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Chapter 1

Introduction

What is crystal nucleation? To answer this question we need to recall that most
substances that surround us can exists in two or more different phases. Think for
instance of water, a substance we deal with on a daily basis. At room temperature it
is a liquid, but we all know that cooling water below 0 ◦C will turn it into ice, and that
it evaporates when heated above 100 ◦C. We refer to these two phases as crystal and
vapor, respectively. Sometimes, the crystal forms directly out of the vapor, a process
called deposition (or de-sublimation). This is how snow-flakes grow in clouds, or
hoar frost on a shrub (see Figure 1.1).

But not only temperature determines the phase, pressure plays an important role,
too. You might not realize it, but your precious diamond is not stable at ambient con-
ditions. Heating it up to extreme temperatures, well above those of molten lava, will
turn it into a carbon liquid. But on subsequent cooling at ambient pressure you will
not regain your diamond. Instead you will find yourself with a piece of graphite, the
common crystalline form of carbon. Diamonds only grow at the enormous pressures
that exist deep inside a planet, and without these pressures they eventually turn to
graphite. Fortunately, the natural transition from diamond to graphite takes place on
the time scale of a billion years.

A slightly different crystallization process is neither driven by temperature nor by
pressure, but by concentration. For instance, the two crystal products with the world’s
largest industrial production are table salt and sugar. Both are obtained from solution
by increasing the concentration beyond the solubility threshold, at which crystals
start to form. This can be achieved by reducing the temperature or - at constant
temperature - by evaporation of the solvent. The latter method accounts for more
than 50% of the world’s production of crystals [1].

If we combine all the information about the different phases of a substance, we
arrive at what is called a phase diagram. It shows, as a function of temperature, pres-
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Figure 1.1: Hoar frost on a shrub in Akureyri, Iceland. At high humidity and low
temperatures the ice crystals grow directly by deposition from the vapor. Picture by
Ævar Arnfjörð Bjarmason (released into public domain).

sure, or concentration, which phase is stable at the given conditions. The boundaries
between these phases are the coexistence lines - crossing them eventually leads to
the transformation from one phase into the other. It is important to note that a phase
diagram shows the stability of bulk phases in thermodynamic equilibrium. In other
words, it only holds for a substance without confinements (e.g. far away from a wall)
after sufficiently long waiting times. Figure 1.2 depicts a schematic phase diagram
of a simple mono-atomic substance, such as the noble gas Argon, both in its temper-
ature/pressure and temperature/density representations.

Phase transitions on the molecular scale

Although the phase diagram is known for many substances, it is not enough to de-
scribe the kinetics of a phase transition. As an example imagine the following exper-
iment: Provided you have some very pure water, kept at room temperature in a jar
with a very smooth surface (or, if you prefer, floating in space as a huge spherical
drop). If you now cool it down very slowly - and make sure you don’t disturb the
water in the slightest (which is a challenge) - you will witness that the water temper-
ature can drop to −20 ◦C without freezing. The water can stay liquid for days, but the
tiniest perturbation, a piece of dust or some small vibrations, will turn it to ice. You
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Figure 1.2: Schematic phase diagram similar to that of the noble gas Argon. It shows
the vapor (V), liquid (L), crystal (X), and fluid (F) phases, and both the triple point
(filled circle) and the critical point (open circle), which is where vapor and liquid
become indistinguishable and are called a fluid. Left: temperature-pressure (T -P)
representation showing the coexistence lines. Right: temperature-density (ρ-T ) rep-
resentation indicating the vapor-liquid (V +L), liquid-crystal (L+X), and vapor-crystal
(V +X) coexistence regions.

might argue that this sounds a bit academic, but in facts its not. Many liquids can be
undercooled and kept for a long time without crystallizing, but eventually the liquid
will freeze by itself. As a consequence, the temperature where a crystal melts and the
temperature where the corresponding liquid freezes do not necessarily coincide for
one and the same substance, a phenomenon known as hysteresis. So what prevents
a material from freezing as soon as it is brought to a state where the crystal phase is
the most stable?

Another effect that is not described by a phase diagram concerns an observation
reported by Turnbull half a century ago [2, 3]. Investigating the characteristic under-
cooling temperature of liquid metals, he found that the freezing temperature depends
on the temperature of the previous melting cycle. In particular, metals that were
prepared at temperatures only slightly above the melting point froze much sooner
compared to those prepared at a very high temperature. He concluded that upon
heating some microscopic pores in the container wall remained crystalline and acted
as seeds inducing bulk crystallization much sooner. Once the liquid was heated far
above the melting point, even the material inside these pores melted, and the origi-
nal undercooling temperature was recovered again. But how is it possible that pores
remain crystalline above the melting point?

Both examples show that knowing the thermodynamic properties of a substance is
not enough to describe the kinetics of phase transitions in detail. All we can observe
macroscopically is the growth of a new phase, but not how it starts. To explain what
happens at the initial step of a phase transition, the so-called nucleation process, we
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Figure 1.3: Left: schematics of a spherical nucleus of radius R of a new phase B
embedded in a meta-stable parent phase A. Right: CNT prediction for the free energy
change due to the presence of a spherical nucleus as function of its radius R.

need to understand what happens on a microscopic scale.

Classical Nucleation Theory
The first microscopic theory of crystal nucleation was presented early last century by
Volmer and Weber [4] and by Becker and Döring [5]. Based on the conjecture of
Gibbs [6] that a phase’ stability is related to the work of formation of small nuclei of
the new phase, they developed a theoretical framework for the study of nucleation,
now commonly known as Classical Nucleation Theory (CNT). They assumed that a
nucleus of the new phase is approximately spherical and has the same properties as its
final bulk phase (i.e. same structure and density). They argued that the driving force
for the phase transition, the difference in chemical potential |∆µ| between the two
phases, is countered by the work to form an interface with surface tension γ. From
this they deducted an expression for the (Gibbs) free energy change of a system due
to the presence of a nucleus of the new phase,

∆G(R) = γA(R)−|∆µ|ρV (R),

where A(R) and V (R) are the surface area and volume of a sphere with radius R,
respectively, and ρ denotes the bulk (number) density of the nucleating phase. This
curve is plotted in Figure 1.3. For small radii ∆G(R) increases steadily, but once
the radius exceeds a critical size R∗, the gain in chemical potential outweighs the
interfacial cost, and the nucleus is likely to grow to a macroscopic size. Small nuclei
form and dissolve all the time in a supercooled liquid, caused by thermal fluctuations.
Statistical thermodynamics tells us that the average number of fluctuations of a given
size that can be observed in a volume V is related to the free energy cost associated
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Figure 1.4: Left: schematics of the binding of two DNA-coated colloidal particles.
The DNA strings have a short single-stranded end which binds specifically to DNA
with a complementary sequence. Right: confocal-microscopy image of DNA-coated
colloids forming a two-dimensional ”flying carpet”. The scale bar indicates 5µm,
and the colloids have a diameter of 1µm. Picture courtesy of N. Geerts, with kind
permission.

with this fluctuation:
N(∆G) = Ve−β∆G,

which scales linearly with the system volume V , and β = 1/(kBT ), where T is the
temperature and kB is Boltzmann’s constant. From this expression one can construct
an approximate expression for J, the rate at which nuclei form in a system. All we
need is the work to form a critical nucleus, ∆G(R∗) = ∆G∗, and a constant taking into
account kinetic effects, such as the rate of particle adsorption to the critical nucleus
and the probability of barrier re-crossings.

J = J0Ve−β∆G∗
.

This equation provides the starting point for many theoretical studies on nucleation.
Although the simplicity of CNT limits its applicability for quantitative predictions, it
has great explanatory power and often predicts the qualitative behavior correctly.

Novel materials, self-assembly, and protein crystals
It should be stressed that understanding the process of nucleation and growth on a
microscopic scale is not only of academic interest. For many industrial processes it
is crucial to optimize the crystallization process in order to increase output, improve
the quality of the resulting materials, or lower the costs of manufacturing. Just think
of computers: their chips are made from large silicon single crystals called wavers.
Improving their quality, size, or growth speed enhances the rate at which high-quality
chips can be produced, which is worth billions.
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Another example comes from nano-technology. One of the holy grails of this
field of research is to arrive at novel materials with pre-specified properties and phase
behavior, not by a random process of trial and error but by rational design. Such
rational materials design would be greatly facilitated if we could understand how
(macro-)molecules interact and how this interaction affects the spatial organization
of these molecules into larger structures. Using the techniques of modern molecular
biology, we can functionalize micron-sized particles (“colloids”) in such a way that
we can impose which colloid will be specifically attracted to which other colloid as
the DNA ensures very specific binding between the different units. Careful design of
”intelligent” building blocks might make them self-assemble into increasingly com-
plex macroscopic structures. Figure 1.4 shows both a schematics for a DNA-coated
colloid and a confocal-microscopy image 1 of an experimental colloidal ”flying car-
pet”.

A final example comes from drug discovery: here, proteins are in the center of
interest. Once in solution, these long chains of amino-acids fold into a very specific
structure giving them their ability to function as building blocks of life. Detailed
knowledge of a protein’s 3D structure is crucial for efficient drug design, and protein
crystal X-ray diffraction has provided us with most of the protein structures that we
know so far. The main challenge here is the production of high-quality crystals, as
many proteins are poor crystallizers. In fact, evolution has “selected” proteins such
that they tend to stay in solution. However, under conditions where the solubility is
decreased, many proteins do not order in bulk crystals but form fibrillar aggregates.
Such “crystalline” aggregates have been implicated in numerous diseases such as
Creutzfeld-Jacob or Altzheimer. Clearly, control of undesirable fibrillar crystalliza-
tion of proteins is of considerable interest.

1.1 Current research on nucleation phenomena
Nucleation phenomena have been approached from many different perspectives. Ever
since Volmer and Weber laid the foundation of what is now known as CNT, other sci-
entists have proposed extensions to compensate for its short-comings. There exist
corrections for surface curvatures effects, compressibility, or line tension, and the
discussion is still on-going. But CNT is not the only theoretical approach: origi-
nated from quantum mechanical calculations of electron densities in condensed mat-
ter physics and chemistry, density functional theory is now also used in combination
with classical statistical mechanics to assess nucleation phenomena. It expands the
grand potential in terms of a local density and takes into account the effect of ther-
mal density fluctuations. Minimizing this functional numerically with respect to the

1Courtesy of N. Geerts, with kind permission.
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local density leads to the system’s equilibrium properties. With DFT it is possible
to predict nucleation rates, barrier heights, and provide an estimate for the size of
the critical nucleus without having to assume, as is done in CNT, that a microscopic
nucleus has the same bulk and surface properties as a macroscopic crystal.

In addition to theoretical advances, recent years have witnessed a spectacular
expansion of experimental techniques to probe the details of crystal nucleation. A
particularly interesting development concerns colloidal systems. These micron-sized
particles are dispersed in solution, and with buoyancy-matching to eliminate grav-
itational forces, they can diffuse freely in 3D space. Using light from the visible
spectrum they can be observed in ”real space” using confocal microscopy. Due to the
rather slow movement of colloids, experimentalists can follow the motion of individ-
ual particles or extract the 3D position of all particles at any given time. Moreover,
colloidal interactions can be tuned almost at will by changing the solvent composition
or adding external fields. And with optical tweezers created by focused laser beams
individual particles can be trapped and moved around. With all these properties col-
loidal systems make for a generic experimental model system for testing theories.
In fact, during the past decade, the first direct “microscopic” observations of crystal
nucleation have been reported.

As the third pillar of modern physics, computational physics provides an excel-
lent tool for the study of molecular systems, both for testing theoretical predictions
and for investigating the molecular mechanism. The rapid pace at which computing
power increases makes it possible to calculate the properties of systems with many
thousands of particles on a home computer. But in the context of phase transitions
it is the recent advances in rare-event algorithms that allow for an efficient simula-
tion of nucleation events, particularly at conditions close to coexistence. It is here
where this Thesis attempts to advance on the topic of nucleation. Some of the more
technical chapters may at first sight appear unrelated to nucleation. However, as I
will briefly explain below, it is indeed the study of nucleation events that provides the
logical connection between all chapters.

Massively parallel computing
Rather than solving analytically the complex equations of statistical mechanics for
a system as a whole, numerical many-particle simulations pursue a different course.
Molecular Dynamics (MD) refers to one class of simulations that computes the forces
acting on all particles and solves iteratively Newton’s equation of motion to yield dy-
namical trajectories. Equilibrium properties of the system are then obtained through
time averages. Metropolis Monte Carlo (MC) simulations form another class of sim-
ulations. In contrast to MD it computes ensemble averages by sampling over possible
micro-states of a system. A new state is typically constructed from an existing state
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by randomly changing the microscopic state of the system. This change can be either
a particle displacement/insertion/removal, a volume change, or another physical or
unphysical move. A new state is then accepted or rejected according to its weight in
the statistical ensemble.

Although both methods seem rather different, in fact they are equivalent in many
ways. From a numerical perspective they share the principle that all the particle
interactions are evaluated many times over. Even with the rapid increase of avail-
able computational power, for many systems the performance of a single processor
(CPU) is not sufficient. Large-scale compute clusters offer the option to run these
simulations in parallel on many processors. But in order to work simultaneously on
the same problem, all processors have to exchange information. Not only does this
communication cost time, which lowers the efficiency of such a parallel computer
well below its nominal performance, but the required low-latency high-throughput
network hardware often exceeds the price of the processing units themselves.

In Chapter 3 we explore an alternative hardware for parallelism, put forward by
a field very distinct from natural sciences: the gaming industry. To accommodate
the growing demand for 3D video graphics in computer games, the graphics pro-
cessing unit (GPU) was developed. Within the last two decades it matured from a
graphical co-processor to a fully programmable one-chip supercomputer, capable of
a (theoretical) peak performance exceeding that of a conventional CPU by two or-
ders of magnitude. With its massively parallel arrangement of floating point units
and an on-board memory working at ten times the speed of conventional memory the
GPU makes an ideal compute platform for MD simulations. Using nVidia’s CUDA
language we demonstrate that a 25- to 80-fold speed increase can be achieved. And
instead of moving only the computationally most expensive parts on the GPU, we
show that in fact the entire simulation can run on a GPU.

Ostwald’s step rule
Chapter 4 is the first to deal with the physical aspects of nucleation. Phase transitions
between two phases, like condensation or crystallization, have been studied before
for many systems. But already in 1897 Ostwald conjectured that the phase that forms
during nucleation is not necessarily the phase that is thermodynamically most sta-
ble [7]. Instead, another metastable phase may nucleate, provided that it is more
stable than the parent phase and that the transition to that phase is kinetically favored.
A phase transition to a thermodynamically stable phase may therefore proceed via
a two step process. In the first nucleation event a metastable intermediate phase is
formed; this then goes on to form the final phase, possibly via a second nucleation
event.

There is experimental evidence that such a two-step nucleation scenario may be
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relevant to protein crystallization. For instance, lysozyme is sometimes found to sep-
arate into liquid-like aggregates before crystallization [8, 9]. This was also observed
in simulation [10] and several theoretical models provide a rationale for the behavior
observed [11–14].

In Chapter 4 we study the vapor of the Lennard-Jones system at temperatures
below its triple point at chemical potentials where the crystal phase is the stable phase
and surface melting is expected. We find that the phase transition does not occur
directly to the crystal phase but via a liquid intermediate phase. Both transitions act
on different time scales and correspond to distinct independent nucleation events.
The surface tension of the liquid-vapor interface is less than the surface free-energy
density of the crystal-vapor interface, making the free-energy barrier to liquid droplet
formation lower than to crystal formation. Recently, this behavior has been confirmed
experimentally in a quasi-2D colloidal system [15].

Heterogeneous nucleation and wetting
Nucleation can proceed either homogeneously, that is in the bulk of the parent phase,
far away from walls or other external influences, or heterogeneously at the surface of
a “seed”. In most cases of practical interest, heterogeneous nucleation dominates the
rate of crystal formation [16]. For this reason, heterogeneous crystal nucleation has
been studied extensively in theory, experiment, and simulation, investigating a variety
of geometries, such as walls, templates, and pores. In particular, micro-porous media
has received much attention as experiments by Chayen and co-workers [17] suggest
that such materials may act as universal nucleation agents for protein crystallization.

Based on their theoretical study of the 2D Ising model Page and Sear [18] pre-
dicted that a pore of suitable size can indeed enhance nucleation. However, such a
lattice model cannot capture one of the most interesting features of protein crystal-
lization, namely that it is most effective in the presence of a meta-stable high-density
disordered phase. The Ising model does not distinguish between the liquid and the
crystal state. Another limitation that will turn out to be crucial is that a pore in an
Ising model is by definition always commensurable with the lattice spacing.

In Chapter 5 we therefore study pore nucleation in an off-lattice model, where
the liquid and crystalline states are distinct, and variations in the pore diameter may
influence the free-energy barrier to crystallization. As in the case of homogeneous
nucleation, we show that crystallization proceeds via an intermediate meta-stable liq-
uid phase. As is to be expected, we observe that the wetting properties of a pore
have a strong influence on the nucleation free-energy barrier. In addition, for a nar-
row range of pore radii we find that the liquid nucleation itself becomes a two-step
process, where in a first nucleation event the liquid fills the pore, and in a second
independent event the liquid breaks out into the bulk. Interestingly, the crystal nucle-
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ation remains largely unaffected. Only for the largest pore featuring two-step liquid
nucleation is the crystal formed before the liquid grows into the bulk. But since the
liquid nucleation is the rate-limiting step the overall nucleation rate is still enhanced
significantly by the presence of a pore with suitable wetting properties.

Surface roughness
So far we have provided two examples that nucleation via an intermediate meta-stable
phase can facilitate the transition to the thermodynamically stable phase, both for ho-
mogeneous and heterogeneous nucleation. But the latter scenario holds more options.
A judicious choice of the wetting properties of the nucleation-inducing material may
lead to the adsorption of a thin microscopic layer of an intermediate phase even at
conditions where its bulk is unstable. Moreover, the structure and geometry of the
nucleant surface may have a strong influence on the phase that wets it, and in the case
of crystallization, on the structure of the emerging nucleus.

These options are investigated in Chapter 6 for a model system with very short-
range interactions, which is known to reproduce a phase diagram characteristic of
colloids and proteins. These phase diagrams feature only the fluid and the crys-
tal as thermodynamically stable phases, with the (meta-stable) vapor-liquid coexis-
tence curve hidden within the fluid-crystal two-phase region. Close to this fluid-fluid
de-mixing, where protein crystallization is observed experimentally, we explore the
effects of surface structure on the nucleation pathway. We find that surface disorder
leads to the adsorption of a thin layer of a high-density liquid phase. Both the amount
and the isotropy of the adsorbed phase is maximal if the surface roughness is of the
order of the radius of gyration of the protein. Moreover, for deep cylindrical pores cut
from a disordered substrate we observe pore filling if the cylinder falls within a nar-
row size range. In such a filled pore the crystal emerges in its center, i.e. away from
the rough surface, and the nucleation rate is enhanced tremendously. Moreover, in
contrast to periodically structured surfaces, the liquid in the disordered pore appears
not to impose stress on the growing crystal, and may therefore lead to high-quality
crystals.

Geometrical frustration and higher dimensions
Most of the discussion so far was focused on systems with very little undercooling.
But for some systems a quench deep into the meta-stable or even unstable regime
does not enhance crystallization, but instead promotes the formation of a glass. In
this case the fluid remains disordered and becomes steadily more viscous, until the
microscopic relaxation processes become slower than the experimental or simulation
timescales.
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Geometrical frustration is one of the factors thought to slow the formation of or-
dered phases and thus assist glass formation [19]. The earliest theories of geometrical
frustration conjectured that it is related to the optimal way to pack “kissing” spheres
around a central particle [20]. For hard spheres, the icosahedron is the optimally
packed arrangement of kissing-spheres. In contrast to the fcc lattice with the same
number of kissing-spheres, the icosahedron has a higher entropy since its spheres can
still ”wiggle around”. But the five-fold symmetry of an icosahedral arrangement does
not allow to fill space, leading to a competition between local and global order. More
recent formulations of geometrical frustration focus on the concept that tetrahedra
or, more generally, simplexes are the smallest building blocks in a Delaunay decom-
position of space [21, 22]. This poly-tetrahedral scenario then ascribes the presence
of icosahedra to their singularly easy assembly from quasi-regular tetrahedra. But
again, 3D space cannot be tiled with tetrahedra. Hence, also from this perspective
there appears to be a conflict between local and global optimal packing.

The last part of this Thesis attempts to resolve the ambiguity of the origin of
geometrical frustration. For this task we leave our familiar three-dimensional world
and enter the space of four-dimensional hard hyper-spheres, because in such a system
the optimal arrangement for kissing spheres is compatible with the lattice with the
highest density, the D4 crystal. Thus, if geometrical frustration has its origin in the
optimal way of arranging kissing spheres, crystal nucleation should encounter only
a very small free-energy barrier in 4D. With the simulation of crystal nucleation in
Chapter 7, we find that in 4D the free-energy barrier to nucleation is considerably
higher than for its 3D analog at comparable conditions, suggesting that tetrahedra are
the origin of frustration. In fact, using higher-dimensional bond-order analysis, we
show that the 4D optimal kissing cluster plays no identifiable role in the supercooled
fluid.

In the appendix of Chapter 7, we extend this line of thought into even higher di-
mensions. We assess the validity of higher-dimensional theoretical predictions on the
equations of state, the random close packing, and the growing fluid-crystal dissimi-
larity. From the behavior in higher dimensions we deduct some consequences of our
3D world, for instance that conventional hard spheres are remarkably little frustrated.

Love thy neighbor2

We conclude this Thesis with an appendix on a particular aspect of numerical sim-
ulations: the challenge to handle the vast amount of data produced in a single run.
Sometimes this data is analyzed after the simulation has finished, but at other times
this has to happen on-the-fly during a simulation. Appendix A deals specifically with

2Title of an oral presentation by S. Tindemans.
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a key ingredient for structural analysis: the identification of the nearest neighbors of a
given particle. Two algorithms are widely used. The first algorithm simply considers
all particles neighbors which are within a certain distance. This fixed-distance cut-
off algorithm is generally applied in simulations with particles interacting through a
short-range potential, where a neighbor corresponds to an interaction partner, and the
cutoff to the range of the interaction potential. For a structural analysis, for instance to
determine whether a particle is part of a crystalline or liquid environment, the choice
of cutoff is not so clear. The first minimum of the pair correlation function g(r) forms
arguably a natural choice, as it relates to the neighbors in the first coordination shell.
However, this quantity depends on temperature, pressure, and the systems thermody-
namic phase, and therefore needs to be computed for each system. In contrast, the
so-called Voronoi construction is based on purely geometric constraints and requires
no parameters. But this advantage comes at the cost of significant computational ef-
fort. This is why the Voronoi construction is generally applied only in post-analysis
and not on-the-fly in simulations.

In Appendix A we propose a novel algorithm for the identification of nearest
neighbors. Like a Voronoi construction it is parameter-free (scale-free), but performs
almost an order of magnitude faster. However, some of the properties of the Voronoi
construction are not preserved, such as neighbor symmetry and local volume conser-
vation. We compare our algorithm to both a well-tuned fixed-distance cutoff and the
Voronoi construction (in fact to its dual, the Delaunay triangulation) for the analysis
of both Lennard-Jones and Carbon liquid and crystal phases. We find that our al-
gorithm yields results very similar to a well-tuned distance cutoff, performs well at
interfaces, and is robust against thermal fluctuations. In particular, we suggest that
our algorithm may be suitable for protein structure analysis, for which the currently
applied Voronoi construction only partially meets those criteria.
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Chapter 2

Methodology

This chapter reviews the key ingredients required for a computational
approach to nucleation phenomena. It starts with a brief introduction to
Classical Nucleation Theory (CNT), a phenomenological theory based
on macroscopic quantities, which will then be extended to heterogeneous
nucleation and to a higher-dimensional space. CNT provides a tool to
assess the efficiency of different nucleation pathways and allows for a
qualitative comparison with experiment. Next, an overview is presented
over recent simulation techniques for the study of phase transitions and
rare events. In particular, both Umbrella Sampling and Forward-Flux
Sampling are discussed in more detail, which are the two algorithms
used in this Thesis. In the last part of this chapter the focus is on the role
of the order parameter, also known as reaction coordinate, in the study
of rare events. The chapter concludes with a detailed description of two
common order parameters, one for condensation and one for crystalliza-
tion,
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a) b)

Figure 2.1: a) Phase A with a spherical nucleus of phase B as assumed in Classical
Nucleation Theory (CNT). b) Free-energy barrier for nucleation according to CNT,
along with the critical nucleus size r∗ and the critical barrier height ∆G∗. The param-
eters correspond to a vapor-liquid nucleation of a Lennard-Jones system below the
triple point, as studied in Chapter 4.

2.1 Classical Nucleation Theory
In the early part of the last century Volmer and Weber [4], and subsequently Becker
and Döring [5] developed a phenomenological theory of nucleation based on macro-
scopic thermodynamic properties. This theory is nowadays called Classical Nucle-
ation Theory (CNT). It relates the rate of nucleation of a new phase from a metastable
parent phase to probability that a spontaneous fluctuation will create a nucleus of the
new phase that can continue to grow spontaneously. This probability is related to
the reversible work required to form such a nucleus. In particular, CNT yields an
expression for the nucleation free-energy barrier height that depends only on macro-
scopic quantities at coexistence, i.e. quantities that are in principle accessible both in
simulation and experiment.

CNT is based on several assumptions: First, the nucleus of the new phase is
assumed to be perfectly spherical. This assumption may be reasonable for droplet
nucleation from a saturated vapor, but need not be correct for nucleation of a strongly-
facetted crystal [23]. Second, the nucleus is taken to be incompressible. While this is
reasonable for the nucleation of a high-density phase like a liquid or a crystal, this is
definitively not a good approximation in the case of vapor nucleation in an overheated
liquid. The next simplification is that the nucleus is assumed to behave as its bulk
phase, e.g. with the same density and structure. This is a serious approximation,
considering that the Laplace pressure inside a droplet scales with the inverse droplet
radius, or taking account of the fact that a small crystal nucleus consist mainly of
interface, which is expected to be less ordered than a bulk crystal. Finally: the surface
tension (or, more precisely, the “surface free-energy density”) is taken to be that
of a planar surface at coexistence. On the one hand, this assumption is crucial, as
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surface tension is only defined unambiguously at coexistence: the surface tension of
a microscopic nucleus is a rather ill-defined quantity. On the other hand, nucleation
can only occur away from coexistence, and surface tension often depends strongly on
curvature [24, 25].

Despite these approximations, CNT offers a reasonable theoretical framework for
description of nucleation phenomena. Although its rate prediction is typically off by
several orders of magnitude [26], when it comes to a qualiitative comparison with
experiment it helps to understand the underlying processes and is still often able to
predict the trends. Therefore, we now review its essentials.

Consider a system prepared in a phase A under conditions where A is meta-stable
with respect to the more stable, nucleating phase B. Figure 2.1a schematically depicts
such a system in phase A with a nucleus of phase B. We assume that we know, either
from calculations or from experiments, the precise coexistence conditions, the differ-
ence in chemical potential between A and B, and the surface tension at coexistence.
Using the approximations mentioned above, CNT arrives at the following expression
for the change in (Gibbs) free energy due to the formation of a spherical nucleus of
phase B with radius r,

∆G(r) = A(r)γ−|∆µ|ρV (r). (2.1)

Here, ∆µ is the difference in chemical potential between both phases, γ is the planar
surface free-energy density at coexistence, ρ the bulk density of phase B, and A(r) and
V (r) are the sphere’s surface and volume, respectively. Physically, ∆G(r) represents
the change in free energy due to the cost to form an interface between the two phases,
which scales with the sphere’s surface, and the gain in bulk Gibbs free energy of
the new phase, which scales with the volume. This equation can also be derived
from thermodynamical considerations as is shown in Section 2.1.1. As A ∝ r2 and
V ∝ r3, there exists a radius r∗, called the critical radius, from which on further
growth results in a decrease of the free energy and therefore becomes beneficial.
This radius corresponds to the maximum of ∆G(r), and is commonly referred to as
the nucleation free-energy barrier height. The maximum of Eqn. 2.1 is easily located
and yields

r∗ =
2γ

ρ |∆µ| , (2.2)

with the corresponding barrier height

∆G∗ =
16π

3
γ3

ρ2 |∆µ|2 . (2.3)

Equation 2.3 shows that the free-energy barrier for nucleation diverges when ap-
proaching coexistence where |∆µ| → 0. Figure 2.1b shows the CNT free-energy bar-
rier (Eqn. 2.1) as well as the critical nucleus size r∗ and the corresponding barrier
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height ∆G∗ for a Lennard-Jones vapor-liquid transition under the conditions consid-
ered in Chapter 4. Note that often it is more practical to rewrite the critical nucleus
size in terms of the number of particles n in a nucleus, rather than its radius. Using
n = ρV we can rewrite Eqn. 2.2 to obtain

n∗ =
32π

3
γ3

ρ2 |∆µ|3 . (2.4)

2.1.1 Thermodynamic derivation of CNT
The expression for the CNT free-energy barrier, Eqn. 2.1, can be also derived from
thermodynamic considerations. The starting point is the thermodynamic expression
for the internal energy of a system in phase A,

U = T S−PV +µN, (2.5)

with T the temperature, S the entropy, P the pressure, V the system volume, µ the
chemical potential of phase A under these conditions, and N the number of particles
in the system. We now change the system to transform a small amount of particles
into phase B, surrounded by an interface with area A and surface tension γ. Assuming
that the interface is infinitesimally thin, the internal energy reads

UA+B = T SA+B −PA(V −VB)+PBVB +µA(N −NB)+µBNB +Aγ
= T S−PV +µN +T ∆S−P∆V +NB∆µ+Aγ
= U +T ∆S−P∆V +NB∆µ+Aγ.

In the second step we have assumed that the transition from the pure-phase system to
the two-phase system is isothermal-isobaric, and that NA À NB such that µA ≈ µ. The
work of formation for a new phase B in A is then the change in (Gibbs) free energy,
∆G = ∆U +P∆V −T ∆S. If we rewrite the (negative) difference in chemical potential
using its absolute value, ∆µ = −|∆µ|, we recover the CNT expression Eqn. 2.1,

∆G = Aγ−NB|∆µ|. (2.6)

2.1.2 Extension to higher dimensions
From a theoretical perspective, equation 2.1 is not limited to a three-dimensional
space. In fact it can easily extended to a d-dimensional space,

∆G(r) = γAdr(d−1)−|∆µ|ρVdrd, (2.7)
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Figure 2.2: Schematic representation of a nucleating droplet of a phase B in contact
with an adsorbing wall embedded in a meta-stable parent phase A. The symbol θ
indicates the macroscopic contact angle.

with the surface area Ad and volume Vd of a d-dimensional unit sphere given by

Ad = dVd and Vd =
πn/2

Γ
(

n/2+1
) , (2.8)

where Γ(x) is the gamma function. Consequently, the critical radius then yields

r∗ = (d −1)
γ

ρ |∆µ , (2.9)

the number of particles in the critical nucleus is

n∗ = (d −1)dVd
γd

ρ(d−1) |∆µ|d , (2.10)

and the free-energy barrier height results in

∆G∗ = (d −1)(d−1)Vd
γd

ρ(d−1) |∆µ|(d−1)
. (2.11)

This extension is used in Chapter 7 in the analysis of crystal nucleation of four-
dimensional hard hyper-spheres.

2.1.3 Heterogeneous nucleation
In most systems of practical interest homogeneous nucleation is not the dominating
pathway. The default route to nucleation starts at a pre-existing “seed” crystal, or at



18 2 Methodology

impurities (e.g. dust particles) or even at the container walls. Nucleation that starts
at a pre-existing interface is called heterogeneous nucleation. CNT can easily be ex-
tended to describe this phenomenon. Imagine a meta-stable phase A that is in contact
with an impurity, for instance a wall. Whether or not a nucleus of the nucleating
phase B forms at the wall depends on the wetting properties of the wall, which are
related to the surface tensions between the various phases involved. Following the
procedure for homogeneous nucleation, we can write down the work of formation
for a small nucleus in contact with a wall,

∆G(r) = γABAAB(r)−|∆µ|ρV (r)+ABW (r)γBW −AAW (r)γAW . (2.12)

Compared to Eqn. 2.1 this expression does not only contain a contribution from the
interface between phase A and B, but also from the interfaces between each phase
and the wall, as is denoted by the subscript. When the nucleating phase grows, its
interface area with the wall ABW increases. At the same time the interfacial area of
the parent phase with the wall AAW is reduced, since the parent phase is expelled from
the wall. Using Young’s equation for the contact angle and the information that AAW
is equal to ABW for symmetry reasons, the latter equation becomes

∆G(r) = γABAAB(r)−|∆µ|ρV (r)−AW (r)γAB cosΘ, (2.13)

where Θ is the (macroscopic) contact angle, and AW (r) = AAW (r) = ABW (r) is the
contact area of A with the wall. Such a system is schematically depicted in Figure 2.2,
showing a nucleating droplet of the phase B in contact with an adsorbing wall em-
bedded in a meta-stable parent phase A. The expressions for the barrier height and
critical nucleus size are derived in the appendix of Chapter 5 for the nucleation on a
planar wall, a planar circular patch, and a hemi-spherical pore. However, note that
the current CNT expression neglects effects of line tension, which is known to affect
the barrier [27].

2.2 Rare events sampling
First-order phase transitions are inherently difficult to simulate. The often large free-
energy barrier separating the meta-stable from the stable phase causes nucleation to
become a rare event. As a consequence, the system will usually fluctuate around its
meta-stable free-energy minimum in the course of a normal (“brute-force”) simula-
tion. For this reason, the study of nucleation requires advanced sampling schemes. In
fact, observing a nucleation event is not the only difficulty for studying phase transi-
tions. Often, it is unclear which pathway will be followed, or even which phase will
nucleate. Moreover, even if both the destination and route are known, many algo-
rithms require a parameter that specifies precisely how far the transition has evolved.
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Figure 2.3: Schematic representation of the Parallel Tempering method. The region
that is accessible to the system depends on the temperature, T1 < T2 < T3. A higher
temperature, indicated by the horizontal dashed lines, enables the simulation to over-
come the barriers separating neighboring free-energy minima.

And finally, we need to reduce the complexity to get some physical insight into the
underlying mechanism. Often it is convenient to quantify the progress of the sys-
tem along the transition pathway with the help of a so-called order parameter or
reaction-coordinate. Ideally, this quantity provides an intuitive measure of the de-
gree of nucleation. However, what is intuitively simple need not be computationally
straightforward and indeed, order parameter are often complex mathematical func-
tions. We will come back to this point in detail in Section 2.3. In what follows, we
assume that we are equipped with a set of order parameters capable of describing the
transition of interest, and attempt to group the available algorithms according to the
just-mentioned challenges they address.

The first class of algorithms that we discuss are so-called one-ended methods.
They aim to explore possible transitions in a system where only the initial state is
known. The key to this challenge is to escape the initial basin of attraction and move
the system to other parts in phase-space. One method that works without the need of
an order parameter is parallel tempering [28–30]. In this method, one runs simulta-
neously several simulations of the same system at slightly different temperatures (or
more generally, with slightly different Hamiltonians). Periodically, one attempts to
swap the states of two neighboring temperatures. This is schematically depicted in
Figure 2.3, which indicates the different temperatures as horizontal lines indicating
the accesible region in the free-energy landscape. Note that the order parameter in
the schematic is only used for visualization, but not actually used in the method. At
a higher temperature the system can escape shallow free-energy minima and there-
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Figure 2.4: Schematic representation of the Meta Dynamics algorithms, which leaves
a trail of entropic ”sand” indicated by the shaded area to fill up free-energy minima.
In this picture the sand that was deposited most recently has the lightest shade of gray.
The panels correspond to various stages of the simulation: sampling the initial basin
of attraction (left), exploring the second minimum (center), and the final stage of the
simulation, when the free-energy landscape becomes effectively flat (right). Once all
minima are filled up, the free-energy landscape can be extracted from the (negative)
sand profile.

fore explore the phase-space. At a lower temperature the system settles down into
the free-energy minima revealing the (meta-)stable states of interest. The use of both
high and low temperatures in combination with the state swapping leads to an ef-
fective sampling. Of course, this method is not only limited to temperature; other
quantities like the chemical potential can be used, or more than one quantity simul-
taneously [31, 32]. Another algorithm that does not involve an order parameter is
based on dynamical instabilities.This Lyapunov-weighted sampling [33, 34] evolves
simultaneously several copies, so-called walkers, of the same system, too. But in
contrast to parallel tempering, each walker evolves at the same conditions (i.e. tem-
perature, pressure, etc.). New walkers are created and existing ones destroyed ac-
cording to a probability related to their (largest) local Lyapunov exponent, a measure
for chaotic instability. In this way unstable attractors are approached, which for a
phase transition correspond to the saddle points between two (free-)energy minima.
A different approach to explore the free-energy landscape was proposed by Wang
and Landau [35, 36]. The idea behind this method is to sample phase-space whilst,
on the fly, biasing the sampling in such a way that regions that have already been
visited become less favored. This is achieved by means of a histogram sampling the
density of states, which affects the acceptance probability for the generation of new
states. The computed density of states is slowly refined until the overall sampling
becomes flat, in which case the underlying free-energy landscape can be extracted.
A closely related method is called Meta-Dynamics [37–39]. Rather than computing
a histogram, it leaves behind a trail of Gaussians in order-parameter space. An intu-
itive description of this process might be that it is like walking through a mountain
landscape and filling up the low-lying areas that one visits. Using such an approach
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Figure 2.5: Schematics of transition path sampling: left) initial path between A and
B. center) the path is evolved in a Monte Carlo manner. c) The path has converged
and only minor fluctuations are observed.

Figure 2.6: Schematics of the string method: a) initial path between A and B. b)
Piece-wise evolution of the path.. c) The final path has evolved.

in a simulation ensures that the sampling moves increasingly to regions that would
not be visited in a normal Boltzmann sampling procedure. As time progress, the free-
energy minimum where the simulation is started fills up completely and the system
escapes to another minimum. Once the sampling landscape becomes flat, the un-
derlying free energy landscape can be deduced from the biasing potential. The state
of the free-energy landscape at different times during the course of a simulation is
presented in Figure 2.4, which shows the potential energy bias as shaded area fill-
ing up the free-energy minima. A similar idea is pursued in temperature accelerated
molecular dynamics [40–42] (TAMD). Here, the system dynamics is restrained to a
reference point in order-parameter space like a ball-and-chain. In short runs the local
free-energy landscape is sampled providing a potential of mean-force for a Langevin-
type evolution of the reference point. Because the movement of the reference point
is unrelated to the actual dynamics in phase-space, a much higher effective tempera-
ture can be applied to the dynamics in order-parameter space, leading to an efficient
sampling.

The second class of algorithms are two-ended methods. They are deployed if the
starting and final state are known, but the actual pathway from A to B is unclear. The
most prominent algorithm is transition path sampling [43, 44] (TPS). It is schemati-
cally depicted in Figure 2.5. It starts with an estimate for the transition path, which
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is then subsequently evolved using a Monte Carlo path-sampling scheme. To gener-
ate a new path from an existing one, a point along the path is chosen at random and
slightly perturbed. The perturbed path is then evolved both forward and backward
in time until it ends up in one of the two basins of attraction. If the new path con-
nects A with B it is added to the transition path ensemble, else it is rejected. This
procedure is repeated until no significantly different pathways are found. The set of
well-equilibrated paths generated in this way are referred to as the transition path
ensemble. Although TPS needs an order parameter that distinguishes products from
reactants, the order parameter only has to determine whether the system is in A or B,
or in neither of both, but not where it is in-between. Since start and end are generally
quite distinct the requirements for a ”good” order parameter are less demanding. An-
other algorithm is the string method [45–49]. Like TPS it starts with an estimate for
the transition path, but then it evolves the transition path directly in order parameter
space, as shown in Figure 2.6. For this task the transition path is discretized, and the
system is sampled at each of the points Xi along the paths to compute the potential
of mean-force. To keep the system at or around its point Xi it has to be either con-
strained, e.g. by means of a blue moon ensemble [50, 51], or restrained, adding a
bias on the order parameter [52]. Each point along the path is then evolved ccording
to the mean force perpendicular to the path, and the string re-parametrized. Once the
path has converged the minimum free-energy path is obtained.

The last class of algorithms concern the calculation of free-energy barriers or
reaction rates. This is already possible with some of the algorithms presented in
the last paragraph or its derivatives, such as transition interface sampling [53–55]
or the finite-temperature string method [48], but a few methods have been designed
specifically with this task in mind. Already in 1977 Torrie and co-workers developed
the so-called umbrella sampling [52] (US), which has later been applied to the study
of nucleation phenomena [56, 57] and recently extended to obtain the steady-state
probability distribution of non-equilibrium ergodic processes [58, 59]. The concept
is to split the sampling range into several independent windows, which can then be
merged afterwards to yield the entire free-energy curve. How this can be applied to
compute the free-energy barrier for nucleation will be explained in detail in the next
section. A method that calculates reaction rates rather than free-energy barriers is
forward-flux sampling (FFS) [60–62]. It splits the path into so-called interfaces and
divides the rate calculation into two parts: the computation of the flux through the
first interface and the computation of the probability to reach the final state B before
returning to state A starting at the first interface. The latter probability is rewritten
as a product of probabilities to reach interface (i+1) before A starting at interface i,
which is sampled sequentially. A detailed description of this method is presented in
Section 2.2.2. As a final example for the calculation of transition rates we refer to the
computation of mean first passage times [63, 64]. Based on theoretical arguments,
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Figure 2.7: Various stages during umbrella sampling. Left: definition of the sampling
window borders (thin dotted lines) and the bias potentials (dashed lines). Center: the
sampled distribution for each window. Note that the first window (r < 0.5) is sampled
without bias. Right: Un-biased distributions and the merged final free-energy curve.

the mean time τi to first observe the system at position i along the path can be fitted to
an expression that then yields both the nucleation rates and the committor, the point
at which the probability to grow to the final phase is 0.5. Although it was shown to
yield results close to the experimental nucleation rates for Argon condensation, it is
limited to highly supersaturated systems, where the free-energy barrier for nucleation
is sufficiently low to be overcome in a un-biased simulation.

From this overview it is evident that there exist a large variety of algorithms to
explore all aspects of a phase transition, and it sounds appealing to use them all: start
with a one-ended method to find the relevant free-energy minima of the system, then
apply a two-ended method to optimized the transition path, and finish with computing
both the free-energy barrier and rate for nucleation along this path. However, in
practice the limited computing facilities force us to focus on one aspect only, because
although significantly more efficient than brute-force sampling, the computational
cost of each individual algorithm is still considerable.

2.2.1 Umbrella Sampling
Free-energy difference can be computed as an ensemble average. However, tradi-
tional Metropolis Monte Carlo simulations are extremely inefficient for such com-
putations because of the main contributions to the average often come from parts of
configuration space that are hardly sample in a normal MC simulation. To address
this problem, Torrie and Valleau [52] proposed a more efficient Monte-Carlo sam-
pling scheme to compute free-energy differences. The authors proposed a method to
use arbitrary sampling distributions, which can be chosen to facilitate the sampling
of free-energy differences. In essence, one adds a weighting function w, also known
as biasing function, to the phase-space coordinate qN, to obtain a distribution π(qN),

π(qN) =
w(qN)exp{−βU(qN)}

R

dq̄N w(q̄N)exp{−βU(q̄N)} , (2.14)
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which is then applied for sampling. The weighting function w(qN) is chosen to favor
those configurations qN that are important to the ensemble average of interest, and
optimally results in a flat sampling histogram. The unbiased ensemble average of any
function θ(qN) can be recovered according to

〈

θ
〉

0 =

R

dqN(θ/w)wexp{−βU}
R

dqN(1/w)wexp{−βU} =

〈

θ/w
〉

π
〈

1/w
〉

π
, (2.15)

where
〈

. . .
〉

π denotes the average over the distribution π(qN) of Eqn. 2.14. Because
this sampling scheme should span all the relevant parts of the free-energy landscape,
the authors named the method Umbrella Sampling (US).

In the context of phase transitions US enables a simulation to sample the behavior
of the critical nucleus at the top of the free-energy barrier, a point in phase-space that
is both highly unlikely and unstable. The biasing function then acts on the order
parameter. Many implementations use a quadratic biasing function, restraining the
system to fluctuate around a given value. More advanced implementations steadily
improve the biasing function with a fit to the sampled distribution after unbiasing. In
this manner the biasing function slowly converges to the (negative of the) free energy,
resulting in a flat histogram.

Moreover, Torrie et al. argued that for a wide-ranging distribution the choice of a
suitable bias function becomes tedious, and that it is more convenient to use several
overlapping windows with different bias functions. In fact, following this line of
thought, for many systems using multiple windows leads to faster convergence. This
can be understood assuming a one-dimensional random walk, for which the time
to explore the full range of a window scales quadratically with its width ∆ = L/N,
and hence the total sampling time for all N windows scales as T ∼ L2/N. Although
T → 0 for N → ∞, in practice numerical aspects limit the number of windows. Note
that using multiple windows yields the free energy locally except for a constant offset,
so a slight overlap between neighboring windows facilitates merging the local free-
energy curves.

Figure 2.7 depicts schematically the application of US to sample a free-energy
barrier for nucleation. The bias function acts quadratically on the radius of the largest
cluster r and the calculation is split into 5 windows. Note that the (meta-stable) free-
energy minimum at r < 0.5 is sampled without the use of a biasing function. The
reason for this lies with the choice of using a the order parameter, as will be explained
below. Panel (a) shows the quadratic biasing functions for all windows. Panel (b)
depicts the obtained sampling histogram, and panel (c) presents both the individual
unbiased window results and the merged free-energy barrier for nucleation.

From my experience, the best ratio of accuracy versus computational cost is
achieved using many windows (10 ≤ N ≤ 50). For each window I start with a
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Figure 2.8: Free-energy curve sampled with umbrella sampling in the basin of attrac-
tion. The probability distribution obtained from a histogram sampling only the largest
cluster yields a spurious minimum (open circles), because it neglects the presence of
other clusters. The correct free-energy curve (filled circles) is calculated from a his-
togram including all clusters including monomers or, in the case of crystallization,
liquid particles (n = 0). As a consequence, in the case of crystallization the correct
free-energy curve includes a cost associated with the formation of a crystal monomer,
since the majority of particles will be identified as liquid-like.

quadratic potential, and after some sampling I fit the results using a low-order poly-
nomial (linear or quadratic) to improve the efficiency of my biasing function.

Spurious artifacts of US with a local order parameter

In the context of phase transitions, Umbrella Sampling requires an order parameter
that monitors the transition progress. Order parameters suitable for this task can be
classified into two groups: local and global. Order parameter of the latter group refer
to the system as a whole. Examples are the system density, e.g. for a vapor-liquid
transition, or the fraction of particles in a crystalline environment. In contrast, a local
order parameter refers to a small part of the system, for instance the number of parti-
cles in the largest high-density cluster. The properties of such a cluster may be very
different from the bulk and therefore does not represent the system as a whole. Al-
though both groups may be suitable to compute the free-energy barrier for nucleation,
their use in US comes with some subtle differences [57].

Umbrella sampling using a global order parameter x is fairly straightforward.
Sampling the basin of attraction with a bias function yields, after un-biasing, the
same probability distribution as sampling without a bias, and hence the same free-
energy curve. The subtlety becomes evident at a later stage in the path analysis.
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Imagine a vapor-liquid transition: we are interested in how a liquid droplet nucleates
and grows. However, if the bias involves a global order parameter x, small values
of x will not result in one small droplet, but instead in many tiny droplets, a process
called entropic break-up [57]. Once x exceeds a certain threshold it becomes favor-
able to form just one big droplet in the system, which means that all the tiny droplets
have to coalescent. In a condensation transition this might be possible, because the
liquid droplets diffuse almost freely in the vapor, but for crystallization coalescence
becomes unlikely during the run-time of a simulation. Hence, a global order param-
eter does not only lead to numerical problems, but also to a physically questionable
nucleation pathway.

Local order parameters, such as the number of particles in the largest cluster of a
new phase, offer a solution to avoid entropic break-up. They follow the evolution of a
single cluster rather than the whole system, which compares well with CNT’s picture
of a growing nucleus. Umbrella sampling with such an order parameter produces a
nucleation pathway that is physically more appealing. The free-energy barrier for
nucleation is again calculated from the probability histogram, βG(x) =− lnP(x), but
here the subtlety lies within the definition of P(x). In contrast to a global order pa-
rameter, which describes the whole system, it is possible to have many clusters in the
system, all with a different x. If the sampled cluster is very large, the probability to
observe a second cluster of this size or larger is negligible due the high free-energy
cost associated with its formation. In this situation it is justified to sample only the
largest cluster using a bias function. But for small clusters the situation is differ-
ent. Due to the presence of other small clusters, a bias forcing the largest cluster
to fluctuate around a certain size will prevent any other cluster to exceed this size
and hence constrain the system. This forces the system into an artificial state with
suppressed cluster sizes, which leads to an increase in free energy at small cluster
sizes, and hence create a spurious free-energy minimum. Such a behavior is depicted
in Figure 2.8 (open circles). The solution to this problem is to sample, for small x,
the entire cluster size distribution without a bias, and compute the free-energy barrier
from the histogram including all cluster sizes. Figure 2.8 also shows the resulting
correct behavior of the free-energy barrier (filled circles).

2.2.2 Forward Flux Sampling
Forward-flux sampling (FFS) was first introduced by Allen and co-workers in the
context of modeling genetic switches [60, 61]. The method was later applied to the
study of crystallization in binary-charged colloids [65]. The idea behind this method
is to divide the path along a reaction coordinate x by a set of interfaces {λi} with A ≤
λA < λ1 < · · · < λN ≤ B. The rate calculation is then split into two parts: sampling
the flux Φ through the first interface λ1 and computing the probability to reach B



2.2 Rare events sampling 27

Figure 2.9: Schematic representation of the various stages during forward-flux sam-
pling. Left: sampling of the flux through the first interface. Indicated are both the
crossing times τi and the future starting points (open circles) for the shooting phase.
Center: Shooting of trial trajectories from interface λ2. Starting points are indicated
by filled circles and end points by open circles. Trajectories end successfully if they
reach λ3, or unsuccessfully if they go all the way back to λA. Right: Final path
reconstruction connecting trajectories across interfaces.

before A starting at λ1. The latter quantity is replaced by a product of probabilities
P[λi → λ(i+1)] to reach interface λ(i+1) before returning to A (by crossing λA) starting
at interface λi. The overall transition rate from A to B (i.e. the forward rate) is then
given by

JA→B = Φ ΠN−1
i=1 P

[

λi → λ(i+1)

]

. (2.16)

It is worth noting that this method does not involve the calculation of a free-energy
barrier (although it is reported in Ref. [62] that it can be obtained with a minor exten-
sion), which makes it suitable for the study of both equilibrium and non-equilibrium
processes.

The flux provides a measure for the rate at which a system in state A crosses the
barrier for nucleation. For its computation a simulation evolves the system in the
basin of attraction A according to its normal dynamics. During the run the order pa-
rameter x is monitored, and every time the first interface λ1 is crossed in the forward
direction (i.e. coming from A), the state is saved for future use and the time τ is sam-
pled. The next time measurement τ starts the moment the system returns to state A
(i.e. passing through λA coming from λ1) , such that the time to relax to the basin of
attraction is not included. After sufficient sampling this part of the algorithm provides
the flux as the inverse of the average crossing time, Φ = 1/

〈

τ
〉

, and the collection of
states at the first interface forms the starting points for the next step in the procedure.

The second part of the method concerns the calculation of the probabilities. For
this task a series of trajectories, so-called shots, are fired from the set of points at
the first interface. Such a short run is stopped once the trajectory returns all the way
to λA, or alternatively if it reaches λ2, the next interface, at which point it is called
successful and the state point is saved again. The fraction of successful shots provides
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an estimate for the probability to advance from λ1 to λ2 before returning to A. In this
manner all the interfaces are sampled sequentially, and the product of probabilities
is obtained. Note that, to improve statistics, one and the same state point can be a
starting point many times over, provided every generated trajectory is different, which
can be ensured in chaotic many-particle simulations by a slight random perturbation
or in stochastic systems by a change in the random number generator seed.

There exist several options for the implementation of the second part of FFS
differing in the way the state points are sampled at each interface [61]. Examples
are the branched growth, the Rosenbluth sampling, and the FFS sampling. In the
branched growth sampling, a fixed number of shots are fired from every starting
point of a given interface. Every successful shot is saved and forms a starting point
at the next interface. If more than one trajectory arrives at the next interface, the
path branches and forms a tree. If no trajectory arrives at the next interface, that
branch dies out. The problem with this scheme is that one has little control over
the number of trajectories at each interface. In particular, once the system reaches
the top of the barrier, almost every shot will be successful, leading to an exponential
increase. In the Rosenbluth scheme an interface is sampled until sufficient statistics
are obtained. Then one successful shot is chosen at random, which is then taken
to be the starting point for the next interface. After the sampling is complete, the
path has to be re-weighted to correct for picking paths randomly, and not according
to their weight in the transition path ensemble. The last scheme offers control over
the sampling accuracy and the number of trajectories without the need of path re-
weighting. In this ”classical” scheme a fixed number of shots is performed at each
interface, picking a starting point at random, and all successful paths are stored for the
next interface. In the appendix of Ref. [61] it is demonstrated that this method selects
paths according to their correct weight in the transition path ensemble eliminating the
need of re-weighting. In practice, it is advantageous to continue sampling until either
a minimum number of shots or a minimum number of successful paths are generated.
This leads to a good control of accuracy for both a negative and a positive free-energy
slope, respectively.

2.3 Order parameters

Section 2.2 reviewed algorithms for the study of rare events. As mentioned, many of
these techniques require an order parameter, and some even a whole order-parameter
space. Order parameters, also referred to as reaction coordinates in a chemical con-
text or collective variables in a mathematical context, capture the essential physical
aspects of a phase transition, but remove redundancies, e.g. due to translational or ro-
tational symmetries. Often a single order parameter is not enough to characterize the



2.3 Order parameters 29

Figure 2.10: Two examples of a neighborhood definition. In both cases the center
particle is shown in black, and the identified neighbors in gray. Left: two-dimensional
Voronoi construction: particles that share a line are considered neighbors. Right:
fixed-distance cutoff: all particles within a circle of radius rc are neighbors.

system, and a set of them is deployed, which then span the so-called order-parameter
space. The criteria for a good order parameter differ by method. The authors of the
string method claim that every order parameter may be included into the set of col-
lective variables, because even if it does not contribute actively to the path, it will not
cause any harm to the method. For some methods, such as transition path sampling,
it is sufficient to identify the (meta-)stable start and end points of a transition. For
other methods, such as FFS or US, it is essential that the order parameter correlates
closely with the transition progress, and that it increases monotonously moving along
the path from A to B.

From the rare-event methods’ dependence on the order parameter it is evident that
a judicious choice is crucial for the success and the numerical efficiency of any algo-
rithm. This is why the remainder of this Chapter is dedicated to the order parameters
used in this Thesis. As was already discussed in Section 2.2.1 of this chapter, both
a local and a global approach is possible. However, a local order parameter yields
a physically more plausible pathway, which is the reason why we consider it here.
Moreover, in practice a local order parameter based on the number of particles in the
largest cluster of the new phase has proven itself many times over. This leaves the
question how to compute the largest cluster and how to identify particles of the new
phase. Since the latter question depends on details of the phases involved, we will
address it separately for condensation and crystallization in Sections 2.3.1 and 2.3.2,
and first focus on the determination of the largest cluster.

Assume that all particles of a new phase have been identified. To calculate the
number of particles in the largest cluster we first need to define a cluster. A natu-
ral criterion that proved itself useful considers a cluster to consist of particles of the
same phase that are all connected, and two particles are connected if they are nearest



30 2 Methodology

neighbors. Again, there exist more than one way to define nearest neighbors. The
Voronoi construction considers particles to be neighbors if their Wigner-Seitz cells
share a face (or a line in 2D) as depicted in Figure 2.10a. But since the Voronoi
construction is computationally rather expensive it is rarely used on-the-fly during
simulation. A simpler, and faster, definition is based only on the particles’ distance.
This fixed-distance cutoff criterion considers all particles neighbors who’s center-of-
mass distance is smaller than the radius corresponding to the first minimum of the
radial distribution function g(r). This algorithm is schematically depicted for a 2D
system in Figure 2.10b. Which neighborhood definition is used depends on the par-
ticular requirements. In Appendix A of this Thesis the advantages and disadvantages
of these two neighborhood criteria are explained in more detail, and an alternative
definition is proposed.

2.3.1 Liquid vs. vapor
The process of condensation is investigated in several chapters of this Thesis. Or-
der parameters for condensation are somewhat simpler than those for crystallization
discussed in Section 2.3.2, because both the vapor and the liquid are disordered struc-
tures, and the transition is easily identified by a large change in density. However,
as detailed in Section 2.2.1, the overall system density is not the first choice. In-
stead, we deploy a local order parameter, which requires to identify particles of the
new phase. Since density is the key quantity, we need a definition for a local density
on a per-particle basis. This allows to distinguish between particles in a liquid-like
environment and particles in a vapor-like environment by comparing their local den-
sity to a well-tuned threshold. Such a threshold can be obtained from computing the
local-density distribution for both phases in the bulk and minimizing their overlap.

As for the definition of neighboring particles, the Voronoi construction provides
a natural measure for the local density as it constructs the Wigner-Seitz cell around
each particle, and the inverse of the cell’s volume corresponds to the local density.
Although this definition sounds intriguing, it involves significant computational cost,
and is prone to strong fluctuations.

An alternative is a criterion based on the inter-particle distance. This fixed-
distance criterion, also known as Stillinger’s overlapping spheres criterion [66], de-
fines all particles within a sphere of certain radius centered around a particle of in-
terest to be its neighbors. Although it is possible to construct a local volume based
on the number of neighbors and the sphere’s volume, it is equivalent to impose the
threshold directly on the number of neighbors. In a study on Lennard-Jones con-
densation Wedekind et al. [67] argued that, using a distance cutoff corresponding to
the first minimum of the radial distribution function, a threshold of n = 5 particles
yielded a critical nucleus size that correlated best with the experimental observations
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for Argon. But the physical justification for this observation is, at this stage, unclear.

2.3.2 Crystal vs. liquid
In the process of crystallization the system undergoes a density change, too, but it is
significantly smaller than for condensation. In fact, on the basis of individual parti-
cles a local density-based order parameter cannot distinguish between an emerging
crystalline nucleus and a local density fluctuation of the liquid. But another differ-
ence lies in the local structural arrangement of particles, since the liquid is disordered
and the crystal ordered. For instance, with the Voronoi construction the local arrange-
ment of a particle can be classified with a set of polyhedra [68–70]. The so-called
Common Neighbor Analysis decomposes the local environment into pairs, triples,
and higher-order n-tuples of neighbors shared between two particles [71]. Steinhardt
et al. [72] proposed to expand the local environment of particles into a set of spher-
ical harmonics capturing the symmetries of the emerging lattice. This approach was
later on extended by ten Wolde and co-workers [57] to yield reliable results on a
per-particle basis. In what follows this method will be reviewed.

The first step in the procedure is to identify the nearest neighbors { j} for each
particle i. This is achieved commonly by means of a fixed-distance cutoff corre-
sponding to the first minimum of the radial distribution function of the crystal phase.
Each particle is then assigned a (2l + 1)-dimensional complex vector based on the
spherical harmonics Ylm of order l capturing the local environment of particle i,

(

ql(i)
)

m
=

1
Nb(i) ∑

j
Ylm(r̂i j), (2.17)

where components m of the spherical harmonic range from −l ≤ m ≤ l, Nb(i) is the
number of nearest neighbors of particle i, and r̂i j denotes a unit vector connecting
the centers of mass of particles i and j. The order l depends on the symmetry of the
lattice and must be chosen accordingly. For instance, both a fcc and bcc lattice are
well-represented using l = 6, but for a diamond lattice, which is anti-symmetric, order
l = 3 is better suited. However, if the second neighbor shell of the diamond lattice is
included, the 6th-order spherical harmonics perform well again (see Appendix A).

From this we can construct a quantity that is invariant versus both translation and
rotation, and does not depend on the frame of reference. This is an important prop-
erty, since a crystal nucleus can form anywhere in the system with any orientation,

q̄l(i) =

(

4π
2l +1

∣

∣

∣
ql(i) ·q∗

l (i)
∣

∣

∣

)1/2
, (2.18)

with the superscript star (∗) indicating the complex conjugate. A distribution of q̄6 is
presented in Figure 2.11 for both a meta-stable liquid and a fcc crystal of a Lennard-
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Figure 2.11: Distribution P[q̄6(i)] for the order parameter of Eqn. 2.18 for both a
Lennard-Jones liquid and fcc crystal bulk phase. Note that there exists a significant
overlap between the two phases preventing a unique classification. Both curves are
normalized by their maximum Pmax.

Figure 2.12: a) Local bond-order correlator distributions P[q6(i, j)] for both a
Lennard-Jones liquid and fcc crystal bulk phase. b) Distribution of the number of
links per particle n(i) resulting in a unique classification. All curves are normalized
by their maximum Pmax.
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Jones system (T = 0.92, P = 5.68). Although the distributions are distinct, there
exists a significant overlap preventing a unique classification on a per-particle basis.

To improve the classification, Ref. [57] proposed an invariant that does not cor-
relate the neighbor arrangement of one particle with itself, but with that of a neigh-
boring particle,

ql(i, j) =
ql(i) ·q∗

l ( j)
√

|ql(i) ·q∗
l (i)|

√

|ql( j) ·q∗
l ( j)|

. (2.19)

This quantity, which we will refer to as ”bond-order correlator”, is invariant versus
both translation and rotation, and does not depend on the frame of reference. But the
main difference is that it compares effectively the neighborhoods of two particles,
and that each particle has as many ql(i, j) as it has neighbors. Figure 2.12a plots
the bond-order correlator distribution P[q6(i, j)] for the same system and conditions
as in Figure 2.11. Although the distributions are already quite distinct, Ref. [57]
goes one step further. Whenever ql(i, j) exceeds θ, the two particles i and j are
considered to form a ”link”. Figure 2.12b presents the distribution of the number of
links per particle n(i). With this final step both the liquid and crystal distributions
are well-separated, and a unique classification is possible by imposing a cutoff nc
on the number of links. At this point we like to mention that these distributions are
different for each system, and that all parameters should be tuned to achieve a good
classification of both bulk phases before an attempt is made to identify a growing
nucleus.

Particles at surfaces

A simple extension to the procedure outlined in Ref. [57] concerns particles at a
surface or at an interface with a low-density phase: they tend to have fewer nearest
neighbors than particles in the bulk. Imposing a threshold on the absolute num-
ber of links prevents those particles from being identified correctly, even if they are
positioned in a perfectly crystalline arrangement. To avoid this problem, Mendez-
Villuendas and Bowles [73] proposed to change the threshold on the number of links
to a threshold on the fraction of neighbors that form a link. Using this extension they
could study surface nucleation in the freezing of gold nano-particles. In Chapter 4
we apply this modification to study vapor-crystal nucleation in a Lennard-Jones sys-
tem at conditions below the triple point to check whether crystal nucleation in liquid
droplets starts at the vapor-liquid interface or within the ”bulk” of the droplet. And
in Chapter 6 this modification enables us to grow a crystal cluster directly from the
low-density fluid phase without the need of a second order parameter to first obtain a
small cluster of a high-density disordered phase [10].
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Imposing compactness

In Chapter 7 we present another extension to the local bond-order parameter which
improves the compactness of crystalline clusters of four-dimensional hard hyper-
spheres. In this system, the fluid phase is very distinct from the crystal phase, and
crystalline particles are rarely observed in an over-compressed meta-stable fluid. In
order to grow an initial nucleus, the parameters had to be chosen to identify even
weakest ordering. As a consequence, the growing crystal had many defects and the
tendency to grow crystalline ”arms” or branches into the fluid. This is an unphysical
entropic effect induced by the choice of order parameter settings. To facilitate the
formation of an initial nucleus without this artifact we modified the order parame-
ter such that it returns the total number of links in the largest cluster rather than its
number of particles. With 24 nearest neighbors in 4D a cluster can therefore increase
its order parameter without growing in size by means of optimizing its inner order.
This leads to the formation of very compact clusters, as was confirmed by computing
the cluster’s radius of gyration. For the final sampling of the free-energy barrier for
crystallization and the comparison with Classical Nucleation Theory, we used these
compact clusters only as input, but sampled with a bias on the conventional order
parameter definition. Although the compactness was not encouraged anymore, the
clusters remained dense compact objects - an indication that the initial branching
was indeed unphysical.
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Chapter 3

Harnessing graphics power for
MD simulations

with A. Axel, S. Portegies Zwart, and R. Belleman

In this chapter we discuss an implementation of molecular dynamics
(MD) simulations on a graphic processing unit (GPU) in the NVIDIA
CUDA language. We tested our code on a modern GPU, the NVIDIA
GeForce 8800 GTX. Results for two MD algorithms suitable for short-
ranged and long-ranged interactions, and a congruential shift random
number generator are presented. The performance of the GPU’s is com-
pared to their main processor counterpart. We achieve speedups of up
to 40, 80 and 150 fold, respectively. With the latest generation of GPU’s
one can run standard MD simulations at 107 flops/$.
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Over the last 30 years computer simulations have become an important tool in
materials science, often bridging the gap between theory and experiment. Simula-
tions can be used both to predict the outcome of experiments and to test the assump-
tions of theories. The basic idea of most classical simulations is to calculate the forces
acting on all particles, and then integrate Newton’s equations of motion using these
forces. This approach is not limited to single atoms or molecules, the same approach
can be used to model the motion of stars within galaxies.

With the rapid increase of available computational power, more systems become
tractable for simulations. Nowadays it is possible to simulate the time evolution of
simple molecules over microseconds with atomistic detail on a conventional personal
computer. However, for many systems, the computational power of a single pro-
cessor (CPU) is not sufficient. In this case, simulations are run in parallel on many
processors, which allows us to simulate hundreds of thousands of molecules over
time-spans of milliseconds. The increase of computational power comes at a price:
the different processors have to exchange information on the simulated system con-
tinuously. This communication costs time, reducing the effective performance of a
parallel system to typically less than 80% [74, 75] of the total performance of all
its individual CPUs. And although there are standardised software tools for the im-
plementation of this communication, such as PVM [76], MPI [77] or OpenMP [78],
writing a code for parallel execution is not trivial. Moreover, the necessary very low
latency, high throughput communication hardware often costs as much as the pro-
cessing units themselves.

An alternative approach speeds up the simulations by using special purpose hard-
ware. For example, in simulations of stars or charged molecules, more than 90%
of the computation time is typically spent on the calculation of the gravitational or
electrostatic interaction. Most prominently, the GRAPE board [79] is a special pur-
pose hardware designed to calculate such interactions; recently, a variant called MD-
GRAPE [80] has been put forward to calculate the interactions of more general pair
potentials. Due to their specificity, these boards can achieve several orders of magni-
tude higher throughput compared to conventional CPUs, but are only of interest for a
limited community of researchers. This makes these boards relatively expensive and
their development cycle long.

Since 2003, a new route to gain additional computational power has opened: the
graphics processors (GPUs) of recent PC hardware have become general purpose pro-
cessors, which can be programmed using C–like programming environments such as
the GL shader language (GLSL) [81], C for graphics (Cg) [82] or the NVIDIA com-
pute unified device architecture (CUDA) [83]. Their computational power exceeds
that of the CPU by orders of magnitude: while a conventional CPU has a peak perfor-
mance of around 20 Gigaflops, a NVIDIA GeForce 8800 Ultra reaches theoretically
500 Gigaflops. This means, that 4 graphics cards can replace a complete 64 proces-
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sor PC cluster, saving space and reducing the necessary power supply from 15kW
to around 2kW. Moreover, graphics processors follow a Moore–law with a compu-
tational power doubling every 9 months, in contrast to 18 months for conventional
CPUs. For the end of 2007, the first Teraflops-cards are expected.

There have been early attempts to harvest this computational power for vari-
ous applications, including fast Fourier transforms [84], matrix operations [85], lat-
tice Boltzmann simulations [86] or Monte Carlo (MC) simulations of the 2D Ising
model [87]. Recently, Portegies Zwart et al. [88, 89] presented a N-body simula-
tion with gravitational interactions, where the force calculation was performed on the
GPU. For the latter application, the graphics cards are in direct competition with the
GRAPE boards, and achieve similar performances at much lower costs and higher
reliability. Yang et al. already presented a proof–of–concept molecular dynamics
simulation for the thermal conductivity of solid argon [90]; their implementation is
however limited to the simulation of defect–free solids.

In this chapter, we aim to assess the portability of classical molecular simula-
tion systems onto GPUs using NVIDIA’s CUDA [83]. Unlike the previous attempts
of putting only the computationally most expensive parts of the simulation onto the
graphics cards, we demonstrate that in fact the entire simulation can be ported to the
graphics cards. The resulting program reproduces all data obtained from a standard
single–processor simulation. We report benchmarks of three codes: two simulat-
ing the classical “work–horse” of coarse–grained molecular simulation, the Lennard-
Jones system, and a classical rand48 random number generator [91]. We tested these
codes on a system consisting of an Intel Xeon CPU running at 3.2 GHz and a NVIDIA
GeForce 8800 GTX (16 multiprocessors, running at 675 MHz each). For both the
simulation and the calculation of random numbers, we achieve an about 25– to 150–
times speedup using the GPU compared to the CPU.

3.0.3 GPU architecture
To facilitate the discussion on the technical implementations, it is necessary to briefly
summarise the key aspects of the GPUs hardware architecture and its nomenclature
(see also Figure 3.1). We use the NVIDIA CUDA system for programming the GPU,
which allows to write functions for the GPU, so–called kernels, in a C–like language.
For detailed information we refer to NVIDIA CUDA programming guide [83].

The NVIDIA GeForce 8800 GTX consists of 16 multiprocessors (MPs). Each
MP has a single–instruction–multiple–data (SIMD) architecture and is capable of
performing 32 times the same operation on different data per two clock cycles. Many
copies of a kernel, so-called threads, are executed in parallel on all available MPs
on the GPU. To fit the SIMD architecture, groups of 32 threads form a warp which
is executed on the same MP. If a kernel contains a branch and threads of the same
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Figure 3.1: Schema of the multiprocessor and memory organisation of current
NVIDIA GPUs. While registers are bound to a thread, all threads of the same SIMD
block have access to a common shared memory, and all threads on all MPs have
access to the global memory.

warp take different routes, then both routes are executed sequentially and the total run
time is the sum of both branches. This warp divergence can have a serious impact on
performance.

Threads can store data in 8192 32–bit registers per MP, and a high-speed shared
memory of 16 KB per MP is available to share data among threads running on the
same MP. For this, threads are grouped into blocks of up to 512 threads which are
forced to run on the same MP. A slower global memory of 768 MB is also available
that is shared among all MPs. To hide register read-write latencies of one to two
clock cycles, it is recommended to use block sizes of 192 or more threads, and more
than one block per MP should be scheduled in order to hide the much larger global
memory read latencies of 200 to 400 clock cycles. Note however, that GPU global
memory is still ten times faster than the main memory of recent PCs.

As a final remark we point out that nowadays graphics hardware only supports
single precision floating point arithmetic. This might not suffice for systems where
energy conservation is crucial. But for systems in thermal equilibrium, i.e. with a
stochastic thermostat, this forms no limitation.

3.1 N-squared MD
We start with the most simple molecular dynamics algorithm in which each parti-
cle interacts with all other particles. Therefore, the total force calculation scales
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Figure 3.2: Schema of the splitting of the force calculation into blocks. Each of the
nb threads is dedicated to calculating all interactions of particle i. All particles j are
loaded in blocks of again nb particles, which are then shared among all threads.

quadratic with the particle number N. The force fi on a particle i is given by

fi = −
N

∑
j=1
j 6=i

f (|r j − ri|)
r j − ri
|r j − ri|

, (3.1)

where f (r) is the well-known Lennard-Jones pair force, truncated at a distance rc =
2.5σ and shifted such that the force at the cutoff distance was zero. The full Lennard-
Jones pair force is given by

fLJ(r) = 24ε
[
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r
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]

, (3.2)

our truncated and shifted force by

f (r) =

{

fLJ(r)− fLJ(rc) r < rc

0 r ≥ rc .
(3.3)

The Velocity Verlet algorithm was applied to integrate Newton’s equations of motion
[92].

3.1.1 Implementation details
A Molecular Dynamics simulation is naturally suited for a SIMD architecture, be-
cause it performs the same set of operations on each particle. The most simple way
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Figure 3.3: Left: Time (in seconds) required to integrate a single MD time step as a
function of system size N. Right: Speedup factor for both GPU implementations, Cg
and CUDA. The speedup saturates once both the processor and GPU versions have
reached the quadratic scaling regime.

to parallelise this algorithm is to have one independent thread per particle. However,
naively implementing Equation 3.1 turns out to be far from efficient. The reason for
this is that every thread loads all particle positions from global memory, which is not
cached. Each read access comes with some latency causing the processor to idle until
the data arrives. A huge improvement can be achieved by taking advantage of the
fact that all threads need the same data. By grouping threads into blocks, data can be
shared among them, effectively reducing memory bandwidth and idle times.

Our implementation works as follows: each thread loads one different particle
from global memory and stores it into shared memory. Then all threads of a block
are synchronised to ensure loading has finished. Now the data of all threads are
accessible through high–speed shared memory, and each thread can calculate the
interactions of its dedicated particle with all other particles in shared memory (see
figure 3.2). For a block of nB threads, this reduces memory bandwidth by a factor
1/nB. In addition, each thread can now compute more interactions per memory read,
allowing the thread scheduler to more efficiently hide global memory latencies. The
optimal block size depends on the resources used by the kernel: number of registers
and shared memory size. A block size of nB = 64 turned out to be the optimal choice
for our program. For details about the interplay between register usage, shared mem-
ory usage, block size and number of blocks per multiprocessor, we refer to NVIDIA’s
CUDA programming guide [83].

3.1.2 Results

To compare the performance of the GPU and CPU implementations on our test sys-
tem, we measured the time required to integrate a single MD time step as a function
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of system size N. The speedup factor x is defined as

x =
TCPU
TGPU

, (3.4)

where TCPU is the time used by the CPU implementation and TGPU the time used by
the GPU implementation. In addition to the GPU implementation with CUDA, we
also present results from a GPU implementation in Cg [82], a language designed for
graphic processing. It is supported by the majority of current graphics hardware, but
does not provide the flexibility required for more complex MD algorithms.

The left graph in Figure 3.3 shows the average time used to integrate a single MD
time step. The quadratic scaling of run time with system size is clearly visible for
the CPU version. For the GPU code at small system sizes, the overhead of invoking
the graphic program is comparable to the actual computation time. Therefore, the
quadratic scaling regime is reached when this overhead becomes negligible, which
corresponds to a system size of approximately 4000 particles.

The speedup factor for the GPU implementation is depicted in the right graph in
Figure 3.3. Although the GPU version is faster for all our system sizes, it requires a
system size larger than 4000 particles to reach its full speedup of around 80.

3.2 Cell-lists MD
If the pair interaction is short-ranged, the simulation box is typically decomposed into
smaller domains, so-called cells, with a side length equal to or greater than the max-
imum interaction range. For a given particle, all interaction partners are then located
in the same and directly neighbouring cells. Therefore, the algorithm scales linearly
with the number of particles, but suffers some penalty due to the overhead associated
with maintaining the cell structure. For small systems, this might be disadvantageous
compared to the N-squared algorithm, but for large systems it generally results in a
huge performance gain. The system size at which both algorithms perform equally
well is called break–even point.

Another way of optimisation are the so-called Verlet lists. For each particle, a
list holds all neighbour particles within a sphere of rV = rc + ∆r, the Verlet radius.
The Verlet lists skin with width ∆r prevents particles to move into interaction range
unnoticed and generally acts as an invalidation criterion. Every time a particles list
is updated, the particles current position is stored as Verlet list centre. If this particle
moved further than ∆r/2 away from its Verlet list centre, the list has expired and
needs to be rebuild. Obviously, the larger ∆r, the less frequent the lists have to be
updated, but the more unnecessary interactions with r > rc have to be computed.
Updating Verlet lists is rather expensive and scales like O(N2). Therefore, cell lists
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are often used to reduce its costs to O(N). Compared to cell lists, Verlet lists further
reduce the number of possible interaction partners and result in a theoretical seven
fold speedup.

Yang et al. [90] used the Verlet lists approach to compute the thermal conductiv-
ities in solid argon on a GPU. However, their Verlet lists were computed only once
(on the CPU) and never updated, which restricts its use to defect–free solids. To fit
the SIMD architecture, they added virtual particles to obtain the same list size for
all particles. Moreover, to avoid inner-loop branching which deteriorates the perfor-
mance, the interaction cutoff distance was set to the Verlet list radius rV . In doing
so, they removed the essential skin from their Verlet lists allowing interactions due
to fluctuations to be ignored. This shows that Verlet lists are not particularly suited
for a SIMD architecture. The MD code of Ref. [90] is therefore useful as a proof of
concept, but cannot be used for production runs.

In our program we applied only cell lists. They seem more suitable for the hard-
wares architecture and could be implemented to run entirely on the GPU. Care was
taken not to neglect any interactions and to include cell list updates.

3.2.1 Implementation details
There are plenty of schemes to implement the cell lists technique [92]. One approach
uses one linked list per cell to store the identities of the particles located in it. The
advantage is that this scheme works well for all densities without parameter modi-
fications, because there are no size limitations on a linked list. The disadvantage is
that memory access is random, not sequential, and therefore a linked list cannot be
loaded in parallel.

Another way is to assign a fixed sized array of placeholders (AOP) to every cell
and physically copy particles position into this array. The advantage of this scheme
is that interacting particles are physically close together in memory allowing for fast
parallel loading. The disadvantage is that it generally requires more memory, be-
cause each AOP has to provide space enough to store particles at the highest possible
density.

Our implementation uses the latter scheme. Per cell, one thread is devoted to one
placeholder. Empty places are filled with virtual particles. Each thread i of a cell c0
loads the data of placeholder i of cell cn from global memory and stores it into shared
memory. It synchronises with the other threads of the same cell c0 to ensure loading
has finished. Now it computes the interactions of particle i with all particles in shared
memory. Note that this is done for virtual particles, too. These steps are performed
for the centre cell, cn = c0, and all neighbour cells, n = 1 . . .26.

But the force computation is not the only task. As particles move, the cell lists
have to be updated. While this is straight forward on a single CPU, the parallel
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version comes with some difficulties. If a cell realises that one of its particles is
about to move to a neighbour cell, it cannot move the particle there without the risk
of memory–write conflicts and data inconsistency.

To safely update a cell in a parallel environment, we first remove all particles from
the list which left the cell. Then all particles from neighbouring cells are checked to
see if they moved in and need to be added to this list. Double–buffering ensures that
all old lists stay intact until all cells have updated their list. Both for removing the
particles from a cell that have left the cell and adding the particles that have moved
in, we have to first test where a particle belongs, and then update the corresponding
particle list by either deleting or adding particles.

Testing particles can be done in parallel. Each thread of a cell computes the
cell id for one particle and stores it in shared memory. Now one thread sequentially
loops over these particles and adds those with a correct cell id to the list. To prevent
memory–write conflicts, this task has to be performed by a single thread per cell,
leaving all other threads idle.

Updating a cell list requires all particles from this cell and its neighbour cells
to be loaded from memory. In order not to load the same data twice, we perform
this task during force calculation, not directly after the integration of positions. As
a drawback the cell lists are not precisely up–to–date, but one time-step behind. In
order not to neglect any interactions, the cells have to have a side length larger than
the maximum interaction range plus a so-called skin of thickness λ, where λ is the
maximum particle displacement per time step. For MD simulations it is common
practise to use an even larger skin and therefore update the cell lists only every couple
of time steps.

3.2.2 Results
As for the N-squared MD algorithm in Section 3.1, we compared the GPU imple-
mentation with its CPU counterpart. Because the algorithmic complexity exceeded
the capabilities of Cg, only CUDA could be used.

The system size lower limit is given by the requirement to have at least 3 cells
per dimension at a density of ρ = 1.0. The upper limit for the density was given by
the array size associated with every cell, which was n = 32 in the data presented here.
For a minimum cell size of rc = 2.5σ and a density of ρ = 1.0, on average ρr3

c ≈ 16
places per cell are occupied. This implies that most of the time half of the threads are
calculating interactions of virtual particles which do not contribute. This deteriorates
at lower densities.

The run time is density dependent: the more particles per cell, the more inter-
actions have to be computed, and the computation time rises. This is true for the
CPU version. However, our GPU version behaves differently. In contrast to the CPU
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Figure 3.4: Left: Speedup of the GPU version at various densities (from top to bot-
tom: ρ = [1.1,0.9,0.7,0.5,0.3,0.1]). The kinks and bumps are reproducible. For
details, see main text. Right: absolute times (in seconds) for a single MD step. The
density-independent N-squared MD data is presented as a reference. The intersection
points with this reference data would indicate the break-even points for the cell-lists
algorithm. But for all system sizes shown here, the cell-lists MD is faster than its
N-squared counterpart.

version, the GPU version’s run time is dominated by the total number of cells, not by
the number of interactions per cell. This is because interactions are always calculated
for all placeholders; at low densities, most of them are however empty. At constant
number of particles, the number of cells decreases with the density, and therefore the
run time decreases. This effect saturates once all placeholders of a cell are used.

The left graph of Figure 3.4 shows the speedup factor for our GPU implemen-
tation. At the lowest density of ρ = 0.1, the GPU version is twice as fast as the
CPU version. At higher densities, the GPU outperforms the CPU by up to a factor
40. The errors for these speedup factor are smaller than the symbol sizes and the
kinks and bumps reproducible. They relate to the cell size, which fluctuates in order
to get an integer number of cells per dimension. Assume a box length of Lx = 11σ
and a minimum cell size of rc = 2.5σ; then the number of cells for this dimension
is nx = int[Lx/rc] = int[4.4] = 4 and the actual cell size is r′c = Lx/nx = 2.75σ. This
increase of 10% results in 33% more particles per cell, leading to 77% more interac-
tions, decreasing the CPU performance. But for the GPU version a few more threads
compute real particle interactions instead of virtual ones, resulting in no penalty.

The absolute computation times required per MD time step are depicted in the
right graph of Figure 3.4. For comparison, the (density independent) N-squared MD
data is shown as well. The cell-list data feature a different slope than the N-squared
data, indicating linear and quadratic scaling, respectively. Intersection points with
the N-squared curve would indicate the break even points, where both algorithms
perform equally well. However, for all system sizes and densities depicted in Figure
3.4, the cell-lists version performed better than its N-squared counterpart.
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3.3 Random number generation
For many applications in computer simulations, e. g. Monte Carlo simulations or
Molecular Dynamics simulations with a stochastic thermostat, a large quantity of
(pseudo–)random numbers is required. Typically, simple linear congruential genera-
tors such as the lrand48 are used [91]. Given a number xn, the following number in
its series is generated as follows:

xn+1 ≡ axn + c mod 248 (3.5)

where a and c are some integer constants. The pseudo–random number xn+1 is then
converted to the pseudo–random number Yn+1 of the required data type. For Yn+1,
one uses the d most–significant bits of xn+1, where d is the bit size of the required
data type (e. g. d = 31 for nonnegative 32–bit integers).

3.3.1 Implementation details
To parallelise generation rule (3.5), we note that

xn+m ≡ Axn +C mod 248 (3.6)

where
A ≡ am mod 248, and C ≡

m

∑
i=0

aic mod 248. (3.7)

The random number generator is then implemented as follows. We choose a
number S of random numbers to generate in parallel. To start the random number
generator, we choose a seed x0, and generate the first xi, i = 1 . . .S according to
the serial rule (3.5). The next set of S pseudo–random numbers is then generated
from this set according to rule (3.6). Since the calculation of xi+S only requires
knowledge about xi, all xi+S, i = 1 . . .S can be calculated in parallel. If some multiple
RS of S random numbers is required, each set xi, xi+S, . . ., xi+(R−1)S can be calculated
independently by an isolated processor.

For the implementation on current GPUs, this is very convenient: Using S in-
dependent threads, each thread first loads its current state xi. Then, it generates the
following pseudo–random numbers xi+S, calculates the output value Yi+S and stores
it. This step is repeated for all xi+nS, until in total R random numbers have been gen-
erated and stored. Finally, the thread saves the current state xi+(R−1)S. For our test,
we used S = 6144 independent threads, grouped into 32 blocks of 192 threads each.

Note that all arithmetics is done modulo 248. However, GPUs (as well as standard
CPUs) do not offer 48–bit data types. In principle, a 48–bit number can be repre-
sented by three 16–bit numbers, but for performance reasons it is better to represent
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Figure 3.5: Speedup of a self-written CPU and a GPU version of the rand48 random
number generator versus the standard glibc implementation. From top to bottom:
GPU vs. CPU (glibc), GPU vs. CPU (optimized), CPU (optimized) vs. CPU (glibc).

the 48–bit number as one 64–bit integer or two 32–bit integers. We have chosen to
represent the xn by two 32–bit integers, which contain the 24 most–significant and 24
lowest–significant bits.

3.3.2 Results
We compare our implementation of the lrand48 random number generator on the
GPU both to the standard GNU–libc lrand48() function as well as a self–written
CPU version using 64–bit arithmetics. For each implementation, we measured the
time necessary to generate the first N random numbers of the lrand48 series for
10,240 ≤ N ≤ 40,960,000. The resulting speedup factors of our implementations
relative to the GNU–libc implementations are shown in Figure 3.5.

The optimised CPU version is consistently faster than the system implementation
by a factor of almost four. This simply demonstrates the high 64–bit performance of
current PC processors. However, the GPU achieves a much higher performance.
For generating more than a million random numbers, the GPU is faster than the
standard–libc lrand48 by a factor of 150. Compared to our optimised CPU–version,
the speedup is still almost 40.

Although the speedup factor for this pure integer arithmetics problem is therefore
not as high as for typical floating–point problems, the GPU is still competitive for
the generation of random numbers. Moreover, our implementation stores the output
random numbers in the relatively slow main memory of the graphics card. Depending
on the problem at hand, it is however often possible to generate random numbers on
the fly, which will increase the speedup factor.
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3.4 Summary and outlook
The computational power of recent graphics cards is fifty times as large as the power
of a conventional processor. It has been shown previously that this speed can be
harvested for many problems, e. g. matrix multiplication or the calculation of elec-
trostatic interactions. In this work, we have demonstrated that it is possible to run a
conventional MD simulation entirely on a graphics card. The simulations run 25-80
times faster than on a single conventional processor, at comparable prices. Similar
results are reported by Anderson et al. [93] using a different technical approach. This
shows that it is also possible to harvest this computational power for MD simulations.

Although our code features only the simple Lennard–Jones potential, it is trivial
to replace this potential by other pair-potentials, including the coulombic interaction.
By this, our code can in fact be used for many systems of interest. Moreover, the
GPUs are indeed general purpose processors by now, and therefore it should be pos-
sible to implement many other techniques equally efficiently, such as Ewald summa-
tion methods or SHAKE for constrained dynamics. Currently the GPUs are limited to
single precision floating point operations. For long non–thermalized simulations, in
which energy conservation is crucial, this precision might not be sufficient. However,
double–precision GPUs are expected for the end of this year.

While MD simulation techniques can be easily ported onto the GPU architecture,
this does not hold for the equally wide–spread family of Monte–Carlo methods. To-
mov et al. [87] have implemented a MC scheme for the 2D Ising model showing that
lattice-based probabilistic simulations can be ported to the GPUs SIMD architecture.
However, off-lattice many particle MC simulations are difficult to parallelise, both
on conventional parallel architectures and on SIMD hardware. Reasons for this are
the random acceptance moves causing unpredictable branching, and the permanent
access to global information to obey detailed balance.

The difference in computational power between conventional processors and GPUs
is expected to increase further. At the end of this year, NVIDIA GPUs are expected
to reach Teraflops performance on a single card, and will feature double precision
floating point operations, at a rate of 250 Gigaflops. Even with current off–the–shelf
PC mainboards it is possible to build systems equipped with four graphics cards. A
single PC can therefore obtain Teraflops performance, and a small cluster of such PCs
provides a computational power of 10 Teraflops for a price of less than $100,000.
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Chapter 4

Vapor-crystal nucleation close
below the triple point

with A. Page and R. Sear

We present the results of Monte Carlo simulations of crystal nucleation
from the vapor phase. We studied the Lennard-Jones system at condi-
tions close to, but below, the triple point. This system is expected to
show surface melting. The nucleation pathway that we observe consists
of two distinct steps. In the first step, a liquid droplet nucleates from the
vapor. Its nucleation rate depends strongly on the vapor supersatura-
tion. In the second step, the final crystal phase nucleates in the liquid
droplet, provided that this liquid droplet exceeds a minimum size. Our
simulations show that within a liquid droplet the crystal nucleation rate
does not depend on the vapor supersaturation.

In a recent independent study Chen et al. [J. Phys. Chem. B, 112, 4069
(2008)] investigated the same phenomenon using umbrella sampling to
compute free-energy barriers and hence nucleation rates. We use a dif-
ferent numerical approach where we focus on computing the nucleation
rates directly using forward-flux sampling. Our results agree with the
findings of Chen et al. and both methods observe two step nucleation.
This finding indicates that this nucleation process can be described with
a quasi-equilibrium theory. Due to different cutoffs for the interaction
potential the results cannot be compared quantitatively.
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A first order phase transition starts with nucleation, if a free-energy barrier sepa-
rates the parent phase from the phase that is thermodynamically more stable. Nucle-
ation from this metastable initial state will take place when a rare fluctuation allows
the system to surmount the free-energy barrier. Although the phase that forms during
nucleation must be more stable than the parent phase, it is not necessarily the phase
that is thermodynamically most stable [7]. A metastable phase may nucleate if the
transition to that phase is kinetically favored. A phase transition to a thermodynami-
cally stable phase may therefore proceed via a two step process. In the first nucleation
event a metastable intermediate phase is formed; this then goes on to form the final
phase via a second nucleation event.

There is experimental evidence that such a two-step nucleation scenario may be
relevant to protein crystallization. For instance, lysozyme is sometimes found to sep-
arate into liquid-like aggregates before crystallization [8, 9]. This is at conditions
at which lysozyme is only thermodynamically stable in the dilute fluid phase or in
the crystal phase; the transition between a dilute and a concentrated liquid solution
is located in a metastable region of the phase diagram where the solid phase is ther-
modynamically stable. Interestingly, crystal nucleation of these proteins appears to
be near the metastable liquid-liquid coexistence curve [10, 94]. Simulations of en-
hanced crystal nucleation close to the metastable liquid-liquid critical point show that
the system first forms dense, liquid-like clusters [10]. Crystallites then form inside
these liquid clusters. Several theoretical models provide a rationale for the behavior
observed in the simulations [11–14].

In the present paper we study the vapor of the Lennard-Jones system at tem-
peratures below its triple point at chemical potentials where the crystal phase is the
stable phase. Under these conditions, this system also acts as a simple model for
”nano-colloids” in dilute solution. We find that, starting from a vapor, the phase tran-
sition does not occur directly to the crystal phase but via a liquid intermediate phase.
The surface tension of the liquid-vapor interface is less than the surface free-energy
density of the crystal-vapor interface, making the free-energy barrier to liquid droplet
formation lower than to crystal formation. We expect that any phase transition, where
an intermediate with a faster kinetic transition exists, will occur via a similar two-step
process.

In a recent article, Chen et al. have used umbrella sampling to study two-step
nucleation in the Lennard-Jones system [95], where they applied classical nucleation
theory (CNT) to estimate nucleation rates and critical nucleus sizes. In the present
work, we present an independent study of the same phenomenon using forward-flux
sampling (FFS) [60, 61]. This technique primarily yields nucleation rates rather than
free-energy barriers, and allows to estimate the critical nucleus size directly from the
simulation data. In addition, FFS includes the effect of kinetics which can seriously
alter the observed nucleation phenomenon [65]. Where a comparison can be made,
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our results are consistent with those of Ref. [95] (see Section 4.4).
The remainder of the present paper is organized as follows. Section 4.1 deals with

the simulation details and introduces the techniques that we have used. In Section 4.2
we present our results, and in Section 4.3 we explain our result in the framework of
classical nucleation theory (CNT).

4.1 Simulation details
Throughout this work we report Metropolis Monte Carlo simulations on a model
system consisting of particles interacting through a truncated and shifted Lennard-
Jones (LJ) pair potential.

U(r) =

{

ULJ(r)−ULJ(rc) ;r ≤ rc
0 ;r > rc

(4.1)

where the full (i.e. not truncated) LJ interaction is given by

ULJ(r) = 4ε
[

(σ
r

)12
−
(σ

r

)6
]

(4.2)

Here, ε is the unit of energy, σ is the unit of length and rc the interaction cutoff
distance. Note that the choice of interaction cutoff has a significant effect on the
free energy of the system and on properties such as coexistence lines and surface
tensions [96].

In what follows, we use reduced units. We define the reduced distance as r∗ =
r/σ and the reduced potential energy as u∗ = Uε−1. All other reduced quantities
(e.g. the pressure P∗ = Pσ3ε−1, the density ρ∗ = ρσ3, and the temperature T ∗ =
kBT ε−1) follow. All quantities reported in this work are stated in these reduced units.
Therefore, we omit the superscript star (*) from here on.

We performed all vapor-liquid simulations in the grand-canonical ensemble, where
temperature, volume and the chemical potential are kept constant, and the particle
number is allowed to fluctuate. This ensures a constant vapor pressure and mini-
mizes finite size effects. The resulting nucleation rates are presented per unit volume
of the vapor phase.

Our liquid-solid simulations from a liquid droplet embedded in the vapor were
performed both in the canonical and grand-canonical ensemble. The initial liquid
droplet was taken both from grand-canonical vapor-liquid simulations, as well as
from melting a fcc crystal at high temperatures, quenching it to T = 0.45, and relax-
ing it for a long time. The results were unaffected by the preparation method.

Periodic boundary conditions were applied to all sides of the cubic simulation
boxes. In the canonical ensemble simulations the box sizes were chosen to be l3 =
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203 for all but the largest droplet size, in which case the simulation was performed
in a box of l3 = 303. For all grand canonical simulations the simulation box size was
l3 = 443. The trial move size is chosen to be ∆x = 0.11 in the canonical ensemble
and ∆x = 0.2 in the grand-canonical ensemble. In the grand canonical ensemble
each particle was moved on average 20 times before a insertion/removal move was
performed.

To capture nucleation events, we applied the forward-flux sampling (FFS) scheme,
a rare-event technique developed by Allen et al. [60, 61]. FFS primarily yields nucle-
ation rates. For the critical nucleus size an estimate is given by the order parameter
value of the FFS interface at which the probability to reach the final state exceeds
0.5. The error is then given by the FFS interface spacing. All nucleation rates and
estimates for the critical cluster size were obtained by averaging over five indepen-
dent FFS runs with at least 50 successful paths per interface. As the unit of time τ
in our FFS simulations, we use a Monte Carlo sweep, which corresponds to one trial
displacement move per particle. For a given Monte Carlo step size, τ can be related
to the time in a molecular dynamics simulation by comparing the self-diffusion coef-
ficient computed both from Monte Carlo and Molecular Dynamics simulations. All
nucleation rates are presented as the number of nuclei that form per unit volume and
unit time, that is [k] = [τ−1σ−3]. In addition, we also present the liquid-to-solid nucle-
ation rates per droplet, [kVD] = [τ−1], where VD is the droplet volume. In the grand-
canonical simulation, in which the droplet keeps growing, the initial droplet volume
is used. To properly compare the nucleation rates between different ensembles, care
has to be taken that the rates are expressed in the same unit of time. Furthermore,
in the grand-canonical ensemble simulation the rate of particle insertion and deletion
affects the density profile in the vicinity of a droplet surface, effectively changing
the diffusion coefficient. However, small changes in our particle swap rates did not
noticeably affect the nucleation rates. Therefore we neglected this effect throughout
this work.

Order parameters
For the vapor-to-liquid nucleation we used an order parameter based on Stillinger’s
overlapping sphere criterion [66]. It defines a particle to be in a high-density phase
if it has at least one neighbor within a distance 1.5 corresponding roughly to the first
minimum of the pair correlation function of a bulk liquid. Then a cluster analysis
is performed on all high-density particles and the number of particles in the largest
cluster is taken as the order parameter. Note that this order parameter does not dis-
tinguish between an ordered or disordered high-density phase, and therefore does not
favor one phase (liquid or crystal) over the other. For a detailed description of this
order parameter we refer the reader to Ref. [67, 97].
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As order parameter for the liquid-to-solid nucleation we applied the local bond-
order parameter [57, 98]. This order parameter assigns each particle a 13-dimensional
vector capturing its local environment,

(

q6(i)
)

m
=

1
Nb(i) ∑

j
Y6m(r̂i j), (4.3)

where Y6m denotes a 6-th order spherical harmonic with components m ranging from
−6 ≤ m ≤ 6. Nb(i) is the number of nearest neighbors of particle i, and r̂i j a unit vec-
tor connecting the centers of mass of particles i and j. The sum is over all neighbor-
ing particles j within a cutoff distance r = 1.5. In a second step the order parameter
computes the dot product q6(i) ·q6( j) between each particle i and all its neighbors j,
effectively comparing the particles’ neighborhoods. If q6(i) ·q6( j) exceeds a thresh-
old of 0.65, particles i and j are considered to form a ’link’. Only if a particle’s
total number of links n(i) exceeds 5 links is it considered to be solid-like. In a final
step Stillinger’s criterion is applied to all solid-like particles to identify the number
of particles in the largest solid-like cluster, which is used as order parameter. All pa-
rameters for this order parameter can be obtained by minimizing the overlap between
distributions of an equilibrated bulk solid and a metastable bulk liquid at working
conditions. Note that slight modification of these values affected neither the nucle-
ation rate nor the nucleation pathway of our simulations. But it does affect the size
of the clusters identified, and therefore the critical cluster size, too.

This local bond-order parameter was designed to detect nucleation in the bulk.
In order to verify that nucleation at the droplet surface is not neglected, we also per-
formed simulations with the modified local bond-order parameter used by Mendez-
Villuendas and Bowles [73]. This modification ensures that surface particles, too,
can be identified as solid-like particles and are taken into account properly. However,
compared to the unmodified order parameter no difference in the nucleation behavior
was found.

Simulation conditions
In this study, the interaction cutoff distance was set to rc = 2.5. As the choice of cutoff
distance affects the free energies of the system, we computed the free energies by
using thermodynamic integration for the liquid [92] and the Einstein crystal method
for the fcc solid [99]. Below the triple point the vapor behaves effectively like an ideal
gas and its free energy can be computed analytically. We located the triple point to
be at T ∗

T P ≈ 0.65 and P∗
T P ≈ 0.00271.

Throughout this work the temperature was fixed at T = 0.45 (0.692TT P). The
vapor pressure was varied between Pv = 1×10−4 and Pv = 5×10−4. The bulk densi-
ties, obtained from NPT simulations with N = 2028 particles, are ρL = 0.905 for the
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Pv [10−4 ] 1.0 2.0 3.0 4.0 5.0 6.0
Ss 4.39 8.77 13.16 17.54 21.93 26.28
Sl 2.33 4.67 7.00 9.34 11.67 14.01

∆µs -0.67 -0.98 -1.16 -1.29 -1.39 -1.47
∆µl -0.38 -0.69 -0.88 -1.01 -1.11 -1.19

Table 4.1: For both the liquid (subscript l) and the fcc solid (subscript s) phase,
the vapor supersaturation S and the difference in chemical potential ∆µ with re-
spect to the vapor phase are presented as a function of the vapor pressure. The
coexistence pressure for vapor-liquid is Pcoex

vl = 4.28× 10−5 and for vapor-solid it
is Pcoex

vs = 2.28× 10−5. The difference in chemical potential between fcc solid and
liquid is ∆µsl = µs −µl = −0.29.

PV [10−4] lnk n∗
2.0 −117.3±0.6 155±35
3.0 −75.4±1.2 72±8
4.0 −56.6±0.8 50±4
5.0 −47.6±0.9 38±4
6.0 −39.4±0.7 34±4

Table 4.2: Vapor-liquid nucleation rates k and the critical cluster size n∗ as a function
of the vapor pressure PV . All nucleation rates are obtained with FFS by using 50
paths for each interface and are averaged over 5 independent runs. The rates shown
here are number of nuclei per unit volume and per Monte Carlo cycle.

liquid and ρS = 0.989 for the fcc solid. For both the liquid and solid phases, Table
4.1 lists the associated vapor supersaturation and the difference in chemical potential
to the vapor phase. It is worth mentioning that at such low pressures the free en-
ergy of the high-density phases does not noticeably change with pressure. Therefore,
once the coexistence pressure is known, the difference in chemical potential can be
computed directly from the vapor supersaturation.

4.2 Results
The aim of this work is to investigate the pathway for vapor-to-solid nucleation close
to but below the triple point. Due to the existence of a large nucleation barrier this
phenomenon is not accessible in a direct brute-force simulation. Even with forward-
flux sampling, a rare-event technique to overcome such barriers, we could not observe
direct vapor-to-solid nucleation. Instead, we find that a solid can be formed in a two-
step process, where first a liquid droplet is nucleated from the vapor, and in a second
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nucleation event the crystal forms within the liquid droplet. We will discuss each
nucleation step separately.

4.2.1 Droplet nucleation from the vapor
From the Lennard-Jones phase diagram it is known that, at our conditions (see Sec-
tion 4.1), the crystal phase is the thermodynamically stable phase [100]. In addition,
our chemical potential calculations (see Table 4.1) show that the liquid phase, also,
has a lower free energy than the vapor phase. As a consequence, both a liquid and
a solid can form. In order not to bias which high-density phase nucleates from the
vapor, we use the local-density based order parameter discussed in Section 4.1. This
order parameter does not distinguish between ordered and disordered phases. In a
canonical simulation the vapor is depleted of particles as the liquid droplet grows.
For this reason we perform our simulations in the grand-canonical ensemble, which
mimics conditions of constant vapor pressure.

Our simulations show only the nucleation of a liquid droplet. Analysis of the
liquid droplets with a local bond order parameter confirmed that the droplets did not
contain any crystallites. The observed liquid clusters are on average compact spher-
ical objects, which confirms previous results by ten Wolde et al. [97] and Wedekind
et al. [67]. The critical cluster size is approximated to be the FFS interface nearest
to where the probability to grow to the final phase exceeds P = 0.5. This will have
a error equal to the gap between interfaces. A snapshot of a critical cluster is shown
in Figure 4.2a. The compact spherical shape is clearly visible. The droplets con-
tinue growing, and for all clusters up to N = 3000 particles, we did not observe any
spontaneous crystallization.

The nucleation rates for the liquid are presented in Table 4.2 and in Figure 4.1.
The rate depends strongly on the vapor pressure. This is due to the fact that the free
energy of the vapor is strongly affected by a slight change in pressure, whereas the
free energy of the liquid is not.

This nucleation of a liquid phase, and the knowledge that the crystal phase has a
lower free energy than the liquid phase, led us to investigate crystal nucleation within
a liquid droplet.

4.2.2 Crystal nucleation within liquid droplets
The nucleation of the crystal phase inside a liquid droplet was simulated in the canon-
ical ensemble. We performed simulations to investigate how the size of the liquid
droplet affects the nucleation of the crystal phase. The nucleation rates were obtained
with the forward-flux sampling [60] technique, using the local bond-order parame-
ter [57, 98] discussed in Section 4.1. Simulations were performed on systems of size
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Figure 4.1: The logarithmic rate is plotted against the vapor pressure for the vapor-to-
liquid (filled squares) and liquid-to-crystal (unfilled symbols) nucleation processes.
The rates are expressed per unit volume of the vapor and liquid phase, respectively.
Results for initial droplet sizes of 600 (triangles), 800 (circles) and 1500 (squares)
are shown. The line through the filled symbols is a guide for the eye and errors are
within the size of the symbols.

N = 448, 612, 700, 850 and 2028. The vast majority of particles formed part of the
liquid droplet with, on average, less than 7 particles forming the coexisting vapor.
The vapor density, and hence the vapor pressure does not noticeably change as the
crystal nucleates and grows inside the liquid droplet.

For all but the smallest system size with N = 448, a stable or metastable crystallite
was nucleated. Nucleation occurs in the core of the droplet and not at the surface like
the freezing of gold nano-clusters [73]. In the Lennard-Jones system close below its
triple point the crystal-vapor interface has a higher free-energy cost than the liquid-
vapor interface and surface melting is expected [101]. This phenomenon can be seen
in Figure 4.2c, a snapshot of a crystallized cluster. Notice that a disordered layer of
approximately one particle thickness separates the crystal and vapor phases. When
we continue the simulations after crystal nucleation is complete, we find that the
particles in this disordered layer diffuse around the surface of the crystal cluster.
Thus the mono-layer is liquid-like.

In small droplets of 448 particles we find that all crystallites that form are unstable
and quickly melt. The absence of a stable or metastable crystallites suggests that the
crystal phase for these small droplets is unstable due to the high free-energy cost of
the liquid-crystal interface. For the droplets that crystallized, the natural logarithms of
the nucleation rates are shown in Table 4.3. The nucleation rate per droplet, directly
provided by our FFS simulations, is an extensive property; we therefore expressed
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No. of particlesND ln(kVD) ln(k) n∗
448 - - -
612 −23.7±1.5 −30.2±1.5 180
700 −22.1±1.0 −28.8±1.0 190
850 −20.7±1.0 −27.6±2.0 180
2028 −21.1±1.6 −28.8±1.6 190

Table 4.3: For a liquid droplet embedded in a vapor, this table shows the logarithmic
rate for liquid-to-crystal nucleation and the critical cluster size as a function of the
number of particles ND in the liquid droplet. All simulations were performed in
the canonical ensemble. The rates are expressed per droplet, ln(kVD), and per unit
volume, ln(k), where VD ≈ ND/ρL is the droplet volume. The unit of time is a Monte
Carlo cycle. The critical cluster results have an error of ±10.

the rates per unit volume of the liquid, too. The droplet volume is estimated by
VD ≈ ND/ρL, where ND are the number of particles in the droplet, and ρL is the liquid
density at coexistence.

Further analysis of our FFS data shows that the critical cluster occurs within a
range of cluster sizes from 180 to 200 particles. This range is the same for all system
sizes consisting of 700 to 2028 particles. A snapshot of a critical cluster is shown in
Figure 4.2b.

4.2.3 Crystallization in the grand-canonical ensemble
To test out calculations of the crystal nucleation rates in the canonical ensemble,
we also performed simulations in the grand-canonical ensemble. Apart from the
ensemble both simulation methods were identical. As starting configurations we used
post-critical liquid droplets with N = 600, N = 800, and N = 1500 particles.

Figure 4.1 shows logarithmic nucleation rates for the vapor-liquid and liquid-
crystal against vapor pressure. Nucleation inside the liquid droplet is not affected
significantly by the vapor pressure. The pressure inside the droplet is approximated
to be

Pdroplet = Pvapor +PLaplace (4.4)

where
PLaplace =

2γlv
R . (4.5)

Using the virial pressure tensor we computed that γlv = 1.07. Taking the droplet
in Figure 4.2b as an example, the radius is approximately R ≈ 5, giving a Laplace
pressure PLaplace ≈ 0.4. So although an increase in the vapor pressure does increase
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a) b) c)

Figure 4.2: a) Snapshot of a liquid cluster from a grand-canonical simulation clearly
showing its compact spherical shape. b) A critical crystal cluster from a canonical
simulation containing 2028 particles. Only the crystal particles are shown in this
snapshot. This crystal cluster contains 192 crystal particles. Snapshots of the critical
cluster from simulations containing 700 and 850 particles are indistinguishable from
the cluster shown here. c) Cross section of a crystal cluster in a system size of 850
particles. Light particles are crystalline, dark are liquid. The crystal is coated in a
liquid-like layer. This layer is approximately 1 particle in thickness. In snapshots b
and c the crystal particles were characterized by bond-order parameters as detailed in
Section 4.1.

the pressure inside the droplet, we see this increase is small compared to the Laplace
pressure, 10−4 ¿ 0.4. The liquid and crystal phases are dense hence any increase
in pressure of this order (i.e. 10−4) does not notably change the chemical potential.
This is in contrast to the vapor phase where small changes in the vapor pressure cause
large changes in the chemical potential and hence in the free-energy barrier.

In the grand-canonical ensemble, the liquid droplets keep growing during the FFS
simulations. At a pressure of 3×10−4 the droplet initially containing 1500 particles
grew to 6581±3349 particles whereas the N = 600 droplet only grew to 1875±323
particles. The larger increase in particle number of the N = 1500 droplet is due to the
larger surface area than the smaller droplets. We expect this increase in the droplet
size to be the cause of the systematically higher rates for the N = 1500 droplet. We
point out that due to the droplet growth the droplet volume is not a well-defined
quantity. For the nucleation rate per unit volume we therefore use the initial droplet
volume for the normalization.

However, the observed nucleation rates (see Table 4.4) are comparable to the
rates obtained from canonical simulations (see Table 4.3) and both methods yield the
same value for the critical nucleus. Nucleation of the liquid phase from the vapor is
the rate-limiting step. At a vapor pressure of PV ≈ 10−3 the nucleation rates of the
liquid and crystal phases are of the same order of magnitude. We expect that, as the
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PV [10−4 ] 2.0 3.0 4.0 5.0
ln(k600V600) −21.4±2.0 −19.4±0.9 −20.3±1.5 −18.7±1.4
ln(k800V800) −20.5±1.8 −18.3±1.0 −19.0±0.7 −19.0±2.5

ln(k1500V1500) −16.6±1.5 −17.4±2.3 −17.5±2.1 −16.2±2.5
ln(k600) −27.9±2.0 −25.9±0.9 −26.8±1.5 −25.2±1.4
ln(k800) −27.3±1.8 −25.1±1.0 −25.8±0.7 −25.8±2.5

ln(k1500) −24.0±1.5 −24.8±2.3 −24.9±2.1 −23.6±2.5

PV [10−4 ] 2.0 3.0 4.0 5.0
n∗(600) 180 180 180 190
n∗(800) 180 180 170 170

n∗(1500) 170 160 180 170

Table 4.4: For a liquid droplet embedded in a vapor the logarithmic rate for liquid-to-
crystal nucleation and the critical cluster size is shown as a function of vapor pressure.
Results for different initial droplet sizes ND = 600,800,1500 are presented both as
rates per droplet, ln(kNVN), and as rates per unit volume, ln(kN), where VN ≈ND/ρL is
the droplet volume. All simulations were performed in the grand canonical ensemble,
therefore the particle numbers ND and the associated droplet volume VD are those at
the start of the simulation. The error for the critical cluster size is ±20.

pressure increases, the nucleation of the crystal phase inside the liquid droplet will
become the rate limiting step.

Note that for a proper comparison of canonical and grand-canonical nucleation
rates both need to be expressed in the same unit of time τ (see Section 4.1 for details).
Therefore, the comparison remains qualitative.

4.2.4 Direct crystal nucleation from the vapor

Between the vapor-solid and metastable vapor-liquid coexistence curves (Pvl = 2.28×
10−5 < P < Pvs = 4.28×10−5), the liquid phase has a higher free energy than the va-
por phase. Here we would expect direct nucleation to the crystal phase instead of the
two step nucleation detailed in this paper. At these conditions we could not get our
system to crystallize at all. No direct vapor-crystal nucleation was observed in any
of our simulations. This illustrates the dramatic effect of the intermediate metastable
liquid on the crystal nucleation rate.
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Figure 4.3: Comparison of CNT predictions versus the simulation results for the
vapor-to-liquid nucleation. Both the nucleation barrier height ∆G∗ (left) and the crit-
ical cluster size n∗ (right) are plotted as a function of vapor pressure. The constant
offset in barrier height is attributed to the accumulated error in the CNT description
for very small clusters [26].

4.3 Classical Nucleation Theory
Since the direct nucleation of the crystal phase from the vapor can not be seen in
simulation we decided to estimate the nucleation rate via CNT [102]. This theory as-
sumes that the crystal nuclei are perfectly spherical and incompressible. The resulting
free-energy barrier is then

∆G∗ =
16π

3
γ3

vs
ρ2

s |∆µs|2
, (4.6)

where ∆µs is the difference in chemical potential between the vapor and the solid from
Table 4.1. The vapor-crystal surface tension γvs is unknown and must be estimated.
As lower bound we use the planar vapor-liquid surface tension γvl , which can be
computed from the virial pressure tensor obtained from simulation [92]. We find
γvl = 1.07. Note that the surface tension depends strongly on the interaction cutoff
distance, and for rc = 2.5 it significantly deviates from the untruncated Lennard-Jones
system. Using γvl = 1.07, ∆µs = −0.29 and ρs = 0.989 we obtain ∆G∗ = 250 for a
lower bound for the free energy barrier. The resulting nucleation rate is essentially
zero, which explains why not direct crystal nucleation was observed.

Using the same value for the surface tension and the data from Table 4.1 the
simulation data can be compared to CNT. In literature it is common to compare nu-
cleation free-energy barriers rather than nucleation rates. As FFS yields nucleation
rates directly, we approximate the barrier height using the CNT rate expression to
obtain

∆G∗
FFS = −kBT ln

(

kFFS/J0

)

, (4.7)
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where J0 is the kinetic prefactor from the CNT rate expression. Note that, in con-
trast to the work of Chen et al. , errors in the CNT kinetic prefactor will influence
the estimate of the barrier height computed by FFS. But since these errors have log-
arithmic dependence we considered them negligible. The kinetic prefactor J0 can be
approximated by [103],

J0 ≈ Zρ2
vDR∗, (4.8)

where D is the self-diffusion coefficient and

Z =

√

|∆µ|
6πT N∗ (4.9)

is the Zeldovich factor [104]. Note that the above expression for J0 assumes that
the dynamics of droplet nucleation and growth is diffusive. Such a description is
compatible with the use of Monte Carlo simulations to model the dynamics of a
diffusive nano-colloidal system. For a dilute vapor the self-diffusion coefficient can
be estimated from D = ∆x2/τ = 0.04, the MC step size squared per MC cycle. The
CNT critical droplet radius R∗ is given by

R∗ =
2γvl

ρl |∆µl|
. (4.10)

For the conditions that apply to the present simulations, we find that J0 varies between
J0 ≈ 2.2×10−11 and 1.6×10−9 for pressures ranging between Pv = 1.0×10−4 and
5.0×10−4. The results are shown in Figure 4.3. The functional form of the CNT bar-
rier is in good agreement with our simulation results, but a constant offset is observed.
This is consistent with earlier work on vapor-liquid nucleation [26, 95, 97, 105]. But
even though many offset values are reported in literature, the applied interaction cut-
offs, temperatures and supersaturations vary strongly making a direct comparison
difficult. Since the precise composition of the barrier height offset to CNT is still de-
bated [26, 105–108] we only compare the total offset D(T ). From our simulations we
obtain D(T ) = 7.5, which is in good agreement with the results from ten Wolde and
Frenkel, D(T ) = 5.3, that were obtained with the same truncation and shift, but at a
slightly higher temperature of T = 0.741. These values are lower than those reported
by McGraw et al. (D(T = 0.8)≈ 19−20), Merikanto et al. 1 (D(T = 0.7)≈ 18−19),
and Chen et al. 2 (D(T = 0.6)≈ 22 to D(T = 0.45)≈ 27), who used the full Lennard-
Jones potential. This deviation is not unexpected and can be attributed to the effect
of the interaction potential’s long-range tail on the surface tension γ and, even more,
on its curvature correction B(T ).

1Only B(T ) and γ were provided in Ref. [26]. For the estimation of D(T ) = B(T )+ A1γ−|∆µ| we
assumed ρL ≈ 0.84 and ∆µ = −1.0.

2Data extracted from the graphical representation in Ref. [95].
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a) b)

Figure 4.4: a) Diagram of the assumed geometry of a crystal cluster growing in a
liquid droplet. The size of the crystal cluster, Rx, is always at least one less than the
size of the liquid droplet it grows within, Rc, to account for the liquid-like mono-
layer. b) Free-energy difference between a purely liquid droplet and the crystal state,
a droplet containing a crystal of radius Rx = Rc − 1, the largest crystal the droplet
can support. Depending on the droplet radius Rc, the crystal state of the droplet will
either be unstable, metastable or stable with respect to the purely liquid droplet. Note
the droplet has a fixed radius and we do not refer to the bulk phase stability.

In order to use CNT to analyze the nucleation of crystallites inside liquid droplets,
we use a simplified model: first, we assume that the crystallite and liquid droplet
are prefect spheres. Second, the crystal is assumed to grow from the center of the
liquid droplet (i.e. we assume bulk rather than surface nucleation). Furthermore, as
suggested by our simulations, we assume that the droplet is always covered with at
least a mono-layer of liquid. Finally, we postulate that the surface free energies are
independent of each other no matter how close the crystal-liquid and liquid-vapor
interfaces are. A diagram of this crude but effective model is shown in Figure 4.4a.
Using this model, the free-energy barrier for crystal nucleation can be approximated
by Eq. (4.6) where ∆µs is exchanged with ∆µlx, the difference between the bulk liquid
and crystal chemical potentials (from Table 4.1), and γvs is exchanged with γlx, the
liquid-crystal surface tension. As an estimate we take γlx = 0.347. This value is
the planar surface tension for the (111) crystal plane calculated by Davidchack and
Laird [109] at the triple point. They used a truncated and force shifted Lennard-Jones
potential at the same cutoff as our simulations but as we are working under the triple
point we expect the actual value to be lower than this. This simple model gives an
estimated free-energy barrier of ∆G∗

lx = −8.5(∆G∗
lx/kT = −18.9).

Further, assuming that the surface tension does not depend on the radius of cur-
vature of the droplet (a rather drastic assumption [25]), all crystallites have the same
free-energy curve. Note that, unlike for bulk systems, this free-energy curve is ter-
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minated at Rx = Rc −1, the droplet radius minus the liquid mono-layer. The droplet
therefore has two distinct states: the liquid state referring to a purely liquid droplet,
and the crystalline state referring to the droplet containing a crystal of maximum size
(R(max)

x = Rc −1).
The free-energy difference between these two states is shown in Figure 4.4b as

a function of the droplet radius, Rc. We now introduce the change-over radius Rco
x ,

which defines the point where both states, the liquid state and the crystalline state,
have the same free energy. Note that this is not exactly the radius where there is an
equal probability to find droplet on the liquid or crystalline side of the nucleation
barrier as the ratio of these probabilities also depends on the ratio of the “volume” in
the free-energy landscape on either side of the barrier. However, if these (logarithmic)
phase-space volume corrections are small, Rco

x provides a good approximation of the
point where crystal and liquid are equally likely.

We can now identify three different classes for the droplet radius where the crys-
talline state is either a) unstable, b) metastable or c) stable with respect to the droplet
in the liquid state (see Figure 4.4b).

a) Unstable: Rc ≤ R∗
x +1, where R∗ is the critical radius of a crystal nucleus in a

bulk liquid. If the droplet is smaller than the crystal critical radius any crystal clusters
formed are unstable and will only be observed as rare fluctuations.

b) Metastable: R∗
x + 1 < Rc ≤ Rco

x + 1. Above the critical radius there is a free-
energy barrier associated with the crystalline state returning to the liquid state. The
droplet has a small probability of being in the crystalline state but, as remelting is
an activated process, the lifetime of these metastable crystalline states may be long.
Since the crystalline state has a higher free-energy the droplet spends the majority of
its time in the liquid state. This “metastable” regime ends for Rc ≥ Rco

x +1 where the
crystalline state becomes more stable than the liquid).

c) Stable: Rc > Rco
x + 1. The change-over radius determines the minimum size

for the crystalline state to be more stable than the liquid. In this class the liquid state
is now metastable.

The crystallites inside the droplets follow the same free-energy curve and there-
fore the free-energy barrier is independent of the size of the droplet. We observe
this feature in our simulation results where the liquid-crystal nucleation rates are to
a good approximation independent of droplet size. A similar scenario is found in the
simulation of explosive melting of polymer crystallites [110].

CNT predicts the critical radius and the change-over radius to be R∗
x [CNT ] =

2.4 and Rco
x [CNT ] = 3.6, respectively. A comparison with the simulation results

remains qualitative, as the characterization of the crystal phase, and therefore the
critical cluster size, depends on the definition of order parameter used for analysis
(see Section 4.1). Analyzing our FFS data yields a critical cluster size of n∗

sim ≈ 190
particles which corresponds to a radius of R∗

x [SIM]≈ 3.6 (without liquid mono-layer).
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This critical radius obtained from FFS is close to the droplet size Rc = 4.8 (see Figure
4.4a) found for a N = 448 system size. At this proximity to the critical radius it is
not surprising we find the droplet to be stable in the liquid state. For droplets of size
N ≈ 600, the crystalline state is expected to be metastable, and for N ≈ 700 both
states should be observable. Droplets exceeding N ≈ 800 are expected to be stable in
the crystal phase.

4.4 Discussion
This chapter details the nucleation pathway from a metastable vapor just below the
triple-point temperature to the crystal phase. This process is relevant for the fabri-
cation of nano-crystals, and it can also act as a model for crystallization of ”nano-
colloids” from a dilute solution.

At these conditions, we find that the vapor-to-crystal nucleation occurs in two
stages. First, an intermediate liquid phase is nucleated rather than the thermodynam-
ically most stable crystal phase. The final crystal phase then nucleates in the liquid
phase in a second independent step. This two-stage process suggests that both the
vapor-liquid and liquid-crystal free-energy barriers are lower than that of a direct nu-
cleation of the crystal from the vapor [7, 111]. This is supported by both an analysis
of surface free energies and a comparison with CNT. Direct nucleation of the crystal
is not observed and a CNT estimate of this nucleation rate is essentially zero.

A recent publication by Chen et al. came to conclusions similar to ours, on the
basis of a different numerical approach [95]. Chen et al. obtained free-energy curves
from aggregation-volume-bias Monte Carlo simulations with umbrella sampling. As
the reaction coordinate for the crystal phase they used the global bond order param-
eter, which detects the overall crystallinity of the liquid cluster [56]. Both nucle-
ation rates and critical cluster size were estimated using CNT. In contrast, we focus
on computing nucleation rates directly rather than free-energy barriers by using the
forward-flux sampling technique, which can be used both for equilibrium and non-
equilibrium processes [61]. As order parameter the size of the largest crystal cluster
in the liquid droplet was used. The critical nuclei were then obtained directly from
analysis of our FFS data.

To compare with the work of Ref. [95] we must translate nucleation rates in free-
energy barriers. The fact that we obtain reasonable agreement with Ref. [95] suggests
that CNT works rather well for this system, and that this process can be described
with a quasi-equilibrium theory. In addition, note that both umbrella sampling and
forward-flux sampling essentially yields the same results for the Lennard-Jones sys-
tem. As reported by Sanz et al. this need not to be true for every system [65].

A quantitative comparison between the present simulations and those of Ref. [95]
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is unfortunately not possible as the studies used different cutoffs for the Lennard-
Jones potential. The change in cutoff affects the chemical potentials for both the
liquid and crystal phases, and it also changes the surface tensions [96]. As both
properties have a large impact on the resulting nucleation free energy barrier, the
comparison remains qualitative.

To conclude, this work details the process of crystal nucleation from the vapor
phase. The two-stage nucleation found is potentially a very common phenomenon
that could occur in fields as diverse as protein crystallization and ice formation.
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Chapter 5

Liquid wetting can enhance
vapor-crystal nucleation in a pore

In this chapter we present a numerical study of the effect of a hemi-
spherical pore on the nucleation of Lennard-Jones crystals from the va-
por phase. At conditions below the triple point, bulk crystal nucleation in
this system is known to proceed via a two-step process (vapor → liquid
→ crystal) [see Chapter 4].

The presence of a pore strongly affects the nucleation scenario. For a
narrow range of pore radii, we find that vapor-liquid nucleation itself
becomes a two-step process (1. pore filling, 2. break-out into the bulk).
With increasing pore radius the rate for pore-filling decreases while the
rate for growing out of the pore increases. As a consequence, the overall
nucleation rate shows a non-monotonic behavior. This observation con-
firms predictions by Page and Sear [18] for pore nucleation based on a
numerical study of pore nucleation in an Ising lattice model.

As is to be expected, both the maximum nucleation rate and the associ-
ated optimal pore size depend on the adsorption strength of the pore. We
find that the maximum nucleation rate exceeds the rate for nucleation at
a planar wall with the same attraction.

Finally, we study the rate of crystal nucleation inside the liquid that has
nucleated inside pores. We find that the pore-induced vapor-liquid nu-
cleation is the rate-limiting step for crystal nucleation. This implies that
crystal nucleation can be enhanced by a judicious choice of the wetting
properties of a micro-porous nucleating agent.
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Freezing in three dimensional systems is a first order phase transition. As a con-
sequence, it is possible to supercool or super-compress the liquid parent phase until
crystallization happens spontaneously on the timescale of the experiment. Often the
crystallization process starts with a nucleation step during which a crystalline nucleus
is formed that can then grow to macroscopic size, and the overall rate of crystalliza-
tion is determined frequently by the nucleation step. Moreover, the structure of the
crystal that grows to macroscopic size is often determined by the structure of the
crystal nucleus that forms during the rate limiting step. For this reason it is of both
fundamental and practical interest to gain insight into the mechanisms that can be
used to control the rate and the pathway of crystal nucleation.

Nucleation can proceed either homogeneously, that is in the bulk of the parent
phase, far away from walls or other external influences, or heterogeneously at the
surface of a “seed”. In most cases of practical interest, heterogeneous nucleation
dominates the rate of crystal formation [16].

For this reason, heterogeneous crystal nucleation has been studied extensively
ever since the early work of Ostwald [7]. During the past decade, there has been
something of a revival of studies of heterogeneous nucleation both from a theoret-
ical/numerical perspective and from experiments. This renewed interest was stim-
ulated on the one hand by the availability of suitable colloidal model systems that
make it possible to follow the dynamics of individual particles during nucleation in
real space and real time [112, 113] and, on the other, by the development of novel
computational techniques that made it possible to study the early stages of crystal
nucleation in great detail [56, 57].

Heterogeneous nucleation of liquids and crystals has been studied both theoret-
ically and in simulation for a variety of geometries such as nucleation on planar
walls [27, 114] and in slit pores [115–117], on cylinders [118–120], patches [121,
122], patterned templates [123, 124], spheres [125, 126] and in pores [18, 103]. Ex-
perimental studies include colloidal crystallization on patterned templates [113, 127,
128] and spherical impurities [129, 130]. However, in many cases a detailed descrip-
tion of the nucleation pathway or a quantitative analysis of the nucleation rates is
still lacking. For a detailed overview we refer the reader to the reviews by Gelb et
al. [131] and Sear [103].

Experiments by Chayen and co-workers [132, 133] on the crystallization behav-
ior of a number of different proteins demonstrated that the rate of protein crystal-
lization is strongly enhanced in the presence of a micro-porous medium. This in-
triguing observation stimulated subsequent theoretical work by Page and Sear [18]
who studied the nucleation behavior of a (two-dimensional) Ising model in a rect-
angular indentation in a wall. This lattice model did indeed show that pores can
enhance nucleation and that this effect depends strongly on the pore radius. How-
ever, a lattice model such as the one used in Ref. [18] cannot capture one of the most
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interesting features of protein crystallization, namely that it is often most effective in
a temperature-concentration range where the protein solution is close to liquid-liquid
demixing [10, 134, 134]: the Ising model does not distinguish between the liquid
and the crystalline state. It is therefore of interest to study pore nucleation in an off-
lattice model for which the liquid and the crystalline states are distinct. With such
a model study, we can look in more detail at the ways in which a porous medium
affects the pathway for crystallization. In particular, we can address questions such
as: Does a crystal form immediately in the pore or does crystallization proceed via an
intermediate liquid phase? Another advantage of an off-lattice model is the fact that
the diameter of the pore need not be commensurable with the lattice spacing of the
crystal (in a normal lattice model, this commensurability is inevitable). If a crystal
does not ”fit” optimally in a pore, one might expect that this affects the free-energy
barrier for crystal nucleation. As we will show below, this is indeed the case.

In the present chapter we first investigate the effect of a spherical pore on the
nucleation pathway for vapor-liquid nucleation. In Section 5.2.1 we explore nucle-
ation at a planar (weakly) attractive wall. Next, we consider nucleation on a planar
circular attractive patch, and finally, we consider a pore. Section 5.2.2 focuses on
liquid-crystal nucleation. We find that, as in the case of homogeneous nucleation of
Chapter 4, this is an independent nucleation event that can be treated separately. Fi-
nally, Section 5.3 integrates the resulting picture for the overall nucleation pathway
in systems with surface heterogeneities.

5.1 Simulation details
The present study is based on Metropolis Monte Carlo simulations of a model system
consisting of particles interacting through a truncated and shifted Lennard-Jones (LJ)
pair potential [92].

U(r) =

{

ULJ(r)−ULJ(rc) ; r ≤ rc
0 ; r > rc

where the full (i.e. not truncated) LJ interaction is given by

ULJ(r) = 4ε
[

(σ
r

)12
−
(σ

r

)6
]

.

Here, ε is the unit of energy, σ is the unit of length and rc the interaction cutoff
distance. Note that the choice of interaction cutoff has a significant effect on the
free energy of the system and on properties such as coexistence lines and surface
tensions [62, 96]. However, the qualitative features of the phase diagram remain un-
affected. Hence, the model that we use is adequate for the present study that focuses
on generic effects, rather than on the properties of a specific experimental system.
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Figure 5.1: Schematic side-view of a pore. The dark-gray area indicates the the space
that is inaccessible to LJ particles due to the presence of a hard wall. The range of
the weak attraction is depicted in light-gray. Molecules in the white area are outside
the range of interaction of the wall. The radius of the pore is denoted by Rp and the
range of attraction of the pore walls is denoted by rc.

Three different geometries were used to study heterogeneous nucleation: a planar
wall, a planar circular patch, and a spherical pore. Figure 5.1 depicts a schematic side
view of such a pore, which consists of an open half-sphere embedded in a hard wall.
It shows the relevant parameters: the pore radius R and the pore’s interaction range,
rc. All surface geometries are weakly adsorbing due to an effective potential given
by the Lennard-Jones 9-3 potential,

Uw(r) =

{

εw
[

(σ/r)9 − (σ/r)3]+Uw(rc) ;r < rc
0 ;r ≥ rc

}

,

which results from integration of the pair-interactions over the half-space assuming
a constant particle density. Here, r is defined as the distance perpendicular to the
surface. The potential Uw(r) was cut and shifted at a distance rc, and we choose rc
and σ to be the same for both Uw(r) and U(r).

In what follows, we use reduced units. We define the reduced distance as r∗ = r/σ
and the reduced potential energy as u∗ = U/ε. All other reduced quantities (e.g. the
pressure P∗ = Pσ3ε−1, the density ρ∗ = ρσ3, and the temperature T ∗ = kBT ε−1)
follow. All quantities reported in this work are expressed in these reduced units.
Therefore, we omit the superscript asterisk (*) from here on.

We performed all vapor-liquid simulations in the grand-canonical ensemble, where
temperature, volume and the chemical potential are kept constant, and the particle
number is allowed to fluctuate. This ensures a constant vapor pressure and minimizes
finite size effects. In the simulations of liquid-solid nucleation, we consider a liquid
droplet in contact with both the vapor phase and the surface. These simulations were
performed in the canonical ensemble to keep the size of the liquid droplet constant.
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The initial liquid droplet was taken from grand-canonical vapor-liquid simulations,
then equilibrated at a high temperature to remove all crystallinity, whilst constraining
the system (using umbrella sampling) to prevent evaporation. The droplet was then
quenched to T = 0.45 and equilibrated using umbrella sampling to keep the droplet
in the meta-stable liquid phase. This procedure allowed us to produce meta-stable
liquid droplets of the required size.

Periodic boundary conditions were applied in the y- and z-directions of the cubic
simulation boxes, and a planar hard wall prevented particles from escaping in the
x-direction. For all simulations we chose the box size to be l3 = 503 and the par-
ticle displacement trial move size to be ∆x = 0.2. In the grand canonical ensemble
each particle was moved on average 20 times before an insertion/removal move was
performed.

Rare event sampling
In order to study the properties of the system on the path towards nucleation, we
applied an umbrella sampling [52] (US) scheme, where a biasing potential is used
to constrain the size of the nucleus to be close to a certain size n0. By computing
the bias-corrected cluster size probability distribution P0(n) for many different n0, a
series of overlapping windows is obtained. By fitting these windows together, the
free energy as function of cluster size can then computed from the overall probability
histogram, G(n) =−kBT lnP(n)+c, where c is a constant offset. To be more precise,
we define P(n) as the ratio of M(n), the number of clusters of size n, divided by the
(average) total number of particles N. For large cluster sizes, P(n) ¿ 1 and the
probability of observing more than one cluster of this size (or of a larger size) in a
simulation is negligible. In that case the probability to find a cluster of size n in the
system can be approximated by the probability to find that the largest cluster in the
system contains n particles. This facilitates the umbrella sampling because we can
then apply a bias that controls only the size of the largest cluster in the system [57].
However, when computing P(n) for small clusters, we cannot use this approach as
there will be many clusters with sizes comparable to, or larger than n. In that case,
we sample P(n) from an unbiased run taking all cluster sizes into account. This is
important because if we would constrain the size of the largest cluster for small n
(thereby cutting off the cluster distribution for all sizes larger than n), we would be
truncating the natural cluster-size distribution in the system. As a consequence, the
free energy of the system would then appear to increase as n → 1 and as a result there
would be a spurious (and system-size dependent) minimum in the free energy G(n)
at small n.

For the computation of the vapor-liquid nucleation free-energy barriers we started
from the pure vapor phase. For the liquid-crystal nucleation, we first equilibrated a
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Pv Ss Sl ∆µs ∆µl
1.0×10−4 4.39 2.33 −0.67 −0.38
3.0×10−4 13.16 7.00 −1.16 −0.88

Table 5.1: For the two vapor pressures used in this work the vapor supersaturation
S = P/Pcoex and the difference in chemical potential ∆µ with respect to the vapor
phase are presented for both the liquid (subscript l) and the fcc solid (subscript s)
phases. The vapor-liquid coexistence pressure is Pcoex

vl = 4.28×10−5 and the vapor-
solid coexistence pressure is Pcoex

vs = 2.28×10−5. The difference in chemical poten-
tial between fcc solid and liquid is ∆µsl = µs −µl = −0.29.

liquid droplet of nl ≈ 700 particles, biasing the system to prevent any crystallization.
Then we performed US simulations in the NVT ensemble to compute the nucleation
free-energy barrier.

Order parameters
For the vapor-liquid nucleation we used an order parameter based on Stillinger’s
overlapping-spheres criterion [66]. It defines a particle to be in a high-density phase
if it has at least one neighbor within a distance 1.5 corresponding roughly to the first
minimum of the pair correlation function of a bulk liquid. Then a cluster analysis
is performed on all high-density particles and the number of particles in the largest
cluster is taken as the order parameter. Note that this order parameter does not dis-
tinguish between an ordered or disordered high-density phase, and therefore does not
favor one phase (liquid or crystal) over the other. For a detailed description of this
order parameter we refer the reader to Refs. [67, 97].

As order parameter for the liquid-solid nucleation we applied the local bond-
order parameter [57, 98]. This order parameter assigns each particle a 13-dimensional
vector capturing its local environment,

(

q6(i)
)

m
=

1
Nb(i) ∑

j
Y6m(r̂i j), (5.1)

where Y6m denotes a 6-th order spherical harmonic with components m ranging from
−6 ≤ m ≤ 6. Nb(i) is the number of nearest neighbors of particle i, and r̂i j a unit vec-
tor connecting the centers of mass of particles i and j. The sum is over all neighbor-
ing particles j within a cutoff distance r = 1.5. In a second step the order parameter
computes the dot product q6(i) ·q6( j) between each particle i and all its neighbors j,
effectively comparing the particles’ neighborhoods. If q6(i) ·q6( j) exceeds a thresh-
old of 0.65, particles i and j are considered to form a ’link’. Only if a particle’s
total number of links n(i) exceeds 5 links is it considered to be solid-like. In a final
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step Stillinger’s criterion is applied to all solid-like particles to identify the number
of particles in the largest solid-like cluster, which is used as order parameter. All pa-
rameters for this order parameter can be obtained by minimizing the overlap between
distributions of an equilibrated bulk solid and a metastable bulk liquid at working
conditions. Note that neither the nucleation rate nor the nucleation pathway of our
simulations were sensitive to (moderate) variations in the definition of the order pa-
rameters. However, such changes do affect the apparent size of the clusters that we
detect, including the critical cluster size.

The local bond-order parameter that we used was originally designed to detect
nucleation in the bulk. In order to verify that nucleation at the droplet surface is still
properly detected, we also performed simulations with the modified local bond-order
parameter used by Mendez-Villuendas and Bowles [73]. This modification ensures
that surface particles, too, can be identified as solid-like particles and are taken into
account properly. However, no significant differences were observed.

For all simulations involving a heterogeneity, the order parameter is adapted to
identify only clusters in contact with the heterogeneity. This means that in addition
to the procedure mentioned above, only those clusters are considered that contain at
least one particle that is within the effective interaction range of the surface hetero-
geneity. We refer to this modification as a restricted order parameter (rOP). rOP’s
were applied to detect heterogeneous vapor-liquid and liquid-crystal nucleation.

Simulation conditions

As in Chapter 4, we truncated and shifted the Lennard-Jones potential at rc = 2.5.
Chapter 4 also reports the coexistence data and vapor-liquid surface tension for this
model system in the relevant temperature range. Here, we fix temperature at T =
0.45, in which case the vapor-liquid and vapor-crystal coexistence pressures are
Pcoex

vl = 4.28×10−5 and Pcoex
vx = 2.28×10−5, respectively, and the vapor-liquid sur-

face tension is γvl = 1.07.

We present results for two vapor pressures, Pv = 1×10−4 and Pv = 3×10−4, with
the corresponding bulk densities ρL = 0.905 for the liquid and ρS = 0.989 for the fcc
solid [135]. For both the liquid and solid phases, Table 5.1 lists the associated vapor
supersaturation and the difference in chemical potential to the vapor phase. At such
low pressures the free energy of the high-density phases does not change noticeably
with pressure. Therefore, once the coexistence pressure is known, the difference in
chemical potential can be computed directly from the vapor supersaturation.
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Figure 5.2: Vapor density perpendicular to a weakly attractive planar wall for various
wall-particle interaction strengths ε at a vapor pressure Pv = 3×10−4 (left) and Pv =
1×10−4 (right). For reference a purely repulsive wall (Rep.) is shown. The repulsive
potential has the same functional form as the attractive potential, but is truncated and
shifted at the potential minimum to remove the attractive part.

5.2 Results

As was shown in Chapter 4 and Ref. [95], the bulk vapor-crystal nucleation for
the present model system proceeds via two independent nucleation events. First,
a metastable liquid droplet nucleates directly from the vapor phase. Subsequently,
a crystal nucleus emerges within the liquid droplet. The two events happen on very
different timescales and are therefore effectively decoupled except that the droplet
needs to exceed a minimum size in order to sustain a stable crystal nucleus. As we
show below, the pathway for heterogeneous nucleation follows essentially the same
route as its homogeneous analog, which means that the nucleation of the liquid and
of the crystal are decoupled and can be treated independently.

5.2.1 Vapor-liquid nucleation

As a first step, we compute the vapor density as function of the distance perpendicu-
lar to a planar wall for various wall-particle interaction strengths ε. This computation
is performed with a supersaturated vapor under the same conditions used in the sub-
sequent nucleation studies. From this preliminary calculation we can estimate the
range of adsorption strengths for which heterogeneous liquid-vapor nucleation (and,
a fortiori, liquid-crystal nucleation) is negligible on the timescale of our simulations.
The results are presented in Figure 5.2 for a vapor pressure Pv = 3×10−4 (left) and
Pv = 1×10−4 (right). The vapor density is rescaled by the bulk vapor density ρ0(P).
As is to be expected for a dilute vapor, we find the vapor density to scale with the wall
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Figure 5.3: Vapor-liquid free-energy barriers as function of effective droplet radius
V 1/3 for nucleation on a weakly attractive planar wall with varying wall-strength ε
at a vapor pressure Pv = 3× 10−4 (left) and Pv = 1× 10−4 (right). The barrier for
homogeneous nucleation is shown for reference.

potential Uw(R) according to the Boltzmann factor, ρ(R) = ρ0(P) exp{−βUw(R)}
(data not shown). For stronger adsorption, where the vapor density is strongly in-
creased, this expression requires corrections to capture to the increasing inter-particle
interactions. For wall-particle interaction strengths ε > 5 (Pv = 3× 10−4, left) and
ε > 7 (Pv = 1×10−4, right) spontaneous vapor-liquid nucleation was observed.

Next, we compute the free-energy barriers for heterogeneous nucleation on a pla-
nar weakly attractive wall. It is important to note that the definition of a free-energy
barrier for heterogeneous nucleation requires some care as, unlike the nucleation rate,
it is not an experimental observable. Rather, the free-energy barrier provides us with
a measure of the probability to observe a nucleus of size n in a given system. This
probability is made intensive by dividing the expected number of nuclei of size n by
N, the number of particles in the system where nucleation takes place. If nucleation
takes place in the bulk, N is simply the total number of particles in the system. How-
ever, if nucleation occurs on a wall, a result independent of system volume can be
obtained by dividing the number of nuclei of size n that are formed on the wall by
the total number of particles in contact with the wall. When comparing the rates of
homogeneous and heterogeneous nucleation, one should then take into account how
many particles in the system are in contact with the wall. In this way one accounts for
the fact that the rate of heterogeneous nucleation is proportional to the total “active”
surface area in the system (in other words, that it is proportional to the density of
seeds). In what follows, we follow the above approach and define the barrier for het-
erogeneous nucleation as ∆Ghet(n) = −kBT lnPhet(n), where we define Phet(n) as the
ratio of Mhet(n), the number of clusters with size n in contact with the heterogeneity,
divided by the (average) total number of particles in contact with the heterogeneity,
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Nhet . We identify a particle or clusters to be in contact with the heterogeneity using
the restricted order parameter as described in Section 5.1.

The resulting free-energy barriers are presented in Figure 5.3 as function of droplet
volume (to be more precise, we show the barrier as a function of the cube root of this
volume. In what follows, we denote this quantity as the “effective droplet radius”).
Again, the vapor pressures are Pv = 3×10−4 and Pv = 1×10−4 for the left and right
panel, respectively. When the attraction due to the wall is very weak, the computed
barriers converge to the homogeneous case, as is to be expected. The barrier for
homogeneous nucleation is plotted for the sake of comparison in Figure 5.3. With
increasing attraction the liquid-vapor nucleation barrier decreases until spontaneous
nucleation occurs (not shown - as, in this case, it becomes impossible to measure a
free-energy barrier). For the rest of this work we choose our interaction strengths to
be ε = 5 for Pv = 3×10−4 and ε = 7 for Pv = 1×10−4. Under these conditions the
size of the critical nucleus is still sufficiently small to be studied in US simulations
for the system sizes that we used.

To obtain a rough estimate of the wall-liquid contact angle, we fit the expres-
sion from classical nucleation theory (CNT) [4] with our simulation data (see Ap-
pendix 5.A for details on the CNT expression), which yields Θ = 0.33π (Pv = 1×
10−4, ε = 7) and Θ = 0.43π (Pv = 3× 10−4, ε = 5). The CNT estimates for the
heterogeneous nucleation barrier discussed below are based on these estimates of
the contact angle. As our estimates of the contact angles are not very accurate, the
comparison with our simulation results is mainly intended to gain a qualitative un-
derstanding of the observed trends. A quantitative comparison would require more
precise knowledge of the contact angles and the solid-liquid-vapor line tensions.

Having established the limiting cases, i.e. homogeneous nucleation and hetero-
geneous nucleation on a planar wall, we focus on the effect of a planar circular
weakly-adsorbing patch on the nucleation rate. In particular, we are interested in
the dependence of the nucleation rate on the radius of the patch. Figure 5.4 shows
the nucleation barriers as function of the effective droplet radius V 1/3. The theoret-
ical CNT prediction is shown in the upper panel and our simulation results in the
lower panel, both for a vapor pressure PV = 1×10−4. Valencia and Lipowsky [122]
predicted (on the basis of CNT) that nucleation could be a two-step process under
certain conditions. A similar conclusion was reached by Smorodin [121] on the basis
of similar theoretical arguments. Indeed, under the conditions studied in the present
simulations, CNT predicts a two-step barrier for the vapor density Pv = 1×10−4 and
a patch radius around R = 6.0, as depicted by the inset in upper panel of Figure 5.4.
However, the effect is very weak compared to the overall barrier height, and our
simulations show no evidence for a two-step nucleation process.

The dependence of the height of the nucleation barrier on the patch radius is
presented in Figure 5.5. The nucleation barrier decreases monotonically from the
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Figure 5.4: Vapor-liquid free-energy barriers as function of effective droplet radius
V 1/3 for nucleation on a weakly attractive circular patch at vapor pressure Pv = 1×
10−4. Top: CNT prediction for various patch radii. The inset shows a close-up on a
weakly double-peaked barrier predicted for R = 6. Bottom: The simulation results,
although qualitatively similar to the CNT predictions, show no evidence for a two-
step process.



78 5 Liquid wetting can enhance vapor-crystal nucleation in a pore

Figure 5.5: Vapor-liquid free-energy barrier heights for nucleation on a weakly attrac-
tive circular patch at vapor pressures Pv = 3×10−4 (left) and Pv = 1×10−4 (right) as
function of patch radius RPatch (filled circles). The limiting cases of homogeneous nu-
cleation and nucleation on a planar weakly-attractive wall are presented for reference
(horizontal lines), as well as the theoretical predictions using CNT (open circles).

homogeneous limit for a very small patch radius to the heterogeneous planar wall
limit for large patch radii. The planar wall limit is reached at a patch radius Rmax ≈
R∗

homo sinΘ, which corresponds to the contact circle radius of a critical nucleus on a
planar wall. The CNT predictions are shown for reference. Qualitatively, the CNT
predictions agree well with our simulations results.

Finally, we consider a pore geometry, which is modeled as an open, weakly-
attractive hemi-spherical cavity embedded in an otherwise purely repulsive (i.e. hard)
planar wall. For a schematic side-view see Fig. 5.1.

Figure 5.6 presents the nucleation free-energy barriers as function of the effective
droplet diameter for a vapor pressure PV = 1×10−4. Again, the upper panel contains
the CNT prediction, and the lower panel the simulation results. As expected, the
nucleation barriers approach the corresponding limiting cases for very large and very
small pores. Interestingly, for intermediate pore sizes, CNT predicts a double-barrier
corresponding to a two-step process, and this feature is indeed reproduced by our
simulations. From a visual inspection of simulation snapshots of configurations at
the local and global maximum of the free-energy barrier, we identify the first step to
be a pore-filling event and the second step to be the nucleation out of the pore into the
bulk. Figure 5.8 presents simulation snapshots along such a pathway. It shows that
first a critical nucleus is required to nucleate a liquid inside the pore (left), the system
then spends a certain time in the metastable filled pore state (center), and finally a
second nucleation event is required to break out of the pore (right). This confirms the
predictions of Page and Sear for nucleation in a pore for an Ising model system [18].

The heights of the nucleation free-energy barrier are shown in Figure 5.7 as func-
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Figure 5.6: Vapor-liquid free-energy barriers as function of effective droplet radius
V 1/3 for nucleation in a weakly attractive spherical pore at vapor pressure Pv = 1×
10−4. Top: CNT prediction. Bottom: Simulation results.
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Figure 5.7: Vapor-liquid free-energy barrier heights for nucleation in a weakly attrac-
tive spherical pore at vapor pressures Pv = 3×10−4 (left) and Pv = 1×10−4 (right) as
function of pore radius RPore (filled circles). The limiting cases of homogeneous nu-
cleation and nucleation on a planar weakly-attractive wall are presented for reference
(horizontal lines), as well as the theoretical predictions using CNT (open circles).

tion of pore size, for both Pv = 3×10−4 (left) and Pv = 1×10−4 (right). The bottle-
neck for the overall nucleation rate is the crossing of the higher free-energy barrier
shown in this plot. Again, good qualitative agreement with CNT is found. For nu-
cleation in a pore, the dependence on R is clearly non-monotonic, featuring a global
minimum of the free-energy barrier. This finding supports the suggestion by Chayen
and co-workers [133] that in a porous medium with a broad distribution of pore sizes
only a small number of pores (namely those that correspond to the minimum in the
overall nucleation barrier) dominate the overall nucleation process.

5.2.2 Liquid-crystal nucleation

We now focus on the liquid-crystal nucleation. In Chapter 4 we showed that, in the
case of homogeneous nucleation, the nucleation of a crystal in a previously nucleated
droplet is relatively fast. In other words: the liquid-crystal nucleation event is not the
rate-limiting step. Further, we found that a droplet of a minimum size is required to
host a crystal nucleus, and that this is approximately the size of a supercritical crystal
nucleus plus a liquid mono-layer.

Following the same procedure as in the case of vapor-liquid nucleation, we first
assess the limiting cases: homogeneous nucleation and heterogeneous nucleation on
a planar wall. The crystallization rate within a liquid droplet was reported in Chap-
ter 4 and found to be independent of the droplet size and vapor pressure. For the
sake of completeness we here compute the crystallization free-energy barrier for ho-
mogeneous nucleation in a bulk liquid in the NpT ensemble. When we compare the
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Figure 5.8: Snapshots from the two-step nucleation process in a pore (Pv = 1×10−4,
R = 5.5). From left to right: critical nucleus for pore filling (n∗

1 ≈ 50), metastable
filled pore (n ≈ 270), and the critical nucleus for growing out of the pore (n∗

2 ≈ 650).

present results with those reported in Chapter 4 we find good agreement.
For the crystal nucleation on a planar wall we find that our system crystallizes

spontaneously on the time scale of our simulations for both attraction strengths, ε = 5
and ε = 7. Similar behavior was observed in a study by Page and Sear on the pre-
freezing transition of the same model system [136]. This high rate of spontaneous
crystal nucleation implies that crystallization may take place during US simulations
that probe the free-energy barrier for vapor-liquid nucleation. To find out whether
this is indeed the case, we analyzed whether the configurations generated during the
US simulations of the pathway for vapor-liquid nucleation contained any crystalline
particles. In the left panel of Figure 5.9 we plot the number of crystalline particles nx,
identified using bond-order parameters [57], versus the number of liquid particles nl ,
identified using Stillinger’s overlapping spheres criterion [66]. Two observations can
be made. First of all, all larger droplets (nl > 200), contained a crystalline cluster. If
we consider that a crystal is always covered by a thin layer of liquid, as was found
in Ref. [135], we can fit the results to an empirical formula assuming that the crystal
takes the same shape as the liquid droplet,

nx =
[

(nl)
1/3 −a

]3
+ c,

where c is a constant offset and the difference in density between the liquid and
the crystal is ignored. The thickness ∆ of the liquid layer can then be extracted by
dividing a by the geometrical prefactor linking the droplet volume to the radius of a
spherical cap with liquid-wall contact angle Θ, ∆ = a

[π
3 (1− cosΘ)2(2+ cosΘ)

]−1/3.
Our fit yields a = 0.748± 0.1. Assuming a wall-liquid contact angle of Θ = 0.33π,
obtained from matching the simulation barrier height for vapor-liquid nucleation on a
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Figure 5.9: Analysis of the US data for nucleation on a planar wall. Left: largest
cluster size nx using bond-order parameters versus the largest cluster size nl using
a liquid order parameter. A minimum droplet size of nl ≈ 200 is required to host a
stable crystal. Large droplets consist of a crystal cluster covered by a liquid mono-
layer. The solid line is a fit to an empirical formula for a crystal with a liquid mono-
layer (see main text for details). Right: The difference in the cube root of the cluster
size between liquid and solid clusters, n1/3

l − n1/3
x . This difference converges to a

constant value for large clusters indicating that the crystal surface is covered by a
liquid layer of constant thickness.

planar wall to the CNT prediction, we arrive at a thickness of ∆ ≈ 0.88, which agrees
well with the assumption of a liquid mono-layer surrounding the crystallite. The
difference a = n1/3

l −n1/3
x is also plotted in the right panel of Figure 5.9 and appears

to converge to a constant value for large clusters.
Second, we observe that small droplets, n < 200, contain very little crystalline

order. This means that for these small droplet sizes, crystallization will not affect the
computed vapor-liquid free-energy curve. As in the case of homogeneous nucleation,
the liquid droplet has to exceed a critical size before crystals can form easily within it.
In view of the high (spontaneous) crystal nucleation rate in large droplets, this might
seem to be a rather surprising result, because the crystal critical nucleus is expected
to be very small. However, due to the small wall-liquid contact angle, a droplet with
n ≈ 200 is only a few layers thick. Crystal nucleation in such a pancake-shaped
droplet is not determined by the total number of particles in the droplet, but by its
thickness. Inside thin droplets, liquid-crystal nucleation is expected to be strongly
suppressed, and that is indeed what we observe.

Next, we assess crystal nucleation in a finite-sized circular patch. Again, we ob-
serve spontaneous crystal nucleation for all but the smallest patch radii. Using US
we estimated the crystal nucleation barrier to be very small (∆G∗ < 10kBT ). Fig-
ure 5.10 shows the results from analysis of the crystallinity inside the liquid clusters.
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Figure 5.10: Analysis of the US data for nucleation on a planar patch. Different
symbols correspond to different patch radii. Left: largest cluster size nx using bond-
order parameters versus the largest cluster size nl using a liquid order parameter. A
minimum droplet size of nl ≈ 200 is required to host a stable crystal. Large droplets
consist of a crystal cluster covered by a liquid mono-layer. Right: The difference in
the cube root of the cluster size between liquid and solid clusters, n1/3

l − n1/3
x . This

difference converges to a constant value for large clusters indicating that the crystal
surface is covered by a liquid layer of constant thickness.

From the plot we conclude that, as in the case of nucleation on a planar wall, a min-
imum droplet size is required to support a stable crystal. As before, we find that the
resulting crystal fills the droplet except for a liquid mono-layer.

For crystallization in a pore the curvature can cause stress and frustration for a
regular arrangement of particles, and thus might inhibit crystal nucleation. Therefore,
we computed the free-energy barrier for crystal nucleation for those systems within
a pore filled with a meta-stable droplet (data not shown). For small pores no stable
crystal grows in these droplets. For the largest pore that can contain meta-stable liquid
droplets (R = 6), we observe a small crystal-nucleation barrier of ∆G∗ ≈ 7.5kBT . This
barrie height is slightly less than the nucleation barrier for growing out of the pore
(∆G∗ ≈ 10kBT ). Hence in these pores crystallization is expected to precede pore
break-out. The resulting crystallization results in the formation of a stable crystal of
n ≈ 140 particles.

For pore radii R > 6 a fully-filled pore is not a metastable state anymore, and
the liquid continuously grows into the bulk. In this situation, the pore’s attraction
and curvature can still influence the rate for crystal nucleation, but this step is never
rate-limiting.
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5.3 Conclusion
The focus of the present chapter is on heterogeneous nucleation of liquids and crys-
tals. We studied nucleation on a planar wall, on a planar circular patch, and in a
spherical pore. For all surface geometries we find the nucleation pathway to follow
the homogeneous two-step route, with the vapor-liquid nucleation as rate-limiting
step. Comparing the simulation results to the corresponding CNT predictions we
find good qualitative agreement. However, a quantitative comparison was not pos-
sible due to the fact that the wall-liquid and wall-crystal surface tensions are not
known with sufficient accuracy, and the line tensions of the nuclei on the surface are
unknown. Yet line tensions are known to have a pronounced effect on the nucleation
barrier [27, 137, 138].

For a planar circular patch the free-energy barrier for vapor-liquid nucleation
shows a monotonic decrease with increasing patch radius, interpolating between the
barrier for homogeneous nucleation and the one for nucleation on a planar wall. For
the parameter range studied in our simulations, we did not observe two-step vapor-
liquid nucleation. Moreover, CNT calculations using as input the parameters that
characterize the systems that we studied in the simulations also failed to exhibit two-
step nucleation. These findings indicate that the two-step nucleation scenario on a
planar circular patch that was predicted by Refs. [121, 122] occurs for conditions
that are outside the domain that we could study in our simulations. Furthermore,
our simulations show that liquid-crystal nucleation happens spontaneously for large
patches and at a planar wall, provided that the liquid droplet exceeds a minimum size
of n ≈ 200 particles.

For a hemi-spherical pore we find a richer behavior. Very small and very large
pores exhibit a vapor-liquid nucleation free-energy barrier that approaches the ones
for homogeneous nucleation and heterogeneous nucleation on a planar wall, respec-
tively. For intermediately-sized pores, the liquid nucleation itself is a two-step pro-
cess. In the first nucleation event a droplet nucleates inside the pore and grows to fill
the entire pore. From this metastable state, a second nucleation event is required to
grow out of the pore. The overall nucleation rate shows a non-monotonic dependence
on the pore radius with an optimum pore size for which the barrier is lowest. This
confirms a previous study on nucleation in and out of pores for an Ising model sys-
tem [18]. Depending on the strength of attraction the minimum barrier can be even
lower than for nucleation on a planar wall. The liquid-crystal nucleation typically
follows once the droplet is large enough. For a small pore the droplet extends into
the bulk and the crystal nucleation is homogeneous. For large pores the crystal forms
in contact with the pore surface at a very high rate - in practice, there is no nucleation
barrier. Only for the largest pore within which a metastable droplet could be main-
tained, did we find the filled pore to be large enough to host a stable crystallite. In
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Figure 5.11: Left: liquid droplet on a planar surface, surrounded by vapor. The
droplet’s shape corresponds to a spherical cap where the geometrical parameters are
the droplet radius R, the contact angle Θ, the height of the droplet h, and the radius a
of the contact circle between droplet and surface. Right: liquid droplet in a spherical
pore, surrounded by vapor. The droplet is composed of two spherical caps with the
corresponding parameters Ri, ai, hi and Θi, with i = 1 for the lower cap and i = 2 for
the upper cap. The contact angle is denoted Θ (without subscript). For the relation
between these parameters see main text.

that case the liquid crystallizes before it grows out of the pore.
In conclusion, our simulations show that a weakly attractive circular patch or

hemi-spherical pore on an otherwise non-adsorbing substrate can reduce significantly
the free-energy barrier for nucleation. Both geometries are most efficient if their
radius is close to or slightly larger than the critical radius for homogeneous nucle-
ation, at which point they strongly accelerate the formation of exactly one nucleus.
A widely-spaced array of adsorbing patches or pores with a broad distribution of
radii crafted on an otherwise non-adsorbing surface should therefore make an effi-
cient nucleation agent for the formation of high-quality crystals. We point out that
the present work is limited to smooth surfaces. Further research is required on (crys-
tal) nucleation at surfaces that are rough on the scale of a particle diameter. In such
cases, roughness is expected to have a pronounced effect on the free-energy barrier
for crystal nucleation.
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5.A CNT derivation
Assume a droplet in contact with an attractive planar wall like depicted in the left
panel of Figure 5.11. We denote the surface tension between the wall-vapor, wall-
liquid and vapor-liquid interface by σwg, σwl and σlg, respectively, and the contact
angle by Θ. The CNT expression for the free-energy of this droplet is given by [16]

∆G = σlgAlg −|∆µ|ρVl +(σwl −σwg)Awl,

where Alg and Awl refer to the vapor-liquid and wall-liquid surface area, respectively,
Vl to the droplet volume, ρ to the bulk liquid density, and ∆µ to the difference in
chemical potential between the bulk vapor and bulk liquid. Using the Young-Dupré
relation for the contact angle, σwg = σwl +σlg cosΘ, we obtain

∆G = σlgAlg −|∆µ|ρVl −σlgAwl cosΘ (A5.1)

The volume and the surface area of this droplet is given by the expression for a
spherical cap,

Vcap(R,Θ) =
1
4(1− cosΘ)2(2+ cosΘ)

4π
3 R3

= ΦV (Θ)Vs(R)

Acap(R,Θ) =
1
2(1− cosΘ)4πR2

= ΦA(Θ)As(R),

where Vs(R) = 4π/3R3 and As(R) = 4πR2 is the volume and surface area, respec-
tively, of a full sphere with radius R, and ΦA(Θ) = 0.25(1− cosΘ)2(2 + cosΘ) and
ΦV (Θ) = 0.5(1− cosΘ) are contact-angle dependent surface and volume modifiers,
respectively. Inserting the volume and area of our spherical cap in the CNT expres-
sion yields the barrier height and critical radius for nucleation on a planar attractive
wall [16],

∆G∗ = ∆G∗
homoΦV (Θ), (A5.2)

with ∆G∗
homo = 16π/3σ3

lgρ−2|∆µ|−2 the critical CNT barrier height for homogeneous
nucleation. The critical nucleus radius is the same for both homogeneous nucleation
and nucleation on a planar wall, R∗ = 2γρ−1|∆µ|−1, and the radius of the wall-liquid
contact circle is R = R∗ sinΘ.

Circular patch
For an attractive circular patch with radius RP the free energy has to be slightly
modified. We can identify three distinct regions [121, 122, 139]: in regime I (R <
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RP/sinΘP) the droplet is small enough to fit entirely on the circular patch with the
natural patch-liquid contact angle ΘP. Regime II applies if the droplet covers the
entire patch with a contact angle ΘP < Θ < ΘW , where ΘW is the wall-liquid contact
angle. In the final regime III (R > RP/sinΘW ) the droplet extends beyond the circu-
lar patch, and the contact angle is that with the wall. The CNT expression for the free
energy difference is hence

∆GI(R) = σlgAS(R)ΦA(ΘP)

−σlgπR2 sin2 ΘP cosΘP

−|∆µ|ρVS(R)ΦV (ΘP)

∆GII(Θ) = σlgAS(RP/sinΘ)ΦA(Θ)

−σlgπR2
P cosΘP

−|∆µ|ρVS(RP/sinΘP)ΦV (Θ)

∆GIII(R) = σlgAS(R)ΦA(ΘW )

−σlgπR2
P cosΘP

−σlgπ(RsinΘW −RP)2 cosΘW

−|∆µ|ρVS(R)ΦV (ΘW )

Spherical pore

Next, consider a droplet in a spherical pore, as sketched in the righthand panel of
Figure 5.11. The droplet volume consists of two spherical caps, each with its own
radius Ri and contact angle Θi. From the figure it is obvious that ΘP = Θ1 + Θ2,
where ΘP is the liquid-pore contact angle. The lower cap has the curvature of the
spherical pore, so R1 = RP. Both caps share the radius of the circle where they meet,
so a1 = a2 ≡ a. The radius Ri of a cap is related to a by a = Ri sinΘi, so the radii are
related by R2 = RP sinΘ1/sinΘ2 = RP sinΘ1/sinΘP −Θ1. Analogous to the droplet
on a circular patch we identify three regimes: in regime I the droplet does not fill the
pore, i.e. Θ1 < π/2. Note that this is independent of the actual contact angle ΘP. In
the second regime, the droplet fills the pore, Θ1 = π/2, and grows until the upper cap
angle Θ2 reaches the contact angle with the surrounding wall, ΘP−π/2 ≤ Θ2 ≤ ΘW .
Here, we point out that for intermediately to strongly wetting pores, ΘP < π/2, the
upper cap angle Θ2 = ΘP−π/2 starts out negative. In regime III the upper cap grows
beyond the pore onto the surrounding wall, taking a mushroom-like shape, R > RP.
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Computing the free energy for the three different regimes then yields

∆GI(Θ1) = σlgAS(RP)
ΦA(ΘP −Θ1)sin2 Θ1

sin2 ΘP −Θ1
−σlgAS(RP)ΦA(Θ1)cosΘP

−|∆µ|ρVS(RP)
ΦV (ΘP −Θ1)sin3 Θ1

sin3 ΘP −Θ1
−|∆µ|ρVS(RP)ΦV (Θ1)

∆GII(Θ2) = σlgAS(RP)ΦA(Θ2)sin−2 Θ2

−σlgAS(RP)ΦA(Θ1)cosΘP

−|∆µ|ρVS(RP)ΦV (Θ2)sin−3 Θ2

−|∆µ|ρVS(RP)ΦV (Θ1)

∆GIII(R) = σlgAS(R)ΦA(ΘW )

−σlgπ(R2 −R2
P)cosΘW

−σlg
1
2AS(RP)cosΘP

−(
1
2VS(RP)+VS(R)ΦV (ΘW ))ρ|∆µ|.
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Chapter 6

Disordered substrates favor
heterogeneous crystal nucleation
of model globular proteins

In this chapter we investigate by means of numerical simulations the
pathways of heterogeneous crystal nucleation in a simple model system
for globular proteins. We consider smooth, periodically structured, and
disordered surfaces of planar walls and cylindrical cavities, modeling
adsorption to container walls and micro-porous media.
Under conditions similar to those where protein crystallization is ob-
served experimentally, we find that the presence of a planar wall with
suitable wetting conditions induces spontaneous crystallization. Our re-
sults on periodically structured surfaces agree well with the behavior re-
ported for colloidal hard-sphere systems [123], with the exception that
for the model studied here a strong lattice mismatch between substrate
and adsorbed crystal leads to the formation of a thin, dense layer of a
disordered phase, which lowers the free-energy barrier to subsequent
crystal nucleation.
Our most striking results relate to the properties of disordered substrates.
As in the case of a strong mismatch of the periodically structured wall,
a disordered wall adsorbs a thin liquid film. For a cylindrical cavity of
suitable size we find that disorder leads to a liquid filling the entire pore,
and we show that such an environment facilitates fast crystal nucleation
without any of the mismatch-induced strain effects that occur in the case
of nucleation on an ordered but non-commensurate substrate.
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First-order phase transitions such as crystallization typically proceed via nucle-
ation and subsequent growth [16]. In the first stage of this process, spontaneous
thermal fluctuations cause the formation of a microscopic nucleus of the new phase.
If such a nucleus is small it has a high chance to dissolve again, but if the fluctuation
is large enough, exceeding the so-called critical nucleus size, the new phase is likely
to grow to a macroscopic size. The tipping point corresponds approximately to the
top of a free-energy barrier separating the meta-stable parent phase (e.g. the liquid)
from the thermodynamically stable phase (e.g. the crystal). Provided that this barrier
is much larger than the thermal energy kBT , nucleation becomes a rare event limiting
the rate of formation of the new phase.

An effective way to enhance the rate of spontaneous nucleation is to lower the
free-energy barrier, e.g. by increasing the supersaturation. However, increasing the
supersaturation also affects the growth speed, and in the case of crystallization often
results in the formation of a defect-rich crystal or even of a poly-crystalline material.
For the fabrication of high-quality single crystals, such as those required for protein
structure analysis, such defects should be avoided.

Heterogeneous nucleation offers an alternative route to lower the free-energy bar-
rier. In contrast to homogeneous nucleation of a pure bulk substance, the term hetero-
geneous refers to the presence of foreign particles or container walls that can act as
seeds facilitating the formation of nuclei. For crystallization this means that heteroge-
neous nucleation can occur at conditions where the rate of homogeneous nucleation
is negligible and where the rate of the crystal growth is still slow. It would therefore
be advantageous to design substrates that can act as heterogeneous nucleation agents.
But this is complicated by the fact that the process of heterogeneous nucleation is
still poorly understood on a molecular scale.

Over the past two decades much progress has been reported in the study of crystal
nucleation. On the one hand, the advent of colloids as experimental model-system
allows for a direct comparison of experimental observations with numerical many-
particle simulations [112, 113]. On the other hand, advances in the field of rare-
event algorithms make it easier to study the kinetics of nucleation-dominated phase
transformations in simulations [23, 44, 49, 57]. Research is further stimulated by
the demand to control nucleation for the assembly of nano-colloids into photonic
materials or for the fabrication of high-quality protein crystals for structural analysis.

Both experimentally and theoretically, much attention has been paid to the study
of structured surfaces to control crystal nucleation and growth. For instance, exper-
iments on colloidal systems showed that a crystal template can strongly enhance or
suppress epitaxal crystal growth depending on the ratio of the lattice spacing of the
template and the epitaxially grown crystal [127]. These experiments inspired subse-
quent theoretical [140, 141] and numerical [123] studies. Surprisingly, a highly or-
dered substrate is not necessarily the best nucleation agent: experiments by Chayen et
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al. [17, 132, 133] on heterogeneous protein crystallization suggested that highly dis-
ordered micro-porous seeds can act as universal nucleation agents for the formation
of high-quality single protein crystals. The molecular mechanism of nucleation in a
pore has subsequently been studied theoretically using an Ising lattice model [18] and
by means of numerical simulations in a Lennard-Jones model accounting for effects
from a high-density meta-stable disordered phase [142]. Another experimental study
of protein crystallization revealed that surface roughness has a pronounced effect on
the nucleation rate [143], but to our knowledge, systematic theoretical or numerical
studies on this topic are still lacking.

In this chapter we investigate by means of numerical simulations the pathways of
heterogeneous crystal nucleation in a simple model system for globular proteins. We
consider smooth, periodically structured, and disordered surfaces of planar walls and
cylindrical cavities, modeling adsorption to container walls and micro-porous media.
Under conditions similar to those where protein crystallization is observed experi-
mentally, we find that the presence of a planar wall with suitable wetting conditions
induces spontaneous crystallization. Our results on periodically structured surfaces
agree well with the behavior reported for colloidal hard-sphere systems [123], with
the exception that for the model studied here a strong lattice mismatch between sub-
strate and adsorbed crystal leads to the formation of a thin, dense layer of a disordered
phase, which lowers the free-energy barrier to subsequent crystal nucleation. Our
most striking results relate to the properties of disordered substrates. As in the case
of a strong mismatch of the periodically structured wall, a disordered wall adsorbs a
thin liquid film. We find that for a roughness with an amplitude comparable to the
size of protein particles both the amount and the isotropy of the adsorbed liquid are
maximal, which helps to explain some of the experimental observations [143]. For
a cylindrical cavity of suitable size we find that disorder leads to a liquid filling the
entire pore, and we show that such an environment facilitates fast crystal nucleation
without any of the mismatch-induced strain effects that occur in the case of nucleation
on an ordered but non-commensurate substrate.

6.1 Simulations details

Our aim is to study heterogeneous crystal nucleation in a many-particle system with
a phase diagram similar to that of many globular-protein solutions. To this end, we
must pay special attention to the choice of the effective pair interaction between our
model proteins. Such pair potentials combine excluded volume interactions at dis-
tances less than the effective diameter of the molecules with a short-range attraction at
slightly larger separations. Shortening the range of attraction has a pronounced effect
on the topology of the phase diagram: for long-range attractions, the phase behav-
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Figure 6.1: Conventional Lennard-Jones potential (dashed line) and the modified
Lennard-Jones potential (solid line) according to Eqn. 6.1 with α = 50. In order to
facilitate direct comparison of the two model potentials, the distance-scale for the
Lennard-Jones potential has been shifted to match the zero-crossing of the α = 50
potential. For both potentials we set ε = σ = 1.

ior is similar to that of Argon: the critical temperature is well above the triple-point
temperature and between those two temperatures it is possible to observe a thermody-
namically stable liquid phase. As the range of attraction is shortened, the vapor-liquid
coexistence curve drops below the vapor-solid coexistence and, as a consequence the
critical point is in the meta-stable region below the freezing curve. For even shorter-
ranged attractions an iso-structural transition in the solid phase is expected to emerge.
Potentials that exhibit this sequence of scenarios include a hard-core potential with
an attractive square well [144, 145], a hard-core attractive Yukawa [146–149], the
so-called 2n− n potentials [150], and the modified Lennard-Jones [10]. We discuss
the latter model in more detail in the next paragraph.

On the basis of the analysis of a large number of data on real protein solutions,
Rosenbaum and co-workers [134, 151] argued that all potentials with a ‘similar’ ratio
of the range of attraction to the range of (hard-core) repulsion should exhibit similar
phase behavior. A more quantitative formulation of this generalized corresponding
states principle has been proposed by Noro and Frenkel [152].

Inter-particle potential

For the present study we use the modified Lennard-Jones potential with α = 50 that
was proposed by ten Wolde and Frenkel as a simple model for protein-protein inter-
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Figure 6.2: Phase diagram for the modified Lennard-Jones potential (Eqn. 6.1) for
α = 50. The stable phases are the fluid (F) and the crystal (X). Their coexistence
region (solid line) envelops the metastable vapor-liquid (L+V) coexistence curve
(dashed line) including its critical point indicated by the large cross. The arrow indi-
cates the working conditions for this chapter. Data from Ref. [10].

actions [10]:

U(r) =







∞ r ≤ σ
4ε
α2

[

(

( r
σ
)2 −1

)−6
−α

(

( r
σ
)2 −1

)−3
]

r ≥ σ (6.1)

The hard-core repulsive part prevents penetration allowing for both Monte Carlo
(MC) and Molecular Dynamics (MD) simulations. For α = 50 the stickyness param-
eter τ [152] equals that of the hard-core attractive Yukawa system for κ = 7 known
to resemble protein phase behavior [134]. More work on the phase diagram has been
reported by Pagan et al. [153], who computed more accurately the metastable fluid-
fluid coexistence in the vicinity of the critical point, and by Lutsko and Nicolis [154]
who studied the entire phase diagram. Crystallization dynamics was explored by
Costa et al. [155], and nucleation free-energy barriers were presented by ten Wolde
and Frenkel [10] and by Lutsko and Nicolis [14].

Numerical approach

In what follows, we use reduced units. We define the reduced distance as r∗ = r/σ
and the reduced potential energy as u∗ = U/ε. All other reduced quantities (e.g.
the pressure P∗ = Pσ3ε−1, the density ρ∗ = ρσ3, and the temperature T ∗ = kBT ε−1)
follow. All quantities reported in this work are expressed in these reduced units.
Therefore, we omit the superscript asterisk (*) from here on.
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T/Tc Tm/Tc T P ∆µ ρ f ρc µ f Pig
0.89 1.04 0.374 0.0104 -0.748 0.035 0.877 -1.400 0.00885
1.00 1.14 0.418 0.0406 -0.610 0.300 0.872 -1.165 0.0262
1.09 1.22 0.456 0.1200 -0.455 0.452 0.869 -0.971 0.0543
2.23 2.39 0.931 4.1490 -0.208 0.652 0.814 * *

Table 6.1: Nucleation conditions from Ref. [156]. Note that the difference in chem-
ical potential is approximated using the equation ∆µ ≈ ∆h(Tm −T )/Tm as stated in
Ref. [10]. Values for ρ f , µ f and Pig are obtained from NPT simulations and from
Widom insertion in the NVT ensemble. Pig is the pressure of the particle reservoir in
the grand-canonical ensemble.

For the present work we set α = 50, and truncate and shift the interaction at
a distance rc = 2.0σ. The resulting potential is plotted in Figure 6.1 along with a
conventional Lennard-Jones potential for reference. The corresponding phase dia-
gram is depicted in Figure 6.2 using the data of Ref. [10]. Table 6.1 lists the working
conditions for homogeneous nucleation studied in Ref. [10]. We focus only on a tem-
perature slightly below the critical temperature, T = 0.89Tc = 0.374, at a fluid density
in the vicinity of the meta-stable vapor-liquid coexistence line (see Table 6.1), where
surface pre-wetting might occur. At this point in the phase diagram, which is indi-
cated by an arrow in Fig. 6.2, the crystal (X) is the thermodynamically stable phase,
the fluid (F) is meta-stable, and the liquid (L) is unstable.

We performed Metropolis Monte Carlo simulations in the grand-canonical en-
semble, where temperature, volume, and the chemical potential are kept constant,
and the particle number is allowed to fluctuate. This ensures a constant fluid pres-
sure and minimizes finite size effects. The maximum particle displacement is set
to ∆ = 0.2σ, and each particle is moved on average 20 times before an attempted
particle insertion/removal move. The simulation box size is chosen such as to keep
the bulk volume constant at Vbulk = 12,000, and periodic boundary conditions were
applied in both y and z directions. A planar hard wall opposite to the heterogeneous
surface prevents particles from escaping the box in the x direction. For the surface-
particle interaction we apply the same functional form as for inter-particle interac-
tions, but vary the interaction strength ε. For the computation of free-energy barriers
we use umbrella sampling with a bias on the number of particles in the largest crys-
talline cluster as outlined in Ref. [57]. Crystalline particles are identified with bond-
order parameters using a neighbor distance cutoff rc = 1.35, a correlator threshold
q6(i) ·q∗

6( j) > 0.55 to form a link, and a number of links threshold of nl > 7 to form
a solid-like particle. This definition was used for all calculations on heterogeneous
nucleation. In the case of homogeneous nucleation, where fluid particles have on
average less than 7 neighbors, we applied a modification to the last step of the order
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Figure 6.3: Relative fluid density ρ(x)/ρbulk as function of distance x perpendicular
to a weakly-attractive planar wall for various interaction strengths ε.

parameter, that changes the threshold for the number of links to a threshold for the
fraction of links, i.e. the number of links divided by the number of neighbors [73].
Note that we checked whether the choice of order parameter affects the nucleation
free-energy barrier height for heterogeneous nucleation, but no significant difference
was observed.

6.2 Results
Before considering heterogeneous nucleation, we first verify that our simulations for
homogeneous nucleation yield results consistent with Ref. [10], in particular since
our numerical approach differs in two aspects. First, in contrast to the Molecular
Dynamics simulations in the isobaric-isoenthalpic (NPH) ensemble of Ref. [10] we
perform Monte Carlo simulations in the grand-canonical (µV T ) ensemble. Second,
instead of using two order parameters we have only a single order parameter, which
takes into account that particles at the surface of a crystal nucleus have less nearest
neighbors compared to bulk crystal particles. We compute the nucleation free-energy
barrier at three temperatures, T = 0.374, T = 0.42, and T = 0.456, and find good
agreement with the values reported in Ref. [10].

6.2.1 Heterogeneous nucleation on a smooth surface
First, we consider the simplest geometry for heterogeneous nucleation: a smooth pla-
nar adsorbing wall. For the interaction between the particles and the wall we apply the
same potential as for the inter-particle interaction, but we vary the attraction strength
by changing the prefactor ε. Direct simulations identify whether particles adsorb to
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the wall. From these simulations we obtain the vapor-density profile perpendicular to
the wall. We find spontaneous crystallization for all simulations within 106 MC cy-
cles given that the wall-particle interaction strength is sufficient high, namely ε ≥ 2.
For those simulations without spontaneous crystallization Figure 6.3 shows the vapor
density profile ρ(x) as function of distance x perpendicular to the wall, normalized by
the bulk fluid density ρbulk. Surprisingly, we never observe a disordered high-density
layer adsorbed on the surface, although we simulate at conditions very close to the
meta-stable vapor-liquid coexistence line. We will come back to this point later.

Next, we reduce the attractive area of the wall to a circle of radius R, and modify
the remainder of the wall to interact purely repulsively. This geometry is of interest
for its potential to induce the growth of high-quality single crystals: it can lower the
nucleation free-energy barrier while supporting only one crystal nucleus at a time.
The key question is how the free-energy barrier changes with radius. More specifi-
cally, we ask whether there exits a range of patch radii such that the patch supports
only one nucleus at a time, yet lowers the nucleation free-energy barrier almost to
that of a planar wall? Our simulations show spontaneous nucleation given the wall
strength exceeds a certain value. Patches with R < 3 do not show any spontaneous
crystallization, but once the patch radius exceeds R ≥ 3, crystal growth is observed
for all but the weakest adsorptions with ε = 2. From R = 5 on all samples crystal-
lized, which indicates that the free-energy barrier is virtually non-existent and the
planar wall limit is reached. At this size the patch is still small enough to only sup-
port a single nucleus, and should qualify for a good nucleation agent. We come back
to this point in the discussion.

Another geometry of interest is a hemi-spherical cavity as a model for a shallow
pore. In a recent study on vapor-crystal nucleation of a conventional Lennard-Jones
system we found that the presence of a hemi-spherical pore strongly enhances the
nucleation rate [142]. This effect can be understood by recalling that, just below
the triple point, vapor-crystal nucleation is expected to proceed via a two-step pro-
cess [14, 95, 135]. In a first event a meta-stable liquid droplet nucleates. The crystal
then forms inside this droplet in a second independent step. In the case of hetero-
geneous nucleation, the hemi-spherical pore does not affect crystal nucleation, but
facilitates the formation of the liquid phase, and because the latter is rate-limiting it
enhances the overall vapor-crystal nucleation rate [142].

However, there is one important difference between the model system studied
here and the conventional Lennard-Jones system. At conditions studied here the liq-
uid phase is not even meta-stable but unstable. This means that, in contrast to the sit-
uation discussed in Ref. [142], it is not possible to form a meta-stable liquid droplet
in the bulk vapor. If a pore fills with a liquid it is stabilized purely by the impurity
and will not grow out of the pore. On the other hand, if no liquid forms, the crystal
could still benefit by attaching directly to the surface. It then depends on the curva-
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Figure 6.4: Schematic side view of a hemi-spherical (a) and cylindrical (b,c) pore
wetted by a liquid. The dark gray area indicates the attractive part of the pore, and
the light-gray area the adsorbed liquid. Panel c) also shows a crystal nucleus fully
immersed in the liquid.

ture of the sphere whether or not it is possible to nucleate a stress-free crystal. Our
simulations show no sign of spontaneous crystallization, regardless of the sphere’s
radius and attraction strength. This contrasts with the behavior at a planar wall or
on a circular patch. Instead, we find that a monolayer adsorbs on the surface, and
for strong attraction short-ranged ordering appears that optimizes the packing at the
curved surface. For very small pores this packing extends to fill the entire pore, but
it is incompatible with the crystal lattice and hence does not induce crystallization.

In a final step, we therefore consider a cylindrical pore embedded in an otherwise
hard wall. This geometry combines two possible mechanisms to enhance nucleation:
on the one hand its planar bottom resembles the planar circular patch and facilitates
ordering. On the other hand, a cylindrical cavity, like the hemi-spherical pore, ad-
sorbs potentially a high-density liquid phase. And deep cylinders with a depth larger
than its radius, D > R, might sustain a liquid where a shallow hemi-spherical pore
might have none. This difference is depicted schematically in Figure 6.4 showing
both a hemi-spherical (a) and cylindrical pore (b). The cylinder can be filled, but
its side walls can also introduce frustration for a growing crystal if the cylinder’s
diameter is incommensurable with the lattice spacing.

To properly simulate this geometry care has to be taken which distance is used
for the potential, as artifacts can arise where the bottom meets the side walls. To
minimize these effects we choose to take the distance to the closest surface r =
min(rside,rbottom), which can be either to the side wall rside or to the cylinder bottom,
rbottom. In our simulations we find that pores with a small radius R ≤ 4 never induce
spontaneous nucleation within 106 MC cycles. In contrast, all pores with R ≥ 7 crys-
tallize, provided the interaction strength is sufficiently high (ε ≥ 2 as in the case of
the planar wall). A qualitatively different behavior is observed for a narrow region
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Figure 6.5: Snapshot of a cut through a smooth cylindrical pore with radius R = 7,
depth D = 10, and attraction strength ε = 5, after T = 2.1×105 MC time steps. The
light-colored particles indicate the emerging crystal, dark-colored ones the layering
along the cylinder’s side walls.

of radii, 4.5 ≤ R ≤ 5.5, in particular for deep pores. Here, we find that only a weak
attraction leads to proper crystal growth, and visual inspection reveals that stronger
attraction leads to a competition between crystal growth and attachment of particles
on the cylinder’s side walls. Particles at the cylinder’s bottom eventually start to
crystallize, while particles at the cylinder’s side walls arrange in radially symmetric
layers. These two packings are incompatible and the resulting frustration prevents the
crystal to grow to the open end of the cylinder. Figure 6.5 depicts a cut through such
a cylinder (R = 7, D = 10, after 2.1× 105 MC cycles) showing the emerging crys-
tal (light-colored particles) and the quasi-liquid layering at the cylinder’s side walls
(dark-colored particles). This behavior is typical for strongly adsorbing cylinders of
all radii, even those showing crystallization. In the latter case, a structural rearrange-
ment takes place which allows the crystal to eventually grow out of the cylinder into
the bulk. Although this might also happen for smaller cylinders, we do not observe
this in the course of our simulations.

6.2.2 Heterogeneous nucleation on a structured surface
On an atomistic scale all surfaces are rough. Hence, when we speak about “smooth”
surfaces we refer to a situation where the surface roughness is small compared to
the particle size. For colloids, it is possible to construct templates that are effec-
tively smooth, but on the nanometer scale of proteins some atomistic roughness is
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a) b) c)

Figure 6.6: Cut through simulation-snapshots of a fluid in contact with a structured
wall. The cylinders with radius R = 7 and depth D = 3 are cut from an fcc crystal
with its 111 plane normal parallel to the x-axis, at densities ρ = 0.8 (a), ρ = 1.0 (b),
and ρ = 1.2 (c). For both panel a) and b) the fcc density is close to the equilibrium
density of the “protein” crystal, ρ = 0.88. In c) the lattice spacing of the substrate is
significantly decreased (≈ 10%), and the mismatch prevents spontaneous crystalliza-
tion. Color coding: black: hard-sphere wall particles, dark-gray: attractive cylinder
particles, light-gray: crystalline particles, small black: liquid and fluid particles.

inevitable. Therefore, it is more natural to consider structured templates for protein
crystal nucleation. The simplest structured template is one that consists of particles
that are immobile, but otherwise identical to those of the protein solution. In this
work we consider both periodic and disordered arrangements.

Periodic structures

Earlier experimental and theoretical studies on colloidal and hard-sphere crystalliza-
tion in the presence of structured surfaces report that templates are highly effective
provided the crystal and substrate lattice spacing mismatch is not too large [123, 127,
141]. In what follows, we first consider a planar wall represented by the surface of
a 111 fcc crystal phase at densities ρ = [0.8,0.88,1.0,1.2]. The equilibrium density
of the target protein crystal is ρ = 0.88. Direct simulations show that for all sub-
strate densities but ρ = 1.2 a crystal forms spontaneously at the wall. At a density of
ρ = 1.2 we observe a thin layer of a disordered high-density liquid phase. This con-
trasts with our observations for a smooth planar wall, where we find either a crystal
or only a slight adsorption of the fluid phase. However, the formation of a thin liq-
uid film that forms on the ρ = 1.2 substrate does not lead to subsequent spontaneous
crystallization.

Next, we consider a structured circular patch. To construct such a patch, we
start from a planar wall, but impose the condition that only those particles within a
radial distance to the center of the patch, (y2 + z2) ≤ R2

P, interact via the modified
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Lennard-Jones potential; all other particles experience only a hard-core interaction
(i.e. excluded volume). As expected all samples with a patch radius R ≥ 5 sponta-
neously crystallized, except for the patches with a fcc density of ρ = 1.2, for which
a thin liquid film is observed. For small patches R < 5 a small crystal forms, but it is
too small to spontaneously grow into the bulk.

Next, we created a structured cylindrical pore in a flat fcc substrate block by
removing all particles located inside the cylinder. On top of the cylinder we added
a monolayer of particles with hard-core interaction, such that ‘protein’ particles are
attracted only to the cylinder walls and not to the planar outside surface. Varying the
cylinder radius, depth, and the underlying fcc density had little effect on the overall
behavior of the system. For all cylinders with R ≥ 5 a crystal formed inside and
grew out of the pore into the bulk. Only for a fcc density of ρ = 1.2 we did not
observe spontaneous crystallization. Instead, a thin liquid layer wetted the cylinder’s
surface, and for cylinders up to R = 5 the liquid filled the pore. Figure 6.6 shows
simulation snapshots for a cylinder with radius R = 7 and depth D = 3 for a fcc
density of ρ = 0.8 (a), ρ = 1.0 (b), and ρ = 1.2 (c). For a slight mismatch between
the lattice spacing λ of the surface and the equilibrium crystal a crystal spontaneously
forms. But the snapshots indicate that the sign of mismatch, ∆λ = λsur f ace −λprotein,
influences the growth of the crystal. For a positive mismatch as depicted in Fig. 6.6a
the crystal seems to grow several layers with the imposed density, after which the
internal stress is released in defects causing the formation of several independent
islands, a phenomenon known as Stranski-Krastanov growth [157]. For a negative
mismatch, the stress inside the crystal is too large to be contained, and a defect plane
emerges already in the first crystal layer. For even larger mismatches spontaneous
crystallization is suppressed, and only a thin layer of liquid particles is adsorbed.

Disordered structures

The large effect of mismatch on the adsorption and crystallization behavior led us to
investigate surfaces that are not only micro-porous but also disordered on the scale of
the constituent particles. Such structures were obtained by preparing a hard-sphere
fluid configuration at a density just below the freezing density. The density of the
configuration was then rescaled to a density of ρ = 1.2 to match the density of the
previous fcc surface. Note that after rescaling some of the particles do overlap, but
since these particles are immobile and no interactions are computed between them,
overlap has no effect on the protein particles.

In studying the effect of the disordered substrate, we again start with a planar
wall cut from the bulk disordered phase at density ρ = 1.2. After 106 MC cycles
of a grand-canonical Monte Carlo simulation we find no evidence for crystallization
but, as in the case of the fcc surface, we observe the formation of a thin liquid layer.
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a) b)

Figure 6.7: Density profile of the adsorbed liquid as function of distance x perpen-
dicular to a wall. a) Density profile at a 111 fcc surface at density ρ = 1.2 (≈ 10
% lattice mismatch) and at a disordered wall with rw = rp. b) Density profile at a
disordered wall with varying particle size rw.

Figure 6.7a shows the computed density profile as function of distance perpendicular
to the wall, both for the disordered and the fcc surface. The profile reveals that the
liquid film on both surfaces is structurally very different. Whereas the disordered
surface sustains a liquid with little short-ranged order, the periodic fcc lattice induces
strong layering as revealed by the oscillating density profile.

To explore the effect of surface roughness on the amount and the local struc-
ture of the adsorbed liquid, we computed the density profile for various sizes of the
wall particles (rw). To achieve this size change we modified the interaction poten-
tial between surface particles and ”protein” particles by shifting the r-axis, which
ensures that the range of attraction is not affected. The resulting potential is then
U(r ;rw) = U [r − (rw − rp)], where rp denotes the radius of the ”protein” particles
and U(r) is given by Eqn. 6.1. For equally sized particles, rp = rw, the shift is zero.
Note that we keep the packing fraction η = (4π/3)r3

w ρ of the wall constant (i.e. not
the number density ρ) to correct for the volume increase of the wall particles. The
resulting density profiles are presented in Figure 6.7b. We find that decreasing the
particle size leads to an increase in density of the adsorbed fluid. Moreover, for wall
particles smaller than the ”protein” particles a layering in the liquid is induced, as is
revealed by the oscillating density profile. For optimal crystal nucleation conditions
the liquid should not impose any stress on the crystal, and hence layering should be
avoided. At the same time, the liquid density should be as high as possible to reduce
the free-energy barrier for crystal nucleation. Therefore, the ’optimal’ roughness
adsorbs a high-density liquid without a local structure (such as layering), and from
Figure 6.7b this corresponds to the case where the wall particles are of the same size
as the ”protein” particles.

For homogeneous protein crystal nucleation there is evidence that large density
fluctuations due to the presence of a meta-stable critical point lower significantly
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Figure 6.8: Density profile as function of x-position in a disordered cylindrical pore
with radius 3 ≤ R ≤ 9 and depth D = 7. The pore’s bottom is at xmin ≈ 3, and its
top at xmax ≈ 10. For small radii, R ≤ 5, the pore is filled with a high-density phase,
which shows some layering indicated by the oscillating density profile. For R = 7 the
density is still partially filled, but the layering has disappeared. Further increasing the
pore radius leads to a decrease in density indicating that the pore’s surface is wet, but
the pore is not filled anymore. The density is normalized by the liquid bulk density
(ρl = 0.66).

the free-energy barrier for nucleation [10, 11]. It is therefore plausible that also
a liquid adsorbed on a surface facilitates crystallization. To test this hypothesis we
perform umbrella sampling simulations to compute the crystal nucleation free-energy
barrier as described in Section 6.1. Indeed, we find that the presence of the liquid
lowers significantly the free-energy barrier to nucleation, from ∆G∗

homo ≈ 80kBT for
homogeneous nucleation to ∆G∗

wall ≈ 50kBT at the disordered surface.
Since we observe a liquid wetting the disordered wall, we check whether this is

also the case for a cylindrical cavity. The disordered pore is constructed analogously
to the fcc pore. Scanning a broad range of parameters we find an interesting behavior.
The results are presented in Figure 6.8, where we plot the average liquid density along
the cylinder axis for pores of different radius. Thin cylinders with R < 7 exhibit the
highest liquid density, but the oscillating profile indicates strong layering, which is
likely to intervene with the crystal formation. For radii around R = 7 the density is
still very high, but the oscillations have disappeared, indicating that the structure of
the liquid is not strongly influenced by the walls. For large cylinders R > 7 the density
decreases, and visual inspection of our simulation snapshots confirms that only the
surface of the pores are wetted, but the pore does not fill with a dense liquid phase.

From the density analysis we conclude that a deep cylinder with radius R = 7,
filled with a high-density isotropic liquid, should provide a good crystal nucleation
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Figure 6.9: Cut through a snapshot of a direct simulation of a fluid in contact with a
structured wall. The cylinder with radius R = 7 and depth D = 7 is cut from an dis-
ordered phase (see main text for details) at a density ρ = 1.2. A crystal forms inside
the high-density liquid which partially fills the pore. Color coding: black: hard-
sphere wall particles, dark-gray: attractive cylinder particles, light-gray: crystalline
particles, small black: liquid and fluid particles.

site. Indeed, we find that the cylindrical cavity lowers the free-energy barrier height
further from ∆G∗

wall ≈ 50kBT for a disordered surface to ∆G∗
pore ≈ 25kBT for a cylin-

drical pore. But interestingly, we observe two different initial pathways in our um-
brella simulations. In both pathways a crystal nucleus forms inside the cylinder, but
in one path the crystal forms at the wall and in the other away from it, fully immersed
in the liquid phase. In our simulations using umbrella sampling both routes can be
followed initially, but once the cluster exceeds 50 particles, further growth of the
cluster at the wall turns out to be extremely difficult. It seems that strong internal
stresses prevent further growth, and crystallization is inhibited. In contrast, the route
that starts with a fully immersed crystal leads to a low barrier and to well-ordered
crystals. The latter pathway is schematically depicted in Fig. 6.4c, and a correspond-
ing simulation snapshot is presented in Fig. 6.9 showing an emerging crystal that is
fully immersed in the liquid, i.e. away from the cylinder walls.

6.3 Discussion
For the growth of high-quality protein crystals that are suitable for protein structure
analysis it is essential to work at a low supersaturation. Although a higher supersatu-
ration enhances the crystal nucleation rate, it also affects the crystal growth speed and
therefore leads to the formation of defect-rich crystals or even a poly-crystalline ma-
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terial. However, an enhancement of the rate of crystal nucleation is necessary to ob-
tain crystals within experimental time-scales, and heterogeneous nucleation promises
an alternative route: a nucleation agent can induce crystallization at a supersaturation
where homogeneous crystal nucleation in the bulk is negligible and the crystal growth
speed is slow. From a practical perspective, such a nucleation agent should be ”uni-
versal” in the sense that it should be effective for a broad range of proteins. Moreover,
to prevent the formation of a poly-crystalline material, it also should facilitate the for-
mation of only a few well-separated crystal nuclei. But, although the requirements
of a good nucleation agent are well-defined, for its implementation a detailed under-
standing of the molecular mechanism is still lacking. The aim of the simulations that
we presented in this chapter was to arrive at a set of criteria for the design of such a
nucleation agent.

We started with the simulation of crystal nucleation on a planar surface, both
smooth and periodically structured. We find that a smooth surface induces sponta-
neous crystallization for all but the weakest adsorption. However, such an aspecific
behavior is less likely to lead to high-quality single crystals than to a poly-crystalline
material, since many crystal nuclei form simultaneously at all over the surface. Re-
ducing the adsorbing area to a planar circular patch might solve this problem. How-
ever, we are not aware of an experimental study on such nucleation agents. The
limited success of planar adsorbing surfaces indicates that this mechanism depends
strongly on how a protein adsorbs to a surface, and hence on the specific interaction
between a protein and the surface. For a periodically structured surface we observe
spontaneous crystallization provided the lattice mismatch between the template and
the crystal is not too large. The size of such a template could be tailored to sustain
exactly one nucleus preventing poly-crystallinity. However, such a design is not very
universal, because the optimal lattice spacing varies strongly between different pro-
teins. Nucleation agents that do seem effective in experiment for a broad range of
proteins are micro-porous materials. And although both theory and simulation con-
firmed the effectiveness of a pore as nucleation site, our simulation results show that
a smooth adsorbing cavity is not enough to facilitate crystal nucleation for our model
protein. This observation motivated us to re-think the nucleation pathway.

In all simulations that showed spontaneous crystal nucleation the crystal formed
directly in contact with the surface. Such a route depends on the details of how pro-
teins adsorb to a surface, which are not captured by our model. But, in order to
qualify for a ”universal” a nucleation agent, we argued that the underlying mech-
anism should be generic, i.e. protein-independent. Based on our observation that
a periodically structured surface with a strong lattice mismatch adsorbs a thin film
of a high-density disordered protein phase (a ”liquid”), we consider an alternative
pathway for heterogeneous protein crystal nucleation, one that proceeds via an in-
termediate liquid phase. Such a pathway was already proposed for homogeneous
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protein nucleation in the vicinity of a meta-stable critical point [10, 11], where the
strong density fluctuations lower the free-energy barrier for nucleation. The hetero-
geneous nucleation analog would then require a nucleation agent to adsorb a liquid
rather than a crystal. Following this line of thought, we investigated crystal nucle-
ation on rough disordered surfaces. We find that the surface that best adsorbs a liquid,
i.e. the highest amount of liquid with a maximum structural isotropy, has a surface
roughness on the scale of the protein particles. This observation agrees well with
experimental results on the effect of surface roughness on the protein crystallization
behavior [143]. Furthermore, our simulations show that a deep cylindrical pore with a
rough disordered surface fills with such a liquid provided it is of suitable size. In such
a pore the crystal nucleus can grow fully immersed in the liquid, i.e. away from the
surface and stress-free, which lowers significantly the free-energy barrier for crystal
nucleation. Therefore, our results provide an rationalization for the experimental re-
sults on micro-porous media of Chayen and co-workers [132, 133] that goes beyond
the effect of the pore size on the nucleation free-energy barrier [18, 103, 142], as it
stresses the pronounced effect that surface roughness has on the behavior of protein
crystallization.

In conclusion, our numerical simulations provide a molecular mechanism for pro-
tein crystal nucleation in micro-porous media that relies on the combined effect of
liquid adsorption and surface roughness. The proposed nucleation pathway can be
tested experimentally with colloidal systems, which allow good control of the inter-
particle interactions. Disordered substrates can be fabricated by sedimentation of
poly-disperse colloids with a roughness controlled by the particle size distribution,
and it should be possible to create cylindrical cavities of various sizes. Moreover, the
particles that form the pore’s inside could be functionalized differently from the par-
ticles at the outer surface, such that adsorption takes place only inside the cylindrical
cavities. Finally, the pore size distribution should be adjusted such that the optimal
pore size, which supports the formation of a liquid, should be located in the tail of
the distribution ensuring that only a few pores contribute actively as nucleation sites.
However, the fabrication of nucleation agents for protein crystallization requires fur-
ther experiments, since the surface properties need to be controlled on the nanometer
scale.
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Chapter 7

Geometrical Frustration: A Study
of 4d Hard Spheres

with B. Charbonneau and P. Charbonneau

The smallest maximum kissing-number Voronoi polyhedron of 3d spheres
is the icosahedron and the tetrahedron is the smallest volume that can
show up in Delaunay tessellation. No periodic lattice is consistent with
either and hence these dense packings are geometrically frustrated. Be-
cause icosahedra can be assembled from almost perfect tetrahedra, the
terms “icosahedral” and “polytetrahedral” packing are often used in-
terchangeably, which leaves the true origin of geometric frustration un-
clear. Here we report a computational study of freezing of 4d hard
spheres, where the densest Voronoi cluster is compatible with the symme-
try of the densest crystal, while polytetrahedral order is not. We observe
that, under otherwise comparable conditions, crystal nucleation in 4d is
less facile than in 3d. This suggest that it is the geometrical frustration
of polytetrahedral structures that inhibits crystallization.
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Most glasses form under conditions where the thermodynamically stable state of
the system is crystalline. Good glass formers should therefore be poor crystallizers.
Geometrical frustration is one of the factors that may prevent the formation of the or-
dered phase and therefore help physical glass formation [19]. There is also evidence
that such frustration increases the height of the crystallization-nucleation barrier of
liquid metals [158]. Isotropic simple liquids are often considered frustrated because
the five-fold symmetry of the liquid icosahedron cannot pack as a regular lattice. This
scenario contrasts with what happens in a fluid of 2d disks, where hexagonal order is
both locally and globally preferred and where crystallization is particularly easy.

Several physical mechanisms have been proposed to support the formation of
icosahedra. On the one hand, Frank, considering the optimal way for kissing spheres
to cluster around a central one, found the icosahedron to be more stable than the
cubic lattice unit cells for the Lennard-Jones model [20]. Though the original ar-
gument relies on the energetics of spurious surface effects [159], mean-field studies
correcting for solvation leave the result unchanged [160, 161]. The icosahedron,
the smallest maximum kissing-number Voronoi polyhedron, is optimally packed. It
offers the most free volume to surface spheres, so it is also preferred entropically.
On the other hand, the polytetrahedral scenario ascribes the presence of icosahedra to
their facile assembly from quasi-perfect tetrahedra, themselves the smallest Delaunay
decomposition of space [21, 22]. But is it the packing of Voronoi polyhedra or the
packing of Delaunay hyper-triangles that counts? Experiments [162–164] and sim-
ulations [165, 166] only manage to identify icosahedral order in limited quantities,
even in deeply supercooled systems. Recent studies indicate that liquid polytetrahe-
dral order is a lot more varied [167, 168] than the icosahedral picture suggests. Yet,
because of the geometrical ambiguity, the equation of the icosahedron with frustra-
tion is difficult to asses.

Looking at crystallization in a system where polytetrahedral frustration does not
correspond to a symmetric closed-shell structure like the icosahedron would help.
Precisely such an example is provided by the freezing of 4d spheres that we study in
this Chapter. It is, of course, somewhat unsatisfactory to perform a numerical study
of a system that cannot be probed experimentally. However, there are other examples
(e.g. renormalization-group theory) where higher-dimensional model systems serve
as a very useful reference state for the theoretical description of our 3d world. The
objective of the numerical study that we report here is therefore not to present quan-
titative estimates of crystal nucleation barriers in 4d (even though we obtain these
numbers too), but to shed more light on the nature and role of geometrical frustration
and the ease of crystallization.
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Figure 7.1: Equations of state of 4d hard spheres at constant V (closed) and P (open)
extend earlier molecular dynamics results [169]. Padé approximant for the fluid [170]
and Speedy fits for the crystals [171] are given for reference (lines). Bottom inset: at
coexistence chemical potentials are equal, thus Pcoex = 9.15 and µcoex = 13.68. Top
inset: the common tangent to the free energy curves pinpoints the phase transition
boundaries: ηfreeze = 0.288 and ηmelt = 0.337.

7.1 Phase diagram of 4d hard spheres

The D4 crystal phase is formed by stacking, without voids, 24-cell Platonic poly-
topes [172, 173]. In general, Dd lattices are obtained by inserting an additional sphere
in each void of a d-dimensional cubic lattice. In 3d the spacing between the spheres
on the original cubic lattice increases to form a body-centered-cubic crystal; in 4d
the additional sphere fits perfectly in the hole and leads to a unique, high symmetry
crystal with maximal volume fraction η = π2/16 ≈ 0.617. There exist other dense
4d lattices, such as A4 and A∗

4, but D4 packs over 10% more densely and offers more
nearest-neighbor contacts. D4’s unit cell, the 24-cell, is made of 24 octahedral cells
and is a Platonic polytope that has no analog in other dimensions [173]. Placing
24 kissing spheres around a central one in the 24-cell arrangement is the densest
closed-shell cluster of 4d spheres [174] and is postulated to be unique [175]. Even
accounting for solvation effects, clusters with the 24-cell geometry are locally pre-
ferred. Unlike in 3d, for an equal number of particles 4d polytetrahedral clusters
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do not form more interparticle contacts than the 24-cell, and their slightly larger
radius offers less, not more stabilization [160]. The symmetry match between the 24-
cell and the D4 lattice therefore guarantees that no frustration arises from maximally
kissing clusters. But neither the 24-cell nor any other unit cell can be assembled
from (nearly) regular 4d tetrahedra. Four-dimensional spheres are thus an ideal sys-
tem to clarify the origin of geometrical frustration. An earlier compaction study of
4d spheres indirectly hinted that spontaneous crystallization might be slow [176],
but this work could not disentangle the different contributing factors, because such
an analysis requires knowledge of the equilibrium phase diagram, of the dynamical
properties of the fluid phase, and of the crystal nucleation barriers. Our computational
study addresses these questions. To this end, we first locate the 4d freezing transi-
tion, quantify the fluid order, and then compute the free energy barrier to nucleation
at different supersaturations.

Interestingly, although the equations of state of both the fluid and the crystal
phases of 4d hard spheres were computed in the early 80’s [169], we are not aware
of any numerical determinations of the solid-fluid coexistence point. Using a quasi-
Maxwell construction [177] at the crystal stability limit [176], we can use these re-
sults to approximate the coexistence range ηcoex = 0.29− 0.35, but this is insuffi-
ciently accurate. To the best of our knowledge, density functional theory has only
been applied to the fluid-A4 coexistence [178]. In order to precisely locate the freez-
ing point, we thus performed standard NV T -Monte Carlo (MC) simulations to com-
pute the equation of state of hard spheres, outside the range studied in Ref. [169]. As
a test, we also performed constant NPT simulations and verified that the two tech-
niques yielded consistent results. In what follows, we use the particle diameter σ as
our unit of length and the thermal energy kBT as our unit of energy. The equation
of state of 4d spheres is related to the value of the pair-distribution function g(r) at
contact Pv0/η = 1 + 8ηg(1+), where v0 is the volume of a 4d sphere and g(1+) is
the value of the radial distribution function at contact [170]. The results for the fluid
and two crystal phases are presented in Fig. 7.1 for systems containing 2048 (D4)
and 4096 (fluid and A4) particles. The equation of state could not be calculated for
A∗

4, because it is mechanically unstable, which makes it unlikely to contribute to the
crystallization process. We won’t consider it further. To locate the fluid-solid coex-
istence regime, we need to determine the absolute free energy of the solid at least at
one point [92]. The absolute Helmholtz free energy per particle f of the D4 and A4
crystals at η = 0.37 is obtained by the Einstein-crystal method [99]. The free energy
at other densities can then be obtained by thermodynamic integration. We find D4
to be the thermodynamically stable crystal phase. The fluid-D4 coexistence pressure
Pcoex (Fig. 7.1 lower inset), allows to read off the melting and freezing densities by
common tangent construction (Fig. 7.1 higher inset). The resulting two-phase region
ηcoex = 0.288− 0.337 is compatible with the rough estimate above. The thermody-
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Figure 7.2: Distribution of the local order correlator with l = 4 (top) and l = 6 (bot-
tom) at P = 19.

namic driving force for crystallization in the supersaturated fluid at constant pressure
is the difference in chemical potential ∆µ = µD4 −µfluid between the two phases dis-
played in the lower inset of Fig. 7.1.

7.2 Crystallization free-energy barrier in 4d

To characterize the structure of the fluid and identify the formation of crystallites,
we need a local criterion that distinguishes crystal from fluid. Studies in 2d and
3d suggest that order parameters derived from invariant combinations of spherical
harmonics Yl of degree l might suffice [98, 179]. In high dimensions, it is more
convenient to rewrite the second-order invariant in terms of Gegenbauer polynomials
Gn

l , where n = d/2−1, using the sum rule [175]. The (l +1)2 4d spherical harmonics
give

G1
l (r̂1 · r̂2) =

2π2

(l +1)2

(l+1)2

∑
m=1

Y m
l (r̂1)Y m

l (r̂2), (7.1)
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P ∆µ ∆G∗ γCNT n∗ n∗CNT
19 −1.8 81 1.80 157 133
22 −2.3 42 1.94 75 60
27 −3.2 37 2.4 40 35

Figure 7.3: Free-energy barriers for 4096 particles at various supersaturations, along
with the corresponding CNT and simulation parameters. The critical cluster size n∗

is obtained using a stricter order parameter (see text).

where r̂i are unit vectors. The local order correlator is

qi, j
l = ql(i) ·ql( j) =

1
N(i)N( j)

N(i)

∑
α=1

N( j)

∑
β=1

G1
l (r̂αi · r̂β j), (7.2)

where the indices α and β run over the number of neighbors contained within a dis-
tance equal to the first minimum of g(r). The local order correlation distinguishes
between different geometrical environments: q6 set apart fluidlike particles from
those within a D4 or an A4 lattice, while q4 discriminates between the two crystals
(Fig. 7.2).

As freezing in 4d is a first-order phase transition, we expect crystallization to pro-
ceed via nucleation and growth. A Landau free energy analysis predicts that crystals
with reciprocal lattice vectors forming equilateral triangles should initiate the nucle-
ation [180]. Though this argument has met only limited success in 3d [98], in 4d
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it supports the preferential nucleation of D4, in line with the thermodynamic drive.
To estimate the ease of crystallization, we compute the free energy barrier for crystal
nucleation ∆G∗. Classical nucleation theory (CNT) [4] derives from the thermody-
namic drive ∆µ and the interfacial free energy γ of a spherical crystallite a free energy
functional that depends on the size n of the crystallite

∆G(n) = Sd(n/ρx)
(d−1)/dγ−n∆µ, (7.3)

where ρx is the crystal density at a given pressure and the shape-dependent prefactor
is S4 = (128π2)1/4 for 4d spheres. The resulting maximal barrier height is then

∆G∗(n∗) =
27π2γ4

2ρ3
D4

∆µ3 (7.4)

at the critical cluster size n∗. The rate of nucleation per unit volume I is given by
I = κexp(−∆G∗), where κ is a kinetic prefactor that is proportional to the diffusion
coefficient in the fluid phase [98]. Though schematic this level of theory is sufficient
to clarify the contribution of geometrical frustration through an analysis of γ. Within
the CNT framework the geometrical mismatch in 3d between icosahedral and crystal
order should lead to a relatively large γ, while in 4d one might expect γ to be small if
the locally preferred cluster scenario is valid, but not for polytetrahedral frustration.

Results for 3d crystallization are available [98], so only a few 4d barriers are
needed to complete the picture. Crystallization being a rare event in this regime, we
perform constant-pressure MC runs with umbrella sampling to bias the growth of a
crystal cluster from the fluid [92]. A standard algorithm is employed to identify the
crystallites [98, 179]. We link pairs of nearest neighbors with q6 > 0.4. If a particle
has more than five links it is deemed crystalline. The number of particles in the
largest crystallite is then the order parameter. The resulting free energy profiles are
presented in Fig. 7.3. Though q6 does not discriminate between A4 and D4 crystals,
further checks with q4 show that only the latter nucleates. In 4d a low q6 cutoff value
is required, because of the minimal overlap between the crystalline and fluid regions
(Fig. 7.2), and consequently, non-compact clusters are initially observed. Though
the clusters irreversibly compactify, the process can be very slow. To reduce the
computational burden, the system is first equilibrated by growing the total number of
links in the largest crystallite. The low q6 cutoff also artificially inflates the measured
critical cluster size. A fit to the CNT functional form (Eq. 7.3) is thus of little use in
extracting γ. However, because the barrier height is unaffected by this biasing choice
and ∆µ is known, we can obtain γ from Eq. 7.4 directly. To validate the implied
size of the CNT critical cluster n∗CNT we compare it to the cluster size obtained by
imposing a purely crystalline linking criterion q6 > 0.65 to the configurations at the
top of the barrier. The difference between the two (Fig. 7.3) is no more than 25%,
which is remarkably good in this context.
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The results of Fig. 7.3 allow us to conclude that the very slow crystallization of
4d spheres observed in the study of Ref. [176] is due to the presence of a considerably
higher 4d nucleation barrier than at the same supersaturation in 3d. Slow nucleation
could also be due to a low value of the kinetic prefactor κ, which would require that
the diffusion of particles in the dense fluid be anomalously slow. But simulations
with the code of Ref. [176] show no evidence for slow diffusion, not even at the high-
est pressures studied. The slow crystallization is thus consistent with a high degree
of geometrical frustration in 4d fluids. Based on the similarity between the number
of neighbors within the first peak of g(r) and the maximal kissing number Skoge et
al. speculated that high dimensional fluids contain a number of deformed crystalline
unit cells, rather than polytetrahedral structures [176]. However, the clear difference
between the fluid and the 24-cell shown by the local order correlator (Fig 7.2) sug-
gests this not to be the case. The similarity between the kissing number and the
number of first neighbors can instead be explained by a wide first peak of g(r) (not
shown) that accommodates non-kissing neighbors in polytetrahedral clusters. Be-
cause the “locally preferred” 24-cell has little to do with geometrical frustration, our
results support the generic polytetrahedral structures as the source of frustration. By
dimensional analogy, we infer that the “locally preferred” icosahedron is not singu-
lar, but instead one of the many possible geometrically frustrating structures, and
explains its limited presence in fluids. The dimensionless surface free-energy density
γσd−1/(kBT ) is at least two to three times larger in 4d than in 3d, which indicates
that geometrical frustration is surprisingly rather weak in 3d. It is this weakness that
helps make hard sphere crystallization so prevalent. The interesting puzzle is there-
fore not to identify the origin of 3d frustration, but the source of its mildness. One
possibility is that the tetrahedra that are part of the face-centered cubic (fcc) struc-
ture (none are found in D4) relax the geometrical frustration and therefore reduce the
interfacial tension. Another possibility is that the “planetary perturbations” that al-
low to exchange the positions of spheres at the surface of an icosahedron by sliding,
go through a cuboctahedron configuration, which is the fcc unit cell [173]. If com-
mon, this phenomenon would imply that not all polytetrahedral structures are equally
frustrating and that icosahedra might in fact be early nucleation sites.

The large values for the height of the nucleation barrier of 4d crystals, as well
as the evidence (Fig. 7.2) that the local structures in the fluid and the D4 crystal are
rather different, indicate that it is the Delaunay packing that matters. This finding un-
derlines that one should be rather careful in caricaturing the nature of frustration as
icosahedral in 3d liquids. Icosahedra are but one of the many possible polytetrahedral
arrangements and little indicates that it plays a more prominent role in geometrical
frustration than others. Note that the difficulty to crystallize 4d spheres makes them,
as well as their higher dimensional equivalents, promising testing grounds for theo-
ries of packing and glass-forming liquids.
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Figure 7.4: Monte Carlo EoS of the fluid and the two densest known ordered phases
in 4D [181], 5D, and 6D computed in the canonical ensemble (points) with Padé
approximants of the virial expansion for the fluid [170] and the Speedy fits to the
crystal phase results [171] (solid lines). Insets give ∆µ and the common tangent
construction for determining coexistence between the fluid and the densest crystal
phase. The top-right panel contrasts 4D MC and SPT/CT EoS as well as chemical
potential (inset).

7.A Higher-dimensional phase diagrams and jamming
In the next two sections of this appendix we follow the line of thought from the
previous work on four-dimensional hard spheres to extend the discussion to 5D and
6D hard-sphere systems, where we put some theoretical predictions to the test. The
fluid equation of state (EoS) reported in Figure 7.4 agrees with earlier 4D, 5D [169,
170, 183, 184], and 6D [185] simulation results as well as 5-4 Padé approximants
of the virial expansion [170, 186]. Small deviations are only observed at the highest
densities [170, 185]. Crystal phase EoS for D4 and D5 were first obtained from
simulation in the early 80’s, but without reference free energies [169, 176], and we
are not aware of any 6D simulation results. As expected from free volume arguments,
the densest known lattice is the phase with the lowest pressure, at densities where
it is mechanically stable, which makes it the most free energetically favorable of
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d Pcoex µcoex ηf −ηx
ηf −ηx ηf −ηx ηcpmod. Ref. [176] SPT/CT [182]

3 [92] 11.564 17.071 0.494−0.545 - - 0.741
4 [181] 9.15 13.7 0.288−0.337 0.29−0.35 0.29−0.39 0.617

5 10.2 14.6 0.174−0.206 0.18−0.22 0.27−0.35 0.465
6 13.3 16.0 0.105−0.138 - 0.20−0.25 0.373

Table 7.1: Coexistence parameters from Monte Carlo simulations compared with
previous simulation estimates (see text) and SPT/CT results from Ref. [182] (4D is
a new calculation). The volume fraction of the densest known lattice ηcp is also
included for reference [173, Chap 1. § 1.5]

the ordered phases. Crystallization to lattice geometries other than the most stable
structure would thus only be possible at high pressures. In 4D a Landau free energy
treatment kinetically favors the D4 ground state [180]. But even in 5D and 6D we do
not expect the difference in fluid-crystal interfacial free energy to affect the nucleation
barrier sufficiently for other phases to kinetically interfere with the crystallization of
the thermodynamic crystal form [187].

The coexistence conditions obtained from the MC EoS and free energy refer-
ence point for 5D and 6D hard spheres along with the 3D [92] and 4D [181] data
can be seen in Table 7.1. Skoge et al. offered upper bounds to the 4D and 5D
coexistence regimes by using the pressure of the fluid at the density at which the
simulated Dd crystal becomes mechanically unstable as an estimate of coexistence
pressure Pcoex [176]. A more accurate estimate of Pcoex can be obtained from the
same data by using instead a quasi-Maxwell construction around the limit of me-
chanical stability [177]. We include the results of this last analysis and the coupled
fluid scaled-particle theory (SPT) and crystal cell theory (CT) coexistence determi-
nation of Finken et al. [182] in Table 7.1 as well. To the best of our knowledge,
density functional theory (DFT) coexistence information have only been reported for
the non-equilibrium 4D fluid-A4 coexistence [178], which does not lend itself to a
meaningful comparison. Finken et al. refer to their DFT coexistence calculations,
but do not report them [182].

Our MC results are at least an order or magnitude more precise than the estimates
from Ref. [176], which permits a clearer assessment of the SPT/CT predictions. As
can be seen in Table 7.1, the coupled theory overshoots the coexistence regime, and
does so more in higher dimensions. Yet SPT reportedly overestimates the third-order
virial coefficient of the fluid, which should instead result in a depressed coexistence
regime and become less relevant with increasing dimensionality [182]. This discrep-
ancy suggests that CT significantly underestimates the crystal pressure near coexis-
tence, as can be checked in Fig. 7.4 (b) for 4D. The high compressibility of hard
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sphere crystals near the limit of mechanical stability is a collective effect that is not
captured by the mean-field nature of CT. SPT/CT thus leads to a higher coexistence
pressure and crystal coexistence density. The fluid coexistence density barely dif-
fers from the MC results in 4D, but in higher dimensions the crystal branch gets
longer than the fluid branch, which introduces a larger error in Pcoex. Consequently,
the coexistence fluid density shifts up and the theoretical treatment grows progres-
sively worse with dimension. A cancelation of errors is therefore responsible for
the SPT/CT predictions to remain reasonably on target for hard spheres in low di-
mensions. SPT/CT nonetheless predicts certain dimensional trends correctly. For
instance, the relative width of the coexistence regime ∆ηcoex/ηx, which is thought
to go to unity for large dimensions, does increase appreciably from below 10% in
3D to over 20% in 6D. Also, the crystal volume fraction at coexistence ηx decreases
much faster than the close-packed volume fraction ηcp, which leaves the phase dia-
gram dominated by the ordered phase. In dimensions much higher than those we can
access here, it has however been suggested that the fluid packs more efficiently than
any crystals [188]. If it is indeed the case, this last trend should eventually reverse.

It is interesting to note that Pcoex does not change monotonically with density, but
goes through a minimum in 4D. The nonmonotonic behavior of Pcoex might be due
to D4’s particularly well-suited nature to fill 4D Euclidian space. A D4 lattice can be
generated by placing a sphere in each of the voids of a 4D simple cubic lattice. These
new spheres are equidistant to the ones on the simple cubic frame, so the resulting
lattice is twice denser. The corresponding construction D∗

3, or body centered-cubic
lattice, in 3D packs much less efficiently, because the simple cubic frame needs to be
extended to insert the new spheres. Though D4 does not appear as a singularity in the
dimensional trend of dense packings [173, Chap. 1, §1.5], its specificity might sim-
ply be overshadowed by other dimensional trends to which Pcoex is less sensitive. We
therefore conjecture that the non-monotonic coexistence pressure is a symmetry sig-
nature that should also be present in 8D, 12D, 16D, and 24D, where other singularly
dense lattices are known to exist.

Another noteworthy observation concerns the high pressure fluid limit. The re-
sults presented in this work are for equilibrium or metastable equilibrium systems
only. But extrapolating to infinite pressures from the densest supersaturated fluid
using the free-volume functional form suggested in Ref. [189], allows us to extract
the density of the corresponding jammed system. It is not the maximally-dense ran-
dom jammed (MRJ) density, but it should asymptotically approach it, as suggested in
Ref. [190]. We obtain ηMRJ ≈ 0.47, 0.31, and 0.21, in 4D, 5D, and 6D respectively,
which is in very good agreement with the results from the direct non-equilibrium
compression [176] and a similar extrapolation in Ref. [190].
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Figure 7.5: Impact of dimensionality on the decay or orientational order. Top: Second
to first peak ratio of the radial decay of the orientational order parameter g6(r) at fluid
coexistence. The line is a guide to the eye. Bottom: Decay of g6(r) in the fluid near
the hexatic phase in 2D and at coexistence in 3D and 4D.

7.B Higher-dimensional bond-order correlators

Skoge et al., considering the radial pair distribution function g(r), found that higher-
order unconstrained spatial correlations vanish with increasing dimensionality [176].
In accordance to the “decorrelation principle” [188], we also expect orientational cor-
relations of order l gl(r) to decay more rapidly with increasing dimensionality. As
seen in Figure 7.5, the 2D hexatic signature gives rise to long-ranged orientational
correlations that diverges on approaching coexistence [191, 192]; in 3D the orien-
tational order stretches over a couple of particle radii, but stays finite even in the
supersaturated regime; and in higher dimensions the correlations are very small and
decay with dimension, as can be assessed from the second to first peak ratio of g6(r)
in Fig. 7.5.

The authors of Ref. [176] also remarked that the number of particles counted in
the first peak of g(r) for supersaturated fluids matches the number of kissing neigh-
bors in the densest known lattice phase for a given dimension. They hypothesized that
disordered packings in higher dimension might thus be built of deformed crystal unit
cells, in contrast to the three-dimensional case where “icosahedral” order dominates
the packing. The distributions of local bond-order correlators, which shows how the
relative crystal and fluid local orders evolve with dimensionality paint a different pic-
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Figure 7.6: Second-order l = 6 invariants for dense crystal phases and the fluid. With
increasing dimension fluid and crystalline local bond-order parameters become in-
creasingly distinct.

ture (see Fig. 7.6 and Fig. 7.7). Both the second- and third-order invariants in 4D to
6D, capture no significant overlap between the liquid and crystal local bond-order pa-
rameters, which contrasts to 2D and 3D where the bond-order distributions overlap
significantly [193]. Moreover, the distinction between the fluid and crystal phases
increases with dimension, which suggest that the fluid and crystal local orders are
just as or more distinct with increasing dimensionality, not less 1. In 4D, where the
maximally-kissing cluster 24-cell [174] is also the unit cell of the crystal, but is not a
simplex-based structure, no hint of the presence of 24-cell in the fluid is captured by
the bond-order distribution (Fig. 7.6 and Fig. 7.7) [181]. For a simplex-based cluster
to have as many nearest neighbors around a central sphere as in the crystal, the first
neighbor spheres cannot all be kissing the central sphere at the same time. They have
to fluctuate in and out of the surface of the central sphere. This variety of possible

1In the trivial cases where the l-order invariants are incompatible with the crystal symmetry, the
bond-order distribution is centered around zero and overlaps with the fluid distribution [57]. The differ-
ence between the fluid and crystal local orders should then be assessed by other l-order invariants.
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Figure 7.7: Third-order l = 6 invariants for dense crystal phases and the fluid. With
increasing dimension fluid and crystalline local bond-order parameters become in-
creasingly distinct.

configurations is what broadens the first peak of g(r) and by ricochet its second peak
as well [176]. Though they are harder to illustrate geometrically, similar phenomena
are also expected in higher dimensions. The bond-order distribution is therefore fully
consistent with a fluid structure dominated by simplex-based order, but not with the
presence of deformed crystal unit cells.

7.C Methodology

For this study the particle diameter σ sets the unit of length and the thermal energy
kBT sets the unit of energy. For hard interactions this choice can be done without
loss of generality, because entropy is the sole contributor to the free energy. Spheres
become less efficient at filling space with increasing dimension. Though with our
choice of units the fluid densities of interest ρ increase, the corresponding volume
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fraction η

η ≡ ρVd2−d = ρ
πd/2

Γ(1+d/2)2d , (A7.1)

steadily decreases, because the volume of a d-dimensional hard sphere of radius 1/2
in R

d , Vd2−d , decreases faster. We report most quantities as volume fractions, but we
also use ρ when it simplifies the notation.

7.C.1 Phase diagram

In order to precisely locate the freezing point, we perform standard NV T -Monte
Carlo (MC) simulations to compute the fluid and crystal hard sphere equations of
state (EoS) [92]. We consider the crystal phase postulated to be the densest in a given
dimension, in addition to a less dense crystal for reference. The generating lattice
vectors are selected in order to keep the size of the simulation box commensurate
with the crystal dimensions to a minimum, as described in Appendix 7.C.4. The
densest known close-packed structures in 5D and 6D are degenerate through layer-
ing, the same way that hexagonal close-packed and face-centered cubic packings are
degenerate layerings in 3D [194]. For convenience we choose the most symmetric of
these for the crystal lattice [173]. As in 3D, this decision should have but a minimal
impact on the phase diagram [195]. Also, with increasing dimensionality layered
structures show a growing similarity in their local two- and three-particle distribu-
tions, because only one of the spatial dimensions is affected by layering. Our choice
of one of the layered phases should thus only have a small impact on the analysis.

The hard sphere equation of state of is related to the value of the radial pair
distribution function g(r)

P/ρ = 1+B2ρg(1+), (A7.2)

where B2 = Vd/2 is the second virial coefficient and g(1+) is extrapolated at con-
tact [170]. The results are obtained for systems containing N = 2048 (D4), 4096 (4D
fluids and A4), 3888 (5D fluids and D5), 14400 (A5), 2048 (D6), 10000 (6D fluids),
and 17496 (E6) particles. To locate the fluid-crystal coexistence regime, we deter-
mine the absolute Helmholtz free energy per particle f of the crystal for a reference
point [92], using the Einstein-crystal method [99]. The reference point is obtained
for D4 and A4 crystals at η = 0.37, for D5 and A5 at η = 0.21 and for D6 and E6 at
η = 0.12. The excess free energy at other crystal densities is then obtained by ther-
modynamic integration of the EoS. For the fluid the EoS is integrated from the ideal
gas limit. The chemical potential

µ(ρ) = f +P/ρ (A7.3)
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allows to identify the fluid-crystal coexistence pressure Pcoex and µcoex by finding
where the chemical potential difference between the two phases ∆µ(P) = 0. The den-
sity of the coexisting phases is then obtained from a constant NPT MC computation.
This approach is formally equivalent to the common tangent construction, but we find
it to be numerically more efficient.

7.C.2 Order parameters
To characterize the structure of the fluid and crystal phases we need a criterion to
quantify local ordering. Studies in 2D and 3D suggest that order parameters derived
from rotationally-invariant combinations of the m different spherical harmonics Y m

l
of degree l might suffice [57, 98, 196]. Here, we consider second- and third-order
invariants. Though a 4D canonical spherical harmonics basis [197, Sec. 9.6] and
both its second- and third-order invariants [198] are known, in higher dimensions
it rapidly becomes analytically intractable to identify a basis composed of weight
vectors for the representation of SO(d) [199]. It is therefore more convenient to
rewrite the invariants as polynomials of the vector inner products. For the second-
order invariants, one simply uses the Gegenbauer polynomials Gd/2−1

l obtained from
the sum rule [200, Thm. 9.6.3]. For instance, the sum over the (l +1)2 4D spherical
harmonics for unit vectors r̂i can be rewritten as

G1
l (r̂1 · r̂2) =

2π2

(l +1)2

(l+1)2

∑
m=1

Y m
l (r̂1)Y m

l (r̂2). (A7.4)

The second-order local bond-order correlator ql(i, j) is obtained by summing over
the N(i) and N( j) neighbors of particles i and j within a distance equal to the first
minimum of g(r). By letting the indices α and β run over these neighbors we find

ql(i, j) = ql(i) ·ql( j) =
∑N(i)

α=1 ∑N( j)
β=1 Gd/2−1

l (r̂αi · r̂β j)

N(i)N( j) . (A7.5)

Third-order rotationally invariant polynomials w̃l analogous to the Gegenbauer
polynomials can also be obtained [187]. A classical theorem due to Weyl allows us
to rewrite the third-order local bond-order correlator up to a dimension-dependent
multiplicative constant cd

l in terms of inner products,

Wl(i) = cd
l

∑N(i)
α,β,δ w̃d

l (r̂iα · r̂iβ, r̂iα · r̂iδ, r̂iβ · r̂iδ)

[ql(i, i)]3/2 . (A7.6)

In 3D and 4D, the constant cd
l can be set by comparing with the expression avail-

able in the literature. In higher dimensions, we choose the normalization for which
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the polynomial equals unity when evaluated on three orthogonal unit vectors i.e.,
cd

l w̃d
l (0,0,0) = 1. Note that because of the rotational symmetry, triplets with permu-

tated indices can be summed only once by correcting for the multiplicity. This simpli-
fication offers an important computational advantage. Though the use of rotationally-
invariant polynomials for the computation of the bond-order parameters is mainly
used for analytical convenience, it is also worth noting that for large l and at low
densities, it is computationally more efficient than the standard spherical harmonics
decomposition.

7.C.3 Generalized Classical Nucleation Theory
Classical nucleation theory (CNT) [4] uses the difference in chemical potential be-
tween the bulk phases and the fluid-crystal interfacial free energy γf−x of a spherical
crystallite to obtain a free energy functional

∆G(n) = Ad(n/ρx)
(d−1)/dγf−x −n∆µ, (A7.7)

of the number of particles n in the crystallite. The functional further depends on the
crystal density ρx at the supersaturated fluid pressure and a geometrical prefactor Ad .
For hard spheres Ad = Sd−1V−(d−1)/d

d , where Sd−1 = dVd is the surface area of a d-
dimensional unit sphere. The resulting barrier height at the critical cluster size n∗ is
then

∆G∗(n∗) =
(d −1)d−1πd/2

Γ(d/2+1)2d
γd

f−x

ρd−1
x ∆µd−1

. (A7.8)

In the high dimensional limit the barrier asymptotically approaches

∆G∗(n∗) ∼ (2πed)d/2 γd
f−x

ρd−1
x ∆µd−1

. (A7.9)

The rate of nucleation per unit volume k is then k = κexp(−∆G∗), where κ is
a kinetic prefactor proportional to the diffusion coefficient in the fluid phase [98].
The kinetic prefactor has weak dimensionality dependence, which we won’t need
to consider here. Though schematic, this level of theory is sufficient to clarify the
contribution of geometrical frustration through an analysis of γf−x. Within the CNT
framework geometrical frustration between ordered and disordered phases should
lead to a relatively large γf−x, and thus to a high crystallization free energy barrier.
On the contrary, geometrically similar phases should have small γf−x and ∆G∗(n∗).

7.C.4 Lattice generating matrices
The canonical lattice representations are often given in a form that simplifies the
notation [173, Chap. 4], but does not necessarily allow for a convenient physical
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construction for simulation purposes. Dd packings are checkerboard lattices, which
are algorithmically simple to generate. A4 and A5 are dense packings with generating
matrices









0 1 0 0
0 1/2

√
2/2 1/2

0 0 0 1√
10/4 0 1/4 1/2









(A7.10)

and












0 1 0 0 0
0 −1/2

√
3/2 0 0

0 0 −
√

3/3
√

6/3 0√
10/4 0 0

√
6/4 0√

10/5 0 0 0
√

15/5












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respectively. E6 is a cut through the E8 generalization of the diamond lattice, for
which we use the generating matrix

















0 0 0
√

3 0 0
0 0 0 0

√
3 0

1 1 1 0 0 0
1 −1/2 −1/2 0 −

√
3/2 −

√
3/2

−1/2 1 −1/2 −
√

3/2 0 −
√

3/2
1/2 1/2 1/2

√
3/2

√
3/2

√
3/2
















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From these generating matrices we can construct a unit cell commensurable with
our hyper-rectangular simulation box. The sides of the unit cell ui are obtained by lin-
ear combinations of the matrix’ row vectors such that only one non-zero element re-
mains. The lattice sites located within the unit cell borders then correspond to the par-
ticle positions within the unit cell. Following this recipe, our A4 unit cell has relative
side dimensions l = (

√
10,1,

√
2,1) with nu = 8 particles in the unit cell, A5 yields

l = (
√

10,1,
√

3,
√

6,
√

15) with nu = 120, and E6 yields l = (3,3,3,
√

3,
√

3,
√

3)
with nu = 24.
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Appendix A

A simple parameter-free
nearest-neighbor algorithm

In this appendix we propose a parameter-free algorithm for the identi-
fication of nearest neighbors in many-particle systems. Compared to a
Voronoi construction (or its dual, the Delaunay triangulation), which is
the most commonly used parameter-free algorithm, the main advantages
of the proposed algorithm are its low computational cost and its robust-
ness against thermal fluctuations in the particle positions, in particular
for particles at interfaces. We compare the present algorithm to a fixed-
distance cutoff and a Delaunay construction analyzing Lennard-Jones
and carbon bulk phases and two-phase simulation data.
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For many-particle systems the identification of a particle’s nearest neighbors is
a recurrent task, both in simulation and structural analysis [92]. Algorithms solving
this task can be classified as either tunable or parameter-free, with the most prominent
representatives the fixed-distance cutoff and the Voronoi construction, respectively.

A fixed-distance cutoff [92] is generally applied in simulations with particles
interacting through a short-range potential, where each neighbor is an interaction
partner and the cutoff distance corresponds to the interaction range. For structural
analysis the cutoff is less well-defined, but arguably the first minimum of the pair
correlation function g(r) is a natural choice, as it relates to the neighbors in the first
coordination shell. However, the precise location of this minimum depends both on
the system’s details and on external conditions, and must therefore be determined
every time either one of them is changed.

In contrast, the Voronoi construction [201] is based on a purely geometric con-
struction and requires no tuning of parameters. In addition to the actual identifi-
cation of nearest neighbors this method also provides geometric properties such as
the edges, faces, and polyhedra shared with these neighbors - information that can
be used itself for structural analysis and classification. But these advantages come
at a significant computational cost, which is why this method is generally applied
only in post-analysis, not on-the-fly during simulations. Another disadvantage of the
Voronoi construction is its sensitivity to thermal fluctuations and the counter-intuitive
results that it yields at interfaces. Several extensions to resolve these issues have been
proposed, but they often introduce parameters and further increase the computational
cost.

In this appendix we propose a simple parameter-free algorithm for the identifi-
cation of nearest neighbors. Like the Voronoi construction it requires no tuning of
parameters, but its computational cost is only slightly higher than that of the fixed-
distance cutoff, making it suitable for the use during simulations. For a comparison of
our algorithm with the fixed-cutoff distance and Voronoi construction, we apply it to
Lennard-Jones liquid and fcc crystal bulk phases, to the 3-coordinated liquid carbon
and graphite phases, and to the 4-coordinated liquid carbon and diamond phases. To
test its behavior at an interface, where both the Voronoi construction and the fixed-
distance cutoff are reported to yield unsatisfying results [202], we also analyze a
liquid-crystal and a vapor-crystal two-phase system. We compute the distributions
of the number of nearest neighbors, show how they relate to the pair correlation
function, and use the neighbor data as input for structural analysis using bond-order
parameters. We find that our algorithm yields results similar to those of the fixed-
distance cutoff, is more robust than the Voronoi construction against fluctuations,
and performs well at interfaces.

The remainder of this appendix is organized as follows: in the next section we
explain the basic algorithm, and show how it can be extended to obtain the next-
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Figure A.1: Definition of the solid angle θ j associated with a neighbor j of a particle
i. Here, r j is the distance between both particles, and R is the neighbor shell radius.

nearest neighbors or to include an optional tuning parameter. In Section A.2 we
then present the results of our analysis and discuss the algorithm’s advantages and
disadvantages. In the last section we summarize our findings and discuss possible
applications.

A.1 Method
Consider a particle i surrounded by its neighbor particles { j}. If we assume that
the neighboring particles are organized in a shell-like structure, we can assign to
each neighbor j a solid angle Θ j based on the neighbor’s distance |r j| and a yet
undetermined shell radius R. This definition is schematically depicted for a single
neighbor in Figure A.1. We now define the neighborhood of a particle i to consist of
all particles { j} such that the sum of all solid angles equals 4π.

4π =
m

∑
j=1

2π[1− cos(θ j)] =
m

∑
j=1

2π(1− r j/R). (A.1)

Here, r j refers to the distance of neighbor j and m denotes the number of neighbors
for particle i. Neither the number m nor the shell radius R are known a priori, but one
fixes the other.

For a system at any density, it is reasonable to assume that the nearest neighbors
are the ones that define the local environment of a particle but, in general, we know
neither how far away these neighbors may be, nor how many there are. The aim of a
neighbor-searching algorithm is to identify the relevant nearest neighbors within the
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cut-off distance R, but exclude the closest next-nearest neighbor:

rm ≤ R < rm+1. (A.2)

Combining Eqn. A.1 and Eqn. A.2 leads to a condition for the determination of the
neighbor shell radius,

R(m) =
∑m

j=1 r j

m−2 < rm+1, (A.3)

where R(m) refers to the shell radius containing m particles. To solve this inequal-
ity, we start with the smallest number of neighbors capable of satisfying Eqn. A.1,
m = 3, and increase m iteratively. The smallest m that satisfies the condition A.3
yields the number of neighbors with R(m) the corresponding neighbor shell radius.
It is straightforward to show that the algorithm convergences, because the neighbor
distance increases monotonically due to the sorting, rm+1 ≥ rm, and the cutoff radius
R(m) decreases monotonically (R(m+1) ≤ R(m)) as long as rm+1 ≤ R(m).

1.1.1 Scheme
Following the procedure outlined in the previous paragraph we propose the following
implementation:

1. Sort all possible neighbors { j} by their distance r j in increasing order.

2. Start with m = 3 (minimum number of neighbors).

3. Compute R(m) = ∑m
j=1 r j/(m−2).

4. If (R(m) > r(m+1)), then increase m and goto 3).

5. Else, m is the number of neighbors for particle i, and R(m) the associated neigh-
bor shell radius.

1.1.2 Extension to a tunable algorithm
The algorithm assumes that the sum of all solid angles subtended by neighboring
particles should add up to 4π. But, as the solid angles overlap anyway, this condition
is somewhat arbitrary. One could therefore generalize the algorithm defining the
target solid angle to be 4πα, where α is a positive constant.

4πα =
Nb(i)

∑
j=1

2π[1− cos(θ j)] =
Nb(i)

∑
j=1

2π(1− r j/R). (A.4)
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The condition to stop at the current iteration then becomes

R(m) =
∑m

j=1 r j

m−2α
< rm+1. (A.5)

Note, however, that this version of the algorithm would not be parameter-free. In
what follows, we shall limit ourselves to the case α = 1.

1.1.3 Extension to obtain the next-nearest neighbors
The algorithm can be extended to yield the next-nearest neighbors. For this task the
algorithm is performed twice as follows: in the first run, the nearest neighbors are
computed without any modifications. Then all nearest neighbors are discarded from
the list of possible neighbors, and the algorithm is run a second time. Because the
algorithm is scale-free, no modification of the algorithm is required, and the second
neighbor shell is obtained. Note that just increasing the solid angle to 8π does not
work, as the solid angle contribution of the nearest neighbors would dominate due to
the large cutoff distance R(m).

1.1.4 Sample preparation and implementation details
We tested the nearest-neighbor algorithm on a number of different systems that had
been studied earlier in the context of crystal or liquid nucleation. Specifically, we
prepared configurations of the following model systems:

Lennard Jones liquid and crystal

To prepare configurations representative of a Lennard-Jones fcc crystal and liquid
phases we performed Monte Carlo simulations in the isothermal-isobaric ensemble
for particles interacting via a truncated and shifted Lennard-Jones pair potential [92]
with a cutoff distance of 2.5σ. For both phases, a system of N = 4000 particles
was prepared at the reduced temperature T = 0.92 and pressure P = 5.68. At these
conditions, which correspond to 20% undercooling with respect to coexistence, the
liquid phase is metastable with respect to the fcc crystal phase, but a nucleation free-
energy barrier of ∆G∗ ≈ 20kBT prevents spontaneous crystallization on simulation
time scales [179].

Carbon liquid and crystal

Configurations representative of carbon in different phases were prepared by C. Vale-
riani using the LCBOPI+ potential that is described in Appendix A of Ref. [203]. The
structures were generated under the same conditions that were used in the study on
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diamond nucleation [204], namely P = 30GPa and T = 3750K for the 3-coordinated
liquid and graphite, and P = 85GPa and T = 5000K for the 4-coordinated liquid
and diamond phases. Both conditions correspond to 25% undercooling with a nucle-
ation free-energy barrier equal to or larger than ∆G∗ = 25kBT preventing spontaneous
crystallization of the metastable liquid phase. All systems contain N = 1000 particles,
except for the graphite crystal with N = 960 particles. For details on the simulation
methods and the semi-empirical interaction potential we refer to Ref. [204].

Liquid-crystal two-phase system

To prepare configurations representative of a two-phase liquid-crystal system, we
used the truncated and shifted Lennard-Jones potential model that was discussed
above at the same conditions, but with a system size of N = 8000 particles. To
stabilize the solid-liquid interface, the equilibration was biased with a quadratic po-
tential on the number of solid-like particles to prevent further growth of the crystal
phase. Solid-like particles were identified with the bond-order parameters according
to Ref. [57].

Crystal-vapor two-phase system

To prepare configurations representative of a two-phase vapor-crystal system we ap-
plied the modified Lennard-Jones potential introduced by ten Wolde and Frenkel [10].
These authors showed that for a proper choice of parameters the interaction is suf-
ficiently short-ranged to result in a phase diagram similar to that of global proteins,
for which the vapor-liquid coexistence line including its critical point moves below
the fluid-crystal coexistence and thereby becomes entirely metastable. Our samples
are prepared in the grand-canonical ensemble at conditions close to the metastable
critical point, Tc ≈ 0.42 and µ ≈ −1.17. Again, a bias on the number of crystalline
particles was applied to prevent the crystal from growing. To prevent wetting of
the crystal phase with a high-density liquid, we identified the crystal particles using a
high-density order parameter, which requires a particle to have more than 9 neighbors
within a cutoff distance of rc = 1.5σ [66].

Instead of the full Voronoi construction, we computed its dual, the Delaunay tri-
angulation. It yields essentially the same information, but does not construct the
polygons covering the Wigner-Seitz cell, and is therefore computationally less ex-
pensive. For the Delaunay triangulation we used the 3D triangulation kernel from the
Open Source Computational Geometry Algorithms Library (CGAL [205]). Because
CGAL does not support periodic boundary conditions yet, we included up to 8 peri-
odic copies of particles located in the vicinity of the simulation box borders. To speed
up the proposed algorithm we made use of Verlet lists to determine the set of pos-
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sible neighbors for each particle. Although this method involves a cutoff parameter,
we could have chosen a parameter-free algorithm like a binary space partitioning tree
(octree). Any domain-decomposition method suffices as long as it provides enough
particles for the algorithm to converge.

A.2 Results

Before we analyze the neighborhoods obtained by our algorithm and compare those
with the results from a fixed-distance cutoff (CUTOFF) and Delaunay construction
(DELAUNAY), we first discuss several inherent properties of our solid-angle based
nearest neighbor algorithm (SANN).

The first property concerns symmetry. For both a fixed-distance cutoff and the
Voronoi construction, the neighbors are symmetric in the sense that if particle i is
neighbor of j, j is also a neighbor of particle i. Although our algorithm is scale-
free, this symmetry is not ensured, because every particle has its own neighbor shell
radius. Hence the distance between both particles can be smaller than the shell radius
of particle i and larger than that of particle j at the same time. However, our analysis
shows that for the Lennard-Jones system the fraction of asymmetric neighbors is
below 2%, and in the carbon system below 5%.

For the second property we assign to each particle a local volume. The Voronoi
algorithm yields the Wiegner-Seitz cell as obvious choice for the local volume, and
by construction the sum of all local volumes adds up to the total system volume. For
both the SANN and CUTOFF algorithms one can think of many different definitions
of a local volume, e.g. related to a neighbor’s distance or solid angle, but there exists
no inherent definition.

Next, we quantify our earlier statement concerning the relative computational
cost. To assess the performance, we compare the average compute time required
to calculate the neighborhood for all particles in a system. Our test machine is a
Linux workstation with the GCC 3.4.4 compiler and a 32-bit Pentium IV processor
running at 3.2 GHz. We find that our algorithm takes on average twice as long as
the fixed-distance cutoff 1, but compared to the Delaunay triangulations it runs more
than 7 times faster for the Lennard-Jones phases and more than 12 times faster for
the carbon phases 2.

For the sake of convenience we rewrite Eqn. A.3 to express the shell radius as an

1For both the CUTOFF and the SANN algorithms we use cell lists. However, the SANN algorithm
used a cutoff which is 2σ larger than the cutoff for the fixed-distance algorithm.

2Data averaged over 20 different samples.
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average distance to the nearest neighbors times a correction term,

R(m) =
∑m

j=1 r j

m
m

m−2 =
〈

r
〉

m
m

m−2 , (A.6)

where
〈

r
〉

m denotes the arithmetic average distance of all m neighbors. The cor-
rection factor m/(m− 2) can be interpreted as a measure of how well m neighbors
approximate a spherical arrangement.

Eqn. A.6 leads directly to the next property: for a closed-packed arrangement
of kissing spheres, the algorithm always identifies the correct number of nearest
neighbors. Since all neighbors are kissing, their distances to the central particle are
all equal, as is their average. Second neighbors are ignored if the correction term
is smaller than the ratio of the second-nearest-neighbor distance over the nearest-
neighbor distance.

The last property concerns the application of the algorithm to a higher-dimensional
space, e.g. to hyper-spherical particles. Although designed for our three-dimensional
space, we point out that the algorithm is valid without modification for any space-
dimension D ≥ 2. However, results for 4D to 6D hard hyper-spheres showed a de-
crease in quality with increasing dimension.

In what follows we apply the proposed algorithm to several simulation samples
and compare it against both the fixed-distance cutoff criterion and the Delauany tri-
angulation.

1.2.1 Nearest neighbors
First, we compute the number of nearest neighbors for all test configurations using
all three neighborhood algorithms. For the fixed-distance cutoff criterion we set the
cutoff equal to the minimum of the pair correlation function, which yields rc = 1.5
and rc = 1.35 for the Lennard-Jones liquid and fcc crystal phases, respectively, and
rc = 2.0 for all carbon phases. The number of nearest neighbor distributions are pre-
sented in the panels a) of Fig. A.2 (Lennard-Jones), Fig. A.3 (3-coordinated carbon),
and Fig. A.4 (4-coordinated carbon).

For the Lennard-Jones phases the distributions of the number of nearest neigh-
bors are fairly similar, but show some systematic differences (see Fig. A.2a). The
Delaunay triangulation slightly overestimates the number of nearest neighbors and
peaks around 14 neighbors for both the liquid and the fcc phase. This behavior orig-
inates from fluctuations which cause next-nearest neighbors to share occasionally a
small face with the center particle [206]. There exist extensions to the Delaunay
construction that aim to increase the robustness against fluctuations [70, 207, 208].
But many of these extensions introduce non-inherent parameters and are as such not
parameter-free. Therefore, we will not consider them here. The fixed-distance cutoff
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a)

b)

c)

Figure A.2: a) Number of nearest neighbors distribution for both a Lennard-Jones
liquid (L) and fcc crystal (X) obtained by all three methods. Panels b) and c) plot
the pair correlation functions g(r), considering all particles (dotted line), and gnn(r),
considering only nearest neighbors obtained by Delaunay (D) and SANN’s first (S1)
and second (S2) neighbor shell, for both a liquid (b) and an fcc crystal (c). In addition,
the fraction gnn(r)/g(r) is shown.
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exhibits a distribution which peaks at the expected 12 neighbors for the fcc crystal,
and at 13 for the liquid. The distribution obtained using the SANN algorithm overlaps
almost entirely with the cutoff distribution for the fcc crystal phase. For the liquid
the distribution broadens a little and the peak slightly shift to a lower value, which
contrasts the other methods.

For the 3- and 4-coordinated carbon phases, Figure A.3a and A.4a, the distribu-
tions are quite different. The fixed-distance cutoff, using the first minimum of the
pair correlation function, yields a distribution peaked sharply around 3 and 4 parti-
cles for a 3- and 4-coordinated carboin, respectively. The SANN algorithm peaks
around 10 and 12 particles, and the Delaunay triangulation peaks at 18 and 20 (dia-
mond). This means that the latter two algorithms include particles from the second
and third neighbor shells. For the comparison in Fig. A.3 and A.4 we therefore set
the cutoff for the fixed-distance cutoff algorithm to the second minimum of the pair
correlation function, hence including the second neighbor shell. One might argue
that including next-nearest neighbors is incorrect. However, as we will discuss in
Section 1.2.2, with this extended neighborhood a 6th order local bond-order param-
eter can distinguish better between disordered and ordered carbon phases than the
3rd order harmonics based on the 1st neighbor shell as used in Ref. [204]. This is of
interest in the study of crystal nucleation, where the system is biased to form a crystal
nucleus with an order parameter that should not favor any particular crystal lattice.

In order to get a better understanding about which particles are identified as near-
est neighbors, we compute the pair correlation function using either all particles (for
reference) or only nearest neighbors using the different neighborhood algorithms.
We label them g(r) and gnn(r), respectively. The fixed-distance cutoff method is
not tested here as it yields, by definition, g(r) exactly up to the cutoff radius, from
which on it is zero. The results are depicted in panels b (liquid) and c (crystal) of
Figures A.2 to A.4. The upper graphs each show the pair correlation functions g(r)
and gnn(r), and the lower graph the fraction gnn(r)/g(r). At a given distance r the
latter fraction is one if all particles of this distance are identified as nearest neighbors,
and reduces to zero if none of these particles are considered neighbors. The steeper
the ratio drops, the less fluctuations there are in the selection of the neighbors. In
addition to the nearest neighbors the graphs also show results for the next-nearest
neighbors obtained from the SANN method as described in Section 1.1.3.

For the Lennard-Jones system Figure A.2b and A.2c show that the pair correla-
tion function for the Delaunay triangulation is identical with the reference g(r) up
to the first minimum, and in the fcc crystal even slightly beyond that. Although
it decreases quickly afterwards it still includes particles from the second neighbor
shell (see Fig. A.2c upper panel). In contrast, the gnn(r) using the SANN algorithm
drops to zero at the first minimum for both the liquid and crystal phases, and there-
fore barely includes next-nearest neighbors. The second neighbor shell does not yield
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a)

b)

c)

Figure A.3: a) Number of nearest neighbors distribution for both a 3-coordinated
carbon liquid (L) and graphite crystal (X) obtained by all three methods. Panels
b) and c) plot the pair correlation functions g(r), considering all particles (dotted
line), and gnn(r), considering only nearest neighbors obtained by Delaunay (D) and
SANN’s first (S1) and second (S2) neighbor shell, for both a liquid (b) and an fcc
crystal (c). In addition, the fraction gnn(r)/g(r) is shown.
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a)

b)

c)

Figure A.4: a) Number of nearest neighbors distribution for both a 4-coordinated
carbon liquid (L) and diamond crystal (X) obtained by all three methods. Panels
b) and c) plot the pair correlation functions g(r), considering all particles (dotted
line), and gnn(r), considering only nearest neighbors obtained by Delaunay (D) and
SANN’s first (S1) and second (S2) neighbor shell, for both a liquid (b) and an fcc
crystal (c). In addition, the fraction gnn(r)/g(r) is shown.
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a) b) c)

Figure A.5: Simulation snapshot showing the neighbors (light gray) of a center par-
ticle (dark-gray) indicated by the arrow. Surrounding particles that are not part of
the neighborhood are shown in black. In contrast to the SANN algorithm (panel b)
the Delauany construction (panel a) includes particles from different layers. Panel
(c) presents a top-view on the center layer of panel (b), which shows that the neigh-
borhood includes the complete first neighbor shell and all but one particle from the
second.

such accurate results, but it still gives a reasonable approximation for the next-nearest
neighbors.

For the 3-coordinated carbon phases, the 2nd and 3rd neighbor shells are so close
together that their peaks in the pair correlation function merge. The number of neigh-
bors including the second and third neighbor shell are then 9 and 12, respectively. The
number of nearest neighbors obtained from SANN are distributed around a peak at
10, and the corresponding gnn(r) drops to zero at approximately the second minimum.
A particularly interesting behavior is shown by the Delaunay gnn(r) (see Fig. A.3b
and A.3c). It extends well beyond the second minimum, does not include all particles
anymore, and the fraction gnn(r)/g(r) does not decrease monotonically to zero. To
explain this behavior, we point out that 3-coordinated carbon forms layers, which are
several particle diameters apart. Whereas the fixed-distance cutoff and the SANN al-
gorithms both consider only close in-plane neighbors, the Delaunay triangulation also
includes particles from neighboring layers, which are much further apart. Although
geometrically correct, these additional neighbors are part of a completely different
neighborhood, and may distort results for local quantities. Figure A.5a shows such
a neighborhood as obtained from the Delaunay construction, which clearly includes
neighbors from different layers. In contrast, the SANN algorithm selects only in-
plane neighbors (Fig. A.5b) from the first and second neighbor shell (Fig. A.5c, top
view).

In contrast to the 3-coordinated carbon phases, the 4-coordinated phases are not
organized in sheets. As in the previous case, both SANN and Delaunay include
next-nearest neighbors (see Fig. A.4b and A.4c). But unlike before, SANN does
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not include the full 2nd neighbor shell anymore, and its gnn(r) starts to decrease a
little too early. For the liquid, the Delaunay algorithm also ignores some of the next-
nearest neighbors. But in contrast to SANN its fraction gnn(r)/g(r) decreases more
slowly. For the diamond crystal phase, the Delaunay triangulation includes not only
the complete 2nd neighbor shell, but also parts of the 3rd .

1.2.2 Application to bond-order parameters
Next, we apply investigate the effect of a nearest-neighbor algorithm on the local
bond-order analysis for crystal nucleation. The original order parameters proposed by
Steinhardt et al. [72] were based on the idea to expand the neighborhood of particles
using spherical harmonics to quantify a system’s local symmetry. The algorithm was
later refined by ten Wolde et al. [57] for the study of nucleation, and has proven a
useful tool even for higher-dimensional systems [181, 187]. To compute the bond-
order parameter each particle i is assigned a (2l + 1)-dimensional complex vector
ql(i) capturing its local neighborhood,

qm
l (i) =

1
Nb(i) ∑

j
Ylm(r̂i j), (A.7)

where Nb(i) denotes the number of nearest neighbors, Ylm(r̂i j) is the spherical har-
monics of order l with components −l ≤ m ≤ l, r̂i j is the unit vector pointing from
the center of i to its neighbor j, and the sum runs over all neighbors { j} of parti-
cle i. From this we can construct a measure for the neighborhood similarity of two
particles,

ql(i, j) =
ql(i) ·q∗

l ( j)
|ql(i)| |ql( j)| , (A.8)

where the superscript star denotes the complex conjugate. We call the ql(i, j) the
local bond-order correlator, which is one if both particles are in an identical ordered
environment. To distinguish reliably between solid-like and liquid-like particles, par-
ticularly in an undercooled liquid, additional steps are required to increase the con-
trast. But since the neighborhood algorithm enters at this stage we will not follow the
procedure to the end, but instead compare the local bond-order correlators.

For the Lennard-Jones phases all neighborhood algorithms performs equally well,
as is to be expected from the similarity in both the number of nearest neighbors and
neighbor-based radial distribution function gnn(r) of Fig. A.2. However, for the car-
bon phases the situation is different. Ref. [204] reported that a 3rd order harmonic can
capture the symmetry of all carbon crystal phases by including only particles from
the 1st neighbor shell. However, since both the Delaunay construction and the SANN
algorithm include particles from the 2nd neighbor shell, we find that l = 6, rather than
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Figure A.6: Distribution of the bond-order correlator for the carbon phases. The
top panel uses a 3rd order harmonics and a cutoff including only particles from the
1st neighbor shell, as used in Ref. [204]. The resulting liquid distributions are not
well-separated from the solid. The other three panels show a 6th order harmonics
with the extended neighborhood using a fixed-cutoff criterion, the Delaunay con-
struction, and the SANN algorithm (top to bottom). Here, both the liquid and crystal
distributions are nicely peaked and reasonably well separated.



140 A A simple parameter-free nearest-neighbor algorithm

a) b)

Figure A.7: Results for two-phase samples in a slab-geometry, with the two inter-
faces oriented normal to the x-direction. The two phases are liquid-crystal (a), and
fluid-crystal (b). For both samples the upper panel shows, as function of x-position,
the average number of nearest neighbors,

〈

NNb(x)
〉

, and the lower panel the corre-
sponding standard deviation, σ2 =

〈

N2
Nb(x)

〉

−
〈

NNb(x)
〉2.

l = 3, is commensurable with the symmetry of this extended environment. To make
a proper comparison we set the fixed-distance cutoff to 2.7 to include next-nearest
neighbors. Figure A.6 presents the bond-order correlator distributions for the carbon
phases, each curve normalized by its maximum Pmax. The top panel shows results for
the 3rd order harmonics with a fixed-distance cutoff including only nearest neighbors
(rc = 2.0), as used in Ref. [204]. The crystal structures are sharply peaked next to
-1, but the liquid distributions are broad and overlap strongly with the crystal distri-
butions. Panels b) to d) show 6th order harmonics with the extended neighborhood
using the fixed-distance cutoff criterion, the Delaunay construction, and the SANN
algorithm, respectively. Here, the liquid and crystal distributions are quite well dis-
tinguished, and SANN performs slightly better than the other two methods.

1.2.3 Application to interfaces
In a final step, we apply all algorithms to two two-phase systems with planar inter-
faces (slab geometry): a Lennard-Jones liquid-crystal system and modified Lennard-
Jones fluid-crystal system. The latter interaction potential was introduced by ten
Wolde and Frenkel [10] and includes a tuning parameter α that controls the interac-
tion range. For a value α = 50 it reproduces the phase diagram of globular proteins
featuring only the fluid and the crystal as thermodynamically stable phases, and a
meta-stable vapor-liquid coexistence line hidden in the fluid-crystal two-phase re-
gion. Our sample is prepared at conditions close the the meta-stable critical point
(T = 0.42, P = 0.01, ρ f = 0.3). The two phases are arranged in a slab-geometry such
that the interfaces are normal to the x-direction. We now compute both the number of
nearest neighbors as function of x-position,

〈

NNb(x)
〉

, and the corresponding standard
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deviation, σ2 =
〈

N2
Nb(x)

〉

−
〈

NNb(x)
〉2. For the fixed-distance algorithm the cutoff is

set to rc = 1.5σ resembling the first minimum of the radial distribution function of
the liquid phase.

The results are presented in Figure A.7. In the case of liquid-crystal coexistence,
Fig. A.7a, all the algorithms give fairly similar results. But compared to both SANN
and CUTOFF the Delaunay tessellation shows the least distinct change in the num-
ber of nearest neighbors when crossing the interface. This effect becomes even more
pronounced at interfaces between a high-density and a low-density phase, such as the
vapor-crystal coexistence (Fig. A.7b). For the low-density phase, where the CUT-
OFF method identifies on average around 5 neighbors, the Delaunay triangulation
determines a strongly fluctuating average of 15 neighbors, a number that even ex-
ceeds the average for the crystal phase. Here, the SANN algorithm provides a more
reasonable average of 10 neighbors, and shows considerably less fluctuations. Also,
for particles at the interface, the SANN algorithm chooses its neighbors mostly from
the interface, and, unlike the Delaunay construction, does not include particles that
are located far-off in the vapor.

A.3 Conclusion
In this appendix we proposed a simple parameter-free algorithm for the detection of
a particle’s nearest neighbors. In this algorithm the m nearest neighbors are each
assigned a solid angle depending on their distance to the central particle and the
neighbor shell radius R(m), which follows from the requirement that the total sum of
all solid angles adds up to 4π. In an iterative procedure m is increased to include
more neighboring particles until the monotonically decreasing R(m) becomes smaller
than the distance to the (m + 1)th neighbor. Using a common method for domain
decomposition, like cell lists, Verlet lists, or a binary space-partitioning tree (octree),
the computational cost for this algorithm are roughly an order of magnitude smaller
than the cost for a Voronoi construction (or its dual, the Delaunay triangulation). In
addition, our scale-free algorithm is easily adapted to include a tuning parameter, or
to yield only particles from the 2nd neighbor shell.

We discussed the advantages and limitations of our algorithm, in particular its
computational cost and the broken neighbor symmetry. The algorithm was then ap-
plied to analyze supercooled liquid and crystal phases of Lennard-Jones, 3-coordinated
and 4-coordinated carbon, and compared to both a fixed-distance cutoff criterion and
a Delaunay triangulation. For the Lennard-Jones phases, where the Delaunay trian-
gulation is known to be strongly affected by fluctuations, our algorithm reproduces
very well the number of nearest-neighbor distribution of a well-tuned fixed-distance
cutoff. For the carbon phases, our algorithm includes the second neighbor shell, like
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the Delaunay triangulation, but avoids spurious neighbors in neighboring graphite
layers.

Further, we deployed the neighbor information of all algorithms as input for bond
order analysis, which is used in crystal nucleation studies for the identification of
solid-like particles in a supercooled metastable liquid. Comparing the bond-order
correlator distributions, we find little difference between the algorithms, indicating
that the proposed algorithm is suitable for structure analysis.

In a final step we focused on particles at the interface of a two-phase system.
We find that for two high-density phases all algorithms give reliable results. But at
the interface between a high-density crystal and a low-density fluid, our algorithm is
shown to be more robust against thermal fluctuations than the Voronoi construction.

Given the low computational cost of our algorithm, we argue that it is well suited
not only for post-analysis, but also during simulations. It reliably identifies the near-
est neighbors, and its behavior for graphite and at a two-phase interface suggests its
application to situations where the Voronoi construction suffers from distorted poly-
hedra, as is the case in structural analysis of protein folding trajectories.
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Summary

First-order phase transitions often start with nucleation, which refers to the sponta-
neous formation of a microscopic amount of the new phase due to thermal fluctu-
ations. If the size of such a fluctuation exceeds a certain threshold, the so-called
critical nucleus size, the new phase has a high probability to grow to macroscopic
dimensions. Although this process is well understood from a phenomenological per-
spective, the design of nucleation agents to facilitate the growth of high-quality crys-
tals requires insight into the physical mechanism on the microscopic scale.

The research presented in this Thesis aims to assess the physical mechanism
of nucleation on the microscopic scale using many-particle simulations. The main
emphasis of this work is on homogeneous and heterogeneous crystal nucleation of
nano-colloids and proteins from dilute solution, but also other aspects of this field
of research are addressed, such as alternative compute hardware, nearest neighbor
algorithms, and the origin of geometrical frustration in liquids.

In Chapter 3 we discuss a topic common to all numerical simulations: the com-
pute hardware. Simulations are typically performed on a computer’s Central Pro-
cessing Unit (CPU), such as a Pentium® or an Athlon® processor. The CPU’s
architecture is highly optimized for the execution of complex applications, dedicat-
ing significantly more transistors to program flow control and data caches than to
so-called arithmetic logic units (ALUs), which perform integer and floating point op-
erations. However, numerical simulations are often limited by the preformance of
these ALUs. Recent fully programmable Graphic Processing Units (GPUs) offer an
alternative to CPUs as compute hardware. Driven by the demands of 3D video games
they are designed to process large amounts of image data in parallel. In Chapter 3
we demonstrate that a conventional Molecular Dynamics simulation can be rewritten
to run entirely on a GPU reducing its run-time by up to a factor 80 for an n-squared
algorithm. Further, we show how cell lists domain decomposition can be parallelized
efficiently resulting in a maximum 35-fold speed-up. We conclude this chapter with
a discussion on the advantages and limitations of graphics hardware for the use in
scientific simulations.

The next chapter concerns homogeneous crystal nucleation of nano-colloids from
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dilute solution. The model system consists of spherical particles interacting via a
Lennard-Jones pair potential under conditions below the triple point. Here, the vapor
is the meta-stable parent phase, the crystal the stable final phase, and the liquid is
an intermediate meta-stable phase with a free energy inbetween the other two phases.
Using forward-flux sampling paired with a local bond-order parameter we find no ev-
idence for a direct vapor-crystal phase transition. Instead, using a density-based order
parameter, we find the transition to proceed via a two-step process: first a meta-stable
liquid droplet forms and subsequently a crystal emerges within this droplet. Both nu-
cleation events are independent and can be treated separately. Our findings confirm
earlier simulations based on quasi-equilibrium umbrella sampling. Our simulations
reveal that a minimum droplet size is required to host a stable crystal cluster, and
that the crystal is always covered by a liquid mono-layer. The overall nucleation rate
is limited by the vapor-liquid nucleation step, and hence depends sensitively on the
vapor pressure. We compare our simulation results to predictions from classical nu-
cleation theory (CNT) and literature results using umbrella sampling. We find good
qualitative agreement, which suggests that this phase transition can be treated by an
equilibrium theory.

In Chapter 5 we extend the study on vapor-crystal nucleation of Lennard-Jones
particles to the case of heterogeneous nucleation on smooth weakly-adsorbing sur-
faces. We investigate the microscopic mechanism of nucleation in the presence of an
attractive planar wall, planar circular patch, and hemi-spherical pore. Nucleation in a
pore is of particular interest due to experimental evidence that a porous medium may
function as “universal” nucleation agent for protein crystallization. As in the case
of homogeneous nucleation we observe the vapor-crystal nucleation pathway to pro-
ceed via a intermediate liquid phase, and that both nucleation events can be treated
independently. For liquid nucleation, we find good qualitative agreement with CNT.
Only for the circular patch there exists a narrow range of parameters for which CNT
predicts a weak double-peak in the free-energy barrier that is not reproduced by our
simulations. We find crystal nucleation to be spontaneous, that is without any notica-
ble barrier, for both the planar wall and the circular patch, provided the liquid droplet
exceeds a minimum size. For nucleation in a hemi-spherical pore CNT predicts a
double-peaked free-energy barrier for a wider range of parameters, and here the be-
havior is nicely reproduced by our simulation. We find that the first peak corresponds
to filling the (microscopic) pore, and the second barrier separates the liquid from
growing into the bulk. On increasing the pore radius the computed overall nucle-
ation rate goes through a minimum before it approaches, in the limit of an infinitely
large pore, the rate for nucleation on a planar wall. In contrast to the planar wall and
circular patch, crystal nucleation is not induced by the surface of the pore, but pro-
ceeds homogeneously in the bulk. Although it is possible for a crystal to form within
the pore, our simulations suggest that it is much more likely that crystal nucleation
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occurs after the liquid has grown out of the pore. In conclusion, our simulations pro-
vide further evidence that porous media with a broad distribution of pore sizes can
significantly enhance crystal nucleation from dilute solution, and that the process is
dominated by a few pores with optimal size.

Chapter 6 builds upon the experiences from the last two chapters and investigates
heterogeneous nucleation of a model protein at smooth and structured surfaces. Due
to the very short-range nature of the “protein” particles’ interaction the phase dia-
gram features only the fluid and the crystal as thermodynamically stable phases, and
the meta-stable vapor-liquid binodal is hidden within the fluid-crystal coexistence re-
gion. Under conditions where protein crystallization is observed experimentally, the
liquid is unstable with respect to both the fluid and the crystal, which contrasts the
situation in the previous two chapters. As a consequence, at a smooth planar wall
and patch we find direct vapor-crystal nucleation without the liquid as intermediate
phase. Moreover, it appears that a smooth hemi-spherical pore does not facilitate
crystallization at all. Instead, particles adsorb to the pore’s surface in a packing that
is incommensurable with any periodic structure, effectively inhibiting further crys-
tal growth. At a periodically structured surface, represented by a 111-fcc surface of
particles that are immobile but otherwise identical to the “protein” particles, crystal-
lization is almost instantly induced provided the lattice mismatch between template
and protein crystal is not too large. Interestingly, a large lattice mismatch leads to
the adsorption of a thin layer of liquid. This effect is even more pronounced at a
disordered surface. For cylindrical cavities with a disordered surface and suitable
radius the liquid fills the pore. In such a geometry the free-energy barrier to crys-
tallization is significantly reduced as compared to homogeneous nucleation, and a
crystal nucleus can form fully immersed in the liquid allowing for stress-free growth.
These results suggest that the molecular mechanism for crystal nucleation induced
by micro-porous media relies on the combined effect of liquid adsorption and pore
filling, and hence depends on both pore size and surface roughness.

The final chapter of this Thesis discusses the origin of geometrical frustration in
liquids. Geometrical frustration is conjectured to prevent crystallization and there-
fore help glass formation. It arises from a competition between the local and global
packing. Locally, particles can arrange to achieve a density higher than that of a
crystal. But such a local order cannot be used to fill space. Once the system density
exceeds a certain threshold a global packing becomes favorable. During the crystal-
lization process particles have to leave their local arrangement in order to adapt to the
global lattice. For hard-sphere systems this leads to the entropic free-energy barrier
to crystal nucleation. This contrasts the behavior of two-dimensional hard disks, for
which hexagonal packing is both locally and globally prefered, and crystallization is
particularly easy. In three-dimensional (3D) Euclidean space, there exist two local
structures that are considered to cause geometrical frustration. The first is the icosa-
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hedron as the smallest maximum kissing-number Voronoi polyhedron, and the second
is the tetrahedron as the smallest volume that can show up in a Delaunay tessellation.
Because the icosahedron can be constructed from almost-perfect tetrahedra, both are
often used interchangeably, which leaves the true origin of frustration unclear. In
Chapter 7 we leave the familiarity of our 3D world and investigate crystallization of
four-dimensional (4D) hard (hyper-)spheres, because in 4D the smallest maximum
kissing-number polyhedron is commensurable with the densest crystal lattice. This
allows us to assess whether it is the icosahedron or the tetrahedron that causes the
frustration. Our simulations reveal a free-energy barrier that is significantly larger
in 4D than in 3D at comparable conditions, clearly identifying tetrahedral order as
the origin of frustration. Moreover, the high free-energy barrier to crystallization
makes 4D hard spheres a suitable model system to test theories of glass transition
and jamming. In the appendix of this chapter we extend the discussion to 5D and 6D
hard spheres presenting equations of state and quantifying the growing dissimilarity
between higher-dimensional fluid and crystal phases using second- and third-order
bond-order invariants.

This Thesis is concluded with an Appendix on nearest neighbor algorithms, where
we propose a simple parameter-free algorithm based on the sum of solid angles.
The determination of the nearest neighbors of a given particle is a recurrent task
in both numerical simulations and structural analysis. Algorithms can be classified
as either tunable or parameter-free, with their most prominent representatives the
fixed-distance cutoff (CUTOFF) and the Voronoi construction, respectively. The for-
mer one considers two particles to be neighbors if their distance is smaller than a
manually-tuned cutoff value. Using a common domain decomposition scheme, such
as cell lists or Verlet lists, the CUTOFF algorithm is very efficient and therefore often
used during simulation. However, each time the model system or working conditions
have changed the cutoff distance has to be tuned again. In contrast, the Voronoi con-
struction is based on a purely geometrical construction and requires no manual input.
Its disadvantage is its significantly increased computational cost and its sensitivity
to positional perturbations caused by thermal fluctations. With the solid-angle based
nearest neighbor (SANN) algorithm we propose a method that is parameter-free, but
computationally less expensive than the Voronoi construction. Its disadvantages are
that it does not preserve neighbor symmetry, which means that if A is a neighbor of
B, B does not have to be a neighbor of A. We apply the three methods to the liq-
uid and crystal phases of a Lennard-Jones and a carbon system, and also investigate
their behavior at a two-phase interface. We find that SANN works reliably on all sys-
tems tested. Moreover, compared to the Voronoi construction SANN is more robust
against thermal fluctuations and, in the case of graphite, does not include spurious
neighbors from neighboring layers. With these properties we conclude that SANN is
suitable for the use during simulation and for the analysis of protein structures.
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Samenvatting (Dutch summary)

Een faseovergang, zoals het bevriezen van water, begint met nucleatie. Dat betekent
dat een microscopische hoeveelheid van de nieuwe fase, een zogenoemde kiem, spon-
taan ontstaat door middel van thermische fluctuaties. Als zo een fluctuatie groot ge-
noeg is, dat wil zeggen uitkomt boven de kritieke kiemgrote, dan is de kans groot
dat de nieuwe fase doorgroeit tot een macroscopische hoeveelheid. Ondanks dat
nucleatie goed is begrepen vanuit een fenomenologisch oogpunt ontbreekt er gede-
taileerd inzicht in het microscopisch gedrag. Maar juist het microscopisch mech-
anisme is belangrijk voor bijvoorbeeld de voorspelling van juiste omstandigheden
voor het kweken van hoogwaardige kristallen.

Het doel van het onderzoek in dit proefschrift is dan ook nader inzicht te verkrij-
gen in nucleatie op de schaal van enkele deeltjes met behulp van computersimulaties.
Het oogmerk ligt vooral op homogene en heterogene nucleatie van kristallisatie va-
nuit de gas fase in modelsystemen voor nano-colloïden en eiwitten. Maar ook andere
aspecten van dit onderzoeksgebied worden verder uitgewerkt, zoals nieuwe mogelijk-
heden in computer hardware voor simulaties, een algoritme ter bepaling van de dichst
bijzijnde buren, en de oorsprong van geometrische frustratie in vloeistoffen. Na een
korte introductie geeft hoofdstuk 2 een overzicht over de theorieën van nucleatie en
zeldzame gebeurtenissen, en de numerieke technieken die in dit proefschrift zijn ge-
bruikt.

Hoofdstuk 3 bevat de eerste onderzoeksgegevens en gaat over nieuwe ontwikke-
lingen op het gebied van computer hardware. Grafische kaarten (eng.: graphic pro-
cessing unit, GPU) zijn oorspronkelijk ontwikkelt voor het bewerken van 3D (video-
)beelden op de computer. Gedreven door de enorme interesse in computerspelletjes
heeft de GPU in de afgelopen 20 jaren een enorme ontwikkeling ondergaan, van
een simpele chip tot een krachte rekenmachine. Hedendaagse GPUs bezitten een
vermogen dat ver uitsteekt boven de gebruikelijke centrale processor (eng.: central
processing unit, CPU), en kunnen sinds kort ook voor toepassingen buiten de grafis-
che wereld gebruikt worden. Hun kracht ontlenen zij aan parallellisatie, wat alleen
voordelig is als een programma dat ook kan benutten. Zoals wij in hoofdstuk 3
laten zien is de moleculaire dynamica (MD) simulatie uitermate geschikt voor een
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GPU. Vergeleken met de traditionele CPU-versie is een GPU-versie tot en met 80
keer sneller, waardoor berekeningen van een jaar in enkele weken voltooid kunnen
worden.

In hoofdstuk 4 wordt de homogene kristallisatie van nano-colloïde in verdunde
oplossing uitgewerkt. Als model dient een systeem van bolvormige deeltjes die via
een Lennard-Jones potentiaal wisselwerken, dat heet met zachte aantrekking op korte
afstand en een sterke afstoting op hele korte afstand. Bij een temperatuur en druk
waaronder het kristal de thermodynamisch stabiele fase is, beginnen wij een gas
te simuleren. Met behulp van “forward-flux sampling”, een techniek om zeldzame
gebeurtenissen te simuleren, kunnen wij de overgang van gas naar kristal forceren en
gericht naar het gedrag van de deeltjes kijken. Hierbij vinden wij dat de gasdeelt-
jes niet direct een kristal vormen. In plaats daarvan ontstaat er eerst een vloeistof
druppel. Deze groeit dan door tot dat een bepaald volume bereikt is. Pas dan is
kristallisatie mogelijk. En zelfs als de druppel volledig is gekristalliseerd is het kristal
nog bedekt met een dun laagje vloeistof.

Voor homogene kristallisatie ontdekten wij ook dat de snelheid van de gas→kristal
overgang gelimiteerd wordt door de gas→vloeistof overgang. Als deze vereenvoudigd
wordt kan de gehele overgang versneld worden. Dit is dan ook het doel van het on-
derzoek in hoofdstuk 5. Hier kijken wij naar heterogene nucleatie, dus met behulp
van verontreinigingen zoals een stofdeeltje of een muur. In hetzelfde modelsysteem
als in hoofdstuk 4 plaatsen wij een muur met een licht absorberend oppervlak, zo-
dat de deeltjes bij voorkeur in de buurt van de muur zitten. Onze simulaties tonen
aan dat het bevriezingsproces zich hetzelfde gedraagt als bij homogene nucleatie,
maar dan wel vele malen sneller. De gas→vloeistof overgang hangt sterk af van de
aantrekkingskracht van de muur, en het kristal vormt bijna onmiddellijk aan de muur
zodra voldoende vloeistof ter beschikking staat. Wij zijn bijzonder geïnteresseerd in
het gedrag bij een absorberende porie, omdat experimenten hebben aangetoond dat
een poreus materiaal uitstekend eiwitkristallisatie bevordert. In ons model vinden
wij dat een porie met de juiste dimensies de kristalvorming niet direct vereenvoudigt,
maar wel de drempel voor vloeistofnucleatie sterk verlaagt. Wij zien dan ook dat het
gehele gas→kristal proces in een optimale porie zelfs sneller kan verlopen dan bij
een gladde muur. Deze resultaten steunen recente theorieën over de werkwijze van
poreus materiaal.

In onze simulaties kunnen wij de experimenten op het gebied van eiwitkristallisatie
nog iets verder tegemoet komen. Door de afstand voor effectieve attractie van onze
deeltjes nog iets te verkorten krijgen wij een gedrag dat typisch is voor een groot
aantal bolvormige eiwitten. In tegenstelling tot nano-colloïden hebben eiwitten geen
thermodynamisch stabiele vloeistof fase, waardoor de overgang gas→vloeistof→kristal
niet waarschijnlijk lijkt. Er is dan wel bekend dat sterke dichtheidsfluctuaties, zoals
in de buurt van het kritieke punt, de kristallisatie bevorderen, maar een echte twee-
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stappen overgang is niet bekend. Onze simulaties tonen dan ook dat de overgang
bij een absorberende muur direct van gas naar kristal gaat. Het nadeel van dit soort
gedrag is dat het sterk afhangt van de wisselwerking tussen eiwit en muur, en dat
verschilt per eiwit. Deze hypothese wordt gesteund door experimenten die laten zien
dat een muur bijna nooit effect heeft. Verrassend is dat kristallisatie in een porie
helemaal niet bevorderd wordt. In plaats van een kristal ontstaat een wanordelijke
structuur die incompatibel is met het kristalrooster.

Zover hebben wij alleen naar gladde oppervlakken gekeken. Maar op de schaal
van een eiwit is het veel waarschijnlijker dat een oppervlak ruw of gestructureerd is.
Een interessant resultaat blijkt uit onze berekening met een ruw oppervlak: in plaats
van een kristal absorbeert een dun vloeistoflaagje. Deze wisselwerking is minder
specifiek, en de vloeistoflaag kan ook kristalgroei bevorderen. Onze simulaties laten
zelfs zien dat zich in een porie met een ruw oppervlak genoeg vloeistof kan verzame-
len om een kristal groter dan de kritieke kiem te laten groeien. Dit verklaart waarom
poreus materiaal ook bij eiwitten efficiënt kristalnucleatie induceert.

In het laatste hoofdstuk van dit proefschrift verlaten wij onze bekende driedimen-
sionale (3D) wereld en bekijken kristalnucleatie van harde bollen in vier dimensies
(4D). Dit bijzondere systeem geeft de mogelijkheid een antwoord te krijgen op een
oude vraag over de oorsprong van “geometrische frustratie” in 3D vloeistoffen. Ge-
ometrische frustratie benoemt het conflict tussen locale en globaal orde van deeltjes.
Lokaal kunnen enkele deeltjes zich heel dicht ordenen, maar deze groepjes kunnen
niet als bouwstenen gebruikt worden om de ruimte geheel te vullen, waardoor er
gaten onstaan. De dichtheid van het gehele systeem kan verhoogd worden wanneer
alle deeltjes op een globaal rooster zitten, en dus een kristal vormen. Tijdens de over-
gang van vloeistof naar kristal moeten deeltjes uit hun lokale orde overstappen op
het globale rooster. Dit proces verlaagt tijdelijk de entropie, wat leidt tot de vrije en-
ergiebarrière bij kristallisatie in harde bollen. In twee dimensies met harde schijven
bestaat dit conflict niet, want het hexagoon is de dichtste lokale en globale pakking,
en kristallisatie gaat heel makkelijk. Over de oorzaak van geometrische frustratie
in 3D concurreren twee theorieën. De oudere theorie beschouwt de meest efficiënte
pakking rond een centraal deeltje, het icosaëder, als het belangrijkste lokale arrange-
ment. De nieuwere theorie beweert dat het tetraëder, het kleinste volume-element
in drie dimensies, verantwoordelijk is voor de frustratie. Het bijzondere van 4D
harde bollen is dat de meest efficiënte pakking rond een centraal deeltjes juist het
kristalrooster vormt, en alleen het (hyper-)tetraëder als potentiële oorzaak voor frus-
tratie overblijft. 4D harde bollen zijn dus een ideaal testsysteem om deze vraag uit te
zoeken. Uit onze simulaties blijkt dat kristallisatie in 4D nog veel moeilijker is dan in
3D bij vergelijkbare condities. Daardoor is aangetoond dat het tetraëder de sleutel is
tot frustratie. Door deze hoge barrière voor kristallisatie blijken 4D harde bollen ook
nog eens een goed testsysteem te zijn voor theorieën over de glasovergang en “jam-
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ming”. In de appendix van dit hoofdstuk breiden wij de discussie uit tot 5D en 6D
systemen om enkele theorische voorspellingen voor hoger-dimensionale vloeistoffen
te testen.

Dit proefschrift sluit af met een appendix over algoritmen ter bepaling van de
dichst bijzijnde buren. Informatie over de buren van een deeltje is van belang tijdens
een simulatie ter berekening van wisselwerkingen, maar ook nadien voor structurele
analyse. Er wordt onderscheid gemaakt tussen afstembare en parameter-vrije algorit-
men. De bekendste vertegenwoordiger van het eerste type is de afstembare maximale
afstand drempel (eng.: fixed-distance cutoff), een snel algoritme dat veel wordt ge-
bruikt tijdens simulaties. Het nadeel is dat telkens wanneer het systeem of de thermo-
dynamische condities veranderd wordt de afstand opnieuw afgestemd moet worden.
Dit nadeel is niet van toepassing voor de Voronoi constructie, een parameter-vrije
algoritme gebaseerd op een puur geometrische constructie. Het nadeel hiervan is dat
de berekening duur is en het gevoelig is voor deeltjes fluctuaties. Als alternatief van
beiden stellen wij in deze appendix een nieuw parameter-vrij algoritme voor. Deze
is gebaseerd op een simpelere constructie, waardoor de berekening duidelijk sneller
wordt, maar niet alle symmetrieën bewaard blijven. Wij vergelijken de drie algorit-
men door ze toe te passen op vloeistoffen en kristallen uit Lennard-Jones en koolstof
deeltjes. Wij laten zien dat ons algoritme betrouwbaar functioneert en, vergeleken
met de Voronoi constructie, goedkoper in rekentijd en minder gevoelig voor fluctu-
aties is. De eigenschappen van ons algoritme wijzen erop dat het uitermate geschikt
is voor gebruik in simulaties, maar ook voor structurele analyse van eiwitten.
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