood-Rayleigh’s anomalies
associated with the same interfaces (dashed markers). Figure
taken from (Ghaemi et al., 1998).

The resonance condition directly implies a relation be-
tween the angle of incidence and/or the angle of the
transmitted light and the position of the minima and
maxima. Figure 21 depicts the transmission through an
array as a function of the angle of incidence (Ghaemi
et al., 1998). In the experiment, the tilt angle of the sam-
ple was varied with respect to the optical axis. Simple go-
niometry suffices to convert tilt angle and wavelength to
an in-plane wavevector. It is clear that both minima and
maxima exhibit dispersion. The dashed and drawn lines
indicate a reasonable agreement between measurements
and the expected values based on the above-mentioned
assignment scheme.

This was the physical picture provided by the group
that discovered EOT phenomenon in their first two pa-
pers published in 1998. Here we summarize the sub-
sequent developments in the search for a better under-
standing of the EOT phenomenon. After that, we shall
present a more detailed view based on the modal expan-
sion method that we are using throughout this review.
The first theoretical calculations were performed with
the RCWM method (Popov et al., 2000). This group
concluded that the EM fields within a hole drilled in a
metal film decay much more slowly when the holes are
forming a 2D array than what could be expected from

FIG. 21 Measured and predicted dispersion of the extraordi-
nary transmission through a subwavelength hole array. The
transmitted intensity is given by a grey scale. The loci of the
maxima (drawn lines) and the minima ascribed to the Wood-
Rayleigh’s anomaly (dashed lines) are superimposed on the
measured data. Figure taken from (Ghaemi et al., 1998).

estimations based on the hole size. In keeping with the
first experimental results, the calculated EOT features
closely matched to re-mapping of SPP bands within the
light cone. However, the existence of EOT in holey PEC
films (Martin-Moreno et al., 2001) showed that the pres-
ence of waveguide modes with “modified” propagation
constants is not essential for observing EOT. In this last
reference, EOT features were explained in terms of the
admittances (inverse of impedances) of waveguide modes
and an effective admittance of the semi-infinite media
close to the surface. When the effective admittance di-
verges, the incident field does not see the holes and, cor-
respondingly, the transmittance vanishes. At frequencies
close to this divergence, the effective admittance changes
very rapidly and, eventually, it is equal to the admit-
tance of the waveguide modes. This signals the existence
of a surface EM mode. The surface EM modes at both
sides of the film are coupled through evanescent fields in-
side the hole, and the resulting coupled resonant modes
give rise to transmission maxima. As these surface EM
modes appear in metals, they were termed SPPs of the
corrugated surface. This may have led to some confusion,
given that, as we shall see later, these surface modes can
appear even when the un-corrugated structure does not
support SPPs.
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Therefore, it is clear that there is a close link between
each minimum and maximum of transmittance. As men-
tioned, transmittance minima are related to divergencies
of the effective admittance, which arise due to construc-
tive re-illumination of a hole by all the other holes in
the array (Bravo-Abad et al., 2004a; De Abajo, 2007;
De Abajo et al., 2005; Genet et al., 2005). Actually, the
effective admittance only diverges in a lossless metal, but
reaches very high values for the case of good metals as
gold or silver. With this caveat in mind, for reasons of
economy of language, we shall keep loosely referring to
these high values as divergencies. The spectral position
of these divergencies has created considerable confusion
in the field. This is so because if the metal is treated as a
PEC (which can not support SPPs) the divergence of the
effective admittance occurs at the wavelengths for which
the diffraction orders become tangent to the surface (the
so-called Wood-Raleigh’s wavelengths). Yet, if the real
dielectric constant of the metal is taken into account, the
divergencies occur at the wavelengths at which the SPPs
of the flat metal interface are supported, as it has been
discussed in section III.A.2. The original analysis based
on the modal expansion stated that the relevant surface
EM modes were those of the corrugated metal surfaces
(Martin-Moreno et al., 2001). This latter view was poste-
riorly confirmed by rigorous calculations (Lalanne et al.,
2005b), which also found a close correspondence between
transmission maxima and the excitation of coupled sur-
face EM modes of the holey slab.

This resonant process is optimal when, for a given
angle of incidence, the surface EM modes of both sur-
faces occur at the same frequency, which makes the sym-
metric environment the most favorable for EOT (Krish-
nan et al., 2001). In Figure 22(a), we render experi-
mental transmission spectra (Krishnan et al., 2001) that
give support to the previous conclusion that the trans-
mittance at resonance is optimal for symmetric situa-
tions. An additional property associated to the exci-
tation of these coupled surface EM modes is that the
corresponding EM fields are greatly enhanced at the sur-
face (Salomon et al., 2001), as we shall discuss in section
III.B.5. The lower three panels of Fig.22 present calcula-
tions illustrating the large increase of E-field intensities
at the metal-dielectric interfaces that accompany EOT
resonances.

The view that EOT in 2D hole arrays is due to cou-
pled surface EM modes has been criticized by Lezec
and Thio (2004). The criticism was based on the pres-
ence of transmission features in holey dielectrics, on
the re-examination of EOT enhancements in metals and
on the interpretation of these results in terms of what
was termed Composite Diffraction Evanescent Wave
(CDEW) model. Here we shall focus on the experimen-
tal part of Lezec and Thio (2004), as the CDEW model
has been shown (Garcia-Vidal et al., 2006b; Lalanne
and Hogonin, 2006) to be incorrect (it mishandles po-
larization and neglects important contributions of the
diffracted field). Lezec and Thio correctly pointed out
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FIG. 22 (a) Experimental zero-order transmittance of a gold
film on a quartz substrate (εs = 2.31) as a function of the
dielectric constant of the superstrate, εL. The film thick-
ness is 250nm, the hole diameter is 200nm and the period
of the square array is 600nm. (b), (c) and (d) present cal-
culated cross-sectional views of the electric field amplitudes
with various states of resonance: (b) off-resonance in the
asymmetric situation (transmission 0.005%), (c) on-resonance
in the asymmetric situation (transmission 0.5%) and (d) on-
resonance in the symmetric situation (transmission 20%). In
the three cases, light is impinging from the top and the E-
field amplitude is normalized to the amplitude of the incident
plane wave using a logarithmic color scale. Figure taken from
(Krishnan et al., 2001).

that the enhancement of the optical transmission per
hole in arrays is better obtained from the comparison
with the transmission through isolated holes. Their ex-
periments, performed in arrays of 9 × 9 holes, obtained
maximum per-hole transmission enhancement of about
7. This value was about ten times larger than in hole ar-
rays drilled in absorbing dielectrics (like W or amorphous
Si). As these media do not present tightly bound EM
surface modes, the cited authors concluded that surface
EM modes are not responsible for the optical enhance-
ments. However, posterior detailed studies have shown
that the difference between holey metal and dielectrics is
much greater [see for instance (Przybilla et al., 2006a)]
and that the per-hole transmission enhancement in ho-
ley metals is virtually unlimited for larger arrays (see
(Przybilla et al., 2008) and section III.B.6 of this review
paper). Surface EM modes also account for another dif-
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ference in the optical transmission through hole arrays in
absorbing dielectrics and metals: the peak visibility (de-
fined as the difference between the peak maximum and
peak minimum divided by their sum) in holey absorbing
dielectrics is much smaller than in holey metals.

A possible origin of the criticism on the relevance of
coupled surface EM modes on EOT be the previously
cited incorrect association of the relevant surface EM
modes to those of an un-corrugated surface. For instance,
the appearance of EOT when the metal is considered as a
PEC has also lead to some doubts on the relevance of cou-
pled surface EM modes. However, as explained before,
periodically corrugated PEC surfaces do support surface
EM modes which, in a perforated film, assist the trans-
mission process (Pendry et al., 2004). The link between
EOT in real metals and in perfect conductors was more
evident after finding that the structured PEC surface
could be approximately represented by effective perme-
abilities which spoof those of a Drude-like metal (Garcia-
Vidal et al., 2005a; Pendry et al., 2004). The emergence
of these surface modes in holey slabs is a complex phe-
nomena, as it involves the multiple scattering of the EM
fields, between both surfaces and between holes at the
same surface. The coupling between holes is thorough
combinations of diffraction modes (weighted by the den-
sity of states of these modes at the surface) and presents
different regimes as a function of both the interhole dis-
tance and type of metal considered. At small distances
(smaller than a wavelength), the coupling is similar to
what it would be in a PEC. At larger distances, cou-
pling through SPP take over (López-Tejeira et al., 2005;
Sondergaard and Bozhevolnyi, 2004). Very recently, the
details of the formation of transmission EM resonances
in periodic arrays from the microscopic expressions of
the interhole coupling has been successfully addressed
(Liu and Lalanne, 2008). Additionally, the cited micro-
scopic calculation sheds light on the relevance on EOT of
the different channels (radiative fields, evanescent fields,
SPPs...) that transfer EM fields between holes, both for
PEC and real metals at optical frequencies.

To summarize, the physics of EOT in 2D hole arrays
is that of two surface EM modes weakly coupled between
themselves and weakly coupled to a continuum. This
idea is useful to direct the search of EOT to other ranges
of the EM spectrum, to other types of materials present-
ing surface EM modes (like polar semiconductors with
surface phonon polaritons) and even to other types of
waves. It is also useful because it allows for a phenomeno-
logical description of the (sometimes very asymmetric)
lines shapes of transmission resonances in terms of the
Fano model (Fano, 1961). Here we reproduce the ar-
gument [borrowed from the theory of reflection gratings
(Neviere, 1980)] given by Enoch et al. (2002) and Sar-
razin et al. (2003). The scattering matrix is dominated
by divergencies (simple poles) that occur when the inci-
dent field excites a resonance in the system, in this case
a surface EM mode. These resonances are leaky, as they
couple to radiative modes. This means that the poles ap-

pear at complex frequencies or, alternatively, at complex
wavelengths. Let us focus first in the case in which one of
these poles (characterized by a complex wavelength λpole)
dominates a given region of the spectrum. Now imagine
that we consider systems with smaller and smaller holes.
Obviously, when the holes are not present, the diffraction
coupling to the surface EM mode would vanish and the
resonance in the scattering matrix must disappear. An-
alytical continuity implies that there must be a zero in
the scattering matrix (characterized by a complex wave-
length, λzero) which, in the limit of vanishing hole size
coincides with the spectral position of the pole. There-
fore, close to resonance, the transmittance must be of the
form

T (λ) = Tbg
|λ− λzero|2
|λ− λpole|2 (27)

where Tbg represents the background (non-resonant) con-
tribution.

An alternative derivation (Genet et al., 2003) closely
followed the original one by Fano (Fano, 1961). The final
expression coincides with Eq.(27), but it is written in a
form that further clarifies the physical meaning of the
different quantities involved:

T (λ) = Tbg
(ε + q)2

(1 + ε)2
(28)

with

ε =
ω − (ωSM + ∆)

Γ/2
q =

2δ

Γ
(29)

where ωSM is the frequency of the unperturbed surface
EM mode involved in the process, δ is the ratio between
the transition amplitudes of the incident wave into the
resonant state and the direct (background) channel, and
∆ and Γ are the frequency width and the frequency shift
of the resonant state due to coupling to the continuum,
respectively.

A generalization to the case in which several surface
modes contribute appreciably to the transmission in a
given spectral window was given by Chang et al. (2005):

T (λ)− Tbg = Ta
(1 +

∑
r qr/εr)2

(1 +
∑

r ε−1
r )2

(30)

where Ta is a parameter reflecting the strength of the res-
onant process and qr and εr are trivial extensions of the
expressions for q and ε given above, for the r-th surface
mode this time.

The resonant nature of the EOT phenomenon has been
also confirmed by different experimental studies. By
comparing results of the transmitted, reflected and ab-
sorbed power associated with the EOT process in 2D hole
arrays perforated in suspended Ag films, Barnes et al.
(2004) were able to conclude that SPP modes act to en-
hance the EM fields at the metal surface, thus providing a
way to increase the transmittance through the subwave-
length holes.
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2. Theoretical modelling

Notice that, despite of the apparent geometrical sim-
plicity of an infinite periodic array of apertures in a metal
film, the system is still characterized by a large number
of geometrical and material parameters. This in turn,
leads to the existence of different transmission regimes
and the possible coexistence of several mechanisms. In
keeping with previous sections, the discussion will be first
focused on a simplified model in which the metal film is
treated as a PEC. This simplified model shows the main
physics and provides a framework for understanding the
results obtained within more accurate numerical frame-
works. Results obtained within this approximation are
applicable to different frequency regimes, by simply scal-
ing all lengths defining the problem by a common factor.
The deviations from these results in the optical regime
(caused by a finite dielectric function in the metal) will
be discussed later on. Calculations will be performed
by using the theoretical formalism presented in section
I.B. The case of square holes will be considered because
all quantities in the formalism have simple analytical ex-
pressions for this geometry. Figure 23 shows a schematic
picture of the structure under study: a periodic square
array of period d of square holes of side a perforated on
a free-standing metal film of thickness h.

d

a

H

h

k
0

E

FIG. 23 Schematic picture of a 2D hole array of square holes
of side a forming a square array of period d perforated on
a metallic film of thickness h. The incident EM-field is a
p-polarized plane wave.

Figure 24 renders the normal incidence transmittance
spectra for a square lattice of holes in a PEC film of thick-
ness h = 0.2d. The holes have square cross section, with
side a = 0.4d. The cutoff wavelength for the fundamental
waveguide mode in the hole is λC = 2a so, for λ > 0.8d
all the waveguide modes within the hole are evanescent.
The black curve in Fig. 24 is the full multi-mode result,
obtained using the method described in section I.B. The
red line in Fig. 24 renders the transmission spectra com-
puted within the single mode approximation (SMA) [set

of Eqs.(3)], in which only the TE01 waveguide mode is
considered in the modal expansion within each hole. The
magnitudes appearing in Eqs.(3) are now: Σ = cot(qzh)
and GV = 1/ sin(qzh), being the propagation constant
of the TE01 mode, qz =

√
k2

ω − (π/a)2. Let us recall
that the illumination term, I, is basically the overlap in-
tegral between the incident plane wave (~k0σ0) and the
TE01 mode: I ≡ 2iY~k0σ0

< ~k0σ0|TE01 >. The EM cou-
pling between holes forming the array is accounted for
the propagator G that can be expressed as a sum over
both diffracted modes and the two polarizations (s and
p): G =

∑
~kσ Y~kσ |〈TE01|~kσ〉|2 where ~k = ~k0 + ~kR.
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FIG. 24 Transmittance through a hole array drilled in a per-
fect electrical conductor. The side of the hole is a = 0.4d and
the film thickness h = 0.2d. The black curve is the result
from the converged multi-mode expansion. The red curve is
for the single mode expansion discussed in this work. The
green curve corresponds to the minimal model described by
Martin-Moreno et al. (2001).

When evaluating the results for the red curve in Fig.24,
as many diffraction modes were included in the sum
defining G as needed for convergence. As Fig. 24 shows,
the single mode approximation already provides a very
good estimation of the exact transmission curve even
when the condition a/λ ¿ 1 is not satisfied (in the con-
sidered case a/λ ∼ 0.3 − 0.5). The good agreement be-
tween the SMA and the exact results stems from the
properties of the coupling between the relevant diffrac-
tion orders and the waveguide modes: the coupling with
the fundamental waveguide mode is stronger, as this
mode presents the slower spatial variation. This mech-
anism takes precedence over the faster decay of higher
order waveguide modes inside the hole, thus explaining
why the SMA is still a good approximation even for rel-
atively thin films (standard EOT studies in the optical
regime are usually done for h/d ≈ 0.3− 0.5). The green
curve in Fig. 24 was also computed within the SMA,
but considering only the terms with p-polarization and
reciprocal lattice vectors ~kR = 0,±2π/d~ux in the sum
defining G [this is the so-called minimal model as de-
scribed by Martin-Moreno et al. (2001)]. While clearly
the consideration of additional diffraction modes modify
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the final numerical result, the basics of EOT are already
present in this extremely simplified model.

Three features are readily visible in Fig. 24: one very
deep minimum at λ = d and two transmission peaks. We
shall discuss later on that the presence of two peaks is
associated with the EM coupling via the holes between
the two interfaces of the holey metal film. The deep
minimum is related to a divergence of G. Recall that
G diverges whenever a p-polarized diffraction mode has
kz = 0, as the admittance of a p-polarized plane waves
is defined as Y~kp = kω/kz. In this case, Eqs.(4) give
E = E′ = 0, so there is no transmission because no
field penetrates into the holes. Let us consider first the
particular case of normal incidence. Then the diffraction
order characterized by the reciprocal lattice vector ~kR has
kz = 0 for |~kR| = kω. Therefore, for a square lattice and
treating the metal as a PEC, transmission minima occur
at λmin

n,m = d/
√

n2 + m2, where n and m are integers. So,
the largest wavelength at which a deep minimum occurs
is λmin

±1,0 = λmin
0,±1 = d. For the general case of incidence at

an angle θ, the condition of grazing diffraction occurs at
| kω sinθ~i + ~kR| = kω. Therefore, at θ 6= 0, the minima
associated to λmin

±1,0 split, appearing now at λmin
±1,0 = (1±

sinθ)d and λmin
0,±1 =

√
1− sin2θ d. Figure 25 shows such

splitting between transmission minima, for a hole array
with the same geometrical parameters as in Fig.24 , but
illuminated with a p-polarized plane wave impinging at
θ = 5 degrees: the expected minima are clearly seen at
wavelengths λmin

−1,0 = 0.913d, λmin
0,±1 = 0.996d and λmin

1,0 =
1.087d.
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FIG. 25 Transmittance for p-polarized plane wave impinging
into a hole array, within the single mode and PEC approxima-
tions. The side of the hole is a = 0.4d and the film thickness
is h = 0.2d. The black curve is for normal incidence, while
the red curve is for incidence at 5 degree.

Transmission peaks are due to the presence of leaky
surface EM modes of the corrugated metal film. In or-
der to support the previous statement, it is convenient
to work within the multiple scattering formalism, as de-
scribed in section I.B. Within the single mode approx-

imation, the zero-order transmission coefficient can be
expressed as a function of two-media scattering coeffi-
cients:

t0 =
τ12eiqzhτ23

1− e2iqzhρ2
(31)

As for the case of slit arrays presented in section
III.A.2, the appearance of transmission peaks can be re-
lated to resonant properties of ρ, which gives the reflec-
tion coefficient for EM-fields coming from the interior of
the hole. Fig. 26 renders the real and imaginary parts
of ρ, for the cases considered in Fig. 25. Large values
for Im(ρ) and anomalous behavior for Re(ρ) occur at
spectral positions close to the transmission resonances,
both for θ = 0◦ and θ = 5◦. The spectral dependence of
Re(ρ) and Im(ρ) is the one expected, through Kramers-
Kronig relations, for causal functions close to localized
resonances (Landau et al., 1960) (a reflected field obvi-
ously requires a preexisting incident one, so ρ must satisfy
causality). Recall that ρ is a two-media scattering coeffi-
cient, so its resonances mark the existence of surface EM
modes bound to a single interface.
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FIG. 26 Real (discontinuous lines) and Imaginary (contin-
uous lines) parts of ρ, the reflection amplitude for a Bloch
combination of TE01 waveguide modes impinging into vac-
uum. The Bloch wavevector forms either 0◦ with the normal
to the surface (black curve) or 5◦ (red curve). The side of the
hole is a = 0.4d.

Figure 26 presents spectral regions with |ρ| > 1, im-
plying that the reflected field has a larger amplitude than
the incident one. This is counter-intuitive, as it seems to
wrongly indicate that the reflected current is larger than
the incident one. However, for evanescent modes, current
conservation only dictates Im(ρ) > 0, saying nothing
about |ρ|. In what follows, we shall show how the exis-
tence of a resonant behaviour of ρ is a fingerprint of the
emergence of geometrically-induced surface EM modes in
a semi-infinite holey PEC film.
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In principle, the band structure of these surface EM
modes could be obtained by finding the solutions of
G−Σ = 0 as a function of the incident wavevector ~k0, as
done previously for the case of 1D arrays of slits. Note
that, as we are now considering a semi-infinite perforated
metal, GV = 0 in Eqs.(3). Complex values of ~k0 must
be considered in the search for leaky modes, while truly
bound surface modes can only show up for evanescent in-
cident wavefields (with |~k0| > kω). However, the overall
form of the band structure can be obtained without the
need of numerical computations. For this, it is convenient
to consider that the metal has an arbitrarily large (but
not infinite) negative dielectric constant. In this case, a
flat metal surface supports truly-bound SPPs. The pres-
ence of a periodic array of small holes can be considered
within a perturbative approach. The result is that the
dispersion relation of surface EM modes in the corrugated
structure will closely follow the one for SPPs, except for
~k0 values lying close to a Brillouin Zone boundary, where
bands bend in order to accommodate for band gaps. For
frequencies above the first band gap, surface modes cou-
ple to radiation, thus becoming leaky. However, the band
sector below the first band gap still represents a truly
bound surface mode. As a result of the band bending
caused by the array of holes, the lowest band of surface
modes separates from the light line, therefore binding the
EM field more strongly to the surface. This line of rea-
soning has been presented before (Ulrich, 1974), and is
at the heart of the whole field of Frequency Selective Sur-
faces (FSS). Notice that this structure of the dispersion
relation is based on general arguments, being applicable
not only to SPPs but to any type of waves in periodic
media.

However, in the particular case of the EM field in a
perforated metal surface, there is an additional mecha-
nism to periodicity-induced binding of the EM fields to
the surface. In order to illustrate this point, the bands
of a holey metal surface within the PEC approximation
can be calculated. Note that PEC flat surfaces do not
support truly bound SPPs. In a first approximation, we
consider the hole array as a metamaterial and compute
the band structure of surface EM modes by matching
the average EM fields over the surface; the effect of pe-
riodicity will be included on a second stage. Matching
of average fields can be readily done by using the tech-
niques described in this paper (for instance by computing
the resonances in ρ), but neglecting diffraction effects, as
done previously for the case of slit arrays (see section
III.A.2). Notice that, in this way, all information about
the underlying lattice is lost.

Fig. 27 renders the dispersion relation along the Γ−X
direction for surface EM modes bound to an isolated
holey interface, for both εhole = 1 (black curve) and
εhole = 9 (red curve). Notice that bands flatten at cer-
tain frequencies, although no diffraction effects have been
included yet. This result can be expressed in a metamate-
rial language by assigning an effective dielectric constant
(εeff ) and an effective magnetic permeability (µeff ) to
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FIG. 27 Dispersion relations for geometrically-induced SPPs
in a semi-infinite holey PEC film. The side of the square holes
is a = 0.4d. A dielectric medium with dielectric constant
ε = 1 (black curve), or ε = 9 (red curve) fills the holes. The
discontinuous line marks the spectral region of leaky modes.

the structured surface. This derivation was done by
Pendry et al. (2004), obtaining µeff = 8a2/π2d2 and
εeff given by:

εeff (ω) =
π2d2εhole

8a2

(
1− ω2

p

ω2

)
(32)

This functional form for εeff (ω) is similar to Drude’s
expression for the dielectric constant of a metal. There-
fore, it can be said that a corrugated PEC surface spoofs
a flat surface of a real conductor, characterized by a (ge-
ometry dependent) “effective plasma frequency” ωp =
(c/
√

εhole) π/a, which coincides with the cutoff frequency
of the hole. Actually, the system is anisotropic, so care
must be taken about the different components of the ef-
fective dielectric constant tensor. The anisotropy is also
responsible for the fact that the flat region of the disper-
sion curve for the geometrically-induced SPP appears at
εeff = 0, whereas the dispersion relation for truly SPPs
bounded to the interface between two isotropic media
flattens at ε = −1.

Periodicity has two effects on the dispersion relation
of the geometrically-induced surface EM mode: it opens
gaps at wavevectors ~k close to Brillouin zone boundaries
and couples bands with |~k| > π/d to radiative modes.
This is illustrated in Fig. 27, where the discontinuous
lines represent modes that become leaky when diffrac-
tion effects are considered. Surface EM modes still ap-
pear if higher order waveguide and diffraction modes are
included in the calculation, and their dispersion relation
still flattens at ω = ωp, given by the hole cutoff. How-
ever, strong confinement only occurs for frequencies much
closer to ωp than what the effective parameter expression
[Eq.(32)] predicts (De Abajo and Saenz, 2005).

Once we have explained the physical origin of the reso-
nant features of ρ, the question is how the geometrically-
induced surface EM modes couple in a metal film of fi-
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nite thickness and how this coupling affects to the trans-
mission spectrum. The answer to this question is illus-
trated in Fig. 28, which presents results for an array of
square holes with a = 0.4d, illuminated at normal inci-
dence. The upper panel shows the transmittance spectra
for different metal thicknesses, while the middle panel
renders the corresponding spectral dependence for both
e|qz|h (that in the subwavelength regime is always larger
than 1 and increases exponentially with h) and |ρ| (that,
being a two-media scattering coefficient, does not depend
on metal thickness).
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FIG. 28 Upper panel: Normal-incidence transmittance spec-
tra through a hole array in PEC, for different metal thick-
nesses, h. The side of the holes is fixed at a = 0.4d. Middle
panel: Spectral dependence of |ρ| (black curve) and e|qz|h

(color lines, for the corresponding metal thicknesses repre-
sented in the upper panel). Lower panel: Spectral depen-
dence of |G − Σ| (continuous line) and |GV | (dashed lines).
The vertical discontinuous lines are guides to the eye marking
the crossings of |ρ| with the different e|qz|h curves or, alterna-
tively, the cuts between |G− Σ| and |GV |.

As Fig. 28 shows, transmittance maxima occur at
the wavelengths of minimal distance between the |ρ| and
e|qz|h curves. Depending on the metal thickness, two
transmission regimes appear for any given resonance of
|ρ|. For small metal thicknesses (but still larger than 3−4
times the skin depth, so the metal is optically opaque
and the considered model makes sense), the curves for
|ρ| and e|qz|h cross twice, leading to the presence of
two transmission maxima which, for a lossless metal,
reach 100% transmission (De Abajo et al., 2005; Martin-
Moreno et al., 2001). This is the regime of strong cou-
pling between the two surface EM modes of the two
metal-dielectric interfaces: before being radiated, the

EM field stays long enough at the surface to be able to
build coupled resonances. For thick enough films, e|qz|h

is larger than the maximum value of |ρ|. In this case,
the curves for |ρ| and e|qz|h do not cross but there is still
one transmission maximum at the wavelength of mini-
mum distance between them, i.e., approximately at the
spectral position of the maximum of |ρ|. In this situation,
the surface EM modes of the two surfaces are weakly cou-
pled: the time that would take to build up the resonance
(tres) is smaller than the radiation lifetime (trad) or, in
other words, the EM field does not stay long enough in
the system to realize that there are two coupled modes.
Conversely to what occurs in the strong coupling regime,
transmission maxima in the weak coupling regime decay
exponentially with h, even in the absence of absorption.
Clearly, whether an EOT peak is at the strong coupling
or weak coupling regime strongly depends on both the
metal thickness (which controls the time for the reso-
nance build-up) and geometry of the openings (which
determines the radiation lifetime). The existence of these
two transmission regimes was experimentally confirmed
by (Degiron et al., 2002).

The analysis of the existence of coupled leaky modes,
and their relation to transmission maxima, can also
be done within the formalism involving E and E′ (see
Eqs.(4)). In this case the resonant condition is expressed
as |G−Σ| = |GV |, in terms of the determinant of the set
of linear equations (3). The lower panel of Fig. 28 ren-
ders the spectral dependence of both |G − Σ| and |GV |,
for the different metal thicknesses considered in the up-
per and middle panels of the figure. As the figure shows,
there is a univocal correspondence between the spectral
position of transmission maxima and the wavelengths of
minimum distance between |G − Σ| and |GV |. Notice
that the resonances appear close to the divergences of
G, associated with the condition kz = 0 that mark the
spectral location of the transmission minima.

The previous analysis was done for an infinite hole ar-
ray and a lossless PEC film. Going beyond this ideal-
ization introduces another two time scales: the typical
time the EM fields need for crossing the finite array and
the typical time the EM fields can stay in the system be-
fore being absorbed. EOT peaks will be largely impaired
whenever any of these times is smaller than tres. The
effect of a finite dielectric function in the metal, εM , is
illustrated in Fig. 29 which shows the computed trans-
mission spectra for an array of circular holes in a silver
film in the optical regime, for a representative set of ge-
ometrical parameters. Results obtained with different
approximations are rendered in this figure. The finite
difference time domain (FDTD) result is obtained by us-
ing a small discretization mesh (5nm), and can be con-
sidered as virtually exact. Fig. 29 shows that transmit-
tance peaks reaching 100% are still expected for a lossless
metal. Also that absorption prevents 100% transmission,
having a larger effect on the narrower peaks.

Another feature that is evident if Fig. 29 is that the
transmission minimum at λmin

10 appears red-shifted in a



25

500 600 700 800

Wavelength (nm)
0

0,2

0,4

0,6

0,8

1
T

ra
ns

m
itt

an
ce

FIG. 29 Transmittance spectra through an array of circular
holes in a free-standing silver film of thickness h = 275nm.
The radius of the hole is r = 134nm and the period of the
array d = 600nm. The dielectric function of silver is taken
form Palik’s book (Palik, 1985). The black curve is the FDTD
result, obtained with a discretization mesh of 5nm. The red
curve is the result obtained within the modal expansion and
the SIBC approximation. The blue curve is as the last case,
but setting the absorption in the metal to zero, i.e. Im(εM ) =
0.

real metal film with respect to the PEC case. This min-
imum is still due to the divergence of G which, in a real
metal, occurs when the corresponding diffraction order
has a kz satisfying kz + ZSkω = 0. As commented be-
fore, this is exactly the condition for the existence of
SPPs with parallel momentum, k|| = 2π/d within the
SIBC approximation in an un-corrugated metal surface.
Therefore, in general, transmission minima are linked to
the dispersion relation of SPPs for the flat interface, thus
appearing at λmin

n,m = d
√

εM/(εM + 1)/
√

n2 + m2.
This physical picture in which the EOT phenomenon is

due to the excitation of surface EM modes has been cor-
roborated by more sophisticated (virtually exact) calcu-
lations, able to deal with the dielectric response of metals
at optical frequencies (Lalanne et al., 2005b). These au-
thors were able to match the spectral locations of trans-
mission maxima and minima with the ones correspond-
ing to the SPPs supported by the holey metal film, see
Fig.30.

3. Dependence on the material properties

The role of the type of metal is important on the ex-
traordinary transmission and has been verified experi-
mentally in several studies. The original observation was
made on silver, gold and chromium films at optical fre-
quencies (Ebbesen et al., 1998). In keeping with the pre-
vious theoretical discussion, when the imaginary part of
the permittivity increases the height of the transmission
peaks decrease and their linewidth increase (Chang et al.,
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FIG. 30 Grey-scale images show the zero-order transmittance
for two holey silver films as a function of the frequency and
the in-plane wavevector kx. (a) Circular hole geometry for
a silver film on glass. The scale is linear and the maximum
transmittance is 32%. (b) Square-hole geometry for a sil-
ver free-standing film. The maximum transmittance is 50%
in this case. Superimposed black curves correspond to the
SPP dispersion relation of perforated dielectric-silver inter-
faces, glass-silver perforated by circular holes (a) and air-silver
perforated by square holes. The white curves correspond to
the SPP dispersion relation for a flat interface, glass-silver for
(a) and air-silver for (b). Figure taken from (Lalanne et al.,
2005b).

2007b; Ctitis et al., 2007; Ekinci et al., 2007; Grupp et al.,
2000; Przybilla et al., 2006a; Williams and Coe, 2006).

As predicted by theory (Martin-Moreno et al., 2001),
EOT has been also observed for metals at microwave
(Beruete et al., 2004b) and THz (Cao and Nahata,
2004a,b; Miyamaru et al., 2003; Qu and Grischkowsky,
2004) frequencies. For EOT in the THz regime, the peak
intensity increases as the ratio of the absolute value of
the real part of the dielectric constant to the imaginary
part increases (Azad et al., 2006).

Interestingly, only a thin layer with a thickness of the
order of the skin depth suffices to establish EOT, which
was shown by coating thin metal layers on an ordered ar-
rays of microspheres (Farcau and Astilean, 2007; Land-
strom et al., 2005). Similarly, a thin layer with a low
imaginary permittivity deposited on a more absorbing
metal (Grupp et al., 2000) or semiconductor (Fang et al.,
2007) is able to greatly influence the transmission. As
expected from the SPP dispersion relation, the transmis-
sion is also very sensitive to the refractive index of the
dielectric material at the metal interface which will affect
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both the peak position and the transmission intensity
(Krishnan et al., 2001). As a consequence, the presence
of even a thin dielectric layer can be detected (Tanaka
et al., 2005) and used for sensing purposes (Brolo et al.,
2004a) as further discussed in section V.A.

So far, extraordinary transmission has been observed
for periodic arrays in a wide variety of materials for var-
ious frequencies: highly-doped Si (Gomez-Rivas et al.,
2003), metallic-organic conducting polymers (Matsui
et al., 2006), V O2 (Donev et al., 2006), metal-coated
V O2 double layers (Suh et al., 2006), SrT iO3 (Miya-
maru et al., 2006b), GaAs (Wasserman et al., 2007), gold-
coated GaAs (Zhou et al., 2008), amorphous SiO2 (Chen
et al., 2007b) and SiC (Urzhumov et al., 2007).

Exhaustive studies of the dependence of EOT peaks
on the type of metal have been conducted both experi-
mentally (Przybilla et al., 2006a) and theoretically (Ro-
drigo et al., 2008). Figure 31(a) renders a resume of the
evolution of the experimental EOT peak heights for dif-
ferent metals as a function of the resonant wavelength.
On the other hand, Fig. 31(b) shows the FDTD cal-
culated transmission spectra for Ag, Al, Ni and W. The
main conclusion of these two studies is that the two main
parameters that characterize the influence of the dielec-
tric constant of the metal on EOT peaks are the skin
depth (which effective enlarges the hole size, increasing
the transmittance) and the absorption length (small ab-
sorption lengths impair the resonant process). “Good
metals” like Au, Ag, and Cu sustain EOT peaks with
transmission values that may exceed even those of a PEC
with the same geometrical parameters (due to the effec-
tive hole enlargement). On the contrary, metals like Ni
and Cr present very low EOT peaks due to the large ab-
sorption occurring in these metals. The skin depth in
Al is much smaller than in any other metal: correspond-
ingly EOT peaks in holey aluminum films resemble those
in a PEC, except for the longer wavelengths in the op-
tical regime, when absorption in Al increases and the
EOT is more like the corresponding to a “bad metal”.
The case of W is interesting, as in the optical regime
it behaves as a lossy dielectric. Still surface EM modes
(known as Zenneck waves) exist in lossy dielectrics, lead-
ing to transmission peaks (Sarrazin and Vigneron, 2003).
However, transmission peaks in W are much weaker than
even those associated with bad metals (see Fig. 31).

4. Size and shape dependence

Already in the first report of EOT the size of the holes
was shown to play an important role in the height of
the transmission peaks (Ebbesen et al., 1998). This ob-
servation has been confirmed in great detail as a func-
tion of incident angle for various reciprocal lattice direc-
tions (Williams et al., 2004). As the hole diameter is
increased, both the transmission intensity and the width
of the peaks increase (Ishihara et al., 2005b; Miyamaru
et al., 2006a). Clearly, these observations are consistent
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FIG. 31 (a) Experimental transmission intensities as a func-
tion of the (1, 0) peak position for different metals. The sam-
ples consist of perforated metal slabs (thickness 250nm) de-
posited on a glass substrate. The period of the square arrays
is varied between 200nm and 500nm and the ratio between
period of the array and diameter of the holes is fixed at 1.75.
(b) Calculated transmission spectra for an array of circular
holes in a metal film deposited on a glass substrate, for sev-
eral metals. Calculations were performed with the FDTD
method. The geometrical parameters considered are: period
d = 400nm, metal thickness h = 250nm and hole radius
diameter r = 114nm. Figures taken from (Przybilla et al.,
2006a)(a) and (Rodrigo et al., 2008)(b).

with a picture in which radiative damping of the SPP
modes occurs due to SPP scattering with the holes (Kim
et al., 2003; Naweed et al., 2003). When a large range of
hole sizes is investigated, it becomes clear that no single
power-law scaling can describe the increase of the nor-
malized transmission (van der Molen et al., 2004). Fig-
ure 32 presents the dependence on hole size of the nor-
malized transmission for a large range of hole sizes. A
huge dependence of the transmitted intensity for small
hole sizes can be observed, where the normalized trans-
mission scales as high power of the diameter. At larger
hole sizes and for a larger normalized transmission the
trend saturates, which is a direct result of the fact that
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the absolute transmission has already reached the satu-
ration value of 90%. The existence of two regimes as a
function of the hole size can be understood with the help
of the theoretical modelling presented in section III.B.2.
When the hole size is very small, the factor e|qz|h is very
large as the waveguide mode inside the hole decays very
rapidly. Then, the field enhancement coming from the
reflection coefficient, |ρ|, can not compensate the expo-
nentially small factor (mathematically, there is not cut
between e|qz|h and |ρ|), and the transmission is extremely
low. As the hole size is increased, e|qz|h is strongly re-
duced, leading to the emergence of a cut between |ρ| and
e|qz|h, i.e., the transmission reaches its maximum value
and saturates.

Hole width (nm)

T
ra

n
s
m

is
s
iv

it
y

140 160 180 200 220 240 260 280 300
0.01

0.1

1

FIG. 32 Measured dependence of the transmission of the
(0,1)-peak through an array of square holes as a function of
size of the holes (double logarithmic representation). The
thickness of the gold films is 200nm and are deposited on
a glass substrate. All arrays investigated have a period of
425nm. The dotted line obeys T ∝ d4. The dashed line
corresponds to T ∝ d9. For smaller holes the increase in nor-
malized transmission is easily faster than d4, while for the
larger holes the normalized transmission saturates. Figure
taken from (van der Molen et al., 2004).

Hole size also affects the spectral position of the trans-
mission peaks. A small blue shift can be observed for
the main peaks as the hole size is decreased (van der
Molen et al., 2004; Naweed et al., 2003). In this last ref-
erence, it is reported that the main EOT peak shifts by
∆λ ∼ −30nm as the hole width is decreased from 286nm
to 148nm. This can be interpreted within the theoretical
modelling presented before as due to the fact that when
the hole size is decreased, the spectral location of the
SPP in the corrugated surface tends to its corresponding
value for a flat metal surface, with no holes. Intriguingly,
transmission measurements in the THz regime as a func-
tion of hole size exhibit a blue shift with increasing size of
the holes (Han et al., 2007). On the other hand, the anal-
ysis of the crossover between the EOT regime appearing
for small holes and the metal wire mesh limit (when the
holes occupy most of the area of the unit cell) have been

recently addressed both experimentally and theoretically
(Bravo-Abad et al., 2007b).
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FIG. 33 Measured spectral extraordinary transmission spec-
tra for three different hole shapes: circular (diameter 190nm),
rectangular (150× 225nm2; aspect ratio 1.5) and rectangular
(75×225nm2; aspect ratio 3). As the aspect ratio of the holes
is increased from 1 to 3, the normalized transmission of the
primary peak increases by an order of magnitude. Arguably,
more important the peak exhibits a red shift of 170nm. Figure
taken from (Koerkamp et al., 2004).

The role of the individual holes in the EOT phe-
nomenon in 2D hole arrays becomes truly important
when the shape of the holes is changed from circular to
rectangular (Koerkamp et al., 2004). Several key changes
occur. First, the normalized transmission is increased by
nearly an order of magnitude, even though the actual
area per hole decreases (see Fig. 33). This is in agree-
ment with the trend observed in individual rectangular
apertures, as described in section II.B.2. Also a strong
polarization anisotropy occurs between the best trans-
mitted polarization, i.e., perpendicular to the long axis
of the holes, and the polarization along the long axis of
the holes. This anisotropy, which causes birefringence
is also observed for elliptical hole shapes (Elliott et al.,
2004; Gordon et al., 2004), and has been addressed theo-
retically (Strelniker, 2007). The birefringence exhibits a
pronounced wavelength dependence (Elliott et al., 2005),
thus opening up a large perspective for polarization con-
trol through tuning the aspect ratio of the holes, wave-
length and the angle of incidence (Sarrazin and Vigneron,
2004). The same polarization effects have also been ob-
served for the transmission of THz radiation through ar-
rays of rectangular subwavelength holes, even though the
thickness of the metal layer, in that case, is only a small
fraction of the incident wavelength (Cao and Nahata,
2004a).

But perhaps the most profound change to the trans-
mission spectrum appearing in Fig. 33, is the observation
that the primary, (0, 1)-peak undergoes a huge red shift
when hole shape is varied (Koerkamp et al., 2004). A
shift as large as 170nm can be observed. In these first
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experiments the hole area was not kept constant and,
while unlikely, this may have influenced the experiments.
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FIG. 34 Measured normalized transmission of nanohole ar-
rays consisting of rectangular holes with varying aspect ratio
for two different incident polarizations. The legends show
the aspect ratios of the holes. The insets show the relative
direction of the polarization with respect to the hole geom-
etry. (a) The normalized transmission exhibits an increase
for all peaks. The (0,1)-peak exhibits broadening and a pro-
nounced red shift as the aspect ratio is increased. (b) For the
x-polarized light the opposite trend is observed: an increase in
aspect ratio results in a decrease in normalized transmission.
For the largest aspect ratios a small amount of polarization
cross-talk is observed that can be attributed to minute align-
ment imperfections. Figures taken from (van der Molen et al.,
2005).

In an investigation where only the aspect ratio of
rectangular holes was varied, a smooth increase of the
normalized transmission is observed in addition to a
monotonous red shift as a function of aspect ratio
(van der Molen et al., 2005) (see Fig. 34). Clearly, for
hole arrays with elongated holes the extraordinary trans-
mission is mediated by a combination of localized effects
and distributed effects related to the periodicity of the ar-
ray. The spectral position of the main, (0, 1)-peak shifts

monotonously as the aspect ratio of the holes is increased
from aspect ratios where periodicity governs the peak po-
sition, i.e., aspect ratio equal to 1, to aspect ratios where
localized effects are important. Figure 34 also shows that
the polarization anisotropy increases when the aspect ra-
tio of the holes becomes larger. The large polarization
anisotropy combined with the peak shifts induced by high
aspect ratios can be exploited for practical purposes (see
section V.A).

The dependence of the transmittance through periodic
hole arrays as a function of the period, for a fixed hole
shape, was experimentally studied by Degiron and Ebbe-
sen (2005). The measured transmittance spectra through
a suspended Ag film pierced with rectangular holes is ren-
dered in Fig.35, for the two orthogonal polarizations. The
different contributions to the transmittance are clearly
visible as the period changes. The SPP mode associated
with the periodicity dominates the transmittance and the
contribution of the localized mode is either blocked or
revealed depending on whether it coincides with a min-
imum or maximum of the SPP mode, respectively. At
the same time, the fact that the SPP transmission peaks
becomes strongly attenuated above 550nm when the po-
larization is perpendicular to the short axis of the aper-
ture (see panel (a) in Fig. 35) as compared to being
perpendicular to the long axis [Fig. 35(b)], is just due to
a drastic shift in the cutoff wavelength of the individual
apertures on going from the long to the short axis of the
holes. This picture of the evolution and mixing between
the transmission resonances associated with SPP and lo-
calized modes has been theoretically corroborated (Mary
et al., 2007).

Measurements show that hole shape also affects the
dispersion of the EOT peaks. In particular, the flat re-
gion in the dispersion around k‖ = 0 widens as the as-
pect ratio is increased (Fig. 36). This indicates that
the mechanism responsible for the transmission becomes
more localized in real space, which has been confirmed
with near-field optical microscopy for rectangular holes
with high aspect ratio (Chu et al., 2007).

The role of local effects can be enhanced through other
hole shapes. Inspired by the fact that a co-axial ca-
ble has no cutoff, a periodic arrangement of annular/co-
axial holes was proposed (Baida and Van Labeke, 2002,
2003). However, it was soon realized (Baida et al., 2004)
that this propagating mode cannot be excited by a nor-
mally incident plane wave and that plays a minor role
for oblique incidence and p-polarized light (Baida, 2007).
Therefore, the transmission resonances emerging in ar-
rays of annular holes result from the interplay between
SPP modes and localized resonances that are spectrally
located at the cutoff wavelength of the TE11 waveguide
mode of the annular aperture (Lomakin et al., 2007; Or-
bons and Roberts, 2006). These last localized modes are
very similar to those previously described for rectangu-
lar holes. Through an optimization of parameters, abso-
lute transmissions were predicted up to 90% for arrays
with a significant ’opaque’ area. It was also predicted
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FIG. 35 Transmission spectra of rectangular holes with the
lattice constant as a parameter, plotted for the polarization
perpendicular to the short edge (a) and perpendicular to the
long edge (b). All the samples were fabricated with the same
rectangular holes (260× 200nm2 perforated on suspended Ag
films of thickness 400nm. Figure taken from (Degiron and
Ebbesen, 2005).

that square coaxial structures would exhibit the same be-
havior and allow large transmission coefficients (Moreau
et al., 2003). The behavior of the annular holes has
been alternatively described in terms of coupled cylindri-
cal SPPs on the inner and outer surfaces of the annulus
(Haftel et al., 2006).

The theoretical predictions for the annular hole arrays
were experimentally verified in the near-infrared. Care-
ful polarization and angle-dependent measurements con-
firm an interplay between cutoff resonances in the coax-
ial holes and the delocalized resonances associated with
SPPs (Fan et al., 2005c). It was shown that in the mid-
infrared the arrays of coaxial holes could transmit up

1
/

(
m

)
l

m
-1

1.40

1.35

1.30

1.25

1.15

1.20

k (nm )//

-1
0.000 0.001 0.002 0.003 0.004 0.005

1.06
1.52

1.8

1.9
2.5

FIG. 36 Measured dispersion of the (0,1)-peak for different
aspect ratios. The dispersion changes as the aspect ratio is
increased: the fitting lines decrease in slope and the dispersion
around k‖ = 0 becomes flatter for a larger range of k‖. This
indicates a stronger degree of localization in the transmission
process. Figure taken from (van der Molen et al., 2005).

to 5 times more than arrays of circular holes with the
same open air fraction (Fan et al., 2005a,b). In the visi-
ble range (700nm), a maximum transmission of 17% was
achieved (Poujet et al., 2006; Salvi et al., 2005). The
normalized transmission through annular hole arrays can
be further enhanced by choosing the proper symmetry
of the array (Sun et al., 2006b). The role of cylindrical
SPPs was experimentally confirmed through experiments
in combination with simulations and a consideration of
the dispersion of these SPP modes (Orbons et al., 2007).
Under certain circumstances and by using the proper
cavity resonances in the annular holes, the transmission
of annular holes arrays can even become independent of
the arrangement of the holes with respect to each other
(Rockstuhl et al., 2007).

Periodic subwavelength hole arrays with more exotic
hole shapes have also been show to exhibit EOT, such
as arrays of diamond-shape holes (Sun et al., 2006a) and
triangles (Kim and Moyer, 2006a,b). A range of hole
shapes has successfully been explored in order to red-
shift the cut off of the individual holes. In particular
H-shaped holes (Sun et al., 2007) and cruciform-shaped
holes (Chen et al., 2007a; Ye et al., 2007a,b) seem espe-
cially useful for this purpose. The use of shape in com-
bination with array symmetry and periodicity provides a
highly versatile tool box to fabricate, for example, THz
filters (Lee et al., 2006a). Arrays consisting of double
holes that slightly overlap provide an additional, local-
ized field enhancement near the resulting cusps (Gordon
et al., 2005; Kumar and Gordon, 2006), which can be ex-
ploited for enhancing nonlinear phenomena (see below).
Recently, evidence has been found that also the struc-
ture in the holes perpendicular to the film can influence
the transmission. Measurements in the THz regime show
that arrays with holes in which the radius first decreases
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and then increases to its original value exhibit blue shifts
when the radius of the constriction in the holes is reduced
(Batulla et al., 2007).

In summary, EOT phenomenon in hole arrays is me-
diated by both localized effects and distributed effects
related to the periodicity of the array. The final spectral
shape is dependent on the relative contribution of the
cutoff function of the individual apertures, the localized
modes and SPP modes and these are all sensitive not
only to the lateral dimensions of the aperture but also to
factors such as the depth of the apertures and the density
of apertures in the metal film.

5. Electric field enhancement and nonlinear effects

Calculations showed that EOT phenomenon is accom-
panied by highly localized field distributions (Krishnan
et al., 2001; Salomon et al., 2001). Near-field exper-
iments were able to confirm these predictions (Hohng
et al., 2002) by taking advantage of the subwavelength
nature of the EM fields associated with SPP excitation.
Interestingly, high field amplitudes between the holes can
be found to accompany certain maxima in the far-field
transmission. In the near field, different components of
the diffraction interfere to set up complex field patterns
(Hohng et al., 2005). The exact spatial field distributions
are determined by the spatial potential experienced by
the Bloch modes (Zayats et al., 2003). The free space
wavelength with respect to the periodicity is also an im-
portant factor in the field patterns. When the free space
wavelength is much smaller than the periodicity of the ar-
ray, clear standing wave patterns between the holes can
be observed (Gao et al., 2006; Hou et al., 2006; Rokit-
ski et al., 2005b). In that case, an amplitude modula-
tion persists away from the interface, whereas for larger
wavelengths, as only the zero-order diffracted beam is ra-
diative, a homogeneous pattern is found (Hohng et al.,
2005). Even for quasi-periodic hole arrays hot spots with
a diameter of roughly half the wavelength can be found
up to 18 wavelengths away from the structure (Huang
et al., 2007b).

On the other hand, these high EM fields that accom-
pany EOT phenomenon can be exploited to enhance non-
linear effects. Second harmonic generation (SHG) can ar-
guably be considered as the most basic nonlinear optical
effect. The first observation of enhanced SHG in a sub-
wavelength hole was actually not observed in a hole array
but in a bull’s eye structure (see section IV) in which the
subwavelength hole was surrounded by a set of concen-
tric grooves (Nahata et al., 2003). An enhancement of
104 was found with respect to the second harmonic yield
obtained from a single hole without grooves. The first ob-
servation of SHG in a hole array has found a maximum
yield for those incidence angles where the fundamental
beam is maximally transmitted (Airola et al., 2005). A
fivefold enhancement of the second harmonic yield with
respect to the yield of disordered arrays was found. By

breaking the centro-symmetry of the individual holes the
yield was further increased.

The second harmonic yield can also be increased by
changing the hole shape while retaining the centro-
symmetric nature of both the holes and the array, for
example by using rectangular holes. In first instance this
is not surprising: as the aspect ratio is varied, the lin-
ear transmission through the arrays is influenced. The
nonlinear response may be expected to mimic the change
in the linear response, albeit in a nonlinear fashion de-
pending on the order of the nonlinear process being con-
sidered. Figure 37 presents both the linear transmission
of the fundamental beam as the second harmonic yield
behind the array as a function of the aspect ratio of the
holes. For aspect ratios ranging from 0.36 to 1.6 an in-
crease in the linear transmission by a factor of 60 is ob-
served . At the same time the second harmonic yield is
found to increase by a factor 4000.

FIG. 37 Double logarithmic plot of transmission of the funda-
mental beam at 830nm (right axis, red dots) and the collected
second harmonic signal (left axis, blue triangles) as a function
of aspect ratio. The transmission of the fundamental beam
exhibits a monotonic increase before levelling of at an aspect
ratio of 1.6. The second harmonic shows an steady increase
of slightly less than two orders of magnitude up to an aspect
ratio of 1.6. Between aspect ratios of 1.6 and 2.3 a peak is
observed in the second harmonic with a magnitude of a factor
50. The lines are guides to the eye. Figure taken from (van
Nieuwstadt et al., 2006).

However, a closer look at Fig. 37 shows that for aspect
ratios ranging from 1.6 to 2.8, the transmission of the
fundamental beam does not exhibit any increase. Nev-
ertheless, the second harmonic yield is found to exhibit
an additional increase of a factor 50, before showing a
decrease. In order to put this observation in perspective,
it is useful to derive the effective nonlinear susceptibility
of the structure. By considering the array as an effective
homogeneous medium, the nonlinear susceptibility can
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be calculated from the second harmonic yield and all rel-
evant linear transmission coefficients (Sutherland, 1996).
Figure 38 shows the nonlinear susceptibility of the hole
arrays as a function of the aspect ratio of the holes. For
aspect ratios ranging from 0.36 to 1.6 it can be seen that
the nonlinear susceptibility exhibits no clear trend as a
function of aspect ratio. For the aspect ratios 1.6 to 2.8
a clear peak in the nonlinear susceptibility is found. An
increase of the susceptibility of a factor of roughly ten is
observed (van Nieuwstadt et al., 2006). In other words,
a ”hot” hole shape is observed for aspect ratios around
2. This ”hot” hole shape can be explained by the fact
that for these aspect ratios the cutoff condition of the
individual holes is met for the fundamental beam and,
as explained in section II.B.2 when discussing the cutoff
resonances appearing in single rectangular holes, a huge
EM field enhancement is associated with the excitation
of this resonance. The resulting slow light propagation
through the holes close to cutoff will lead to an enhanced
nonlinear response.
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FIG. 38 Double logarithmic plot of two components of the
effective second order nonlinear susceptibility versus aspect
ratio. Between aspect ratios 0.36 and 2.8 no clear trend is
observable in the effective nonlinear susceptibility. Between
aspect ratios 1.6 and 2.8 a peak in the effective susceptibility
of a factor more than one order of magnitude occurs. Figure
taken from (van Nieuwstadt et al., 2006).

The field enhancement in coaxial hole arrays has been
exploited to generate second harmonic with very high ef-
ficiency. It has been demonstrated that second harmonic
generation from GaAs, which is introduced in the gaps of
a coaxial hole array, can be as efficient as SHG from z-cut
LiNbO3 (Fan et al., 2006a). It turns out that the field
enhancement inside circular hole arrays is also sufficient

to generate a good second harmonic yield when GaAs is
introduced in the holes (Fan et al., 2006b). The SHG
in circular hole arrays, without GaAs, can be enhanced
through the use of double hole geometries in which two
overlapping holes lead to a sharp ridge between the holes
that induces a high local enhancement. The SHG ef-
ficiency can be boosted by a factor of 14 with respect
to circular holes (Lesuffleur et al., 2007b). The SHG
process can be improved by tuning a linear transmission
resonance to the second harmonic wavelength through a
proper change in array periodicity or incidence angle for
a wide range of hole and array symmetries (Xu et al.,
2007).

So far only a limited number of investigations have
used hole arrays to boost third order nonlinear processes,
rather than the second order process of SHG. By exploit-
ing Kerr nonlinearity it is possible to time-gate one beam
of photons being transmitted through a circular hole ar-
ray with a second beam (Smolyaninov et al., 2002). The
change in polarization of the beam that was switched
shows that the enhanced fields inside the holes are cru-
cial for an efficient switching. The Kerr nonlinearity can
lead to bistability in the extraordinary transmission as
shown theoretically and experimentally by Porto et al.
(2004) and Wurtz et al. (2006). In this case the high
intensity of a control laser induces changes of the local
index of refraction. This leads to a modification in the
transmission which persists when the intensity is subse-
quently reduced, resulting in a characteristic hysteresis
loop in the transmission as a function of the intensity of
the control field. Two-dimensional FDTD calculations
of subwavelength gratings have identified the layer thick-
ness of the Kerr medium and the size of the apertures as
crucial parameters for maximizing the bistability (Min
et al., 2007).

6. Finite size effects

The question on the dependence of EOT efficiency with
the number of apertures has also been also addressed
from both the experimental and theoretical points of
view. As EOT results from the collective response of
the array, the resonant transmittance should increase as
the number of holes forming the array increases. Indeed,
experimental measurements in the infrared (Thio et al.,
1999), in the THz regime (Miyamaru and Hangyo, 2004)
and in the visible range of the EM spectrum (Henzie
et al., 2007) have confirmed this expectation. More re-
cently, Przybilla et al. (2008) have presented a study on
how the transmission per hole reaches saturation with
the number of holes. They found, both experimental and
theoretically, that the number of holes needed for satu-
ration depends very strongly on the size of the holes: the
larger the hole diameter, the faster a transmission satu-
ration is reached. As seen in Figure 39, for holes with
diameter r = 134nm, this saturation is reached between
21×21(441) and 31×31(961) holes. This saturation value
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is marked by the propagation length of the SPP which is
mainly controlled by the size of the hole.

FIG. 39 (a) Experimental transmission spectra for 2D square
arrays containing 5 × 5, 11 × 11, 21 × 21 and 31 × 31 cir-
cular holes. The arrays were milled in thick 275nm free-
standing silver films with a period d = 600nm and a hole
radius r = 134nm. Transmissions are normalized to the hole
area. (b) Normalized-to-area transmission spectra obtained
from the modal expansion formalism explained in section I.B
in which the SIBC have applied. The geometrical parameters
are the same as in the experiments. Inset: comparison be-
tween the modal expansion and FDTD results for a infinite
square arrays. Figure taken from (Przybilla et al., 2008).

Przybilla et al. (2008) also analyzed the value of the
EOT transmittance in large arrays, and compared it to
the transmittance through a single hole. The experimen-
tal results showed that the enhancement in the transmit-
tance per hole in arrays is larger for the smaller holes:
this enhancement is around 40 for holes with diame-
ter 150nm in 40 × 40 arrays (see Fig. 40). Theoret-
ically, it was computed that this value would be 100,
and much larger values are obtained for smaller holes
and larger array sizes. In contrast to some claims that
the maximum transmission efficiency in EOT is around 7
(Lezec and Thio, 2004), no theoretical fundamental up-
per limit exists to the possible enhancement attainable in
the EOT phenomenon (within the macroscopic Maxwell

equations).
Finite size effects have been also theoretically analyzed

in 1D arrays of holes and slits. For the case of holes, it
was found that a chain of subwavelength holes can be
considered as the basic geometrical unit showing EOT.
A 2D hole array can be seen as a collection of weakly EM
coupled 1D chains of holes, these chains oriented in the
direction of the in-plane component of the E-field (Bravo-
Abad et al., 2004a). Regarding slits, the ratio between
the width of the slits and period of the array is the main
parameter controlling how the saturation is reached for
the resonant transmission associated with surface modes
(Fernandez-Dominguez et al., 2007). As expected, the
other channel for transmission, linked to the excitation
of a slit-cavity resonance, does not depend strongly on
the number of slits in the array.

FIG. 40 Experimental (a) and theoretical (b) ratio of the
transmission of 40×40 arrays to the transmission of the corre-
sponding single hole with diameters, 150, 200, 250 and 300nm.
All data are presented in a logarithmic scale for better visu-
alization. Figure taken from (Przybilla et al., 2008).

Another interesting question is how the finite size ef-
fects affect the spatial dependence of the re-emission pat-
tern. This issue was addressed both theoretically and
experimentally (Bravo-Abad et al., 2006). As shown in
Fig. 43, the re-emission pattern is far from being uni-
form and, for a hole array of square shape [see panel
(b)], the transmission per hole is maximum at the cen-
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ter of the sample, decreasing to the edges of the array.
Additionally, this re-emission pattern is very sensitive to
the angle of incidence. By tilting the samples by just few
degrees, the central band of maximum transmittance in
Fig. 43(b) moves to the edge of the array. The strong
non-uniformity of the light emerging from the hole ar-
ray is also reflected in time-resolved measurements in the
near-field region (Kim et al., 2003; Muller et al., 2003)
(see section III.B.8). Interestingly, light emerging from
very small arrays also presents very low divergence. It
has been shown experimentally that 75% of the transmis-
sion is actually non-divergent in arrays formed by just 16
holes, opening perspectives for microscopy applications
(Chowdhury et al., 2007; Docter et al., 2006).

7. Polarization effects

Polarization effects associated with the shape of the
holes have been already discussed in section II.B.2 for
single holes and for 2D arrays in section III.B.4. Here
we focus on polarization effects due to the symmetry of
the periodic array in relation with the polarization of the
incident light.

The coupling of the incident plane wave with the sur-
face EM modes is much more efficient when the direction
of the incoming E-field, as projected on the interface, has
a non-zero component in the direction of a reciprocal lat-
tice vector. For example, for a simple rectangular lattice,
this means that if the normal incident light is polarized
along the x-direction, potential resonances owing to re-
ciprocal lattice vectors pointing in the y-direction will not
lead to transmission peaks. The influence of the polar-
ization leads to a rich transmission behavior. Depending
on the projection of the incident E-field on the various
periodicities present in the lattice, results in the excita-
tion of different resonances, each of which will in turn
lead to a transmission resonance with its own amplitude,
polarization direction and phase. All put together they
will determine the polarization state of the transmitted
light. The simplest consequence is that, when the sample
is tilted away from normal incidence, a geometrical bire-
fringence is introduced. This was first confirmed for THz
transmission (Miyamaru et al., 2003) and later for opti-
cal frequencies (Ren et al., 2007). Subsequently, the full
richness of the polarization behavior was investigated for
optical frequencies (Altewischer et al., 2003). For square
lattices, normal incidence and a polarization along the
(1, 1)-direction, SPP modes can be excited in both the
x- and y-directions with the same efficiency and phase to
the extent that the paths become indistinguishable when
far-field experiments are performed.

The ultimate proof of this indistinguishability was
given when polarization-entangled photons were trans-
mitted through the subwavelength hole array in this con-
figuration with only a minimal loss to the degree of entan-
glement (Altewischer et al., 2002; Guo et al., 2007b). By
changing the focus of the experimental configuration, the

interplay between polarization and the dispersive prop-
agation of the SPP modes led to a deterioration of the
degree of entanglement. It was subsequently found ex-
perimentally (Altewischer et al., 2005b), and confirmed
by theory (Altewischer et al., 2005d; Genet et al., 2005;
Moreno et al., 2004a), that the polarization of the beam
transmitted by a hole array was depolarized through a
combination of a non-local response of the array due to
SPP propagation and to the spread of wavevectors in the
incident beam. The classical depolarization of a trans-
mitted polarized beam and the quantum decoherence ex-
perienced by a polarization-entangled photon pair can be
compared (Altewischer et al., 2005a). Under certain con-
ditions the quantum visibility and the classical degree of
polarization can be found to be the same. It was also
shown that a coupling exists between the temporal and
spatial decoherence channels, which may be attributed
to transverse propagation of SPPs (Lee et al., 2006b).

Another way to play with the polarization of the trans-
mitted beam is by working with 2D hole arrays made
of elliptical holes arranged in two sublattices in which
the ellipses are orthogonally oriented. The polarization
induced frequency shift of the primary peak can be ex-
ploited to gain insight in the energy redistribution in the
array (Masson and Gallot, 2006).

8. Dynamics of the EOT phenomenon

In order to gain further understanding of the EOT
phenomenon, its dynamics was also investigated. It was
found early that the transmission through a subwave-
length hole array through a film with typical thicknesses
of several hundreds of nm, occurred on a fs timescale
(Dogariu et al., 2002, 2001). A transit time was found of
7 fs for a film with a thickness of 300nm. Using the thick-
ness as a distance travelled, this finding indicates a group
velocity of c/7. The transit time can be related to a life-
time of the resonant modes. This lifetime, which directly
determines the linewidth of the transmission peaks, is
on the one hand governed by electron-phonon coupling,
which leads to Ohmic losses (van Exter and Lagendijk,
1988; Groeneveld et al., 1990). On the other hand, the
SPP modes experience radiative losses directly related to
the EOT phenomenon itself. It has been neatly shown
through ultrafast investigations that the SPP modes had
coherent propagation lengths of only a few µm, which
is consistent with a (sub)-10 fs lifetime. The radiative
lifetime is limited by SPP scattering with the periodic
array itself, which leads to the homogeneous broaden-
ing of the transmission peaks (Kim et al., 2003). Fur-
ther investigations have shown that the light transmit-
ted through the subwavelength hole arrays exhibits clear
oscillations on a fs timescale (Muller et al., 2003). The
observation underpins the coupling between both inter-
faces of the metal layer through photon tunneling. The
diameter of the holes has been found to determine the pe-
riod and damping of these oscillations. In other words,
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the size of the subwavelength holes governs both the cou-
pling between the interfaces but also the radiation damp-
ing and hence the linewidth of the transmission peaks.
This is in agreement with the theoretical modelling pre-
sented in section III.B.2. and it has been corroborated
by more sophisticated FDTD calculations (Müller et al.,
2004). Similar ringing has also been observed for the
transmission of THz pulses through subwavelength metal
hole arrays on high resistivity silicon, albeit at different
timescales owing to the large difference in frequency (Qu
and Grischkowsky, 2004). The radiation-limited lifetime
of the SPP modes is crucially influenced by the symme-
try of the mode: for the so-called anti-symmetric mode,
the radiative damping time constant is reduced by al-
most an order of magnitude (Ropers et al., 2005, 2006).
Visualization of the bound modes in time with sophis-
ticated far-field experiments reveals their group velocity
(Rokitski et al., 2005a).

The dynamic measurements of the transmission pro-
cess (Kim et al., 2003; Muller et al., 2003), which exhibit
a two-component structure of a fast transmission of an
virtually unperturbed pulse followed by a single long tail,
is the temporal fingerprint of a Fano-type process, as dis-
cussed before in section III.B.1. Careful investigation of
the point spread function provides more proof for the
transmission scenario through a Fano process (Altewis-
cher et al., 2006, 2005c). Polarization dependent distor-
tions in near-field investigations confirm the conclusions
obtained in far-field investigations (Mrejen et al., 2007).

C. Quasi-periodic arrays

The first experimental study showing the emergence
of EOT phenomenon in quasi-periodic arrangements of
subwavelength holes was published by Sun et al. (2006c).
They fabricated an eightfold quasi-periodic hole array
with a parallelogram-square tiling system, with the side
length of the parallelogram and square being about
550nm. A very broad transmission peak at λ = 700nm
dominated the transmission spectrum. These authors
also pointed out that the long-range order existing in
the quasi-periodic configuration makes it very similar to
a grating and can offer some dominant discrete recipro-
cal vectors to assist the coupling of the incident EM field
with the SPPs of the metal. The next experimental study
showing this EOT phenomenon in the optical regime was
conducted by Przybilla et al. (2006b). They built up 2D
Penrose tiles composed of two types of rhombuses, with
equal edges but different angles (360 for the thin rhombus
and 720 for the flat one) that are matched to pave all the
2D plane with a fivefold symmetry. For the first time,
they were able to correlate the spectral locations of the
transmission maxima with peaks in the structure factors
of the quasi-periodic arrangements. They also analyzed
the variation of the transmission peak heights with the
number of holes (N) present in the array, showing that
there is a saturation as N increases (associated with the

finite mean free path of the SPPs excited by the incom-
ing plane wave). Figure 41 shows a typical experimental
spectrum measured through a Penrose tile, as reported
by Przybilla et al. (2006b). Although periodicity is ab-
sent, well defined peaks of enhanced transmission clearly
emerge in the spectrum.

FIG. 41 Optical transmission spectrum of a Penrose array
with rhombus edge P = 450nm and hole diameter 150nm.
The transmitted intensity I is normalized to the incident one
I0. The inset is a scanning electron microscopy image of the
array milled through a 300 nm thick silver film. Figure taken
from (Przybilla et al., 2006b).

Matsui et al. (2007) presented an experimental analysis
of the EOT phenomenon in aperiodic arrays of subwave-
length holes in the THz regime. They analyzed Penrose
tiles exhibiting local five-fold rotational symmetry, simi-
lar to the ones analyzed in (Przybilla et al., 2006b) but
also Penrose lattices with ten-fold symmetry. This study
corroborated the close link between transmission peaks
and resonant features of the structure factor (i.e., diffrac-
tion pattern of the array). Furthermore, they designed an
aperiodic array presenting 18-fold rotational symmetry in
real space that was constructed by Fourier-transforming
a circular 2D diffraction pattern. In this aperiodic ar-
rangement, EOT peaks also appeared and their magni-
tude was even larger than in the quasi-periodic case. Fi-
nally, Papasimakis et al. (2007) demonstrated both theo-
retically and experimentally that EOT in quasi-periodic
arrays also emerge in the microwave range of the EM
spectrum.

The emergence of EOT phenomenon also in quasi-
periodic arrangements made necessary to revisit the the-
oretical explanation of EOT based on the excitation of
surface EM modes, as presented in section III.B.2. In
what follows we present a brief summary of the theo-
retical foundation of the appearance of the EOT phe-
nomenon in quasi-periodic arrays of subwavelength holes.
In this section, we apply the general theoretical formal-
ism described in section I.B. Notice that, as Bloch’s theo-
rem can not be applied for a quasi-periodic arrangement,
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all the structures must be finite. The transmission prop-
erties of a finite collection of holes could be treated by
means of the general system of Eqs.(1) where index α
would run over holes and waveguide modes inside the
holes. In order to present a complete picture, in this sec-
tion we compare the transmission spectra of a periodic
square lattice, a Penrose lattice and a random distribu-
tion of circular holes (in all cases with N = 636). The
coordinates in the Penrose lattice were generated by the
Dual Generalized Method (Levine and Steinhardt, 1986;
Rabson et al., 1991), being the length of the rhombus
side defining the structure L = 600nm. The ordered
structure is a circular portion of a square lattice, with
lattice parameter d = 562nm, chosen so that the exter-
nal radius of the circular array is the same as in the
quasi-periodic case. In the disordered case, the N holes
are randomly placed within the same external radius (but
without overlapping). In all cases, the radius of the holes
is r = 130nm and the depth of the free-standing metal
film is h = 170nm. These geometrical values are typi-
cal of EOT experiments in the optical regime (Przybilla
et al., 2006b). Notice that, as we are assuming that the
metal behaves as a PEC, our results are applicable to
different frequency regimes, just by scaling all lengths by
the same factor.

Figure 42 shows the corresponding optical transmis-
sion spectra evaluated at normal incidence. The trans-
mittance for the collection of N holes is normalized to
N times the normalized-to-area transmission through a
single circular hole T0, i.e., by the transmittance ex-
pected for a set of N independent holes. In the or-
dered case (dashed line), the transmittance spectrum is
smooth, with values close to those of independent holes
(T/(NT0) ≈ 1), except near the resonant peak appear-
ing at λ = 575nm, where the transmission enhancement
is around 13. This is the canonical EOT peak, appear-
ing in periodic arrays at a resonant wavelength slightly
larger that the lattice parameter, d = 562nm. Resonant
transmission also appears when holes are arranged in a
Penrose lattice (solid line in Fig. 42), in line with the
experimental findings. In the numerical results, trans-
mission enhancements of about 3 and 5 are obtained at
the resonant wavelengths λ = 500nm and λ = 585nm,
respectively. In contrast, the transmission spectra for a
random array (dotted line in Fig. 42) does not show
any resonant feature, confirming the importance of long-
range order to observe EOT effects.

As explained above, the appearance of EOT in quasi-
periodic distributions of holes has been phenomenologi-
cally related to the lattice structure in reciprocal space,
extending arguments borrowed from the ordered case
(Przybilla et al., 2006b). Next, we provide quantitative
arguments which support this suggestion by working ana-
lytically in the reciprocal space, following the derivation
presented by Bravo-Abad et al. (2007a). The Fourier
components of the modal amplitudes can be written as:
En(~q) =

∑
~R exp(−ı~q ~R)En(~R). Note that now En(~R)

refers to the modal amplitude in real space of mode n at
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FIG. 42 Transmission (T ) spectra for the ordered case (bro-
ken line), the Penrose lattice (continuous line) and the ran-
dom configuration (dots). In all three cases, r = 130nm,
h = 170nm and N = 636. T is normalized to the one ob-
tained for N independent holes. Inset shows the structure
factor of the Penrose lattice.

the hole location ~R. By applying a Fourier-transform to
the set of Eqs.(1) [further details can be found in (Bravo-
Abad et al., 2007a)], the structure factor of a given dis-
tribution of holes [S(~q) =

∑
~R exp(−i~q ~R)] appears ex-

plicitly in the set of equations governing {En(~q), E′
n(~q)}:

(Ωn(~q)− Σn)En(~q)−GV
n E′

n(~q) = InS(~q − ~k0),
(Ω′n(~q)− Σn)E′

n(~q)−GV
n En(~q) = 0 (33)

where ~k0 is the in-plane component of the incident
wavevector. Notet that the set of Eqs.(33) is just the
k-space version of the set of linear equations (1).

The re-ilumination term in Eqs.(33), Ω(′)
n (~q)E(′)

n (~q), is
now represented by the scattering process that couples
E

(′)
n (~q) to the continuum E

(′)
m (~k), the momentum differ-

ence being provided by the lattice through S(~q − ~k):

Ω(′)
n (~q)E(′)

n (~q) =
∑
m

∫
d~k Gmn;~k S(~q − ~k) E(′)

m (~k) (34)

The amplitude of this process is governed by Gmn;~k:

Gmn;~k =
i

(2π)2
∑

σ

Y~kσ < n|~kσ >< ~kσ|m > (35)

An important property is that Gmn;~k diverges when-
ever a p-polarized diffraction wave goes glancing (kz = 0),
as can be directly seen from Eq.(35). By looking at
Eq.(34), it is clear when and where resonant peaks would
emerge in the transmission spectrum for quasi-periodic
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arrays. Whenever a divergence in Gmn;~k coincides with
a peak in the structure factor, S(~q), Ωn is maximum. In
other words, Ωn presents maxima at wavelengths corre-
sponding to the glancing condition for the main wavec-
tors of the structure factor. For the quasi-periodic ar-
ray, this happens for λ1 = 566nm (|~b1| = 2π/λ1) and
λ2 = 483nm (|~b2| = 2π/λ2), see inset of Fig.42. Conse-
quently, T shows two minima at these two wavelengths.
At slightly larger wavelengths, two transmission peaks
appear in the spectrum, much in the same way as it
occurs in periodic arrays. Therefore, we can conclude
that the resonant transmission peaks emerging in quasi-
periodic arrays stem from the excitation of surface EM
modes at the metallic surfaces. Notice that, however, in
the quasiperiodic case, there is no minimum wavevector
for diffraction [i.e. the structure factor is non-zero for
wavevectors with modula smaller than |~b1|, see inset of
Fig.42]. This results in diffraction onto additional radia-
tive modes in vacuum (other than the zero-order mode),
which leads to both smaller resonant peaks and less pro-
nounced minima than those appearing in the periodic
case.

FIG. 43 Transmission-per-hole (normalized to the single hole
transmission) displayed in a color scale. Panels (a) and (b)
correspond to ordered arrays with circular and square external
shapes, respectively. Both patterns were computed at the
resonant wavelength of both structures: λ = 575nm. The
results for the Penrose lattice at the corresponding resonant
wavelengths are rendered in panel (c) (λ = 500nm) and panel
(d) (λ = 585nm). The geometrical parameters are the same
as in Figure 42.

The fact that surface EM modes are involved in EOT in
quasi-periodic systems does not mean that the transmis-
sion distribution is uniform across the array. This fact is
illustrated in Fig. 43, which renders the transmission per
hole in a Penrose lattice of N = 636 holes at the two res-
onant wavelengths (λ = 500nm and λ = 585nm in panels
(c) and (d) of Figure 43, respectively). For comparison,
panels (a) and (b) of Fig. 43 show the corresponding
distribution for the ordered array at the resonant wave-
length 575nm for circular and square external shapes of
the array, respectively. In all four cases, the incident
E-field is pointing along the x-direction. The pattern
in the ordered case can be understood by considering the
2D hole array as a collection of weakly coupled 1D chains
of holes (Bravo-Abad et al., 2004a). Due to finite size ef-
fects, transmittance is larger at the center of the chain
than at the edges. In arrays with a square shape, with
one of the axis of the square lattice oriented along the
incident E-field, the lengths of all “horizontal” chains are
the same, resulting in a characteristic pattern where the
edge effects are more noticeable along the direction par-
allel to the incident field than to the perpendicular one
(Bravo-Abad et al., 2006)[see Fig. 43(b)]. On the other
hand, when the shape of the square array is circular, the
number of holes within field-aligned chains reduces close
to the top and bottom regions, and the transmission per
hole presents its maximum values just at the central re-
gion of the system, as shown in panel (a) of Fig. 43.

In the quasi-periodic arrangement, the transmission-
per-hole distribution presents a completely different pat-
tern: it is far from being uniform, showing the appear-
ance of some holes with very high transmittance hot
spots. Interestingly, at a given resonant wavelength, hot
spots show a similar local environment. For λ = 500nm
(panel c), hot spots appear in the center of a pentagon
defined by their nearest neighbors while for λ = 585nm
(panel d), hot spots are located within a stadium-like
structure. The emergence of these hot spots at the
metal surface when light is transmitted through a quasi-
periodic array of holes has been experimentally confirmed
by taking advantage of their replication in the far-field
through the Talbot effect (Dennis et al., 2007; Huang
et al., 2007b).

IV. TRANSMISSION THROUGH SINGLE APERTURES
FLANKED BY PERIODIC CORRUGATIONS

A. Experimental results

As discussed in previous sections, surface EM modes
are known to be responsible of enhancing the transmis-
sion of light through periodic and quasi-periodic arrays
of subwavelength apertures. The main ingredients to ob-
serve the EOT phenomenon are: i) the existence of a sur-
face EM mode. In a metal at optical frequencies, these
modes are the SPPs. ii) The presence of a grating coupler
that allows the incident light to couple with the surface
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EM mode. In the case of a perforated perfect conductor,
this grating is also responsible of the formation of the sur-
face EM mode, i.e. a geometrically-induced surface EM
mode. This fundamental knowledge suggested the ap-
pearance of EOT phenomenon also in single apertures, if
they were surrounded by a finite periodic array of inden-
tations. This hypothesis was experimentally verified by
Lezec et al. (2002); Thio et al. (2001) both for a 1D slit
surrounded by a finite array of grooves [see Fig.44(a)] and
for the bull’s eye structure (a 2D cylindrical hole flanked
by circular trenches, see panel (b) of Fig.44).

(a)

(b)

FIG. 44 Electron micrograph images of two samples showing
a single aperture surrounded by periodic corrugations. (a)
1D case: a single slit symmetrically flanked by grooves. (b)
2D case: the so-called bull’s eye structure, a cylindrical hole
surrounded by circular trenches.

Experiments also showed that, unexpectedly, when the
periodic corrugation was placed at the output surface of
the aperture, the angular distribution of the transmit-
ted radiation was strongly modified (Lezec et al., 2002):
light emerged from the structure as a strongly collimated
beam, at some resonant wavelengths. Figure 45(a) shows
several transmission spectra at various angles (using a
collection aperture with an angular resolution of ±30) on
the exit side of a single slit of width a = 40nm surrounded
by 10 grooves with the same width and depth w = 60nm
and the period of the array is 500nm. The free-standing
film is made of silver and the thickness is 300nm. The

transmission spectrum is angle dependent, as clearly seen
in Fig.45(a). As the collection angle separates from the
normal direction, the transmission resonance splits into
two smaller peaks that move to lower and higher wave-
lengths. This implies that, at a given wavelength, light
emerges with maximum intensity at a particular angle
from the surface. For example, at λ = 580nm and 800nm,
the angles of maximum transmittance are 00 and 300, re-
spectively. The evolution of the transmittance spectrum
with the output collection angle presents a slightly differ-
ent behavior for the 2D case, the bull’s eye geometry, as
shown in Fig.45(b). Here, a strong transmission peak is
evident at λ = 660nm with an intensity that strongly re-
duces as the collection angle increases. This implies that
light emerges as a well-defined beam with a full-width at
half maximum (FWHM) divergence of ±50 for the reso-
nant wavelength, λ = 660nm. When the finite angular
resolution of the experimental apparatus is taken into
account, the actual beam divergence is reduced to ±30.
Atomic fluorescence mapping of the optical field intensity
profile of these structures suggests an even smaller beam
divergence (Gay et al., 2005).

In a detailed experimental analysis of the transmission
process through a bull’s eye structure on a suspended
silver film, with corrugations on one or both metal-air
interfaces, it was demonstrated that the total transmis-
sion through the structure is the product of three distinct
contributions: the coupling efficiency on the input sur-
face, the transmission or cutoff function of the aperture
and decoupling efficiency of the output surface (Degiron
and Ebbesen, 2004). It was found that the SPP grat-
ing modes of the input surface dominate the bull’s eye
spectrum, eventhough the contribution of the localized
mode of the central hole can still be detected as in the
case of hole arrays (see section III.B). The beaming effect
is however controlled by the corrugations of the output
surface as further discussed in section IV.B.

Both enhanced transmission and beaming phenomena
in single apertures have been observed in other frequency
regimes. Within the microwave range of the EM spec-
trum, Hibbins et al. (2002) presented a study of the
enhanced transmission of radiation through a single slit
placed at the center of a pair of grooves. The beaming
effect in 1D structures at this frequency range was ana-
lyzed in detail by Akarca-Biyikli et al. (2004), reporting a
40 angular divergence for a system with 10 grooves. The
2D case (bull’s eye geometry) at microwave frequencies
was first addressed by Lockyear et al. (2004, 2005). In
this reference, a single hole surrounded by four circular
trenches also presented both enhanced transmission and
beaming effects.

In the THz range of the EM spectrum, it was possible
to analyze the phenomenon of enhanced transmission for
the 2D bull’s eye geometry in the time domain (Agrawal
et al., 2005), allowing a detailed study of the transmis-
sion process. These authors were able to determine the
contribution of each individual groove to the transmitted
terahertz waveform. A posterior development demon-
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(a)

(b)

FIG. 45 (a) Transmission spectra for a single slit flanked by a
periodic array of 10 grooves (5 grooves placed to the left and
right of the slit). The width of the slit and grooves is 40nm,
the groove periodicity is d = 500nm and the metal thickness is
h = 300nm. The nominal depth of the grooves is 60nm. The
spectra are recorded at various collection angles, from 00 to
250. The normal incident radiation is p-polarized. The inset
shows a dispersion curve of the transmission peaks locations
versus parallel momentum. (b) Transmission spectra for the
bull’s eye geometry: a cylindrical hole of diameter 250nm is
milled into a silver film of thickness 300nm. It is surrounded
by 5 circular trenches of depth 60nm and the groove peri-
odicity is 600nm. The tail above 800nm is an experimental
artifact. Figure taken from (Lezec et al., 2002).

strated, also in this frequency regime (Cao et al., 2005),
that by varying the phase of the surface corrugation rel-
ative to the central aperture, dramatic changes can be
made in the transmission resonance lineshape. Beam-
ing effects at THz frequencies were studied by Agrawal
and Nahata (2006). It was shown how each groove pro-
duces a time-delayed replica of the total THz pulse that
is evanescently coupled through the subwavelength aper-

ture. These replicas are coherently superposed on each
other and temporally shifted from one another in accor-
dance with the spatial distance between grooves.

There have been several studies dedicated to improving
both the enhanced transmission and beaming capabilities
of the basic structure discovered in 2002. Ishihara et al.
(2005a,b) demonstrated that the inclusion of a Bragg re-
flector into the structure further increases the enhanced
transmission through the bull’s eye geometry, if this con-
tains a small number of rings. The same group has re-
cently shown (Ishihara et al., 2006) that by changing the
aperture from a circular one to a bow-tie shaped aper-
ture, not only the transmittance is largely increased but
the spatial resolution of this structure is of the order of
λ/17. On the other hand, Caglayan et al. (2006b) have
experimentally tested the beaming capabilities of annu-
lar apertures surrounded by periodic arrays of concentric
grooves, showing that the angular confinement can be as
strong as 30. Another important improvement on the
transmissivity of these structures is associated with the
use of sharp-apex shape for the grooves in the periodic
grating (Ishi et al., 2005b). Fabricated samples with this
type of gratings shows greater transmission than that of
samples with a rectangular grooves. Also, a modulation
of the groove depth along the periodic array of indenta-
tions (Shi et al., 2007) can lead to a better confinement
of the light emerging from the subwavelength aperture.

Theoretical calculations showed (Bravo-Abad et al.,
2003) that resonant transmission and collimation of light
can be achieved for two different wavelengths, when the
single aperture is surrounded by asymmetric configura-
tions of periodic arrays of indentations. The generation
of off-axis directional beaming of light by a single sub-
wavelength slit perforated on a metal film has also been
recently proposed (Kim et al., 2007; Lin et al., 2007). The
combination of single apertures perforated on a metal
film with dielectric surface gratings (as proposed by Lin
et al. (2006)) seems to offer a better performance than
the one obtained when metallic gratings are considered.
Along this line, it has been shown that the dielectric
properties of the surface surrounding the aperture can be
modulated by using metallic heterostrutures constructed
with aluminum and silver (Wang and Wang, 2006). Very
recently, Li and colleagues (Li et al., 2008) have also pro-
posed an improved structure by surrounding the central
aperture with nonuniform and nonperiodic grooves. In
this way, the amplitude and phase of the power flowing
from each groove can be adjusted in order to enhance the
final transmission.

An interesting spin-off of EOT and beaming effects in
corrugated single apertures has been the appearance of
both phenomena in the so-called photonic crystals. As
stated before, the main ingredient to observe both phe-
nomena is the excitation of surface EM modes. A pho-
tonic crystal may support a surface EM mode whose band
may lie within the photonic band gap of the material,
depending on the truncation of its surface. The emer-
gence of both phenomena in photonic crystal waveguides
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was theoretically predicted by Moreno et al. (2004b). In
a parallel development, Kramper et al. (2004) reported
the emergence of directional beams with very low diver-
gence angles from photonic crystal waveguides of sub-
wavelength width. They also identify the key role played
by the evanescent surface EM modes in achieving the
low divergence beams. Since the publication of these
two articles, several works have been devoted to ana-
lyze EOT and beaming phenomenon in photonic crys-
tals. The first experimental study on the enhanced trans-
mission assisted by surface modes in photonic crystals
was presented by Bulu et al. (2005). Further theoreti-
cal investigations of those two effects (Frei et al., 2005;
Moreno et al., 2004c; Morrison and Kivshar, 2005; Tang
et al., 2006) focused on the optimization of the surface
geometry surrounding the waveguide in order to enhance
both the transmission and collimation of the emerging
beam. Two very recent experimental reports have been
devoted to improving the directionality of the transmit-
ted beam by tuning the number of grating layers (Moussa
et al., 2007) and to enlarge the operation bandwidth of
the beaming effect by playing with the phase of the mul-
tiple beams emitted out of the surface of the photonic
crystal (Li et al., 2007).

B. Theoretical modelling

The theoretical modelling of both enhanced transmis-
sion and beaming effect in single apertures have con-
firmed that surface EM modes excited at the corrugated
metal surface(s) play a key role in the emergence of both
phenomena (Garcia-Vidal et al., 2003a; Martin-Moreno
et al., 2003). This physical explanation has been cor-
roborated and refined by other theoretical approaches
and numerical investigations (Thomas and Hughes, 2004;
Wang et al., 2006a,b; Yu et al., 2005). In what follows we
present the theoretical foundation of these two phenom-
ena (enhanced transmission and beaming) for the basic
1D structure, a single slit surrounded by a finite array
of grooves (see Fig.46). It is worth mentioning here that
the physical origin of the resonant phenomena in single
apertures for 1D and 2D structures is very similar, as
shown by Chang et al. (2006).
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FIG. 46 Schematic picture of a single slit of width a in a
metallic film of thickness h. This single slit is surrounded
symmetrically by 2N grooves (of width a and depth w) in both
the input and output surfaces. The structure is illuminated
by a normal incident p-polarized plane wave.

In order to simplify to the maximum the modelling,

we consider that the metal is a PEC and take into ac-
count only the TEM modes inside the central slit and
grooves. For this case, the general system of equations
(1) translates into:

(Gαα − Σα)Eα +
∑

β 6=α

GαβEβ −GV
α E′

αδα0 = Iα

(Gγγ − Σγ)E′
γ +

∑

ν 6=γ

GγνE′
ν −GV

γ Eγδγ0 = 0 (36)

where index α denotes the TEM mode at indentation α
(either the slit or the grooves). The central slit is rep-
resented as α = 0 and, as shown in Eqs.(36), it is the
only one in which the input and output modal ampli-
tudes are electromagnetically coupled. The expressions
for the different magnitudes appearing in this set of equa-
tions are: Σ0 = cot(kωh), Σα = cot(kωw) for α 6= 0,
GV

0 = 1/ sin(kωh). We consider p-polarized normal in-
cidence and the illumination term, Iα=2i, is such that
the flux over the central slit is normalized to 1. The
electromagnetic coupling between indentations α and β,
Gαβ , can be expressed shortly as < α|Ĝ|β > where the
expression for the propagator Ĝ in real space is given
by Eq.(A18). Once the self-consistent set of modal am-
plitudes is obtained, the final transmittance through the
central slit can be calculated by means of the equation:
T = GV

0 Re[E∗
0E′

0].
First, we analyze the influence of patterning the input

surface surrounding the central on the final transmittance
through the structure. Figure 47 shows the dependence
of the normalized-to-area transmittance, T (λ), with the
number of grooves. The notation [N, 0] means that 2N
grooves are placed symmetrically to the left and right of
the central slit at the input surface, whereas the output
surface presents no corrugation. For the calculation of all
the spectra displayed in Fig.47, we have chosen the geo-
metrical parameters: a = 0.08d, w = 0.2d and h = 0.7d.
As in previous cases, the period of the array, d, is used
as the unit length of the structure. The curve for N = 0
corresponds to the single slit case. In this wavelength
regime T (λ) presents two maxima whose origin is related
to the excitation of Fabry-Perot resonances inside the
slit, as discussed in section II.A. Fig.47 also shows that
a maximum in T (λ) develops at λ ≈ 1.1d as the num-
ber of grooves is increased. The enhancement factor for
N = 10 is around 9 and it can be shown that there is
a saturation of this peak value as N is larger than 10
for this particular set of geometrical parameters (Garcia-
Vidal et al., 2003a). Notice also that the transmission
peaks associated with the excitation of Fabry-Perot res-
onances of the single slit remain almost unaltered when
grooves are placed at the input surface.

Figure 48 shows that the output corrugation has little
effect on the total transmittance: the spectra for different
number of grooves at the output surface are similar to
the single slit spectrum (black curve). Corrugating the
output surface induces a change in T (λ) of, at most, some
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FIG. 47 Normalized-to-area transmittance as a function of
the number of grooves when only the input surface is corru-
gated. The width of the slit and grooves is a = 0.08d, the
depth of the grooves is w = 0.2d and the metal thickness is
h = 0.7d. Notation [N, 0] means that 2N grooves are perfo-
rated in the input surface and 0 in the exit surface. Figure
taken from (Garcia-Vidal et al., 2003a).

20% at the resonant wavelength.
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FIG. 48 Normalized-to-area transmittance as a function of
the number of grooves when only the exit surface of the slit is
corrugated. As in Fig.47, the width of the slit and grooves is
a = 0.08d, the depth of the grooves is w = 0.2d and the metal
thickness is h = 0.7d. Notation [0, N ] means that 2N grooves
are milled at the exit surface and 0 at the input surface. The
inset shows the transmittance for the [10, 0] and [10, 10] con-
figurations. Figure taken from (Garcia-Vidal et al., 2003a).

Therefore, in order to understand the features appear-
ing in the total transmittance, we concentrate on the
analysis of the structure in which the single slit is sur-
rounded by a finite array of indentations at the entrance

surface. In this case, the system of equations (36) can be
further simplified to a set of 2N +2 equations, being 2N
the number of grooves:

(Gαα − Σα)Eα +
∑

β 6=α

GαβEβ −GV
α E′

αδα0 = Iα

(G00 − Σ0)E′
0 −GV

0 E0 = 0 (37)

From these equations, it is possible to identify two
mechanisms that could enhance T (λ) (additionally to the
Fabry-Perot resonances already emerging in single, iso-
lated slits). The excitation of groove cavity modes pro-
vide large Eα at the resonant condition Gαα − Σα ≈ 0.
For the case of very narrow grooves, this condition is ful-
filled for λ = 4w/(2n+1), with n integer. From Eqs.(37)
it is clear that large Eα can provide extra illumination
into the central slit. However, the situation is more com-
plicated because this re-illumination process at the cen-
tral slit depends on a weighted sum over all Eα, so ex-
treme care must be taken of the phases of the different
contributions coming from the grooves. As explained be-
fore, the coupling between grooves and central slit, Gα0,
is governed by the Hankel function H

(1)
0 (x) (for a perfo-

rated PEC). From the asymptotic behavior of H
(1)
0 for

large x, Gα0 ≈ exp(ikωd|α|). Therefore, all light that is
re-emitted by the grooves reaches the central slit in phase
for λ = d. The extra peak in transmittance appearing
at λ close to d is due to the combination of these two
mechanisms: groove cavity mode excitation and in-phase
groove re-emission.

This theoretical explanation based on those two mech-
anisms can be further elaborated by invoking the forma-
tion of a geometrically-induced surface EM mode when
the surface of a semi-infinite PEC is perforated by a peri-
odic array of 1D grooves. As in the case of a 1D array of
slits, it is possible to calculate the dispersion relation of
the surface EM modes supported by an infinite periodic
array of grooves. For this case, within the single TEM
mode approximation, the equation from which the dis-
persion relation of the EM modes propagating along this
structure can be extracted is quite simple: G − Σ = I,
where Σ = cot(kωw) and G = a

d
kω√

k2
x−k2

ω

if we ignore

diffraction effects. The resulting dispersion relation is
simple written as:

√
k2

x − k2
ω

kω
=

a

d
tan kωh (38)

These surface EM modes may become leaky modes
when diffraction effects are considered. As a first approx-
imation, the spectral locations of the surface EM modes
which can be excited by a normal incident p-polarized
plane wave can be calculated from Eq.(38) by imposing
kx = 2π/d. Fig. 49 shows the close correspondence be-
tween the spectral locations of both the transmission res-
onances and the surface EM modes for an infinite array
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of rectangular grooves (with the same geometrical pa-
rameters). Figure 49 also shows (white dots) that these
surface EM modes originate from the interplay between
the groove cavity mode [tan kωh → ∞ in Eq. (38)] and
the in-phase groove re-emission mechanism (in the limit
h → 0, kx → kω in Eq.(38)).
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FIG. 49 Contour plot of the transmittance versus groove
depth (w) and wavelength (both in units of d) when a central
slit is flanked symmetrically by 20 grooves. Here a = 0.08d
and the thickness of the metal h = 0.7d. White dots corre-
spond to the locations of the surface EM modes of an infinite
array of rectangular grooves with varying w as calculated from
Eq.(38) with kx = 2π/d. Figure taken from (Garcia-Vidal
et al., 2003a).

This link between transmission resonances and exci-
tation of surface EM modes is illustrated in Fig. 50
which renders the E-field amplitude for the [10, 0] case
analyzed in Fig. 47 and evaluated at the resonant wave-
length λ = 1.1d. It is clearly seen that this surface EM
mode excitation is accompanied by a large enhancement
of the E-field inside the grooves, whose re-emission into
the central slit leads to an enhancement of the trans-
mittance. This surface EM mode acts as a funnel that
collects the light impinging at the area surrounding the
slit and is able to re-direct it into slit area.

FIG. 50 Electric field amplitude associated with the trans-
mission peak λ = 1.1d emerging when a single slit when is
flanked by 20 grooves, placed symmetrically at its entrance
surface. The geometrical parameters of the structure are as
in Fig.47.

The existence of two types of resonances (Fabry-Perot
cavity mode and surface EM mode) to enhance the trans-
mission through a single subwavelength slit surrounded
by a periodic corrugation has been experimentally ob-
served (Garcia-Vidal et al., 2003a). In this work, sev-
eral silver films of thickness h = 350nm were evaporated
on top of a quartz substrate. Different samples corre-
sponding to different values of d and w were fabricated
by using a focused-ion-beam that milled a single slit sur-
rounded by 10 grooves. The central slit and grooves were
10 microns long with a width of a = 40nm. The trans-
mittance spectrum of a single slit which presents a broad
maximum, associated with a Fabry-Perot mode excita-
tion, at around λ = 725nm [see black curve and inset of
Fig.51(a)]. Fig.51(a) also shows the transmittance spec-
tra when the slit is surrounded by grooves of nominal
depth equal to 40nm and different values of d, ranging
from d = 500nm to d = 800nm. Under the presence of
a period array of grooves, an additional peak emerges
in the spectrum and moves to larger wavelengths as d is
increased. The peak is strongest for d = 650nm, when
it appears at a wavelength that coincides with the slit
waveguide mode excitation, λ = 750nm. Panel (b) of
Figure 51 shows that there is an optimum value for the
depth of the grooves, as predicted by the theoretical cal-
culations. For the considered set of geometrical parame-
ters (with d = 650nm), the optimal depth is w = 40nm,
for which the experimental normalized transmittance is
of the order of 7.

Let us now present the theoretical foundation of the
beaming phenomenon for the 1D case, a single slit flanked
by a periodic array of grooves. As shown before, the an-
gular distribution of the transmitted light depends only
on the properties of the output surface. Therefore, we
can focus on a simplified geometry, composed by a single
slit (driven by a wave of amplitude A0) and surrounded
by a finite array of grooves at its exit surface. We are not
interested here in analyzing the total transmittance but
how light is spatially distributed in the far field region.
Within both the single TEM mode and PEC approxima-
tions, the set of equations that describe this electromag-
netic problem can be written as:

(Gαα − Σα)Eα +
∑

β 6=α

GαβEβ = 2iA0δα0 (39)

where now Σ0 = −i for the central slit and Σα =
cot(kωw) for the grooves. The illumination term is now
characterized by the amplitude A0 of the TEM that is
propagating towards the interface. Indexes α and β run
over all indentations (slit and grooves). Once the dif-
ferent modal amplitudes are obtained, it is possible to
calculate the y-component of the magnetic field in the
transmission region (z > 0):

Hy(~r) =
1

µ0c

∑
α

EαG(α,~r) (40)
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FIG. 51 Collection of several normalized-to-area transmit-
tance spectra for different structures formed by a central slit
symmetrically flanked by 10 grooves on the input surface
([5, 0] in our notation). The width of the slits is 40nm and the
thickness of the free standing silver film is h = 350nm. (a) In
these spectra the depth of the grooves is fixed at w = 40nm
and the period of the groove array d is varied between 500
and 800nm. Black curve corresponds to the single slit that
is also reproduced in the inset for clarity (b) Here the period
is fixed d = 650nm and the depth of the grooves is changed
between w = 10nm up to w = 275nm. Inset shows an elec-
tron micrograph image of one of the devices analyzed. Figure
taken from (Garcia-Vidal et al., 2003a).

For the polarization we are considering (p-polarized
light), all the other components of the EM fields can be
obtained from Hy(~r). In particular, the radial compo-
nent of the Poynting vector, Sr(θ, λ), can be computed.
This magnitude governs the angular distribution of the
transmitted radiation, I(θ, λ), that can be directly evalu-
ated from Sr as: I = rSr(θ, λ)/T (λ) in the limit r →∞.
Note that this angular distribution is normalized to the
total transmittance, T (λ). In this way, I(θ, λ) = 1/π for
a single slit in the extreme subwavelength limit.

It is worth noticing that the propagator that connects
indentation α with point ~r, G(α,~r), is also related to
H

(1)
0 :

G(α,~r) =
ikω

2
√

a

∫ xα+a/2

xα−a/2

H
(1)
0 (kω|x~ux − ~r|)dx (41)

where xα is the x-coordinate of the center of indentation
α. As Eq.(40) shows, the system under consideration
behaves like an equivalent diffraction grating, in which
the EM field amplitudes at the emitters present a strong
dependence on wavelength and on the distance to the
central slit, as we shall show below.
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FIG. 52 Contour plots for I(θ, λ) for two different groove
depths, w = 0.02d in panel (a) and w = 0.2d in panel (b).
The width of the central slit and grooves is a = 0.2d. The
number of grooves that are placed symmetrically with respect
to the central slit is 20. Figure taken from (Martin-Moreno
et al., 2003).

Figure 52(a) shows I(θ, λ) for very shallow grooves,
w = 0.02d. In this case, the angular transmission profile
is well described a diffraction-like first order approxima-
tion as |Eα| ¿ |E0|. In this case, Σα À 1 (for α 6= 0)
and for the central slit E0 ≈ 2iA0/(G00 − Σ0). In this
weak coupling limit, Eα ≈ −Gα0E0/(Gαα − Σα). From
the asymptotic expansion of H

(1)
0 (kwx), |Eα| ∝ α−1/2,

while the phase of Eα is φα = kwd|α| + φ for groove α
and a value φ0, not following the previous law, for the
central slit. The origin of the weak beaming observed in
Fig.52(a) at angles θ(m,±)(λ) = arcsin(mλ/d ± 1), for
integer m is that, as the phase difference for grooves
at one of the slit is constant, it can be cancelled by
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the far field at those angles. When w is increased, Σα

and Gαα may be comparable (leading to large Eα) and
self-consistency is needed when solving the set of linear
equations (39). Indeed, close to groove cavity mode con-
dition, Re(Gαα − Σα) = 0, we find the formation of
a collective surface EM mode, characterized by a large
increase of Eα and a more pronounced beaming phe-
nomenon, as observed in Fig.52(b). As discussed by
Martin-Moreno et al. (2003), it is possible to associate
the non-convergence of iterative solutions to the set of
linear Eqs.(39) with the building-up of surface EM reso-
nances. In this case, these surface EM modes are leaky
modes as they couple to radiative modes. This inter-
pretation of the beaming phenomenon in terms of the
excitation of surface EM modes is also supported by the
coincidence of the resonant wavelength in which beaming
phenomenon at 00 occurs with the wavelength of maxi-
mum transmittance (when the same corrugation is placed
at the input surface).

Associated with the beaming effect, there is also a
focusing effect (Garcia-Vidal et al., 2003b). Figure 53
serves as an illustration of this new phenomenon. This
figure renders the E-field amplitude evaluated at the res-
onant wavelength for the case N = 10. A very elongated
focus emerge in the intermediate field regime, between
the near and far fields. The center of the focus is located
at around 100 times the wavelength of the EM field. As
in the case of beaming, this lensing ability (focal depth,
length and width) is controlled by the output corruga-
tion. A complete characterization of this focusing effect
was presented by Garcia-Vidal et al. (2003b).

FIG. 53 Electric field amplitude profile (in arbitrary units)
as a function of x and z for the case N = 10 with a = 0.08d
and w = 0.17d that correspond to the optimal parameters
for beaming. In this case d is chosen to be 500nm, as in
experimental samples discussed in section IV.A. This E-field
profile is evaluated at the resonant wavelength, λR = 1.06d.
Figure taken from (Garcia-Vidal et al., 2003b).

V. APPLICATIONS

Before the EOT phenomenon was reported in 1998,
subwavelength apertures were commonly seen as suf-
fering from poor transmission and strong diffraction.
For instance, for scanning near-field optical microscopy
(SNOM), the aperture provided the subwavlength reso-
lution but was also the source of the low signal inten-
sity, typically explained with Bethe’s theory (Betzig and
Trautman, 1992). For the past decade, the potential ap-
plications of subwavelength apertures has been revisited
with the new understanding that the EM fields can be
strongly enhanced at the apertures in the metal film. The
interest has been further stimulated by the high contrast
provided by these structures combined with the possi-
bility of tailoring their properties by sculpting the metal
surface. The two areas that have been the object of nu-
merous studies are molecular sensing and spectroscopy
and stand-alone photonic devices. These applications
will be presented in greater detail below.

A. Molecular Sensing and Spectroscopy

Surface plasmons have played a major role in sens-
ing and molecular spectroscopy for the past 30 years,
for instance in the detection of small refractive index
variations by the technique known as surface plasmon
resonance (SPR) (Nylander et al., 1982) and in surface
enhanced Raman spectroscopy (SERS) (Jeanmaire and
Van Duyne, 1977). With this in mind and considering
the involvement of SPPs in the EOT process, it is not
surprising that aperture structures have been extensively
explored for spectroscopic purposes. In addition, aper-
ture structures can be added easily to standard equip-
ment. Since applications in this area has already been
the subject of detailed reviews (Coe et al., 2008, 2006;
Gordon et al., 2008; Sinton et al., 2008), only representa-
tive studies will be outlined below. Aperture structures
have been used for molecular absorption, fluorescence,
vibrational spectroscopy (IR and Raman) and SPR.

SPR. In traditional SPR, minute refractive index varia-
tions are measured at the interface of a translucent metal
film placed on a prism. A light beam impinges on the
back of the metal film and is mostly reflected except at
an angle or wavelength which allows evanescent coupling
to SPPs on the opposite side. This coupling condition is
very sensitive to the local index and hence any molecular
process at the surface that results in a net index variation
can be detected. The transmission of hole arrays are also
very sensitive to the refractive index at the metal surface
(Krishnan et al., 2001), and the binding of biomolecules
can be followed by simply measuring a shift in the trans-
mission peaks under a microscope (Brolo et al., 2004b;
Liu and Blair, 2004). The simplicity of the setup was
however offset by low sensitivity due to the broadness
of the peaks. Further developments have brought the
sensitivity to a level where this approach is competitive
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with existing commercial SPRs apparatuses (Stark et al.,
2005; Tetz et al., 2006). For instance, by adding two
polarizers at 90 degrees in the path of the transmitted
beam, the hole array transmission peak becomes so nar-
row that refractive index variations smaller than 10−5

can be detected (Tetz et al., 2006). Isolated holes as
well as disordered patterns of holes have also been used,
demonstrating the various approaches that can be used
for SPR sensing (Dahlin et al., 2005; Gao et al., 2007;
Rindzevicius et al., 2005).

Enhanced Absorption. The use of hole arrays to mea-
sure molecular vibrational spectra illustrate very well the
potential of metallic aperture structures for spectroscopy.
In 2003, Coe and colleagues reported that an array tuned
to the IR with transmission resonances around 1000cm−1

could enhance the molecular absorption by at least two
orders of magnitude (Williams et al., 2003). The free
standing arrays covered with a molecular monolayer was
simply placed in the beam of a commercial FTIR and
the transmission spectra recorded. Except for some spec-
tral deconvolution, the approach is simple and allows to
follow chemical processes such as catalysis (Coe et al.,
2006). The enhancement is related to the lifetime of the
SPP, or the SPP propagation length, on the arrays sur-
face which increases the absorption probability by the
molecules. In the visible, the absorption enhancement is
smaller (factor ca. 10), due to the reduced SPP prop-
agation length (Dintinger et al., 2006a). Nevertheless,
because the incident beam is reconstructed at the exit
of hole array, the latter can be easily used in pump-
probe to do time resolved spectroscopy and explore, for
instance, excited state properties of very thin molecu-
lar layers or SPP-molecule interactions (Dintinger et al.,
2006b). SERS has also been investigated on hole arrays
(Brolo et al., 2004b; Lesuffleur et al., 2007a; Reilly et al.,
2007; Reilly and Rowlen, 2004). In a thorough quan-
titative analysis of the Raman signal intensity from a
non-resonant probe at monolayer concentrations placed
a hole array in Ag films reveals that out of the 6 × 107

observed enhancement factor, 105 is the result of the Ag
film roughness whereas 600 is associated with the SPP
modes at the apertures (Reilly et al., 2007).

Fluorescence. Considering the absorption enhance-
ment discussed above, it is only natural to expect that
fluorescence can also be boosted. Indeed this has been
demonstrated using both single and arrays of apertures
(Brolo et al., 2006, 2005; Levene et al., 2003; Liu and
Blair, 2003; Rignault et al., 2005). To analyze the en-
hancement, several factors have to be considered. The
fluorescence can be increased due to the enhancement
of the excitation rate but the radiative lifetime and the
fluorescence quantum yield can also be modified. For in-
stance, the fluorescence is quenched at short distances
from the metal surface (< 20 nm) and can be boosted
at longer distances (Barnes, 1998; Drexhage, 1974). Fi-
nally the environment can modify the radiation pattern
of the fluorophore. Fluorescence correlation spectroscopy
can particularly benefit from the use of a subwavelength

aperture (Edel et al., 2005; Levene et al., 2003; Rignault
et al., 2005; Wenger et al., 2008). The analyzed volume
is reduced by 103 as compared to using the focal point
of a laser beam which in turn allows the characterization
of molecular fluorescence statistics at physiological con-
centrations (Blom et al., 2006). Both the excitation and
emission can be enhanced due to an increase in the local
density of states at the aperture (Wenger et al., 2008).
Small apertures in metal films also have the advantage of
facilitating parallel assays with multiple aperture struc-
tures on a given substrate. Note that in such case, care
must be taken to avoid cross talk between the apertures
since each one can launch SPPs. The possibility of struc-
turing the metal surface around the aperture to increase
the excitation intensity and also beam the emission to-
wards the photo-detector should also be explored (Lezec
et al., 2002).

Aperture structures also lend themselves well for in-
tegration in microfluidics systems (Sinton et al., 2008),
where they can add label free sensor capacity (De Lee-
beeck et al., 2007; Ji et al., 2008; Lesuffleur et al., 2008;
Sharpe et al., 2008). The combination of optical contrast
and simplicity of the transmission mode is particularly
suited for analyzing rapidly small volumes at a given loca-
tion in the high throughput of such systems. In addition,
the ability to tailor the SPP resonance (wavelength, po-
larization sensitivity, etc) to obtain signal enhancements
should enable the measurement of various spectroscopic
signals and boost the screening capacity as the analyte
progresses in the channels. Finally, optical trapping by
single holes or hole arrays could create new opportunities
for on-chip integration and sensing (Sinton et al., 2008).

B. Photonic Devices and Methods

Perhaps the simplest application of aperture structures
is as filters and polarizing elements (Genet and Ebbesen,
2007). Periodic arrays have well defined resonances that
can be tuned with geometrical parameters (lattice sym-
metry, period, hole shape) and that can be changed by
simply changing the relative angle of the filter to the
incident beam. Such structures can also be made to
act as polarizing filters by lowering the symmetry at the
level of the holes and/or the arrays, as discussed in sec-
tions III.B.4 and III.B.7. Appropriately designed aper-
ture structures can also act as waveplates to change the
state of polarization of light (Drezet et al., 2008). On
the other hand, the large polarization anisotropy com-
bined with the peak shifts induced by the high aspect
ratios in arrays of rectangular holes (as discussed in sec-
tion III.B.4) can be exploited to generate structures of
which the color of the emitted light can be tuned through
a modulation of the polarization (DiMaio and Ballato,
2006). These color filters and polarization elements have
the advantage of being robust to high laser powers as long
as the metal absorption is negligible at the wavelength of
interest.
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Such features have stimulated quite a few studies to
use aperture structures in lasers, in particular in vertical-
cavity-surface-emitting lasers (VCSELs) (Guo et al.,
2007a, 2008; Hashizume and Koyama, 2004; Ohno et al.,
2007; Onishi et al., 2007; Shinada et al., 2003). While
single resonant apertures can provide a very small bright
subwavelength laser beam, multiple apertures structures
with polarization selectivity can stabilize and control the
polarization output angle of VCSEL’s. As a consequence,
several VCSELs on the same chip can be operated in par-
allel and coupled to one optical fiber opening new pos-
sibilities for polarization multiplexing (Hashizume and
Koyama, 2007; Onishi et al., 2007). Considerable amount
of light remains trapped in light emitting diodes (LEDs),
whether inorganic or organic, due to the high refractive
index of the materials. In addition, conductive electrodes
are necessary on both sides of the LEDs for current injec-
tion purposes which can add to the problem. The light
emitted by the diode can couple to SPPs in the elec-
trode which are then damped in the metal unless scat-
tered out and decoupled into freely propagating light. If
an array of apertures are engraved in the electrodes, the
electrode can still serve it is original function but also
provide an outcoupling mechanism of the SPPs and the
trapped light as has been demonstrated for organic LEDs
(Hsu et al., 2008; Liu et al., 2005, 2004). Such results are
very promising and need to be tested for inorganic LEDs
which remain the major product on the market.

Just as photoemitters, photodetectors can also bene-
fit from incorporating metallic apertures (Collin et al.,
2003, 2004; Ishi et al., 2005a; Laux et al., 2008). Cor-
rugated metal surfaces can act as resonant antennas to
capture the incoming light which can then be transmit-
ted through one or more apertures to the photovoltaic
elements. Smaller photovolatic elements can therefore
be used to capture the same amount of light which re-
duces the impedance of the device and thereby increases
the operational speed, which should be particularly ben-
eficial for silicon based technology where such miniature
photodetectors could be used for clocking purposes (Ishi
et al., 2005b). Recently it was also demonstrated that
interdigitated metallic corrugations could also be used to
separate different wavelengths of light impinging on the
surface which are then transmitted through individual
apertures as illustrated in Fig. 54. This photon-sorting
capacity appears very promising for spectral and polari-
metric imaging (Laux et al., 2008).

Ever since it was shown that light could be beamed
from a subwavelength aperture by texturing the output
surface of the metal surrounding the opening (Garcia-
Vidal et al., 2003b; Lezec et al., 2002; Martin-Moreno
et al., 2003)), the possibility of using such structures as
novel kind of lenses and multiplexing devices has been the
subject of many studies (Beruete et al., 2004a; Caglayan
et al., 2006a; Chang et al., 2006; Chen et al., 2006; Feng
and Dawson, 2007; Hendry et al., 2008, 2007; Huang
et al., 2007a; Kim et al., 2007, 2008; Min et al., 2008;
Shi et al., 2007). The profile of the beam emerging from

FIG. 54 Left: SEM image of a triangular lattice of slits fabri-
cated by FIB in a Au film. Inside each triangle, gratings with
different periods to couple light of different wavelengths are
superimposed. Each grating selectively send the resonating
colour to a slit where it is transmitted to the opposite side.
Right: far-field image of the light emerging from the structure
on the left. (Image courtesy of Eric Laux)

the surface is sensitive to the various modes present and
the scattering of the electromagnetic waves in the struc-
ture. Even quasi-periodic arrays can lead to focusing
(Huang et al., 2007b). The addition of all optical control
by resonant excitation (Hendry et al., 2008) or by adding
a non-linear material (Min et al., 2008) allows for further
beam control. More generally, it has been shown that
the transmission through aperture arrays can be con-
trolled optically using bistable materials (Porto et al.,
2004; Wurtz et al., 2006) and molecular excited states
(Dintinger et al., 2006b), electrically with liquid crystals
(Dickson et al., 2008; Kim et al., 1999) and semiconduc-
tors (Shaner et al., 2007), and acoustically (Gerard et al.,
2007). Such control is possible because the SPP reso-
nances which give rise to the EOT are very sensitive to
the refractive index at the metal surface which is modi-
fied in these processes. The transmission of hole arrays
has also been switched directly by optical femtosecond
pumping into the interband transitions of Au films (Halte
et al., 2005) which modifies momentarily the dielectric
function of the metal and thereby the surface plasmon
resonances. The transmission (filter) switching speeds
that have been demonstrated reach terahertz frequencies
using all optical control (Dintinger et al., 2006b).

The realization of surface plasmonic miniature pho-
tonic circuits will require, among other things, efficient
surface plasmon launchers (Ebbesen et al., 2008). Hole
arrays and individual apertures have been used to gen-
erate SPP beams at a metal surface (Baudrion et al.,
2008; Devaux et al., 2003; Kihm et al., 2008; Kim et al.,
2003). The shape of the SPP beam can be controlled
by the disposition of the holes in the array (Laluet et al.,
2007) or by texturing the metal surface near the aperture
(Lopez-Tejeira et al., 2007). The exact configuration will
depend on the application but one of the advantages of
the aperture structures is the coupling of light to SPPs
via backside illumination thereby avoiding parasitic light
and noise.

From the very beginning, it was quite clear that the
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EOT process had potential for achieving subwavelength
lithography when one considered the subwavelength di-
mensions of the apertures and the high contrast the opti-
cally thick metal films provided. Such lithography mask
would be activated by periodic corrugations with aper-
tures only at desired locations. Naturally it will have
however only work in the near or proximate field. Such
sub-diffraction lithography with sub-100 nm features has
been demonstrated using a variety of conditions (Alkaisi
et al., 1999; Chang et al., 2007a; Luo and Ishihara, 2004;
Schellenberg et al., 2005; Seo et al., 2007; Shao and Chen,
2005, 2008; Srituravanich et al., 2004; Wei et al., 2007)
and could be an alternative to the complex and costly
modern projection lithographic techniques.

VI. CONCLUSIONS AND PERSPECTIVES

From what has been presented in the previous pages,
it should be clear that much insight has been gained over
the past decade into the optics of subwavelength aper-
tures in metal films which has found applications in a
variety of areas. The contributions of various optical
modes to the transmission process resulting in high lo-
cal EM fields which more than offset the attenuation by
the cutoff function of the apertures have been identified.
The transmission can be tailored and optimized for a
given need by an appropriate choice of geometrical and
material parameters.

Maximizing the electric fields at a given location on
and/or off the surface can still benefit from further work.
Shaping the electrical fields on multiple length scales is
expected to be of significant interest for various appli-
cations. For instance for cold atom research (Alloschery
et al., 2006), the simultaneous manipulation of a large
number of optical traps, all aspects of light fields near
subwavelength apertures will be important, as the traps
have to be situated at a suitable distance from the metal
surfaces to prevent heating of the atoms through an in-
teraction with the Fermi electrons. In an alternative ap-
proach, it has been demonstrated theoretically that the
EOT phenomenon can be applied to matter waves to ma-
nipulate cold atoms such as Bose Einstein condensates
(Fernandez-Dominguez et al., 2006; Moreno et al., 2005),
which again would require tailoring the EM fields in and
around the apertures.

Furthermore, the use of nonlinear interactions to
switch the fields in the vicinity of the apertures will al-
low a high degree of spatio-temporal control of electri-
cal fields, which is both of fundamental and applied in-
terest. It is anticipated that coherent control, with or
without learning algorithms, will play an important role
to achieve the desired spatio-temporal control. By all-
optical switching of the transmission through subwave-
length apertures, not only the amplitude but also po-
larization properties may be efficiently modified on fem-
tosecond time scales thereby enabling an ultrafast con-
trol of electromagnetic fields. This will allow for time-

controlled filters, as already demonstrated at terahertz
rates (Dintinger et al., 2006b) but also time-dependent
coupling to plasmonic circuitry (Ebbesen et al., 2008).
More efforts on the texturing the output surface around
apertures could lead to miniature photonic devices with
dynamic steering and mulitplexing capacity.

The combination of several hole arrays can also lead
to improved capabilities and new properties. Already
cascading two hole arrays in the path of the light beam
can lead to increased transmission as compared to a single
array due to interlayer coupling (Ye and Zhang, 2005).
The transmission can be very strong even when no direct
line of sight exists between the apertures in the layers
(Chan et al., 2006; Teeters-Kennedy et al., 2007). The
opto-magnetic response and the left-handed behavior of
such stacks have also been analyzed in detail (Beruete
et al., 2007a,b; Li et al., 2006, 2007). Such results suggest
further exploration of the metamaterial like behavior of
coupled aperture structures.

Finally we anticipate much research activity from the
transfer and application of the EOT phenomenon to
other domains. As discussed above, the EOT process can
be applied to matter waves for the realization of aperture
based optical elements which should be ideally suited for
beams of atoms or other particles (Moreno et al., 2005).
Introducing such elements in a cold atom setup will not
be trivial but the potential seems well worth it. Gi-
ant transmissions are also observed for perforated films
involving surface phonon polaritons (Korobkin et al.,
2007). The acoustic equivalent of the EOT process has
received much attention recently (Cai et al., 2007; Chris-
tensen et al., 2007, 2008; Estrada et al., 2008; Lu. et al.,
2007; Mei et al., 2008; Zhou and Kriegsmann, 2007). Be-
yond the interesting fundamental aspects, the applica-
tions to acoustics open numerous possibilities from sound
insulation to beaming which could rapidly find practical
use.

As stated earlier, the potential of metallic aperture
structures lies in the high contrast and high local fields
they provide and in the simplicity of their implementa-
tion. The capacity to further texture the metal around
the apertures adds another important element which has
not yet been completely evaluated. It is therfore expected
that this will not only improve existing applications but
also expand them. Overall, many developments can be
expected in the years to come whether in optics or in
other domains as properties of aperture structures are
fully explored.

Acknowledgements

APPENDIX A: Modal expansion formalism

In this appendix we describe the details of the modal
expansion framework presented in section I.B, which has
been used in this review paper to describe the light trans-
mission through subwavelength apertures.
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By denoting with z the direction normal to the film,
we take the metal-dielectric interfaces to be located at
z = 0 and z = h. We assume a rectangular supercell,
with lattice parameters Lx and Ly, along the x and y
axis, respectively (see Fig.2). This supercell may be real
(if we are considering an infinitely periodic system) or
artificial, if the system is finite. In this latter case, the
limit Lx, Ly →∞ must be taken.

First, we analyze the expansion of the EM fields in the
three different regions (reflection, perforated metal and
transmission) defining the structure. For a incident plane
wave with parallel wavevector ~k0 and polarization σ0, the
parallel components of the EM fields at z = 0− (at the
metal interface in which radiation is impinging on) can
be written, in terms of the reflection coefficients r~kσ, as:

| ~E(z = 0−) > = |~k0σ0 > +
∑

~kσ

r~kσ|~kσ > (A1)

−~uz × | ~H(z = 0−) > = Y~k0σ0
|~k0σ0 > −

∑

~kσ

r~kσY~kσ|~kσ >,

where we have used a Dirac notation, and expressed the
bi-vectors < ~r| ~E >= ~E(~r) = (Ex(~r), Ey(~r))T and ~H =
(Hx,Hy)T (T standing for transposition) in terms of the
EM plane wave eigenmodes, |~kσ >. The expressions for
these eigenmodes in real space are:

< ~r|~kp > = (kx, ky)T exp(ı~k~r)/
√

LxLy|k|2 (A2)

< ~r|~ks > = (−ky, kx)T exp(ı~k~r)/
√

LxLy|k|2.

These modes are orthonormal when integrated over a
unit cell, i.e. < ~kσ|~k′σ′ >= δ~k,~k′δσ,σ′ , where δ is the
Kronecker delta. The electric and magnetic fields in Eqs.
(A1) are related through the admittances Y~ks = kz/kω

and Y~kp = ε1kω/kz (for s- and p- polarization, respec-
tively), where kω = ω/c (ω is the frequency and c the
speed of light) and |k|2+k2

z = k2
ω. Notice that, according

to Bloch’s theorem, ~k = ~k0 + ~kR, ~kR being a (supercell)
reciprocal lattice vector.

In a similar way, in the region of transmission, the EM
fields at z = h+ can be expressed as a function of the
transmission amplitudes, t~kσ, as

| ~E(z = h+) > =
∑

~kσ

t~kσ|~kσ > (A3)

−~uz × | ~H(z = h+) > =
∑

~kσ

t~kσY~kσ|~kσ >

For the modal expansion of the EM fields within the in-
dentations, we use a compact notation by denoting with
“object” α to any waveguide EM mode considered in the
expansion. Therefore, an object is characterized by the
indentation it belongs to, by its polarization (TM or TE
modes) and by the indexes related to its mode spatial

dependence. All that needs to be known are the elec-
tric field bivectors, |α >, and the propagation constants,
qzα, associated with the object. For indentations with
simple cross sections as slits or rectangular and circular
holes, the required expressions for |α > and qzα can be
found analytically. As in the case of the plane waves, the
magnetic field can be related to the electric field bivector
as −~uz × | ~H >α= ±Yα|α >, with the admittance, Yα,
being Yα = qzα/kω for TE modes, while for TM modes
Yα = kω/qzα. Then, the electric and magnetic fields
inside the indentations can be written in terms of the
expansion coefficients Aα, Bα as:

| ~E(z) > =
∑
α

|α >
[
Aαeıqzαz + Bαe−ıqzαz

]
(A4)

− ~uz × | ~H(z) > =
∑
α

|α > Yα

[
Aαeıqzαz −Bαe−ıqzαz

]

The way to extract the complete set of unknowns
{Aα, Bα, t~k′σ, r~kσ} is by matching the EM fields appro-
priately at the two horizontal interfaces (z = 0 and
z = h). The parallel components of the electric field
must be continuous over the whole surface whereas the
magnetic field counterparts are continuous only over the
apertures. As we can not consider the infinite number
of modes in the structure (i.e., the sums in Eqs.(A1-A4)
must be truncated), these matching relations can not be
fulfilled at every point, so the matching procedure should
not be done in real space. Instead, in the truncated
Hilbert space, the correct procedure is to project each
matching equation onto the set of modes which spans
the spatial region over which the equation is defined.
Hence, continuity of the E-field components should be
expanded onto plane waves (< ~kσ|) and the ones related
to the H-field should be project onto waveguide modes
< α|. After this matching procedure, we end-up with a
system of linear equations for the expansion coefficients,
{Aα, Bα}. It is convenient to define the related quanti-
ties, Eα ≡ Aα + Bα and E′

α ≡ −(Aαeiqzαh + Bαe−iqzαh),
which are the modal amplitudes of the E-field at the
input and output interfaces of the indentations, respec-
tively. The set {Eα, E′

α} satisfies:

(Gαα − Σα)Eα +
∑

β 6=α

GαβEβ −GV
α E′

α = Iα

(G′γγ − Σγ)E′
γ +

∑

ν 6=γ

G′γνE′
ν −GV

γ Eγ = 0 (A5)

This is the basic set of linear equations [in the main
text, Eqs.(1)] used throughout this review article to
describe the transmission properties of different struc-
tures containing subwavelength apertures. The differ-
ent terms appearing in these “tight-binding” like equa-
tions have the following mathematical expressions. The
illumination term, Iα, is proportional to the overlap in-
tegral between object α and the incident plane wave:
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Iα = 2iY~k0σ0
< ~k0σ0|α >. Σα is related to the bouncing

back and forth of the EM-fields inside object α and for
an aperture its expression is Σα = Yα/ tan(qzαh). In the
case in which the indentation does not completely tres-
pass the metal (a dimple in 2D or a groove in 1D), the ex-
pression for Σα is the same but h is replaced by the depth
of the indentation. The coupling between the two sides
of the aperture is accounted for GV

α = Yα/ sin(qzαh). In
the case of a waveguide mode α associated with a dimple
or a groove, GV

α = 0 leading to E′
α = 0.

The term Gαβ controls the EM-coupling between ob-
jects α and β:

Gαβ = i
∑

~kσ

Y~kσ < α|~kσ >< ~kσ|β > (A6)

where the overlap < α|~kσ > involves the evaluation of
an integral in real space:

< α|~kσ >=
∫

d~r < α|~r >< ~r|~kσ > (A7)

If the system is periodic, Gαβ can be easily calculated
through the previous discrete sum [Eq.(A6)], by including
enough diffraction waves.

Within the modal expansion formalism, the finite di-
electric function of a real metal can be incorporated in
an approximated way by means of the surface impedance
boundary conditions (SIBC). The important point of this
approach is that the system of linear equations (A5) still
holds, only the different magnitudes appearing on it differ
from their PEC values:

Iα =
2iY~k0σ0

< ~k0σ0|α >

1 + ZSY~k0σ0

(A8)

Σα = iYα
eiqzαh(1 + ZSYα) + e−iqzαh(1− ZSYα)

eiqzαh(1 + ZSYα)2 − e−iqzαh(1− ZSYα)2

GV
α =

2iYα

eiqzαh(1 + ZSYα)2 − e−iqzαh(1− ZSYα)2

where ZS = 1/
√

εM (ω) is the surface impedance of the
metal. As in the PEC case, the expression for Σα for a
dimple or a groove is the same but h must be replaced by
the depth of the indentation. The coupling term, Gαβ ,
also depends on ZS :

Gαβ = i
∑

~kσ

Y~kσ

1 + ZSY~kσ

< α|~kσ >< ~kσ|β > (A9)

Let us now describe how to evaluate the different two-
media scattering coefficients as depicted in Fig. 3 by
using the modal expansion formalism. By applying a
matching procedure equivalent to that used for obtain-
ing the set of Eqs.(A5), we can relate the different two-
media scattering coefficients with those magnitudes ap-
pearing in the general set of Eqs.(A5). For example, for

the scattering process depicted in Fig.3(a), we obtain the
following set of equations for the different τ12

α :

(Gαα + iYα)τ12
α +

∑

β 6=α

Gαβτ12
β = Iα (A10)

From them, it is then possible to extract the reflection
coefficients associated with the interface I-II, ρ12

~kσ
:

ρ12
~kσ

= −δ~k~k0
δσσ0 +

∑
α

< ~kσ|α > τ12
α (A11)

The second two-media scattering problem is schemat-
ically depicted in Figure 3(b). The matching of the par-
allel components of the EM fields leads to a system of
linear equations for ρ23

αβ :

(G′γγ + iYγ)ρ23
αγ +

∑

β 6=γ

G′γβρ23
αβ = iYγδγα −G′γα (A12)

The transmission coefficients in medium III can be ex-
tracted from the knowledge of {ρ23

αβ} by means of

τ23
α,~kσ

=< ~kσ|α > +
∑

β

ρ23
αβ < ~kσ|β > (A13)

The procedure for extracting the two-media coeffi-
cients associated with the II-I scattering problem is com-
pletely equivalent to that of the II-III previously dis-
cussed.

Up to this point, we have described the theoretical
framework able to deal with infinite periodic structures
(2D arrays of holes or 1D arrays of slits). The only differ-
ence between infinite and finite structures resides in the
calculation of Gαβ (the rest of the magnitudes appearing
in Eqs.(A5) are the same). When treating a finite set of
indentations, the limit Lx, Ly → ∞ must be taken. In
this way, Gαβ is calculated by means of an integral over
diffraction modes:

Gαβ = i
LxLy

(2π)2
∑

σ

∫
d~k

Y~kσ

1 + ZSY~kσ

< α|~kσ >< ~kσ|β >

(A14)
where the expression for a PEC can be obtained from
(A14) by simply putting ZS = 0. In Eq.(A14), the inte-
gration is over all possible ~k (in-plane components of the
wavevector) and the factor LxLy cancels out with that
coming from the normalization of the EM plane waves.
Alternatively, Gαβ can be calculated as a double integral
in real space using the expression:

Gαβ ≡< α|Ĝ|β >=
∫ ∫

d~rd~r′ < α|~r > Ĝ(~r, ~r′) < ~r′|β >

(A15)
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where Ĝ(~r, ~r′) is related to the Green’s dyadic tensor in
a metal-dielectric interface whose formal expression can
be extracted by comparing Eq.(A15) with Eq.(A14):

Ĝ(~r, ~r′) =
iLxLy

(2π)2

∫
d~k

Y~kσ

1 + ZSY~kσ

< ~r|~kσ >< ~kσ|~r′ >

(A16)
Thus, the dyadic Ĝ(~r, ~r′) controls the EM coupling be-

tween apertures. In order to illustrate its spatial depen-
dence, let us concentrate in the case of 1D geometries
illuminated by p-polarized light (and with zero compo-
nent of the incident wavevector along the axis of symme-
try of the structure). The Green’s dyadic tensor for the
2D case (holes) is more complex and further details on
how to calculate it can be found in (Bravo-Abad et al.,
2004a). The 1D Green’s function for p-polarized light
within the SIBC approach, G(x, x′), can be written as:

G(x, x′) =
i

2π

∫ ∞

−∞
dk

kw√
k2

w − k2 + ZS

eik(x−x′) (A17)

It is worth noticing that the corresponding expression
for a PEC [ZS = 0 in Eq.(A17)] can be analytically eval-
uated and is related to the zero-order Hankel function of
the first kind, H

(1)
0 :

GPEC(x, x′) =
iπ

λ
H

(1)
0 (kw|x− x′|) (A18)

It is interesting to compare the behavior of the 1D
Green’s dyadic function for a real metal [Eq.(A17)] with
that of a PEC, Eq.(A18). As a difference with the PEC
case, G(x, x′) must be calculated numerically. For a good
metal (silver or gold), however, this integral is domi-
nated by the single pole of the integrand, due to the
presence of SPPs (recall that, within SIBC approach,
the dispersion relation of SPPs reads kz = −ZSkω, i.e.,
kSPP = kω

√
1− Z2

S). Isolating the contribution from
the pole gives an approximation to G(x, x′):

GSPP (x, x′) = − ZS√
1− Z2

S

k2
ωeikSP P |x−x′| (A19)

The behavior of the 1D Green’s dyadic function is il-
lustrated in Fig.55, which renders G(x, x′) for silver at
λ = 600nm. Together with the exact numerical evalu-
ation of Eq.(A17), we also present the calculation for a
PEC [Eq.(A18)] and the “asymptotic” expression, GSPP

as obtained from Eq.(A19). As Fig. 55 shows, the ex-
act G(x, x′) resembles the PEC result at very small dis-
tances |x − x′| ¿ λ and is well approximated by GSPP

for |x− x′| ≥ 2λ.
The formulation in real space previously described

could also be used to compute the optical properties
of an infinite periodic system. In this case, we know
that the modal coefficients must satisfy Bloch’s theorem,
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FIG. 55 1D Green’s dyadic function (real and imaginary
parts) for a metal-vacuum interface for p-polarized light of
λ = 600nm. The blue curves corresponds the SIBC approach
[Eq.(A17)] whereas the black curves are for a PEC [Eq.(A18)].
The red curves display the SPP contribution to G, as given
by Eq.(A19).

Eα(~Rn) = Eαei~k0 ~Rn . Then, the coupling term between
Bloch’s modes α and β can be evaluated in real space as
a sum over lattice locations:

Gαβ =
∑

~Rm

G
~Rn~Rm

αβ ei~k0(~Rm−~Rn) (A20)

where G
~Rn

~Rm

αβ is the EM coupling between waveguide
mode α of hole located at ~Rn and waveguide mode
β belonging to a hole placed in ~Rm: G

~Rn
~Rm

αβ =<

α(~Rn)|Ĝ|β(~Rm) >. Of course, expression (A20), which
involves sums of difficult Sommerfeld integrals, is numer-
ically much more complicated than Eq.(A6). However,
Eq.(A20) is valuable as it sheds light on the origin of
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the divergencies of Gαβ : they originate from construc-
tive sums of re-illumination processes of light coming
from other holes (Bravo-Abad et al., 2004a; De Abajo
and Saenz, 2005).
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