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Abstract. Rare events are ubiquitous in many different fields, yet they are

notoriously difficult to simulate because few, if any, events are observed in a

conventional simulation run. Over the past several decades, specialised simulation

methods have been developed to overcome this problem. We review one recently-

developed class of such methods, known as Forward Flux Sampling. Forward

Flux Sampling uses a series of interfaces between the initial and final states to

calculate rate constants and generate transition paths, for rare events in equilibrium

or nonequilibrium systems with stochastic dynamics. This review draws together

a number of recent advances, summarises several applications of the method and

highlights challenges that remain to be overcome.
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1. Introduction

“Rare events” are fluctuation-driven transitions that have a low probability of occurring,

but often have important consequences when they do occur. Examples are ubiquitous,

ranging from large-scale events such as earthquakes, global climate changes, financial

crashes and telecommunications network failures, to smaller-scale processes typical of

soft condensed matter and biological physics, such as activated chemical reactions,

nucleation phenomena, protein conformational changes, switching in biochemical

networks and translocation through pores. Computer simulation has an important

role to play in understanding rare events, especially as they are often difficult to

study experimentally. However, rare events are notoriously difficult to simulate, simply

because in the typical simulation time few, if any, events happen. To address this issue,

specialised techniques for simulating rare events have been developed in various different

contexts over many years. Excellent reviews have already been published on this subject

in the fields of condensed matter, chemical and biological physics [1, 2, 3, 4, 5, 6]. In this

short topical review article, we focus only on one recently developed class of techniques,

known as Forward Flux Sampling (FFS). Although this class of methods is still rather

young (at least in this field), it has been applied to a variety of different problems, and

several variants and improvements to the methodology have recently been proposed. A

number of potential problems have also been highlighted. This article aims to bring

together these developments, together with practical advice on using the methods and

suggestions for directions of future research. In the late stages of preparation of this

article, we became aware of an almost simultaneous review, also focusing on FFS, by

Escobedo et al [7]. Although some duplication of material between these articles is

inevitable, we hope to present a complementary perspective.

Typically, when studying a rare event process, one wishes to know how often the

event happens, or equivalently the rate constant kAB for transitions from an initial state

A to a final state B. If the transition occurs between two time-invariant steady states

and is itself is fast compared to k−1
AB, the rate constant kAB will be time-invariant. The

distribution function F (T ) for the time taken for an equilibrated configuration in the A

state to “escape” to the B state is then given by:

F (T ) = kAB e
−kABT (1)

One is usually also interested in the mechanism by which the rare event process happens.

For example, for a crystal nucleation problem, one might wish to know the crystal

structure and shape of the growing nucleus, or for a protein folding problem, in what

order the secondary structure elements form. Information on the mechanism can be

obtained by sampling the transition path ensemble (TPE), which is the ensemble of

trajectories corresponding to transitions from A to B. However, extracting simple and

intuitive conclusions from these transition paths can sometimes be difficult.

The FFS methodology discussed here was originally developed for simulations of

rare events in nonequilibrium systems, although it can also be used for equilibrium

systems. In this review, we consider “equilibrium” systems to be those whose dynamical
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rules obey detailed balance [regardless of whether they are actually in a stationary state].

Detailed balance has the consequence that for these systems, the stationary phase space

probability distribution is given by the Boltzmann distribution [1], and the system

dynamics is time reversible. In contrast, nonequilibrium dynamical systems do not

obey detailed balance, their stationary phase space distribution is not known a priori

and their dynamics are not time reversible. Nonequilibrium systems present a host of

important and interesting rare event processes. However, these systems pose particular

challenges for rare event simulation methods, as we shall discuss.

2. Background

In this section, we present a brief overview of rare event simulation methods in the

area of condensed matter, chemical and biological physics. Our aim is to provide the

background information necessary for the subsequent discussion of the FFS technique,

rather than to give a comprehensive review. Consequently, some important methods

are omitted completely, or only discussed very briefly, for which we apologise.

2.1. “Bennett-Chandler” type methods

“Bennett-Chandler”, or “reactive flux” methods are based on the transition state theory

(TST) expression for the rate constant [8, 9, 10]. In TST, phase space is partitioned

by a dividing surface between “reactant” and “product” regions. The rate constant is

given by:

kTST
AB =

〈|q̇|〉

2

e−W (q∗)/(kBT )

∫ q∗

−∞
dqe−W (q∗)/(kBT )

(2)

where q is an order parameter that separates the reactant and product regions and

measures the progress of the system between these regions, q∗ defines the dividing

surface and W (q) is the reversible work needed to move the system from state A to

a value q of the order parameter. This is proportional to the free energy, projected

onto the coordinate q. The exponential term describes the equilibrium (Boltzmann)

probability of finding the system at the dividing surface relative to the A state, while

the term 〈|q̇|〉/2 is the average velocity of the system from reactants to products across

the dividing surface. Eq.(2) assumes that all crossings of the dividing surface contribute

to the rate constant, while in reality a single trajectory can cross the dividing surface

many times. The “reactive flux” formalism therefore corrects the TST expression with

a “transmission coefficient” κ, which is less than unity [11, 12, 3]:

kAB = κ(t)kTST
AB (3)

The transmission coefficient κ(t) replaces the factor 〈|q̇|〉/2 in Eq.(2) by the average

initial velocity of trajectories, initiated from an equilibrium distribution at q∗, which

are in the product basin after time t. For times intermediate between the molecular

timescale and the timescale for transitions between the reactant and product basins, κ(t)
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is independent of time; for this reason we do not include an explicit time dependence

for kAB in Eq.(3). In Bennett-Chandler type methods, one chooses an order parameter

q and computes the free energy profile W (q) using a method such as Umbrella Sampling

[13, 14, 15]. The transmission coefficient κ is then computed by initiating a large number

of trajectories from an equilibrium distribution restricted to q = q∗ (usually taken to be

the maximum of W (q)), and counting the fraction of these that end up in the product

state. Bennett-Chandler-type methods are conceptually simple, easy to implement,

and have been widely used. However, because of the assumption of the Boltzmann

distribution inherent in Eq.(2), these methods are not suitable for nonequilibrium

systems. These methods also tend to be rather sensitive to poor choices of the order

parameter, since this will result in a small value of κ which is hard to compute accurately.

2.2. Transition Path Sampling

Transition Path Sampling (TPS) methods [16, 17, 3, 2] focus directly on sampling the

transition path ensemble (TPE) using a Monte-Carlo procedure in trajectory space. A

single trajectory connecting the reactant and product regions of phase space is generated,

and this is used to produce new trajectories. Several methods are available for generating

new trajectories, of which probably the most widely used is “shooting”. Here, a time-

slice from the initial trajectory is then selected, and a small change is made, usually

to the momentum coordinates. A new trajectory is then generated by integrating the

system dynamics forward and backward in time from this slightly altered phase space

point. If the new trajectory still joins the reactant and product basins, it is accepted

into or rejected from a collection of computed transition paths with a probability that

depends on its path weight, the weight of a path of length n steps with phase space

coordinates {x} being given by:

P[{x}] = ρ(x0)
n−1
∏

i=0

p(xi → xi+1) (4)

where ρ(x0) is the phase space probability density for the initial point in the path

and p(xi → xi+1) is the probability of making a simulation step from xi to xi+1. In

practice, for Molecular Dynamics simulations in the NVE ensemble, one can simply

accept all generated paths that connect the reactant and product basins. However,

because Eq.(4) requires knowledge of the phase space distribution ρ0, TPS is not suitable

for nonequilibrium systems (although a TPS method for nonequilibrium systems has

been proposed [18]).

Computation of the rate constant kAB in TPS is based on the correlation function

C(t) [3]:

C(t) =
〈hA(x0)hB(xt)〉

〈hA(x0)〉
(5)

where hA(x) is unity in the reactant basin and zero elsewhere, and hB(x) is unity in the

product basin and zero elsewhere. C(t) is the probability of finding the system in the

product basin at time t, given that at time 0 it was in the reactant basin. For times
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longer than the molecular timescale, C(t) ≈ kABt. In practice, one computes C(t) in

two stages: a TPS simulation between reactant and product regions, and an “umbrella

sampling” procedure in which the end points of transition paths are constrained to lie in

a series of windows between A and B, defined by an order parameter. More information

about TPS, and about the many improvements to the method which have been made,

are given in Refs [16, 17, 3, 2, 4, 6]. TPS has the advantage that it samples paths

without the need for an order parameter, although an order parameter is needed to

compute the rate constant.

2.3. Transition Interface Sampling

Transition Interface Sampling (TIS) [19, 5] is a variant of TPS in which the rate constant

is calculated differently. In TIS, phase space is divided up by a series of non-intersecting

interfaces, defined by an order parameter λ, such that the reactant region is defined by

λ < λA = λ0 and the product region by λ > λB = λn. The expression for kAB used in

TIS is then [19, 5, 20]:

kAB =
ΦA,n

hA
=

ΦA,0

hA
P (λn|λ0) (6)

where ΦA,n is the steady-state flux of trajectories leaving the A state and reaching

interface λn (i.e. the B state), and hA is a history-dependent function that is unity

if a trajectory was more recently in A than in B, and zero otherwise. The right-hand

side of Eq.(6) expresses the fact that the flux of trajectories that leave A and cross λn

is equal to the flux of those leaving A and crossing λ0, multiplied by the probability

P (λn|λ0) that a trajectory that crosses λ0, coming from A, will subsequently reach λn

before returning to A. The flux ΦA,0 is easy to calculate, since trajectories coming from

A cross λ0 frequently. However, the probability P (λn|λ0) is small and thus difficult to

calculate. This difficulty is overcome by expressing P (λn|λ0) as [19]:

P (λn|λ0) =
n−1
∏

i=0

P (λi+1|λi) (7)

where the product is over all interfaces and P (λi+1|λi) is the conditional probability that

a trajectory that comes from A and crosses λi for the first time will subsequently reach

λi+1 instead of returning to A. We note that expression (7) does not involve a Markovian

approximation, because the probabilities P (λi+1|λi) are conditional on the history of the

trajectories reaching λi. Expressions (6) and (7) are known as the “effective positive

flux” formulation of the rate constant.

In TIS, the flux ΦA,0 is computed using a “brute-force” simulation in the A basin.

TPS is then used to sample the ensemble of transition paths from the reactant basin to

λi (using as an initial path one of the successful paths to λi−1). The fraction of transition

paths ultimately reaching λi+1, as opposed to λA, in the ensemble of paths from A to λi,

is an estimate for P (λi+1|λi). It is important to recognise that in TIS, the interfaces are

simply used as a convenient way of dividing the transition paths into sections. The order
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parameter need not correspond to the true reaction coordinate and it is not assumed

that the system loses its “memory”, or becomes uncorrelated, between one interface and

the next. However, a version of TIS in which one does assume decorrelation between

interfaces, Partial Path Transition Interface Sampling (PPTIS) [21], is more efficient

for diffusive transitions. A number of improvements to TIS have been developed in

recent years, including computation of free-energy barriers [22], swapping partial paths

between ensembles at different interfaces [5, 23, 24] and sampling transitions to multiple

final states [25].

2.4. Milestoning

The “Milestoning” method [26, 27] also uses a series of interfaces between the initial

and final states, defined by an order parameter λ. In contrast to TIS, milestoning does

assume memory loss between interfaces. Short simulation trajectories are initiated from

quasi-equilibrium (or first hitting point [28]) distributions at interface λi, and continued

until they reach the adjacent interfaces λi−1 or λi+1. From these trajectories, first

passage time distributions for transitions between interfaces are obtained, and these

can be used to compute the time evolution of the system. In contrast to the other

methods discussed above (and FFS), Milestoning does not assume that the transition is

a simple two-state process with exponential kinetics. A new variant of this method,

“Markovian milestoning”, has recently been proposed [29]: here, the interfaces are

defined by Voronoi polyhedra (see Section 5.1) and the kinetic information is obtained

by running trajectories confined to these interfaces by reflecting boundary conditions.

2.5. The Weighted Ensemble method

The Weighted Ensemble method of Huber and Kim [30] is also an interface-based

method, and is closely related to FFS. This method divides the phase space region

between the reactant and product states into a series of bins, and simulates a collection

of “walkers”, each of which carries a probability weight, and which either merge or

divide as they progress between bins, so as to maintain the number of walkers in each

bin. By monitoring the flux of walkers across the interfaces the transition rate constant

can be efficiently computed.

2.6. The Finite Temperature String Method

The Finite Temperature String method (FTS) is different in concept to the above

methods, since it focuses on the “principal curve” between A and B [31]. This is the path

that follows the averaged position of the system, projected onto a series of hyperplanes

perpendicular to the path itself. For systems with overdamped Langevin dynamics, the

free energy along the principal curve can be directly related to the committor function

[31]. The FTS method defines a string of “beads”, or configurations, between A and

B, and iteratively refines the positions of the beads until the string corresponds to
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the principal curve. In the original version of FTS, this was achieved by performing

constrained simulations on the hyperplanes perpendicular to the string. However, a

simplified version has recently been published [32] in which one instead defines Voronoi

polyhedra around the beads (see Section 5.1) and simulates multiple copies of the system,

each one constrained to lie inside one of the Voronoi polyhedra. The beads then evolve

towards the average configuration obtained in the simulation for that polyhedron.

3. Forward flux sampling

Forward flux sampling (FFS) methods [33, 34] were developed to simulate rare events

in nonequilibrium systems with stochastic dynamics. Nonequilibrium systems are

ubiquitous in condensed matter, chemical and biological physics. However, their lack of

detailed balance and the consequent absence of a Boltzmann-like stationary distribution

function and lack of time reversal symmetry mean that Bennett-Chandler-type methods,

TPS, TIS, Milestoning, and most versions of the string method, are not suitable for these

systems. FFS is thus one of only a few methods available for simulating rare events

in nonequilibrium systems. For equilibrium systems, FFS provides an alternative to

the above methods. The development of FFS was inspired by TIS. However, we have

subsequently become aware of the prior existence of a similar class of methods used in

telecommunications modelling, known as RESTART [35, 36, 37, 38, 39].

FFS, like TIS, uses a series of interfaces between the initial and final states

to calculate the transition rate and to sample the transition path ensemble. These

interfaces are defined by an order parameter λ: the initial (A) state is defined by

λ < λA = λ0, the final (B) state by λ > λB = λn, and the remaining interfaces are

defined by intermediate values of λ: {λi . . . λn−1}. The method requires that λi+1 > λi

for all i, and that any trajectory from A to B passes through each interface in turn. This

places no restriction on the trajectories, which are free to loop back to recross previous

interfaces any number of times. Like TIS, FFS uses the effective positive flux expression

for the rate constant, Eqs. (6) and (7). However, FFS differs fundamentally from

TIS in the manner in which the conditional probabilities P (λi+1|λi) and the transition

paths are computed. In FFS, the system dynamics are integrated forward in time only,

eliminating the requirement for detailed balance.

Broadly speaking, FFS works by “capitalising” on fluctuations of the system

dynamics in the direction of the order parameter. When the system undergoes a

fluctuation that reaches the first interface, its configuration is stored. This stored

configuration is then used as the starting point for repeated “trial runs”, to evaluate the

probability that the system will reach the next interface. These trial runs are continued

until the system reaches either the next interface (a “success”), or returns to the A

state (a “failure”). The end points of successful trials are used to initiate new trial runs,

to the subsequent interface. The result is that the system is driven in a ratchet-like

manner from the initial to the final state, without imposing any bias on the microscopic

dynamics. The probabilities P (λi+1|λi) of Eqs. (6) and (7) are obtained from the
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fraction of successful trial runs at each interface, and these can be multiplied by the flux

of trajectories crossing the first interface to obtain the rate constant kAB. A correctly

weighted collection of transition paths is obtained by tracing back trial runs from the

final state to the initial state [34]. Because each trial run starts from the final point of a

previous trial run, the correct system dynamics is preserved along the whole transition

path. We note that although FFS does assume that transitions between A and B are

uncorrelated and that the rate kAB is time-invariant, there is no requirement for the B

state to be stable. Although FFS has generally been used for systems with stable A and

B states, it can also be used to predict the probability of rare fluctuations from a stable

A state, along a chosen order parameter, to an arbitrarily positioned end point λn [40].

It is also important to note that FFS is a static sampling technique, in which each new

transition path is generated from scratch. This is in contrast to dynamic methods such

as TPS and TIS, in which new transition paths are generated by modifying already

existing ones. The advantage of static methods is that they generate uncorrelated

samples, making them likely to explore a wider range of path space. However, static

methods may also waste computational effort by repeatedly sampling blind alleys.

B

λ λ λ λ λ0 1 2 3 n

A

Figure 1. Schematic illustration of the initial simulation in the A state.

Configurations corresponding to the points in the trajectory marked with crosses are

stored.

Within the FFS framework, various different protocols have been proposed for firing

trial runs and storing configurations at the interfaces. All these variants begin with a

simulation in the A state, illustrated schematically in Figure 1. This simulation is used to

compute the flux ΦA,0/hA of trajectories out of the A state [Eq.(6)], as well as to obtain

a sample of configurations corresponding to crossings of interface λ0, to act as starting

points for the trial run procedure. The system is initiated in the A state, and (after an

initial equilibration period) the time evolution of the order parameter λ is monitored.

When the system crosses λ0 coming from A (i.e. in the direction of increasing λ), a

counter is incremented, and the system configuration is stored. The simulation is then

continued until N0 configurations have been stored. The flux ΦA,0/hA is obtained by

dividing the number of crossings N0 by the total simulation time (which includes time
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spent on fluctuations away from the A state but does not include time spent in the B

state [34]).

The FFS variants differ in the way the probability P (λn|λ0) is computed. In our

original presentation of FFS, Refs [33] and [34], we described three different variants.

These are outlined below. Since Ref [34], more advanced versions of some of these

algorithms have been proposed [41, 42, 40]. These advances are discussed in Sections 4,

5 and 6.

3.1. FFS variants
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B

λ λ λ λ λ0 1 2 3 n

A

Figure 2. Schematic illustration of the DFFS method. An ensemble of branched

transition paths is generated simultaneously by firing Mi trial runs from randomly

chosen configurations at each interface in turn. The different colours denote the trial

runs fired in the different stages of the procedure (in the order red, blue, green, purple).

3.1.1. “Direct” FFS The original version of FFS [33, 34] has subsequently been termed

“Direct-FFS”, or DFFS [41]. In this algorithm, many transition paths are generated

simultaneously, using the following procedure (illustrated in Figure 2):

(i) Carry out a simulation in the A basin to generate a collection of N0 configurations

corresponding to crossings of interface λ0, as well as an estimate of the flux ΦA,0/hA.

(ii) Choose a configuration from this collection at random and use it to initiate a trial

run which is continued until it either reaches λ1 or returns to λ0. If λ1 is reached,

store the end point of the trial run. Repeat this M0 times, each time choosing a

random starting configuration from the collection at λ0. Compute P (λ1|λ0) from

the fraction of successful trial runs.

(iii) Repeat step (ii) using the stored configurations at λ1 to initiate M1 trial runs to

λ2 or back to λ0. Generate a new collection of configurations at λ2 from the end

points of successful trials. Estimate P (λ2|λ1) from the fraction of successful trials.

(iv) Repeat until λn is reached.
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Statistical errors can be computed by repeating the DFFS procedure several times or

using analytical expressions (see Section 4). DFFS is straightforward to implement and

its computational efficiency is rather robust to the choice of parameters (see Section

4), although it does require the storage of many configurations at each interface, which

may be an issue for large-scale simulations. In order to extract transition paths from a

DFFS simulation, one needs to record the connectivity history of all the trial runs. This

allows one to piece together a posteriori complete transition paths from the full set of

stored trial runs. Finally, it is important to note that the transition paths generated by

DFFS are branched: many paths may start from a single configuration at λ0.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

B

λ λ λ λ λ0 1 2 3 n

A

Figure 3. Schematic illustration of the BG algorithm. Branched transition paths are

generated by firing ki trials from the end points at λi of all successful trials from λi−1.

The colours denote different branched paths, which are generated sequentially.

3.1.2. Branched Growth The “Branched Growth” (BG) algorithm [34] generates

branched transition paths from A to B one at a time, rather than simultaneously as

in DFFS. The algorithm proceeds as follows (see Figure 3):

(i) Evaluate ΦA,0/hA and generate configurations at λ0 using a simulation in the A

basin.

(ii) For the first configuration at λ0, fire k0 trial runs, which are continued until λ1 or

λ0 is reached. Store the end configurations of all successful trial runs.

(iii) From each of these stored points at λ1, initiate k1 trial runs to λ2 or back to λ0.

Store the end points of successful trials.

(iv) Iterate this procedure over all subsequent interfaces until B is reached, or until no

trials are successful at a given interface. This generates a branching tree of paths

all starting from the same configuration at λ0. Estimate P (λi+1|λi) as the total

number of trials to reach B, divided by the total possible number
∏n−1

i=0 ki.

(v) Repeat steps (ii) to (iv) for subsequent configurations at λ0 and average the estimate

for PB over many path generations (note that any zero values should be included

in the average).



Forward flux sampling 12

The BG method can easily be coded as a recursive algorithm, and has the potential

advantage that it does not require storage of large numbers of configurations at each

interface, and that extraction of transition paths is simpler than for DFFS (since these

are generated one at a time). The BG method is however rather sensitive to parameter

choice (see Section 4). If the number of trial runs per interface is too large, the method

generates highly branched transitions paths, so that sampling the later interfaces is

computationally expensive. If too few trials are chosen per interface, few paths succeed

in reaching the later interfaces. However, Borrero and Escobedo have proposed a method

for automatic optimisation of the parameters [42], which is discussed in Section 4. The

same authors have used the BG method as the basis for the FFS-LSE method [41],

discussed in Section 5.3.
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Figure 4. Schematic illustration of the RB method. Unbranched transition paths are

generated one at a time by firing ki trials from one randomly chosen end point at λi

from the successful trials fired from λi−1.

3.1.3. The “Rosenbluth-like” method The Rosenbluth-like (RB) FFS variant allows the

sequential generation of unbranched transition paths [34]. It draws on a close analogy

between FFS and the sampling of polymer configurations in Monte Carlo simulations.

In a polymer simulation, one seeks to grow a new polymer chain, monomer by monomer,

in an environment crowded with other polymers. This is analogous to the interface-by-

interface growth of a transition path in FFS. The RB FFS variant is an application of the

Rosenbluth polymer sampling method [43, 1] to rare event simulations. The procedure

is as follows:

(i) Evaluate ΦA,0/hA and generate configurations at λ0 using a simulation in the A

basin.

(ii) For the first configuration at λ0, fire k0 trial runs to λ1 or λ0. Store the end points

of successful trials.

(iii) Choose at random one of the stored configurations at λ1. Use this as the starting

point for k1 trial runs to λ2 (or back to λ0).
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(iv) Iterate this procedure over all interfaces until B is reached, or until no trials are

successful.

(v) Repeat steps (i) to (iv) for successive configurations at λ0.

(vi) Compute P (λi+1|λi) for each interface using a weighted average as described below.

In the RB method, the paths that are generated do not all have equal statistical weight.

The weight wi,b of path b from A to λi is given by

wi,b =
i−1
∏

j=0

Sj,b/kj (8)

where Sj,b is the number of successful trials fired at interface j during the generation of

path b. To compute the probabilities P (λi+1|λi), a weighted average is needed for each

interface:

P (λi+1|λi) =

∑

bwi,bSi,b/ki
∑

bwi,b
(9)

Here, the index b labels a specific path leading from A to a configuration at interface

λi, and Si,b is the number of successful trials fired from that configuration to λi+1.

When sampling over many transition paths, both the numerator and denominator of

Eq.(9) will become large. In this case, Eq.(9) may become unsatisfactory, and one may

prefer to reweight the paths using a Metropolis acceptance/rejection procedure [1], or

alternatively a “waste-recycling” scheme [44] at each interface. This is described in detail

in Ref [34]: however, we prefer simply to use Eq.(9), since the approaches described in

Ref.[34] are rather complicated to code. When analysing the properties of the transition

paths generated in the RB method, it is also necessary to include the weighting factor

wn.

The major advantage of the RB method is that the resulting transition paths are

unbranched and sequentially generated, making them easy to extract and analyse. The

RB method is also easy to code as a recursive algorithm.

3.2. Requirement for stochastic dynamics

FFS requires the dynamics of the system to be stochastic, since for deterministic

dynamics all trial runs fired from a given configuration at interface λi would be identical.

However, this requirement allows for a wide range of possibilities, including kinetic

Monte Carlo simulations of chemical reaction networks [33, 45, 46, 47], lattice models

with Monte Carlo spin flips [48, 49, 50] and particle-based Brownian dynamics or Monte

Carlo simulations [34, 51, 52]. FFS is not suitable for use with completely deterministic

Molecular Dynamics (MD) algorithms; however, it has been successfully applied to MD

simulations by including a weak coupling to a stochastic Lowe-Andersen thermostat,

which preserves the momentum of the system [53, 54, 55]. Given that MD trajectories

with infinitesimally different initial conditions diverge within a few picoseconds due

to the Lyapunov instability, this is unlikely to constitute a severe perturbation to the

system dynamics.
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3.3. Pruning

FFS as described above requires that trial runs fired from interface λi be integrated

until they reach λi+1 or return all the way back to A. If transition paths are short,

the computational cost of integrating failed trials back to λ0 is likely to be rather low.

However, in some cases, such as diffusive barrier crossings or intermediate metastable

states, it may be expensive to integrate all the way back to λ0. In these cases one can

use a pruning scheme in combination with any of the above FFS variants. Here, trial

runs from λi are integrated only as far back as some pre-defined value λp < λi; typically,

λp = λi−1. With some probability pp, a trial run which reaches λp is terminated and

considered to have failed. If, with probability (1 − pp), the trial run is not terminated,

then its statistical weight is increased by a factor fp = 1/(1 − pp). This requires minor

modifications to be made to the three FFS algorithms described above, to include

differential weights for configurations at λi. These are described in detail in Ref. [34];

however, we did not find that pruning produced much improvement in computational

efficiency for the examples tested (a model genetic switch and a simple representation

of polymer translocation) [34]. This approach may nevertheless prove useful for other

problems.

4. Computational efficiency: prediction and optimisation

An essential requirement for a rare event simulation method is that it should provide the

rate constant and transition path ensemble more efficiently than brute force simulation.

Defining, quantifying and optimising the computational efficiency of such methods is

therefore an important task. FFS involves a number of parameters: the number and

position of the interfaces, the number of trials fired from each interface, the number of

configurations stored at the first interface (for DFFS), as well as the choice of which FFS

variant to use and the definition of the order parameter. The computed rate constant

and transition paths should not (in principle) depend on any of these choices, but they

will affect the efficiency. We use the simple definition for the computational efficiency

E [56]:

E =
1

CV
(10)

where C is the computational cost (in simulation steps) of calculating the rate constant,

and V is the statistical variance in the result, normalised by the square of its mean. A

slightly different, but equivalent, expression was used by Van Erp in his analysis of the

efficiency of TPS/TIS in comparison to Bennett-Chandler-type methods [57].

4.1. Analytical expressions for the efficiency

Analytical expressions for the efficiency of a method [57, 58] are useful for several reasons.

Firstly, they allow one to estimate, before beginning a lengthy calculation, how much

effort will be required to obtain a desired level of accuracy. Secondly, they allow the
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estimation of error bars on a computed result, where it is not feasible to repeat the

calculation. Thirdly, one can use the analytical expressions to optimise the efficiency

of the method with respect to parameter choice. It is possible to derive approximate

expressions for the efficiency of the FFS methods discussed above, as a function of the

number of interfaces, the probability of success at each interface, and the number of

trials at each interface. Here, we simply present the key results; more details including

derivations can be found in Ref. [58].

For the subsequent discussion, it is important to note that in the BG and RB

variants, the parameter defining the number of trials is ki, the number of trials per

configuration at λi. For DFFS, the relevant parameter is Mi, the total number of trials

fired at interface i. To simplify our discussion, however, we shall use the notation ki

also for DFFS, but in this context we define it as ki ≡ Mi/N0. We shall also simplify

our notation for the probabilities, defining pi ≡ P (λi+1|λi) and qi ≡ 1 − pi.

The computational cost C can be estimated by assuming that the average length

of a trial run from λi to λj is linearly proportional to |λi − λj|, so that the average cost

Ci of a trial run fired from λi is [58]:

Ci = Q[pi(λi+1 − λi) + qi(λi − λA)] (11)

where Q is a constant. Eq.(11) can be used to write down expressions for C for the three

FFS variants discussed in Section 3; these expressions differ because the variants differ

in the average number of trials fired per starting point at λ0. The results are:

CDFFS = R + k0C0 +
n−1
∑

i=1



kiCi

i−1
∏

j=0

(1 − q
N0kj

j )



 ≈ R +
n−1
∑

i=1

kiCi (12)

CBG = R + k0C0 +
n−1
∑

i=1



kiCi

i−1
∏

j=0

pjkj



 (13)

and

CRB = R + k0C0 +
n−1
∑

i=1



kiCi

i−1
∏

j=0

(1 − q
kj

j ))



 (14)

where the cost is defined per starting configuration at λ0 and R is the cost of generating

such a starting configuration. These expressions take into account the fact that if no

trials are successful at a given interface, the FFS algorithm will not make it to later

interfaces.

The relative variance V in the computed rate constant is assumed to arise only

from the computation of PB and not from the initial flux calculation. This is justified

as long as the initial flux is large enough, and the initial simulation run in the A basin is

long enough. The key assumption made in calculating V is that trial runs at subsequent

interfaces are uncorrelated. This allows us to treat the number of successful trial runs

from interface i as a binomially distributed random variable, with parameter pi. Taking

into account the details of the different sampling protocols, we arrive at:

VDFFS =
n−1
∑

i=1

qi
piki





1
∏i−1

j=0(1 − q
N0kj

j )



 ≈
n−1
∑

i=1

qi
piki

(15)
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and

VBG =
n−1
∑

i=1

qi
∏i

j=0 pjkj

. (16)

An equivalent expression was also derived in Ref. [58] for the RB method with

Metropolis reweighting, but it is rather complicated. A much simpler expression can be

derived if the pi values are instead computed using Eq.(9); this will be discussed in a

forthcoming publication [59].

Expressions (15) and (16) assume that the probability of success pi is the same for

all trial runs fired from interface i. In reality, however, some configurations at λi will

have higher probability of success than others. This can be included in the expressions

for V by assuming that the pis have an intrinsic, “landscape variance” Ui. This leads

to minor modifications to the results: for details see Ref. [58]. Interestingly, the three

FFS variants cope differently with this landscape variance. Because the DFFS and BG

methods produce branched paths, they sample many configurations at interfaces i > 0

as the number of trials ki becomes large. This makes them insensitive to the values of

the landscape variance Ui for i > 0. By contrast, in the RB method, where the paths

are not branched, only one configuration is sampled per interface per path, so that all

the landscape variance values Ui contribute to the total variance V.
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Figure 5. Predicted computational efficiency E for the three FFS variants DFFS

(solid lines), BG (dotted lines) and RB (with Metropolis acceptance/rejection; dashed

lines), for a hypothetical rare event problem with evenly spaced interfaces and pi = p,

with PB = 10−8, Q = R, Ui = 0 and N0 = 1000. (a): E as a function of the number

of trials k, with 5 interfaces. (b): E as a function of the number of interfaces n, for

k = 25. [Reproduced with permission from Ref [58]].

The efficiency E is obtained by substituting Eqs. (12-16) into Eq.(10). Figure 5

shows E plotted as a function of the number of trials k [panel (a)] and the number

of interfaces n [panel (b)] for a hypothetical rare event problem with evenly spaced

interfaces and pi = p for all interfaces, with PB = 10−8, Q = R and N0 = 1000. The

striking result is that while the BG method is rather sensitive to the choice of either n

or k, both the DFFS and RB methods are insensitive to both these parameters, as long

as k and n are large enough. This implies that the computational cost associated with

having many interfaces or firing many trial runs is balanced by a proportional gain in
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statistical accuracy. Of course, this analysis cannot be taken to extremes: a very large

number of interfaces will have associated overhead costs, as well as leading to strong

correlations between successive interfaces, neither of which is taken into account in this

analysis.
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Figure 6. Predicted and measured efficiency E for the Maier-Stein system, simulated

with overdamped Langevin dynamics [for details see Ref [58]]. Lines: predicted

efficiency. Solid: DFFS, dotted: RB (with Metropolis acceptance/rejection), dashed:

BG. Symbols: measured efficiency. Circles: DFFS, triangles: RB (Metropolis),

squares: BG. (a): E as a function of number of trials k (b): E as a function of number

of interfaces n. [Reproduced with permission from Ref [58]].

Figure 6 shows the predicted efficiency E , compared with the actual value measured

for FFS simulations of the two-dimensional nonequilibrium rare event problem proposed

by Maier and Stein [60, 61, 62]. This consists of a particle moving with overdamped

Langevin dynamics in a force field that is not the gradient of a potential field (for

details see Ref. [58]). The values of R, Q, {pi} and {Ui} were extracted from the FFS

simulations and used as inputs to the analytical expressions. Not only do the results for

the Maier-Stein system closely resemble the trends in Figure 5 for the hypothetical

problem, but the agreement between the analytical results and the simulations is

extremely good. However, such good agreement cannot be relied on in all cases: for a

model genetic switch, where correlations between successive interfaces are more likely,

differences of up to a factor of 10 between the analytical predictions for E and the

simulation results were observed [58].

4.2. Optimising the efficiency

Borrero and Escobedo [42] have shown how these analytical expressions can be used

to optimise the parameters in FFS simulations, for the DFFS and BG schemes. They

adopt two complementary approaches: (i) optimising the number of trial runs {ki} for

a fixed set of interfaces, and (ii) optimising the positioning of the interfaces {λi}, for

fixed {ki}.

4.2.1. Optimising the number of trial runs For a given set of interfaces, the optimum

values for the number of trials {ki} [or for DFFS, {Mi} ≡ {N0ki}], can be found by
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minimising analytically the variance V with respect to the {ki} (or {Mi}). The cost

C is constrained to a fixed value using a Lagrange multiplier. This leads to implicit

expressions for the optimum {ki} ((or {Mi}) for the BG and DFFS schemes [42].

For DFFS, under the assumption that the Mi values are large, so that qMi

i ≈ 0, this

expression is

Mi =
PB
√

(α)

(

1 − pi

pi

)1/2 (
Ci

Q

)−1/2

(17)

where α is the Lagrange multiplier that sets the cost, and Ci and Q are as defined in

Section 4.1, so that Ci/Q = [pi(λi+1 − λi) + qi(λi − λA)]. A simple practical procedure

is then prescribed to obtain the optimum {Mi} set, for a fixed cost, for DFFS:

(i) Set one of the Mi values (e.g. M0).

(ii) Compute the other Mis using:

Mi+1

Mi
=

(

pi(λi − λA)

pi+1(λi+1 − λA)

)1/2

(18)

(this assumes that pi is small; if not the expression is slightly more complicated).

(iii) Compute the cost associated with this {Mi} set from Eq.(12).

(iv) Iterate to obtain a set of Mis corresponding to the desired cost.

For the BG method, the equivalent expression to Eq.(17) is more complicated but a

similar principle applies; for details see Ref [42].

4.2.2. Optimising the interface positions For a fixed set of Mi (or ki values), the

efficiency can be optimised with respect to the positions of the interfaces {λi}, for

0 < i < n. Borrero and Escobedo assume that the computational cost is fixed by the

{Mi} (or {ki}) [42], and minimise the variance V with respect to the probabilities {pi},

with the constraint that PB =
∏n−1

i=0 pi remain constant. This leads to the intuitive

result that for optimum interface placement, there should be a constant flux of partial

path trajectories across all interfaces. This implies that the product Mipi (for DFFS),

or ki
∏i−1

j=0 kjpj (for BG), should be constant across all interfaces. Since the {Mi} (or

{ki}) are fixed, this specifies the optimum values for the probabilities {pi}, which can

be achieved by a suitable placement of the interfaces. To translate between {pi} values

and the interface positions {λi}, one needs an interpolation function f(λi), for which

one choice is:

f(λi) =

∑i−1
j=0 ln pj

∑n−1
j=0 ln pj

(19)

The optimisation procedure then consists of:

(i) Run FFS with an, as yet, non-optimal set of interfaces {λi}, to compute the function

f(λi).

(ii) Compute the optimum {pi} set by demanding constant flux across all interfaces.
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(iii) Use the function f(λi) to determine the interface placement corresponding to these

optimal {pi} values.

(iv) Iterate the procedure if necessary.

A separate methodology for optimising the position of the starting interface λ0 has been

proposed by Velez-Vega et al [55].

Figure 7. Statistical error in the estimated rate constant for BG FFS simulations of

a two dimensional test potential with 4 interfaces, for an initially unoptimised set of

interfaces (“initial λ staging”), for the same set of interfaces with optimised number

of trials (“opt. {k′i} set”), and for an optimised set of interface positions (“opt. {λ′i}

set”). Smaller statistical errors are achieved for the same CPU time with the optimised

parameters. [Reproduced with kind permission from Ref [42]].

4.2.3. Efficiency gains Borrero and Escobedo demonstrate their efficiency optimisation

procedure for a simple two dimensional test potential, for the flipping of a model genetic

switch (see Section 7) and for the folding of a lattice protein model [42], obtaining

impressive results, as illustrated in Figure 7. For these examples, a single iteration

proved to be enough to converge the optimisation for either the number of trials or the

interface positions.

5. The order parameter and the committor

FFS relies on the definition of the order parameter λ, which must be some coordinate of

the system that increases during the transition from A to B. FFS does not assume that

λ corresponds to the true “reaction coordinate”, which is the actual route through

phase space followed by the transition path ensemble. However, choosing a good

order parameter (one which is close to the true reaction coordinate) will increase the

computational efficiency, while a poor choice of order parameter will lead to wasted
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effort, as many of the configurations generated at interface λi will have little chance of

reaching λi+1. This may even lead to incorrect results if the number of paths sampled is

small [63]. In this section, we first discuss how to define the order parameter in interface-

based methods such as FFS. We then discuss the committor function, which contains

information about the reaction mechanism, and which corresponds to the “ideal” choice

of order parameter. Finally, we briefly review several methods which have recently

been developed for extracting the reaction coordinate from measured committor values,

focusing particularly on the FFS-LSE method of Borrero and Escobedo [41].

5.1. Defining the order parameter

For some rare event problems, it is easy to define a good order parameter. For example,

for crystal nucleation processes, one typically chooses the number of particles in the

system that are “crystalline” [64], for a polymer translocation problem one can use the

number of translocated monomers [34], and for a bistable chemical reaction in which

the transition is between states rich in molecules of chemical species A and B, one

can use the difference between the number of A and B molecules [33, 34, 45, 46, 47].

However, in other cases the choice of order parameter is less obvious. For example, for

hydrophobic polymer collapse the solvent coordinates as well as those of the monomers

can play an important role in the transition [65]. Complex reaction coordinates are

also a common feature of protein folding problems [66]. Figure 8 illustrates a simple

two-dimensional potential energy landscape for which the Z-shaped reaction coordinate

cannot be described by either of the two coordinates of the system (x and y), or by any

linear combination of these coordinates [67].

(a)
A

B

(b)
A

B

Figure 8. A two-dimensional potential energy landscape for which the reaction

coordinate is Z-shaped and cannot be described by a simple linear combination of the

x and y coordinates of the system. (a): Partitioning of space with Voronoi polyhedra

around a linear string of beads between the A and B states; this gives interfaces which

follow the reaction coordinate poorly. (b): Partitioning into interfaces using a curved

string of beads; this gives a much better set of interfaces.

For complex cases such as the one illustrated in Figure 8, the Voronoi tessellation

approach pioneered by Vanden-Eijnden and Venturoli [32] can prove very useful. Here,
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one defines a path connecting A and B by a set of configurations, or “beads”. The path

need not be describable in terms of a single collective coordinate. Any configuration

of the system can be classified according to which of the beads it lies closest to: this

is equivalent to partitioning space into a set of Voronoi polyhedra around the beads.

Interfaces can then be defined as the planes in phase space across which the “closest

bead identity” changes, or equivalently the edges of the Voronoi polyhedra. Figure 8

shows the interfaces defined by this method for our two-dimensional example, for a linear

set of beads [panel (a)] and for a set of beads chosen to lie along the curved reaction

coordinate [panel(b)] [59]: it is clear that Voronoi tessellation provides a very convenient

and easy-to-implement way to translate a string of beads into a set of interfaces. It

is important to note, however, that for highly multidimensional problems it is likely

to be necessary to project the phase space onto a small number of order parameters

before carrying out the Voronoi tessellation, otherwise the resulting interfaces may be

highly convoluted. This approach does not therefore entirely eliminate the need for

order parameters. In addition, of course, one still needs to find a suitable set of beads,

for example by an iterative technique such as the finite temperature string method

(FTS) [31, 32]. In Section 6.3, we discuss briefly how this is done in the context of

nonequilibrium Umbrella sampling [67].

5.2. The committor and the reaction coordinate

The committor function PB(x) is defined as the probability that a trajectory initiated

from configuration x will reach the final state B before the initial state A. Along a

transition path, the committor function increases from zero to unity. Configurations

along the transition paths for which PB = 0.5 have special significance: the collection

of these configurations is known as the “transition state ensemble”, or TSE (although

alternative definitions are also possible [68, 69]). Analysis of the TSE configurations

can provide insight into the reaction mechanism. If the probability distribution for a

given order parameter, evaluated over the TSE configurations, is highly peaked, it is

likely that this order parameter closely corresponds to the reaction coordinate, whereas

a broad or bimodal distribution indicates that other order parameters are needed to

fully describe the transition mechanism [2, 3]. Scatter plots for the TSE configurations

as functions of various collective coordinates can also provide insight into the reaction

mechanism, as discussed in Section 7. To extract committor values for configurations

along the transition paths, one typically fires a large number of trial runs from each

configuration to estimate the probability of these reaching B rather than A. This is a

computationally expensive procedure (although some effort can be saved if one is only

interested in the TSE). In recent work, however, Borrero and Escobedo [41] have shown

that committor values can be extracted on-the-fly from FFS simulations, by making

intelligent use of the information already obtained on the number of successful trials to

interface λi+1 for each configuration at interface λi. This is discussed in Section 5.3.

The committor function PB is in some sense the ideal reaction co-ordinate, since it
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by definition correlates with the progress of the transition. However, PB is a complex

function of all the coordinates of the system. To obtain scientific insight, one needs to

be able to project this function onto a small set of physically meaningful collective

coordinates. Hummer et al [68, 69] proposed a variational method for optimising

reaction coordinates, based on evaluating the projection onto the order parameter of

the probability function p(TP |x) that a configuration x forms part of a transition path.

Ma and Dinner [70] proposed a method in which one uses “representative” configurations

corresponding to different values of the committor PB to determine the functional

dependence of the committor on each of a chosen set of collective coordinates. An

optimisation procedure (in this case a genetic algorithm) can then be used to find the

best combination of these coordinates to represent the committor. In related work,

Peters et al [71, 72] also proposed a method for determining the optimum combination

of collective coordinates to represent the committor. In their method, the committor

values are obtained on-the-fly using a version of transition path sampling called Aimless

Shooting. A simple model for the reaction coordinate (eg a linear combination of

collective coordinates) is assumed and the parameters of the model optimised using

Bayesian likelihood maximisation.

5.3. Using the committor to optimise the order parameter in FFS

Figure 9. Isocommittor lines obtained using FFS-LSE for a simulation on the two

dimensional potential energy landscape represented by the contour plot. The numbers

indicate the committor values. [Reproduced with kind permission from Ref [41]].

In recent work, Borrero and Escobedo have proposed a method (related to that

of Peters et al [71, 72]) in which information on the committor is extracted directly

from FFS simulations, and used to optimise the choice of order parameter [41]. This
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method is known as FFS-LSE (least square estimation). Borrero and Escobedo show

that for the branched growth variant of FFS (see Section 3.1), the committor value P i
Bj

for configuration j at interface λi is given by:

P i
Bj = pi

j(λi+1|λi)

∑N i
j

m=1 P
i+1
Bm

N i
j

=

∑N i
j

m=1 P
i+1
Bm

ki
(20)

where ki is the number of trials per configuration at interface i, N i
j is the number

of successful trials from configuration j at interface i and pi
j(λi+1|λi) = N i

j/ki is the

probability of success for configuration j at interface i. This equation states that the

committor value for configuration j is the probability that a trial run fired from this

configuration will reach the next interface λi+1, multiplied by the average committor

value for its “daughter” configurations at λi+1. If information on the connectivity

between configurations at successive interfaces, as well as on the number of successful

trials for each configuration, is stored during an FFS run, committor values for these

configurations can be extracted at the end of the run with no additional computational

effort. Although Eq.(20) was derived for the BG algorithm, it should be possible to

apply a similar approach to the other FFS variants.

This procedure produces a set of configurations with associated committor values

over the whole range of the order parameter λ. For these configurations, one evaluates a

set of m candidate collective coordinates q. This data is then used to fit a parametrised

functional form for the dependence of the committor on the q:

PB(q) =
m
∑

k=1

βkqk + qTAq + β0 + ǫ (21)

where the β values and the matrix A are optimised by least squares fitting to the data set

obtained from FFS, and ǫ is the sum of the squares of the errors, to be minimised. The

resulting functional form for PB(q) is the optimal choice for the FFS order parameter

λ(q). Choosing the order parameter λ(q) that most closely matches the committor

function (within the constraints of the fitting function) should lead to interfaces that

are perpendicular to the transition paths, resulting in an efficient computation of the rate

constant. Borrero and Escobedo found that a single iteration was sufficient to converge

on the optimal λ(q), for several test cases including the flipping of a model genetic switch

and the folding of a lattice protein model [41]. Figure 9 shows the isocommittor lines

obtained using this procedure, for a test simulation on the two dimensional potential

surface represented by the contour plot. It might be interesting in future to combine this

approach with a bead-string description of the order parameter as discussed in Section

5.1.

6. Computing stationary distributions

For many rare event problems, one is interested not only in the rate constant and

transition paths, but also in the steady-state probability distribution ρ, as a function

of one or more order parameters q. Knowledge of the steady-state distribution allows



Forward flux sampling 24

one to compute, for example, averages of experimentally measurable observables for

comparison with experiments. For systems with stable A and B states, − ln ρ(q) takes

the form of a “barrier” with a peak separating the two stable states. If the dynamics of

the system obeys detailed balance, this distribution is directly related to the free energy

function F : F (q) ∼ − ln ρ(q). For these equilibrium systems, ρ(q) can be computed by

umbrella sampling [1], in which one divides the range of q into a series of windows, runs

a separate simulation in each window and uses the Boltzmann distribution to reassemble

the probability distributions from each window into the unbiased ρ(q). In this section,

we first discuss how ρ(q) can be extracted from FFS simulations, for equilibrium or

nonequilibrium systems [73], and a related method for computing ρ(q) with FFS, for

equilibrium systems only [40]. We also briefly discuss a method which allows ρ(q) to be

computed for nonequilibrium systems in multiple dimensions [74, 67].

We note that for these computations there is no requirement for a stable B state.

In addition to computing barrier heights, these methods can also be used to explore

the probability distribution for excursions of the system from a stable A state, along an

order parameter, without the presence of a stable B state. In this case, − ln ρ(q) will

be an increasing function, whose detailed shape contains information on the physics of

fluctuations away from the A state.

6.1. Obtaining stationary distributions from FFS simulations

The stationary distribution function ρ(q) can be obtained on-the-fly during an FFS

simulation, in a similar approach to that of Moroni et al for computing ρ(q) in PPTIS

simulations [22]. To achieve this, one computes histograms for the q values visited by all

trial runs (failed and successful), fired from interface i. In the case of a stable B state,

it is necessary to run the FFS calculation in both directions (A→B and B→A) [73].

A

1

2

3

4

λ 0 λ 1 λ nλ i

B

Figure 10. Illustration of categories of trajectories contributing to the stationary

distribution ρ(q). Trajectories 1 and 2 originate in A and are sampled by an FFS

simulation from A to B. Trajectories 3 and 4 originate in B and are sampled by an

FFS simulation from B to A. [Reproduced with permission from Ref [73]].

The principle underlying the calculation of ρ(q) with FFS is illustrated in Figure

10. Trajectories visiting a particular region of phase space can be grouped according to
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their origin in either the A or the B state. The stationary distribution function can be

written as the sum of the contributions, ψA and ψB respectively, of these two groups of

trajectories:

ρ(q) = ψA(q) + ψB(q) (22)

where ψA and ψB can be written as:

ψA = ρAΦAτ+(q;λ0) ψB = ρBΦBτ−(q;λn) (23)

Here, ρA is the steady-state probability of finding the system in A, ΦA is the flux of

trajectories out of the A state and τ+(q;λ0) is the average time spent with a value q of the

order parameter, for a trajectory which originates from λ0. The equivalent definitions

hold for ρB and ΦB, while τ−(q;λn) is the equivalent average time, for a trajectory which

originates from λn. These averages must be taken over all trajectories leaving λ0 (or

λn), whether or not they eventually reach B (or A), with the correct statistical weights.

In an FFS simulation from A to B, ΦA is computed during the initial simulation in

the A basin. The probabilities ρA and ρB can be obtained once the rate constants kAB

and kBA have been computed, since in steady state ρAkAB = ρBkBA and ρA + ρB = 1

(assuming transitions are fast compared to the time spent in the A and B basins).

The function τ+(q;λ0) can be obtained if we measure during the FFS simulation the

average time π+(q;λi) spent with order parameter value q, for a trial run fired from λi.

This average should be computed over all configurations in all trial runs fired from λi,

regardless of whether they succeed in reaching λi+1, and should include any differential

weighting factor applied to the trial runs (e.g. in the case of the RB method or if pruning

is used). τ+(q;λ0) is then given by:

τ+(q;λ0) = π+(q;λ0) +
n−1
∑

i=1

π+(q;λi)
i−1
∏

j=0

P (λj+1|λj) (24)

Eq.(24) expresses the average time τ+(q;λ0) spent at order parameter value q as the

sum of contributions from partial trajectories (trial runs) originating at each interface,

weighted by the probability
∏i−1

j=0 P (λj+1|λj) of observing such a partial trajectory in a

brute-force simulation. As the interface index i increases, this probability decreases, but

π+(q;λi) continues to be well-sampled. This is because FFS allows good sampling of

regions of the phase space which are rarely visited in a brute-force simulation. A similar

procedure can be applied in the B to A direction to obtain ΦB , kAB and τ−(q;λn). A

detailed description of the practical implementation is given in Ref [73]. We note that if

the B state is very much less stable than the A state (or not stable at all), one can make

the approximation ρB ≈ 0, so that ψB ≈ 0 in Eq.(22) and only a simulation in the A to B

direction is required. It is also important to point out that q need not correspond to the

FFS order parameter λ: one may even obtain the distribution as a function of multiple

coordinates ρ(q1, q2), simply by computing multidimensional histograms π±(q1, q2;λi)

during the FFS simulation. However, for order parameters very different from λ, the

advantage of enhanced sampling of rarely visited regions of the phase space will be lost.
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Figure 11. Stationary distribution ρ(x) (solid line) obtained using FFS, compared to

the normalised Boltzmann distribution (circles) for a symmetric double well potential

V (x) = ax − bx2 + cx4 with a = 0.25, b = 2, c = 1, simulated using overdamped

Brownian dynamics with diffusion constant D = 0.01, kBT = 0.1 and dt = 0.05.

The dotted and dashed lines show ψA(x) and ψB(x) respectively [Reproduced with

permission from Ref [73]].

Figure 11 shows ρ(x) for a simple one-dimensional potential, computed using FFS

and compared with the expected Boltzmann distribution. Similarly convincing results

were obtained for the nucleation barrier in a two-dimensional Ising model [73], and for

the nonequilibrium case of the flipping of a model genetic switch [73, 46].

6.2. Forward flux / umbrella sampling

The method described in Section 6.1 requires FFS simulations in both the forward

and backward directions, if the steady-state population of the B state is significant.

An approach developed recently by Borrero and Escobedo, known as Forward Flux /

Umbrella Sampling (FFS-US) [40], aims to avoid this requirement, for systems where

detailed balance is obeyed. In FFS-US, histograms obtained in a FFS simulation in

the direction A→B are combined with histograms obtained with conventional umbrella

sampling [1], using the interfaces as hard walls. For the umbrella sampling, trajectories

are initiated inside each window using configurations obtained in the FFS simulation.

The umbrella sampling histograms correct for the bias that arises in the FFS histograms

due to the fact that one simulates only in the A→B direction.

6.3. Nonequilibrium umbrella sampling in multiple dimensions

A method has recently been proposed by Warmflash et al [74], and extended by

Dickson et al [67], which allows for efficient computation of multidimensional steady

state distributions for nonequilibrium rare event problems. Although this approach is

distinct from FFS, we feel it is useful to include a brief description of it in this review,
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since it is one of the few methods that give access to the steady state distribution for

nonequilibrium systems.

In the method proposed by Warmflash et al [74], the phase space region of interest

is divided into a lattice using one or several order parameters. Separate simulations

are run in each lattice box simultaneously, during which one counts the numbers of

simulation trajectories which attempt to transfer between boxes. When this happens,

“weight” is transferred between boxes, and the trajectory is reinserted at the boundary of

the same box with a configuration drawn from a self-consistently determined statistical

distribution. To achieve this, one simulates at the same time a second lattice of boxes,

with a grid offset relative to the first lattice. The second lattice provides configurations

corresponding to interface crossings that can be used in the first lattice, and vice versa

[for details see Refs [74] and [67]]. The stationary distribution is finally obtained from the

simulated probability distributions within each box, multiplied by the weight computed

for that box. This method, unlike FFS, is suitable for problems with slow dynamics

in multiple dimensions. However, for many dimensions its implementation is likely

to become complicated. The more recent work by Dickson et al [67] makes several

modifications. Here, the order parameter instead consists of a string of beads, with the

boxes now being defined by Voronoi polyhedra (see Section 5.1). A similar approach

is used, except that one now simulates two strings, each offset from the other, and

the algorithm for reinserting trajectories is somewhat different. Importantly, however,

one can now use the computed distributions at the interfaces to iteratively improve

the positioning of the beads, in an approach inspired by the string method [75, 76].

Although Refs [74] and [67] focus on the stationary distribution function ρ(q), it seems

likely that this approach could also give access to rate constants, in a similar manner to

the Weighted Ensemble method of Huber and Kim [30].

7. Applications

Forward flux sampling has been applied to quite a number of different equilibrium

and nonequilibrium rare event problems, with a variety of simulation techniques

including Metropolis Monte Carlo, Molecular Dynamics, Brownian Dynamics and

kinetic Monte Carlo. Transitions studied include nucleation in a variety of different

contexts [48, 49, 50, 77, 78, 79, 80, 81, 82, 51, 83, 73, 84, 53], genetic switch flipping

[33, 45, 46, 47], changes in DNA configuration [85], droplet coalescence [86], polymer

translocation [34, 87, 88] and protein conformational changes [89, 55]. It is not our

purpose here to discuss these applications in detail (an excellent review of biomolecular

applications is given in [7]). Instead, we present a brief overview of three applications

with which we have been involved, highlighting the contributions made using FFS as

well as particular methodological challenges.
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Figure 12. (a) Schematic illustration of the model genetic switch (b) A typical brute-

force simulation trajectory. The order parameter λ ≡ NA−NB is plotted as a function

of time, where NA and NB are the total number of A and B molecules respectively.

[Reproduced with permission from Ref [34]].

Reactions Forward rate constant Backward rate constant

2A ⇀↽ A2 2B ⇀↽ B2 5k 5k

O + A2 ⇀↽ OA2 O + B2 ⇀↽ OB2 5k k

O → O + A O → O + B k -

OA2 → OA2 + A OB2 → OB2 + B k -

A → ∅ B → ∅ 0.25k -

Table 1. Reaction scheme for the model genetic switch. The unit of time is k−1.

7.1. Genetic switch flipping

Gene regulatory networks control the behaviour of biological cells. In these networks,

genes encode protein molecules which in turn control the expression of other genes. The

resulting networks of interactions between genes allow cells to perform the computations

necessary for survival and proliferation. Of particular interest are gene regulatory

networks with multiple stable states, corresponding to alternative cellular developmental

outcomes. A classical example is the bistable bacteriophage λ switch, which controls

the transition between lysogeny (quiescent integration into the host cell) and lysis

(replication and killing of the host cell) for phage λ, a virus which infects the bacterium

Escherichia coli [90]. We studied a highly simplified representation of the gene network

controlling this switch. In this model switch, two genes A and B mutually repress one

other (see Figure 12a). If gene A is turned on, protein A is produced. This protein can

dimerise and in the dimer form it can bind to the DNA and prevent the production of

protein B from gene B. There is thus a stable state with a high concentration of protein

A and a low concentration of protein B. If, however, due to a fluctuation, protein

A dissociates from the DNA, then gene B can be expressed. The newly synthesised

protein B can dimerise and bind to the DNA, preventing the expression of gene A.
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This can ultimately lead to the flipping of the switch into the alternative stable state

with a high concentration of protein B. Figure 12b shows a typical trajectory for a

brute-force simulation of this model switch. The system undergoes infrequent but rapid

flips between the A-rich and B-rich states. These random flips are driven by intrinsic

biochemical “noise”: fluctuations due to the stochasticity of chemical reactions. Recent

experiments have shown that this noise can play an important role in gene regulation

[91]; yet it is known that the bacteriophage λ genetic switch is extremely stable, with

a spontaneous flipping rate of less than once in every 109 generations [92]. This raises

the question of what the mechanisms are that govern that stability of bistable genetic

switches in the presence of biochemical noise. We have addressed this question using

FFS.

We were interested how the detailed rules for DNA binding affect the switch

stability: in particular, the comparison between a switch in which a dimer of protein A

excludes the binding of B dimers to the DNA (and vice versa), with a switch in which

both dimers can bind simultaneously [93, 94, 33]. The former is termed an “exclusive

switch” and the latter a “general switch”. The exclusive switch is described by the

set of chemical reactions given in Figure 12a. In this reaction scheme, O represents a

DNA regulatory sequence (operator) adjacent to two divergently transcribed genes A

and B, which code respectively for proteins A and B. These can dimerise to form A2 and

B2. Genes A and B can each produce proteins with the same rate, but whether they

do so depends on the state of the operator O. When an A2 dimer is bound to O, the

production of B is blocked, and likewise, when a B2 dimer is bound to O, the production

of A is blocked. Proteins can also vanish (in the monomer form), modelling degradation

and dilution in a cell. The reaction set for the general switch is identical except for the

addition of the extra reactions OA2 + B2 ⇀↽ OA2B2 and OB2 + A2 ⇀↽ OA2B2 (i.e. the

operator can bind both dimers simultaneously): when dimers are bound to the operator,

neither protein can be produced.

We simulated this model using brute force simulation and DFFS, using the order

parameter λ ≡ NA −NB, where NA and NB are the total number of A and B molecules

respectively. Our results showed that the rules for operator binding can have a dramatic

effect on the stability of the switch: for typical parameter values, the exclusive switch

is orders of magnitude more stable than the general switch [93, 94, 33]. To understand

this result, we extracted transition paths from our FFS simulations. Figures 13a and

13b show typical switching pathways for the general and exclusive switch, plotted in

the NA − NB plane [33]. The switching pathways are very different: during a typical

flipping trajectory, the general switch passes through a region where the copy numbers

NA and NB are both nearly zero, in contrast to the exclusive switch. To characterise

the switching pathways further, we extracted configurations from the transition state

ensemble (TSE). These configurations are plotted in the NA −NB plane in Figures 13c

and 13d, where the colour coding illustrates the operator state. These plots show that

for the general switch, the TSE is dominated by configurations in which both proteins

are bound to the operator and the production of both genes is repressed, which explains
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Figure 13. Top: Five randomly chosen transition paths, plotted in the NA − NB

plane, for (a) the exclusive and (b) the general switch. Each transition path is shown

in a different colour. Bottom: TSE configurations plotted in the NA − NB plane,

and colour coded according to operator state, for (c) the exclusive switch and (d)

the general switch. Cyan: O, gold: OA2, magenta: OB2, violet: OA2B2. [Panel (a)

reproduced with permission from Ref [33]].

why at the top of the “barrier”, NA and NB are both nearly zero. In the exclusive

switch, however, these states are not allowed (since the proteins mutually exclude each

other’s binding). Thus, in the transition paths, NA and NB never become nearly zero

simultaneously. This explains why the exclusive switch is more stable than the general

switch. Due to rare fluctuations, copies of the minority species will occasionally be

produced. In the general switch, these can immediately bind the operator, leading to

the repression of the majority species, which is the critical step that ultimately leads to

the flipping of the switch. In the exclusive switch, however, a newly synthesised dimer

of the minority species probably cannot bind the operator, since it is likely to be blocked

by binding of the majority species. The system then has to wait for another fluctuation

whereby the majority species dissociates from the operator before a flipping event can

be initiated.

The model described above is a highly simplified representation of a real genetic

switch. Recently, we have simulated a much more detailed model of the bacteriophage

λ switch [47]. This system comprised over 500 chemical reactions, which were
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computationally expensive to simulate, requiring the use of FFS as well as dynamical

coarse-graining of some of the chemical equilibria (although importantly not of the

operator binding reactions). Again using DFFS with the same choice of order parameter

as for the simple model switch, we were able to reproduce the extreme stability of the

switch, as observed experimentally. These simulations also revealed a key role for a DNA

looping interaction (not present in the simple model), in maintaining the extraordinary

stability of the switch.

These results show that rare event simulation methods such as FFS can successfully

be applied to study rare events in complex biochemical networks whose dynamics is

intrinsically out of equilibrium. Multistability has been found to play an important

role in many different biological contexts, ranging from cell differentiation, apoptosis,

the immune system, to the cell cycle. We hope that FFS will prove a useful tool for

modelling these processes.

7.2. Homogeneous crystal/bubble nucleation

Phase transitions occurring by homogeneous nucleation are a widespread and important

class of rare event processes. When a liquid is cooled below its melting point, the liquid

state becomes metastable with respect to the crystal. The supercooled system can

spend a long time in the liquid state before undergoing a rapid transformation into the

thermodynamically stable solid phase. Similarly, a liquid that is heated above its boiling

point can undergo a “cavitation” transition in which bubbles of the gaseous phase are

formed. Since these nucleation processes are rare events, brute-force simulations are

often impractical. However, rare event methods such as FFS can be used to calculate

rate constants and transition pathways. Nucleation in “quasi-equilibrium” systems

whose dynamics obeys detailed balance has been tackled using a range of different rare

event simulation methods, including PPTIS [95], Metadynamics [96] committor analysis

combined with two-dimensional Umbrella sampling scheme [97], Mean First Passage

Time calculations [98, 99] and order-parameter-based Monte Carlo simulation [100].

We refer to these as “quasi-equilibrium” rather than “equilibrium” systems because for

nucleation problems the initial state is always metastable with respect to the final state.

For such systems, FFS provides a complementary approach to these methods. FFS also

provides the potential for studying nucleation phenomena in out-of-equilibrium systems

whose dynamics does not obey detailed balance (for example, with applied external

shear, as discussed in the following section).

Over the last few years, FFS has been used to study crystal nucleation in both

covalent [80, 81] and ionic quasi-equilibrium systems [82, 51, 83]. For these systems, it

is possible to compare the results of FFS to those obtained by other rare event methods.

In particular, in Ref.[82], we studied the nucleation of crystalline sodium chloride from

the melt at moderate super-cooling. The nucleation rate was computed with a Bennett-

Chandler procedure, in which Umbrella Sampling was used to compute the free energy

barrier, followed by the firing of trajectories from the top of the barrier to obtain the
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transmission coefficient. We also computed the nucleation rate using FFS. In both cases,

the order parameter was taken to be the size of the largest solid cluster. Both methods

yielded the same nucleation rate, to within the statistical error bars. In later work,

[73], we used FFS to compute the nucleation free energy barrier for a two-dimensional

Ising system, and compared the results to those of Umbrella Sampling. Both methods

gave (to within error bars) the same free energy barrier height and shape. FFS has also

recently been used to study vapour-crystal nucleation [84].

Recently, we combined FFS with Molecular Dynamics simulations to study bubble

nucleation (cavitation) [53], and obtained results that differed from those of Umbrella

Sampling. We computed the nucleation rate using FFS and also analysed the transition

path ensemble. Our results showed that cavitation starts with compact bubbles rather

than ramified ones, as has previously been suggested by Umbrella Sampling [101]. The

FFS method does allow for the formation of ramified structures, but these pathways

are kinetically unfavourable. Such kinetic effects cannot be observed in the Umbrella

Sampling scheme [101], which assumes a local thermal equilibrium. Our FFS simulations

also indicated a strong correlation between local temperature fluctuations in the liquid

and subsequent bubble formation. Kinetic effects in homogeneous nucleation have also

been investigated in the context of the crystallisation of a binary mixture of oppositely

charged colloids, interacting via Yukawa potentials [51, 83]. Here, FFS simulations

suggested that, for some thermodynamic conditions, the growth of the crystal does

not follow the minimum free-energy path. This indicates a lack of ergodicity of the

fluid on the timescale of crystal growth. This effect could not have been observed with

a technique such as Umbrella Sampling, which assumes quasi-equilibrium transition

paths.

These studies constitute a promising start for FFS in shedding new light on

nucleation processes. For systems where the nucleation paths can be expected to be in

local thermal equilibrium, FFS results agree well with those of other methods (such as

Umbrella Sampling), whereas for several cases where kinetic effects are important, FFS

has revealed unexpected behaviour. Plenty of scope remains for further investigation of

such effects.

7.3. Nucleation in a sheared Ising model

Nucleation processes under shear are a class of nonequilibrium rare event problems to

which FFS should be able to make a valuable contribution, since they are scientifically

and technologically important and in many cases remain poorly understood. As a test

case, we used FFS to study nucleation in a sheared two-dimensional Ising model [48, 49].

The lattice was sheared by periodically randomly selecting a row and shifting this and

all higher rows to the right by one lattice site. This imposes a linear “velocity” profile.

The spins were simulated with Metropolis Monte Carlo dynamics. We used DFFS, with

the number of up spins as our order parameter, to compute the rate of nucleation of

the stable state with a majority of up spins, starting from the “metastable” state with
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a majority of down spins, in the presence of a weak external field favouring the up state

[in the absence of shear, the free energy barrier to nucleation was ≈ 22kBT ] [73]. This

system is a poor model for most experimental systems, because particle transport is

not modelled, and because the velocity profile is imposed rather than being determined

by the system itself. Nevertheless, the computed nucleation rate showed interesting

behaviour as a function of shear, with a peak at intermediate shear rate, as shown in

Figure 14a.
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Figure 14. (a): Nucleation rate I as a function of shear rate γ̇ for the two dimensional

sheared Ising model, computed using DFFS. The nucleation rate peaks at intermediate

shear rate. For details of the parameters, please see Ref. [48]. (b): Scatter plot of the

local density ρx (ρy) of up spins surrounding the largest cluster of up spins in the x

(y) direction, versus the number of spins Nc in the largest cluster, for configurations

in the transition state ensemble, at shear rate γ̇ = 0.06. 95% confidence intervals for

the Pearson correlation coefficient r are also shown. The negative correlation observed

for ρx, but not for ρy, demonstrates that coalescence along the x direction, driven by

shear, plays a role in the nucleation mechanism. [Reproduced with permission from

Ref [48]].

Understanding the physical mechanisms underlying the nonmonotonic trend in

Figure 14a proved to be more difficult than calculating the rate itself. Simply comparing

TSE configurations at different shear rates did not explain the effect of shear on the

nucleation rate. We therefore resorted to devising modified shear algorithms, to test

various hypotheses. For example, an algorithm with randomised shear direction (to

eliminate shear-induced cluster breakup) removed the decrease in nucleation rate at

high shear rate [48]. We also devised an unusual way of analysing the TSE, to test the

hypothesis that shear-induced cluster coalescence was important in the enhancement of

nucleation at low shear rates. We constructed an order parameter which we expected

to be coupled to coalescence: the local density ρx of up spins close to the largest cluster

in the x direction. Since the shear is applied in the x direction, we postulated that, if

coalescence is important, then configurations with large values of ρx would have greater

tendency to nucleate than those with small ρx. However, we did not expect such an

effect for ρy. This could be tested by making scatter plots of ρx versus the largest cluster

size Nc, for TSE configurations (which all have the same committor value PB = 0.5).

If coalescence is important, both Nc and ρx should contribute to the committor, so
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that TSE configurations with large Nc will tend to have small ρx, and vice versa. We

therefore expected negative correlation between ρx and Nc, but not between ρy and

Nc, in the presence of shear only. This was indeed observed, as shown in Figure 14b,

allowing us to conclude that shear-induced cluster coalescence is an important factor,

at least in this model. The contrast between the behaviour of this model and Classical

Nucleation Theory was discussed in a follow-up work [49], in which we investigated the

effect of the external field strength.

The example discussed here is highly simplified in comparison to realistic sheared

nucleation problems. However, even from this simple example, it is clear that nucleation

problems under shear hold much potential, as well as presenting new challenges, for rare

event simulation methods such as FFS.

8. Challenges and future directions

The development of rare event simulation methods in general, and FFS in particular,

is far from complete, and many challenges remain. Some challenges, relating to

computational efficiency, parameter optimisation and the choice of order parameter have

already been addressed, resulting in the optimised versions of FFS [41, 42] discussed

in this review. These improved algorithms should extend the method’s applicability to

more computationally expensive and/or scientifically complex problems. It is likely that

further fruits will be gained by combining advances made in different areas. For example,

the Voronoi tessellation approach (Section 5.1) could be combined with committor-based

order parameter optimisation schemes (Section 5.3). New FFS variants could also be

developed by exploiting the analogy with polymer sampling discussed in Section 3.1.

New developments will be driven by new users and new applications and to encourage

this we believe that FFS should be implemented as soon as possible in widely used

simulation packages.

One important issue is the possible presence of intermediate metastable states

between A and B. These are a common feature of protein folding problems, and are

likely to occur in many other contexts as well. With current FFS methods, partial

paths which get stuck in these intermediate states will prove extremely expensive. This

should prove a fruitful area for methodological development, especially if it is possible

automatically to detect intermediate metastable states. Such methods could for example

be used for “landscape exploration” in cases where the location of the B state is not

known a priori. This would be useful for a variety of problems including the dynamics

of glasses and protein conformational changes.

A second, related issue concerns systems with multiple alternative reaction

channels. These are problematic for many rare event simulation methods. Dynamic

sampling schemes like TPS and TIS, in which new transition paths are generated

from old ones, have difficulty finding previously unexplored reaction channels (although

replica exchange approaches can help [102, 24]). Since FFS is a static scheme in which

new paths are generated from scratch, it should in principle be able to explore all
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reaction channels. However, the choice of order parameter is likely to be crucial. For

example, Sear [63] demonstrated that DFFS can fail to give the correct rate constant for

a nucleation model in a two dimensional landscape where the dynamics evolves much

more slowly in one dimension than in the other, if the order parameter involves only

the fast coordinate. This is because the system does not fully explore the phase space

along the slow coordinate and thus misses important transition paths. Juraszek et al

[54] also reported that DFFS produced an incorrect rate constant for a protein folding

problem where there were several possible folding pathways. This may have been due

to undersampling of the ensemble of configurations at the first interface [54]; order

parameter optimisation might be advantageous for such problems [55, 42], although it is

not immediately clear whether one can optimise the order parameter to allow sampling

of two reaction channels simultaneously. Further investigation of the performance of

FFS-like methods for problems with multiple reaction channels is clearly needed, and

progress in this direction has recently been initiated in the context of both TPS [25]

and FFS [40].

Another important topic concerns how the method explores path space. In FFS,

the segments of a transition path, once laid down, cannot be changed. If the nascent

path turns out to be unfavourable, it will fail to reach the B state and the only option

is to start again with a new path [for the BG or RB variants]. By contrast, in TPS

or TIS, new paths are generated by shooting forwards and backwards in time, so that

the initial segments of a path can relax in phase space. This offers likely advantages

in complex free energy landscapes [24]. However, TPS and TIS are not suitable for

nonequilibrium problems. It may be possible to devise FFS-like methods which sample

complex landscapes more efficiently, by more intelligent sampling of the configurations

at the interfaces, or by self-consistent determination of the order parameter [41].

Other directions of great interest are the idea of using time itself as an order

parameter [5], and the potential for borrowing ideas from related methods in which

trajectories are pruned or enriched continuously depending on the value of the Lyapunov

exponent [103]. Finally, we note that the above discussion has assumed that the rate

of transitions from A to B is constant in time (i.e. that our rare event is a Poisson

process). This is not always the case [104, 105]. It remains to be seen whether FFS-like

methods can be devised for non-Poissonian rare event problems.
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