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CHAPTER1
Introduction

1.1 Photonic cavities

1.1.1 Principles

Light is essential for myriad processes around us: in nature, to human life, to technolog-

ical applications, and in everyday appliances. Since light is extremely elusive there is a

great interest to store photons in a small volume for a certain time. Storage of photons in

an applicable way can be achieved using solid state cavities [1]. Once the light is trapped

inside the cavity it can be manipulated. The frequency of the light can for example be

converted [2] or a photon can be coupled to a light source to form a new quantum state

[3–5].

A schematic representation of light stored in a closed cavity is shown in figure 1.1 A.

Since the cavity is closed light stored in the cavity modes do not interact with the environ-

ment, also called the bath [6]. The cavity modes have different resonance frequencies and

therefore different photon energies. Figure 1.1 A, shows that the light is trapped within

a certain volume, the so-called mode volume. The mode volume is an important figure

of merit to characterize the quality of the cavity: the smaller the mode volume the more

locally the light is stored. A photon trapped in a closed cavity will remain there forever

and has therefore an infinite cavity storage time τcav. Furthermore, the undamped reso-

nance has an infinitely narrow linewidth ∆ω as shown in figure 1.1 C. This infinitely small

linewidth corresponds to the infinite cavity storage time, given the relation τcav = 1/∆ω.

Figure 1.1 C shows a schematic representation of the spectral solutions of the closed cav-

1



Introduction

Frequency 

In
te

ns
ity

 

0

A B

Frequency 

In
te

ns
ity

 

C D

F 1.1: (A) Schematic representation of a cavity with ideal 100 % reflecting mirrors. No
interaction with the environment (bath) is possible, therefore the two shown modes can spec-
trally be represented as two delta functions as shown in (C). (B) Schematic representation of a
cavity with interaction with the environment. The mirrors are not 100 % reflecting, coupling the
modes to the infinite number of modes from the environment. Due to this coupling, the discrete
modes present in the closed cavity, broaden to a finite width as shown in (D).

ity. Two delta functions at different energies mark the spectral positions of the two modes

shown in figure 1.1 A. If the cavity is coupled to the bath by decreasing the mirror reflec-

tivity, the resonances broaden and become finite as does the cavity lifetime. This situation

is shown in figure 1.1 B and D. Due to the coupling between the discrete cavity mode and

the bath, a continuum of infinitely close spaced modes form the broadened resonance. In

the case of an open cavity it is no longer correct to speak of a mode, since a continuum

of modes is measured [7]. Therefore, the term ’mode’ in this thesis means the broadened

resonance composed of an infinite number of infinitely closed spaced modes.

Figure 1.2 A shows the field in an open cavity as a result of a Gaussian input pulse

charging the cavity. The field oscillates in time and the amplitude decreases exponentially.

Figure 1.2 B shows the intensity in the cavity, which also exponentially decays after the

charging pulse is gone. The actual response of the cavity to a Gaussian input pulse is the

2
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F 1.2: (A) Field as a function of time. (B) Intensity of an oscillator (light gray) due to
a Gaussian shaped input pulse (dark gray). The decay time of the oscillator is given by the
quality factor of the oscillator, which is about 40 in this case. The decay time is about 40 times
the period T of the field in the cavity. The response of a cavity resonance to a Gaussian input
pulse is the same as the oscillator response.

convolution of the response of the cavity to a Dirac pulse and the Gaussian lineshape of

the input pulse. The cavity response to a Dirac pulse is an exponential decay with the

cavity storage time τcav as a time constant. The response to the Dirac pulse is given by an

exponential decay of the intensity I(t) in the cavity resonance [8]:

I(t) = I0e−t/τcav , (1.1)

with I0 the initial intensity that the pulse stores in the cavity. However, in more complex

cavities the behavior of the cavity can be very different from the single exponential case

[9]. To compare cavities independent of their resonance frequencies ω0, the widely used

figure of merit is the resonance quality factor Q, which is defined as:

Q ≡ τcavω0. (1.2)

Physically, the quality factor is proportional to the ratio between the total energy stored

and the energy lost per cycle. At optical frequencies a cavity with a feasible high quality

factor of Q = 106 [10] stores light with a long response time in the order of nanosec-
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onds, but is thus also relatively slow. Conversely, a cavity with a moderate quality factor

Q = 1000 is fast with a response time of picoseconds. The picosecond timescale allows

ultrafast access and storage of light in the cavities.

A common procedure to estimate the quality factor of a cavity is to measure a trans-

mission or reflectivity spectrum and extract Q from the relative linewidth of the cavity

resonance [2–4, 10–13]. For a single resonance without dephasing, one can use the

Wiener-Khintchine theorem, which relates the field autocorrelate to the intensity spec-

trum, to obtain

Q =
ω0

∆ω
. (1.3)

However, if there is significant dephasing, e.g., due to inhomogeneous broadening or

thermal noise, ∆ω will in general be larger and Q ≥ ω0/∆ω.

From many resonating systems in condensed matter and solid state physics it is known

that besides homogeneous broadening there is also the possibility of inhomogeneous

broadening of a resonance [6, 14]. In the case of an ensemble of resonators inhomoge-

neous broadening of a resonance results from inhomogeneities in the resonance frequency.

If the resonance frequency is different for each resonator the linewidth of the ensemble is

broader than the linewidth of a single resonator and the ensemble linewidth is typically

determined by the distribution of resonance frequencies. In the case of inhomogeneous

broadening the linewidth will only give a lower boundary for the range of possible Q val-

ues. The true quality factor must in this case be determined from dynamic measurements,

as is done in chapter 3.

1.1.2 Photonic cavity mirrors

Mirrors form a crucial part of a cavity. They determine the storage time and thereby

the quality factor of the cavity. The importance can be made more explicit with another

important figure of merit: the finesse of the cavity F*. The finesse gives the ratio between

the free spectral range δω and the linewidth ∆ω of a Fabry-Pérot cavity [14]. The finesse

is given by

F∗ =
π
√

R
1 − R

=
Q
N
, (1.4)

with R the mirror reflectivity and N the order of the resonance [14]. It is clear from Eq.

1.4 that a higher mirror reflectivity leads to a higher finesse and thereby a longer cavity

storage time.

4
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Conventional metal mirrors have the disadvantage that they absorb light, which yields

a reflectivity in the order of 95 % to 98 %. In this case the maximal finesse is F* = 156,

which is equal to the minimum quality factor for normal incidence (θ = 0). Mirrors with-

out absorption therefore are preferable. Semiconductor Bragg mirrors are suitable for this

purpose. They consist of stacked semiconductor layer pairs with a well-defined thickness

and with a high refractive index contrast, as schematically shown in figure 1.3. The reflec-

d

θ

λ

F 1.3: Schematic representation of reflection of a Bragg stack. The Bragg stack consists
of alternating layers of optically equal thickness with high and low refractive index, represented
as dark an light colored, respectively. Part of the light impinging on the stack is reflected from
the top layer, while part penetrates the structure, reflecting partly from the second interface.
The light reflected from the interfaces interferes. If light reflected from the interfaces is in phase
it interferes constructively. The Bragg condition is than fullfilled and the penetration length of
the light into the stack is given by the Bragg length LB.

tivity of the Bragg mirror or Bragg stack is the result of interference and scattering of light

from the interfaces of the alternating layer pairs. From each layer pair, light is partially

reflected and, if the thickness of the layer pairs is chosen well, light reflected from subse-

quent layer pairs interferes constructively, thereby increasing the reflectivity of the stack.

The more layers the stack has, the higher the reflectivity of the stack. The condition for

this effect is given by Braggs law, which was first studied in X-ray diffraction experiments

on bulk materials [15]:

λ0 = 2navgdcos(θ), (1.5)

with λ0 the center wavelength of the reflected band of light, navg the effective refractive

index of the stack, d the thickness of a layer pair, and θ the angle of incidence. It is

clear from Eq. 1.5 that the wavelength of the Bragg reflection depends on the angle

of incidence. The bandwidth of the Bragg reflection is given by the photonic strength S,

5
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which is defined as the ratio of the polarizability of each structural unit cell to the physical

volume [16]. The photonic strength can be identified with the relative bandwidth ∆ω
ω

of a

stopgap [17], which leads to the expression:

S = 3Φ
m2 − 1
m2 + 2

g(K, r), (1.6)

where Φ is the volume fraction of high index material, m is the ratio of the refractive

indices and g(K, r) is the structure factor [18]. It is clear from Eq. 10.6 that the photonic

strength increases when the refractive index contrast increases or when the average re-

fractive index decreases [19]. A higher photonic strength means that the contribution of

a layer pair to the total reflection of the stack is larger. The characteristic length for the

F 1.4: Scanning electron micrograph of planar microcavity. The microcavity consists of a
λ-thick GaAs layer (indicated by the white arrow) sandwiched between layers of AlAs (light) and
GaAs (dark) on a GaAs substrate. Structure made by group of J.M. Gérard at CEA Grenoble
[20].

intensity reflectivity of a stack is the Bragg length LB, which is given by

LB =
2d
πS

. (1.7)

It is clear that the Bragg length becomes shorter if the photonic strength increases. The

reflectivity R of a Bragg mirror is now determined by the thickness L and the Bragg length

by

R = 100%
(
1 − exp

(
− L

LB

))
. (1.8)

6
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From Eq. 1.8 we can see that the reflectivity of a Bragg stack can approach 100 % given

that the stack is infinitely thick. With a sample thickness 5 times the Bragg length L
LB

= 5,

the reflectivity of the stack is already 99.3 %, similar to what we find in our experiments.

A realization of a cavity with Bragg stacks as mirrors is shown in the scanning electron

micrograph in figure 1.4. The Bragg stacks consist of alternating λ/4 layers of GaAs

(light) and AlAs (light) layers on top of a GaAs substrate. Sandwiched between the two

Bragg stacks is a λ-thick GaAs layer [20]. The λ-layer is as a planar defect that breaks

the crystal symmetry of the Bragg stack [21].

The dispersion relation of light is strongly modified by the structure of the stack and

is given together with the linear homogeneous medium dispersion relation in figure 1.5

A. The stack’s dispersion relation bends in the vicinity of the Bragg relation, which is

0 1 2

 Homogeneous medium
 Periodic structure
 Optical cavity in periodic structure

 

Fr
eq

ue
nc

y 
[c
m

-1
]

Propagation vector k [ /d]
0 100

0

nhigh side

 nlow side

 
Reflectivity [%]

 Stop band
 Cavity resonanceA B

F 1.5: (a) Dispersion relation of light in a homogeneous medium (dashed line), a periodic
structure (dash dotted lines), and an optical cavity in a periodic structure (solid line). The
dispersion relation of the homogeneous medium follows a straight line whereas the photonic
crystal shows a stopgap ∆ω. The mode at ω0 that is present in the stopgap is a result of an
optical cavity. (b) Schematic representation of the reflectivity spectrum of a periodic structure.
The stopband is visible (dash dotted line) at the frequencies of the stopgap ∆ω, as indicated
with the dotted lines. The stopband has 100% reflectivity, while the cavity results in a trough at
the resonance frequency ω0 (solid line).

fulfilled at a wavevector with a modulus k = π/d. At k = π/d a gap opens up in the

dispersion relation with a width determined by the photonic strength S. This modification

of the dispersion relation can be attributed to the Bragg stacks. In the middle of the gap a

band of modes is present, indicated by the line [22]. This band of modes is the result of
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the planar defect layer, which breaks the symmetry of the Bragg stacks. Thereby confined

states, which act as cavity, are created inside the gap. The width of the band is determined

by the cavity storage time τcav. If we would measure a reflectivity spectrum of such a

structure it would schematically look as shown in figure 1.5 B. A stopband with a width

determined by the photonic strength appears in the spectrum. In the stopband a trough

due to the cavity resonance is present.

From figure 1.5 A it is clear that at the edges of the stopgap and at the cavity resonance

light is not propagating, since the bands are flat. At the edges of the stopband the standing

waves are dominantly in the high and low index material, respectively [21]. The field

profile on resonance calculated by finite difference time domain simulation is shown in

figure 1.6 A [23]. The stack is shown above the cavity and the edges of the cavity and

5 6 7 8 9 10
0.01

0.1

-0.2

-0.1

0.0

0.1

0.2

  L
B
 = 0.43 m, fit

E
z 

[V
/m

]

X[ m]

E
z 

[V
/m

]

A

B

F 1.6: (A) Calculated spatial field distribution in the cavity stack. The circles indicate the
amplitude of the field, plotted in (B) on a log scale. The dashed line gives a fit to the spatial field
distribution, the solid line gives the field distribution expected from the calculated Bragg length.
FDTD simulation courtesy of Allard P. Mosk

stack are represented as solid lines inside the figure. Inside the stack the fields oscillates

with an amplitude that decreases into the mirrors. The amplitude of the field is shown on a

log scale in figure 1.6 B, showing that the amplitude decreases exponentially with distance
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1.1. Photonic cavities

from the mirror. The field penetration into the stacks is given by the Bragg length:

Ez(x) = Ez0 exp
( −x

2LB

)
. (1.9)

From the fit to the data we find a Bragg length of LB = 0.43 µm, which surprisingly differs

from the calculated value of LB = 0.82 µm. We have currently no explanation for the

difference. We calculated the Bragg length by substituting S = 4
π

∣∣∣∣ nGaAs−nAlAs
nGaAs+nAlAs

∣∣∣∣ and Eq. 1.5

for normal incidence (θ = 0) into Eq. 1.7, yielding

LB =
|nGaAs + nAlAs|
|nGaAs − nAlAs|

d
2
. (1.10)

The expression for the photonic strength that we have used is valid for a Bragg stack with

λ/4-thick layers [24].

From this section we conclude that the confinement in the axial direction is given

by the Bragg length. In the transversal direction the structures we discussed so far are

infinite. To obtain a smaller mode volume it is necessary to also confine the resonances

laterally. The lateral confinement can be achieved using micropillar resonators.

1.1.3 Three-dimensional confinement of light

For lateral confinement of the cavity resonance the cavity stack is structured into micropil-

lar resonators. As in an optical fibre, due to internal reflection of light at the air-micropillar

interface, the resonances are confined [25]. Figure 1.7 shows the combination of the pil-

lar and Bragg stack schematically. As in an optical fibre, spatial field profiles emerge for

each resonance, by laterally confining the cavity resonances. An example of this is given

in the schematic micropillar resonator shown figure 1.7. The field pattern that is shown

corresponds to the fundamental micropillar resonance and has a maximum in the middle

and a minimum at the edges. Micropillar resonators can very well be modeled using the

theory for Bragg stacks and for waveguiding theory as shown in chapter 7 and [20, 26].

Figure 1.8 shows a scanning electron micrograph of a micropillar resonator with a diam-

eter of 6 µm. The layers of the Bragg stack can be recognized at the side of the pillar. The

ring pattern at the base of the pillar result from the fabrication process.

Micropillars cavities consist usually of GaAs/AlAs layers [3, 20, 27, 28], but also

pillars with HfO2/SiO2 layers for operation in the ultraviolet are reported in literature
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+ =

F 1.7: Schematic representation of the model of a micropillar cavity: a micropillar cavity
can be thought of as a combination of a planar microcavity which is laterally confined like a
fiber. Due to this lateral confinement, the micropillar cavity supports multiple resonances like
a fiber, depending on the diameter of the pillar. Each resonance has its own field profile, an
example of which is shown in the micropillar cavity.

[29]. Typical quality factors are in between 4.000 and 10.000, but even quality factors

exceeding 150.000 are observed [28]. The mode volumes are in the range of 0.3 µm3

[25]. In chapter 7, we present a method to optically address a single mode in a multimode

micropillar cavity.

Another way of in-plane confinement is to fabricate a two- or three-dimensional pho-

tonic crystal with a point defect as shown schematically in figure 1.9. The structure shown

in figure 1.9 confines light in-plane. Not only in the two directions shown in the Bragg

stacks, but also in all other directions light is Bragg reflected. The crystal shown in figure

1.9 can be extended to the third dimension. Extending the structure in three dimensions

F 1.8: Scanning electron micrograph of a micropillar cavity on a GaAs substrate. Careful
observation shows the GaAs AlAs layers of the cavity. The rings at the base of the pillar result
from the fabrication process.
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+ =+

F 1.9: Schematic representing three planar microcavities that behave like a two-
dimensional photonic crystal. A two-dimensional point defect breaks the crystal symmetry and
acts as a two-dimensional cavity.

means that the circles in figure 1.9 become spheres and that the symmetry of the circles

also extends into the third dimension. Ultimate three-dimensional confinement of light

thus requires the realization of a point defect in a three-dimensional photonic bandgap

crystal [30]. Interesting steps towards the fabrication of such cavities have been made

by [31, 32]. Figure 1.10 A shows the first ever realization of a three-dimensional silica

500 nm 4 µm

A B

F 1.10: (A) Scanning electron micrograph of a silica opal with an intentional point defect
that will act as a cavity [33]. The silica opal functions as a mirror. The mirror around the
cavity becomes three dimensional if a second layer of opal photonic crystal is grown on top of
the layer shown in the micrograph. (B) Scanning electron micrograph of a three-dimensional
silicon photonic crystal. The larger array of vertical pores is etched using reactive ion etching,
while the horizontal set of pores is etched using a focussed ion beam [34].

opal photonic crystal with an intentional point defect, consisting of 7 holes milled with

a focussed ion beam [33]. On top of this structure additional layers of opal photonic

crystal can be grown to bury the defect and thereby creating a photonic nanocavity in a

11



Introduction

three dimensional photonic crystal. In chapter 10, we will extensively study the proper-

ties of opals that act as three-dimensional cavity mirrors. Figure 1.10 B shows a silicon

three-dimensional photonic crystal milled in a two-dimensional photonic crystal with a

focussed ion beam. The two-dimension photonic crystal consists of vertical pores in a

crystal structure as shown in figure 1.9. In the bright area in figure 1.10 B a new set of

pores is milled perpendicular to the holes with a focussed ion beam. In this way a three

dimensional woodpile photonic crystal is created. A photonic cavity can be created by

locally breaking the crystal symmetry, for example by not etching one of the horizontal

and one of the vertical pores. On the intersection of these pores a local field enhancement

as in a cavity is expected [34].

1.2 Light source in a cavity

1.2.1 Spontaneous emission control

It is known that an elementary light source such as an atom emits a photon either spon-

taneously or stimulated by an external field [35]. It is also well-known that the rate of

spontaneous emission is not an immutable property of an atom [36, 37]. The rate also

strongly depends on its surroundings. In quantum mechanics, the rate of spontaneous

emission of an excited two-level atom is described by Fermi’s golden rule [38]: the rate is

determined by a product of atomic matrix elements of the dipole operator with the local

density of optical states (LDOS), that typifies the surroundings. The LDOS is thereby a

measure of the number of modes in which a photon can be emitted, and it can be inter-

preted as the density of vacuum fluctuations at the atom’s position. It should be noted

that Fermi’s golden rule is not exact but is a weak-coupling approximation [6, 39], that is,

the bath does not act back on the source. A main feature of spontaneous emission is its

dynamics: an emitted photon is measured at a random time after the atom is excited with a

short pulse. Both the distributions of emitted photons and of the excited-state population

decay exponentially in time, and are determined by the decay rate [40].

A well-known tool to modify the average spontaneous emission rate of a source in

the frequency domain is a resonant cavity tuned to the source’s emission frequency. At

the cavity resonance, the local density of optical states has a distinct peak that increases

the emission rate. It was first realized by Purcell that the emission rate of an atom can

be increased [41], known as the Purcell effect. The Purcell factor Fp gauges the change

12
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of the radiative emission rate Γcavity in a cavity relative to the rate Γ0 in a homogeneous

medium: Fp ≡ Γcavity/Γ0. Following the pioneering work by Gérard et al. [11], many

groups have demonstrated the Purcell effect with quantum dots embedded in solid-state

microcavities [1, 27]. To date, impressive progress has been achieved in controlling spon-

taneous emission in the frequency domain with nanophotonic structures. Recently, this

progress has culminated in the observation of vacuum-Rabi splitting of a quantum dot in

a cavity [3–5]. In this situation, the weak coupling limit is broken: the quantum dot reso-

nance and the cavity resonance hybride to form novel states of matter that show promise

for, e.g., quantum information processing [42].

1.2.2 Ultrafast spontaneous emission switching

In all microcavities and photonic crystals, however, the control is stationary in time. Thus,

the distribution of emitted photons and the emission rate do not change in time. Therefore

an important motivation for this thesis is to take steps to modify or "switch" spontaneous

emission ultrafast on time-scales faster than the atoms’ typical lifetime [43]. Eventually,

we anticipate that a strongly and quickly modulated bath is no longer a bona-fide bath.

This will lead to novel ultrafast quantum electrodynamics where the weak-coupling limit

is broken in the time domain.

Figure 1.11 A and B show schematically a cavity with time-dependent properties that

change the emission of the light source in the cavity, depicted by a sphere. By changing

the cavity resonance the emitter can be switched on or off resonance. In figure 1.11 A

the cavity resonance has a different frequency than the emission frequency of the source

in the cavity. When the cavity is switched such that the cavity resonance is equal to the

emission frequency of the source see figure 1.11, the emission intensity increases. The

increase results from the Purcell effect, which is shown to increase the decay rate for

emitters on resonance. Since the emitted intensity is related to the decay rate, an increase

in emitted intensity is to be expected for an emitter that is switched on resonance. This

will be treated in more detail in chapter 8. An interesting feature of switching of sponta-

neous emission on time scales faster than the sources’ lifetime is that we predict a burst of

spontaneous emitted light. Thereby a certain determinism is introduced in an otherwise

random quantum process.
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B

A

F 1.11: Schematic representation of switching an increase of emitted intensity if the
cavity properties are switched. In the unswitched cavity (situation A), the source emits little
light since the cavity resonance (dashed standing wave) is blue shifted compared to the light
source. In the switched case, light is emitted with high intensity from the source, since the
cavity resonance matches the emission wavelength of the source.

1.3 Ultrafast switching of a microcavity

1.3.1 All-optical switching mechanisms

We have investigated microcavities as shown in figure 1.4 and figure 1.8. In order to

all-optically switch the properties we employed two switching mechanisms. The first

mechanism comprises the well-known excitation of free carriers by an intense pump pulse

and is discussed in chapter 4 and chapter 6. In the case of free-carrier excitation the

refractive index is given by the Drude model for moderately high densities of excited free

carriers [13, 24, 44–47]. We have studied the dynamics of the switched cavity as a result

of the dynamics of the excited carriers. For the instantaneous switch of the structure, the

refractive index is given by Kerr coeffcient [48–50, 89].

While free carrier switching is a powerful and fast mechanism, its speed is limited

by material properties. Ultimate-fast instantaneous switching could be feasible by the

electronic Kerr effect. However, the electronic Kerr effect is believed to be too weak to
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1.3. Ultrafast switching of a microcavity

switch a photonic cavity [43]. We explore in chapter 5 the Kerr switching of a photonic

microcavity in both the photonic regime as in the long wavelength limit. To the best of

our knowledge we demonstrate for the first time ever the Kerr switch of a cavity. The high

speed of the Kerr switch could be of interest for high frequency data modulation [52].

t1

t2

t3

t4

A B

F 1.12: (A) Schematic representation of a loaded cavity that is switched. The blue light
that is stored in the cavity red- shifts due to the switched cavity resonance. The empty cavity
relaxes to its original resonance wavelength. (B) Schematic representation of an empty cavity
that is switched. When the cavity is switched and relaxes to its original resonance wave- length,
the cavity is loaded with photons. During the relaxation, the photons change color in absence
of a pump pulse.
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1.3.2 Light conversion in a switched optical microcavity

In order to manipulate light stored in a photonic crystal cavity it is necessary to change

the cavity properties in time. Two different schemes for manipulating light by changing

the cavity properties are shown in figure 1.12 A and figure 1.12 B. In scheme A light

is stored in the cavity at time t1, after which the cavity resonance is changed at time

t2. Light is in the cavity and its wavelength and thereby color is changed during the

switch. At later times t3 and t4 the now empty cavity relaxes back to its initial state.

Switching the cavity resonance can be achieved using a high intensity optical pump pulse.

In scheme A it is essential that the pump pulse overlaps in both space and time with the

light stored in the cavity [2, 53, 54]. Overlap in both space and time is also necessary

in more conventional schemes like nonlinear optics, where a pump and probe pulse are

overlapped in a nonlinear crystal [48, 55].

In scheme B the cavity is empty at time t1 and its optical resonance frequency is

switched using an optical pump pulse at time t2. When the pump pulse is gone, the cavity

is loaded with another light pulse, which remains in the cavity during the cavity storage

time, while the cavity relaxes to its initial state. During the relaxation of the cavity the

wavelength and thereby the color of the stored light changes. The new feature in scheme B

is that no overlap in space and time is needed between the pump and probe pulse. Scheme

A and B while be discussed in more detail in chapter 6.
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CHAPTER2
Experimental setups and samples

2.1 Introduction

Photonic crystals have a strong interaction with light. They are composite dielectric struc-

tures with a periodicity in the order of the wavelength of light. Examples of state of the

art microscopic photonic crystals are shown in figure 2.1. Figure 2.1 A shows a scan-

ning electron microscope (SEM) picture of a three-dimensional silicon inverse woodpile

photonic crystal (light colored pores perpendicular to vertical pores) embedded in a two-

dimensional silicon photonic crystal consisting of 7 µm deep vertical pores. The crystal

was made by first dry etching a large set of pores [56]. Subsequently, a second set of

pores, perpendicular to the first set, was etched with a focussed ion-beam. The resulting

photonic crystal is the most strongly interacting photonic crystal [57]. Figure 2.1 B shows

a field of micropillars with different radii ranging from 1 µm to 20 µm. The micropillars

consist of a λ-thick GaAs layer sandwiched between two Bragg stacks made from alter-

nating λ/4 GaAs and AlAs layers. We will discuss in the next section the fabrication of

planar microcavities. The reason is that these cavities are used throughout this thesis and

form the basis for the micropillar cavities that are treated in chapter 7.

The structural properties of photonic crystals and cavities are usually studied with

a scanning electron microscope (SEM), while the photonic properties of the photonic

crystals are assessed by optical reflectivity or transmission measurements. The reflectivity

and transmission spectra contain optical information on the photonic properties of the

samples, such as the spectral position of the stopgap. The thickness of the sample can also
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4 mm

10 mm

A

B

F 2.1: (A) Silicon three-dimensional photonic crystal of 5µm × 5µm × 5µm. The vertical
pores are etched with reactive ion etching [56], while the horizontal pores are etched with
focussed ion-beam milling. Picture by courtesy of R. W. Tjerkstra. (B) SEM picture of a field
of micropillars consisting of a λ-thick GaAs layer sandwiched between two Bragg stacks made
from λ/4-layers of GaAs and AlAs. Picture by courtesy of J. C. Claudon [20].

be derived, if the measured spectrum contains Fabry-Pérot fringes [58]. In this chapter

we describe the reflectivity microscope that is used in this thesis for linear reflectivity

and transmission measurements. We also describe an ultrafast two-color pump-probe

setup, which we use to switch planar microcavities. With the latter setup both time- and

frequency-resolved broadband measurements are feasible.

2.2 Fabrication of planar microcavities

We have studied two microcavity samples, one with a resonance near λ = 980 nm and

one near 1300 nm. The 980 nm and 1300 nm structure consist of a GaAs λ thick layer

sandwiched between two Bragg stacks consisting of 12 and 16 pairs of λ/4 thick layers
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2.3. Broadband reflectivity microscope

of nominally pure GaAs or AlAs. The thickness of the λ-layer is 277 nm in the case of

the 980 nm sample and 373 nm in the case of the 1300 nm sample. The same 980 nm

structure was studied in [13, 59]. A scanning electron micrograph of the 1300 nm cavity

is shown in figure 2.2. The alternating layers of GaAs (light gray) and AlAs (dark gray)

1µm

F 2.2: Scanning electron micrograph of the microcavity with a resonance at 1300 nm. A
λ-thick layer, indicated with white arrows, is sandwiched between two Bragg stacks. The GaAs
substrate is visible at the bottom.

can clearly be seen. The λ-thick cavity layer is indicated with two white arrows. The

samples are grown with molecular beam epitaxy at 550◦C to optimize the optical quality

[20]. For experiments outside the present scope the samples were doped with 1010cm−2

InGaAs/GaAs quantum dots, which hardly influence our experiment (1). There is a spatial

gradient in the cavity thickness of the 980 nm sample δd
δx = 5.64 nm/mm [59]. The spatial

gradient results in a position dependent resonance frequency. In our measurements we

average the transmitted intensity over the area of the focal spot. The different resonance

frequencies cause the resonance to broaden inhomogeneously.

2.3 Broadband reflectivity microscope

Typical conventional opal photonic crystals have dimensions in the order of 100 µm, but

state of the art photonic crystals and micro pillar cavities made with nanofabrication tech-

niques have dimensions in the order of 1-10 µm. In order to measure the reflectivity of

(1) The maximum unbroadened refractive index change of the dots amounts to only 10−8, while the absorption
at resonance is less than 0.02 cm−1.
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such small structures we need a focus diameter comparable and preferably smaller than

the photonic structures (see for example chapter 7 and chapter 9). If the focus is larger,

the reflected spectrum will not be solely from the sample, which complicates analysis.

Furthermore, we need to accurately position the focus on the photonic sample. For the

small dimensions of our structures a dedicated setup is necessary.

We have designed and built a new reflectivity setup dedicated to focussing white light

with a broad spectrum onto structures with 5 µm width and height, and positioning the fo-

cus in a controlled way. To achieve this we used a broadband supercontinuum white-light

source, actuators with high resolution, a built-in microscope, and a Fourier Transform

Interferometer (FTIR). The setup was tested by measuring the reflectivity spectra of alu-

minum, silver, and gold mirrors and a well known photonic sample, namely a woodpile

photonic crystal. The latter sample has been studied extensively by Euser and Molenaar

[24, 60].

2.3.1 Reflectivity

The setup used to measure reflectivity spectra is shown schematically in figure 2.3. The

F 2.3: Schematic of the reflectivity setup with Fianium supercontinuum white-light
source, Biorad Fourier-transform spectrometer, and the microscope with the CCD camera.

setup consists of a Fianium supercontinuum white-light source, a Fourier-transform spec-

trometer (Biorad FTS6000), a CCD camera (Dolphin F145b), a xyz automated translation

stage and optics to guide the beam to the sample. The Fianium supercontinuum white-
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2.3. Broadband reflectivity microscope

light source has an output power of 2 W and an output wavelength range from 450 nm to

2500 nm. The light source is pulsed, with a pulse duration of 2 ps. The repetition rate of

the white light source is 20 MHz. Since white light is generated in a fiber, the beam is

highly collimated and can be focussed down to 2 µm, the output fiber diameter. A 2 µm

focus is difficult to achieve with conventional white light sources, since a pinhole with

a diameter of 2 µm in a collimator is needed. Due to this small pinhole very little light

from the light source is transmitted through the collimator thereby decreasing the avail-

able power and the signal to noise ratio. The Fourier-transform spectrometer is similar to

the one used by Thijssen et al. [61]. The resolution of the spectrometer is 1 cm−1. With

the automated translation stage it is possible to position the sample with 50 nm precision

in all three directions. Automated positioning is necessary since the dimensions of the

structures and the focus length is in the order of a few µm. We used aluminum mirrors to

guide the beam to the sample. The type of detector used for the measurement was selected

based on the spectral region of interest. Examples are Si, InGaAs and InAs diodes.

To be able to focus onto the small photonic crystals we built a microscope into the re-

flectivity setup. To view the sample it is illuminated through a gold-coated dispersionless

reflecting microscope objective (Ealing X74) with numerical aperture NA = 0.65 by halo-

gen light. Light reflected from the sample is collected by the same microscope objective

and focussed onto a CCD camera with a 200 mm tube lens. The sample can be positioned

with an accuracy of 50 nm using a translation stage and three motorized actuators. The

camera is discussed in more detail in section 2.3.3

2.3.2 Characterization reflectivity measurements

The reflectivity spectra of the aluminum (Thorlabs, FP10-03-F01) and silver mirrors

(Thorlabs, FP10-03-P01) are shown in figure 2.4. The reflectivity is gauged with the

spectrum of a gold mirror. Both the aluminum and the silver mirror show a flat reflec-

tivity spectrum at 100 % and 102 %, respectively. This agrees with the larger reflectivity

of silver compared to gold. Furthermore, the reflectivity spectra of both the aluminum

and silver mirror are flat as expected. In the reflectivity spectrum of the aluminum mirror

we see a trough at 12500 cm−1 due to an increased absorption of the aluminum, which

is caused by interband electronic transitions [62]. The decrease of 20% agrees with the

value presented in [62]. The increased absorption of aluminum near 12500 cm−1 results
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F 2.4: Measurements of a silver and an aluminum mirror. The reflectance is normalized
with the gold reflectance, yielding the reflectivity spectrum. The reflectivity spectrum of alu-
minum is flat and 100 %, except for a trough at 12500 cm−1 due to an increased absorption of
the aluminum caused by interband electronic transitions [62].

in noise. Since the signal at this frequency is decreased due to the aluminum mirrors used

in the optical path, thereby decreasing the signal to noise ratio.

After the mirrors, a photonic crystal sample was measured. The reflectivity spectrum

of a woodpile photonic crystal is shown in figure 2.5. A pronounced and broad stopband

is present between 5000 cm−1 and 8500 cm−1. A pronounced trough is visible at 7800

cm−1 (indicated with black arrow) in the stopband for light polarized parallel to the rods

in the upper layer of the photonic crystal. The trough in the stopband appears for a polar-

ization parallel to the upper layer of rods and is related to the superstructure of the crystal

[24, 63]. In previous measurements on woodpile photonic crystals a strong dependence

of the reflectivity spectrum on polarization was found by Molenaar [60]. The previous

measurements were done by extensive laser scanning with the switch setup which also

requires frequent realignment. Conversely, with our new setup the whole spectrum is

quickly acquired. The measurements of Molenaar and the measurement with the new re-

flectivity setup are shown in figure 2.5. Figure 2.5 shows that the previous measurements

are well reproduced with our reflectivity setup without polarizer. The maximum difference

we found between the measurements is 12.5%, which is a very good agreement between

the two measurements. The reflectivity spectrum from the reflectivity setup agree with the

switch setup, since our white light source has one dominant polarization in the spectral
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region from 4000 cm−1 to 10000 cm−1. The ratio between the polarizations is about 85 %.
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F 2.5: Measurements of the stopband of a woodpile photonic crystal by laser scanning
with the switching setup (solid squares) [24] and the new reflectivity setup (open circles). The
black arrow indicates a trough in the stopband.

2.3.3 Microscope

A CCD camera is built into the setup in order to align more precisely and to be able to

make a map of the surface of the photonic samples under investigation. Figure 2.6 A

shows a microscope image of the same 3D inverse woodpile photonic crystal as in figure

2.1. The top side of the picture shows air and the bottom side silicon. At the air-silicon

interface a 7 µm thick layer of 2D photonic crystal is present seen as the vertical pores.

The black arrow indicates the 3D photonic crystal, which is 5 µm wide. The white arrow

indicates the white-light focus, which has dimensions equal to the 3D crystal. Figure 2.6

B shows a picture from a micropillar with a diameter of 20 µm similar to the one shown in

figure 2.1 B. The white background is from the gold surface of the sample reflected light.

The grey circle is the micropillar. The white dot on top of the micropillar is the focused

white-light laser beam that is much smaller than the pillar.
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A
B

20 µm7 µm 

F 2.6: Picture a 3D silicon inverse woodpile photonic crystal (A, black arrow) and a
micropillar sample (B). The 3D photonic crystal is the same as shown in figure 2.1. The white
arrow indicates the white-light focus. The diameter of the micropillar is 20 µm. The white
background is the gold surface and the grey circle is the micropillar. The white spot in the
middle of the micropillar is the white-light laser beam, whose focus is smaller than the pillar.

2.3.4 Reflectivity measurements

Optical reflectivity measurements with the new setup are shown in figure 2.7. Figure 2.7

A B

F 2.7: Reflectivity spectra of a 2D photonic crystal (A) and of the micropillar shown in
figure 2.3 B (B). The spectra were measured with different detectors therefore the frequency
scale is different in figure 2.7 A and B.

A shows the reflectivity spectrum of a 7 µm thick two-dimensional photonic crystal. The

spectrum of the two-dimensional photonic crystal shows two reflection peaks. The first

peak at 5000 cm−1 is due to the Γ − K-gap while the second peak at 8000 cm−1 is due to

Bragg reflection (see also chapter 9). Figure 2.7 B shows the spectrum of the micropillar

depicted in figure 2.6 B, which has a diameter of 20 µm. The reflectivity spectrum of
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the micropillar shows a broad stopband around 9000 cm−1. In the middle of the stop-

band a trough is present due to the λ-layer that acts as an optical cavity. The measured

linewidth of the cavity resonance is broadened due to the high NA of the objective. The

homogeneous linewidth is in the order of 0.05 %, corresponding to a Q of 2000.

2.4 Ultrafast switch setup

2.4.1 Pump and probe beams

Figure 2.8 shows a schematic representation of our ultrafast switching setup. It has been

extensively described before [24, 59, 64], therefore we provide a short overview. The

setup consists of a regeneratively amplified Ti:Sapphire laser (Spectra Physics Hurricane),

which drives two independently tunable optical parametric amplifiers (OPAs, Topas) with

a repetition rate of Ωrep = 1 kHz. The frequencies of both OPAs are computer controlled

and have a continuously tunable output frequency between 0.44 and 2.4 eV. The pulse

duration is τP = 120 ± 10 fs (measured at EPump = 0.95 eV) (2), and the spectral width

∆E/E0 = 1.33% (3), so the pulses are nearly transform limited (transform limited pulses

would have a duration of τP = 110 fs). The delay stage is computer controlled and can

introduce a path difference of 40 cm to the probe, corresponding to a time delay of 1.3

ns, much longer than typical recombination times in III-V semiconductor or polysilicon

structures that we studied. The resolution is 10 fs, and thus much higher than the pulse

durations. The pump is focussed onto the sample under an angle of θ = 15◦ by an achro-

matic lens of NA = 0.01.

The peak intensity for a focussed Gaussian pulse is given by

Ipump =
4
√

ln 2G

π
3
2 r2τP

, (2.1)

where r is the waist radius at the focus and G the energy of the pulse. Because r depends

on the pump frequency Epump, it is important to take into account the variation in intensity

in experiments where the pump frequency is scanned. The diameters were obtained by

measuring the reflected intensity of the pump beam as a sharp-edged Si wafer is scanned

(2) τP denotes the FWHM of the pulse intensity, see e.g. [55], and was measured using an intensity autocorrelator,
see also chapter 3.
(3) Measured with an OceanOptics USB2000 spectrometer.
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F 2.8: Schematic drawing of the setup. The pump and probe OPA’s (TOPAS) are driven
by a Hurricane (not shown) emitting 120 fs pulses. The pump pulses are delayed via a delay
stage. After the pulses pass through a chopper, both probe and the pump pulses are separately
monitored by diodes. The pulses are focussed onto the sample via achromatic lenses, and the
intensities of the reflected probe pulses are measured via an InGaAs diode detector. The
intensity of each monitored and reflected pulse is sampled and held by a boxcar averager,
which offers the integrated intensity to a PC, that stores every single pulse for later evaluation.
In the frequency resolved setup, we replaced the diode detector with a spectrometer.

through the focus. The reflected intensity is the integral of the light distribution in the

focus, and is an error function for a Gaussian beam. We therefore fitted the derivative of

the measured intensity to a Gaussian, from which the widths are readily obtained. The

resulting diameters are compared to the diffraction limited diameter under an angle of

θ = 15◦ and excellent agreement is obtained.

The probe beam is normally incident (θ = 0◦) onto the sample, and is focused to a

Gaussian spot of 32 µm FWHM (at Eprobe = 1.24 eV) at a small angular divergence NA

= 0.02. Because of the smaller probe focus with respect to that of the pump, only the flat

part of the pump focus is probed, resulting in good lateral homogeneity. The reflectivity

was calibrated by referencing to a gold mirror. To avoid carrier generation by the probe,

we verified during all experiments that the probe pulses on the sample were ten times less

intense than the pump pulses.
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2.4. Ultrafast switch setup

2.4.2 Broadband detection

We have performed two sets of switching experiments that differ through their detection

schemes. In the first broadband scheme, we measured both the reflected probe as well

as the pump and probe intensity monitors with InGaAs diode detectors. To reduce the

possible noise caused by the low probe powers, and the possible background caused by the

pump, a versatile measurement scheme was developed to subtract the pump background

from the probe signal, and to compensate for possible pulse-to-pulse variations in the

output of our laser [47, 64].

We measured both the reflected probe as well as the pump and probe intensity mon-

itors with InGaAs diode detectors. A boxcar averager, synchronized to the pulse trigger,

integrates and holds the detected signal before being read out by a digital to analogue con-

verter (DAC). The signal J offered to the DAC card by the boxcar, neglecting electronic

amplification factors, is equal to the magnitude of the time- and space integrated Poynting

vector S,

J = πR2
∫ tint/2

−tint/2
|S|dt =

∫ tint/2

−tint/2

√
ε0

µ0
z(t)2dt (2.2)

≈ πR2
√
ε0

µ0

z̃2
0

2

∫ ∞

−∞

(
exp(−4 ln 2t2/τ2

G)
)2

dt (2.3)

= πR2
√
ε0

µ0

√
π

2 ln(2)
τPz̃

2
0

4
, (2.4)

where the electric field z(t) reflected by a perfect mirror onto the detector can be separated

in a Gaussian envelope z̃(t) of FWHM τG and amplitude z̃0 multiplied by an sinusoidal

component with a carrier frequency ω0 in rad/s (4). The beam is collimated and has radius

R. ε0 and µ0 denote the permittivity and permeability of free space, respectively. The

squared oscillating term can then be integrated separately and yields 1/2, and the time

integration can be taken to infinity because tint >> τP. Since the integration time of the

boxcar (tint ∼ 150 ns) is much longer than any probe interaction time (5), we essentially

integrate all probe light that is stored or reflected by the cavity, given a set pump-probe

(4) This Slowly Varying Envelope Approximation (SVEA, see e.g. [55]) can be applied to pulses where
τP >> 1/ω0, and where ω0 does not change over t, i.e., for bandwidth limited pulses. For pulses whose
envelope is broadened by interaction with a cavity, the analytic expression obtained (Eq. 2.4) is not valid, but
the approximation of the integration limits does not change.
(5) The probe interaction time is either τP or Q/ω0, whichever is greater, and is in the 100 fs to 1 ps range.
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Experimental setups and samples

time delay ∆τ. We note that it is not the instantaneous transmission or reflection that is

measured, but the integrated intensity. Therefore we call the measured signal, transient

reflectivity or transient transmission.

2.4.3 Frequency-resolved detection

In a second set of experiments, we used the large probe bandwidth to resolve spectral

features with a high-resolution spectrometer. These narrow spectral features occurred

in the microcavity samples discussed in chapter 4 and chapter 6. We accomplish this

with a spectrograph (PI/Acton SP-2558), using a 1024 channel InGaAs detector (OMA-

V), yielding a resolution of 0.12 meV at 1.24 eV [65]. The diode array is kept at a

temperature of 100 K to reduce dark counts, measured to be 350 adu/(s pixel), only 1

% of the counts detected from probe pulses of several nJ. The transient reflectivity was

determined by referencing the transient reflectance spectra to a gold spectrum at the end

of the scan. Even though the effective repetition period (Ωrep/2 = 1/500 Hz) of the laser

is equal to the minimum exposure time of the detector electronics (2 ms), the OMA-V

was operated in free running mode, with an integration time set to 1s, as no additional

useful information was expected in single shot measurements. The measured spectra thus

consist of 1s·500Hz = 500 pulses. The observed spectrum, again without amplification

and conversion factors, is a Fourier Transform of z(t):

J(ω) = πR2(ε0c)−1
∣∣∣∣∣
∫ ∞

−∞
dtz(t)eiωt

∣∣∣∣∣
2

, (2.5)

where c is the velocity of light in free space. A field leaking from a cavity whose res-

onance shifts in time might have frequency components whose amplitude is higher than

that of a bandwidth limited pulse reflected off a gold mirror. In that case, the ratio of

the reflected pulse to a reference pulse, the transient reflectivity, J(ω)sample/J(ω)ref may

exceed unity for some EProbe.
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CHAPTER3
True quality factor of an ultrafast microcavity

3.1 Introduction

Since light is extremely elusive there is a great interest to store photons in a small volume

for a certain time. Storage of photons in an applicable way can be achieved using solid

state cavities. Tanabe et al. used cavities to create large pulse delays with small group

velocities by storing light in a cavity inside a 2D photonic crystal slab [66, 67]. Another

application where storage of light in a cavity plays a crucial role is changing the color

of light as was studied by Preble et al. [2]. Ultimately, with a microcavity the strong

coupling regime of cavity quantum electrodynamics can be entered [3, 4]. In the strong

coupling regime a cavity and a two level system together form a new set of states. Normal-

mode splitting of a coupled exciton-photon mode was observed in a planar microcavity

[68]. Other interesting experiments have been performed on planar cavities, e.g, Bose-

Einstein condensation of exciton polaritons [69] and the investigation of the limitations

of a scanning Fabry-Pérot interferometer [70].

An important characteristic parameter of a cavity resonance is the storage time of light

τcav. The storage time is defined by the response of the cavity resonance to a Dirac pulse.

Excitation of the electromagnetic field in a cavity was studied in [71]. The response to the

Dirac pulse is given by an exponential decay of the intensity I(t) in the cavity resonance

[8]:

I(t) = I0e−t/τcav , (3.1)
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True quality factor of an ultrafast microcavity

with I0 the initial intensity that the pulse stores in the cavity. However, in more complex

cavities the behavior of the cavity can be very different from the single exponential case

[9]. To compare cavities independent of their resonance frequencies ω0, the widely used

figure of merit is the resonance quality factor Q, which is defined as:

Q ≡ τcavω0. (3.2)

Physically, the quality factor is proportional to the ratio between the total energy stored

and the energy lost per cycle. At optical frequencies a cavity with a feasible high quality

factor of Q = 106 is relatively slow with a response time in the order of nanoseconds. A

cavity with a moderate quality factor Q = 1000, however, is fast with a response time of

picoseconds. The picosecond timescale allows ultrafast access and storage of light in the

cavities.

A common procedure to estimate the quality factor of a cavity is to measure a trans-

mission or reflectivity spectrum and extract Q from the relative linewidth of the cavity

resonance [2–4, 10–13]. For a single resonance without dephasing, one can use the

Wiener-Khintchine theorem, which relates the field autocorrelate to the intensity spec-

trum, to obtain

Q =
ω0

∆ω
. (3.3)

However, if there is significant dephasing, e.g. due to inhomogeneous broadening or

thermal noise, ∆ω will in general be larger and Q > ω0/∆ω.

From many resonating systems in condensed matter and solid state physics, it is

known that besides homogeneous broadening there is also the possibility of inhomo-

geneous broadening of a resonance [6, 14]. In the case of an ensemble of resonators

inhomogeneous broadening of a resonance results from inhomogeneities in the resonance

frequency. If the resonance frequency is different for each resonator the linewidth of the

ensemble is broader than the linewidth of a single resonator and the ensemble linewidth

is typically determined by the distribution of resonance frequencies. In the case of in-

homogeneous broadening the linewidth will only give a lower boundary for the range of

possible Q values. The true quality factor must in this case be determined from dynamic

measurements.

A dynamic measurement to determine the quality factor is a cavity ring down exper-

iment as was treated in [72]. In this case a cavity is excited by a pulse and the intensity
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3.2. Experimental

emitted from the cavity is measured as a function of time. In the case of storage times in

the order of nanoseconds and very high quality factors (Q = 106) time correlated single

photon counting can be used to determine the storage time [66]. In our case of ultrafast

cavities that decay on a ps timescale with moderate quality factor (Q = 1000), an intensity

autocorrelation function is the method of choice for determining the quality factor.

We measure a normalized intensity autocorrelation function G2, following [55]

G2(τ) =
< I(t)I(t − τ) >

I2
0

, (3.4)

where τ is the delay time between the pulses from each of the interferometer branches, I2
0

is equal to maximum value of the unnormalized autocorrelation value, and I(t) is the time

dependent intensity. There is no phase in Eq. 3.4, which means that this is the proper

autocorrelation function, also in case of dephasing. The autocorrelate has its maximum at

delay τ = 0, when the pulses in the two branches of the Michelson interferometer overlap.

For example the autocorrelate of a Gaussian pulse is given by a Gaussian shape, where

the width of the input pulse τip and the autocorrelate are related as τac =
√

2τip. From

the autocorrelate of a pulse stored in the cavity resonance, the storage time can be found

from the full width at half maximum τFWHM of G2, with τcav = 0.63τFWHM .

3.2 Experimental

For pulse transmission and the intensity autocorrelate, we used a Titanium Sapphire laser

that emits τip = 0.115 ps pulses at λ = 800 nm at a repetition rate of 1 kHz (Hurricane,

Spectra Physics). The laser drives an optical parametric amplifier (OPA, Topas 800-fs,

Light Conversion), which generates the pulses used to probe the photonic cavity. The

center wavelength of the OPA pulses can be tuned between 450 nm and 2400 nm. We

used a fiber optic spectrometer (USB2000, Ocean Optics) to measure transmission spec-

tra of the femtosecond pulses. We measured with an unfocused collimated beam with a

spot diameter of 2 mm, and a numerical aperture NA = 10−4. The intensity autocorrelation

function was measured using a Pulse Check autocorrelator (APE GmbH). The autocor-

relator consists of a Michelson interferometer with a scanned delay path and a nonlinear

crystal that generates second harmonic light. The autocorrelator has a maximum range of

15 ps with a resolution of 1 fs. We used the same beam parameters as in transmission.
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A B

F 3.1: (A) Linear reflectivity and transmission spectrum of the GaAs/AlAs microcavity.
The solid line represents the fit with a Transfer Matrix (TM) model. A stopband is apparent
in both reflection and transmission; the trough in the reflectivity spectrum and the peak in
the transmission spectrum reveal the presence of the cavity. (B) Zoom-in of (A). From the
linewidth of the trough and peak, an inverse relative linewidth of 830 was found in reflection
and transmission. The resonance is slightly shifted between the transmission and reflection
measurement due to realignment of the sample between the measurements. The inset in B
shows a reflection and a transmission spectrum, measured at the same position. Here the
trough and peak are clearly at the same wavelength.

The intensity on the sample is 100 kWcm−2, sufficiently low to avoid nonlinear effects.

Simulations were performed with the finite-difference time-domain (FDTD) method

using a freely available software package with subpixel smoothing for increased accuracy

[23].

3.3 Experimental results

In figure 3.1 A we show the reflection and transmission spectra of the 980 nm planar cav-

ity. A prominent stopband with a reflection of 100 % and a transmission of 0 % is visible.

Outside the stopband a Fabry-Pérot fringe pattern is visible, while inside the stopband a

narrow trough in reflection and a narrow peak in transmission mark the position of the

cavity resonance. An effect of the spatial gradient in the cavity thickness is visible in the

spectra in figure 3.1 B: The frequencies of the peak and trough, which are measured at

different sample position, differ slightly. Reflectivity and transmission measurements on

the same spot are shown as an inset in figure 3.1 B. The trough and the peak are clearly at

the same wavelength as expected.

32



3.3. Experimental results

-2 0 2
0

1 

Autocorr. time [ps]

N
or
m
. A

ut
oc

or
r. 

[-
]

0

1

C

B

  

0

1

2

 

 

 

A

F 3.2: Normalized intensity autocorrelation traces of pulses transmitted through a planar
cavity at different OPA wavelength settings: 930 nm (A), 985 nm (B) and 1070 nm (C). The au-
tocorrelation traces of the input pulses are given by the circles, while the autocorrelation traces
of pulses transmitted through the cavity are offset by 0.9 and given by squares. The dashed
and solid lines are fits to the autocorrelation traces, without and with sample, respectively. The
shape of the autocorrelation trace is Gaussian for the pulses from the OPA. The pulses that are
on resonance with the cavity show an autocorrelate that agrees very well with the autocorrela-
tion trace from the damped oscillator model (B). The shape of the pulses transmitted through a
non-photonic range of the sample remains Gaussian.

The solid line in figures 3.1 A and 3.1 B represents a transfer matrix (TM) calculation,

with fixed complex input parameters nGaAs [73] and nAlAs [74]. The thickness of the λ/4

layers (dGaAs = 70.2 nm and dAlAs = 83.2 nm) and the thickness of the cavity (dcav = 277

nm) were obtained by fitting the results of the calculations to the measured spectrum.

These values are in agreement with expected values from the fabrication process. The

calculation fits well with respect to frequency and amplitude. The reflectivity of the mea-

sured stopband is higher than the calculated value of 100 % because of a small systematic

error in the gold reference spectrum.

It is apparent from figure 3.1 B that the calculated linewidth of the cavity resonance

is narrower than the measured linewidth. We attribute this discrepancy to inhomogeneous

broadening of the measured linewidth, due to the spatial gradient in the cavity layer thick-

ness. With the 100 µm diameter spot we average over different positions and therefore

over different resonance frequencies. Broadening due to a spread in wavevectors can

be neglected since the numerical aperture of the impinging beam was made very small
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True quality factor of an ultrafast microcavity

(NA < 0.05), as opposed to [13], where a high NA was used. We find that the relative

linewidth in both reflection and transmission equals λ0
∆λ

= 830, with ∆λ the full width at

half maximum (FWHM) and λ0 the resonance wavelength. The transfer matrix calcu-

lation yields an inverse relative linewidth of 1640 ± 100, about double the value of the

inverse linewidth measured with white-light spectroscopy.

We measured the intensity autocorrelation traces to determine the true storage time

and Q of the cavity resonance with a time-resolved measurement. Figure 3.2 shows the

autocorrelation traces at values of the center wavelength of the OPA, λOPA = 930 nm

(A), λOPA = 985 nm (B) and λOPA = 1070 nm (C). All figures show that the pulses

that are transmitted through the sample are broader than the input pulses. The width of

the input pulses is τip = 0.115 ps and the shape Gaussian, which we expect from the

specifications of our laser system. The transmitted pulses are broadened by dispersion in

the off resonance cases (A) and (C). In the case of figure 3.2 B the broadening is the result

of the storage of the photons in the cavity.

The shape of the autocorrelation trace of the transmitted pulses is Gaussian for pulses

transmitted outside the stopband, as expected. The autocorrelation traces measured on

resonance with the cavity (B) are non-Gaussian. This is typical for autocorrelation traces

near the cavity resonance, because of the exponential decay of the energy stored in the

cavity. The autocorrelation traces calculated with a damped oscillator model is shown in

figure (B) and fits the experimental data very well. From the width of the autocorrelation

trace on resonance (τFWHM = 1.1 ps), we conclude that the true storage time of our cavity

is τcav = 0.78 ± 0.05 ps.

To further analyze the autocorrelation traces we plot the full width at half maximum

of the measured autocorrelation traces. The results are shown in figure 3.3 A as a func-

tion of center wavelength of the laser. The width of the autocorrelate of pulses without

the sample is τac = 0.115 × √2 ps and essentially independent of laser wavelength, as

expected from the OPA specifications. In the presence of the sample, we observe a more

complex dependency on the wavelength, with three regimes: Transmission on resonance,

transmission outside the stopband, transmission inside the stopband. Near the cavity res-

onance the width of the autocorrelate increases drastically to τFWHM = 1.1 ps. The width

of the autocorrelate at the cavity resonance is attributed to the storage of light in the cav-

ity: The storage time of the cavity τcav = 0.78 ± 0.05 ps and the quality factor is equal to

1500 ± 100.
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A B

F 3.3: (A) Pulse width as a function of wavelength setting. The pulses that passed
through the sample (squares) are broadened with respect to the input pulses (circles). The
solid/dashed line represents the FWHM of a 15 nm spectrally wide input pulse that is trans-
mitted through a 350 µm GaAs wafer that is used as a substrate. (B) Normalized spectrum
transmitted through the microcavity, and reference spectra of pulses directly from the OPA. For
935 nm wavelength setting (solid squares) the transmitted spectrum consists of the tail of the
input spectrum that continues in the region on the blue side of the stopband (solid circles).

Outside the stopband the pulses are broadened. The width of the autocorrelate outside

the stopband is about 0.2× √2 ps. We attribute the broadening outside the stopband region

to dispersion in the GaAs substrate. From figure 3.3 A it can be seen that the width of the

autocorrelation traces matches well the expected width for a pulse transmitted through a

GaAs wafer [75]. The expected width is calculated for a GaAs wafer with a thickness of

350 µm, from the dispersion given by Blakemore [73].

In figure 3.3 A, we observe datapoints inside the stopband, where a transmission of

0 % is expected. We measure values for the width that are close to the values outside

the stopband. The situation in this case is sketched in figure 3.3 B where we see the

transmitted spectrum with and without sample. We observe that the blue part of the spec-

trum is transmitted, which means that the measured width of the intensity autocorrelate

is the value corresponding to the blue side of the stopband and not a value for outside the

stopband.

3.4 Modeling

To obtain a physical picture of the decay mechanism inside the cavity and to verify what

the true Q is, we model the behavior with a damped harmonic oscillator. We furthermore
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performed FDTD calculations to calculate the Q of the cavity in the ideal case and to

check the validity of the harmonic oscillator model (1).

The response of a damped harmonic oscillator with Q = 1450 to a Gaussian input

pulse with a width of τip = 0.2 ps is shown in figure 3.4, together with the Gaussian input

pulse and the cavity response as calculated with FDTD. No dispersion and no absorption

was taken into account for the FDTD calculations. In the harmonic oscillator case and in

the FDTD case the intensity decays exponentially and with the same rate. Therefore, we

conclude that the harmonic oscillator is a suitable model to describe in a simple way the

decay of the microcavity. Furthermore the quality factor of the cavity without absorption

and dispersion is equal to Q = 1450 ± 100.
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F 3.4: Response of a damped harmonic oscillator with a quality factor Q = 1450 (dashed)
to a Gaussian input pulse (solid). The output pulse is the input pulse convoluted with the
impulse response of the oscillator. The symbols represent the resulting decay of the intensity
in the cavity, as obtained from the FDTD calculation.

With the damped harmonic oscillator model we have calculated the autocorrelates that

are shown together with the measured data in figure 3.5 for a quality factor of the damped

harmonic oscillator Q = 1500 and Gaussian input pulse with width 0.12 ps. Figure 3.5

shows a very good agreement between the measured autocorrelation trace and the calcu-

(1) We used e−tω0/Q as the impulse response of intensity in the cavity.
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F 3.5: Autocorrelate of pulse transmitted at the cavity resonance (circles). The solid line
represents the result from a simple oscillator model with Q = 1500. The input pulse duration is
0.12 ps.

lated autocorrelation trace for Q = 1500. The autocorrelate obtained from this model has

a FWHM of 1.2 ps, which is in very good agreement with the measured value of 1.1 ps.

Table 3.1 presents the results of the various methods to determine the quality factor

presented in this chapter. We see that the value for the inverse linewidth found from the

transfer matrix model agrees well with the value found from the autocorrelator measure-

ment. The slight discrepancy might be attributed to minor irregularities in the structure.

We conclude that the quality factor of the cavity is 1500 ± 100 and the storage time of

light 0.78 ± 0.05 ps. The inverse linewidth measured in reflection and transmission with

white light spectroscopy is much smaller than the value from autocorrelator measure-

ments. The difference results from inhomogeneous broadening due to the spatial gradient

in the thickness of the cavity layer. For a quality factor of 1500 we expect a width of 0.64

nm, while we measure a width of 1.2 ± 0.1 nm. Because of the focus diameter of 100 µm

and the spatial gradient of 5.64 nm/mm, we expect a broadening of 0.56 nm. We find a

total width of 1.2 ± 0.1 nm if we add the broadening to the unbroadened width. The total

width of 1.2 ± 0.1 nm is in perfect agreement with the measured value of 1.2 ± 0.1 nm.

The FDTD calculation agrees very well with the measured value and the value obtained

from the transfer matrix calculation. No absorption is taken into account in the FDTD

calculation, which is the case for the TM model.
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T 3.1: Overview of inverse linewidths and cavity lifetimes measured and calculated with
presented methods.

Method λ0
∆λ

τcav (ps)

Measurement Autocorrelator 1500 ±100 0.78±0.05
Refl./Trans. 830 ±50 0.43 ±0.02

Theory Transfer Matrix 1640 ±100 0.93±0.05
FDTD 1450 ±100 0.75 ±0.05

The inverse relative linewidth of 830 that we find from the transmission and reflec-

tivity measurements is the result of inhomogeneous broadening of the resonance. The

origin of this inhomogeneous broadening is most likely the spatial gradient in the λ-thick

GaAs layer. Because there is inhomogeneous broadening, the planar microcavity should

be viewed as a static ensemble of microcavities of which each resonance frequency is

slightly shifted [6]. This is in agreement with the results presented in [76], where the

spatial extent of modes was investigated. The effective radius of the mode is given by

r2
e f f = (Q/2π)(λ/n)2. In our case we find a spatial extent in the order of 5 µm, which

is much smaller than the diameter of the probe beam. In general our results show that

the true quality factor of a planar microcavity indeed can only be obtained from a time-

resolved measurement.

3.5 Conclusion

In the case of an inhomogeneously broadened resonance we have shown that the intensity

autocorrelate can be used to determine the storage time of a cavity resonance. For an

inhomogeneously broadened microcavity resonance we have measured both the spectral

width and the intensity autocorrelation trace. The intensity autocorrelation trace yields

a value of the quality factor that agrees well with the values found from transfer matrix

and FDTD calculations. The spectral width is affected by inhomogeneous broadening and

leads to the wrong value for the quality factor.
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CHAPTER4
Three photon free carrier switching of GaAs/AlAs

microcavity

4.1 Introduction

Recently, there has been a growing interest in switching cavities on ultrafast timescales.

Switching cavities is important for dynamic control of light, such as optical wavelength

modulation, bandwidth conversion, density of states switching, and trapping and releas-

ing photons [43, 77–80]. Cavity switching becomes especially interesting when the pho-

ton storage time τcav is in the order of the timescales within which the cavity resonance

changes [81]. In this regime, strong pulse chirping has been observed [82]. Further-

more, frequency conversion was observed when a resonator was switched at a femtosec-

ond timescale [2].

Because of technical progress, the availability of strong, short optical pulses, the good

reproducibility of the cavities, and the possibility of integration in all-optical networks

has furthered the popularity of free-carrier switching of resonators or cavities, see, e.g.,

Refs. [13, 78, 83]. In this switching scheme, the carriers result in a change of both real

(n′) and imaginary (n′′) part of the refractive index that is proportional to the induced

carrier density N. The carriers recombine within a typical timescale ranging from ps to

ns. The change of the refractive index leads to a change in the optical properties of the

cavities. For example, the resonance frequency of the cavity changes. When the carriers

recombine the cavity resonance relaxes to its unswitched value, with a relaxation time

τrec. Surprisingly, the relaxation and broadening mechanisms have hardly been discussed,
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mostly due to the lack of frequency- and time-resolved data. In general, studies are limited

to either the reflectivity at two frequencies [78, 84–87] or to the reflectivity at two probe

delays [88].

We present here a systematic study at frequencies covering the whole cavity reso-

nance, and pump-probe delays covering the carrier recombination at three pump wave-

lengths, which allows us to investigate the dynamics of resonance and lineshape. We

work in the three-photon absorption regime, because we want to explore the pump wave-

length regime in which absorption is minimized and instantaneous switching using the

electronic Kerr effect can be achieved at pump-probe coincidence [50, 89]. Previous

experiments were performed in the two-photon regime [13]. We study both the dynamic

shifting and broadening of a cavity resonance by performing time- and frequency-resolved

pump-probe spectroscopy on planar GaAs/AlAs microcavities, with a frequency resolu-

tion being much higher than the dynamic cavity linewidth. We compare our results with

a model based on transfer matrix calculations. We show that it is possible to decrease τrec

by tuning the fabrication parameters of the sample.

4.2 Transfer matrix model

In this work we compare the experimental results to a transfer matrix calculation which

included the dispersion of GaAs [73] and AlAs [74] and the Drude model [24]. The

thickness of the GaAs (dGaAs = 69.2 nm) and AlAs (dAlAs = 81.0) layers are verified with a

linear reflectivity measurement as is shown in figure 4.1. The recombination time and the

initial free carrier density are the free parameters in the calculation. For each time delay

∆τ the new free carrier density is calculated, which is the input for the Drude model that

yields the refractive index as a function of frequency. The frequency dependent refractive

index is the input parameter for the transfer matrix calculation that yields the spectrum at

each time delay. From this spectrum the resonance position and linewidth are derived.

4.3 Results

4.3.1 Linear reflectivity and transmission

Figure 4.1 shows the measured linear reflectivity and linear transmission spectra of our

980 nm sample, together with a transfer matrix (TM) calculation. Both spectra show a
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stopband with a cavity resonance and Fabry-Pérot fringes. In the reflectivity spectrum the

cavity resonance reveals itself as a trough in the stopband, while a complementary peak

arises in transmission. The relative linewidth of the cavity resonance derived from figure

4.1 is 0.12%, which is the inhomogeneous broadened width [59].
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F 4.1: Linear reflectivity (squares) and transmission (circles) spectrum. The reflectivity
spectrum shows a broad stopband in which a trough due to the cavity resonance is present.
The transmission spectrum shows a peak at the resonance frequency and no transmission in
the rest of the stopband. The solid line represents a transfer matrix (TM) calculation of the
reflectivity of the complete stack.

The transfer matrix calculation reproduces the experimental resonance, stopband, and

Fabry- Pérot fringes very well. The only free parameters in the model were the thicknesses

of the GaAs (dGaAs = 69.2 nm) and AlAs (dAlAs = 81.0 nm). These values are in agreement

with expected values from the fabrication process. The values differ from the ones found

in chapter chap:ChPulseTCavity, due to a spatial gradient in the sample thickness, induced

by the fabrication process.
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4.3.2 Ultrafast switched transient reflectivity and transient transmis-
sion

Ultrafast transient reflectivity and transient transmission spectra of the sample pumped at

2000 nm, are shown in figure 4.2 A-D. The transient reflectivity spectra (figures 4.2 A

and 4.2 B) show that the cavity resonance frequency depends on the delay between the

pump and probe pulses. If the probe pulse arrives before the pump pulse (e.g. ∆τ = -20

ps as shown in figure 4.2 A and figure 4.2 C), the cavity resonance is undisturbed and lies

at 1.259 eV.
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F 4.2: Measured switched transient reflectivity (A,B) and switched transient transmission
(C,D) as a function of time delay. The pump wavelength is 2000 nm and the pump intensities
are 135 GWcm−2 (A,B) and 90 GWcm−2 (C,D). The data in figure A and C are cross sections as
the data presented in figure B and D, respectively. At positive delay, the resonance shifts with
respect to the resonance at negative delay, both in transmission and reflection. The observed
blue shift is characteristic for free carrier generation.
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At coincidence of pump and probe pulse, the cavity resonance becomes less pro-

nounced due to non-degenerate two-photon absorption. At positive delay, the resonance

frequency changes due to free carriers that are excited in a three-photon absorption process

by the pump pulse. The free carriers decrease the refractive index of the GaAs and thereby

decrease the resonance frequency of the cavity. The maximum shift of the resonance fre-

quency occurs at 10 ps when the frequency of the trough is at 1.265 eV. Furthermore, the

minimum in reflectivity increases from 30 % to 50 %, when the resonance is shifted.

At 10 ps delay we do not only observe a shift of the resonance. After 10 ps delay,

the excited free carriers start to recombine and thus the cavity resonance starts to shift

back (4.2 B), yet it does not fully recover after 100 ps delay. Besides a shift of the

resonance frequency, we also observe a broadening of the resonance. In the course of the

recombination process, the width of the cavity recovers to its original value.

We see an enhancement of the reflection at the red side of the cavity for 10 ps and

20 ps delay. This enhancement is due to wavelength conversion by the shift of the cavity

resonance. Because the cavity resonance shifts, the phase of light stored in the cavity

shifts. The induced phase shift introduces new frequencies in the spectrum that appear

on the red side of the cavity resonance. This is in agreement with the measurements

presented in [59], see chapter 6.

Figure 4.2 C and 4.2 D show for a similar experimental situation the transient trans-

mission. The resonance frequency of the unswitched cavity is 1.26 eV. This slightly differs

from the resonance frequency in transient reflectivity because the spectra were measured

at a different spot. At ∆τ = -10 ps the transient transmission decreases and at pump

and probe coincidence (∆τ = 0ps) the resonance disappears due to non-degenerate two-

photon absorption. The discrepancy between the transient reflectivity measurement and

the transient transmission measurement is remarkable, since in the transient reflectivity

case the resonance is clearly visible, while in transmission it almost disappears. We at-

tribute this difference to induced absorption in the GaAs layers and in the GaAs substrate.

For positive delay the resonance frequency shifts to 1.268 eV and the resonance broad-

ens. After 10 ps, the free carriers start to recombine again. Therefore, the cavity resonance

shifts back to its original resonance frequency and recovers its initial linewidth.
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4.3.3 Double exponential decay

We will now quantitatively describe the relaxation of the cavity resonance, see also [89].

To a first order approximation, the change in dynamic cavity resonance is a linear func-

tion of the refractive index in the GaAs mirrors ngm and in the GaAs λ-slab ngc, which

are weighted by field distribution coefficients a and b, respectively. If the field distribu-

tion does not change significantly during the switch, we can write for the shift in cavity

resonance:

∆Ecav(∆t) = a∆n′gm(∆t) + b∆n′gc(∆t). (4.1)

Since the induced change in refractive index is proportional to the carrier density N0 for

sufficiently small N0, Eq. 4.1 can be written as

∆Ecav(∆t) = a′Ngm(∆t) + c′Ngc(∆t), (4.2)

where a′ = a′′e2

2m∗engε0ω
2
pr

, where a′′ is a field distribution weighting factor, m∗e the effective

electron-hole mass in GaAs, ng the static refractive index of GaAs, ε0 the vacuum permit-

tivity, and ω2
pr the probe frequency in rad/s. Often, the time evolution of Ngm(t) and Ngc(t)

are considered to be equal. Due to the different thicknesses, however, they are governed

by different relaxation constants τ1 and τ2. Therefore, the change in cavity resonance can

be written as

∆Ecav(∆t) = a′N0exp(−∆t/τ1) + c′N0exp(−∆t/τ2), (4.3)

where N0 is the initial carrier density in the both GaAs mirrors and in the cavity at

∆t = τon. In the present experiment, non-radiative recombination of free carriers at

GaAs/GaAlAs interfaces is expected to be the dominant recombination process [90]. The

behavior of the resonance is thus expected to be double exponential, and indicative of

different recombination rates in the GaAs mirrors and in the λ-slab, due to the different

thicknesses. The recombination rate in the mirrors is higher compared to the recombina-

tion rate in the λ-cavity because of the layers are thinner.

We emphasize that these two different recombination rates can significantly change

the analysis of the dynamic field behavior in the cavity: even though an effective single

exponential decay time can be orders of magnitude above the cavity dwell time, the com-

posite shorter recombination times will give rise to significantly different field dynamics

[81, 82]. To gain access to timescales comparable to τcav, several groups made use of the

fast upswitch time τon = 1 ps [2, 81]. Here, we probe for the first time during the relax-
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ation, whose timescale is controllable, and still comparable to τcav. The recombination

rates in microcavities may further be increased controllably by growing samples with a

larger number of recombination centers at the GaAs/AlAs interfaces [91]. Finally, we note

that because the field of a photonic crystal cavity at resonance always extends somewhat

into the surrounding photonic crystal lattice, our observation of the double-exponential

decay is expected to apply also to other types of photonic crystal cavities.

A B

C D

F 4.3: Characteristics of the cavity resonance switched in reflection (A and C) and trans-
mission (B and D) as a function of pump-probe delay. A and B show the shift of the center
frequency of the resonance, while figure C and D show the width. The measurements are
indicated with symbols, while the TM calculations are shown as lines. With an increasing
pump-probe delay the shift of the cavity resonance decreases as shown in A and B. Similarly,
the linewidth of the resonance decreases with delay, only at a different timescale, since it is de-
termined mainly by the Bragg stacks. We pumped at 2000 nm and 2200 nm with 150 GWcm−2

and 180 GWcm−2, respectively.
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4.3.4 Shift and broadening of the cavity resonance

Figure 4.3 shows the measured and calculated shift (A and B) and width (C and D) versus

time delay, for the switched cavity resonance measured in transient transmission and tran-

sient reflection. Figure 4.3 A shows that the calculated shift decreases with delay, which

is in good agreement with the measured curves. The calculations were performed with

relaxation time constants of the carriers of 14.7 ps and 62.9 ps for the free carrier densities

in the Bragg stack and in the cavity layer, respectively. In the range of pump intensities

measured, we observed that the relaxation times of the free carriers are constant. From

the calculation we extract an initial carrier density of about 2 × 1019 cm−3 for both pump

wavelengths. Although we pump at different intensities, the initial carrier density is equal

due a three-photon absorption coefficient that decreases with increasing pump wavelength

and is therefore smaller at 2200 nm than at 2000 nm [50].

Figure 4.3 B shows the resonance frequency shift versus pump-probe delay measured

in transient transmission for two pump wavelengths. After an initial increase of the shift

we observe a decrease with delay. The calculations show the same behavior. From the

agreement between calculation and measurement we find that the carrier density is 1×1019

cm−3 in the case of a pump wavelength of 2200 nm and 2.3 × 1019 cm−3 in the case of a

pump wavelength of 2000 nm. The carrier density with a 2000 nm pump wavelength is

larger because of the higher intensity and the higher three-photon absorption coefficient

compared to 2200 nm.

Figure 4.3 C shows the resonance linewidth versus pump-probe delay from the same

measurements as shown in figure 4.3 A. The width initially increases with a 3 ps time

constant, which is unresolvable with our delay resolution [13]. The initial increase of

the width is attributed to thermalization of the carriers due to carrier-phonon interaction.

After 10 ps, the linewidth of the cavity resonance starts decreasing with delay. There is

good agreement between the measured and calculated linewidth for delays of 30 ps and

larger. At shorter time delay, there is a discrepancy between the measured data and the

calculation: The measured width is larger than the calculated one. This extra broadening

might be a heating effect due to the thermalizing free carriers, but we were not able to

reject or confirm this assumption.

Figure 4.3 D shows the resonance linewidth versus pump-probe delay as measured

in transmission. The linewidth decreases with increasing delay and is constant within 1

meV after 30 ps. The calculation agrees well with the measured width. We find an initial
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A

B

F 4.4: (A) Measured (symbols) and calculated (line) shift versus carrier density at zero
delay ∆τ = 0 for different pump wavelengths, measured in transient transmission and reflection.
(B) Linewidth of the resonance versus carrier density. The symbols represent the measured
values, the line represents the result of calculations using the TM model. For both the shift and
the linewidth we measure an increase with increasing carrier density. We find a similar trend in
the calculated data.

carrier density of 1×1019 cm−3 in the case of 2200 nm pump wavelength and 2×1019 cm−3

in the case of 2000 nm pump wavelength. This is in agreement with the values extracted

from the measured dependence of the resonance shift on time delay.

Figure 4.4 A shows the shift of the cavity resonance as a function of carrier density at

zero delay. The symbols represent the measured data, while the line represents the transfer

matrix calculations. We see a good agreement between the transfer matrix calculation and

the measured data. We find a three-photon absorption coefficient of 12 × 10−3 cm3GW−2
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at a pump wavelength of 2000 nm, 9× 10−3 cm3GW−2 at a pump wavelength of 2200 nm,

and 6 × 10−3 cm3GW−2 at a pump wavelength of 2400 nm.

Figure 4.4 B shows the linewidth of the cavity resonance versus the carrier density.

The symbols represent the measured data and the lines the calculations. The measured

width shows in general a poor agreement with the calculation. The measured width is

larger than the calculated width. This extra broadening might be a heating effect due to

the thermalizing free carriers, as mentioned above, but we were not yet able to incorporate

this into the transfer matrix model to reject or confirm this scenario or other ones.

4.4 Recombination rate as a function of GaAs layer thick-
ness

We further investigated the double exponential behavior of the cavity by fabricating a

sample with a cavity resonance at 0.95 eV. To obtain such a sample, the layers of the

stacks and the cavity are increased by about a factor of 1.3, which yields a resonance

wavelength of 1300 nm in the telecom range. The result of a switch experiment performed

on the cavity with a resonance at 0.95 eV compared to a switch experiment with the cavity

resonance at 1.265 eV is shown in figure 4.5. It can clearly be seen that the shift of the

0.95 eV structure decays slower than the shift of the 1.265 eV structure. The initial

shift is different because of the different pump intensities and the different three-photon

absorption coefficients [50].

The deduced recombination rates are shown in figure 4.6 together with a fit for each

sample. It can be seen that in both cases the recombination rate increases with GaAs

layer thickness. Furthermore, the ratio of the recombination rate in the cavity and the

recombination rate in the stack layers are in both cases equal to four. This is equal to the

thickness ratio of the cavity layer and the layers in the stack. Figure 4.6 also shows that

the recombination rate per unit thickness is not equal for both samples. The reason for the

slower recombination rate of the 0.95 eV structure is attributed to a higher quality of the

GaAs interface.
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F 4.5: Shift as a function of delay for a cavity with a resonance at 0.95 eV (circles) and
a cavity with a resonance at 1.265 eV (squares). The 0.95 eV structure was pumped at 2400
nm, while the 1.265 eV structure was pumped at 2200 nm.

4.5 Conclusion and outlook

We have studied ultrafast optical switching of a microcavity in both transmission and

reflection. We studied the three-photon regime in order to minimize absorption and open

the avenue to instantaneous electronic Kerr switching. We compared our results to transfer

matrix calculations and found that the shift agrees very well with our model. The width

of the cavity resonance has less agreement between measured width and calculated width:

at earlier delays the measured width is larger, but at larger delays the theory agrees with

the data.

We showed that our model applies also to microcavities with thicker layers and result-

ing larger resonance wavelengths. We obtained the recombination rate for both samples

and showed that there is a linear dependence of thickness in each of the samples, as ex-

pected from our new model.

We found a relaxation time for the free carriers in the order of 60 ps. By tuning the

sample properties it is expected that this time can be reduced to about 5 ps, which means

we could achieve a rate of 0.2 THz. In the experiments discussed in this chapter we used

a power of 1 µJ/pulse. One can considerably reduce the power per pulse needed for cavity
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F 4.6: Recombination rate as a function of GaAs layer thickness for two different sam-
ples. The solid line is a fit through the data points from the sample with a cavity resonance at
1.265 eV, the dashed line for the cavity with a resonance at 0.95 eV.

switching by employing a smaller volume by using a pillar shaped sample with a cross

section of 1 µm. If we only switch the λ-layer the homogeneity length can be relaxed to

less than 280 nm, which means that we can pump in the one-photon absorption regime.

Switching only the λ-layer can be achieved by making the Bragg mirrors transparent to

the pump beam, i.e., using a stack of AlAs and AlxGa1−xAs with large electronic bandgap.

Then, the pump wavelength can be chosen as short as 600 nm, such that the absorption

length is on the order of 300 nm. In that case, the required pump pulse energy can be

reduced by a factor of 102 Furthermore, in case of a pillar, the spot size of the pump can

be much smaller than the 100 µm as described in this chapter, by a factor of 1002. We can

therefore conclude that it is possible to switch a pillar cavity with at least 106 lower pulse

energy, or as little as 1 pJ/pulse.
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CHAPTER5
Ultimate fast all-optical switching of GaAs/AlAs

nanostructure and microcavity

5.1 Introduction

Exciting prospects arise when photonic nanostructures are switched on ultrafast timescales.

It has been predicted that this could lead to ultrafast control over the photonic density of

states and thus to ultrafast cavity quantum electrodynamics [43]. Switching the direc-

tional properties of photonic crystals also leads to fast changes in the reflectivity, where

interesting changes have been reported for one-dimensional Bragg stacks [92, 93], two-

dimensional photonic crystals [94–96], first-order stopbands of three-dimensional opaline

crystals [97, 98] and three-dimensional photonic bandgap crystals [46, 47]. Ultrafast con-

trol of the propagation of light is essential to applications in active photonic integrated

circuits [99].

Of particular interest is the ultrafast switching of the resonance frequency of cavities,

where light can be confined for a long time in a tiny volume; such switching permits the

manipulation of the stored light, or of light sources in the cavity. Furthermore, switch-

ing would allow the capture or release of photons from photonic band gap cavities [43],

which is relevant to solid-state slow-light schemes [100]. In order to switch a cavity, the

induced refractive index change should be large enough. To shift the cavity resonance

by one linewidth the refractive index change should exceed ∆n′
n′ = 1

Q [47]. Thus for an

experiment or a device with a cavity having a moderate quality factor Q = 1000, this im-

plies a refractive index change of 0.1%. Here we are pursuing the ultimate fast switching
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speed of a microcavity with on and off switching times τon and τo f f . This extreme of

fast switching could be used for capturing and releasing photons on demand for example

in a vertical-cavity surface emitting laser [101]. It would be truly exciting to not only

have the switching times faster than the cavity storage time τcav, but also of the order of

the cycle time τ (=λ/c). In these cases novel physical phenomena are expected including

non-adiabatic switching [43].

Several different physical mechanisms are possible for fast switching of photonic

structures. The switching of photonic structures with free carriers [13, 94, 96, 102] and a

structural phase transition of VO2 [103] have been reported recently. The disadvantage of

such a phase transition is that the material changes from a transparent material to a metal,

which absorbs light. On the other hand free carrier excitation is ultrafast with minimal

absorption [104], but the recombination of the carriers limits the switch-off time τo f f to a

few picoseconds.

Instantaneous on- and off-switching is feasible with nonlinear refractive index that

physically exploits the electronic Kerr effect. The instantaneous nature of the electronic

Kerr effect can be seen from the expression for the polarizability P of a material pumped

with a frequency ω1 and probed with a frequency ω2. The polarizability of a material with

χ(1), χ(2) and χ(3) measured at probe frequency ω1 under the influence of a high intensity

pump pulse with frequency ω2 is given by

P = χ(1)E + χ(2)EE + χ(3)EEE. (5.1)

In general the second term drops out due to inversion symmetry of the crystal [48], which

leaves the first and third order term. Taking into account that we are interested in effects

at the probe frequency ω1 yields for the polarization P(3) due to third order term χ(3)

P(3)(ω1, t) = 6χ(3)(ω1 = ω1 + ω2 − ω2)|E(ω2, t)|2E(ω1, t). (5.2)

It is clear from Eq. 5.2 that the polarizability depends on the instantaneous field ampli-

tudes, making the Kerr effect truly ultimately fast.

In practice, the duration of the electronic Kerr effect is limited by the duration of the

pump and probe pulses, which is in the order of femtoseconds rather than picoseconds

as with free carrier switching. Therefore, this switching mechanism potentially allows

beyond-THz modulation rates that could be of use for extremely fast datamodulation. It
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is widely assumed (see [43]) that the magnitude of the refractive index change by the

Kerr effect is much smaller than the change due to a free carrier switch. Therefore, most

switching schemes use free carriers and are therefore limited to picosecond timescales.

Furthermore, a problem which occurs at coincidence of pump and probe pulse is non-

degenerate two-photon absorption [13, 48]. Here, a probe photon is absorbed together

with a pump photon when the summed energy of the pump and probe photon exceeds the

bandgap energy, see figure 5.1 B.

The origin of the absorption is explained in figure 5.1 A and 5.1 B, which show

schematic energy diagrams at coincidence of pump and probe. In the densely hatched

spectral region in figure 5.1 C, the pump and probe photon will be absorbed since the

sum of the photon energies is higher than the bandgap of GaAs (situation figure 5.1 B).

In the sparsely hatched (dispersive) spectral region in figure 5.1 C however, the sum of

pump and probe photon energies is less than the bandgap of GaAs (as in figure 5.1 A).

Therefore, absorption is low in this region and the behavior at coincidence is mainly dis-

persive. Only the real part of the refractive index n’ changes. The regions are separated

at a probe wavelength which corresponds to 1340 nm at a pump wavelength of 2400 nm.

The change in imaginary part of the refractive index can be large compared to the change

in the real part, giving rise to absorptive changes in the optical properties. Recently, how-

ever, a nonlinear figure of merit has been identified to find conditions where absorption

can be minimized [89].

In this work we demonstrate a method to decrease non-degenerate two-photon absorp-

tion at pump and probe coincidence. Because of this, we observe that the electrical Kerr

effect is surprisingly large and competitive with free carrier effects. We demonstrate that

a cavity resonance with a moderate Q of 1000 is successfully switched instantaneously.

We derive the Kerr coefficient and the three-photon absorption coefficient over a broad

wavelength range. We demonstrate with a pump-probe experiment that the reflectivity of

a cavity resonance at telecom wavelength, more precise its resonance frequency, and its

width can be switched on an ultimate fast time scale.
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5.2 Experimental

5.3 Linear reflectivity

Figure 5.1 C shows the measured linear reflectivity spectrum of the 980 nm sample and

a transfer matrix (TM) calculation [105]. The transfer matrix calculation including the

dispersion of GaAs [73] and AlAs [74] reproduces the experimental resonance, stopband,

and Fabry-Pérot fringes. The only free parameters in the model were the thicknesses of

the GaAs (dGaAs = 69.2 nm) and AlAs (dAlAs = 81.0 nm), which agree with fabrication

parameters. The reflectivity spectrum shows the stopband with the cavity resonance at

10204 cm−1 (λ = 980 nm) and the Fabry-Pérot fringes. The spectrum can be divided into

two spectral regions, namely ’Absorptive’ (right, densely hatched) and ’Dispersive’ (left,

hatched), referring to the expected behavior if pump and probe coincide.

The origin of the dispersion is the electronic Kerr effect. There will be a change in

the real part of the refractive index (n’), due to the pump field. The edge of the hatched

regions in figure 5.1 C will shift to the red at a pump wavelength of 2000 nm, indicating

that we expect absorption in a large part of the spectrum. The behavior at coincidence

is therefore mainly absorptive, meaning a change in the imaginary part of the refractive

index (n”).

With the 980 nm sample we focus on the spectral region indicated by the black rec-

tangle in figure 5.1. In this region we expect to observe effects of the electronic Kerr

effect but only little absorption at 2400 nm pump wavelength, while we expect mainly

absorption at 2000 nm pump wavelength.

Figure 5.2 shows the measured linear reflectivity spectrum of the 1300 nm cavity.

The measured reflectivity spectrum shows a stopband from 7100 cm−1 to 8100 cm−1 and

cavity resonance at 7692 cm−1 (or λ = 1300 nm) and the Fabry-Pérot fringes. The trans-

fer matrix calculation including the dispersion of GaAs [73] and AlAs [74] reproduces

the experimental resonance, stopband, and Fabry-Pérot fringes very well. The only free

parameters in the model are the thicknesses of the GaAs (dGaAs = 96.3 nm) and AlAs

(dAlAs = 113 nm), and the thickness of the cavity layer dcav = 373 nm. The measured

reflectivity is a bit lower than the calculated one, because of a slight systematic error in

the reference spectra.
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E gap
E gap
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C

Dispersive Absorptive

F 5.1: (A,B) Schematic energy diagrams of GaAs. Egap is the electronic bandgap of
GaAs, λPr is the probe wavelength and λPu is the pump wavelength. In the dispersive spec-
tral region the summed energy of a pump and a probe photon is smaller than the electronic
bandgap (A), while the summed energy is larger in the absorptive spectral region (B). (C) Lin-
ear reflectivity spectrum and transfer matrix calculation of the GaAs/AlAs structure. The trough
at 980 nm is due to the cavity resonance of the λ-thick GaAs layer. The slight difference in
amplitude of the measured and calculated reflectivity on the red side of the stopband is caused
by a small error in the normalization measurement. The edge between diagram A and B is at
a probe wavelength of 1510 nm and 1340 nm at pump wavelengths of 2000nm and 2400nm
respectively. We present measurements in the spectral region indicated with a box, to obtain a
change in the real part of the refractive index.

5.4 Electronic Kerr switching of Fabry-Pérot fringes

The two plots in figure 5.3 show the differential reflectivity of the 980 nm structure mea-

sured at pump wavelengths 2000 nm (A) and 2400 nm (C) as a function of probe wave-
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F 5.2: Measured (symbols) and calculated (line) reflectivity spectra of the stack. Fabry-
Pérot fringes are visible on both sides of the stopband. Within the stopband a trough in reflec-
tivity indicates the cavity resonance at 7692 cm−1 (or λ = 1300 nm).

length and delay. A fringe pattern is visible in figure 5.3 A and C for coincidence of pump

and probe and for positive delay.

The fringe pattern in figure 5.3 A and 5.3 C results from Fabry-Pérot fringes within

the stack forming the optical microcavity. A change in n’ modifies the optical thickness

of the GaAs layers; it induces a spectral shift of the Fabry-Pérot fringes, which results in

a periodic differential reflectivity. A change in n” decreases the modulation depth of the

Fabry-Pérot fringes and also results in a periodic differential reflectivity.

Figure 5.3 B and D show cross sections of 5.3 A and C. The sign difference of dif-

ferential reflectivity between pump and probe overlap and positive delay is apparent and

is a result from the fringe patterns at coincidence and positive delay, which are spectrally

shifted with respect to each other. This indicates that the switch mechanism at coinci-

dence is different from the free-carrier mechanism at positive delay. Figure 5.3 D shows

that there is a competition between the instantaneous effect and the free carrier effect. The

traces in figure 5.3 B and D clearly reveal that the instantaneous effects occur over a time

range of ±250 fs. This duration agrees well with the cross correlation of the pump and the

probe pulse of
√

2×140 fs = 196 fs. Therefore the data signal switch-on and switch-off

times of 200 fs.
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The differential reflectivity at positive delay is caused by excited free carriers. Figure

5.4 shows the power dependence of differential reflectivity (∆R/R) at positive delay. There

is a linear relation between the differential reflectivity and the power cubed. We therefore

conclude that the differential reflectivity is caused by free carriers generated by a three-

photon absorption process.

A

C

B

D

F 5.3: Differential reflectivity per wavelength as a function of delay between pump and
probe pulse. At negative delays the pump hits the sample before the probe. The scans were
measured at different pump wavelengths. (A) λpump = 2000 nm, Ipump = 90 GW/cm2, (C) λpump =
2400 nm, Ipump = 95 GW/cm2. Cross sections indicated by dashed lines in A and C are shown
in figure B and D respectively. Figure A and C show a fringe pattern due to a shift of the Fabry-
Pérot fringes. The cross sections B and D show that the sign of the differential reflectivity at
coincidence is different from the sign at positive delay.

At a pump wavelength of 2000 nm we expect an instantaneous change in n”, since we

are in the absorptive regime. At 2400 nm pump wavelength we expect an instantaneous

change in n’ and a negligible change in n”, since we are in the dispersive region (see

figure 5.1). The differential reflectivity ∆R
R due to a change in the real part of the refractive
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index depends on measured intensities as follows:

∆R
R

(τ, ωpr, ωpu) =
Ipu(τ, ωpr, ωpu) − Iunpu(ωpr)

Iunpu(ωpr)
, (5.3)

where τ is the delay between pump and probe, ωpr is the probe frequency, ωpu is the

pump frequency, Iunpu is the reflectance measured if the structure is unpumped and Ipu

is the reflectance measured if the structure is pumped. In case of a change in the real

F 5.4: Differential reflectivity at positive delay measured at different probe wavelengths
at a pump wavelength of 2000 nm. The differential reflectivity is plotted as a function of pump
power cubed. The relation between the differential reflectivity at positive delay and the power
cubed is linear. We conclude that the carriers are solely generated through a three-photon
process.

part of the refractive index, the fringe pattern shifts spectrally ∆ωpr = αn′, with α a

proportionality constant that depends on the exact structure of the fringe pattern. Ipu is

then given by:

Ipu(τ, ωpr, ωpu) = Iunpu(ωpr + ∆ωpr(τ, ωpu)), (5.4)

which can be Taylor expanded as

Ipu(τ, ωpr, ωpu) = Iunpu(ωpr) +
∂Iunpu(ωpr)

∂ωpr
∆ωpr(τ, ωpu), (5.5)
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5.4. Electronic Kerr switching of Fabry-Pérot fringes

which yields a differential reflectivity:

∆R
R

(τ, ωpr, ωpu) =
1

Iunpu(ωpr)
∂Iunpu(ωpr)

∂ωpr
∆ωpr(τ, ωpu). (5.6)

Equation 5.6 shows that in the case of a change in the real part of the refractive index a

large differential reflectivity will be observed where the unpumped reflectivity has a large

derivative, which is spectrally between successive maxima and minima of the Fabry-Pérot

fringes. This is illustrated in figure 5.5, which shows results of a transfer matrix calcula-

A B

F 5.5: Calculated switched and unswitched reflectivity for a change in the n’ (A) and a
change in n” (B). The calculation was done with a transfer matrix model using parameters rele-
vant to our structure. (A) A change in n’ causes a shift of the fringe pattern. The introduction of
absorption n” mainly affects the modulation depth of the fringes (B). The differential reflectivity
has maxima at different frequencies, which makes it possible to distinguish between a purely
dispersive and a purely absorptive regime.

tion using parameters relevant to our structure. In the case of a change in n’ the frequency

of the fringe pattern is shifted. Due to the shift in frequency the differential reflectivity

is maximum at the frequencies were the slope of the fringe pattern is maximum, i.e., at

the flanks of the fringes. In the case of a change in n” the modulation depth of the fringe

pattern is affected. Due to the change in modulation depth, the maximum change in re-

flectivity is observed at the maxima and minima of the Fabry-Pérot fringe pattern. For this

reason the differential reflectivity has maxima at different frequencies making it possible

to distinguish between a purely dispersive and a purely absorptive regime.
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Figure 5.6 shows a comparison between the measured and calculated differential re-

flectivity pattern. The intensity profile in the structure is homogeneous, leading to a ho-

mogeneous refractive index change, hence we can quantitatively interpret the spectra. The

intensity profile is homogenous since we pump at a long wavelength in the three-photon

absorption regime. The homogeneity length [104] is longer than the thickness of our sam-

ple. Comparing the measured and calculated patterns shows that the frequencies of the

A B

F 5.6: Cross section of figure 5.3 (black solid circles) showing the differential reflectivity
∆R/R as a function of probe wavelength at pump-probe coincidence (∆t = 0 ps). The structure
was pumped at 2000 nm (A) and 2400 nm (B). The solid and dashed lines are results from
transfer matrix calculations. In (A) the dashed line represents a change in the real part of the
refractive index while the solid line represents a change in the imaginary part of the refractive
index. Conversely in (B) dashed represents a change in imaginary part, while solid represents
a change in the real part of refractive index. As expected we see mainly a change in n” at 2000
nm pump and a change in n’ at 2400 nm.

peaks and troughs in the differential reflectivity pattern near zero delay are caused by a

change in the imaginary part of the refractive index (n”) in the case of 2000 nm pump

and a change in the real part of the refractive index (n’) in the case of 2400 nm pump.

We conclude that in the case of 2400 nm pump wavelength the fringe pattern near zero

delay in the differential reflectivity originates from an electronic Kerr switch, since the

process is ultrafast, instantaneous with the laser pulse, and dispersive. Interestingly, there

is a competition between the Kerr and free carrier effects, with the Kerr effect responsible

for a ∆n′ > 0 and the free carrier effect for a ∆n′ < 0. Surprisingly, the electronic Kerr
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F 5.7: Relative change of refractive index due to a 2400 nm pump as a function of probe
wavelength at a delay of -0.3 ps (A), 0 ps (B) and 0.5 ps (C). The dashed line in all three cases
represent no change in refractive index. The solid line in (B) represents the dispersion of the
change in refractive index from [49]. The solid line in (C) is calculated with the Drude model for
free carriers [24]. Points obtained from spectral regions close to extrema of the fringes were
removed, because of their poor precision.

effect is larger than the free carrier effect in this wavelength range. A comparable result

to the present GaAs results has recently been obtained for Si photonic crystals [89].

In case of 2000 nm pump wavelength the fringe pattern originates from non-degenerate

two-photon absorption. Furthermore, we see a slight deviation of our model near the blue

side of the spectrum, indicating some dispersion in the nonlinear effect. We further con-

clude from figure 5.6 that absorption can be neglected at 2400 nm pump wavelength.

By varying the magnitude of the change in n’ we have extracted the change in re-

fractive index at each probe wavelength. The results are plotted together with dispersion

curves in figure 5.7. Figure 5.7 shows no change in refractive index for a negative delay

(A), a positive change for zero delay (B) and a negative change for positive delay (C).

Furthermore there is a good agreement between the data and the dispersion of the elec-

tronic Kerr effect [49] and the dispersion of the free carrier excitation [24]. The scattered
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symbols deviating strongly from the theoretical model can be attributed to small differ-

ences in shape of the measured and calculated reflectivity spectrum. A slight deviation is

amplified by the fitting procedure since we extract the refractive index change by fitting

the differential reflectivity at one wavelength position.

Figure 5.7 B shows that the change in refractive index induced by the optical Kerr

effect is in the order of 0.1%. This is large enough to switch a cavity with a moderate

quality factor Q = 1000. From our experiments two consequences follow for the design

of a GaAs cavity that can be Kerr switched. First the cavity should be pumped at 2400

nm or higher. Furthermore, the resonance of the cavity should be in the spectral region of

1300 nm or higher (see figure 5.1 C), which is studied in the next section.

5.5 Electronic Kerr switching of microcavity

In order to interpret the results on the Kerr switching of a cavity, we show in figure 5.8

A the pulse scheme for three delay regions. The Gaussian-shaped pump pulse with a

duration of 120 fs is shown at the top of the scheme. The probe pulse is shown at the

bottom of the scheme. Since we probe the structure with light reflected and stored in the

cavity, it has an asymmetric shape. The probe is shaped like the intensity in the cavity (see

chapter 3). A fast increase in intensity when the probe pulse (120 fs) arrives followed by a

much slower exponential decay. The duration of the probe is 2 ps, which is determined by

the storage time of the pulse in the cavity and therefore by the quality factor of the cavity.

In delay region I the cavity is probed before it is pumped, while in delay region III the

cavity is probed after the pump pulse arrived. In delay region II, the pump pulse arrives

simultaneously with the probe pulse. In delay region II we expect to find the electronic

Kerr effect.

Figure 5.8 B shows transient reflectivity of the 1300 nm sample measured with the

pump-probe setup as a function of frequency and delay. The measured reflectivity is not

the instantaneous reflectivity but transient reflectivity. The probe pulse impinges at delay

∆t and is stored during the storage time of the cavity. The measured transient reflectiv-

ity therefore contains information on the cavity resonance during the cavity storage time

and not just at the delay ∆t. In delay region I the resonance, the transient reflectivity

trough at 7685 cm−1, is not influenced by the pump. In delay region II, where pump and

probe coincide, the resonance broadens and shifts rapidly to lower frequencies. Since the
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F 5.8: (A) Schematic of pump and probe pulses in three time delay regions (I, II and III).
The pump is Gaussian shaped and arrives in region I after the probe, while it arrives before the
probe in region III. In region II the pump pulse arrives simultaneously with light stored in the
cavity. (B) Reflectivity as a function of frequency and time delay between pump and probe. In
delay region I the resonance, visible as a reflectivity minimum, is not influenced by the pump.
(C) Transient reflectivity as at the unswitched cavity resonance frequency (7685.35 cm−1) as a
function of delay. In region I we see a constant reflectivity indicated by a dotted line. In region
II the transient reflectivity decreases, with a minimum value at pump-probe coincidence. In the
third region the reflectivity increases again.

Kerr signal is a cross-correlate of pump and probe and since the probe is asymmetrically

broadened (see figure 5.8 A) the cross correlate is also asymmetrically broadened. The

shift to a lower frequency can be explained by the increase in refractive index, which cor-

responds to a positive Kerr coefficient as expected from theory and the previous section.

The signature of the Kerr regime for GaAs in this frequency region is that the real part

of the refractive index increases at pump-probe coincidence, which is the case in figure
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5.8 B. From this observation we conclude that we are the first to ever switch a photonic

microcavity using the electronic Kerr effect.

In delay region III the resonance shifts to the blue due to free carriers generated by

the pump pulse. The regime in the third delay region has been studied extensively in

[13, 94, 96, 102] and elsewhere in this thesis (chapter 6 and chapter 4).

Figure 5.8 C shows the transient reflectivity at the unswitched cavity resonance fre-

quency (7685.35 cm−1) as a function of delay. In delay region I and III we see a constant

reflectivity, while in delay region II the transient reflectivity decreases, with a minimum

value at pump-probe coincidence. The reflectivity in the third region is higher than in

delay region I, because the resonance shifts to the blue due to the excited free carriers.

The shape of the reflectivity decrease in delay region II results from the cross correlation

between the cavity intensity and the pump pulse as indicated in figure 5.8 A. Figure 5.8 C

shows that we are able to switch the reflectivity from 60 % to 50 % within 2 ps.

The counter-intuitive decrease in transient reflectivity in figure 5.8 C can be explained

by the increase of the refractive index in the GaAs layers, resulting in a higher refractive

index contrast in the Bragg stack and thereby an increase of the mirror reflectivity. The

higher mirror reflectivity leads to a narrower cavity resonance enabling less probe-photons

to enter the cavity resonance than in the unswitched case. Since less photons can excite the

cavity resonance, we measure a lower intensity and therefore a lower transient reflectivity.

Since the Kerr signal is a cross correlate, one has to take into account that the 120 fs

probe pulse excites the cavity, whose intensity decays with a typical 2 ps time constant.

During about 2 ps there is still light in the cavity that probes the structure at the moment

the pump pulse arrives (see figure 5.8 A). However the resonance only shifts while the 120

fs pump pulse is present. In the other 1.9 ps the resonance is unswitched. The measured

spectrum is therefore the integral of unswitched and switched spectra and is influenced

by the ratio of pump pulse duration and cavity storage time. This also explains why

the shift is maximum at pump and probe coincidence, since at that moment the cavity is

maximally charged and therefore the maximum effect is observed. The resonance shift

due to the optical Kerr effect can be enhanced by matching the pump pulse duration to the

photon dwell time in the cavity.

Figure 5.9 A shows the measured transient reflectivity spectrum (cross section of fig-

ure 5.8 B) of the unpumped structure and at pump-probe coincidence. The trough results

from the cavity resonance. The width of the unpumped cavity resonance corresponds to a

cavity quality factor of 1325, which corresponds to a cavity storage time of 0.9 ps. This is
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F 5.9: (A) Measured reflectivity spectra of the unpumped structure (Delay = -5 ps, tri-
angles) and of the structure at coincidence of pump and probe (Delay = 0 ps, squares). The
width of the unpumped cavity resonance corresponds to a cavity quality factor of 1325, which
corresponds to a cavity dwell time of 0.9 ps. This is in agreement with the time of the probe
duration. At pump and probe coincidence the resonance broadens, shifts to the red and the
trough becomes deeper. There is an enhancement of the reflectivity on the blue side of the
resonance. The structure was pumped at 2400 nm wavelength with 1.5 µJ pulse energy. (B)
Calculated reflectivity spectra of the unpumped (dashed) and pumped (solid) structure. At
pump and probe coincidence the resonance broadens and shifts to the red. Furthermore, there
is an enhancement of the reflectivity on the blue side of the resonance.

in agreement with the time of the probe duration, which is twice the cavity storage time,

as expected. At pump and probe coincidence we observe a red shift of the red edge of

the resonance. Since we measure transient reflectivity the shift leads to a broadening of

the resonance. Furthermore, we see a decrease in the resonance reflectivity and an en-

hancement of the reflectivity on the blue side of the resonance. The enhancement on the

blue side of the resonance is the result of a fringe pattern that appears as a result of the

interference between the first reflected probe pulse and a part of light stored in the cavity

that is ejected at the moment the pump pulse arrives (see also [13]). The sum of the two

pulses in the time domain yield a beating in the frequency domain. This generates the

fringe pattern that causes the enhancement on the blue side.

Figure 5.9 B shows transient reflectivity of the unpumped structure and at coincidence

of pump and probe calculated with a dynamic Fabry-Pérot model that is discussed in

chapter 6 [70, 105]. The calculation at coincidence was performed with an increase in the

real part of the refractive index of 0.0035, which is equal to about ∆n
nGaAs

= 0.1%. This value

is in agreement with previous sections [50]. At pump and probe coincidence we observe

a red shift of the red edge of the resonance, leading to a broadening of the resonance as
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we observed in the measurement. Furthermore, we see an enhancement of the reflectivity

on the blue side of the resonance, corresponding to the enhancement in the measurement.
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F 5.10: (A) Measured (squares) and calculated (circles) resonance frequency versus
pump-probe delay. The measured center frequency starts shifting at -2.5 ps and reaches its
maximum shift of -0.4 cm−1 at -0.55 ps. At -0.2 ps the resonance frequency increases again.
The calculated shift starts increasing slightly earlier as the measured shift at -3 ps and reaches
its maximum at -0.2 ps. (B) Measured (squares) and calculated (circles) width versus pump-
probe delay. The measured width of the cavity resonance starts increasing at -1.1 ps and
reaches its maximum at -0.3 ps. At -0.1 ps the measured width decreases again and after a
local minimum increases again due to free carrier generation. The calculated width increases
at -0.9 ps and reaches its maximum value at -0.2 ps after which it decreases.

Figure 5.10 A shows the measured and calculated resonance frequency as a function

of delay. The calculations, which were done using the dynamic Fabry-Pérot model, agree

quantitatively very well with the measurements. The measured resonance frequency starts

to shift to the red at -2.5 ps and reaches its maximum apparent shift of -0.4 cm−1 at -0.55

ps. The shift is smaller than 1
Q , since the cavity is only pumped during a fraction (1/20) of

the cavity storage time. Taking this into account leads to a shift of 1.4 linewidths, which

agrees with 0.1 % change in refractive index. The resonance shift due to the optical Kerr

effect can be enhanced by matching the pump pulse duration to the photon dwell time in

the cavity in order to measure the full linewidth shift. At -0.2 ps the resonance frequency

increases again due to free carrier generation. The red shift starts at -3 ps and reaches its

maximum at -0.2 ps, very close to the measured values. The amplitude of the measured

and calculated shifts agree very well.
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Figure 5.10 B shows the measured and calculated width as a function of delay. The

measured width increases at -1.1 ps and reaches its maximum value at -0.3 ps, after which

it increases further due to free carrier generation. The calculated width agrees very well

with the measured one. The small difference in unswitched width is attributed to inhomo-

geneous broadening (see chapter 3) The width starts to increase at -0.9 ps and reaches its

maximum at -0.2 ps, very close to the maximum of the measurement. The decrease of the

width before -1.1 ps is the result of the fringe pattern, originating from the interference

between the injected and reflected pulses.

5.6 Nonlinear coefficients GaAs

5.6.1 Kerr coefficient n2 for GaAs

The non-degenerate Kerr coefficient n2 can directly be extracted from the data ∆n′ in

figure 5.7 using the relation [48, 49],

n2 =
∆n′

2I0
(5.7)

where I0 is the pump intensity. Since n2 scales with E−4
gap [49], the contribution of AlAs

is only 20% of the total n2. For simplicity we therefore assume that mainly the GaAs is

switched.

The resulting Kerr coefficients are plotted in figure 5.11. Figure 5.11 shows the raw

data extracted from figure 5.7 (open circles) and the data averaged over the width of a

fringe (solid squares). The order of magnitude of n2 is 10−4GWcm−2. The non-degenerate

Kerr coefficient decreases with increasing wavelength. This dispersive behavior was al-

ready observed in figure 5.6.

The values of n2 measured in our non-degenerate pump-probe experiment are similar

to the ones reported in the literature for degenerate pump-probe experiments [106–108].

We find this surprising since we pump at a wavelength twice as long as in the degenerate

case. This result enables us to modify efficiently the refractive index with a far detuned

pump wavelength.
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F 5.11: Measured non-degenerate Kerr coefficient n2 as a function of probe wavelength
(open circles). We averaged the data over the period of one fringe, since the coefficients are
correlated within this fringe period (solid squares). We observe dispersion in n2 towards the
blue side of the spectrum as expected from figure 5.6.

5.6.2 Three-photon absorption coefficient γ for GaAs

Figure 5.7 shows that we are able to derive a carrier density from the measured change in

refractive index with the use of the Drude model. We will discuss in this section the three-

photon absorption coefficient γ. Figure 5.12 shows the three-photon absorption coefficient

1800 2000 2200 2400 2600
0

2

4

6

8

10
 Data
 Guide to eye

Egap/3

Wavelength [nm]

 [1
0-3

cm
3 G

W
-2
]

F 5.12: Three-photon absorption coefficient as a function of wavelength extracted from
the differential reflectivity data. The relative error of 30 % is indicated.

γ as a function of pump wavelength. The order of magnitude of γ is 10−3cm3GW−2. Our
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data are two orders of magnitude smaller than the values reported in the literature [106],

measured with the z-scan method. We tentatively attribute this difference to the fact that

our data have been obtained on an epitaxially-grown GaAs/AlAs heterostructure, instead

of a GaAs wafer obtained with a different technique.

The three-photon absorption coefficient decreases as a function of wavelength since

the summed energy of a pump and probe photon, and therefore the probability of gen-

erating an electron hole pair, decreases with increasing wavelength. The three-photon

absorption edge is at 2580 nm.

5.7 Conclusion and outlook

We have studied ultrafast all-optical switching of a GaAs/AlAs planar optical microcavity.

We demonstrate conditions where the instantaneous electronic Kerr effect prevails over

two-photon absorption. Contrary to prior expectations, we find that the electronic Kerr

effect is even larger than free carrier effects.

We have demonstrated for the first time switching of a GaAs cavity at telecom wave-

lengths, using the electronic Kerr effect. Since switching using the electronic Kerr effect is

pulse duration limited, switching rates of 10 THz are possible. We demonstrated that for

an ultrafast cavity with a moderate storage time of 1 ps, the switching rate would be lim-

ited by the cavity storage time. The 1 ps storage time results in a potential switching rate

of 1 THz. Our results also open an avenue towards quantum electrodynamical switching

of the fastest possible light sources (see e.g. chapter 8) including quantum wells.

In the experiments discussed in this chapter we used a power of 1 µJ/pulse. If we want

to switch a micropillar cavity, which has a diameter of 1 µm, we only need a pump spot

of the size of 1 µm, instead of the 100 µm we used in this chapter. We conclude that it

is possible to switch a micropillar using the Kerr effect with 100 pJ/pulse. Therefore, the

Kerr effect is much faster than the free carrier effect, but it needs 10 times more energy

per pulse.

Our experimental results are supported by calculations using a dynamic Fabry-Pérot

model, which shows a very good agreement with the measurement. With the instan-

taneous Kerr effect we were able to switch the reflectivity of the resonance at telecom

wavelength ultimately fast from 70% to 60% and back at 1 THz rate.
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For such an experiment a pump wavelength of 2400 nm or larger is required and a

cavity resonance at a wavelength of 1300 nm or larger. The refractive index change is in

the order of the required 0.1%. From the switching measurements we extracted the non-

degenerate Kerr coefficients over a broad wavelength range. Furthermore we extracted

the free carrier three-photon absorption coefficients for three different wavelengths in the

near infrared.
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CHAPTER6
Ultrafast optical frequency conversion in a passive

transient microcavity (1)

6.1 Introduction

There is a fast growing interest to control and manipulate information encoded as photons,

as this promises much broader information bandwidths than with electronic integrated cir-

cuits [109]. Therefore, it is important to realize time-dependent control of photonic sys-

tems, in other words, photonic switching. Furthermore, it is crucial that two photons can

be made to interact, notably that a photon’s energy is converted to a different value. As it

is well-known that the interaction between two photons is exceedingly weak in free space,

one resorts to the well-established methods of nonlinear optics, although these still require

elevated field strengths typical of short pulses [110]. Recently, the switching of photonic

bandgap crystals and nanophotonic cavities has been advocated to enhance nonlinear op-

tical interactions [2, 81, 111, 112], since these devices permit a judicious tweaking of

optical dispersion, considerably enhanced field strengths occur in tiny volumes, and their

small footprints make these systems amenable to large-scale integration.

In usual nonlinear frequency conversion [110], a probe pulse is overlapped in space

and time with another pulse that is either derived from the probe pulse itself (called self-

phase modulation (SPM)) or a light pulse obtained from another source (called cross-

phase modulation (XPM)). Typically, the pulses are incident on (semiconductor) crystals

(1) Work done in close collaboration with Philip Harding, Huib Bakker, Allard Mosk and Willem Vos.
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A

B

F 6.1: (a) Broad-band reflectivity spectrum measured with a white-light source. The
reflectivity is calibrated by normalizing to a spectrum of a gold mirror. The trough at 1.278 eV
is the cavity resonance, the broad intense peak between 1.192 and 1.376 eV is the photonic
stopband of the Bragg mirrors. (b) High-resolution reflectance spectrum measured with the
probe laser showing the cavity resonance at 1.278 eV.

to enhance the photon-photon interactions by second or third order nonlinearities. For

the nanophotonic cases, pump-probe overlap is ensured by charging a cavity with probe

light before the pump pulse arrives, leading to adiabatic light conversion by the cavity

resonance [2, 53, 54]. Thus, both cases share a crucial feature, namely that they re-

quire a spatiotemporal overlap of the pump and probe pulses. In this paper, we present a

novel nonlinear frequency conversion mechanism that does not require pump-probe over-

lap. Therefore, we have performed a frequency-resolved ultrafast pump-probe study of

a semiconductor microcavity. We observe frequency conversion of light after the pump

pulse has long gone, and identify the mechanisms by which this conversion occurs.

6.2 Experimental

We have studied our planar 980 nm microcavity consisting of a GaAs λ-layer with a

thickness d = 275.1 ± 0.1 nm that is sandwiched between two Bragg mirrors made of

12 and 16 pairs of λ/4-thick layers of nominally pure GaAs or AlAs, see Refs. [13].
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6.3. Results and discussion

A normal-incidence reflectivity spectrum reveals the inhomogeneously broadened cavity

resonance at Ecav = 1.278 eV (λ = 970.2 nm) centered in the 14.3% wide stopband

of the Bragg mirrors, see figure 6.1 A. In separate time-resolved experiments, we have

determined the average storage time for photons in the cavity to be τcav = 780 ± 50 fs,

corresponding to a quality factor Q = 1500 ± 100, and a homogeneous cavity linewidth

∆Ecav = 0.85 meV, see chapter 3.

Time-resolved pump-probe spectroscopy was performed on the cavity in reflection

geometry [64], see chapter 2. The 140 ± 10 fs duration pump and probe pulses emanate

from two independently tunable optical parametric amplifiers. The pump pulses are inci-

dent obliquely to avoid scattering into the detection path. The pump frequency was tuned

to 0.72 eV (λ = 1720 nm) to switch the refractive index in all GaAs layers by exciting free

carriers by two-photon absorption [104]; the pump is not resonant with the cavity. Our

observations were reproduced in runs with the pump tuned to 0.62 eV, 0.56 eV and 0.52

eV in the three-photon regime, see figure 4.2 A. To ensure that only the flat central part of

the pump focus is probed, the pump beam had a large Gaussian focus of 113 µm width,

much wider than the probe focus of 28 µm. The probe intensity of 1.0 ± 0.3 mJcm−2

energy per pulse was kept well below the pump intensity of 30 ± 3 mJcm−2, to prevent

inadvertent pumping by the probe pulses. Transient probe reflectivity spectra were re-

solved with a high spectral resolution of 0.12 meV (2). The probe pulses have a relative

spectral bandwidth of 2.7%, from 1.260 to 1.295 eV (957 < λ < 984 nm), much broader

than the cavity’s relative linewidth of 1/Q = 0.07%, see figure 6.1 B. Therefore, we are

able to probe the time-resolved cavity resonance without having to tune the probe. We

averaged over probe pulses reflected from pumped and unpumped cavities; the absence

of changes in the unswitched resonance confirms that the cavity remains intact during the

experiment. Furthermore, the unswitched resonance provides an in-situ reference for the

switched events.

6.3 Results and discussion

The cavity’s time-dependent resonance is presented in a photon energy versus time (E,∆τ)-

diagram, shown in figure 6.2 A. In such an (E,∆τ)-diagram, the "footprint" of photons

(2) We used a PI/Acton sp2558 monochromator, and a OMA-V InGaAs diode array with 1024 channels. Due to
inadvertent misalignment in the switch experiment, a slant occurred in the raw spectra that was corrected with a
straight line, and assuming constant near 100% reflectivity in the stopband (see figure 6.1).
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F 6.2: (a) Transient reflectivity versus pump-probe delay and probe frequency. The spec-
tra are averaged over both switched and unswitched events. The switched-cavity resonance at
select delays is shown by white squares. The white curve is a model of the measured reso-
nances using Drude free-carrier dispersion. (b) and (c) Zoom-in near 8 ps and 38 ps, respec-
tively. The "cavity-photon footprint" (dashed lines) has size ∆Ecav by τcav. The full curve traces
the transient cavity resonance whose slope defines the magnitude of light conversion. In (b),
the slope is steep compared to the photon footprints, signalling strong light conversion. In (c),
the slope is shallow, typical for weak light conversion.
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F 6.3: Transient reflectivity spectra measured at select pump-probe delays ∆τ = 8, 18,
38 ps (cross-sections from figure 6.2).

stored in the cavity is a rectangle of extent ∆Ecav by τcav (see figure 6.2 B and C), which

are inversely related in steady-state: ∆Ecav = (2π~)/τcav. figure 6.2 A shows the tran-

sient reflectivity spectrum of the cavity as a function of pump-probe time delay ∆τ. The

transient reflectivity is the time-integrated signal that exits the cavity as a result of a short

probe pulse at ∆τ (and should not be confused for the instantaneous reflectivity at ∆τ).

The experimental feature at 1.278 eV independent of time is the unswitched cavity. When

the cavity is optically switched with a short pump pulse, free carriers are excited leading

to an ultrafast reduction of the refractive index. As a result, the cavity resonance fre-

quency rapidly increases within 3 ps from Ecav = 1.278 to 1.290 eV, corresponding to as

much as 14.5 linewidths ∆Ecav, a signal of a strongly modulated cavity. Subsequently, the

carriers relax and the refractive index increases with a double-exponential relaxation, see

chapter 4.

To investigate the spectral features in more detail, we plot in Figure 6.3 transient

reflectivity spectra at selected time delays. The trough at 1.278 eV in all spectra is the

resonance of the unswitched cavity. For the switched cavity, we observe that the trough

of the transient cavity resonance (Ecav = 1.2876 eV at 8 ps) is clearly asymmetric. We

attribute this asymmetry to the time-integrating nature of the experiment and the dynamics

of the cavity resonance: the field leaking from the cavity is recorded while the resonance is

shifting. Strikingly, regions appear in the spectra where the transient reflectivity exceeds

100%, in particular 131% near 1.283 eV and 8 ps (also 122% near 1.282 eV at 18 ps).
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This excess transient reflectivity is the result of photons that are stored in the cavity by

probe pulses at a delay ∆τ = 8 ps when the transient cavity resonance is centred at 1.2876

eV. The stored photons are then frequency-converted by 4.5 linewidths to 1.283 eV as

a result of the fast downshift of the cavity resonance, and released at a later time ∆τ′ =

∆τ+τcav. Since the cavity is not resonant with the pump beam, the pump pulses have long

vanished at ∆τ = 8 ps. Therefore, we conclude that this observation represents the first

ever frequency conversion of light by the action of a passive optical device - a transient

microcavity - in absence of a pump pulse.

Returning to figure 6.2, one might naively think that the peak at E = 1.283 eV and

∆τ = 8 ps (vertical solid line) is the result of light being converted adiabatically in the

cavity before leaking at a later time ∆τ′. From figure 6.2, however, one sees that the cavity

resonance reaches Ecav = 1.283 eV only much later, at ∆τ′ = 29 ps (horizontal solid line).

This invites the absurd conclusion that light would be trapped during 29 − 8 = 21 ps or

27 times the cavity storage time τcav. We conclude that the frequency of trapped photons

is not adiabatically converted by the strongly modulated cavity.

We postulate that frequency conversion occurs if the cavity frequency change becomes

of the order of one linewidth within a cavity storage time, viz., dEcav/dt > ∆Ecav/τcav

In the framework of the cavity-photon footprint, we thus expect an effect of the cavity

resonance’s transient if the resonance crosses the abscissa of the cavity-photon footprint.

Indeed, while the footprint reveals a crossing of the cavity’s resonance with the abscissa

for ∆τ = 8 ps (figure 6.2 B), the gradient of the dynamic cavity resonance decreases

with increasing delay (figure 6.2 C). This agrees with the observation of a strong excess

transient reflectivity at ∆τ = 8 ps and subsiding of the the excess at longer probe delays

(figure 6.4).

We are now able to interpret the observed features. Since the instantaneous photon

energy is equal to the time derivative of the phase, we consider the phase Φ(t) of the light

trapped in the cavity during the switch Φ(t) = −(Ecav(t)/~)t + ∆φ(t), which can be written

as:

Φ(t) = −(Ecav(t)/~)t +
d∆φ(t)

dt
∆t (6.1)

Here, Ecav(t) is the time-dependent resonance of the cavity, ∆φ(t) the phase change of

the light due to the time-dependent refractive index in the cavity, and ∆t the duration

over which light is frequency converted. In standard nonlinear optics, ∆t is equal to the

duration of the pump pulse, whereas in our case it is equal to the cavity storage time: ∆t =
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F 6.4: Excess amplitude vs. time delay. Squares are our experimental results, and the
full curve a guide to the eye. Data calculated with our model are circles and the dashed curve.

τcav. Eq. 6.1 reveals that frequency conversion of light in a transient cavity in absence of

a pump pulse is due to two effects: The first term is the frequency shifting of the trapped

light in sync with the shifting cavity resonance, or adiabatic shifting. However, we have

seen above that the trapped photon’s frequency shifts more strongly than the adiabatic

estimate, which is due to the second term. This term describes how the frequency of

the field that circulates in the transient cavity is modulated by the time-derivative of the

transient phase, which is proportional to the transient refractive index ncav(t). Eq. 6.1

reveals that the frequency shift increases with (1) the time duration τswitch over which the

light is trapped, (2) the gradient of the cavity resonance’s relaxation, (3) the magnitude of

the frequency shift of the cavity. In our experiment, the frequency conversion amplitude

is large, since the cavity is switched by 14 linewidths (3rd point), and the amplitude is

especially large at short positive probe delays where the resonance decays fast (2nd point).

Interestingly, with Eq. 6.1 we can also interpret frequency conversion methods that do

require spatiotemporal pump-probe overlap [2, 53, 54]: then, the second term will vanish,

since ∆t is short compared to the cavity dwell time. We propose to call the nonlinear

conversion of photon frequency by the action of a transient yet passive cavity "transient

cavity phase modulation" (TCPM).

Finally, we discuss several ways to control and apply the TCPM frequency conver-

sion, based on calculations with our model. While switching harder initially increases the
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frequency conversion amplitude, the efficiency decreases at even higher pump intensities

due to the increasing mismatch of the probe spectrum and the shifted cavity resonance.

By matching the probe frequency and bandwidth to those of the switched cavity, the con-

version efficiency increases continuously with switching magnitude. Optimized sample

growth can provide faster relaxation times in the order of ps [91]. Such a property will in-

crease the conversion efficiency, since the cavity resonance transient will be even steeper

compared to the cavity photon footprint. In the present work the trapped photons are

red-shifted by the cavity, due to the nature of the switching mechanism, namely free-

carrier effects. Conversely, a switch mechanism to blue-shift light requires a decreasing

refractive index, for example using heating effects. Finally, we note that TCPM frequency

conversion may well be used at the single-photon level, thus opening avenues in quantum

optics and quantum information processing.
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CHAPTER7
Addressing single optical resonances of micropillar cavities

7.1 Introduction

In this work we study GaAs/AlAs micropillar cavities because they show a large Pur-

cell effect [11] and they are used for the observation of strong coupling [3]. Micropillar

cavities are photonic structures that are typically a few micrometers high with a diam-

eter between 1 µm and 20 µm. Up to now micropillar cavities are extensively studied

by probing them from the inside using photoluminescence of quantum dots to determine

the frequencies of optical resonances [20]. Here, we identify and interpret single optical

resonances of multi-mode micropillar cavities from the outside by performing reflectivity

measurements. Probing the resonances in reflectivity is essential for ultrafast switching

experiments as have been performed on planar cavities [13] and chapter 6. We show

that we can address single modes and show mode profiles of different modes together

with their calculated mode profiles. Addressing single modes is interesting for ultrafast

switching experiments, but can also be used to select a spatial subset of an ensemble of

quantum dots in the pillar. The latter is relevant for determining the distribution of decay

rates [40] and chapter 8.
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A B C

F 7.1: (A) SEM image of a micropillar cavity with 1 µm diameter and a height of 5.7 µm.
At the pillar edge one can see an alternating light- and dark-gray color pattern associated to
the GaAs/AlAs Bragg stack with 13 λ/4 layer pairs, a GaAs λ cavity layer, and a second Bragg
stack with 25 λ/4 layer pairs. The λ cavity is indicated with a white arrow. (B) SEM image of a
pillar with 8 µm diameter. The substrate and the pillar edge are covered with gold. The top facet
is clean. The alternating pattern on the edge is associated to the GaAs/AlAs Bragg stack with
12 λ/4 layer pairs, a GaAs λ cavity layer, and a second Bragg stack with 16 λ/4 layer pairs. At
the base of the pillar a ring pattern is visible. (C) Cross section of a cleaved gold-coated pillar
with 8 µm diameter. The GaAs/AlAs Bragg stack with 12 λ/4 layer pairs, a GaAs λ cavity layer,
and a second Bragg stack with 16 λ/4 layer pairs are clearly visible.

7.2 Experimental

7.2.1 Sample fabrication

The fabrication process (1) of micropillar resonators starts with the growth of a planar

microcavity by molecular beam epitaxy on a GaAs substrate, see chapter 2. From the

planar cavity, micropillars have been structured by reactive ion etching (RIE) at room

temperature. A layer of SiOx with a thickness between 100 nm and 200 nm is deposited

after RIE and protects the AlAs from oxidizing. The deviation of the pillar diameter

obtained in the λ cavity layer from the specification is smaller than ±1%.

Figure 7.1 A shows a scanning electron micrograph (SEM) of a micropillar cavity

with a diameter of 1 µm and a height of 5.7 µm. At the pillar edge one can see an

alternating light- and dark-gray color pattern associated to the Bragg stacks. The cavity

layer is indicated with a white arrow. A ring pattern, visible at the base of the pillar, is a

result of the reactive ion etching step. The ring at the basis of the pillar does not influence

the optical measurements, since we focus on the top of the micropillar, and the Rayleigh

length of the focus (1 µm) is smaller than the pillar height (5.7 µm). Inhomogeneities on

(1) The micropillar cavities were fabricated by Julien Claudon and colleagues in the CEA-CNRS group
"Nanophysique et Semiconducteurs" at CEA-CNRS Grenoble lead by Jean-Michel Gérard.
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the pillar sides, like the vertical crack on the pillar shown in figure 7.1 A, increase the

roughness of the pillar and thereby the scattering losses [113]. The scattering losses will

not influence the frequency of cavity resonance but will affect the quality factors of the

resonances.

We also studied a sample with gold-coated pillars. The gold coating on the substrate

prevents leakage of light through the substrate if the pillars are probed in transmission.

Furthermore, the gold coating around the pillar prevents coupling to leaky modes [27]. To

fabricate the gold-coated pillars, gold is deposited on a bare pillar sample after reactive ion

etching and removed from the top facets of the pillars by focussed ion beam milling using

Argon ions. Figure 7.1 B shows an SEM image of a gold-coated pillar with a diameter

of 8 µm and a height of 4.3 µm. The substrate and the pillar edge are covered with gold,

and the top facet is clean. At the pillar edge one can see the imprint of the multiple Bragg

layers and a ring pattern due to the etching step is visible at the base of the pillar. Figure

7.1 C shows a cross section of a cleaved gold-coated pillar with 8 µm diameter. The Bragg

stacks and the cavity layer are clearly visible.

Both the gold coated sample and the uncoated sample contain a number of pillar fields

consisting of micropillars. The fields are identified using x (1-4) and y (A-E) coordinates

(see also figure 7.2).

7.2.2 Optical imaging

Figure 7.3 A shows an image taken with the microscope of a gold-coated pillar with a

diameter of 20 µm. The illuminated part of the sample and a micropillar with 20 µm

diameter are clearly visible. Even the gold coating can be resolved. Focussed white light

from the probe beam is visible in the center of the pillar.

Figure 7.3 B shows a pillar field imaged using a glass microscope objective (Melles

Griot 40X) with NA 0.65 and a 100 mm tube lens. Pillars with a diameter between 1 µm

and 10 µm are visible. The focussed probe beam on the pillar with a diameter of 4 µm is

indicated with a black arrow. The magnification is 2 times smaller than with the 200 mm

tube lens, as expected. The images show that pillars with a diameter of 1 µm and larger

are successfully located with the setup and that the probe beam is accurately positioned.
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Addressing single optical resonances of micropillar cavities

F 7.2: Map of a sample containing gold-coated micropillars. Four optical microscope
images are merged to create the figure. The upper three rows contain pillars with diameter
20 µm. The fields having 8 circles contain pillars with diameters between 1 µm and 10 µm. A
homogeneously filled green circle indicates the position of an "excellent" micropillar. A vertically
patterned yellow circle is a "blistered" pillar and a horizontally patterned red circle is a "broken"
pillar. The diagonally patterned blue circle indicates a pillar that is cut in half. The status of the
pillars located at the six white circles is unknown.
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20 mµ 20 mµ

A B

F 7.3: (A) Microscope image of a micropillar cavity with 20 µm diameter. The image is
made with a microscope consisting of a reflecting microscope objective with NA 0.65 and a 200
mm tube lens. White and black corresponds to a high and low light intensity, respectively. The
white circular area is the illuminated part of the sample. The pillar appears as a grey circle with
a dark edge. The dark edge corresponds to the gold coating. The white spot in the center of
the pillar is focussed white light from the probe beam. (B) Microscope image of a field of pillars
using a refracting microscope objective with NA 0.65 and a 100 mm tube lens. Pillars with a
diameter between 4 µm and 10 µm and the base of pillars with a diameter of 1 µm and 3 µm
are visible. The focussed probe beam impinges on the center pillar with diameter 4 µm.

7.2.3 Reflectivity measurements

We probe the sample with a broadband white-light source (Fianium SC-450) and analyze

the reflected light using an interferometer (Bio-Rad FTS-6000) and a silicon photo diode.

The reflectivity of a sample is referenced to a gold mirror in order to account for the spec-

tral response of the setup. Thereby, the reflectivity of the gold mirror is measured before

and after each measurement session to take into account slow time-dependent changes in

the spectrum of the supercontinuum source. The two resulting spectra are averaged and

used for referencing.

7.2.4 Dielectric waveguide theory

In micropillar cavities light is confined in three dimensions, see figure 7.4. In the axial

direction, optical confinement is achieved by two Bragg-mirrors facing each other. Trans-

verse optical confinement is achieved by total internal reflection due to a high refractive

index contrast at the pillar edges. The calculations we present are based on the decoupling

of the axial and transverse wave vector of the resonances in the micropillar cavity [26],

as illustrated in figure 7.4 B. The same dependence on time t and the position along the

pillar is thereby assumed. The vertical solid curve (A) indicates the intensity distribution

of the longitudinal modes, as a result of the axial confinement. The intensity distributions
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F 7.4: Three-dimensional optical confinement in a micropillar cavity. In the axial direc-
tion, confinement is achieved by two Bragg-mirrors. Transverse optical confinement is achieved
by total internal reflection at the pillar edges. The vertical solid curve (A) represents the inten-
sity distribution of the longitudinal modes, as a result of the axial confinement. The horizontal
dashed (C) and dotted (D) curves show transverse intensity distributions of two modes. The
corresponding 2D intensity distributions are plotted in perspective in the cavity of the pillars (I
and II), where white and black corresponds respectively to a high and low light intensity. The
vector diagram (B) relates the wavenumber k0 outside the pillar to the propagation constant β
and the transverse wavenumber kT .

can be calculated using the eigenmode model described in Refs. [26, 114]. The horizon-

tal dashed (C) and dotted (D) curves represent the intensity distributions of two distinct

transverse modes. The corresponding two-dimensional intensity distributions are plotted

in perspective in the cavity of the pillars (I and II). To model longitudinal profile, we

approximate the pillar as a homogeneous dielectric waveguide with a cylindrical shape

having an effective index of refraction neff and an air cladding. For a Bragg stack it is

known that an effective refractive index can be used to approximate the Bragg condition

very well [115, 116]. We assume an effective refractive index since the mode extends

into the mirrors. Then, the wavenumber outside the pillar k0 is related to the propagation
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constant β (longitudinal wavevector) and the transverse wavenumber kT as follows:

n2
effk2

0 = k2
T + β2. (7.1)

β is determined by the Bragg condition and is therefore fixed by the distance d be-

tween the Bragg mirrors and the refractive index of the cavity-layer nGaAs, given by

β = 2πneff/(nGaAsd) [117]. The cavity thickness d and the refractive index nGaAs are

obtained from the fit of the transfer matrix calculation to the measured reflectivity spec-

trum as shown in figure 7.5. The effective refractive index neff is assumed to be neff =

(dGaAsnGaAs + dAlAsnAlAs)/dtot, where dGaAs is the total thickness of the GaAs layers, dAlAs

is the total thickness of the AlAs layers, nGaAs is the refractive index of GaAs, nAlAs is the

refractive index of AlAs, and dtot is the pillar height. Both β and neff are similar for every

mode of every pillar with the same vertical geometry.

By determining the electromagnetic fields of a guided wave that satisfy Maxwell’s

equations and the boundary conditions imposed by a cylindrical dielectric waveguide with

radius r, we obtain the following mode condition [26]:

( J′l (kT r)
kT rJl(kT r)

+
K′l (qT r)

qT rKl(qT r)

)(n2
eff
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( 1
qT r
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β

k0

)2
, (7.2)

where Jl are the Bessel functions of the first kind, Kl are the modified Bessel functions of

the first kind, qT is the transverse wavenumber in air, and nair is the refractive index of air.

The primes on Jl and Kl refer to differentiation with respect to their arguments. Equation

(7.2) has two solutions that are designated as the EH (7.3a) and HE (7.3b) modes
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F 7.5: Reflectivity spectrum of an uncoated pillar with 20 µm diameter (squares) fitted
by a transfer-matrix calculation (line). The stopband extends from 10200 cm−1 to 11400 cm−1

corresponding to a relative bandwidth of 11.1 %. The resonance of the λ-cavity (∆ω/ωsb =

0.75%) is visible at ωcav = 10755 cm−1.

To obtain kT , Eq. (7.3a) and (7.3b) can be solved graphically by plotting both sides of the

equations as a function of kT r, letting (qT r)2 = (n2
eff
− n2

air)k
2
0r2 − (kT r)2 on the right-hand

side. For the special case where l = 0, the EH and HE modes correspond to the TE and

TM modes of a slab waveguide, respectively.

7.3 Results

7.3.1 General properties of micropillar reflectivity spectra

Figure 7.5 shows the reflectivity spectrum of an uncoated pillar with a diameter of 20 µm.

The resonance of the λ-cavity is visible at ωcav = 10755 cm−1. The measured maximum

reflectivity R = 101.7% slightly exceeds 100% since the reflected signal was normalized

to a gold mirror reflecting 95 %. The maximum possible reflectivity relative to the gold

mirror is therefore 105 %.

To determine the thickness of the cavity layer to calculate the propagation constant

β, we performed a transfer matrix calculation to fit the reflectivity spectrum of a 20 µm

pillar. We assume that the pillar with a diameter of 20 µm can be approximated as an

infinite planar cavity, since the focal diameter is 4.2 µm. The transfer-matrix calculation

[50] is performed with a GaAs/AlAs Bragg stack with 13 pairs of λ/4-thick layers, a

261.7 nm thick GaAs λ-layer, and a second Bragg stack with 25 pairs of λ/4-layers. The

thickness of the GaAs layers is 65.4 nm and the thickness of the AlAs layers is 78.3 nm.
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A B

F 7.6: (A) Reflectivity spectra of three different micropillar cavities with 20 µm, 6 µm, and
3 µm diameter. The reflectivity of the stopband decreases with decreasing pillar diameter. For
pillars with diameter 6 µm and smaller the stopband is not perfectly flat. (B) A zoom-in on the
cavity resonances of figure (A). The plots show 7, 3, and 2 troughs (resonances) at the cavity
resonance of pillars with 20 µm, 6 µm, and 3 µm, respectively. The total number of resonances
decreases, but the resonance spacing increases with decreasing pillar. The cavity resonance
of the 20 µm pillar is asymmetric: it is steeper at the blue side than at the red side.

The calculated spectrum corresponds well to the measured one. The measured features

are less pronounced than the calculated ones because the high NA microscope objective

broadens the measured spectrum.

Reflectivity spectra of three different micropillar cavities with diameter 20 µm, 6 µm,

and 3 µm are shown in figure 7.6 A. The reflectivity of the stopband decreases with de-

creasing pillar diameter. The reason is that for small pillars the diameter of the probe

beam is larger than the pillar diameter, which means that only a fraction of the beam is

reflected by the pillar. In addition, small pillars have more losses than large pillars due

to optical scattering at the edges [113]. We also observe that for pillars with diameters of

6 µm or less, the stopband is not perfectly flat. Because the modulation of the stopband

reproduces among different pillars with the same diameter it is not due to microscopic ir-

regularities or the probe beam position. The exact cause of the modulation of the stopband

for smaller pillars remains currently an open question.

The cavity resonances are shown in figure 7.6 B for a more detailed investigation.

The figure shows 7, 3, and 2 troughs for pillars with 20 µm, 6 µm, and 3 µm diameter,

respectively. This is the first time micropillar resonances are resolved using reflectivity

measurements. Until now micropillar resonances have only been observed with photo-

luminescence measurements. The troughs are attributed to the confinement of electro-
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F 7.7: Mean reflectivity of the stopband versus micropillar diameter (squares). The dis-
tribution bars represent the standard deviation of the mean value. The reflectivity decreases
with decreasing pillar diameter. The data is compared to the model presented in Eq. (7.6)
(curve) by the power ratio of a Gaussian beam within a circle of radius ρ having a 1/e2 beam
radius of 2.1 µm. The calculation agrees fairly well with the measurements.

magnetic radiation in the transverse plane. Each trough is a resonance associated to a

mode of the resonator and they have distinct transversal spatial frequencies. The modes

are discrete solutions of Maxwell’s equations for the boundary conditions of a cylindrical

dielectric waveguide, like a micropillar [20]. The identification of single resonances will

be discussed in the next section. As shown in figure 7.6 B, the total number of resonances

decreases with decreasing pillar diameter as expected [20]. The sum of all cavity reso-

nances of the 20 µm pillar yields a surprisingly asymmetric line profile: it is steeper at the

blue side than at the red side. The asymmetry in resonance amplitude is observed both

in reflectivity measurements performed with the reflecting objective and in measurements

performed with a glass objective. We can therefore exclude the reflecting objective as a

cause of the asymmetry. The origin of the asymmetry needs to be investigated further to

obtain more insight.

To explain the decreasing reflectivity of the stopband with decreasing micropillar di-

ameter, we have plotted the mean reflectivity of the stopband measured at gold-coated

and uncoated pillars versus the pillar diameter in figure 7.7. The reflectivity decreases

with decreasing pillar diameter as was seen in figure 7.6 A. The calculated ratio of power

carried within a circle of radius r in the transverse plane at position z to the total power of
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a Gaussian beam, given by

Pr

Ptot
(r) = 100%

[
1 − exp

( −2r2

W2(z)

)]
, (7.5)

where W(z) is the beam radius at distance z from the focus [75]. The part of the beam

that does not impinge on the surface of the pillar is reflected by the gold layer, which is

not in focus. The background reflection due to the gold layer is found to be 33 %, which

means that 33 % of the light not reflected by the pillar is reflected by the gold surface.

Only 33 % is reflected by the gold layer, because the layer is not in focus. The model for

the stopband reflectivity including background reflectivity to which the data in figure 7.7

are compared, becomes:

Pr

Ptot
(r) = 100%

[
1 − 0.67exp

( −2r2

W2(z)

)]
, (7.6)

In figure 7.7 the data are compared to the model with the beam radius of 2.1 µm, measured

with a knife edge. Therefore, the model has no free parameters and shows a fairly good

agreement with the data. We attribute the difference between the calculation and the

measurement for 5 µm and larger pillars to scattering losses at the edges of the pillar

due to surface roughness, which has a larger contribution for smaller pillars [113]. The

deviation for smaller pillars we attribute to the simplicity of our model.

Figures 7.8 A and B show reflectivity spectra of the cavity resonance for gold-coated

micropillar cavities with 5 µm diameter from different pillar fields with the same x-

coordinate and for pillars with 6 µm diameter from different pillar fields with the same

y-coordinate on the sample, respectively. It is clear that the spectral shapes of the reso-

nances reproduce very well among different pillars of the same diameter. This excellent

reproduction is a confirmation of the high reproducibility in the micropillar fabrication.

Similar resonances are indicated by a dashed line, showing that in both x- and y-direction

on the sample the center frequency of the resonances increases. The resonance frequency

increases because there is a spatial gradient in the cavity thickness in both the x and y

direction, due to the growth process.

Figure 7.9 shows the mean scaling factor of the frequency axis of reflectivity spec-

tra per pillar field versus the position on the sample. To obtain the scaling factors, the

resonance frequency of the most well-pronounced resonance at the cavity resonance of a

spectrum is divided by the resonance frequency of the same resonance of a pillar with the
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BA

F 7.8: High resolution reflectivity spectra of the cavity resonances for gold-coated mi-
cropillar cavities with (A) 5 µm diameter from different pillar fields with the same x-coordinate
and (B) for pillars with 6 µm diameter from different pillar fields with the same y-coordinate (B).
A refracting microscope objective is used for this measurement. The reflectivity axis has been
offset with 10 %, only the lowest spectra (squares) in (A) and (B) have not been offset. The
resonances reproduce among different pillars of the same diameter. Similar resonances are
indicated by a dashed line, showing that in both x- and y-direction on the sample the center
frequency of the resonances increases due to spatial gradient in the cavity thickness.

F 7.9: Mean scaling factor (f) of the frequency axis of reflectivity spectra per pillar field
versus the position. The spectra of each pillar field is scaled to field 3D. The highest mean
scaling factor of 1.00094 is found at field 4E and the lowest mean scaling factor of 0.99728 is
found at field 1A. A trend is visible in both x- and y-direction. The scaling factor of field 3A does
deviates from the trend because it is based on an odd resonance from a single measurement.
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same diameter in field 3D. The reflectivity spectra from pillars in field 3D were used as

a reference since they showed the most pronounced and clear troughs. The highest mean

scaling factor of 1.00094 is found at field 4E and the lowest scaling factor of 0.99728 is

found at field 1A. An increasing trend is visible in both x- and y-direction. The scaling

factor of field 3A deviates from the trend because the resonance that is used for calculating

this scaling factor has a shape and amplitude that deviates from other spectra.

The resonance frequency ω of a resonance is related to the cavity thickness d, as

can be derived from equation (7.1). We attribute the spectral shift ∆ω of resonances

for different locations on the sample to an inhomogeneously distributed cavity thickness.

Therefore, the mean scaling factor f can directly be related to the cavity thickness d:

∆ω/ω = ∆d/d = f . The difference in cavity thickness ∆d between extreme fields 4E and

1A is less than 1 nm, assuming that the cavity thickness of field 3D is 261.4 nm, which

we obtained from the fit of the transfer matrix calculation to the reflectivity spectrum in

figure 7.5. The spatial gradient of the cavity thickness is very small compared to the cavity

thickness and allows us to test our model on pillars with different propagation constants.

Similarly, in future experiments it allows us to select different ensembles of quantum dots,

since quantum dot emission in a resonance at a different frequency, means emission from

different size quantum dots and therefore a different ensemble.

7.3.2 Mode identification

Figures 7.10 A shows the reflectivity spectra of pillars with a diameter of 3 µm after

scaling of the resonance frequencies. Each resonance is indicated with a circle. The res-

onances reproduce among different pillars with the same diameter and there is little vari-

ation between the scaled center frequencies of the resonances and the pillar position. The

resonances are not equidistantly spaced, which agrees with the calculations and reference

[20]. With data as in figure 7.10 A we can analyse the origin of the resonances by com-

paring the scaled positions with the resonance frequencies calculated with the waveguide

model.

The reflectivity spectra of uncoated pillars with diameters between 1.25 µm and 3.50

µm are shown in figure 7.10 B. The HE11 and HE01 modes are indicated with bold

squares and bold circles. A clear evolution of the resonances is visible: the frequency of a

resonance as well as the resonance spacing increases with decreasing pillar diameter. The
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F 7.10: Reflectivity spectra of the cavity resonance for uncoated micropillar cavities with
(A) 3 µm diameter. The reflectivity axis has been offset with steps of 10% except for the lowest.
Each resonance is indicated with a bold circle. The center frequency of the resonances shows
little variation among different pillars of the same diameter (within vertical lines). (B) Reflectivity
spectra of the cavity resonance for micropillar cavities with diameters between 1.25 µm and 3.5
µm. The reflectivity axis has been offset. Resonances are indicated with bold squares and bold
circles. A clear evolution of the resonances is visible: the frequency of a resonance increases
with decreasing pillar diameter, as well as the resonance spacing. The reflectivity spectra for
pillars with 2 µm diameter and smaller show weakly pronounced resonances or no resonances
at all.

reflectivity spectra for pillars with 2 µm diameter and smaller show weakly pronounced

resonances or no resonances at all since the signal level is low.

Figure 7.11 shows the measured and calculated resonance frequencies versus mi-

cropillar diameter for uncoated micropillars. The resonance frequencies of the modes de-

creases with increasing pillar diameter and more resonances appear as the pillar diameter

increases. We see a very good agreement between the measurement and the calculation.

We can assign to each resonance a label using the standard notation for guided modes

as used in dielectric waveguides [26]. The solid line, labeled with HE11, represents the

fundamental mode. With figure 7.11 we can identify the resonances.

The resonance frequency of a mode decreases with increasing pillar diameter. The

resonances converge to a horizontal asymptote at ω = 10650 cm−1 on the abscissa, which

is the frequency of the propagation vector β in air. Using a cavity thickness d=261.7 nm

from the transfer matrix calculation of a pillar with 20 µm diameter, we calculated the

frequency of β to be 10722 cm−1. We used a micropillar with a diameter of 20 µm since it

approaches the planar case for our focus diameter of 2.1 µm. We attribute the difference

between the experimentally found and calculated β to the spatial gradient in the cavity

thickness, since the 20 µm pillar from which we derived β experimentally is at a different
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F 7.11: Measured (symbols) resonance frequency and calculated (lines) mode fre-
quency versus micropillar diameter for the uncoated micropillars. The agreement between
the calculation and the reflectivity measurements is very good. The resonance frequency of a
mode decreases with increasing pillar diameter. The modes converge to a horizontal asymptote
(ω = 10650 cm−1). The modes are labeled after the standard name of their guided modes as
used in optical fibers [26]. The solid line, labeled with HE11, represents the fundamental mode.
The dotted lines indicate the calculations of the other modes we have observed in reflectivity.
Modes indicated by a dashed line are not observed in reflectivity.

location on the pillar sample. With figure 7.11 we can identify the resonances and we can

continue the investigation of the mode profiles and how to address single modes.

7.3.3 Addressing single mode

To investigate the position dependent coupling to the resonances, we varied the transverse

position of the probe beam while keeping the top facet in focus. In this way we probe the

mode profile of the resonance, which shows a spatial dependent field distribution. What

profile the resonances have can be derived using the labeling of the modes from figure

7.11.

The amplitude of a resonance equal to the difference between the stopband reflectivity

and the reflectivity of a resonance is plotted versus position in figures 7.12 A (HE11 mode)

and B (HE01 mode) for a micropillar with a diameter of 6 µm. Figures 7.12 A and B show

that the amplitudes of the resonances strongly depend on position. It is clear that the
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F 7.12: (A) Measured (symbols) and calculated (line) modeprofile of the fundamental
HE11 mode for a 6 µm pillar. (B) Measured (symbols) and calculated (line) modeprofile of the
HE01 mode for a 6 µm pillar. mode

shown modes have symmetrical profiles. Figures 7.12 A and B show that the measured

mode profile agrees very well with the mode profile calculated with the waveguide model.

The HE11 mode shows one maximum as expected, the HE01 shows two. From figures

7.12 A and B it is clear that we can excite the HE11 mode at the zero position without

exciting the HE01 mode. In a micropillar with a diameter of 2 µm the HE11 and HE01

mode are the only ones present, which means that in these pillars it is possible to address a

single mode in reflectivity. For larger pillars more modes are present and a more extensive

scheme is needed to address single modes: not only do we need to excite at the antinode

of a mode, but also at the right frequency.

7.3.4 Resonance characteristics versus micropillar diameter

Figure 7.13 shows the number of resonances versus micropillar diameter obtained from

our reflectivity measurements, and from calculations. For both measurements and calcu-

lations the number of resonances increase with increasing pillar diameter. The calculated

number of modes is larger than the measured number of resonances. Due to the differ-

ence in field symmetry between optical resonances and the probe beam it is not possible

to couple to all resonances. The intensity of the probe beam is Gaussian and the beam is

linearly polarized, while this is not the case in general for the mode profiles.

Figure 7.14 shows the quality factor Q versus micropillar diameter for reflectivity

measurements and photoluminescence. The quality factor was determined from the in-
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F 7.13: Number of resonances versus micropillar diameter for reflectivity (squares) and
photoluminescence (circles) measurements on uncoated micropillars and for calculations (line).
For both the measurements and calculations the number of resonances increase with increas-
ing pillar diameter. The calculated number of modes is larger than the number of resonances
observed in the measurements.

verse of the relative linewidth of the HE01 mode. Q decreases with decreasing pillar

diameter, due to additional losses caused by optical scattering on the edges [113].

We have compared the experimental quality factor with a model from literature [113]

Q =
rQ∞

r + ηQQ∞J2
0(kT r)

, (7.7)

where r is the radius of the pillar, Q∞ the quality factor for a pillar with an infinite radius

(i.e., a planar microcavity), ηQ is a measure for the efficiency of the scattering at the edges,
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F 7.14: Quality factor Q of the HE01 mode versus micropillar diameter for reflectivity
(squares) measurements. Q increases with increasing pillar diameter.
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and the Bessel function term J2
0(kT r) is a measure for the amplitude of the field at the edge

of the pillar, which is assumed to be a measure for the amount of scattering. The fit of

Eq.7.7 is shown in figure 7.14 with Q∞ = 10000, ηQ = 1.44 × 10−3. A fixed parameter is

kT = 0.24 rad/µm, which we calculated using the waveguide model. The values for Q∞
and ηQ agree well with literature values [113].

The solid circles in figure 7.14 shows the value for the quality factor as found in

photoluminescence measurements at room temperature, at lower temperatures the quality

factor increases (2). There is a very good agreement between the quality factor measured

in reflectivity and with photoluminescence.

7.4 Conclusion

We have shown that we could spatially resolve mode profiles and address single modes in

multi-mode micropillars by scanning the probe beam over the pillar surface. In this way

we obtained modeprofiles that match the calculated modeprofiles.

We have probed and spectrally resolved optical resonances from outside the pillars.

The number of resonances decreases with decreasing pillar diameter. The resonance fre-

quency shifts with the sample location due to an inhomogeneous cavity thickness distrib-

ution.

We have identified modes by comparing experimental resonance frequencies with the

calculated ones. The agreement between the waveguide model and the reflectivity mea-

surements is very good. The calculated number of modes is larger than the measured

number of resonances, from which we conclude that external Gaussian beams can not

couple to all resonances, because of the difference in field symmetry between resonances

and the probe beam.

The number of modes decreases with diameter as expected from waveguide theory.

The quality factor Q of a resonance decreases with decreasing pillar diameter due to

scattering losses [113]. We found good agreement between the measured and calculated

quality factor.

We have demonstrated the optical characterization of micropillar cavities with diame-

ters between 2 µm and 20 µm using reflectivity measurements. The reflectivity measure-

ments agreed very well with the transfer matrix calculation.

(2) J. Claudon and J.M. Gérard, private communication
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CHAPTER8
Switching the decay rate of an emitter inside a cavity

8.1 Introduction

Light is essential for myriad processes around us: in nature, to human life, and to techno-

logical applications and everyday appliances. It is known that an elementary light source

such as an atom emits a photon either spontaneously or stimulated by an external field

[35]. It is also well-known that the rate of spontaneous emission is not an immutable

property of an atom [36, 37]. The rate also strongly depends on its surroundings. In

quantum mechanics, the rate of spontaneous emission of an excited two-level atom is de-

scribed by Fermi’s golden rule [38]: the rate is determined by a product of atomic matrix

elements of the dipole operator with the local density of optical states (LDOS), that typi-

fies the surroundings. The LDOS is thereby a measure of the number of modes in which

a photon can be emitted, and it can be interpreted as the density of vacuum fluctuations at

the atom’s position. A main feature of spontaneous emission is its dynamics: an emitted

photon is measured at a random time after the atom is excited with a short pulse. Both the

distributions of emitted photons and of the excited-state population decay exponentially

in time, and are determined by the decay rate.

To modify the average spontaneous emission rate of a source in the frequency do-

main a resonant cavity can be tuned to the source’s emission frequency. In this way much

progress has been made in controlling spontaneous emission with nanophotonic struc-

tures [11, 119, 123]. In all microcavities and photonic crystals, however, the control is
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stationary in time. Thus, the distribution of emitted photons and the emission rate do not

change in time.

In this work, we propose a novel tool to quickly modify the environment of an en-

semble of two-level sources during their lifetime. As a result, we anticipate deterministic

bursts of dramatically enhanced (or inhibited) emission within short intervals. Our ap-

proach is a novel tool to control excited two-level quantum sources and opens new vistas:

We envision a bright ultrafast light source whose statistics differs from known laser action

(Q-switching or cavity dumping). We also imagine novel control of quantum informa-

tion against decoherence. In the long run, our method offers a novel tool to realize the

breakdown of the weak-coupling approximation and non-Markovian dynamics in cavity

quantum electrodynamics.

Here, we introduce the general equation that describes the population density of an

ensemble of two-level sources with a time dependent decay rate due to a time dependent

local density of states. With this equation we derive the emitted intensity as a function of

time for continuous wave and pulsed excitation of an ensemble of two-level sources. The

decay rate of the ensemble is determined by a local density of states that is switched using

free carriers. This switching mechanism is well studied in literature [13, 24, 94, 96, 102].

Finally, we will show that the derived equations apply to an ensemble of quantum dots in

the cavity of micropillar resonators.

8.2 Switching the decay rate

8.2.1 Rate equations

We consider an ensemble of two-level sources (such as an ensemble of quantum dots) in

a medium with a local density of optical states (LDOS) ρ that is spectrally shaped by, for

example, a photonic microcavity. We investigate what happens if the LDOS changes in

time by generating free carriers as described in this thesis, thereby changing the radiative

decay rate and the decay dynamics of the ensemble of two-level sources.

To derive the rate equation of an ensemble of two-level sources we start with the

equation of motion of the probability amplitude of the excited two-level source (TLS) ca

[39]
dca(t)

dt
= − d2

2~ε0

∫ t

0

∫ ∞

0
ca(t′)ωρ(ω, ed, r, t′)ei(ω−ωd)(t′−t)dωdt′, (8.1)
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with d the amplitude of the transition dipole moment, ~ the reduced Planck’s constant, ε0

the dielectric constant of vacuum, ρ the local density of states, ed the transition dipole ori-

entation, r the dipole position, and ωd the dipole frequency. For notational convenience,

we explicitly write only the time dependency of ca, but it should be kept in mind that ca

also depends on r and ed.

We are in the weak coupling limit if we assume that the product ωρ varies very lit-

tle over the linewidth of the emitter. This approximation is also known as the Markov

approximation [6] or the Weisskopf-Wigner approximation [35]. Using the Markov ap-

proximation Eq. 8.1 can be simplified to

dca(t)
dt

= − d2

2~ε0

∫ t

0
ca(t′)πδ(t − t′)ωdρ(ωd, ed, r, t′)dt′. (8.2)

The integral in Eq. 8.2 can be solved [39]:

dca(t)
dt

= − d2

2~ε0
ca(t)πωdρ(ωd, ed, r, t), (8.3)

which can be written as
dca(t)

dt
= −γrad

2
ca(t), (8.4)

with γrad(t) =
d2ωd
~ε0π

ρ(ωd, ed, r, t), which is well known as Fermi’s golden rule [38]. Fermi’s

golden rule holds in the weak coupling limit, which means that coherence effects of the

emitter such as dephasing do not play a role. Equation 8.4 shows that in the case of a

time-independent LDOS, ca(t) decreases exponentially with a decay rate γrad
2 . It follows

from Eq. 8.4 that the probability |ca|2 of a TLS to be excited decreases exponentially with

a decay rate γrad according to

|ca(t)|2 = |ca(t = 0)|2e−γrad t. (8.5)

With Eq. 8.4 the population density N2(t) of an ensemble of N equal (no inhomoge-

neous broadening) and non-interacting two-level sources is given by

dN2(t)
dt

= − (Γrad(t) + Γnrad(t)) N2(t), (8.6)

with the radiative decay rate of the ensemble Γrad(t) =
d2ωd
~ε0π

ρ(ωd, ed, r, t) and the non-

radiative decay rate Γnrad(t). We have introduced the non-radiative decay rate since it
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plays an important role in physical time-resolved emission experiments. For convenience

we will continue writing N2 only as function of time t as in Eq. 8.6. For any sub-ensemble

of the N two-level sources N2 also depends on r, ωd, and ed. In the derivation of Eq. 8.6

we have neglected contributions from the excitation of the TLS [19]. If we insert these

contributions, Eq. 8.6 becomes [19]

dN2(t)
dt

= ηabs
Pexc(t)
~ωexc

− (Γrad(t) + Γnrad(t)) N2(t), (8.7)

with Pexc(t) the excitation power, ωexc the excitation frequency, and ηabs the absorption

efficiency. The general solution of Eq. 8.7 is

N2(t) = N20 +

∫ t

0

(
ηabs

Pexc(t′)
~ωexc

− (
Γrad(t′) + Γnrad(t′)

)
N2(t′)

)
dt′, (8.8)

where N20 is the population density at t=0. We can calculate the radiated emission Iem

from the time-derivative of the population density with [40]

Iem = −dN2(t)
dt

= Γrad(t)N2(t), (8.9)

which means that the emitted light intensity is proportional to the decay rate and the popu-

lation density. Eq. 8.8 is the general solution for the population density N2 of an ensemble

of two-level sources with a time dependent decay rate. Eq. 8.8 and Eq. 8.9 form the basis

for the further discussion in which the equations will be used to numerically calculate

the emission in the case of continuous wave excitation and to analytically calculate the

emission in case of pulsed excitation.

8.2.2 Direct excitation and free carrier excitation

In this section we focus on the excitation of the emitters, described by the term Pexc(t) of

Eq. 8.8. There are two main contributions to the excitation power. The first one results

from the excitation pulse, which excites the ensemble of two-level sources. The time

behavior of the excitation pulse is thereby conveniently modeled with a Gaussian function,

see Ref. [55]. The second contribution results from the recombination of excitons created

by the switch pulse. This contribution is assumed to be proportional to the free carrier

density and therefore has the same temporal behavior as the free carrier density. The total
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excitation power is thus given by:

Pexc(t) = P0exce
−2(t−t0exc )2

τ2
exc +

P0pu

τpu

√
2
π
ηrece

−(t−t0pu )
τrec

∫ t

0
e
−2(t′−t0pu)2

τ2
pu dt′. (8.10)

Here P0exc is the amplitude of the excitation pulse, t0exc the time at which the excitation

pulse excites the quantum dots, τexc the duration of the excitation pulse, Ppu the amplitude

of the pump pulse, ηrec the fraction of the carriers that will recombine at the quantum

dots, t0pu the moment the photonic structure is pumped, τpu the duration of the pump

pulse, and τrec the recombination time of the carriers. The full width at half maximum of

the pump pulse is given by τpuFWHM = 1√
2ln2

τpu. We have assumed in Eq. 8.10 that the

recombination is slower than the pump process: τpu << τrec, which is usually the case in

our experiments where the pump pulse duration is τpu = 0.120 ps and the recombination

time of carriers in GaAs is τrec = 35 ps [13].

Solving the integral in Eq. 8.10 yields

Pexc(t) = P0exce
−2(t−t0exc )2

τ2
exc + P0pu

ηrec

2
e
−(t−t0pu )
τrec

1 + er f


√

2(t − t0pu)
τpu


 , (8.11)

where erf(x) is the Gaussian error function. The excitation power as a function of time

is plotted in figure 8.1. Figure 8.1 shows the direct quantum dot excitation at 5 ps and

the start of the quantum dot excitation due to free carriers at the moment the pump pulse

arrives at 10 ps. The size of the excitation due to free carriers is taken to be P0pu
ηrec
2 = 10%

of the amplitude of the direct excitation pulse. The figure shows that the excitation power

due to free carrier recombination decreases with a typical time constant τrec = 35ps.

The factor ηrec can be decreased by shielding the quantum dots with intermediate

layers (1). The intermediate layers act as recombination surfaces preventing the electron

hole pairs from reaching the quantum dots and use them as recombination centers instead.

After the quantum dots are excited they will decay. The rate at which they decay is

time dependent, due to the relaxation of the excited free carriers. This will be the subject

of the next section.

(1) J.M. Gérard and J. Claudon, private communication
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F 8.1: Excitation power of the quantum dots normalized to the amplitude of the direct
excitation pulse as a function of time for an excitation pulse with duration of 0.110 ps at the time
t0exc. The excitation due to free carrier recombination starts at t0pu = 10 ps, the moment that
free carriers are generated.

8.2.3 Radiative decay rate as a function of time

The central goal of this work is to describe the time-dependent radiative decay rate Γrad(t)

being switched by changing the LDOS at the position of the quantum dots. The LDOS de-

pends nonlinearly on the refractive index, while the refractive index depends nonlinearly

on the carrier density. The largest nonlinearity is in the refractive index dependence of

the LDOS, the free-carrier dependence of the refractive index can well be approximated

by a linear relation (see [13]). For simplicity we assume that the LDOS depends linear on

the free carrier density during the switch even though in real systems the situation is more

complex (see [13] and chapter 4 and chapter 5). The recombination of the generated free

carriers is exponential in time [13, 46, 47] and therefore we model the LDOS change as

being exponential. Since in the weak coupling limit Γrad is proportional to the LDOS, the

decay rate is given by:

Γrad(t) = Γ0rad +
∆Γsrad

2
e
−(t−t0pu )
τrec

1 + er f


√

2(t − t0pu)
τpu


 , (8.12)

where Γ0rad =
2πd2ωd
~ε0

ρ0 is the unswitched decay rate and ∆Γsrad =
2πd2ωd
~ε0

∆ρ is the magni-

tude of the switch. We have again made the reasonable assumption that the pulse duration

τpu = 0.120 ps is very short compared to the free carrier recombination time τrec = 35
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ps [59]. With the decay rate given in Eq. 8.12 we can state that the simplification from

Eq. 8.2 to Eq. 8.3 is valid if ωdτpu >> 1, which is the case for a pump-pulse duration

τpu = 0.120 ps. In this case the smallest variation of the LDOS in time has a characteristic

time that is much longer than the width of the delta function in Eq. 8.2.

The radiative decay rate as a function of time is plotted in figure 8.2. Figure 8.2 shows
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F 8.2: Radiative decay rate as a function of time normalized to the initial radiative decay
rate in the case the radiative decay rate is increased (solid) and decreased (dashed).

an increase of 10 % (solid) and decrease of 10 %(dashed) of the decay rate at t = 10ps.

We chose 10 % for illustrational purposes. Experimentally the change in decay turns

out to be bigger [11]. The decay rate is assumed to be proportional to the free carrier

density and therefore exponentially decreases with the same time constant as the free

carrier recombination time.

8.2.4 General equation for population density

In this section the general equation, including the parameters Pexc(t) and Γrad describing

the population density of the ensemble of two-level sources will be given. Substituting
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Eq. 8.12 and Eq. 8.11 into Eq. 8.8 yields

N2(t) =N02 +
ηabs

~ωexc

∫ t

0

P0exce
−2(t′−t0exc )2

τ2
exc + P0pu

ηrec

2
e
−(t′−t0pu )

τrec

1 + er f


√

2(t′ − t0pu)
τpu



 dt′

(8.13)

−
∫ t

0

Γ0rad +
∆Γsrad

2
e
−(t′′−t0pu )

τrec

1 + er f


√

2(t′′ − t0pu)
τpu


 + Γnrad(t′′)

 N2(t′′)dt′′,

which is the general equation for the population density. We used two time arguments t’

and t” for clarity. The equation has three terms: the first is the initial population density

N02, the second represents the excitation term, and the third is the emission term.

8.2.5 Population and emission dynamics for continuous wave excita-
tion

In the case of continuous wave (CW) excitation of the two-level sources the direct excita-

tion is constant and equal to P0exc. Therefore, Eq. 8.13 simplifies to:

N2(t) =N0 +
ηabsP0exct
~ωexc

+
ηabs

~ωexc

∫ t

0

P0pu
ηrec

2
e
−(t′−t0pu )

τrec

1 + er f


√

2(t′ − t0pu)
τpu



 dt′

(8.14)

−
∫ t

0

Γ0rad +
∆Γsrad

2
e
−(t′′−t0pu)

τrec

1 + er f


√

2(t′′ − t0pu)
τpu


 + Γnrad(t′′)

 N2(t′′)dt′′.

Since Eq. 8.14 cannot be solved analytically, we have solved it numerically and plotted

the results in figure 8.3. Figure 8.3 A shows the influence of the switch and the carrier re-

combination on the emission dynamics. In the switched case we have chosen Γrad = 5Γtot

and ηrec = 0, since a 5 fold Purcell enhancement was reported in literature [11]. In the

first 100 ps after the switch at t = 0, we see an increase of the emission from 100 %

to 600 %. After the excited free carriers have recombined (at t = 200 ps), the emission

decreases and drops below the unswitched emission. After about 600 ps the emission

increases again to the unswitched steady state emission as the carriers recombine. The

emission becomes smaller than the unswitched emission because the population density

decreases rapidly due to the increased decay rate as is shown in figure 8.3 B. The equilib-
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F 8.3: Emitted intensity (A) and population density (B) as a function of time for a CW-
excited ensemble of two-level sources. The unswitched (solid and dotted) and switched (at t=0
ps, dashed and dash dotted) solutions are plotted with (dotted and dash dotted) and without
(solid and dashed) extra excitation of the ensemble due to free carrier recombination at the
two-level sources with ηrec = 0.1. The dotted curve shows the influence of the recombination in
case of a switch, while the dashed curve shows the influence of the change in decay rate. The
dash-dotted line is the sum of the dashed and dotted line.

rium population density cannot be restored instantaneously and therefore the population

density drops below the density of the unswitched emission.

To analyse the effect of quantum dot excitation by the free carrier recombination we

compare the case of Γrad = 5Γtot and ηrec = 0.1, to the case Γrad = 0 and ηrec = 0.1. We

see that the emission for the increased decay rate increases at first, and ends up lower than

the emission in the case of only excitation by recombination (Γrad = 0 and ηrec = 0.1).

The emission increases with respect to the case of Γrad = 5Γtot and ηrec = 0 as well, since

extra excitons are generated in the quantum dots by the carriers that use quantum dots as

recombination sites.

We conclude from figure 8.3 that switching the decay rate leads to a strong enhance-

ment of the emission compared to the unswitched case. The duration of the emission en-

hancement is determined by the recombination rate of the free carriers, while the moment

of increase is determined by the switch pulse. By applying the switch pulse we are able to

deterministically enhance the spontaneous emission of an emitter and create an emission

burst. The population density decreases and increases again due to the repopulation of the

levels by the continuous wave excitation.
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8.2.6 Population dynamics for pulsed excitation

The dynamics for pulsed excitation of the system are different from the dynamics for

continuous wave excitation of the two-level sources. Equation 8.13 also describes the

dynamics of the ensemble of two-level sources under pulsed excitation but it cannot be

solved analytically. To obtain more insight, we will continue with the rate Eq. 8.7, which

can be solved analytically for excitation with a Dirac pulse. We assume that the excitation

pulse with amplitude P0exc initializes the system at t = t0exc such that we have an intial

population density N2(t = t0exc) = N02. At times after excitation (t > t0exc) Eq. 8.7

simplifies to:

dN2(t − t0exc)
dt

= − (Γrad(t − t0exc) + Γnrad(t − t0exc)) N2(t − t0exc). (8.15)

Equation 8.15 can be integrated to yield:

N2(t − t0exc) = N02exp
(∫ t−t0exc

0
− (

Γrad(t′) + Γnrad(t′)
)

dt′
)
. (8.16)

Equation 8.16 shows that the population density can be calculated for any decay rate as a

function of time after the excitation process is over.

The general solution of the rate Eq. 8.7 for a pulsed direct excitation of quantum dots

can also be solved in case of a switched radiative decay rate as described in Eq. 8.12.

Inserting Eq. 8.12 into Eq. 8.16 and solving the integral over the constant part of the

decay rate yields

N2(t − t0exc) = N02e−(Γ0rad+Γ0nrad)(t−t0exc)−∆αrad(t), (8.17)

where we assumed that the non-radiative decay rate is time-independent Γnrad(t) = Γ0nrad,

since the non-radiative decay rate does not depend on the change of the LDOS. Further-

more, we define a dimensionless time-dependent switch parameter ∆αrad(t)

∆αrad(t) =

∫ t

0

∆Γsrad

2
e
−(t′−t0pu )

τrec

1 + er f


√

2(t′ − t0pu)
τpu


 dt′. (8.18)

The dimensionless time-dependent switch parameter ∆αrad(t) is the important figure of

merit that describes the change in population density due to the switch of the decay rate.

A negative ∆αrad(t) indicates that the population density decays slower, while a positive

∆αrad(t) indicates a faster decay compared to the unswitched situation.
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If we reasonably assume that the duration of the switch pulse τpu is very short with

respect to the recombination time τrec, the integral in Eq. 8.18 can be split into two parts

- before and after the switch t = τpu - and ∆αrad becomes

∆αrad(t) =
∆Γsradτrec

2

(
1 − e

−(t−t0pu )
τrec

) 1 + er f


√

2(t − t0pu)
τpu


 , (8.19)

where we have multiplied with er f
( √

2(t−t0pu)
τpu

)
to account for the fact that there is no

response of the system before t = t0pu. The solution of Eq. 8.19 in the limit where time t

tends to infinity is

lim
t→∞

∆αrad(t) = ∆Γsradτrec. (8.20)

Equation 8.20 shows that the switch parameter is indeed dimensionless and is given by

the product of a decay rate and a time constant. The switch parameter therefore describes

the product of the duration and the magnitude of the switch, which makes it useful as a

figure of merit.

0 50 100 150

60

80

100

Time [ps]

  rad = 0 0tot

 rad = -0.8 0tot

  rad = +4 0tot

N
2/N

02
 [%

]

F 8.4: Population density on a log scale as a function of time. The population density
decreases faster if the decay rate is increased from 1 ns−1 to 5 ns−1 and decreases slower if
the decay rate is decreased from 1 ns−1 to 0.2 ns−1. The slope is the same for all three curves
after the carriers recombination time τrec = 35 ps and the decay rate is back to its initial value.

Figure 8.4 displays Eq. 8.17 for three cases: no change in decay rate, a decrease

of the decay rate by 80 % and an increase of the decay rate by 400 %. The latter two
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cases correspond to a decrease of the Purcell enhancement with a factor 5 and an increase

of the enhancement by a factor of 5, as was reported in literature [11]. The population

density decays clearly non-single exponentially. During the carrier recombination there

is a strong deviation from the unswitched case, because the free carriers modify the decay

rate. After recombination of the free carriers the population density does not converge

to the unswitched case as for continuous wave excitation, because there is no continuous

excitation of the ensemble. However, the ratio of change is the same as in the unswitched

case.

Equation 8.20 and 8.17 show that the ratio of the switched population density N2s and

the unswitched population density N2us in the limit of t tending to infinity is equal to

lim
t→∞

N2s(t)
N2us(t)

= e−∆Γsradτrec . (8.21)

Equation 8.21 states that for an increase of the decay rate the population density has de-

creased, due to the factor ∆Γsradτrec, after the effect of the switch has faded out. The

population density increases due to a decrease of the decay rate. In the limit to infin-

ity, when the excited free carriers have recombined, the ratio between the switched and

unswitched cases is given by Eq. 8.21. In the case of a decreased decay rate (dashed

in figure 8.4) the population density is larger than in the unswitched case as expected

from Eq. 8.21. In the case of an increased population density, the population density is

decreased as expected from Eq. 8.21.

8.2.7 Emission dynamics for pulsed excitation

The emitted intensity Iem is according to Eq. 8.9 equal to minus the time derivative of

the excited state population, which is given by Eq. 8.7. Inserting the decay rate from Eq.

8.12, the population density from Eq. 8.17, and switch parameter from Eq. 8.19 into the

rate in Eq. 8.15 with ηrec = 0 yields:

Iem = (Γ0rad + ∆Γrad(t))
N02

2
e−Γ0tot(t−t0exc)−∆αrad(t)

1 + er f

√

2(t − t0exc)
τexc


 , (8.22)

with ∆Γrad(t) =
∆Γsrad

2 e
−(t−t0pu )
τrec

[
1 + er f

( √
2(t−t0pu)
τpu

)]
and Γ0tot = Γ0rad + Γ0nrad. The er-

ror function is present in Eq. 8.22 to describe that the emission starts at the moment

the system is excited by the excitation pulse. Eq. 8.22 shows that the influence of the
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switch remains visible in the emission after the free carriers have recombined. Because of

the switch parameter ∆αrad(t) the emission is increased or decreased with respect to the

unswitched case for a decreased or increased decay rate respectively. The shape of the

emission is determined mainly by the factor (Γ0rad + ∆Γrad(t)) in the transient state.

Figure 8.5 shows the time-resolved emission in two switched cases and in the unswitched

case on a logarithmic scale for clarity. It is clear that the emission increases if the decay
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F 8.5: Switched and unswitched emission (solid) as a function of time. The dotted line
shows the switch in case of a decay rate that increases from 1 ns−1 to 5 ns−1, while the dashed
line represents a decay rate that is decreased from 1 ns−1 to 0.2 ns−1. The decay dynamics of
the ensemble is plotted showing the influence of the switch parameter after the carriers have
recombined with a recombination time τrec = 35 ps.

rate is increased by the switch. A decreased emission is the result from a decreased decay

rate. Figure 8.5 shows that after the carriers have recombined the emission is lower for

the ensemble for which the decay rate was increased, while the emission is higher for the

ensemble for which the decay rate was decreased. The reason is that the population den-

sity has changed as shown in Eq. 8.21. The emission after recombination of the excited

free carriers is a measure for the population density and for the switch parameter.

Figure 8.5 shows that the emission can dynamically be increased or decreased by

switching the LDOS. The speed of the effect shown in figure 8.5 is increased if the LDOS

is not proportional to the carrier density as was assumed in the derivation of Eq. 8.22.

We can see that this is the case near a cavity resonance for example. The LDOS as a
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function of wavelength changes fast within the linewidth of the resonance. A change of

the refractive index equal to the relative linewidth of the cavity resonance can change the

Purcell factor experienced by quantum dots emitting off-resonance by a factor of 5, since

the resonance frequency has shifted due to free carrier excitation. During recombination

the Purcell factor of the quantum dots that were on-resonance right at the switch decreases

steeply. When the free carrier concentration has decreased sufficient, the cavity resonance

frequency no longer overlaps with the quantum dot emission line and the Purcell enhance-

ment is equal to the initial value. At that moment the Purcell factor has become low again.

In the case that the emission is switched using the resonance of a cavity, where the LDOS

does not linearly depend on the excited free carrier density, the effects shown in figure 8.5

will be enhanced and be even more dramatic.

8.3 A realistic example: quantum dots in micropillars

8.3.1 Introduction to micropillars

One advanced type of optical cavities are micropillar cavities, which are photonic struc-

tures that are typically a few micrometers high and have a diameter between 1 µm and

20 µm (see also chapter 7). Micropillar cavities confine light in three dimensions. In the

direction perpendicular to the Bragg layers (i.e., axial), optical confinement is achieved

by the two Bragg-mirrors facing each other. Optical confinement in the direction paral-

lel (i.e., transverse) to the Bragg layers is achieved by total internal reflection and a high

refractive index contrast at the pillar edges [25]. Micropillar cavities support multiple res-

onances at discrete frequencies. Due to their geometry, micropillars allow direct optical

probing and output coupling.

Figure 8.6 shows an SEM image of a micropillar cavity with 6 µm diameter and a

height of 5.7 µm. Inside the pillar, parallel to the top facet, an optical cavity layer is

sandwiched between two Bragg stacks. The micropillars often consist of GaAs/AlAs

layers [3, 20, 27, 28], but pillars with HfO2/SiO2 layers for operating in the ultraviolet

have also been reported in literature [29]. In the example that we are considering, the

Bragg mirrors are made from layers of GaAs and AlAs, while the cavity is made of

GaAs. All layers are grown by means of molecular beam epitaxy (MBE). The quantum

dots are InAs dots and are placed inside the λ-cavity [20]. The system is optimized for

spontaneous emission, therefore a low density of quantum dots is present. Furthermore,
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F 8.6: SEM image of a micropillar cavity with 6 µm diameter and height of 5.7 µm. At
the pillar edge one can see an alternating light- and dark-gray color pattern associated to the
GaAs/AlAs Bragg stacks and the GaAs λ cavity.

the dots’ levels are optimally isolated from other levels than the levels participating in the

desired transition.

In this work we study GaAs/AlAs micropillar cavities because they show a large Pur-

cell effect [11] and they are used for the observation of strong coupling [3]. Micropil-

lars are extensively studied by probing them from the inside using photoluminescence of

quantum dots to determine the frequencies of optical resonances [20].

8.3.2 Micropillar cavities

The system under consideration is a micropillar with quantum dots. The main advantages

of such a system are a small volume of the cavity, high Q factor, and directional outcou-

pling of the light. There are two micropillar resonator specific issues, which have not

been incorporated into the general equation Eq. 8.22 for the time-dependent emission:

The first category results from the fact that the field strength in a pillar resonator is spatial

dependent. The second category results from the angular dependent emission from the

various micropillar resonances.

A micropillar resonator supports a number of different resonances, which are often

called modes (2). Each resonance has thereby its own spatial field distribution inside

the pillar, which influences the quality factor of the pillar [113] and the mode volume

(2) A mode can per definition only exist in a closed system. As soon as it couples to the outside world and can be
measured, it is no longer a mode, but a resonance consisting of an infinite number of modes, with an infinitely
small mode spacing. [7]
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[118]. Furthermore, the decay rate of a quantum dot depends on the local field strength

at the position of the quantum dot [119], which means that Eq. 8.22 becomes spatially

dependent.

The emission is also angular dependent as was shown in [119, 120]. Each resonance

of the micropillar couples out of the pillar under a specific angle, because of the angular

dependence. Consequently, the outcoupling of emission changes if quantum dots couple

to a different resonance due to the switched cavity. Similarly, since the center frequency

is different for each resonance [20], emission can be switched between resonances. We

will focus in the next sections on the fundamental resonance of the micropillar resonator

since it has been studied extensively in literature [11, 20, 113, 118, 120–122].

8.3.3 Modeling of decay in micropillar

In this section we will focus on the spatial dependence of the field strength as introduced

in the previous section. The emission of quantum dots inside a single mode cavity has

been measured and modeled for the fundamental mode in [11, 119, 123]. It was concluded

that the lifetime enhancement of the quantum dots not only depends on the Purcell factor,

but also on the lateral position of the quantum dots inside the cavity and on the emission

wavelength of the dots. This dependency results from the coupling between the dots and

a single mode, which depends on the spatial mode profile, the position of the dots, and the

emission wavelength [11, 119, 123]. For InAs quantum dots in a micropillar the decay

rate Γ(ω) is given by [119]

Γ(ω, r, t)
Γ0

= Fp
|E(r)|2
|Emax|2

ω2
0(t)

4Q2(ω − ω0(t))2 + ω2
0(t)

+ γ, (8.23)

with Q the quality factor of the cavity resonance, E(r) the field as a function of position in

the cavity, Emax the maximum field in the cavity, ω the emission frequency of the quantum

dot, ω0 the resonance frequency of the cavity, Γ0 the radiative emission rate of the InAs

quantum dots in a homogeneous GaAs matrix, γΓ0 is the emission rate in the leaky modes

of the pillar, and Fp the Purcell factor, which is given by

Fp =
3Qλ3

c

4π2n3V
, (8.24)
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with n the refractive index of the medium, λc the center wavelength of the cavity reso-

nance, and V the effective mode volume of the resonant mode given by the spatial integral

of the vacuum field intensity for the cavity mode divided by its maximum value [11].

Figure 8.7 shows the total field amplitude distribution of the HE11 mode calculated

for a micropillar with a diameter of 8 micrometer. For an ensemble of non-interacting
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F 8.7: Calculated mode profile of fundamental micropillar mode HE11, 2R=8 µm. The
colorscale indicates the absolute value of the electric field. The black circle indicates the pil-
lar edge. The fundamental mode has a field maximum in the middle of the pillar. The field
amplitude decreases towards the edge of the pillar.

and equal quantum dots in a micropillar cavity the total emitted intensity is equal to the

integral of the intensity of one quantum dot at position r:

Itot(ω, t) =

∫ 2π

0

∫ R

0
IQD(ω, r, t)drdφ, (8.25)

with φ the angle of the vector r and Itot(ω, t). From Eq. 8.23 and from figure 8.7 it is clear

that the field E(r) strongly depends on position, therefore the decay rate Γ and thus the

distribution of the decay rates c(Γ(r, t)) strongly depend on the position r. Integrating the

integral over φ, the integral over r in Eq. 8.25 becomes:

Itot(ω, t) = 2π
∫ R

0
c(Γ(r, t))Γ(r, t) exp (−Γ(r, t) t)dr. (8.26)
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Similarly, the population density is given by:

N2(ω, t) = 2π
∫ R

0
c(Γ(r, t)) exp (−Γ(r, t) t)dr. (8.27)

From mode profiles as given in figure 8.7 we obtain the distribution of the decay rates

c(Γ(r)), which is shown in figure 8.8 together with the distribution for Γ(r, t)c(Γ(r, t)). We

normalized the decay rate axis to the maximum decay rate in the mode, which is found at

the maximum field amplitude Emax. The distribution c(Γ(r)) is by definition normalized,

since the integral over the decay rate Γ yields 100 %, which corresponds to the total area

of the pillar. It is clear from figure 8.8 that there are no decay rates below 16 % of the
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F 8.8: Distribution of the decay rates c(Γ(r)) (black solid) and the distribution for
Γ(r, t)c(Γ(r, t)) (red dashed) as a function of Γ. The decay rate axis is normalized to the the
maximum decay rate in the mode, which is found at the maximum field amplitude Emax.

maximum value. The reason is that there is no node in the pillar for the HE11 mode. The

multiplication of c(Γ(r)) with the decay rate changes the shape of the distribution from a

downward slope toward the maximum decay rate to an upward slope.

Figure 8.9 shows the population density for quantum dots that emit in the HE11 mode,

and a single exponential fit to the population density curve. The timescale τEmax is the

lifetime at the maximum field intensity Emax. The curve in figure 8.9 is only based on

the position of the quantum dots in the cavity. We assumed a homogeneous quantum dot

distribution and used distributions as in figure 8.8 and Eq. 8.27 to calculate the curve in
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8.3. A realistic example: quantum dots in micropillars

figure 8.9. Figure 8.9 shows that the population density decays non-single exponentially,
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F 8.9: Calculated dynamic population density (black solid) and single exponential fit (red
dashed) of a homogeneously distributed layer of quantum dots that emit in the fundamental
mode. The minimum lifetime τmax corresponds to the lifetime of the quantum dots at areas with a
maximum field amplitude and therefore a maximum increase of the decay rate. The decay curve
is non-single exponential, but can be quite accurately fitted with a single exponential fit over the
four shown decades. The inset shows the population decay curve and single exponential fit
over 1 decade.

because of the distribution of rates shown in figure 8.8. Interestingly, the deviations from

single exponential decay are moderate, since a single exponential model fits reasonably

well to the decay curve over four decades. We conclude from figure 8.9 that the term

|E(r)| in Eq. 8.23 can be reasonably modeled as a constant independent of position in

case of the population density.

With the distribution for Γ(r, t)c(Γ(r, t)) and with Eq. 8.26, we have calculated the in-

tensity decay curve for emission in the HE11 mode as shown in figure 8.10. The intensity

decay curve is usually measured in time correlated single photon counted experiments to

determine the quantum dot decay rate. As is the case for the population density, the inten-

sity decay curve is non-single exponential. Non-exponential decay due to a distribution of

sources has recently been observed for quantum dots in photonic crystals [124] and was

modeled with an analytical decay rate distribution. Interestingly, here we do not assume

such a distribution but calculate it ab-initio from the known properties of the cavity. In a

homogeneous medium, the quantum dots decay single exponentially. We have also plot-

ted in figure 8.10 a single exponential fit that agrees reasonable well with our results. The

115



Switching the decay rate of an emitter inside a cavity

0 5 10 15 20

0 2 4

20

40
60
80

100

 Calculated
 Single exponential fit

2t/ Emax [-]

I Q
D
/I 0

 [%
]

100

10

1

0.1

0.01

F 8.10: Calculated decay curve (black solid) and single exponential fit (red dashed) for
a homogeneously distributed layer of quantum dots that emit in the fundamental mode. The
minimum lifetime τmax corresponds to the lifetime of the quantum dots at areas with a maximum
field amplitude and therefore a maximum increase of the decay rate. The decay curve is non-
single exponential, but can be quite accurately fitted with a single exponential fit over the four
shown decades. The inset shows the decay curve and single exponential fit over 1 decade.

single exponential behavior can be explained by the slightly peaked distribution in figure

8.8. This apparently single exponential behavior is in agreement with measurements on

GaAs/AlAs micropillars, where a limited dynamical range (1 decade) was measured [11].

We conclude from figure 8.10 that the influence of the spatial distribution of the quantum

dots on the emission is very small for the fundamental mode. For higher-order modes we

find more strongly non-exponential decay curves.

8.3.4 Influence of leaky modes

The second category of pillar specific issues result from the angular dependence of the

emission. Each mode has a preferable emission angle, which compounds the measure-

ment [120]. Here we will focus on the emission in the fundamental mode and the leaky

modes and not consider the higher-order modes. We assume that there are only two pos-

sible angles of emission, first, the emission angle of the fundamental mode in the axial

direction of the pillar and second, the emission angle of the leaky modes perpendicular to

the pillar axis.
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8.4. Conclusion

The measured emission intensity I(ω, r) from an excited quantum dot, which emits

IQD(ω, r) photons per second, at position r in a pillar is equal to [119]

I(ω, r) = AIQD(ω)
|E(r)|2
|Emax|2

Γ0Fp

Γ(ω)
ω2

0(t)

4Q2(ω − ω0(t))2 + ω2
0(t)

+ BIQD(ω)
γΓ0

Γ(ω)
, (8.28)

with A and B the collection efficiencies for the cavity mode and leaky mode respectively.

It is clear from Eq. (8.23) that if the cavity resonance is much detuned the Purcell

enhancement is decreased. For large detuning the Lorentzian term becomes small and the

first term in Eq. 8.28 representing emission in the cavity mode becomes small compared

to the second term representing the leaky modes. At large detuning the emission mainly

results from leaky modes, which means that the emission is redistributed over the out-

coupling angles of the leaky modes. In an experiment, one may typically collect all light

from guided cavity modes (A = 1 in Eq. 8.28), but not all leaky modes (B < 1 in Eq.

8.28). This affects the detected signal contrast: during a switch from off- to on-resonance

the emission changes from emission into leaky modes (B-term) to emission determined

by both sets of modes (A and B). If B = 0, which means we do not probe any leaky modes,

the contrast between the switched and unswitched case is maximum. It is thus possible

to increase the contrast between the switched and unswitched case by detecting as little

leaky modes as possible.

From the previous sections we conclude that our model for switching the emission

is applicable to the fundamental mode of micropillar resonators. Our model takes into

account the spatial distribution of quantum dots and leaky modes of the micropillars. We

predict that switching spontaneous emission yields a large signal in both continuous wave

or pulsed settings, which should be measurable in an experiment. Therefore, we conclude

that it is possible to switch the emission of quantum dots in a micropillar resonator and

thereby control spontaneous emission in time.

8.4 Conclusion

We have studied the deterministic switching of spontaneous emission of light sources in a

cavity. We have presented a model geared toward quantum dots in micropillars, as studied

in chapter 7. We have introduced the product between the radiative decay rate and the

switch time as a switch parameter. We have demonstrated that by increasing the radiative
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decay rate the emission drastically increases during the switch time for both continuous

wave excitation and pulsed excitation. Furthermore, we showed that our modeling can be

applied to micropillar resonators that are widely used.
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CHAPTER9
Inequivalence between the von Laue and the Bragg

conditions observed for light in 2D photonic crystals

9.1 Introduction

The von Laue and the Bragg conditions describe scattering and propagation of any kind of

wave phenomenon (e.g., light, sound, electrons) in periodic lattices [15, 125]. Both condi-

tions are widely used in physics, from semiconductor physics (transistors) to nanophoton-

ics, with applications in optical communication. Furthermore, the von Laue and Bragg

conditions are very important for crystallography using x-ray diffraction [126], i.e., for

characterization of ionic crystals, of molecular crystals in general and of proteins like

DNA and RNA whose structure is crucial in the case of pharmaceutics [127], determining

their functionality.

The von Laue condition formulates the band splitting condition for scattered waves

with the use of wave vectors in reciprocal space. The famous von Laue condition (~Kout −
~Kin = ~G) is met, if the difference between the incoming wave vector ~Kin and scattered

wave vector ~Kout is equal to a reciprocal lattice vector ~G. A consequence of the von Laue

condition as shown for a square lattice in figure 9.1 A, is that the wave vector from Γ to

K not only lies on the edge of the first Brillouin zone, but also satisfies the condition for

Bragg reflection in the Γ − K direction. That the von Laue condition is met can be seen,

for the case of elastic scattering, by introducing a diffracted wave vector with the same

length as the impinging wave vector, drawn from Γ to K in figure 9.1 A. The scattered

wave vector has the same length, but points in the opposite direction as the impinging
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wave vector. The vectorial difference between the scattered and impinging wave vector is

equal to the reciprocal lattice vector ~Kout − ~Kin = ~G11. Thus, the von Laue condition is

satisfied.

The Bragg condition states the band splitting condition for scattered waves with the

use of lattice planes in the direct lattice, i.e., in real space. The famous Bragg condition

(λ = 2dncosθ) is satisfied at normal incidence (cosθ = 1)if the wavelength is equal

to twice the interplane distance. The impinging wave vector is therefore equal to half

the reciprocal lattice vector representing the set of lattice planes from which the light

is reflected. The reciprocal lattice vector ~G11 represents the <11>-lattice planes in the

direct lattice in real space with an interplane distance d. For this set of planes the Bragg

condition is met at an impinging wave vector with a length equal to half the reciprocal

lattice vector.
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2
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G
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F 9.1: Representation of the first Brillouin zone for a square (A) and a
√

2-lattice (B),
having a lower symmetry than the square lattice. The vectors b1, b2 are primitive vectors of the
reciprocal spaces, while G11 is a reciprocal lattice point equivalent to the Γ point (hk=11). Γ, K,
K’, B, B’ and M are points of high symmetry of the Brillouin zone. The dotted lines are the hk =
11 Bragg planes.

From figure 9.1 A we can see the well known situation that the impinging wave vector,

for which both the Bragg and the von Laue conditions are met, is the same in the Γ−G11-

direction in the case of a square lattice, because the length of the vector between Γ and

the edge of the Brillouin zone is half the length of the reciprocal lattice vector also known

as the Bragg plane (dotted line figure 9.1 A). The reasoning also holds in 3D for a cubic

lattice.

In periodic systems the Bragg and von Laue conditions are equally general. For non-

periodic systems, however, the von Laue condition is expected to be more general [125].
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9.2. Brillouin zone and bandstructure in case of no interaction
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F 9.2: Calculated vacuumbands for a square lattice (A) and
√

2-lattice (B).

Structures with lower symmetry than the square lattice are very common. In certain

species of butterflies for example, the lowest symmetry results in a broadband reflec-

tion for all directions [128]. Also high-Tc superconductors have a lower crystal symmetry

[129, 130]. Furthermore, a 2D crystal lattice with a lower symmetry than square is the

basis for 3D woodpile photonic crystal, which promises a broad first order bandgap [57].

In this chapter we will describe a case where the Bragg condition deviates from the

von Laue condition. We investigate the bandstructure and give insight into the formation

of a stopgap in lattices with a lower symmetry than cubic.

9.2 Brillouin zone and bandstructure in case of no inter-
action

Simple Bragg The bandstructure can be calculated analytically for a massless wave equa-

tion in a square lattice with no interaction, like photons and phonons. If the particles have

masses as in the case of electrons, the shape of the bands change. The fact that the po-

sition of the stopgap changes due to a lower symmetry of the lattice is valid for all types

of particles however. The bandstructure in the limit of zero interaction for the reciprocal

lattice shown in figure 9.1 A is shown in figure 9.2 A. In the bandstructure, the band coor-

dinates are given as (hk), which corresponds to reciprocal lattice points h ~b1 +k ~b2 in figure

9.1 A. The 00-band and the 1̄1̄-band cross each other at the edge of the Brillouin zone.
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This crossing is the origin of the stopgap that opens if the interaction strength is non-zero.

This is a case of Bragg splitting.

Multiple Bragg The second set of bands that are curved and start at the edge of the

Brillouin zone (1̄0- and 01̄-band) originate from the reciprocal lattice vectors G01̄ and G1̄0.

The result is a multiple Bragg condition [131]. As the interaction strength is increased,

these bands start to repel the other bands at the edge of the Brillouin zone, thereby forming

a composite gap [132] for the same wavevector as the Bragg condition.

The case of a symmetric square lattice, as described above, is well known and con-

firmed by measurements. The situation changes, however, when the symmetry of the

crystal lattice is lowered.

Lower symmetry lattice The reciprocal lattice with the first Brillouin zone of a lower

symmetric 2D crystal lattice is shown in figure 9.1 B. The lowered symmetry of the lattice

also appears in the reciprocal lattice: Due to the lowered symmetry the B- and K-point

no longer overlap. The K-point shifts towards the Γ-point. In a similar way the B’- and

K’-point no longer overlap. The Brillouin zone has six sides instead of four in the lower

symmetry case, because a plane appears perpendicular to the G11̄ direction. The von Laue

condition is still met at the edge of the Brillouin zone in the K-point. The Bragg condition,

however, is not met at the edge of the Brillouin zone anymore, but halfway the reciprocal

lattice vector ~G11 in the Bragg plane through B.

The bandstructures of the lower symmetry lattice is shown in figure 9.2 B. It is seen

that there are more bands in the low frequency region. The bands originating from the G00

and the G1̄1̄ reciprocal lattice vectors are unchanged despite the symmetry change. The

Bragg condition is therefore fulfilled at the same wavevector (B) in both symmetry cases.

If the interaction strength is increased, the bands start to split at the B point.

The 1̄0 and 01̄ bands, however, decrease in frequency due to the lower symmetry.

Because the 01̄ and the 1̄0 bands are lowered in frequency, they cross the 00 band at the

K-point. The bands originating from the multiple Bragg diffraction at the edge of the

Brillouin zone in the cubic lattice now cross the first 00 band at the edge of the Brillouin

zone. If the interaction strength is increased, these bands split and a gap opens up at the K-

point, at the edge of the Brillouin zone. But this K-point is not anymore the Bragg plane.

Therefore we conclude that we have identified a condition where the Laue condition and

the Bragg condition are not equivalent anymore.
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9.3. Results and discussion

9.3 Results and discussion

To confirm our results, we studied strongly interacting photonic crystals made of silicon,

both experimentally and by bandstructure theory. To calculate bandstructures, we used

the MIT photonic bandgap program [133] (1). For the symmetric lattice case we studied

a three-dimensional silicon inverse opal [46, 134], and for the case of a low-symmetry

lattice we studied a two-dimensional macroporous crystal. Because of new fabrication

techniques it is possible to etch large sets of pores suitable for two-dimensional photonic

crystal fabrication. The calculated bandstructure for a symmetric fcc lattice is shown in

figure 9.3 A. In this structure the Bragg condition and the von Laue condition are met

at the same wavevector: Figure 9.3 A shows that band splitting occurs at the L-point of

the Brillouin zone. The hatched regions indicate the connection with the reflectivity mea-

surements on a silicon inverse photonic crystal shown in figure 9.3 C. The first hatched

region shows the perfect agreement between both the position and the width of the peak

in the reflectivity spectrum and the position and width of the stopgap in the bandstructure.

Here a splitting occurs at the L position, resulting in a peak in the reflectivity spectrum.

The reflectivity measurements confirm the validity of the bandstructure calculation. The

spectrum was measured by Euser et al. [46]; a similar good agreement was obtained for

silica opals studied in chapter 10. The three peaks at higher frequencies in the reflectivity

spectrum are associated with three gaps. In this region the bandgap of the silicon inverse

opal is predicted to occur [46, 134].

The calculated bandstructure for a low-symmetry lattice with interaction is shown in

figure 9.3 B. The measurement on the photonic crystal is presented in figure 9.3 D. Figure

9.3 B shows the bandstructure calculated with the parameters of the fabricated structure.

Figure 9.3 D shows the reflectivity measurement on the photonic crystal that confirms the

validity of the calculated bandstructure. Figure 9.3 B shows a splitting of bands at four

positions indicated with hatched regions, numbered I to IV; only at reduced frequencies

of 0.33 and 0.81 two stopgaps form. The other two potential gaps are traversed by bands.

Figure 9.3 D shows three broad peaks in regions I, II, III and four spikes. The first broad

peak in region I shows excellent agreement with the first gap due to a splitting of the bands

at the K-point, where the von Laue condition is met. The second broad peak is spectrally

positioned were the bands split at the edge of the Brillouin zone due to the Bragg condi-

tion. This means that in the reflectivity measurement the von Laue condition is satisfied

(1) Calculations were kindly performed by Allard P. Mosk.
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F 9.3: (A) Bandstructure of a silicon inverse opal photonic crystal with a symmetric (fcc)
lattice, having a band splitting at the L-point. In this case the von Laue condition and the Bragg
condition are equivalent. The hatched regions indicate the overlap between a gap at the L-point
in the bandstructure and reflectivity peaks in figure 9.3 C (B) Bandstructure for an infinite two-
dimensional crystal with a silicon volume fraction of 77.5%, which corresponds to air pores with
a radius of 120 nm. The hatched spectral regions correspond to regions where bands split and
stopgaps form (region I, III, IV in figure 9.3 D) and the region where the bands split due to the
Bragg condition, but no stopgap is formed (region II). The four dashed vertical lines indicate flat
bands in spectral regions where we measured spikes in the reflectivity spectrum (figure 9.3D).
(C) Reflectivity spectrum of a silicon inverse opal photonic crystal. The spectrum shows a very
clear peak from the L-gap at 3117 cm−1. Three other peaks are visible at 5185 cm−1, 5848 cm−1,
6573 cm−1, data from [46]. (D) Reflectivity spectra of a two-dimensional silicon photonic crystal
and bulk silicon. The spectrum of the photonic crystal shows three distinct peaks, at 5000 cm−1,
6851 cm−1 (compound peak) and 12791 cm−1. The peak reflectivity values are 50%, 75%, and
60% and the relative linewidths are 15%, 33% (of compound), and 8.9%. The spectrum of the
unetched silicon is flat as expected. The hatched areas give the frequency region of stopgaps
in the bandstructure. The dashed vertical lines correspond to the frequency positions of zero
dispersion bands.
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9.4. Conclusion

at a different frequency than the Bragg condition. Both conditions are inequivalent as is

also shown by the calculations. The reflectivity peak is the result of the bands traversing

the gap. Light does not couple from outside the crystal to this band. Similarly, the peak

numbered IV is measured since light does not couple from outside the crystal to these

bands either. The shoulder on the reflectivity peak number II is the result from the bended

bands at about 0.4 reduced frequency. The latter are indicated with dashed lines to show

the agreement of the spectral positions of the spikes and the spectral position of flat bands.

We conclude from the agreement between figure 9.3 A and C and from the agree-

ment between figure 9.3 B and D that the bandstructure calculations agree with the mea-

surements. Therefore, we conclude that in a low-symmetry lattice band-splitting indeed

occurs at a lower reduced frequency than in the case of a high-symmetry cubic symmetry.

The calculated bandstructure is valid for massless particles with no interaction and

therefore also for phonons. In case of a phonon bandstructure, band-splitting at lower

frequencies due to a lower symmetry lattice has consequences for the specific heat. Bend-

ing of the bands sets the boundary between the low temperature specific heat and the

high temperature specific heat [125]. Band splitting at lower frequencies due to a lower

symmetry lattice therefore implies that the boundary shifts to lower frequencies. Further-

more, there is a relation between the phonon density of states and the critical temperature

Tc [129]. Therefore our results have also implications for the critical temperature in the

case of waves in a lower symmetry lattice.

Our results also have implications for X-ray diffraction, where the interaction strength

of the crystal is very small and where we can use the vacuum band structures from figure

9.2. Our results imply that an extra diffraction peak appears for a crystal with an asym-

metric lattice. One peak is the result of the edge of the Brillouin zone, the other of the

Bragg reflection of the crystal. This should be taken into account when reconstructing the

crystal structure from a diffraction pattern.

9.4 Conclusion

We conclude that for a high symmetry lattice the Bragg condition follows from the von

Laue condition, but not for lower symmetry lattices. We have shown calculations and

measurements on a three-dimensional silicon inverse opal photonic crystal and on a two-

dimensional silicon photonic crystal to demonstrate our findings.

125





CHAPTER10
Structural and optical properties of opals grown with

vertical controlled drying

10.1 Introduction

Monodisperse nanometer-sized particles have the ability to self-assemble into colloidal

photonic crystals. These self-assembled photonic crystals, also called artificial opals, have

attracted much attention over the last years. They have a face-centered cubic packing and

were used by many groups as a template to create so-called inverse opals [134–137]. Both

silica and polystyrene nanospheres have been used to create templates for the synthesis of

titania [138] and silicon [134, 136] inverse opals for photonic crystal applications.

Methods like sedimentation and vertical controlled drying [139] among others [140]

have been introduced to form thick and thin-film opals, respectively. In the sedimentation

method the spheres in a suspension are left to sediment naturally [141, 142]. Spheres with

radii larger than 400 nm do not have time to arrange themselves in crystalline packing

due to a very fast sedimentation, leading to a lower crystalline quality. A solution to

this problem was proposed by Holgado et al., who used electrophoresis to slow down

the spheres [143]. Control of the shape of the crystal remains limited with sedimentation

and therefore vertical controlled drying has become the most favorable method lately.

This method is based on the one Dimitrov and Nagayama used to deposit monolayers of

submicrometer spheres onto a substrate [144]. The vertical controlled drying technique

pioneered by Jiang et al. [139] consists of placing a substrate into a dispersion. When the

solvent evaporates the spheres form a thin crystalline layer on the substrate.
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Much work has been published on the vertical controlled drying method. Despite

much work, there is still an ongoing debate about the crystal formation [144, 145], and the

size and thickness limits of crystal domains have not been investigated yet. These limits

are the subject of this chapter. The thickness of the crystal determines the intensity and

the relative linewidth of Bragg reflections [146, 147] and its limits are therefore relevant

to optical applications. The lateral sizes of a photonic crystal should be larger than the

spot diameter of typically used laser beams. Also, crystals should be large enough to

allow functionalization with waveguides [148] and cavities [33]. Interestingly, the shape

and size of the domains contain valuable information on the drying process [149–155].

Crack formation during the infiltration of opals has been investigated [156]. It was

shown qualitatively that calcination of the spheres increased the crystal domain size of

the inverse photonic crystal after an LPCVD infiltration at 823 K.

Here, we have grown opal photonic crystals while varying the growth temperature and

the volume fraction of the dispersion. We will focus on two structural parameters, namely

the domain size and the thickness of the crystal, to obtain a three-dimensional picture of

the crystal domains. We will discuss the limits of the vertical controlled drying technique

with respect to crystal domain size and thickness.

10.2 Experimental Section

10.2.1 Opal fabrication

We used silicon dioxide colloidal spheres synthesized with a microemulsion method as

were used earlier by Megens et al. [157]. These spheres have radii of 113 nm with a

polydispersity of 1.5% and were dispersed in ethanol. The opals were grown with the

vertical controlled drying method [139] on a 2.5 cm long glass substrate, placed under an

angle of 30◦ with respect to the vertical walls of the beaker (figure 10.1 A). The beaker

with the substrate and 2 ml of solution was placed inside an oven. The temperature T

of the oven and the initial volume fraction of spheres in the dispersion (Φi) were varied

in the experiments discussed here. The accuracy of the volume fraction of the bulk is

conservatively estimated to be within 5% of Φi. The temperature T is estimated to stay

constant within 1 degree. We chose temperatures to increase the evaporation speed of the

ethanol with respect to room temperature, staying well below the boiling point. Multiple

samples were grown at the same time in the oven to check the reproducibility.
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F 10.1: (A) Setup used for the growth of the thin film opals. The substrate is placed in a
dispersion under an angle of 30 degrees. The crystal domains form in the direction parallel to
the surface, while the thickness is defined perpendicular to the sample. (B) Optical microscope
picture of a typical opal. The growth direction, the top and the bottom are indicated. The
terminology shown in this figure is used in the text.

For convenience the height variable z is defined as 10 mm minus the actual position on

the substrate, see figure 10.1 B. The position z = 0 corresponds to a height on the substrate

of 10 mm. The position z = 10 mm corresponds to the bottom of the substrate since the

crystal grows towards this position. The position z = 10 mm rests on the bottom of the

beaker during the crystallization process.

10.2.2 Thickness measurement

The thickness of each of the thin-film opals was derived from the Fabry-Pérot fringes in

optical reflectivity spectra. The reflectivity spectra were measured with a set-up similar to

the one in reference [61] using a Fourier-transform spectrometer (Biorad FTS6000). An

objective with a small numerical aperture of 0.05 was used to focus the collimated beam

onto the sample. Reflectivity spectra were measured at different spots along the z-axis of

the substrate. An example of a reflectivity spectrum is shown in figure 10.2.

The main features present in the spectrum are the Fabry-Pérot fringes and the reflec-

tivity peak resulting from the first order photonic stopband of the opal at frequency ω0,

with a reflectivity Rsb, and a linewidth ∆ω. Rmin and Rmax give the minimum and maxi-

mum reflectivity of a fringe. The thickness d of the sample (in nm) can be calculated from
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F 10.2: The reflectivity spectrum shows a first order stopband and Fabry-Pérot fringes.
The high reflectivity peak of 55% at 18880 cm−1 is the result of the Γ − L stopband. The
frequency difference between ∆m Fabry-Pérot fringes is indicated by ∆Ω. Here ∆m = 2 and ∆Ω

= 2083 cm−1 are indicated.

the spacing ∆Ω of the fringes with

d =
107

2ne f f

∆m
∆Ω

, (10.1)

where ∆m is the difference in order between the different fringes, the fringe order, and ∆Ω

is the fringe spacing in cm−1. We used all fringes on the red side of the stopband except the

one closest to the stopband, since this fringe closest is affected by photonic band bending.

The effective refractive index ne f f is taken to be the volume-averaged refractive index

ne f f = (1 − φ)nl + φnh, where φ is the volume fraction of silicon dioxide (φ = 0.74 for fcc

close-packed spheres), nl is the refractive index of the low refractive index material (in

our case nl = 1 for air) and nh is the refractive index of the high refractive index material

(nh = 1.465±0.004 for silicon dioxide colloids [158]). A thickness d = 4.79 µm can be

derived from figure 10.2, with ne f f = 1.33, ∆m = 2, and ∆Ω = 2083 cm−1. This thickness

derived from figure 10.2 is shown in figure 10.4B at a growth position z = 5.5 mm. The

size of the error bars on the thickness measurements is conservatively estimated as 0.13

times the thickness. The number of 0.13 is derived from statistics performed on sample
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spectra taken randomly from the full set of measurements presented in this work. The

distance between the lattice planes can be derived from the stopband position with the use

of Braggs law: d111 = λc
2ne f f

. With λc the position of the stopband. The distance between

the lattice planes derived with figure 10.2 is 197 µm.

No thickness data could be recorded if there were no fringes visible in the spectrum.

This was in general the case near the bottom of the substrate. The reason is that the opals

are so thick near the bottom, that the coherence between the light reflected from the air-

opal interface and from the opal-substrate interface is lost due to extinction. The thickest

measurable thickness was found to be about 10 µm.

10.2.3 Domain size measurement

The domain size (L) was measured with a scanning electron microscope (SEM, FEI XL30

SFEG). Figure 10.3 A shows a scanning electron micrograph from the surface of an opal.

The different crystal domains are irregularly shaped. The spheres are fcc-packed within

one domain, see figure 10.3 B. Adjacent crystal domains fit like the pieces of a jigsaw

puzzle, indicating that the cracks separating them were formed after the spheres ordered

themselves in a crystal structure. The cracks are the result of stress formation during the

drying of the crystal.

F 10.3: (A) Scanning electron micrograph of an artificial opal. The photograph shows
single crystal domains that are bounded by grain boundaries or cracks. The labels indicate the
measured domain widths. The ten values measured from the scanning electron micrograph
form one data set from which the average domain size is calculated. The average domain size
(<L>) for this picture is <L> = 6.5 µm ± 2 µm. The crystal growth direction is from top to bottom
of the picture. (B) Close-up within one crystal domain, revealing excellent crystalline order. The
hexagonal arrangement is typical of a fcc (111) face.
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Each value of the average domain size is derived from a set of ten values taken from

a SEM picture like the one shown in figure 10.3 A. The size of the domain is systemati-

cally measured in both the horizontal and the vertical direction with respect to the growth

direction of the opal. The domain widths are drawn through the estimated center of mass

of the domain. The first measurements of the set of ten are always taken in the central

domain of the SEM picture, followed by neighboring domains.

10.2.4 Extinction length

The frequency and amplitude of the Fabry-Pérot fringes in the reflectivity spectra are not

the same for every sample and even depend on the position on the sample. The fringes

contain information on the thickness and the extinction length of the opal on the measured

position.

The reflection from a thin film can be calculated with

Rmax

Rmin
=

(r01 + rtop)2

(r01 − rtop)2 . (10.2)

With Rmax the maximum reflectivity of a fringe and Rmin the minimum reflectivity of a

fringe as shown in figure 10.2, r01 the Fresnel reflection from the opal-air interface and

rtop which is given by equation

rtop = (1 − r01)2(r12e−2d/Lext + r01e−4d/Lext r2
12). (10.3)

Where r01 is the Fresnel reflection from the opal-air interface, r12 the Fresnel reflection

from the opal-glass interface, d the thickness of the crystal, and Lext the extinction length

of the electromagnetic field intensity.

The maximum value of constructive interference of the fringes is obtained if all re-

flected waves are in phase, while a maximum of destructive interference is obtained when

all components are out of phase. Therefore, the amplitudes of the reflected beams (rtop)

are subtracted or added respectively to the Fresnel reflection of the opal-air interface.

Refractive indices of 1.33 and 1.5 are assumed for the opal and the glass, respectively,

in order calculate the Fresnel reflection coefficients. Only two terms are taken into account

in Eq. 10.3, since the contribution of the other reflections can be neglected. In order to

find the extinction length, we minimized the difference between the measured ratio of

Rmax and Rmin and the function as given in 10.2 with the extinction length as parameter.
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10.2.5 Relative linewidth

An interesting property of the Γ− L stopband that can be extracted from figure 10.2 is the

relative linewidth ∆ω
ω0

. The relative linewidth is defined as the full width at half maximum

of the reflectivity peak, due to the Γ − L stopband, divided by the center frequency of the

reflectivity peak. The relative linewidth gives information on the photonic strength [159].

In figure 10.2 the relative linewidth is equal to 5.2 %.

10.3 Results and Discussion

10.3.1 Visual sample appearance

Figure 10.1 B shows an optical microscope image of a typical thin film opal photonic

crystal. It shows the green color that results from the first order Bragg diffraction. Fur-

thermore, there are domains surrounded by cracks visible. In figure 10.1 B it can be seen

that the color of the sample is not homogeneous. The green color at the top of the thin-

film crystal is lighter than the green color at the bottom of the sample. A more careful

look at the image also reveals large domains at the bottom of the sample. The domains

become smaller towards the top and become irresolvable for the optical microscope. The

inhomogeneity of the sample is already apparent from the optical microscope picture. In

the next sections the inhomogeneity will be quantified.

10.3.2 Thickness of the opal as a function of height

The thickness of opals grown from a dispersion with a volume fraction of Φi = 0.05%

v/v is shown in figure 10.4 A. The opals start to grow at the initial dispersion level, at

z = 2 mm. The figure shows that the opals become thicker with increasing z, that is,

near the bottom of the substrate. The thickness profiles that we measured are found to be

independent of temperature. We observe that the thickness of each sample is not homo-

geneously distributed: The thickness is strongly dependent on the position on the sample.

We therefore recommend that the thickness is measured for several positions on a sample,

as an improvement of the commonly performed characterization of only one thickness

measurement.

We know the initial volume fraction of the dispersion Φi and we may assume that

the amount of crystallized spheres is negligible with respect to the amount left in the
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dispersion. In this case the volume fraction of spheres in the solution is doubled, if half

of the amount solvent has evaporated. We have assumed a linear relation between the

thickness of the crystal and the volume fraction, as proposed in [139]. Therefore, the

height-dependent thickness profile is taken to be

d(z) = d0
10 − z0

10 − z
× Φi

Φ0
, (10.4)

where d is the thickness of the crystal, d0 is the thickness of the crystal at the start position

of the crystal growth and z0 is the z-position on the substrate where the crystallization

started. In the case of figure 10.4 A, z0 is equal to 2.5 mm and d0 is equal to 1.1 µm. The

resulting curve is plotted in figure 10.4 A and overlaps the data points excellently for all

temperatures.

Figure 10.4 B shows the measured thickness for samples grown with an initial volume

fraction of Φi = 0.10%. We see that the thickness profiles are strikingly independent of

temperature. The data shows the same trend as the data from figure 10.4 A: An increase

of thickness towards the bottom of the substrate is observed, and the thickness of the opal

is not constant. The model curve is the curve from figure 10.4 A scaled with the ratio

of the initial bulk volume fractions Φi as given by Eq. 10.4. The data show a very good

agreement with the curve from Eq. 10.4, with only a slight deviation for small and large

thicknesses.

Figure 10.4 C shows the thickness measurements for two samples grown from disper-

sions with an initial volume fraction of Φi = 0.20%, at two different temperatures. The

z-position of the 303 K data was scaled with the initial volume with respect to the 309

K curve, since the initial dispersion volume was less. Also for this volume fraction the

thickness increases with z-position and is independent of temperature. For the model no

extra parameters are used. Only the ratio of the initial volume fraction is taken to be Φi

= 0.20 %. With increasing z, the measured thickness becomes larger than the thickness

predicted by Eq. 10.4.

Equation 10.4 holds very well for a volume fraction of Φi = 0.05% (figure 10.4 A)

and for Φi = 0.10% (figure 10.4 B). The validity of Eq. 10.4 suggests that the volume

fraction in either the dispersion or in the meniscus is homogeneous. The increase in

volume fraction near the meniscus by the collection of spheres at the meniscus is canceled

by the concentration driven diffusion of spheres from the meniscus to the bulk. The curve

from Eq. 10.4 agrees for z between 2 mm and 4 mm with the data for a high initial
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F 10.4: (A) Thickness of opals as a function of the z-position on the sample. The opals
were grown at different temperatures from dispersions with a volume fraction of 0.05 % (A),
0.10 % (B) and 0.20 % (C). The blue curve represents the model given by equation 10.4. A
very good agreement between the theoretical curve and the measured data is observed. An
increase in thickness towards the bottom of the sample is observed. (D) Schematic thickness
as a function of z-position and time . The vertical lines in the graph indicate the thickness of the
crystal at times T1 and T2 respectively. Rv and Rl are the vertical and lateral evaporation rates
respectively.

volume fraction Φi = 0.20% (figure 10.4 C). For larger z the measured thickness is larger

than predicted with Eq. 10.4. This observation suggests that there is a larger flow of

spheres to the substrate in the case of higher concentration than in the case of lower

concentration. The larger flow might be caused by an accumulation of spheres near the

meniscus at the air/solvent interface. The reason could be the changed equilibrium of the

dispersion dynamics at increased particle density.
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10.3.3 Drying and domain formation

Figure 10.5 shows the domain size as a function of thickness for samples grown at five

different temperatures, ranging from 298 K to 318 K. Figure 10.5 shows that the average

domain size increases linearly with thickness. The total number of data points shown is

300, of which only nine deviate from the linear trend depicted by the orange line. The

ratio between the average domain size and the thickness of the thin-film opal is 2.5; This

means that on average the opal domains formed on the substrate are 2.5 times wider than

thick. We propose that the origin of the linear relation between the average domain size

and the thickness might lie in the viscous behavior of the opal layer during the drying

process. Forces work at the air wet-opal interface during the drying process and are

distributed linearly through the wet layer. If this is the case, the force per unit thickness

is inversely proportional to the thickness. If we furthermore assume that there is some

force proportional to the perimeter of the domain preventing domain formation, it would

follow that the domain size increases with thickness in the case of a viscous layer. The

consequences for optical measurements are discussed in section 10.3.5.
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F 10.5: Average domain size of opals synthesized at different temperatures and volume
fractions as a function of the thickness of the opal, for a total 300 data points. The average
domain of an opal is 2.5 time wider than thick. All data points from samples grown at the same
temperature have the same color.
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The domain size to thickness ratio of 2.5 can be compared to values in literature. The

linear relation that we found agrees with previous results on completely different colloid

systems [150]. A ratio between 3.75 and 6.25 was found for layers of an alumina/water

slurry [150]. The higher ratio was obtained by using a smoother substrate to reduce the

friction between the opal layer and the substrate. Reducing the number of impurities also

increases the ratio. We estimated a ratio of 1.5 from data on directional drying of silica

particles up to 10 nm in radius [149]. Our results show that the linear relation between

domain size and thickness also holds if colloidal spheres crystallize while the dispersion

dries. Finally, our observation that crack formation occurs at all thicknesses, including

those smaller than 10 µm, contradicts the results of [155] for currently unknown reasons.

Figure 10.6 A shows domains near the top of the substrate at a height z = 5.5 mm.

The domains at these positions are very irregularly shaped. The crystal at both sides of

the cracks have the same crystal orientation and the domains fit each other like pieces of

a jigsaw puzzle despite their irregular shape. This appearence has been observed earlier

[139]. Figure 10.6 B shows a scanning electron microscope image of the crystal nearer to

the bottom, i.e., at a height of z = 8.25 mm. It can be seen that the domains are rectangular

shaped and surrounded with large cracks parallel to the growth direction, which is from

top to bottom in the figure.

The difference in domain shape has been investigated by Shorlin et al. and indicates

a different drying mechanism: Irregularly shaped domains in drying films are found in

isotropic drying, while the rectangular shaped domains accompanied by large vertical

cracks are a signature of directional drying [150]. This suggests that directional drying

is dominant at the bottom of the samples where we find the larger rectangular shaped

domains. On the other hand, the crystal dries isotropically at the top of the sample. This

can be understood if we also take the thickness of the samples into account as shown in

figure 10.4 D: The crystal has two perpendicular interfaces with the air surrounding it.

The first one is horizontal and perpendicular to the growth direction, and is indicated in

figure 10.4 D with vertical lines. This interface becomes larger when the crystal becomes

thicker. The vertical line in figure 10.4 D at time T1 and the one at later time T2 illustrate

this feature. The vertical evaporation rate Rv increases with time because of the increase

of the vertical interface. The second interface is a vertical surface parallel to the growth

direction and the substrate. This surface remains constant through the drying process and

moves downward, therefore the lateral evaporation rate Rl is constant in time, as indicated

by equal lengths for R2 at time T1 and R2 at time T2 in figure 10.4 D.
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F 10.6: (A) Scanning electron micrograph of an opal at a z-position of z = 5.5 mm. The
crystal domains can clearly be distinguished. The domains are shaped irregular near the top
of the crystal, which indicates isotropic drying. The growth direction of the crystal is from top to
bottom. (B) Scanning electron micrograph of an opal at a z-position of z = 8.25 mm. The crystal
domains can clearly be distinguished. The domains are shaped rectangular near the bottom of
the crystal, which indicates directional drying. The growth direction of the crystal is from top to
bottom.

If we consider a piece of wet crystal at the top (T1), figure 10.4 D shows that the ratio

between horizontal and vertical surface is smaller than in the case of a piece of wet crystal

at the bottom of the substrate (T2). Therefore, the ratio of Rv and Rl is smaller at the top

of the sample than at the bottom of the sample. This means that at the bottom of the

sample the total evaporation speed is dominated by the vertical evaporation rate Rv; The

crystal dries directionally in this area. At the top of the sample the lateral evaporation rate

Rl is larger, which results in isotropic drying at the top of the sample. Furthermore, the

sum of the interfacing surface between air and wet crystal increases towards the bottom
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of the substrate, which means that the evaporation speed is faster at the bottom of the

crystal, thus giving the spheres less time to organize themselves. This effect becomes

even stronger since there are more spheres that need to be ordered.

We conclude that the crystal dries isotropically at the top of the sample, while it dries

directional at the bottom of the sample. Furthermore, we have shown that drying phenom-

ena known from disordered structures [149, 150, 155] also apply to ordered structures.

This fact gives us the possibility to conclude that a smoother substrate will lead to crys-

tals with larger domains than the ones we have presented in this chapter [149, 150, 155].

10.3.4 Domain size of the opal as a function of height
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F 10.7: Average domain size of opals grown at different volume fractions at T = 309 K
as a function of the z-position on the sample. An increase of average domain size towards the
bottom of the substrate is observed for all three volume fractions.

Figure 10.7 shows the average domain size as a function of the z-position for three

different samples all grown at 309 K. The initial volume fraction of the three samples

was varied. Figure 10.7 shows an increase of domain size with z-position. The largest

domains with sizes up to 150 µm can be found at the bottom of the sample. The sample

grown at an initial volume fraction of Φi = 0.40% was damaged due to tension built up

during drying so that no more crystal domains were present on the substrate above z = 6
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mm. A comparison with other samples showed no effect of temperature on the domain

size profile. We again observe that the size of the different domains on each sample is

inhomogeneous: The size of the domain is strongly dependent on the position on the

sample. Therefore, we recommend that the position is also mentioned when data on

domain sizes are shown.

10.3.5 Consequences for photonic crystals

For photonic crystals domains are required that are as large as possible combined with a

controlled thickness. Our results show that the possible combinations are limited. Since

the ratio of thickness and domain size is fixed, this means that the density of grain bound-

aries is related to the opal thickness. The grain boundaries increase unwanted extinction

of light, since the boundaries contribute to the scattering of light out of the coherent beam.

The extinction due to scattering from grain boundaries is therefore fixed for each thick-

ness. This means that there is an upper limit to the reflectivity measured in the stopgaps

if the focus of the light beam is larger than a crystal domain. This in turn means that there

is a lower limit to the range of thicknesses for which the scattering from grain boundaries

can be reduced to zero, given a certain focal size of the light beam. The latter being in the

order of 1 µm to 30 µm, the typical domain size.

The quality of the opal is likely to be influenced by the drying regime. If the isotropic

drying process yields better crystals, there will be an upper limit (around 5 µm) to the

thickness of a good crystal, according to figure 10.4 D. If directional drying yields better

crystals, there will be a lower limit to the thickness of a good crystal (around 5 µm). To be

able to give a prediction about the quality of opals formed in either the two drying regimes,

we assume the following mechanism: The spheres self-assembly in a close packed order

at the wet crystal-air interfaces, the spheres below the upper layer organize themselves

to form another closed packed layer. The second step was discussed by Norris et al.

[145]. The assumed mechanism suggests that the quality of the crystal in the direction

perpendicular to the wet crystal-air interface is higher than in another direction, because

the spheres order themselves according to the first crystal layer that formed at the wet-

crystal air interface. Therefore, we predict that the quality will be better for films formed

in the isotropic drying regime for measurements on the <111>-planes of the crystal, which

lie parallel to the substrate.
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10.3.6 Relative linewidth as a function of number of layers

An interesting source of information about the photonic crystals is the relative linewidth

of the reflectivity peak of the first order stopband. The relative linewidth can be obtained

from the spectrum shown in figure 10.2 and is equal to ∆ω
ω0

. For thick crystals in absence

of structural defects the relative linewidth is equal to the photonic strength S, for thin

crystals, however, finite size effects play a role [159]. The relative linewidth of a real

photonic crystal can be approximated with

(
∆ω

ω0

)

meas
=

√√(
∆ω

ω0

)2

phot
+

(
∆ω

ω0

)2

f in
. (10.5)

Where
(

∆ω
ω0

)
meas

is the relative linewidth that is determined from the reflectivity spectrum,(
∆ω
ω0

)
f in

is the contribution due to the finite size of the crystal, and
(

∆ω
ω0

)
phot

is the photonic

part of the relative linewidth, given by the photonic strength S. The contribution of the
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F 10.8: Measured and calculated relative linewidth as function of number of layers for
opals with 113 nm spheres and 231 nm spheres. The data are measured on samples grown at
four different temperatures with volume fractions of 0.05%, 0.10% and 0.20%. The solid curve
is calculated with a model taken from X-ray diffraction. The data and the calculated curve show
both a qualitatively agreement. The relative linewidth decreases with the number of layers as
expected.
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photonic strength to the relative linewidth
(

∆ω
ω0

)
phot

is given by

(
∆ω

ωc

)

phot
= S = 3Φ

m2 − 1
m2 + 2

g(K, r), (10.6)

where Φ is the volume fraction of high index material, m is the ratio of the refractive

indices and g(K, r) is the structure factor [17, 18].

The contribution of the finite size of the crystal
(

∆ω
ω0

)
f in

can be calculated for a crystal

without absorption from the Scherrer-equation [126]:

(
∆ω

ωc

)

f in
=

√
log(2)
π
· 2 · ne f f

N
, (10.7)

where N is the number of crystal layers, and ne f f is the mean refractive index, which is

given by ne f f = (1 − φ)nl + φnh.

The relative linewidth that results from inserting Eq. 10.7 and Eq. 10.6 into Eq. 10.5

is plotted in figure 10.8 as a function of the number of crystal layers. The number of

layers is calculated from the thickness of the crystal by dividing the thickness through the

spacing of the d111 planes. The distance between the planes depends on the radius of the

spheres and is therefore larger for 231 nm spheres than for 113 nm spheres.

Figure 10.8 shows a very good agreement between the model and the measured data

points. At larger number of layers the measured points deviate slightly from the model,

which is also the case for the opals measured in [147]. There is an optimum, minimum,

linewidth between 20 and 30 layers. We will discuss this in the next section.

10.3.7 Reflectivity versus thickness

Figure 10.9 shows the reflectivity of the Γ−L gap (Rsb in figure 10.2) versus thickness for

samples grown with a dispersion with a volume fraction of Φi = 0.10%. The solid curve

is calculated with

R = 100%(1 − e
L

LB ). (10.8)

Where L is the thickness of the crystal, LB is the Bragg length. The thickness is derived

from the fringes in the measured spectra. The Bragg length, LB can be calculated using

LB =
2d
πS

, (10.9)
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where d is the spacing between two crystal planes, and S is the so-called photonic strength,

which is given by equation 10.6.
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F 10.9: (A) Measured and calculated reflectivity of the opal due to the Γ − L stopband
versus the number of layers of the crystal. The samples are grown at four different tempera-
tures with a dispersion with a volume fraction of Φi = 0.10%. The solid curve represents the
theoretical expected relation for a crystal with a Bragg length of 2.18 µm. The measured reflec-
tivity shows a maximum value while the calculated curve increases with the number of crystal
layers. (B) Extinction length of photonic crystals grown at 303 K as a function of thickness and
domain size of the crystal. The crystals are grown with three different initial concentrations.
The solid line gives the line at which the thickness is equal to the extinction length. The dashed
line represents the Bragg length LB and the dotted line the mean free path measured for opals
Lm f [19].

Figure 10.9 A shows that the reflectivity data from the four different samples have

the same behavior. The reflectivity increases as a function of the number of layers to a

maximum value after which it decreases again. The number of layers at which there is a

maximum reflectivity differs per sample but it is found to be between 20 and 30 layers.

There is a difference between the calculated curve (Eq. 10.8) and the measured data points

in figure 10.9 A. We can distinguish two regimes. The first regime is for thicknesses lower

than the maximum of the datasets. The second regime is after this maximum. In the first

regime the measured data points deviate from the calculated values, but they show similar

behavior. The trend is an increasing reflectivity with increasing thickness as expected.

In the second regime the data points deviate not only in absolute value but also in trend.

Figure 10.9 A shows that the reflectivity appears to converge to a value of about 20 % for
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all samples. To find the origin of this deviation we will examine the relation between the

extinction length, thickness, and reflectivity in the next section.

10.3.8 Extinction length and reflectivity

In the previous sections we showed the difference between the expected and measured

reflectivity. We only took the thickness of the sample into account and not extinction of

light inside the crystal. In figure 10.9 B we present the relation between the extinction

length, thickness, and domain size. We have also plotted the Bragg length and the mea-

sured mean free path [19]. Furthermore, we plotted the line were the thickness is equal

to the extinction length. Figure 10.9 B shows that the majority of the samples is thicker

than the Bragg length, as we have seen in figure 10.9 A. Furthermore, we see that the

thickness is smaller than the extinction length. If the extinction length would be smaller

than the thickness, we are not be able to measure the extinction length since there would

be no Fabry-Pérot fringes in the spectrum. The third line in the figure 10.9 B is the mean

free path as measured in bulk opals [19]. Comparison with our data shows first of all that

the extinction length is not constant as is the mean free path. Furthermore, the extinction

length that we find is smaller than the one found in bulk opals, indicating that there is a

larger amount of disorder present in the thin-film opals.

On the two horizontal axis of figure 10.9 B we show the two spatial parameters of the

crystal: the thickness and the domain size. These two axis contain all three-dimensional

information about the crystal. We used the fact that the domain size of the crystal is

proportional to the thickness of the crystal. The extinction length is fluctuating but we

do not see a steady increase or decrease but rather an increase followed by a decrease.

Since the domain size increases with thickness there are less cracks per unit area, which

decreases scattering losses and thereby increases the scattering length. This is clearly

visible for a thickness up to 5 µm where the domain size is up to 12 µm. Since the thicker

layers are found at the bottom of the sample we attribute the decrease in extinction length

for layers thicker than 5 µm to the difference in growth mechanisms at the top and bottom

of the sample as discussed in section 10.3.3. The different growth mechanism at the

bottom creates more defects and irregularities in the structure, which leads to a shorter

extinction length. Figure 10.9 B shows that there is a correlation between the extinction

length and the reflectivity of the stopband as expected: if the extinction length increases,

the stopband reflectivity increases. We conclude from figure 10.9 B that the best crystals
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are grown at the top, where the solvent evaporates mainly perpendicular to the crystal

surface.

Figure 10.9 B shows that the extinction length is about one to five times the Bragg

length, which is LB = 2 µm. One has to keep in mind that the extinction length gives

the extinction of the field and that the light covers twice the thickness when it is reflected.

This means that the reflectivity decreases significantly even if the extinction length is only

a half or a fourth of the thickness. An extinction length much larger than the Bragg length

is favorable.

10.4 Conclusion

We have grown thin-film opals by vertical controlled drying while systematically varying

temperature and initial volume fraction. We have measured the thickness of the resulting

opals. The thickness increases with z-position, independent of temperature. The thickness

profile agrees with a simple model for thickness variation with colloid density.

We have investigated the lateral size of crystal domains of the grown opals. We found

that the domain size increases with z-position. We found a surprisingly linear relation be-

tween the lateral domain size and the crystal thickness. The ratio between the domain size

and the thickness is found to be 2.5. It is interesting to see that the drying behavior is sim-

ilar to the behavior of drying slurries of polydisperse particles. We compared the obtained

domain-size-to-thickness ratio with literature and concluded that a smoother substrate will

increase the ratio yielding larger crystal domains. We identified two sample-regions with

different drying behavior. We proposed a qualitative explanation of the drying mechanism

of self assembled photonic crystals grown with vertical controlled drying.

We conclude that the structural properties of a thin film opal photonic crystal are inho-

mogeneous. Therefore, we recommend that the position at which the characteristics are

measured is given as well. The thickness profile is easily determined with the thickness

at a certain position, by using the functional relation presented.

Finally, our data show that the lateral domain size increases with increasing thickness

of the crystal. Therefore, in photonic applications grain boundary induced scattering of

light is reduced for thick crystals and is prominent for thin crystals. We find this in our

optical measurements. However, from our optical measurements we also observe that

the extinction length depends on the growth regime of the crystal. At the bottom the
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extinction length decreases due to the different growth mechanism, despite the increase in

domain size and thereby the decrease in grain boundary induced scattering.
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APPENDIXA
Center frequency versus Si filling fraction

An analytic expression to calculate the center frequency of the stopband is useful to pro-

vide physical insight, and also since bandstructure calculations are time consuming. A

useful input for such an expression is the long wavelength limit of the refractive index

[16]. The long wavelength limit for the refractive index for cylinders of material with a

low refractive index in silicon is given by the Maxwell-Garnett equations [160–162]. For

TE waves (E-field perpendicular to pores),

n2
T E = 1 +

2Φα

1 − Φα
, (A.1)

where nT E is the refractive index of the crystal for TE waves, Φ is the volume fraction of

silicon, α =
n2

S i−1
n2

S i+1 and nS i is the refractive index of silicon. The refractive index for TM

waves, nT M is given by

n2
T M = (1 − Φ)n2

S i + Φn2
Air, (A.2)

where nAir is the refractive index of air. The center frequency of the stop band in the Γ−K

direction, calculated with Eq. A.1 and Eq. A.2, is given in figure A.1. Figure A.1 shows

a good agreement between the position of the first order stopband estimated with the long

wavelength limit refractive index and position from the measurements.

We conclude that the refractive index calculated with the Maxwell-Garnett relations

give a good estimate for the position of the first order stopband. Furthermore, we conclude

from figure A.1 that the photonic crystal is birefringent.
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Center frequency versus Si filling fraction
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F A.1: Center frequency as a function of silicon volume fraction derived from bandstruc-
ture calculations (connected symbols) and estimated with the Maxwell-Garnet equations (lines)
, for the K point in the Brillouin zone. The frequency is calculated for both TM and TE waves.
The center frequency shifts to red for an increasing volume fraction as expected.
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APPENDIXB
Photonic strength

The relative linewidth of a Bragg reflection can be calculated with the use of the photonic

parameter S that is derived from dynamical theory of X-ray diffraction [16, 18]. The

photonic parameter S is defined as

S = 3Φ
m2 − 1
m2 + 2

g(k, r), (B.1)

where Φ is the filling fraction, m =
nS i
nAir

, and g(k, r) is the structure factor, which is given

for a cylinder by [62]

g(k, r) =
2J1(u)

u
, (B.2)

where u = kr, with r the radius of the cylinder and k the scattering vector given by

k =
4πne f f

λc
. With ne f f the effective refractive index and λc the center wavelength of the

stopband.

According to Eq. B.1, the photonic strength is equal to 31% for the Γ − K reflection

and 17% for the Bragg reflection (Γ − B reflection). From the measurements we obtain a

width of 15% for the Γ − K reflection and 19% for the Bragg reflection. The measured

width of the Γ−K reflection is smaller than the calculated one, while the measured width

of the Bragg reflection agrees very well with the calculated width.

We conclude that the S-parameter gives a good measure for the spectral width of the

Bragg peak. For the reflections due to the Von Laue condition the S-parameter in our case

does not give an accurate estimate.
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Nederlandse samenvatting

Dit proefschrift gaat over het opsluiten en manipuleren van licht in een optische tril-

holte. Een optische trilholte bestaat uit twee spiegels waartussen een staande lichtgolf

kan bestaan. In een optische trilholte kan licht worden opgeslagen. Met behulp van een

korte lichtpuls kan de trilholte worden opgeladen, als de lichtpuls verdwenen is blijft een

staande golf in de trilholte achter. Doordat licht door de spiegels van de trilholte lekt,

neemt de lichtintensiteit in de trilholte exponentieel af. Dit kan worden vergeleken met

het aanslaan van een harmonische oscillator.

Een optische trilholte kan worden gevormd door metallische spiegels of door regel-

matig gestructureerde diëlektrische materialen met een periode in de orde van de golflengte

van het licht: fotonische kristallen. Omdat fotonische kristallen het licht beter reflecteren

dan metallische spiegels zijn deze gewild voor optische trilholtes. Fotonische kristallen

kunnen zowel een-, twee- of drie-dimensionaal zijn. Dat wil zeggen dat ze licht in een,

twee of drie dimensies kunnen opsluiten als er een optische trilholte in het kristal wordt

gemaakt. In hoofdstuk 9 worden twee-dimensionale kristallen besproken. In hoofdstuk

10 worden drie-dimensionale fotonische kristallen gemaakt van regelmatig gestapelde

bolletjes glas, ook wel opalen genoemd, besproken.

Een alternatieve manier om het licht in drie dimensies op te sluiten wordt bespro-

ken in hoofdstuk 7. In dit hoofdstuk laten we zien dat we specifieke resonanties in een

zogenaamde micropilaar kunnen aanslaan. Micropilaren zijn cilindervormige trilholtes

met een-dimensionale spiegels aan de boven en onderkant van de spiegel. Het aanslaan

van micropilaar resonanties is vergelijkbaar met het aanslaan van resonanties van een

trommel. De plaats op de trommel waar geslagen wordt, bepaalt op welke resonantie

frequentie het trommel vel gaat trillen.

In dit proefschrift laten we verder experimenten zien aan trilholtes met een-dimensionale

fotonische kristal spiegels. Hoe lang licht in zo’n optische trilholte kan worden opgesla-

gen bestuderen we in hoofdstuk 3.
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Om het licht te kunnen opsluiten en loslaten op commando schakelen we de optis-

che trilholtes met hoog energetische laser pulsen. Het schakel proces monitoren we met

behulp van de reflectie van laserpulsen. Uit de reflectie van die laserpulsen halen we in-

formatie over de toestand van de trilholte. De optische trilholte kan geschakeld worden

door vrije ladingsdragers in het diëlektricum te genereren zoals we laten zien in hoofd-

stuk 4. De brekingsindex hangt af van de concentratie van vrije ladingsdragers. Door de

extra vrije ladingsdragers die gegenereerd worden door de laser puls verandert de brek-

ingsindex en daarmee de optische eigenschappen van de trilholte. De tijdschaal van deze

manier van schakelen is gelimiteerd door de recombinatie van vrije ladingsdragers, die

bepaald wordt door materiaal eigenschappen van het diëlektricum. Door recombinatie

van de vrije ladingsdragers verandert de ladingsdragers concentratie en daarmee de brek-

ingsindex. Pas als alle vrije ladingsdragers zijn gerecombineerd is de trilholte weer in zijn

oorspronkelijke, ongeschakelde toestand.

We laten in hoofdstuk 5 als eerste ter wereld zien dat het ultiem snel schakelen van de

fotonische trilholte mogelijk is door gebruik te maken van het electronische Kerr effect.

Bij deze manier van schakelen verandert de trilholte enkel als er een hoog energetische

laser puls aanwezig is in het materiaal. Door de hoog energetische laser puls wordt de

brekings index namelijk instantaan verhoogd. Zodra de puls weg is, heeft de brekingsin-

dex weer zijn initiële waarde, in tegenstelling tot het schakelen met vrije ladingsdragers.

De tijdschaal van deze manier van schakelen wordt beperkt door de duur van de laser puls

en is typisch 100-500 keer sneller dan het schakelen met behulp van vrije ladingsdragers.

Deze snelheid biedt mogelijkheden voor het moduleren van data met een frequentie van

meer dan 1 THz.

Een toepassing van het optisch schakelen van een trilholte laten we zien in hoofdstuk

6. In dit hoofdstuk veranderen we in een experiment de kleur van licht door het op te

sluiten in een trilholte waarvan de eigenschappen heel snel veranderen. Deze methode

is anders dan de bestaande methoden voor het veranderen van de kleur van licht omdat

de laser puls waardoor de eigenschappen van de trilholte veranderen niet tegelijkertijd

aanwezig is met het licht dat van kleur wordt verandert. Er worden namelijk eerst vrije

ladingsdragers gegenereerd die er voor zorgen dat de eigenschappen van de trilholte ve-

randeren. Als de eerste laser puls allang weg is veranderen de eigenschappen van de

trilholte nog steeds door het recombineren van de vrije ladingsdragers. Op dit moment

wordt er licht in de trilholte opgeslagen door een tweede laser puls. Het licht van de twee

laser puls verandert nu van kleur.
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Een tweede mogelijke toepassing van het optisch schakelen van een trilholte be-

spreken we in hoofdstuk 8. In dit hoofdstuk laten we door middel van een theoretisch

model zien dat we het uitzenden van licht door lichtbronnen in de trilholte kunnen beïn-

vloeden door de eigenschappen van de trilholte te laten veranderen. Zonder het schakelen

van de trilholte zenden de lichtbronnen fotonen uit binnen een bepaalde tijd (de levens-

duur van de lichtbron) na het exciteren van de bronnen, maar precies wanneer is niet te

voorspellen. Het is wel te voorspellen binnen welke tijd de kans dat het foton uitgezonden

bijna 1 is. Door tijdens de tijd dat de lichtbron uit kan zenden de eigenschappen van de

trilholte te schakelen kan er voor worden gezorgd dat de meeste bronnen gaan uitzenden

tijdens het schakelen. Hierdoor wordt een zekere mate van determinisme gebracht in het

normaal gesproken onvoorspelbare proces. We laten zien in hoofdstuk 8 dat het schakelen

van het uitgezonden licht van de lichtbronnen een zeer intense lichtpuls oplevert.
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