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Introduction

Human beings have come to master the interaction between light and mat-
ter to improve the quality of their life. We take for granted such daily
actions as turning on the light in a dark room to perceive our surroundings
and generally we do not fully appreciate all occurring light-matter inter-
actions. In fact, light propagating through air, is scattered by the objects
in the room, travels again through air and, eventually, interacts with our
eyes. Only at that point we can we see the room.

Nowadays, refined techniques to control light-matter interaction are de-
manded. Faster transfer and computation of information can be achieved
using optics, more efficient low-carbon-footprint energy production can be
obtain with photovoltaic systems and laser devices can be used for highly
accurate medicine procedures. Nano-optics is one of the modern answers
to these needs. In fact, nano-optics is strongly application-oriented, trying
not only to gain new fundamental knowledge but also to create a benefit for
society. Investigations of the quantum and classical properties of light inter-
acting with disordered, ordered and quasi-ordered dielectric structures, or
metallic and metallo-dielectric materials tailored at the nanoscale stimulate
the interest of the scientific communities of all the industrialized societies.

This thesis spans three central fields of nano-optics, which are photonic
crystals, metamaterials and near-field microscopy. Through a study that
aims to a better understanding of this microscopy, we investigated the
optical properties of photonic nanostructures by means of both magnetic
and electric coupling.

In Chapter 1 we will provide a brief summary of the topics related to
this thesis. After a brief introduction to light-matter coupling, we will dis-
cuss some of the main modern strategies employed to control the flow of
light, such as photonic crystal waveguides and photonic crystal cavities.
As a result of the strong interaction between light and these man-made
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Introduction

materials, light undergoes complicated interference patterns, where optical
singularities might arise. We will also provide some of the basic concepts of
singular optics. The field distribution of light in photonic nanostructures
is characterized by subwavelength features. Near-field microscopy will be
introduced as a powerful tool that provides us with the necessary subwave-
length resolution.

In Chapter 2 we will discuss the electromagnetic response of three dif-
ferent near-field probes. After considerations based on metamaterials con-
cepts, we will show that coupling between light and probe can be described
by electric and magnetic polarizability matrices. Subsequently, we will in-
troduce the phase-sensitive, time-resolved, near-field microscope employed
in all the investigations in this work.

In the next part of the thesis we will experimentally prove some of the
optical properties of the probes discussed in Chapter 2 and exploit them
to perform a novel type of investigation. In Chapter 3 we will show that a
coated probe combined with a polarization sensitive near-field microscope
allows us to separately detect the in-plane components of the electric field
of propagating light in a 2D photonic crystal waveguide. Consequently, we
will perform a study of optical singularities of light in the waveguide.

In Chapter 4 we will demonstrate the coupling between a coated probe
to a photonic crystal cavity through the magnetic component of the con-
fined light. We will achieve a novel blue-shift of the cavity resonance and
an unexpected increase of the photon lifetime of the cavity.

In Chapter 5 the coupling mechanism between an L3 side-coupled nano-
cavity and the mode of an access waveguide will be unraveled. By perform-
ing phase-sensitive, time-resolved, near-field microscopy and a subsequent
Fourier analysis, we will show that the -1 first Bloch harmonic of light prop-
agating in the photonic crystal waveguide mediates the coupling between
waveguide and nanocavity.

In Chapter 6 we will show that a functionalized coated probe exhibit
a magnetic response. We will exploit this response to directly detect the
magnetic field at optical frequencies. By performing a near-field experiment
on a ridge waveguide, we will detect the magnetic component of propagating
light.
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Chapter 1

Background concepts

1.1 Introduction

Electromagnetism deals with magnetic and electric fields and their inter-
action with matter. Materials are classified based on their susceptibility to
a constant electric and magnetic field. In the case of an electric response,
a material can be a conductor, where a high concentration of free carriers
(electrons) is available, a semiconductor, with a low free carrier concentra-
tion, or an insulator, where the free carrier concentration is zero [1]. In
the case of a magnetic response, materials are classified as ferromagnetic,
paramagnetic and diamagnetic. Here, the classification is based on the ease
with which the spins characterizing the material orient under an applied
constant magnetic field [1].

However, the above mentioned nomenclature loses its meaning once we
deal with electromagnetic waves. Let us consider a metal in an electric field
which oscillates in time. At low frequencies (ν < 1 THz) the electrons move
in phase with the external electric field, such that the total field inside the
metal is zero. As a result, the electric field, and thus light, is shielded by the
metal [2]. However, the electrons cannot move with infinite speed. When
the field varies faster than the response of the electrons, the electric field
is no longer screened and can penetrate into the metal. The penetration
of the field (skin depth) becomes larger as the frequency approaches the
so-called plasma frequency νp. In this regime, light can strongly couple to
the electrons present at a metallic interface, which creates surface electro-
magnetic waves (surface plasmon polaritons) [3]. As the frequency becomes
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Chapter 1

larger than νp, the metal exhibits a dielectric-like behavior [2]. This res-
onance frequency is in the ultraviolet or visible range (νp > 700 THz) for
all metals. Analogously, an insulator can be considered as a material with
νp = 0 and, thus, light can penetrate it. On the other hand, a semicon-
ductor has a low, but not vanishing, νp (0.1 − 10 THz, depending on the
doping). At frequencies smaller than νp, the semiconductor behaves like
a metal, reflecting the oscillating electric field [4]. Evidently the nomen-
clature developed in the electrostatic limit does not describe light-matter
interaction.

The magnetic response of matter also drastically changes at optical fre-
quencies. In fact, the magnetic field plays a significant role only for slowly
varying electromagnetic fields [5]. Not even atomic spin waves (magnons)
can be excited by a magnetic field at frequencies ν > 1 THz [6]. Strictly
speaking, the magnetic component of light does interact with matter at op-
tical frequencies [7]. However, this interaction is generally negligible with
respect to the electric coupling and magnetic light-matter interaction is
omitted in most textbooks of classical electrodynamics. In order to under-
stand this asymmetry in electromagnetism, we consider the force exerted
by light on a moving charge in vacuum, the well known Lorentz force. For
the sake of clarity, we write the Lorentz force in Gaussian (CGS) units. We
will use the Gaussian system instead of the International System only in
this occasion. The Lorentz force is [8]

F = q
(
E +

v

c
×B

)
, (1.1)

where q is the charge, v is the velocity of the charge and c is the speed of
light. As we will discuss in Appendix B, in CGS the electric field E has the
same unit as the magnetic field B. Because E and B of an electromagnetic
wave in vacuum have the same energy [2], and thus the same amplitude,
it is clear that the magnetic component of the Lorentz force is v/c smaller
than the electric component. Only in case of relativistic charges (v ≈ c)
the two components are comparable. Let us consider the hydrogen atom.
The velocity of the electron bound to the atom is approximately two order
of magnitude smaller than the speed of light. More precisely, v/c ' α =
1/137, where α is the fine-structure constant. The probability that light
induces a dipole transition in a hydrogen atom scales as |F |2. Consequently,
a magnetic coupling is α2 ≈ 10−4 smaller than the electric coupling. As a
result, at the macroscopic level the magnetic susceptibility of a material is
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generally∼ 10−4 the electric susceptibility [5]. Hence, light-matter coupling
is governed by the electric interaction.

Consequently, the control of light propagation is generally mediated by
the electric permittivity of matter. Classical examples are lenses, dielectric
and metallic mirrors, prisms, etc. Even an optical isolator, that is based on
the Faraday effect, exploits the interaction between the electric field of light
and the anisotropy of the electric permittivity induced by the permanent
magnetization of a ferromagnetic material [5]. Nowadays, new strategies
for controlling the light flow are being developed. For instance, photonic
crystals provide a high level of control of light propagation and are based
on the electric interaction between light and spatially engineered dielectric
materials (see Section 1.2).

Modern alternatives are the so-called metamaterials. These materials
exhibit a magnetic response even at optical frequencies, which can be ex-
ploited to control the flow of light. The physics lying behind this effect
can be summarized as follows. The metal present in the metamaterials
is tailored with geometries that are equivalent to subwavelength metallic
loops. Due to Faraday’s law, a single loop exhibits an induced magnetic
dipole resulting from the magnetically induced circular current. Because
the dimensions of these loops are much smaller than the wavelength of
the employed light, a metamaterial exhibits a homogenous effective mag-
netic response at optical frequencies that is comparable with the electric
response. Metamaterials are promising for achieving new and exciting opti-
cal phenomena, such as negative index of refraction [9], super-focusing [10]
and cloaking [11,12].
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Chapter 1

Figure 1.1:
A, Schematic representation of total internal reflection. The rays represent the
wave vectors of light that is totally reflected by the interface between the two media.
The exponential decay represent the evanescent field in medium 2. βc is the critical
angle. B, Schematic representation of a slab waveguide. Light that impinges at
the surfaces with an angle larger than βc is confined inside the slab along ẑ. In
this schematics the electric field is parallel to the slab.

1.2 Guiding and trapping light

In this Section we describe light propagation controlled by engineered di-
electric materials. Light can be guided through sharp corners [13] or
trapped in volumes comparable with the cubed wavelength [14]. In order
to guide or trap it, light must be confined, reducing the degrees of free-
dom of its propagation. In this thesis we will deal only with 2D photonic
structures, where light is guided (or confined) by total internal reflection.
Let us consider light propagating in medium 1 towards the interface with
medium 2 (Fig. 1.1A). Medium 1 has higher refractive index than medium
2. Snell’s law teach us that light impinging at the interface with an angle
of incidence above a certain critical angle βc will experience total reflection
(Fig. 1.1A) and only an evanescent field will extend into medium 2 [3].
When medium 1 is a slab that separates medium 2 and medium 3, both
with a refractive index smaller than medium 1, light cannot escape from
it and the slab becomes a waveguide (a slab waveguide, Fig. 1.1B). Light
in such a waveguide experiences an effective refractive index that primarily
depends on the thickness of the slab and differs from the refractive index
of the bulk material: the thinner is the slab the smaller is the effective
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Figure 1.2:
A, Schematic cross-section of a ’wire’ waveguide. The waveguide lies on a substrate
of smaller refractive index. Due to total internal reflection, light cannot propagate
in the xz-plane. The electromagnetic wave is guided along ŷ, as indicated by the
wave vector. B, Schematic cross-section of a ridge waveguide. The slab lies on a
substrate of smaller refractive index. A ridge in the profile of the slab is created.
The effective refractive index in the ridge area (between the dashed lines) is higher
than in the slab area. Light is guided along ŷ.

refractive index. It can be analytically proved that, in the limit of an in-
finitesimally small slab, light can always be trapped in a dielectric slab
regardless of the wavelength [15]. However, the effective refractive index
contrast with the surrounding media decreases as the slab becomes thin-
ner. As a result, the evanescent field extends further and the amount of
electromagnetic energy confined to the slab decreases. In this thesis we use
slabs of thickness between 150 and 300 nm, which is much smaller than the
employed vacuum wavelength (around 1500 nm).

1.2.1 Ridge waveguides

By using a slab-waveguide we confine the light in one direction of space.
In order to confine light also along another direction we can once again
use total internal reflection. The first strategy could be to use a dielectric
wire (Fig. 1.2A). In such a system light is confined in x̂ and ẑ and, thus,
propagates along ŷ. Alternatively, we can slightly modify the effective
refractive index in an area of the slab. Figure 1.2B shows a cross-section
of a so-called ridge waveguide. This waveguide is obtained by creating a
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smal step, or a ridge, in the profile of a slab waveguide. The effective
refractive index nwg in the ridge area is higher than in the rest of the slab
(nsl). Hence, light is confined also along x̂ and propagates along ŷ (Fig.
1.2B). A ridge waveguide generally has a weaker lateral confinement than
a ’wire’ waveguide. In fact, the lateral refractive index contrast (∆n =
(nwg − nsl)/nsl) for a typical ridge waveguide is only [0.01...0.1]. As a
result, the transverse component of the wave vector must be much smaller
than the longitudinal component, because it must obey the Snell’s law. In
other words, βc ≈ 90 degrees and the wave vector is approximately parallel
to the waveguide. Let us consider, for instance, the ridge waveguide that
we investigate in Chapter 6. The sample consists of a Si wafer on top
of which an 8 µm layer of thermal silicon oxide has been grown. The
waveguide is obtained by growing a 170 nm Si3N4 layer and subsequently
by dry etching a straight ridge with a width of 2 µm and a height of 20
nm. This waveguide supports only a weakly guided transverse electric (TE)
mode with an effective refractive index ∼ 1.46, whereas the refractive index
of the bulk Si3N4 is ∼ 1.9. Figure 1.3 shows the numerically calculated
electric and magnetic field components in the waveguide obtained by global
mode expansion1 [16]. Because the lateral refractive index contrast is only
∆n ∼ 0.07, Ex � Ey ≈ 4Ez and ky � kx. Note that strictly speaking the
mode does not have a pure transverse electric field. This terminology is a
heritage of the field that studies slab waveguides, where there is no lateral
confinement and, thus, the electric field is perfectly transverse. As we will
show in Section 1.2.2 and Chapter 3, the name TE for modes in a photonic
crystal waveguide is even more misleading because there the longitudinal
and the transverse component of the electric field are in fact of comparable
magnitude. In order to clarify, we call TE the mode that can be excited by
light with polarization oriented parallel to the slab on which the waveguide
is grown.

A closer look to the magnetic field distribution shows that Bz ≈ 2By �
Bx. This is due to the fact that the refractive index contrast along ẑ is
∆n ∼ 0.46 and the z-component of the wave vector is comparable with the
y-component, as it is shown in Fig. 1.1B. B and E must be orthogonal
to the wave vector2 and, thus, B must be tilted with respect to ẑ. As a

1These calculations are a generously provided by O. (Alyona) Ivanova and M.
Hammer, University of Twente.

2Strictly speaking E and B have to be orthogonal to the Poynting vector S. However,
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Figure 1.3:
Calculated distribution of the six fields, in the xy-plane, of light in a ridge
waveguide. Light propagates in the negative y-direction. The ridge profile is also
indicated. The electric (magnetic) fields are normalized to the maximum electric
(magnetic) field component.

result, the longitudinal component of the magnetic field is not negligible
with respect to the transverse component.

1.2.2 Photonic crystal waveguides

A modern strategy to control the propagation of light is the use of photonic
crystal architectures. These ’materials’ are made of periodic arrangements
of dielectric materials, where the arrangement can be in one, two or three
dimensions.

In order to explain the basic concepts of photonic crystals, we start with
the simple case of the so-called Bragg stack, which is a stack of different

phase velocity (wave vector), group velocity and energy velocity (Poynting vector) of light
in a ridge waveguide have all the same direction.
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dielectrics layered with period a (Fig. 1.4A). Because of the periodicity
of the system, light propagating through the structure has to obey the
Bloch’s theorem [1,17]. This theorem states that a light wave in a periodic
medium can be described as a plane wave with wave vector k and amplitude
modulated with the same period as the medium. This wave is called a Bloch
wave and can be written as an expansion in plane waves

Ψk(y) =
∑
m

ck,me
i(k+mG)y = uk(y)eiky, (1.2)

uk(y) =
∑
m

ck,me
imGy = uk(y + a), (1.3)

where m is an integer, ck,m is the amplitude of the m-th wave and G = 2π/a
is the reciprocal lattice vector. In other words, the spatial distribution of the
wave changes according to the periodicity of the structure. Consequently,
a Bloch wave can be described as an expansion in m Bloch harmonics. The
m-th harmonic has a wave vector k + mG and the zero-order harmonic
(m = 0) is called the fundamental Bloch harmonic. In Fig. 1.4B the
dispersion relation (ω(k)) of a Bragg stack is shown. Let us consider a
fixed angular frequency ω. As indicated by the dark gray dashed line in
Fig. 1.4B, many (infinite) wave vectors compose the Bloch wave. For
a certain frequency, which is indicated by the light gray dashed line, we
notice that two harmonics should have the same wave vector G/2 + mG.
This degeneracy in wave vectors is removed by the strong coupling between
the forward and backward propagating mode (indicated by the diagonal
dotted lines in Fig. 1.4B). Consequently, an avoided crossing occurs, as
indicated by the black ellipses in Fig. 1.4B, and a frequency gap in which
light cannot propagate through the Bragg stack is opened. This frequency
window is called a bandgap (for further details see [17]). As the refractive
index contrast becomes larger, the light-matter interaction and, thus, also
the frequency (or energy) splitting increases. Analogous considerations are
valid for periodic dielectric structures in two or three dimensions. The more
dimensions one adds to these systems, the richer the optical properties that
they exhibit [17].

In this thesis we investigate only 2D photonic crystal structures. Let
us consider a dielectric slab as described in Section 1.2.1. By creating a
periodic arrangement of holes in the slab, we create a system that is the
2D analogue of a Bragg stack (Fig. 1.4C). Besides many other interest-
ing properties [17], this structure exhibits a 2D bandgap where no modes
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Figure 1.4:
A, Schematic representation of a Bragg stack. Shades of gray represent different
dielectric materials. B, Schematic representation of the dispersion diagram of a
Bragg stack. The angular and spatial frequencies are normalized by a/(2π) and
a/(2πc), respectively. The dark gray dashed line indicates a frequency with Bloch
harmonics having different wave vectors. The light gray dashed line indicates a
frequency which should have some of the Bloch harmonics with the same wave
vectors. This degeneracy in wave vectors is removed by the strong coupling between
the forward and backward propagating mode. Consequently, an avoided crossing of
these two modes occurs. The ellipses show the avoided crossing of the dispersion
lines (indicated by dotted lines). A bandgap is opened at this frequency. C and
E, Scanning electron micrograph of a typical 2D photonic crystal and 2D photonic
crystal waveguide, respectively. In Fig. 1.4E the waveguide channel is clearly
visible. D and F, Schematic representation of the dispersion diagram along ŷ of a
2D photonic crystal and 2D photonic crystal waveguide, respectively. The dotted
lines represent the light line (ω = ck). The light gray and dark gray areas indicate
the 2D bandgap and the photonic crystal modes, respectively. In Fig. 1.4F the
lines in the bandgap indicate the photonic crystal waveguide modes.
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for in-plane propagating light are available. In Fig. 1.4D the dispersion
relation for a 2D photonic crystal is shown. The light gray area indicates
the bandgap. A photonic crystal waveguide can be considered as a system
where two 2D photonic crystals are placed in close proximity with a line-
defect, which serves as a waveguide ’channel’ for light (Fig. 1.4E). Light at
frequencies corresponding to the bandgap is confined in the lateral direc-
tions by the photonic bandgap and in the vertical direction by total internal
reflection (see also Chapter 3). Explaining all the fascinating properties of
a photonic crystal waveguide [18] is beyond the scope of this thesis. How-
ever, we want to point out that new modes for propagating light along the
line-defect (ŷ) are now available in the bandgap, as shown in Fig. 1.4F.

1.2.3 Photonic crystal cavities

In this Section we will show how light can be trapped in a photonic crys-
tal. By placing two other photonic crystals at the extremities of a photonic
crystal waveguide, light can be trapped in the line-defect. In this way,
we can create a cavity that can be as small as two unit cells (a so-called
point-defect). Many different designs have been proposed in order to in-
crease the quality of the cavity [14, 19–21]. These designs generally aim
to decrease the intrinsic out-of-plane radiation. In fact, it has been shown
through Fourier analyses that the eigenmode of the nanocavity has some
spatial frequencies which are not confined by total internal reflection [14],
which results in a radiation which primarily skims along the surface of the
sample (see Chapter 4). The number of these unbound wave vectors can be
decreased by engineering the geometries of the cavity. Arguably the most
important property of this type of cavities is their ability to confine light
to a very small volume (comparable with the wavelength in matter cubed,
∼ (λ/n)3) for a very long time (up to a million oscillation periods) [20,22].
In this nanocavity, the ratio between the quality factor Q and the mode
volume V is extremely high. As a result, the cavity is particularly sensitive
to environmental variations, such as the presence of a nano-object in its
proximity or variations in the chemicals surrounding it, and could be used,
e.i., for sensing applications3.

In Chapter 4 and 5 we investigate an air-bridge 2D photonic crystal
3The employment of ultra-high-Q photonic crystal cavities are also extremely promis-

ing for quantum electrodynamic applications but this research of field is not part of the
work described in this thesis.
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Figure 1.5:
A, Scanning electron micrograph of a typical L3 photonic crystal cavity side-
coupled to a photonic crystal waveguide. B, Schematic representation of cav-
ity/waveguide system. The dark gray arrows represent the light (with electric field
amplitude S+1) that propagates into the waveguide and partially couples to the
cavity. The light gray arrows indicate the light that leaks away from the cavity:
S−1 and S−2 is the electric field amplitude of backwards and forward propagating
light. The doted box show the area where the cavity mode and the waveguide mode
overlap, d is the length of the box. Position 1 and 2 indicate the location related
with S−1 and S−2, respectively.

nanocavity side-coupled to a photonic crystal waveguide. The silicon slab
is 250 nm thick, the lattice constant of the holes is a = 415 nm and the
holes diameter b = 250 nm. As shown in Fig. 1.5A, the cavity is formed by
removing three holes and this cavity is separated by three rows of holes from
the waveguide. In Fig. 1.5B a schematic representation of the waveguide-
cavity system is depicted. Let us call g, S+1, S−1 and S−2 the amplitudes of
the cavity mode, of the incoming wave at position 1 of the access waveguide,
of the outgoing wave at position 1 and of the outgoing wave at position 2,
respectively. The equations describing the time evolution of g, S−1 and
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S−2 are [23]

dg
dt

= (iωo −
1
τin
− 1
τv

)g +
√

1
τin

e−ikd/2S+1, (1.4)

S−1 = −
√

1
τin

e−ikd/2g, (1.5)

S−2 = e−ikd

(
S+1 −

√
1
τin

e−ikd/2g

)
, (1.6)

where 1/τin is the so-called in-plane decay rate, which is only due to the
coupling with the access waveguide, and 1/τv is the so-called out-of-plane
decay rate, which describes the loss of the cavity (intrinsic out-of-plane
radiation, roughness and imperfection of the cavity). Here, k is the wave
vector of light in the waveguide and d is the length of the area where
the cavity mode and the waveguide mode overlap (Fig. 1.5B). From the
equation that relates the quality factor of the cavity with the ring down time
1/Q = 2/(ωoτ), we infer that 1/Q = 2/(ωoτin) + (2/ωoτv) = 1/Qin + 1/Qv,
where Qin and Qv are the so-called in-plane and vertical quality factor of
the cavity, respectively. The complex transfer function of the system is
given by the ratio between the amplitude of the outgoing wave at position
2 and of the incoming wave at position 1

T =
S−2

S+1
= e−ikd

(
1−

ωo
2Qin

i(ω − ωo) + ωo
2Qin

+ ωo
2Qv

)
, (1.7)

which can be consider as the difference between ”perfect transmission” and
a transmission described by a Lorentzian function centered at the resonance
frequency of the cavity.
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1.3 Singular Optics

As mentioned in Section 1.2.2, the strong light-matter interaction occur-
ring in photonic crystals leads to multiple reflections of light propagating
through the periodic structure. In a photonic crystal waveguide, the in-
terference between these reflected waves leads to a complicated field distri-
bution. Moreover, in a photonic crystal waveguide the strong confinement
results in pronounced transverse components of the wave vectors (see Sec-
tion 1.2.1). The longitudinal component of the electric field can therefore be
as strong as the transverse component (see Chapter 3), giving rise to a 3D
polarization state. Systems where many light waves interfere and generate
complicated field distributions are intriguing candidates for investigating
wave singularities [24–28]. A wave singularity occurs at locations where
one of the parameters that define an complex field is ill-defined. These sin-
gularities appear in every type of waves and, thus, their role is important
in many different area of science, such as chemistry, oceanography, seismol-
ogy, medicine, biology, etc.. Singularities in optical fields are investigated
by singular optics.

The scope of this Chapter is not to give an exhaustive overview of the
entire broad field of singular optics. Here, we will rather provide only the
basic concepts necessary for a clear understanding of the following chapters.

In optics, the most common types of wave singularities are phase sin-
gularities and polarization singularities.

1.3.1 Phase singularities

Phase singularities, or dislocations, are associated with scalar fields. Let
us consider a complex scalar wave field Ψ(x, y, z) = |Ψ(x, y, z)|eiφ(x,y,z). A
phase singularity occurs at positions where the real and imaginary part of
Ψ(x, y, z) are zero and the phase cannot be defined. It turns out that a
point can only have Re(Ψ(x, y, z)) = Im(Ψ(x, y, z)) = 0 when the phase
around a dislocation changes 2πs, where s ∈ Z. Every phase singularity is
therefore characterized by a topological charge s, given by

s =
1

2π

∮
l
dφ, (1.8)

where l is a closed curve that encloses the dislocation. The sign of s is
positive if the phase increases in the counterclockwise direction. In Fig.
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Figure 1.6:
A and B, Typical amplitude and phase distribution of a measured speckle pattern.
The amplitude is normalized to the maximum and the phase ranges between −π
and π. The dashed circles indicate the position of some of the phase singularities.
Measurement related with [29].

1.6A and B the measured amplitude and phase of a speckle pattern is
shown [29]. As indicated by the dashed circles, a phase singularity occurs
only where the amplitude of the field is zero. It is clear that the phase of
the detected field changes 2π around a phase singularity and thus s = ±1.

The topology of the phase distribution is fully determined by the dis-
locations. In fact, all the equiphase lines, which are lines with constant
φ, converge on phase singularities [28], fixing the phase distribution. In
principle, by knowing the position and topological charge of every dislo-
cation, we could reconstruct the phase distribution of the scalar field. A
detailed classification of all the possible dislocations is presented by J. F.
Nye in [27].

Because dislocations can be present in any scalar complex field, the
above considerations also hold for the three components of the electric and
magnetic field of light. Due to the difficulties in measuring the magnetic
field at optical frequencies, no experimental observation of phase disloca-
tions for the magnetic components of light has been observed so far. In
contrast, many investigations of phase singularities in the electric field dis-
tribution have been performed, especially in random fields [29–36]. Due to
the complicated field distribution present in and around photonic nanos-
tructures, nowadays a new interest for the observation of phase singularities
in the near field is arising [29].
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Figure 1.7:
The polarization ellipse which describe the polarization state. The parameter ε

indicates the eccentricity, α the orientation of the major axis, u and v are the
semi-axes and β(t) is the instantaneous angle of the vector electric field. The
handedness of the polarization is described by the sign of ε.

1.3.2 Polarization singularities

Polarization singularities are singularities associated with the vectorial na-
ture of the electric field of light. It is important to immediately point out
that a polarization singularity is not a singularity in the polarization state.
The polarization of light is always well defined for every point of the light
field. In contrast to a scalar field, in which dislocations occur where the
amplitude of the field is zero, in a vector field a position (xo, yo) where
E(xo, yo, t) = 0 at all times does not exist (excluding the trivial case of
zero electric field at all locations). In other words, the dislocations of the
scalar components of E (e.g. Ex and Ey) never occur at the same position.
In contrast, the electric field can be instantaneously zero (E(xo, yo, to) = 0),
giving rise to a time-varying polarization singularity, as we will show in the
following. In Fig. 1.7 the polarization ellipse is shown, where u and v are
the minor and major semiaxis, respectively [8]. This ellipse is defined by its
eccentricity, described by the parameter ε = ∓u/v, the orientation of the
major axis, which is indicated by the angle α, and the handedness, that is
described by the sign of ε and indicates how the vector electric field rotates
in time. A polarization singularity is the occurrence of one of these three
parameters being ill-defined [27]. In a light field where the polarization is a
function of position, we can define three types of polarization singularities:
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two are time-independent and one is time-dependent.
Let us start with the first class. When the two components of the

electric field oscillate π/2 out of phase and with the same amplitude the
polarization is circular. In such a case the orientation of the polarization
state is undetermined because the ellipse in Fig. 1.7 becomes a circle and a
major axis cannot be defined. These polarization singularities are spatially
arranged in points (or lines) called C-points (or C-lines) in 2D (or 3D)
systems. In analogy to phase singularities, C-points are characterized by a
topological charge I, that is

I =
1

2π

∮
l
dα, (1.9)

where l is a closed curve that enclose the C-point. Similarly to the scalar
dislocation case, the sign of I is positive if α increases in the counterclock-
wise direction. In contrast with phase singularities, I is always half an
integer, because α ∈ [0;π]. Figures 1.8A, B and C show the main three
types of C-points, namely star (I=-1/2), monstar (I=+1/2) and lemon
(I=+1/2) which are also classified according to the orientation of the el-
lipses around them (line classification). The lines in Fig. 1.8 indicate the
orientation of the polarization ellipse. The difference between monstar and
lemon is given by the number of straight lines, indicated by the light gray
lines, that converge on the C-point. The first has always three straight
lines, whereas the second only one [28].

A C-point can be considered as a particular type of scalar dislocation.
Any polarization state can be described as the linear superposition of two
circular polarizations (A1 and A2) with opposite handedness. Because in a
C-point the polarization must be circular, either A1 or A2, depending on
the handedness of the C-point, must be zero. Hence, in analogy with the
scalar dislocation, the C-point is a dislocation in one of the two circular
polarization components.

The second type of time-independent polarization singularity occurs
when the handedness is not defined. This is the case of points of linear
polarization that in 2D (or 3D) system are spatially arranged in L-lines (or
L-surfaces) [27]. These lines separate two areas of opposite handedness.
Note that, although the polarization along L-lines is linear, the orientation
α along these lines varies.

The time-dependent polarization singularities are the so-called disclina-
tions. A disclination occurs when all components of the vector electric field
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Figure 1.8:
The three types of C-points. The light gray lines are the straight lines that charac-
terize these points. The ellipses indicate the orientation of the polarization ellipse
around the singularity. A, Star-type. There are three straight lines. The orien-
tation of the ellipse changes around the C-point in the counterclockwise direction
(I=-1/2). B, Monstar-type. There are three straight lines. The orientation of the
ellipse changes around the C-point in clockwise sense (I=1/2). C Lemon-type.
There is only one straight line. The orientation of the ellipse changes around the
C-point in clockwise sense (I=1/2).

vanish. A disclination, whose position is a function of time (xo(t), yo(t)), is
an instantaneous singularity in the polarization state. Because an instan-
taneous zero of the electric field occurs only when the polarization is linear,
a disclination lies on L-lines and moves along them as time progresses. The
topological charge H for this singularity is

H =
1

2π

∮
l
dβ, (1.10)

where β(t) is the instantaneous orientation of the vector electric field around
the disclination andH turns out to be an integer. An interesting property of
disclinations is that generally the vector field distribution around it cyclicly
changes as time progresses4 [27].

4In Chapter 3 we will show that in a photonic crystal waveguide this is not necessarily
the case.
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1.3.3 Concluding remarks on wave singularities

In recent years, interest in singular optics has increased. This has a two-
fold cause. Firstly, the remarkable interdisciplinary aspects of wave sin-
gularities. Because in science physical phenomena are primarily described
by waves, the investigation of wave singularities attracts the interest of a
broad audience. Studies on optical singularities, that can be performed in a
laboratory, could help in the understanding of natural phenomena in fields
of science where experimental conditions are more demanding. A striking
example is given by the tidal theory. The science that studies the motion of
the tides has a strong link with singular optics. The so-called amphidromic
points, position on Earth where the height of the tide is constantly zero,
are phase singularities of the complex wave function that describe the tides
motion [37]. However, the analogies between optics and the tides is not
only for scalar fields but also vectorial. Strong similarities have been found
between polarization singularities and the currents induced by tides [38].
Phase singularities, named as ’rotors’, also seem to have a crucial role
in cardiac fibrillations [39]. Disclinations and dislocations appear in the
distribution of liquid crystals [40]. Therefore, a better understanding of
topological properties of optical singularities can be useful in many fields
of science.

Secondly, the possible applications in optics itself. Phase singularities
are related to the orbital angular momentum of light beams. It has been
shown that a linearly polarized laser beam with an angular gradient in the
phase distribution, for instance a beam with a ’donut’ shape, carries an
orbital angular momentum orthogonal to the gradient [41]. Such a gradi-
ent in the phase distribution occurs around a phase singularity (Fig. 1.6)
and, thus, the orbital angular momentum associated can be transferred to
micro- and nano-objects [42]. It is important to point out that a phase sin-
gularity does not carry any angular momentum because it coincides with
a zero of the intensity of the field. However, around the singularity, where
the intensity is maximum, the Poynting vector flows circularly, creating an
optical vortex. Similarly, polarization singularities can be related to spin
angular momentum. Such an angular momentum is carried, for instance,
by a circularly polarized laser beam [43]. Hence, the investigation of the po-
larization topology of complicated light fields where the polarization state
is a function of position can be useful for applications in quantum system,
where one wants to transfer spin states to quantum objects, such as atoms
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or molecules [44]. Moreover, the two angular momenta can be simulta-
neously transferred to particles using a circularly polarized donut-shaped
beam, as shown in [45].
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1.4 Near-field optics

Investigations of the optical properties of photonic nanostructures, for ex-
ample singular optical properties, requires a very high resolution [3]. Un-
fortunately, according to the theory developed by Rayleigh in 1879, a
monochromatic light field with wavelength λ cannot be focused more than
a spot of diameter ∼ λ/2 (the diffraction limit) [8]. Therefore, the reso-
lution of an optical microscope is limited by this condition and many of
the intriguing optical properties of photonic nanostructures remain hidden
by the diffraction barrier. Near-field optics has been developed to beat the
diffraction limit. In order to understand what the added value provided by
near-field microscopy is, we first consider a light wave with a spatial distri-
bution along the xy-plane f(r||) with a width ∆r||, where r|| =

√
x2 + y2.

Through Fourier mathematics it is possible to show that

∆r|| ·∆k|| ≥ 1, (1.11)

where ∆k|| is the spread of the wave vectors of f(r||) along the xy-plane [3].
The equality of eq. 1.11 holds when f(r||) is a Gaussian function. In or-
der to obtain a high spatial resolution a large number of wave vectors
must be employed. Let us now consider a collimated monochromatic laser
beam E(z, t) = E(t)eizk propagating along ẑ which is focused by an ob-
jective. The magnitude of the wave vector after the objective is given by
k =

√
k||

2 + kz
2 and, thus, kz =

√
k2 − k||2, where k|| is the transverse

component of the wave vector and is determined by the numerical aperture
(NA) of the objective. To decrease the spot size of the focus and obtain
a high resolution the magnitude of k|| should be increased. However, the
parallel transverse component of the wave vector cannot be indefinitely in-
creased. When k|| becomes larger than k, the longitudinal component kz
becomes imaginary and, therefore, the wave exponentially decays. Hence,
wave vectors with k|| > k cannot be detected in the far field and we ob-
tain that the upper limit for ∆k|| is k = 2πn/λ. Therefore, eq. 1.11 for a
Gaussian function f(r||) the maximum achievable resolution is

∆r|| =
1
k
. (1.12)

Taking in consideration that an objective can focus the laser beam with a
maximum angle θmax (NA = n sin θmax), we obtain k = (2πn sin θmax)/λ
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and the ’ideal’ diffraction limit is retrieved from eq. 1.12

∆r|| =
1

2π
λ

NA
. (1.13)

Equation 1.13 is similar to the Rayleigh diffraction limit

∆r|| = 0.6098
λ

NA
, (1.14)

which is more accurate for practical purposes [3].
Near-field optics reaches resolutions beyond the diffraction limit by cou-

pling also those wave vectors for which k|| > k [3]. Near-field optics has
been first envisioned in 1928 by Singe [46], who proposed to place a sub-
wavelength hole in an opaque screen close to the investigated sample such
that a very small area is illuminated (Fig. 1.9). After the first exper-
imental verification performed in the microwave regime in 1972 by Ash
and Nicholls [47], near-field microscopy also reached optical frequencies
and nowadays is a crucial tool for nano-optics (for a historical background
see [3]). Nowadays, the opaque screen has been replaced by a so-called
near-field probe (see Section 2.1). This probe can be used in either illumi-
nation or in collection mode [3,48]. In the first case, the apex of the probe
is used as a subwavelength source of radiation. In the second case the apex
acts like a subwavelength detector. In both cases the probe is kept in close
proximity of the investigated specimen, by controlling the separation with
an electronic feedback loop [49,50]. The near field of both probe and sam-
ple is characterized by a broad spatial frequency distribution, because the
evanescent fields there have a nonvanishing contribution. The large wave
vectors (k|| > k) of the probe and sample couple and generate a propagat-
ing wave with wave vector given by the difference between them, as shown
in [3]. The process can also be considered as the optical classical analogue
of tunneling in quantum mechanics. Because in the gap between the probe
and the sample the light field is evanescent, this area acts as a barrier for
light which can tunnel through it (see Fig. 1.9B) [3]. The above described
mechanism occurs for both illumination (light gray arrows in Fig. 1.9B)
and collection mode (dark gray arrows in Fig. 1.9B). In the work described
in this thesis the probe is always used in collection mode.

The high resolution of near-field microscopy has a two-fold high cost.
Firstly, the low throughput of these probes makes light detection a challeng-
ing task. Nowadays, this issue is solved with a large variety of solutions but
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Figure 1.9:
A, Schematic representation of Singe’s idea. An opaque screen (black), which
stops the light, is placed in close proximity of the investigated sample. Through
a subwavelength hole in the screen the light can reach the sample and illuminate
it with a subwavelength spot. B, Singe’s idea in a ’quantum mechanics picture’.
Light propagating in vacuum (upper part of the figure) impinges on the barrier
(screen-sample gap). Inside the barrier the light exponentially decays. However,
light tunnels through the barrier with a finite amplitude in the lower part of the
figure.

the most powerful is the heterodyne detection schemes (see Section 2.2).
Secondly, the probe is so close to the sample that the interaction between
the two might not be negligible. In contrast to far-field microscopy where
interaction with the investigated sample does not occur, a near-field probe
can drastically change the optical properties of the studied structure [51].
Because the degree of interaction depends on the optical properties of the
sample, after any near-field experiment it is crucial to investigate the rele-
vance of this coupling. When the polarizability of the probe is known (see
Section 2.1), this interaction can be exploited to investigate novel phenom-
ena at the nanoscale (see Chapter 4).

A near-field microscope is particularly useful for investigating 2D pho-
tonic structures, such as 2D photonic crystals [52] and plasmonic struc-
tures [53]. In far-field investigations generally the optical properties of pho-
tonic materials are inferred by comparing transmission and reflection spec-
tra of different types of samples [54]. In contrast, near-field optics directly
visualizes how light behaves inside the investigated sample, providing a new
insight in the optical properties of the photonic structures [13,55–57].
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Microscope & Probes

Arguably the most important part of a near-field microscope
is the employed near-field probe. In this chapter, we discuss
the electric and magnetic response of three different types of
probe. A novel insight in the optical properties of photonic
nanostructures is achieved by combining a homemade near-
field microscope with a Mach-Zehnder interferometer. Here,
we provide an brief introduction to interferometry and to the
main characteristics of our setup.

2.1 Optical response of near-field probes

Near-field microscopy overcomes the diffraction limit and obtains images
with subwavelength resolution by exploiting the interaction between a sub-
wavelength object (the probe) and the evanescent field of light (see Chapter
1). Hence, in order to reconstruct the actual field distribution that we in-
vestigate, a detailed knowledge of the optical properties of the probe is
necessary. Because the near field of photonic nanostructures is often char-
acterized by a complicated distribution of the six fields (three for both
electric and magnetic field) and due to the geometries of the probes, this is
a challenging task. To describe the light-probe interaction the end of the
probe is generally approximated with an appropriately chosen subwave-
length object, of which the optical properties are well known.

Let us consider an object with linear dimension a embedded in an elec-
tromagnetic field with wavelength λ. This field induces a current density
distribution J in the object. In the quasi-static limit (a � λ) [5] the re-
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sponse of the object to the electromagnetic wave can be described by the
lowest multipole moments of J as

p =
1
iω

∫
V

Jd3x =
1
iω

∫
V

(Je + Jm)d3x, (2.1)

m =
1
2

∫
V

(x× J)d3x =
1
2

∫
V

(x× (Je + Jm))d3x, (2.2)

where ω is the angular frequency of light, V is the volume of the object
and p and m are the electric and magnetic dipole moments, respectively
[2]. Here, the current density is written as J = Je + Jm, where Je and
Jm are the current densities induced by the electric and magnetic field of
light, respectively [58]. Apart from simple geometries, eq. 2.1 and 2.2 are
generally solved by numerical calculations.

Equation 2.1 and 2.2 can also be expressed in a matrix formalism. In
general the two dipole moments are proportional to the driving fields. The
proportionality constants are given by the so-called 6 × 6 generalized po-
larizability matrix α

[
p
m

]
= α ·

[
E
B

]
=
[
αee αem

αme αmm

]
·
[

E
B

]
, (2.3)

where αee and αmm are the 3×3 electric and magnetic polarizability matri-
ces, respectively. Here, αem and αme are the so-called cross-polarizability
matrices. These 3 × 3 matrices describe the magnetically induced electric
polarizability and the electrically induced magnetic polarizability, respec-
tively.

The matrix α describes how the object becomes polarized and mag-
netized by an electromagnetic field. For homogenous materials at optical
frequencies, the only non-negligible matrix is αee. This is due to the fact
that light-matter coupling is governed by electric interactions rather than
magnetic (see Chapter 1). As a result, generally αem, αme and αmm either
vanish or are negligible with respect to αee. In the next sections we will
provide the polarizability tensors for some of the most common near-field
probe and show how this matrix changes as a function of the geometry of
the probe itself.
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Figure 2.1:
A, Scanning electron micrograph of a state-of-the-art tapered optical fiber near-
field probe, a so-called uncoated probe. The image is a courtesy of F. Intonti. The
apex of the probe is ∼ 70 nm. B, Schematic representation of an uncoated probe.
The apex of the probe is approximated by a dielectric sphere. C, Schematic repre-
sentation of the radiation emitted by the in-plane (xy-plane in the upper part) and
out-of-plane (yz-plane in the lower part) dipole moment of the dielectric sphere.

2.1.1 The uncoated near-field probe

The most widespread near-field probe is a tapered optical fiber, shown in
Fig. 2.1A. This probe can be obtained from an optical fiber either by
etching process [59] or by heating and pulling the fiber [60]. The apex of
such a probe is generally one order of magnitude smaller than the wave-
length of light (typical radius of curvature is 70 nm) and it is generally
approximated as a subwavelength dielectric sphere (Fig. 2.1B) [3, 51].
Due to the symmetry of the sphere, αeexx = αeeyy = αeezz are nonvanishing,
whereas all the off-diagonal terms of αee are zero. This means that, an
electric field oriented, for instance, along ẑ cannot induce a dipole moment
along x̂ or ŷ. In this case, the light-probe interaction can be described
by the diagonal polarizability matrix in which all the nonvanishing terms
are αeeii = εo3(εp − 1)/(εp + 2)Vp, where εo is the electric permittivity of
vacuum, εp is the dielectric constant of the probe and Vp is the volume of
the sphere [2]. The induced in-plane (along the xy-plane) dipole moments
couple to the propagating modes of the probe fiber and their emission can
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Figure 2.2:
A, Scanning electron micrograph of a state-of-the-art aperture coated near-field
probe. The thickness of the coating and the aperture diameter are in this case
∼ 150 nm and ∼ 210 nm, respectively. B, Schematic representation of a coated
probe. The apex of the probe is approximated by a metallic ring. The dashed area
indicates a cut-off volume where light propagation is forbidden. The upper part of
the probe indicates the volume where propagating modes are available.

be detected at the end of the fiber (upper part of Fig. 2.1C). The induced
out-of-plane (along ẑ) dipole moment cannot couple to the fiber because
the radiation is mainly in-plane (lower part of Fig. 2.1C).

The use of such a probe is not always convenient. The dimension of
the apex can be very small but the achievable resolution is affected also
by far-field radiation that can be collected far from the tip of the probe.
This reduces the achievable resolution of the probe. Moreover, because
the collected far-field and near-field waves interfere at the detector, the
interpretation of the retrieved near-field image can be rather complicated.

2.1.2 The coated near-field probe

In order to alleviate the problem raised in the previous section, a different
type of probe is often employed in near-field microscopy, the so-called aper-
ture probe. A typical example of a metal-coated near-field probe is shown
in Fig. 2.2A. The coating, which is deposited by evaporation onto an un-
coated probe, is generally made of aluminum with a thickness of 100− 200
nm. An aperture is created at the end of the probe by focused ion beam
milling [61]. With such a coating the sides of the probe are shielded and
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light is collected only through the aperture. Unfortunately, these probes
have a throughput of the order of only 10−4 or less [3]. There are two main
reasons of such a low throughput. Firstly, the absorption of the metal
coating. Secondly, due to the coating and the taper of the fiber, light ex-
periences cut-off in the probe. Let us assume that light propagates in the
fiber towards the apex. The metal around the tapered fiber progressively
confines the light in the probe. However, light cannot be squeezed infinitely
in this system. For a specific diameter of the probe, light cannot propagate
any further and is back reflected or absorbed by the metal [3]. This leads
to a forbidden volume of the probe where the field decays exponentially.
Light can reach the apex of the probe with a process that is the classical
optical analogue of tunneling in quantum mechanics, albeit with an addi-
tional decay due to absorption [3]. A reverse mechanism occurs when light
is coupled through the aperture to the fiber. In order to deal with the low
throughput and increase the signal-to-noise ratio, modern near-field micro-
scopes are combined with lock-in detection schemes [62, 63], as also shown
in sect. 2.2.

The polarizabilty matrix α of a coated probe is more complicated than
the polarizability of the uncoated probe. For several years the complexity
of α of the coated probe has been a severe limitation for the interpretation
of near-field experiments. Much effort was spent in investigating both the-
oretically and experimentally the optical response of such a probe and an
interesting scientific debate on what was the best model that describes a
coated probe was opened [64–67]. The goal of this thesis is to present our
contribution to arguably the most important discussion in near-field optics,
that is, the light-probe coupling.

We will show that a coated aperture probe exhibits not only an electric
but also a magnetic response. This magnetic response is evident if we
compare the coated probe with a metallic hollow cylinder [68]. A time-
varying magnetic field oriented along the axis of such a cylinder induces a
circular current in the metal. This current, in turn, produces a magnetic
field that suppresses the total field inside the cylinder. In short, the probe
exhibits a nonvanishing magnetic dipole moment.

In order to calculate the magnetic polarizability, we model the apex of
the probe as a metallic ring. In Fig. 2.2B we show the schematic represen-
tation of an aperture near-field probe. The dashed lines indicate the cut-off
region where only evanescent fields are allowed. In analogy with the sphere
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Figure 2.3:
A, Schematic representation of the metallic ring in a time-varying magnetic field.
The magnetic field is along ẑ. The magnetically induced current density Jm, indi-
cated by a dashed circle, is symmetrically distributed. B, Schematic representation
of the model employed to retrieve the electric polarizability of the ring. The effec-
tive ring (dashed box) takes in consideration the skin depth of the metal. The
spheroid approximates the effective ring.

of the uncoated probe (see Section 2.1.1) this ring acts as a nano-object
that couples light to the propagating modes of the fiber, which is shown in
the upper part of the image. A magnetic field oriented along ẑ induces an
out-of-plane magnetic dipole moment mz = AIm in the cylinder [2], where
A is the total area enclosed in the ring, Im = JmVr is the magnetically
induced current (Fig. 2.3A) and Vr is the volume of the ring. The current
Im can be described by applying Faraday’s law. The electromotive force
εemf is

εemf = − d
dt

Φ − L d
dt
Im,= ImR (2.4)

where Φ is the flux of the incident magnetic field Bz and L and R are the
self-inductance and the complex resistance of the coil, respectively. Because
Bz is orthogonal to the ring, the flux is Φ = ABze

−iωt = ABz(t), where ω
is the angular frequency of the magnetic field. Equation 2.4 becomes

L
d
dt
Im + ImR = iωABz(t). (2.5)

Equation 2.5 is a first order differential equation with solution

Im = − ABz(t)
(L+ iR

ω )
. (2.6)
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Because in the case of a subwavelength coil mz = αmmzz Bz(t) [68], we find
that

αmmzz = − A2

(L+ iR
ω )
. (2.7)

Hence, a magnetization of the probe can be achieved at optical frequencies
exploiting the geometry of the cylindrical coating. For the specific probe
used in Chapter 4, we calculated the resistance R = ρl/S ≈ (11 − i60)
Ω, where ρ is the resistivity of aluminum at 200 THz, l is the average
circumference of the ring and S is the cross-section of the coating. The
self-inductance L = 1.2 · 10−13 H has been integrated numerically using
a methodology found in [69] and we obtain from eq. 2.7 that αmmzz ≈
−80+i4 ·10−15 m4/H. Note that the real part of the magnetic polarizability
Re(αmmzz ) is negative. Moreover, Im(αmmzz ), which describes the absorption
of the ring, is one order of magnitude smaller than Re(αmmzz ). These are
interesting characteristics of the coated probe that will be crucial in the
experiment presented in Chapter 4. It is also important to note that a
magnetic response of the constituent materials, namely glass and aluminum,
is virtually absent and the effective magnetic response is only induced by
the geometry of the probe.

The other two diagonal terms of the polarizability matrix, namely αmmxx
and αmmyy , can be considered to be negligible. In fact, due to the small
extension of the evanescent field (∼ 100 nm) and the minute penetration of
light inside the coating, the flux of the in-plane components of the magnetic
field is negligible with respect to the flux of the out-of-plane component. As
in the case of the dielectric sphere in Section 2.1.1, the off-diagonal terms
of αmm are zero because of the symmetry of the probe. Thus, αmm has
only one nonvanishing term, i.e. αmmzz .

It is possible to show that the cross-polarizability matrices are zero. By
comparing eq. 2.1 and 2.2 with eq. 2.3, we conclude that

∫
V Jmd3x is

proportional to αem. The integration of the current distribution over the
ring volume is zero. In fact, due to the symmetry of the ring the charges
flow on one part of the ring in opposite direction with respect to the part
diametrically opposed, as shown in Fig. 2.3A, and, thus, the net current
is zero. As a consequence, αem vanishes. From symmetry consideration we
conclude that αme is also zero. Because a magnetic field cannot induce an
electric dipole moment, an electric field cannot generate a magnetic dipole
moment. Hence, both cross-polarizability matrices are zero.
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Given the cylindrical symmetry of the probe, we obtain αeexx = αeeyy 6=
αeezz. The analytical calculation of these three terms is a rather challenging
task. In Chapter 4 we will approximate the ring with a perfect metallic
oblate spheroid, as schematically shown in Fig. 2.3B, and use the calcu-
lation for the diagonal electric polarizabilty matrix presented by Landau
and Lifshitz [5]. The analytical expression of the diagonal terms of the
electric polarizability for an oblate spheroid with the short axis along ẑ
is αeeii = εoV/Ni, where V is the volume of the spheroid and the label i
indicates x, y or z. Here, the so-called depolarizing factors Ni are

Nz =
1 + e2

e3
(e− tan−1 e), (2.8)

Nx = Ny =
1−Nz

2
, (2.9)

where e is the eccentricity of the oblate spheroid. Because we are working
at optical frequencies, the metal of the ring cannot be considered as perfect.
In fact, the electric field penetrates into the metal as much as the skin depth
in aluminum, which is ∼ 10 nm at 200 THz. In order to obtain a better
model, in Chapter 4 we will approximate the ring with a perfect ellipsoid
of a smaller dimension to take in consideration the skin depth of the metal
(Fig. 2.3B). We obtain for the specific geometry of the probe employed in
Chapter 4 αeexx = αeeyy ≈ 4 · 10−32 Fm2 and αeezz ≈ 7 · 10−33 Fm2.

We will show in Chapter 4 that this model is a good approximation
when we use the probe as a ’perturbative’ object. However, this model
cannot be used to describe how light is collected by a coated probe. In this
case we also have to consider the presence of the aperture, through which
light is coupled to the fiber. As a consequence, αee is not diagonal. Let us
consider the ring in an in-plane electric field, e.g., Ey. As in the case of a
hole in a metallic screen [67], out-of-plane electric field components (Ez) at
the edges of the ring are generated due to the scattering of Ey, as shown
in Fig. 2.4A. This effect has been experimentally proven in single molecule
investigations [70, 71]. Therefore, αeezx and αeezy are not zero. Similarly to
the case of the magnetic response of the ring, these out-of-plane electric
dipole moments cannot couple to propagating modes in the fiber and, thus,
their contribution to the detected field is zero. Due to the symmetry of
the problem, we expect that an out-of-plane electric field (Ez) generates
in-plane electric components (Ex and Ey) at the edges of the ring, as shown
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Figure 2.4:
Schematic representation of the metallic ring in a time-varying electric field. A,
Cross section of the ring in the zy-plane. The electric field is along ŷ. Arrows with
an empty head represent the Ez electric field induced by the interaction between
the metallic rim of the ring and Ey. The Ez close to the aperture does not couple
to propagating modes in the fiber. B, Cross section of the ring along the xy-plane.
The electric field is along ẑ. Arrows with an empty head represent the in-plane
electric field induced by the interaction between the metallic edges of the ring and
Ez. The in-plane electric fields inside the aperture cancel each other in the far
field and, thus, their contribution to the detected optical signal vanishes.

in Fig. 2.4B. As a result, αeexz and αeeyz also would be nonvanishing. On the
one hand, Ez would induce in-plane electric dipole moments that can couple
to the fiber. On the other hand, when Ez is constant inside the aperture
of the probe, the induced in-plane dipole moments should have opposite
directions and interfere destructively (Fig. 2.4B). Hence, we expect the
contribution of these Ez-induced in-plane electric dipoles to the detected
field to be negligible.

In several experiments that we performed the actual dimension of the
probe is a = 2/3λ and, therefore, does not fulfill the condition of the quasi-
static limit. A more rigorous approach would consider not only the lowest
term of the dipole expansion in eq. 2.1 and 2.2, but also the higher terms.
Unfortunately, the calculation of the quadrupole moment of a coated probe
is a huge task, which has never been solved so far. Nevertheless, in this
thesis we will show that a model for a coated near-field probe that takes
in consideration only the first term of the dipole expansion adequately
describes the light-probe interaction.
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Figure 2.5:
A, Scanning electron micrograph of a state-of-the-art aperture coated near-field
probe with an air-gap in the coating (indicated by the arrow). We call it a split-
probe. The thickness of the coating is ∼ 150 nm and the aperture diameter is
∼ 210 nm. B, Schematic representation of the metallic ring in a time-varying
magnetic field. The magnetic field is along ẑ. The magnetically induced current
Jm is indicated by a dashed circle. The symmetry of the current distribution is
broken by the presence of the air-gap, where there is no conduction current. An
oscillating dipolar charge distribution is generated at the edges of the air-gap.

In Chapter 3 we will experimentally show that indeed a coated probe
primarily couples to the probe fiber in-plane components of the electric
field. This is due to the fact that the dipoles associated with αeezz, α

ee
zx, αeezy

and αmmzz mainly emit in-plane radiation and the contribution of αeexz and
αeeyz to the detected field is small with respect to the optical signal due to
αeexx and αeeyy. In Chapter 4 we will prove that a coated probe interacts
with the vertical component of the magnetic field and, thus, that αmmzz is
nonvanishing. In this thesis there is no experimental proof that verifies
our expectation for the response of the probe to Ez. However, experiments
performed by Verhagen and co-workers [72] and Burresi and co-workers [in
preparation] corroborate our interpretation.

2.1.3 The coated near-field split-probe

A novel type of probe has been used in the work described in this thesis.
In Chapter 6 we perform near-field measurements with a split-probe. Such
a probe has been obtained by opening an air-gap (∼ 40 nm wide) in the
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coating of an aperture probe close to the apex (Fig. 2.5A). The end of the
probe needs to be described as a split-ring resonator (SRR) [73], instead of a
metallic ring. A SRR is a metallic nano-object that can resonantly respond
to the magnetic and electric field at optical frequencies. The resonance
νSRR and the width ∆νSRR of a SRR can be approximately calculated in
analogy to a RLC circuit [68]

νSRR =
1

2π
√
LC

, (2.10)

∆νSRR =
R

2πL
, (2.11)

where L = 1.9 ·10−13 H and R = (5− i50) Ω are the self-inductance and the
complex resistance of the ring, respectively, as calculated in Section 2.1.2.
Here, C = εoA/d is the capacitance of the air-gap, where d is the distance
between the two sides of the air-gap and A is their area. For the specific
geometry of the split-probe employed in chapter 6 we obtain νSRR ≈ 245
THz and ∆νSRR ≈ 4 THz.

The polarizabilities αee and αmm of the split-probe are qualitatively the
same as for the coated probe1. The only exception is αeeyz (with respect to
the system in Fig. 2.5B). In fact, we expect that, because of the air-gap in
the coating, Ez would induce only one in-plane electric dipole moment (in
the lower side of the ring in Fig. 2.5B). This dipole moment could couple
to the fiber and, thus, would be detected2.

In contrast to the coated probe, the split-probe exhibits nonvanishing
cross-polarizability matrices. In fact, because of the air-gap, the magnet-
ically induced current in the coating cannot completely flow around the
ring (Fig. 2.5B) and, thus, the integral

∫
V Jmd3x is not zero. The magnet-

ically induced current generates a dipolar charge distribution across the gap
and, thus, an in-plane electric dipole moment [73]. Hence, the term αemxz is
nonvanishing. Like an out-of-plane magnetic field induces an in-plane elec-
tric dipole moment, an in-plane electric field will generate an oscillating
charge distribution. This induces a circular current in the ring and, thus,

1The matrix α for the two probes are quantitatively rather different. In contrast to
a coated probe, in a split probe all the terms of αmm are resonant with the driving
magnetic field [74].

2This is a only conjecture. There is no experimental proof for this mechanism yet.
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an out-of-plane magnetic dipole moment, as shown in [75]. Thus, αmezx also
is nonvanishing. Because of the symmetry of the probe, all other terms of
the cross-polarizabilty matrices are zero [76].

In Chapter 6 we will indeed show that the vertical component of the
magnetic field produces an in-plane electric dipole moment in the split-
probe that can couple to the probe fiber and, thus, can be detected.
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2.2 Phase- and polarization-sensitive time-resolved
near-field microscope

Interferometry is a powerful tool used for the characterization of waves in
many different areas of science, such as optics [77], astronomy [78], high
energy physics, oceanography [79], seismology [80], diagnosis [81], etc.. By
exploiting the interference effect, it is possible to gain knowledge not only
on the amplitude of the wave but also on its oscillatory behavior, which is
described by the phase. Moreover, with knowledge of a reference pulse, it
is possible with interferometry to achieve information on the time duration
of wave packets.

In optics there are several types of interferometric schemes that are
employed to investigate materials. In this thesis, we use a Mach-Zehnder
interferometer combined with a home-made near-field microscope [30]. In
the following sections we will provide a brief summary of interferometry
and describe the most relevant aspects of our setup.

2.2.1 The Mach-Zehnder interferometer

Let us consider a continuous wave laser source, for example a near-infrared
tunable diode laser. The linearly polarized light from the laser diode is
split by a beamsplitter in two identical branches and subsequently mixed
together by another beamsplitter (Fig. 2.6). The two beams interfere with
each other at the detector. We now insert in one of the two branches the
sample under investigation. We call this branch of the interferometer the
’signal’ branch and the other the ’reference’ branch. The light focused on
the detector generates a voltage drop VD = iDR, where iD is the photocur-
rent and R is the resistance of the electronics system. The photocurrent is
proportional to the light power P , where the proportionality constant σD
is the sensitivity of the detector. Because the light power is P = AI, where
I is the intensity of light and A is the spot-size of the focus, we obtain

VD = RσDAI. (2.12)

The light intensity is I = nεoc(ER + ES) · (E∗R + E∗S)/2, where ER and
ES are the vector electric fields of light in the reference and signal branch,
respectively, c is the speed of light, εo is the dielectric permittivity of vac-
uum and n is the refractive index. Hence, the detector signal turns out to
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Figure 2.6:
Schematic representation of a Mach-Zehnder interferometer working in continuous
wave mode. Light is split into two branches. The branch in which the sample is
inserted is called the ’signal’ branch, whereas the other is the ’reference’ branch.
Subsequently, the two branches are mixed together with another beam splitter and
the interference signal is detected.

be

VD = CD(ER + ES) · (E∗R + E∗S) = CD[|ER|2 + |ES |2 + 2Re{E∗R ·ES}]
= CD[|ER|2 + |ES |2 + 2ER ·ES cos(∆φ)] (2.13)

where CD = RσDAεoc/2 describes the conversion from optical to electronic
signal and ∆φ is the optical phase difference between the two branches. The
first two terms of the righthand side of eq. 2.13 contribute a constant offset
to the detected signal. The last term (the interference term) ’mixes’ the
signal of the two branches. When the sample is removed from the signal
path, the two branches are identical and, thus, ∆φ = 0. Hence, by compar-
ing the retrieved ∆φ with or without the sample, we obtain information on
the optical properties of the investigated sample, for instance a variation
of its refractive index [82].

Interferometry can also be used to perform time-resolved measurements
when a pulsed laser source is employed. In this thesis we use light from an
optical parametric oscillator pumped by a Ti:sapphire mode-locked laser
with a repetition rate of 80 MHz. The resulting near-infrared pulse has a
duration of ∼ 100 fs. Electronically resolving the time duration of such a
short pulse is not possible. In contrast, interferometry turns out to be a
useful alternative, providing information on the pulse duration with respect
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Figure 2.7:
Schematic representation of a Mach-Zehnder interferometer working in pulsed
wave mode. In the reference branch a translation stage works as a delay line.
As the path length of the two branches matches, the two pulses simultaneously
arrive at the detector and the interference signal is detected.

to a reference pulse. In Chapter 5 we will select part of the spectrum of
the fs-pulse with a spectral filter to obtain a pulse with a 2 nm bandwidth
and a 2 ps duration.

The detector signal generated by the interference of the two pulses is:

VD(t) =
CD
T

∫ T

0

{
|ER(t)|2 + |ES(t+ τ)|2 + 2ER(t) ·ES(t+ τ) cos(∆φ)

}
dt

(2.14)

where T is the integration time of the detector and τ is a time difference
between the reference and the signal pulse, which can also be written as the
length difference ∆l = c/τ of the two branches. Because T is much longer
than the repetition rate of the laser, the detector experiences many pulses
per integration time. When the length of the two branches is identical,
τ = 0 and we detect the time-averaged interference term. By varying
the length of the reference branch with a translation stage (the delay line
in Fig. 2.7), we vary τ and the time-averaged interference term decreases,
following the shape of the cross-correlate of the two pulses. When the length
difference is such that τ is larger than the coherence length of the two pulses,
the time-averaged interference term is zero. Hence, by dynamically varying
the length of the reference branch, we reconstruct the time duration of a fs-
pulse [18]. It is important to note that the obtained pulse shape is the cross-
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correlate of the reference and signal pulse. In order to retrieve the actual
duration of the signal pulse, the reference pulse must be known in amplitude
and phase. Alternatively, we can perform reference measurements such
that the properties of the sample are unraveled. By comparing the cross-
correlate pulses obtained with and without the sample, we can obtain the
influence of the structure on the pulse propagation.

Any minute difference in the refractive index of the two branches changes
the relative phase difference between the two optical beams. As a result, in-
terferometry is extremely sensitive to temperature gradients, vibrations, air
convection and other phenomena that can induce a difference in refractive
index between the two branches. On the one hand, one can exploit this
sensitivity to detect small environmental variations. On the other hand,
this sensitivity can be a severe limitation if one want a stable setup, as in
the case of a phase-sensitive near-field microscope. To overcome undesir-
able phase variations, the interferometer is generally built on a vibration
isolated table, is made as compact as possible and is placed in an isolating
box to minimize the temperature gradient.

2.2.2 Heterodyne detection

Near-field microscopy has to deal with weak signals. In particular, the light
power collected by a coated probe (see Section 2.1.2) can be on the order of
1 pW [13] and detecting it with the setup described in the previous section
is hard. The integration time of the employed detector could be increased to
improve the signal-to-noise ratio but interferometric measurements should
be performed as quickly as possible to obtain a proper phase retrieval. In
fact, the phase rapidly drifts as a function of time (0.05−0.1 deg/s) even in
a very good interferometer, where the phase information is obtained after
averaging over several measurements [82]. This is particularly important in
phase-sensitive near-field microscopy, where the phase has to be stable dur-
ing the time required to scan the probe (see Section 2.2.3). In our setup the
detection of the interference signal is performed with a heterodyne scheme,
which provides us with high signal-to-noise ratio with an integration time
comparable to a typical duration of the scanning of the probe (see Section
2.2.3). We will show that with this detection scheme, we also retrieve the
complex signal, in contrast with standard interferometry that only yields
the real part of the interference signal (see eq. 2.13).

The frequency of the light in the reference branch is slightly shifted
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Figure 2.8:
Schematic representation of a heterodyne Mach-Zehnder interferometer. The fre-
quency of the reference branch is Doppler shifted by ±40 kHz with two acousto-
optic modulators (AOMs). The interference signal from the detector is detected by
a lock-in amplifier (LIA), which is triggered at the same frequency.

using two acousto-optic modulators (AOMs) in a cross-configuration (Fig.
2.8). The first AOM Doppler shifts the frequency of light by 80 MHz,
whereas the second shifts the frequency back by 80.04 MHz. As a result,
after the second AOM the light has a frequency shift of ±40 kHz. The
detector signal then is

VD = CD
{
|ER|2 + |ES |2 + 2ER ·ES cos(∆ωt+ ∆φ)

}
(2.15)

where ∆ω = ±2π · 40 kHz and ∆φ = (φR − φS) are the frequency and the
phase shift, respectively, between the two branches. The detector signal is
sent to a lock-in amplifier (LIA), that is referenced to the same difference
frequency. The lock-in detects only the signal characterized by a frequency
of 40 kHz, namely the interference term 2ER ·ES cos(∆ωt+ ∆φ). Because
the lock-in uses only a small bandwidth (25 − 80 Hz) around ∆ω, the
electronic noise with different frequency is suppressed, in particular the
1/f noise. The signal-to-noise ratio is drastically increased not only by the
small bandwidth but also by the so-called heterodyne gain γ = |ER|/|ES |.
In fact, the lock-in detects the amplitude 2ER · ES = 2γES · ES of the
interference term of eq. 2.15. When the signal in the signal branch is
weak, the optical power in the reference branch can be increased, such that
|ER| � |ES | and, therefore, γ � 1. Consequently, the signal-to-noise ratio
improves. In contrast to standard interferometry, which detects also the
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off-set signal given by |ER|2 + |ES |2 (eq. 2.13), a heterodyne scheme only
detects the interference term.

The complex signal is retrieved as follows. The lock-in multiplies the de-
tector signal with two electronic signals, namely sin(∆ωt+θ) and sin(∆ωt+
θ + π/2), where θ is a phase shift that can be manually set on the lock-in.
In this way, we obtain the time-averaged outputs

X = CD
2ER ·ES

T

∫ T

0
sin(∆ωt+ θ) cos(∆ωt+ ∆φ)dt

= CD
2ER ·ES

T

∫ T

0
−1

2
sin(∆φ− θ) +

1
2

sin(2∆ωt+ ∆φ)dt

= −CDER ·ES sin(∆φ− θ) = CDER ·ES cos(∆φ− θ +
π

2
), (2.16)

Y = CD
2ER ·ES

T

∫ T

0
sin(∆ωt+ θ +

π

2
) cos(∆ωt+ ∆φ)dt

= CD
2ER ·ES

T

∫ T

0
−1

2
sin(∆φ− θ − π

2
) +

1
2

sin(2∆ωt+ ∆φ)dt

= −CDER ·ES cos(∆φ− θ) = CDER ·ES sin(∆φ− θ +
π

2
), (2.17)

where T is the lock-in integration time. By choosing θ = π/2, we obtain
the complex signal S

S = X + iY = CD[ER ·ES cos(φR − φS) + iER ·ES sin(φR − φS)]

= CDER ·ESe
i(φR−φS). (2.18)

With this detection technique we increase the signal-to-noise ratio and ob-
tain the amplitude and the phase of the signal with respect to the reference
branch.

Particular attention must be paid to the alignment of the two AOMs in
the reference path. An AOM works as a time-varying diffractive grating.
Light impinging to the AOM is primarily diffracted in three orders, namely
1, 0, -1. The 0 order does not change the frequency of light. The 1 and
-1 orders shift the light frequency by ω and −ω, respectively. By changing
the order of the two AOMs either ∆ω > 0 or ∆ω < 0 can be obtained.
In experiments where the sign of the detected phase is important, this
difference can be crucial. Let us consider the case where ∆ω < 0. Because
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the frequency of the signal that triggers the lock-in is always positive, the
argument of the cosine in eq. 2.15 must be inverted and the interference
term becomes 2ER ·ES cos(∆ωt−∆φ). As a result, the sign of the phase
in eq. 2.18 is changed, inverting the phase relation between the reference
and the signal branch. In this thesis the AOMs are set such that ∆ω < 0
and, thus, the detected phase is ∆φ = (φS − φR).

The use of AOMs has some inconveniences. Firstly, the crystal em-
ployed in an AOM introduces a large dispersion in the reference branch.
On the one hand, this dispersion can be balanced in the signal branch by
adding a crystal with the same dispersion (in Fig. 2.8 this crystal is not
shown). On the other hand, balancing the two branches stretches the pulse
duration in both branches decreasing the peak power of the laser pulse3.
Secondly, because we use the first and the minus first order, the transmit-
tance of the two AOMs is only ∼ 1%. Thirdly, the temperature of the
AOMs is ∼ 40 ◦C. This creates a strong temperature gradient and a pro-
nounced convection around AOMs that may unbalance the interferometer.
As a result, our interferometer has a phase drift of the order of 0.3 deg/s. A
practical solution to that problem could be to isolate the AOMs thermally
from the interferometer with additional boxes.

2.2.3 Amplitude and phase maps

In our setup a heterodyne interferometer is combined with a near-field
microscope. The evanescent field of light in the sample is collected by the
probe (Fig. 2.9). The light is mixed with the reference branch in a fiber-
coupler and detected with the heterodyne scheme described in Section 2.2.2.
We retrieve from eq. 2.18 the amplitude and the phase of light at a fixed
probe position. As we raster scan the probe, which is kept at a distance
less than 20 nm from the sample, we reconstruct the amplitude and phase
distribution of the evanescent field above the sample and obtain a good
measure of the spatial distribution of light propagating inside the structure
[83]. The employed highly sensitive homemade near-field microscope can
scan the probe above a 2D photonic structure with a typical speed4 of ∼ 30
µm/s. Because the phase gradient of our interferometer is ∼ 0.3 deg/s,

3This could be a severe limitation in case of non-linear optical investigation.
4The scanning speed strongly depends on the roughness and dimension of the asper-

ities present on the investigated sample: the smoother the surface of the specimen, the
faster the probe can be scanned.
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Figure 2.9:
Schematic representation of the phase-sensitive and time-resolved near-field micro-
scope. The evanescent field of light in the sample is coupled by the probe (indicated
by the dashed box) to the fiber. The collected light is mixed in a fiber-coupler with
the reference branch and detected with a heterodyne scheme. By raster scanning
the probe above the sample we reconstruct the amplitude and the phase distribution
of the probed field.

during a scan of 50 µm the phase drift is only 0.1%. Thus, we achieve a
stable phase information which provides a unique characterization of the
optical properties of a photonic structure. For instance, we can retrieve
the dispersion of complicated photonic structures, such as photonic crystal
waveguides [56], or investigate optical singularities at the nanoscale (see
Chapter 1 and 3).

2.2.4 Phase-sensitive polarization detection

A closer look to eq. 2.13 shows that when the polarizations of the reference
and signal branch are orthogonal the interference term is zero. This means
that interferometry is sensitive to the relative polarization state of the two
branches. Therefore, we can exploit this property in order to detect differ-
ent components of the electric field in the signal branch, by controlling the
polarization of the reference branch.

In order to simultaneously detect the two orthogonal polarizations that
might be present in the signal branch we need to slightly modify the setup
(Fig. 2.10). We introduce a λ/2-waveplate that controls the orientation
of the linear polarization of the reference. The reference polarization is
oriented with a 45 degrees angle with respect to the two orthogonal po-
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Figure 2.10:
Schematic representation of the phase- and polarization-sensitive time-resolved
near-field microscope. A λ/2-waveplate controls the linear polarization of the ref-
erence branch. This orientation is chosen such the the reference light equally in-
terferes with the two orthogonal polarization states in the signal branch. Subse-
quently, these two polarization states are split by a polarizing beamsplitter cube and
simultaneously detected with a heterodyne scheme. An additional λ/2-waveplate is
introduced in order to orient the polarizations with the polarization axes of the
beamsplitter cube.

larizations in the signal branch. In this way, the reference branch equally
interferes with both polarizations. We subsequently split the two polar-
izations by using a polarizing beamsplitter cube and separately detected
them with a heterodyne scheme. In order to orient the polarization of the
mixed light (reference+signal) with the polarization axes of the beamsplit-
ter cube, we insert another λ/2-waveplate (Fig. 2.10). The advantage of
this configuration is that we simultaneously measure two polarizations with
only one interferometer. As a result, provided that the two polarizations
in the signal branch experience the same optical path after the sample, we
can directly compare the phase of the two polarizations. Hence, it is ex-
tremely important that the birefringence of the setup is reduced as much
as possible. The most logical solution is to remove all fiber optics present
in the setup. Unfortunately, this turns out to be a challenging task because
the near-field probe itself is created from an optical fiber (see sect. 2.1).
However, we will show in Chapter 6 that, if the strain of the optical fiber
components in our setup is minimized, the birefringence of the system is
negligible.
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Polarization singularities and
photonic crystal waveguides

With a phase-sensitive near-field microscope we measure in-
dependently the two in-plane electric field components of
light propagating through a 2D photonic crystal waveguide
and the phase difference between them. Consequently, we
are able to reconstruct the electric vector field distribution
with sub-wavelength resolution. In the complex field distri-
bution we observe both time-dependent and time-independent
polarization singularities and determine the topology of the
surrounding electric field.

3.1 Introduction

A wave singularity can be defined as a position in space where a property
of a wave is not defined. Such singularities can be found in many types
of waves and they can have a large impact on common life. For instance,
they play an important role in heart fibrillation [39] and in the distribution
of tides [38]. Moreover, wave singularities are studied in many different
fields of physics, such as high energy physics [84], Bose-Einstein condensa-
tion [85–87], superconductivity [88] and superfluidity [89]. In optics, wave
singularities have been studied since the 1830s (for an overview, see for
instance Berry [37]) and have been observed in the interference patterns
of the diffracted light that is surrounding us [27]. The simplest class of
wave singularity is the so-called wave dislocation [24] (vortex, phase singu-
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larity, edge dislocation, etc.), which is a scalar field singularity that occurs
where the amplitude of a complex valued field is zero and hence its phase
is undefined or ’singular’ (see Section 1.3.1 [90–92]). Another more subtle
class is formed by the so-called polarization singularity (C-points, L-lines
and disclinations), which occurs in vector fields at positions where one of
the parameters that characterize the polarization ellipse (handedness, ec-
centricity or orientation) is singular (see Section 1.3.2 [25, 26, 93]). In the
last few years polarization singularities have been investigated in optics in
the context of tightly focused beams [94], crystal optics [95], skylights [96]
and speckle fields [36, 97]. The polarization state of light is of crucial im-
portance in quantum optics. Control of the local polarization state with a
nanophotonic structure could therefore be exploited to manipulate a Bose-
Einstein condensate trapped close to a surface [98], an atom chip [99], or
a photonic crystal [100]. In addition, a spatial dependence of the polariza-
tion state will have important consequences for the use of single emitters
in photonic nanostructures [44] for quantum information processing. Near-
field microscopy has already proven to be a powerful tool in studies of the
polarization distribution close to photonic nanostructures [101,102].

In this chapter, we observe the presence of polarization singularities at
the nanoscale in the fields above a 2D photonic crystal waveguide. We
succeeded in the separation of the two in-plane field components above the
waveguide with high selectivity. Exploiting the measured phase difference
between the components, we reconstruct the distribution of the in-plane
electric vector field with sub-wavelength resolution. We are able to observe
several types of polarization singularities and the topology of the surround-
ing field at the nanoscale.

3.2 Experimental results

The setup is schematically shown in Fig. 3.1. The inset in the upper-left
corner shows the photonic crystal waveguide used in this work. The sample
consist of a silicon membrane with a 200 nm thickness with a periodic tri-
angular arrangement of holes (lattice constant a=450 nm). The waveguide
is formed by a single missing row of holes. The light source used to investi-
gate the sample is a diode laser tuned to a vacuum wavelength of 1463 nm.
The linearly polarized light is coupled into the waveguide by focusing it on
the entrance facet. The field above the sample is picked up by the sub-
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Figure 3.1:
Schematic representation of the experimental setup. Light is coupled into a 2D
photonic crystal waveguide. The near-field probe is scanned above the sample and
collects light that is interferometrically mixed with a reference beam and detected
using a heterodyne scheme. The polarization state in the reference branch is con-
trolled using waveplates. (left inset) Scanning electron micrograph of the silicon
membrane photonic crystal waveguide under investigation (lattice constant a = 450
nm and hole diameter d = 250 nm). (right inset) Scanning electron micrograph of
the aluminum-coated near-field probe with aperture of ≈ 200 nm.

wavelength aperture of an aluminum-coated near-field probe (see Section
2.1.2 lower-right inset of Fig. 3.1), that is kept 20 nm above the sample
using shear force feedback. The light collected by the probe is interferomet-
rically mixed with a reference signal and subsequently recorded using het-
erodyne detection [30, 83, 103]. Raster scanning the near-field probe above
the 2D photonic structure, we recover the phase and the amplitude pattern
of the light field in the waveguide with sub-wavelength resolution. This al-
lows us to reconstruct the complex electric field as E(x, y) = A(x, y)eiφ(x,y),
where A and φ are the position-dependent amplitude and phase, respec-
tively. Moreover, when two orthogonal polarizations are present in the
probe fiber, we can select either one by choosing the appropriate polar-
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ization for the reference branch. As a result, our near-field setup is now
sensitive to the polarization state of the near-field.

3.2.1 Detecting the in-plane electric field distribution

Figures 3.2A and B show the amplitude pattern recorded for two orthog-
onal polarizations of the reference signal. The amplitude is normalized to
the maximum value and the scanned area is 4a × 5a. The waveguide is
centered around x = 0. Using Fourier analysis, we observe the presence of
both forward and backward propagating Bloch modes in the photonic crys-
tal waveguide (see Section 1.2.2). We attribute the backward propagating
mode to light that is reflected at the end-facet of the waveguide. When
we select only the forward propagating mode by applying a Fourier filter
to the experimental data [13], we obtain the amplitude distribution shown
in Fig. 3.2C and D. Figures 3.2E and F show the amplitude of the Ex
and Ey components of the electric field, respectively, of the forward prop-
agating mode, as obtained using 3D finite-difference time-domain (FDTD)
calculations. Figures 3.2G and H show the line traces of the real part of
the complex signals along the dashed lines of Fig. 3.2C, D, E and F. Blue
corresponds to the measurements and red to the calculations. Whereas in
the first image the line traces are symmetric, in the second the line traces
have an antisymmetric pattern, with a zero-crossing in the center of the
waveguide. We find an excellent agreement between the measured and the
calculated patterns. Thus, by utilizing a highly symmetric aperture probe,
we have succeeded in measuring the field distribution of the in-plane elec-
tric field components by using two suitably chosen orthogonal polarization
in the reference branch.

3.2.2 Polarization singularities

Exploiting the amplitude and the phase relation between the electric field
components, we reconstruct the in-plane vector field of the electric field
in a single unit cell of the photonic crystal waveguide. Figures 3.3 show
the experimentally and theoretically obtained vector plot of the electric
field. The depicted area is 2a x 1a and the waveguide is centered around
x = 0. The contour lines indicate the measured and calculated electric
field magnitude. The out-of-plane component is only significant near the
edges of the holes and is vanishing elsewhere. We can therefore consider
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Figure 3.2:
A and B, Detected amplitude pattern for two orthogonal polarizations (indicated
by white arrows) in the reference branch. C and D, Amplitude pattern of the
forward propagating mode, obtained after Fourier analysis of Fig. 3.2A and B. E
and F, Theoretical amplitude pattern of Ex and Ey 20 nm above the surface for
the forward propagating mode. For all the images the depicted area is 4a× 5a (the
center of the waveguide is around x = 0) and the amplitude is normalized. G and
F, Crosscuts of the experimentally (blue) and theoretically (red) obtained real part
of the complex field along the dashed lines of Fig. 3.2C, D, E and F, respectively.
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Figure 3.3:
Experimentally and theoretically obtained instantaneous 2D vector plots of the elec-
tric field. The contour plots indicate the normalized magnitude of the electric field.
The black arrows highlight a disclination. For both figures the depicted area is
2a× 1a (the center of the waveguide is around x = 0).

the electric field in the middle of the waveguide to be in-plane only. In
a previous study, Lee et al. measured the intensity of the electric field
components in the near-field [101]. In contrast, we perform phase-sensitive
measurements that allow us to determine the actual instantaneous direction
of the electric field.

In the instantaneous electric vector field shown in Fig. 3.3, we find a
position where the electric field is at that moment zero (indicated by a black
arrow). At this position the polarization state is undetermined. This is a
so-called wave disclination (see Section 1.3.2). Such disclinations are sin-
gularities that move as time progresses. Because around such a singularity
the electric vector field describes a complete circle (rotation of ±2π), it has
a topological charge of ±1 [26–28]. From the vector arrangement in Fig. 3.3
we infer that the topological charge equals +1. Usually, disclinations are
studied in far-field transmission investigations in a plane orthogonal to the
propagation direction of the light. It has been shown that the arrangement
of the vectors surrounding a disclination varies as time progresses [26, 27].
In contrast, we investigate the polarization state in a plane parallel to the
propagation direction and thus obtain insight in the disclination evolution
inside the sample that generates it. We observe that the disclination moves
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Figure 3.4:
A, Representation of the polarization ellipse, where v is the major semi-axis, u is
the minor semi-axis of the ellipse, ε = ∓u/v and α the orientation angle. B, Ex-
perimentally and theoretically obtained ε. Negative and positive values correspond
to left- and right-handed polarization, respectively. Lines of linear polarization (L-
lines) are shown in green. C, Experimentally and theoretically obtained α. The
dotted ellipses indicate the orientation of the polarization and the dashed lines
show the 3-fold symmetry of the system. The white dots indicate the position of
C-points.

as time progresses but the topology around it is in a stable vortex shape.
We attribute this to the fact that the disclination moves in the center of the
waveguide, where there is a zero-crossing in Ey (see Fig. 3.2F). Hence, the
electric field must be parallel to the x-direction for every point along the
center of the waveguide. This condition fixes the topology of the vectors
and prevents the deformation of the vortex around the dislocation.

To elucidate the polarization distribution of the light inside the waveguide
further, we determine the ratio ε = ∓u/v = tan {arcsin [(sin 2ψ) sin δ] /2}
and the orientation angle α = {arctan [(tan 2ψ) cos δ]} /2 of the polariza-
tion ellipse, where v is the major semi-axis, u is the minor semi-axis (as
illustrated in Fig. 3.4A). The angles ψ = arctan (|Ey|/|Ex|) and δ = δy−δx
characterize the amplitude ratio and the phase difference between the two
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electric field components, respectively [8]. Thus, to determine ε and α from
the two field components, knowing the phase relation between them is cru-
cial. Figure 3.4B shows ε retrieved from the measured and calculated vector
field distribution of Fig. 3.3. Negative and positive values correspond to
left- and right-handed polarization, respectively. Two areas of opposite
handedness are in close proximity (within 2 unit cells, or 860 nm). Fig.
3.4C depicts the angle α retrieved from the calculated and measured field
distribution. Note that, because α = 0 and α = π correspond to the same
polarization state, we have chosen a cyclic color map. The phase-sensitive
near-field measurements and the calculations show that, in an area of the
order of the square wavelength in material [(λ/n)2], the polarization state
has an antisymmetric structure.

When the polarization is purely linear (ε = 0), the handedness of the
polarization ellipse is undetermined. This occurs along the so-called L-lines,
which separate areas of opposite handedness (see Section 1.3.2). The above-
mentioned polarization disclinations must move along L-lines as time pro-
gresses [27, 28]. In Fig. 3.4B L-lines are indicated by green lines. We find
a good match between measurement and calculation. The disclination ob-
served in Fig. 3.3 lies on the L-line in the center of the waveguide for both
experiment and theory, as predicted by Nye in [26].

When ε = ±1 the polarization is purely circular, which means that the
orientation of the angle α is undetermined. Positions where this occurs
are referred to as C-points (see Section 1.3.2). Around such a point the
polarization ellipse describes a semicircle (rotation of ±π). Thus, these
singularities are characterized by a topological charge of ±1

2 , where the
sign is determined by the rotation of the direction of the ellipse around the
C-point [27, 28]. In order to identify C-points, we introduce the so-called
isogyres, defined as lines of equal α. These isogyres are shown in Fig. 3.4C
as black lines. The isogyres clearly converge on two points (white dots
in Fig. 3.4C) close to the center of the photonic crystal waveguide. Be-
cause by definition the isogyres are lines with one unique value of α, their
intersection is possible only when α is undetermined. Thus, the intersec-
tions of the isogyres are C-points. The dashed white lines and ellipses in
Fig. 3.4B show the symmetry and ellipse orientation around the C-points,
respectively. Both the C-points have topological charge −1

2 and a 3-fold
symmetry. This means that this is a so-called star singularity. For further
information about the classification of the singularities see Section 1.3.2
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or [27]. We observed that the Bloch mode propagating in a photonic crystal
waveguide generates in every unit cell two circular polarization singulari-
ties in sub-wavelength proximity (200 nm according to calculation and 50
nm according to the measurements). In previous publications it has been
shown that polarization singularities with the same topological charge repel
each other (the so-called topological singularity screening) [36, 95]. How-
ever, as the two C-points we investigated have opposite handedness, they
are essentially independent and therefore screening does not play a role
here.

3.3 Conclusion

In conclusion, exploiting the polarization properties of a highly symmetric
aperture near-field probe, we experimentally visualized the electric vector
field of the light propagating through a photonic crystal waveguide. We
observed with sub-wavelength resolution the vectorial topological defects
present in the photonic crystal waveguide. We found two star -type circular
polarization singularities in sub-wavelength proximity and a disclination ly-
ing on a L-line in the center of the waveguide itself. All the measurements
are in good agreement with the 3D FDTD calculations. The observed de-
pendence of the polarization state can be used for the on chip manipulation
of (cold) atoms and may lead to new strategies for quantum information
processing with nanophotonic structures.
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Active control of light
trapping by means of local
magnetic coupling

The ability to actively tune the properties of a nanocavity
is crucial for future applications in photonics and quantum
information. Two important man-made classes of materi-
als have emerged to mold the flow of electromagnetic waves.
Firstly, photonic crystals are dielectric nanostructures that
can be used to confine and slow down light and control its
emission. They act primarily on the electric component
of the light field. More recently, a novel class of metallo-
dielectric nanostructures has emerged. These so-called meta-
materials enable fascinating phenomena, such as negative re-
fraction, super-focusing and cloaking. This second class of
materials realizes light control through effective interactions
with both electric and magnetic component. In this work,
we combine both concepts to gain an active and reversible
control of light trapping on subwavelength length scales. By
actuating a nanoscale magnetic coil close to a photonic crys-
tal nanocavity, we interact with the rapidly varying magnetic
field and accomplish an unprecedented control of the optical
properties of the cavity. We achieve a reversible enhance-
ment of the lifetime of photons in the cavity. By successfully
combining photonic crystal and metamaterials concepts, our
results open the way for new light control strategies based on
interactions which include the magnetic component of light.
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4.1 Introduction

Photonic crystals are materials which provide a high level of control on the
light-matter interaction, based on the engineered periodic modulation of
the electric permittivity [104]. Nanoresonators in such photonic crystal ar-
chitectures can store light in volumes comparable to the wavelength cubed
for times longer than a million oscillation periods of the light [22]. Such
high-Q photonic nano-cavities are promising structures to achieve strong
coupling between light and quantum dots [105,106]. The ability to actively
tune the properties of a nanocavity is crucial for future applications in pho-
tonics and quantum information [105,106]. Active tuning is achievable all-
optically [107], electrically [108] or through the actuation of nano-objects in
the evanescent electromagnetic field of the cavity [51, 109–112]. The latter
strategy, which could lead to breakthroughs in the emerging field of op-
tical nanoelectromechanical systems (NEMS) [113], relies typically on the
interaction with the electric field in the cavity. This invariably leads to
only red shifts of the resonance frequency and usually to a reduction of the
photon lifetime of the cavity [51,109–112]. In principle, an interaction with
the magnetic field would also allow tuning of the cavity [110]. Unfortu-
nately, natural materials have a negligible magnetic permeability at optical
frequencies. We can overcome this limitation by borrowing concepts from
metamaterials. These engineered materials work by geometrically induc-
ing a magnetic response [114]. By using this idea, we have achieved active
and reversible tuning of a photonic crystal nanocavity by interacting with
the magnetic field of the trapped light. We use a cylindrically symmetric,
metal-coated probe as a ’nanocoil’. By positioning the probe close to the
cavity, the z-component of the magnetic field induces a counteracting mag-
netic response in the nanocoil through Lenz’ law. As a result, we are able
to induce a novel blue shift of the resonance frequency. More importantly,
we are able to achieve an increase of the quality factor Q. In other words,
we are able to increase the photon lifetime in the cavity.

4.2 Experimental results

4.2.1 Setup and near-field measurements

We investigate a photonic crystal nanocavity which is side-coupled to a pho-
tonic crystal waveguide (see inset Fig. 4.1A and Section 1.2.3) [14]. The
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Figure 4.1:
A,The near-field probe is scanned above the sample and collects the evanescent
field of the light in the structure. The collected light is mixed with a reference beam
and subsequently detected with a heterodyne scheme. The light power transmitted
by the structure is also detected. A scanning electron micrograph of the sample
investigated is shown in the inset. The photonic crystal nanocavity is visible below
the photonic crystal waveguide. B, A scanning electron micrograph of the cylin-
drical symmetric aluminium-coated near-field probe. C, Schematic representation
of the ring that models the end of the near-field probe. The magnetic field Bz, that
is orthogonal to the ring, induces a current density Jp in the ring. r1 and r2 are
the outer and the inner radius, respectively.
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Figure 4.2:
A, Distribution of Re(Ey) detected in the near field of the sample at reso-
nance. The electromagnetic field depicted here is propagating through the accessing
waveguide and coupled to the cavity. The color scale is varying between the max-
imum (red-positive) and the minimum (violet-negative) of the interference signal.
B, Image of the distribution of the detected Re(Ey) in the near field above the area
indicated in the dashed box of Fig. 4.2A. The green arrows indicate the detected
in-plane radiation lost by the cavity. C, Image of the calculated distribution of the
longitudinal component obtained by FDTD calculations at resonance.

nanocavity exhibits a resonance at a vacuum wavelength of λo = 1534.6
nm with a quality factor Qo = 6500. In order to excite the cavity, light
from a tunable diode laser is coupled to the access waveguide. The electric
field distribution inside and around the cavity is detected with a phase-
sensitive near-field microscope [83] (Fig. 4.1A). By raster scanning a ta-
pered aluminum-coated single-mode fibre (Fig. 4.1B) above the sample at
a constant height of 20 nm, we collect a minute fraction of the light and
detect it with a heterodyne scheme. The near-field probe, which has an
aperture of 200 nm and an aluminum coating of 100 nm, has a cylindrical
symmetry [61]. The high symmetry of the probe allows us to detect the
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in-plane electric field distribution of the sample (see Chapter 3 and [57]).
Figure 4.2A displays the distribution of Re(Ey) detected with a typical
near-field measurement at vacuum wavelength λo. The image shows how
the electromagnetic wave is guided by the waveguide and is coupled to the
cavity, which is indicated by the dashed box in Fig. 4.2A. Excellent agree-
ment is found between the measured (4.2B) and the calculated (4.2C) field
distribution above the cavity, obtained by Finite Difference Time Domain
(FDTD) method. Small deviations between theory and experiment are vis-
ible. The field outside the cavity appears stronger in the measurement than
in the calculation, as indicated by the arrows. We assign this effect to the
influence of the probe on the optical properties of the cavity, as it will been
described later in this chapter.

4.2.2 Transmission measurements

While performing the near-field measurement, we simultaneously determine
the transmission of the system by measuring the amount of light arriving at
the output of the access waveguide. In order to investigate the influence of
the probe on the transmittance of the system, we determine the normalized
transmission F (x, y, λ) = Tn(x, y, λ)/To(λ), where x and y represent the in-
plane position of the probe, Tn(x, y, λ) is the transmission spectrum as a
function of probe position above the cavity, and To(λ) is the unperturbed
transmission spectrum obtained in absence of the probe. Figure 4.3A shows
a typical image of this normalized transmission acquired on resonance (λ =
λo). Different probe positions may lead to either an increase (yellow areas
in the image, F > 1) or a decrease (blue areas, F < 1) of the waveguide
transmittance. This observation clearly indicates an interaction between
probe and cavity. In addition, we analyze the normalized transmission
as a function of wavelength for a fixed position of the probe. The upper
image of Fig. 4.3B shows a typical graph of F for position 1 in Fig. 4.3A,
whereas the lower image shows F for four other positions indicated in Fig.
4.3A. All spectra exhibit identical qualitative behavior. For wavelengths far
away from the resonance, the influence of the probe is negligible, i.e. F = 1.
For wavelengths close to λo, the probe-cavity interaction becomes evident
since F undergoes a pronounced variation. The change in transmission
is caused by a shift of the resonance (λo → λn(x, y)) due to the probe-
cavity coupling [51, 110], as a consequence of which light with wavelength
λo no longer couples to the resonator. As a result, the light does not
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Figure 4.3:
A, Image of the normalized transmission at resonance. In black the areas where the
transmittance equals the unperturbed transmittance. For different positions of the
probe the transmittance either increases or decreases. B, In the upper image the
normalized transmission F for position 1 in Fig. 4.3A is shown. For wavelengths
far away from the resonance the ratio is 1, indicating no influence of the probe.
However, for wavelengths close to the resonance this ratio varies drastically. The
fit is shown as a red line. The lower image shows F obtained for different positions
indicated in Fig. 4.3A.

experience the small loss associated with being trapped in the cavity and
the transmission increases. Conversely, light with a wavelength close to the
new resonance λn is now loaded in the resonator, leading to a reduction of
the transmittance for that wavelength. It is clear that a distinct blue-shift
of the cavity resonance occurs when the near-field probe couples to the
cavity.

The induced resonance shift is the cause of the above-mentioned dis-
agreement between Fig. 4.2B and C. When the probe is above the cavity,
light with wavelength λo is not loaded and the electric field in the resonator
is smaller than in the unperturbed system. Conversely, when the probe is
at the position indicated by the arrow in Fig. 4.2B, light with wavelength
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λo can couple to the nanocavity and the electric field at that location, as
well as the signal detected by the probe, increases. As a result, the ratio
between the electric field amplitude inside and outside the cavity for the
measurement (Fig. 4.2B) differs from the same ratio for the calculation
(Fig. 4.2C).

4.3 Data analysis

This unprecedented blue-shift can be intuitively understood in the following
way. Due to the small extension in air of the evanescent fields above the
cavity [115], the end of our near-field probe can be modeled as a metallic
ring (Fig. 4.1C) that acts like a nano-coil in the electromagnetic field above
the cavity (see Section 2.1.2). Faraday’s law tells us that the magnetic field
induces a circular current density Jp in the ring (Fig. 4.1C). This current,
in turn, generates a magnetic field that, according to Lenz’ law, suppresses
the driving field inside the ring [5]. The probe, thus, generates a volume
where the total magnetic field is reduced. As a result, the effective volume
occupied by the light stored in the cavity, the so-called cavity mode volume,
is reduced, leading to a resonance shift towards shorter wavelengths.

4.3.1 Shifting the resonance to ’blue’

As a consequence, we expect that the probe-cavity coupling, and thus the
variation of the transmittance, is most pronounced when the probe overlaps
with the maximum in the amplitude of the out-of-plane component of the
magnetic field. We experimentally verify our expectations by comparing
the normalized transmission map, shown in Fig. 4.3A, with the amplitude
distribution of Bz, obtained by FDTD calculation and shown in Fig. 4.4B.
The symmetry and the maxima of the transmission map do coincide with
the amplitude of Bz and not with the magnitude of the electric field E
(Fig. 4.4A). This indication proves that the probe-cavity interaction is
dominated by the magnetic coupling.

For a more formal description of the probe-cavity interaction one has
to consider that the relative resonance shift is proportional to the relative
energy shift of the system [51,110]. Here, we have to take into account the
induced magnetic dipole moment m of the probe interacting with the mag-
netic field in addition to the coupling between the induced electric dipole
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Figure 4.4:
A and B, Distribution of the magnitude of the electric field E and of the amplitude
of the vertical component of the magnetic field Bz normalized to their maximum,
respectively. The area shown is the same as Fig. 4.3A. The two pictures show a
different symmetry in the pattern of the field distributions.

moment p of the probe and the electric field. Therefore, the resonance shift
can be written as:

∆ωo

ωo
= −E∗o · p + B∗o ·m

2UE
, (4.1)

where ω0 is the resonant angular frequency of the system, 2UE is the to-
tal energy stored in the cavity (for a rigorous derivation of eq. 4.1 see
Appendix A). The dipole moments, in turn, are proportional to the unper-
turbed Eo and Bo and can be expressed as pi = αeeii Ei and mi = αmmii Bi,
where the label i indicates the spatial coordinates x, y and z. The pro-
portionality constants αeeii and αmmii are the electric and magnetic polariz-
abilities of the probe, respectively (see Section 2.1.2). From eq. 4.1 it is
clear that when the perturbative object only exhibits an electric response,
the transmittance variation were largest when the probe overlaps with the
amplitude maxima of the electric field [51, 109–112]. In order to calcu-
late the electric polarizabilities, we can approximate the ring as a metallic
oblate spheroid, following the methodology often employed in split-ring
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Figure 4.5:
A and B, Images of the measured and calculated shift of the resonance ∆λo/λo

at every probe position. Figure 4.5A shows an evident blue-shift of the resonance
when the probe is above maxima of the |Bz|. We find an excellent quantitative
agreement with the calculated resonance shift in Fig. 4.5B.

resonators [74]. The electric polarizabilities turn out to be positive (see
Section 2.1). The magnetic polarizability can be calculated by applying
Faraday’s law to a single metallic loop. This leads to a negative polar-
izability αmmzz = −A2/(L+ iR/ω), where L is the self-inductance of the
ring, R is the complex Ohmic resistance and r2 is the outer radius (see
Section 2.1). Besides exhibiting a positive electric polarizability, our near-
field probe also has a negative magnetic polarizability. Thus, the electric
coupling Eo · p > 0 induces a red-shift [51, 109–112], whereas the mag-
netic coupling Bo ·m < 0 leads to a blue-shift. Thus, when the magnetic
coupling dominates the resonance is primarily blue-shifted.

In order to compare the theoretical prediction of eq. 4.1 to our exper-
imental data, we extract the relative shift ∆λ/λo from our measurements.
For this purpose, we fit a transmission function based on coupled-mode the-
ory [23] to the normalized transmission (see sect. 1.2). Figure 4.3B shows
a typical fit as a red line. From the fit we obtained the relative resonance
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shift ∆λ/λo and the relative change in the quality factor ∆Q/Qo for all
probe positions. In Fig. 4.5A we show the measured ∆λ/λo as a function
of the probe position. By comparing with Fig. 4.3A, it is evident that
the largest relative blue-shifts, of the order of 10−4, occur for positions of
the probe where the amplitude of Bz is maximum. We calculate the res-
onance shift by using eq. 4.1 and the field distributions inside the cavity,
which were obtained by FDTD calculations. In order to take into account
the finite size of the probe, we use the average electric and magnetic fields
over the area of the ring by making a convolution of the probe apex shape
with the calculated field distributions. The theoretically obtained ∆λ/λo

is shown in Fig. 4.5B. We find an excellent qualitative agreement with the
experimental data (Fig. 4.5A).

4.3.2 Increasing the cavity photon lifetime

In addition to tuning the resonance frequency, we also control the life-
time of the photons in the cavity. In Fig. 4.6A, we show an image of the
retrieved ∆Q/Qo as a function of the probe position. Remarkably, the rel-
ative change in Q can, depending on the probe position, be both positive
and negative! The largest increase of Q of 50% occurs right above the am-
plitude maxima of Bz, co-located with the largest blue-shift. The magnetic
coupling between the probe and the cavity, thus, not only induces a novel
blue-shift of the resonance but also causes the photon lifetime in the cavity
to be increased.

Any 2D cavity is affected by losses due to intrinsic out-of-plane radi-
ation [14]. In a previous study, Robinson et al [116] reported an increase
of only 1% of Q of a nanocavity which resulted from the destructive in-
terference between the out-of-plane radiation and its back-reflection from
a metallic object much larger than the nanocavity itself. However, to sig-
nificantly improve the Q, one has to destructively interfere with a larger
amount of the out-of-plane radiation. We achieve 50% increase of the pho-
ton lifetime by exploiting the emission caused by the magnetic dipole mo-
ment of the probe. In fact, this induced dipole moment emits primarily
along the surface of the sample in counter phase with respect to the driving
field inside the cavity. On the other hand, as shown by Fourier analyses per-
formed on the cavity mode [14], the cavity also radiates along the surface.
We detected this radiation during a near-field measurement, as indicated
by the green arrows in Fig. 4.2A where. Therefore, the in-plane radiation
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Figure 4.6:
A, Image of the measured shift of the quality factor ∆Q/Qo at every probe position.
An increase and the decrease of the quality factor of the cavity is evident. B,
Representation of the proposed mechanism that causes the increase of the quality
factor. As the probe is above a maximum of the magnetic field, the induced current
generates radiation that destructively interferes with the radiative loss of the cavity,
yielding an increase of the photon lifetime.

of the cavity and the emission from the probe destructively interfere (the
process is schematically described in Fig. 4.6B). Moreover, analyses on
the in-plane decay rate (see Section 1.2) show that we increase the quality
of the cavity by also decreasing the coupling with the access waveguide.
Remarkably, we obtain a pronounced increase of Q by exploiting at the
nano-scale the scattered light from an object smaller than the nanocavity.
Furthermore, we achieve an increase of the lifetime by means of magnetic
coupling rather than electric.

4.4 Conclusion

Here, we have experimentally demonstrated that we can actively and re-
versibly control the trapping of light in a photonic crystal nanocavity by
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means of magnetic coupling with an actuated subwavelength object. The
presented method opens up a new way for light control, combining photonic
crystals and metamaterials concepts. Moreover, a new exciting applica-
tion for photonic crystal nanocavities arises. We anticipate the possibility
of measuring the magnetic dipole moment of magnetically resonant nano-
object, such as single split-ring resonator [117] or single twisted split-ring
resonator dimers [75], by actuating it above a maximum of the magnetic
field of the nanoresonator. Along these lines, we also envision the striking
possibility of using a state-of-the-art ultra-high-Q [22] nanocavity, charac-
terized by a sharp resonance, for measuring the minute magnetic suscepti-
bility of molecules, such as carbon nanotubes [118] or ring-shape (aromatic)
molecules [119].
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Local investigation of
nano-confinement of light in
space and time

Photonic crystal nanocavities have inspired great interest
not only for fundamental research but also for applications,
as they can be exploited for efficient light sources and de-
vices for telecommunication, quantum information and com-
puting. To enable further improvements, in situ information
on the optical properties of the light confined into the nano-
cavity is crucial. Although several nanoscale investigations
on the static behavior of a nanocavity have already been per-
formed, information on the local dynamic properties remains
hidden. Here, we obtain with phase-sensitive time-resolved
near-field microscopy a direct observation of light confine-
ment in a side-coupled photonic crystal nanocavity. As a
result, we unravel the coupling mechanism between the pho-
tonic eigenstates of the nanoresonator and of the waveguide.

5.1 Introduction

The fascinating idea of controlling the spontaneous emission [104,120] has
driven the research of many scientists in the photonic community. Cavities
with a high quality factor Q and small modal volume V [14] have been
envisioned and realized for different type of applications, as low-threshold
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micro-lasers [121], nonlinear optics [122], second and third harmonic gener-
ation [123], photonic devices for telecommunication [124,125], quantum in-
formation [126] and sensing [127]. 2D photonic crystal nanocavities, which
are characterized by a small mode volume (of the order of (λ/n)3) combined
with high-Q values (up to 2 million) [19, 22, 120], are particularly promis-
ing for quantum information. So far, the optical properties of nanocavities
have been studied in the time and frequency domain with far-field experi-
ments [20,120]. While this type of investigation provides valuable informa-
tion on key performance indicators, like resonant frequency and Q, it does
not give a direct insight on the governing principles of the nanoresonator. In
contrast, near-field microscopy provides the necessary subwavelength reso-
lution for investigating, both spectrally and spatially, light confinement in
a small modal volume cavity [111,128]. In this chapter, we present a phase-
sensitive time-resolved near-field investigation [83] of the dynamic behavior
of light confined in a photonic crystal nanocavity. The sample under inves-
tigation is a photonic crystal nanocavity side-coupled to a photonic crystal
waveguide (see Section 1.2.3). We provide a direct visualization of the light
as it couples to the cavity, gets stored into it and subsequently leaks away.
Also, detailed Fourier analysis of the sub-wavelength information lays bare
the coupling mechanism between the side-coupled nanocavity and the ad-
jacent waveguide.

5.2 Experimental results

The setup is schematically depicted in Fig. 5.1 and described in Section
2.2. The waveguide is formed by a single missing row of holes in a photonic
crystal (inset Fig. 5.1), whereas the cavity, with a resonant wavelength of
1534.6 nm, is formed by removing three holes. We perform time-resolved
measurements using a ps-pulse laser at a wavelength of 1534 nm with spec-
tral width equal to 2 nm. It is known that the near-field probe in the
proximity of the nanocavity induces a frequency shift of the cavity reso-
nance [51]. To infer the induced frequency shift, we analyze the transmis-
sion spectrum of the system (see Chapter 4) when the probe is above the
cavity [110]. We found a maximum relative shift of the resonance of the
order of ∼ 10−4, which is |∆λ| ≈ 0.3 nm. Because the spectral width of
the pulse is much broader than the resonance shift, both the unperturbed
and the probe-induced resonance can be excited.
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Figure 5.1:
Schematic representation of the setup. Linearly polarized light is coupled to the
sample. The evanescent field of the light in the sample is collected by the aperture
at the end of the near-field probe. Subsequently, the optical signal is interferometri-
cally mixed with a reference branch and detected with a heterodyne scheme. Simul-
taneously, the light transmitted by the structure is detected. The optical delay line
enables us to perform time-resolved measurements (see Section 2.2). right-side

inset, Scanning electron micrograph of the investigated sample. The photonic crys-
tal nanocavity, formed by removing three holes, is visible below the photonic crystal
waveguide. left-side inset, Scanning electron micrograph of the aluminum-coated
near-field probe with an aperture of 200 nm.

5.2.1 Real-space investigation

Figure 5.2A shows the amplitude detected in the near-field at t = 0 ps,
before the pulse enters the scanned area. As the delay time is increased
by increasing the length of the reference branch, the time evolution of the
light field is obtained [55]. In the consecutive measurements shown in Fig.
5.2 we observe that the pulse propagates through the access waveguide and
couples to the cavity (dashed box in Fig. 5.2F). Figure 5.2 shows in both
space and time the confinement of light in a photonic crystal nanocavity.

In order to quantify the photon lifetime inside the resonator, we analyze
the amplitude detected at positions 1 and 3 (indicated in Fig. 5.2A) as a
function of time delay. Figure 5.3 depicts the time-dependent amplitude
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Figure 5.2:
A - H, The normalized detected amplitude of the ps-pulse propagating through the
sample for different times. The time difference between consecutive images is 0.8
ps for a total time interval of 5.6 ps. The color scale varies from 0 to 0.6 times the
maximum detected amplitude, in order to enhance the visibility of the signal ob-
tained above the cavity. The consecutive images show an optical pulse entering the
access waveguide, loading the nanocavity and exiting from the waveguide. Position
1, 2 and 3 in Fig. 5.2A relate to the graphs in Fig. 5.3 and 5.5B. The dashed box
of Fig. 5.2F indicates the position of the nanocavity.

for both positions. The curve obtained in position 1 (blue dots) can be
described by a cross-correlation function of the pulses in the reference and
in the signal branch (see Section 2.2.1). The red line in Fig. 5.3 shows
the fit E1(t) to the data obtained by using the cross-correlation function
of two identical Gaussian functions. Here, we assume that the optical path
in the reference and signal branch is nearly equal and, thus, the dispersion
of the photonic crystal waveguide is negligible. This is a valid assumption
considering the small bandwidth of the pulse and the linear dispersion of
the photonic crystal waveguide at this wavelength. At position 3 the time
evolution of the light field is affected by the filling of the nanocavity from the
waveguide and the concomitant leakage back into the waveguide. Hence,
the time-dependent amplitude at position 3 is given by the experimentally
obtained envelope at position 1 convoluted with the response function of
the cavity ξ(t) = e

− t
τ0 , where τ0 is the photon lifetime of the cavity. We
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Figure 5.3:
The time-dependent amplitude detected above the waveguide: blue and black dots
relate with position 1 and 3, respectively. Red and green lines are the fit for position
1 and 3, respectively.

performed a fit to the data using the convolution E3(t) = E1(t)⊗ ξ(t). The
fit is shown as a green line in Fig. 5.3 and the retrieved photon lifetime
is τ0 = 1.3 ps. Because this technique is insensitive to the dispersion of
the waveguide, we are able to directly measure the pulse reshaping induced
by the cavity response without investigating reference structures and thus
obtain an absolute characterization of the investigated cavity.

5.2.2 Reciprocal-space investigation

Whereas the basic dynamics of the mode coupling between the waveguide
and the nanocavity is visible in Fig. 5.2, detailed information about the
mechanism of the coupling of the waveguide mode to the eigenstate of
the nanoresonator remains hidden. Exploiting the phase-sensitivity of our
measurements, we are able to unravel the mechanism of the mode coupling
between cavity and waveguide via Fourier analysis [13]. Figure 5.4A shows
the spatial frequencies of the optical field in Fig. 5.2C obtained by applying
a Fourier transform to the experimental data. With this procedure we
can observe and separate the Bloch harmonics (see Section 1.2.2 and [1])
that compose the pulse traveling in the photonic crystal structure [17].
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Figure 5.4:
A-C, Reciprocal-space images of Fig. 5.2C, D and E normalized to the maximum
of Fig. 5.4A. The spatial frequencies along ŷ and x̂ are normalized to 2π/a. The
bright features relate with the excited eigenstates of the investigated system: the
subsequent images show the time evolution of the eigenstates. The white arrows
of Fig. 5.4A indicate the fundamental (right arrow) and the -1 (left arrow) Bloch
harmonic of the access waveguide. The white arrows of Fig. 5.4C indicate the four
features which relate with the eigenstate of the cavity. The color scale is varying
from 0 to 0.15 in order to enhance the visibility of the eigenstate of the cavity.
D-F, Reciprocal-space images of the area indicated by the dashed box in 5.2F, for
the same time delay of Fig. 5.4A-C. The k-vectors along ŷ and x̂ are normalized
to 2π/a. The white arrows of Fig. 5.4D indicate the -1 Bloch harmonic of the
access waveguide that spatially overlaps the cavity. The white arrows of Fig. 5.4F
indicate the four features that relate with the eigenstate of the cavity. The color
scale is normalized to the maximum of Fig. 5.4F. The images show that the -1
Bloch harmonic is the promoter of the coupling between the modes in the waveguide
and in the cavity.
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The white arrows in Fig. 5.4A indicate the maxima that relate with the
fundamental Bloch harmonic (m = 0) and the -1 Bloch harmonic (m = −1)
of the excited photonic eigenstate in the waveguide (see Section 1.2). Fig.
5.4B and C show the time evolution of the excited eigenstates in the system
after 0.8 ps and 1.6 ps, respectively. In particular, in Fig. 5.4C four new
features, indicated by white arrows, arise. These four features correspond
to the eigenstate of the nanocavity.

We perform a Fourier analysis of the complex data detected directly
above the cavity (dashed box in Fig. 5.2F). Figures 5.4(D-F) show the am-
plitude Ak(t) of the Fourier transform for the same time delay of Fig. 5.4(A-
C). We find an excellent agreement between Fig. 5.4F and the correspond-
ing calculated spatial frequencies for a photonic crystal nanocavity [14].
The two brighter features in Fig. 5.4D (white arrows) represent the -1 Bloch
harmonic of the waveguide which is present in the scanned area above the
nanocavity, indicated by dashed box of Fig. 5.2F. As time progresses, the
-1 Bloch harmonic peaks disappear and the cavity eigenstate peaks increase
in magnitude (white arrows in Fig. 5.4F). Remarkably, these observations
show that the -1 Bloch harmonic with its negative k-vector (Fig. 5.4E) is re-
sponsible for the light coupling to the nanoresonator. On the one hand, the
-1 Bloch harmonic satisfies the k- or phase-matching condition necessary
to excite the cavity eigenstate (Fig. 5.4E). On the other hand, the spatial
distribution of the -1 Bloch harmonic overlaps with the spatial distribution
of the cavity mode, as indicated by the Fourier analysis shown in Fig. 5.4D.
In fact, as it has already been proven experimentally [129], the -1 Bloch
harmonic is primarily located on the sides of the waveguide, and therefore
in proximity of the cavity, whereas the fundamental Bloch harmonic is in
the center. Hence, we infer that the -1 Bloch harmonic, rather than the
fundamental Bloch harmonic, is the promoter of the coupling between the
nanocavity and the waveguide.

In order to directly investigate the extent to which the dynamics of the
system can be controlled through the probe-cavity coupling, we analyze
the time evolution of the amplitude Ak(t) of the cavity eigenstate. We
consider the time-dependent intensity Ik(t) = A2

k(t), shown in Fig. 5.5A,
as the time duration of Ik(t) directly relates to the photon lifetime of the
cavity. Initially the cavity is loaded by the pulse and the energy flow
from the waveguide to the cavity exceeds the reverse flow (left half of Fig.
5.5A). Thereafter, the predominant flow of energy is from the cavity to the
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Figure 5.5:
A, The blue dots relate with the time-dependent intensity (in logarithmic scale) of
the eigenstate of the cavity. The red line is the fit to the exponential decay. B,
time-dependent amplitude detected at position 2 above the waveguide (blue dots)
and of the eigenstate of the nanocavity (green dots): the colored lines are guide to
the eyes. The two maxima have a different position in time because the response
of the nanocavity is slower than the pulse duration.

waveguide and the signal exponentially decreases. Figure 5.5B compares
amplitude Ak(t) (green dots) with the amplitude detected at position 2.
The evident delay between the two envelopes is induced by the loading
time τi = 0.8 ps of the cavity, which works as an integrator. From the
exponential decay time of Ik(t) in Fig. 5.5A (red line) we obtain that the
photon lifetime in presence of the probe-cavity interaction τ1 = 1.26 ps.
When we compare this value with τ0, we find a relative change of the lifetime
∆τ1 = (τ1 − τ0)/τ0 ≈ −0.03 caused by the presence of the probe above the
nanocavity. Each point in Fig. 5.5A has been obtained scanning the probe
through several positions above the nanocavity. As shown in Chapter 4,
different position of the probe induces different photon lifetimes. Thus,
τ1 has been inferred averaging through all probe positions. Hence, ∆τ1
describes the position-averaged influence of the probe-cavity interaction on
the photon lifetime of the nanocavity. Consequently, the relative change of
lifetime ∆τ1 has to be compared with the relative change of Q obtained in
the investigation shown in Chapter 4. Averaging through all the positions
of Fig 4.6, we obtain 〈∆Q〉 ≈ −0.05, where 〈·〉 represent the spatial average,
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which is in good agreement with ∆τ1.

5.3 Conclusion

We showed the first phase-sensitive time-resolved near-field observation of
light confinement in a side-coupled photonic crystal nanocavity. The life-
time of the photons in the cavity was retrieved from the distortion of the
pulse in the waveguide as it passes the cavity (τ0 = 1.3 ps). By directly
measuring the decay of the cavity eigenstate, we obtained the influence of
the probe-cavity interaction on the photon lifetime, which is a reduction of
3% of the photon lifetime, in good agreement with the investigation shown
in Chapter 4. We also observed that the loading time of the cavity when
excited by a ps-pulse is τi = 0.8 ps. Exploiting the phase-sensitivity of
our measurements, we showed that the coupling between the eigenstate of
the waveguide and the eigenstate the nanoresonator is actually promoted
by the waveguide -1 Bloch harmonic, because it satisfies the coupling con-
ditions in both real- and reciprocal-space. These findings emphasize the
versatility of near-field microscopy, showing that it is possible to obtain a
full characterization of photonic nanostructures with a rather large variety
of solutions. In particular, we achieved a novel insight in the physics lying
behind the mode coupling between the access waveguide and the nanocavity
investigated.
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Detecting the magnetic field
of light

Light is an electromagnetic wave composed of oscillating
electric and magnetic fields, the one field never occurring
without the other. Nevertheless, in light-matter interaction
at optical frequencies the magnetic component of light gen-
erally plays only a negligible role. When we ”see” or detect
light, we only perceive its electric field; we are practically
blind to its magnetic component. Nowadays, a new class
of man-made metallic materials, the so-called metamateri-
als, exhibit exciting phenomena, as negative refraction and
optical cloaking, as a result of an effective magnetic cou-
pling. The increasing interest in metamaterials demands a
detection of the magnetic field at the nanoscale. In this
work, we detect the magnetic field of light by using a prop-
erly engineered near-field aperture probe. We visualize with
subwavelength resolution the magnetic and electric field dis-
tribution of propagating light.

6.1 Introduction

In nature, the force exerted by the electric field on charges is c/v larger
than the force applied by the magnetic field, where v is the velocity of
the charge and c the speed of light. As a result, the responsiveness of a
material to a magnetic field, the magnetic susceptibility, is a factor 10−4

smaller than the ease with which it is polarized, the dielectric suscepti-
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bility [5]. Only when the charges move extremely fast, as for instance in
relativistic plasmas [130, 131], can the magnetic and electric coupling be-
come comparable (see Section 1.1). In atomic systems, even though the
magnetic dipole coupling is extremely weak, it is very important for funda-
mental tests of the standard model [132]. However, magnetic light-matter
interaction has been accomplished using artificial ’magnetic’ atoms. By
tailoring the geometry of such subwavelength metallo-dielectric structures
effective magnetic coupling is achievable, which has been first shown in
the microwave regime [68, 133]. Only in recent years, photonic nanostruc-
tures that resonantly respond to the magnetic field at optical frequencies
have been fabricated [9, 73, 75, 82, 114]. This magnetic resonance can be
exploited to study novel fascinating phenomena, such as negative index of
refraction [9], super-focusing [10] and cloaking [11, 12]. Whereas many ad-
vances have been made in controlling the light-matter coupling by magnetic
means, the possibility of directly detecting the magnetic field at optical fre-
quencies has not yet been explored.

In this report, we experimentally prove that a near-field aperture probe,
designed following split-ring resonator concepts (see Section 2.1), can de-
tect the magnetic field at optical frequencies. We use such a probe to map
the amplitude and phase of the magnetic field of propagating light. Fur-
thermore, by simultaneously detecting the electric field, we reconstruct the
magnetic and electric distributions of light with subwavelength resolution.

6.2 Experimental results

In order to detect the magnetic field at optical frequencies we have fab-
ricated a nanostructured metallo-dielectric probe. To make this probe,
a subwavelength aperture has also been created at the end of a tapered
aluminum-coated single-mode fiber by focused ion beam milling [61]. Next,
an air-gap of 40 nm is opened by focused ion beam milling in the coating.
Such a split-probe is shown in the lower image of Fig. 6.1B. We compare the
optical properties of a split-probe with a standard, cylindrically symmetric,
coated probe (see upper image of Fig. 6.1B) that we successfully utilized
in the past [13, 56, 57]. In order to make sure that we detect the magnetic
field and not a complex combination of different components of the electric
field, we employ a well characterized single-mode Si3N4 ridge waveguide as
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Figure 6.1:
A, Schematic representation of the phase-sensitive near-field microscope. The
near-field probe, indicated by the dashed box, is scanned 20 nm above the sam-
ple and collects through the aperture the evanescent field of the propagating light.
Subsequently, the light is mixed with a reference branch of an interferometer. The
resulting light is split by a polarizing beamsplitter and the two orthogonal polarizing
components are detected with a heterodyne scheme. By suitably choosing the ori-
entation of the two λ/2 waveplates, we can relate the signal at the two detectors,
called Ch1 and Ch2, with the fields present in the sample. B, A scanning electron
micrograph of the two aluminum coated near-field probes utilized in this work. For
both probes the coating thickness is 150 nm and the aperture diameter is 200 to
230 nm. The upper image shows the highly cylindrical standard probe. The lower
image shows a split-probe where an air-gap in the coating (indicated by the arrow)
has been created.

a test structure1 (see Section 1.2). Linearly polarized light from a laser
diode tuned to a wavelength of 1550 nm is coupled to the TE-mode of
the waveguide. A homemade phase- and polarization-sensitive near-field

1Note that on one occasion patterns have been visualized in a relatively complex
nanostructure that resemble the calculated patterns of the magnitude squared of the
magnetic field. Devaux, E. et al. Phys. Rev. B 62, 10504 (2000).
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microscope is used for scanning and collecting the light [83], as shown in
the schematic representation of the setup of Fig. 6.1A. The aperture of
the probes couples the evanescent field of the light propagating through
the waveguide to the probe-fiber [3]. The transverse electric fields of the
collected light are mixed with the reference branch of a Mach-Zehnder in-
terferometer. Subsequently, the two orthogonal polarizations are separated
by a polarizing beamsplitter and simultaneously detected using a hetero-
dyne scheme (see Section 2.2). By raster scanning the probe 20 nm above
the sample, we obtain the amplitude and the phase distribution of the
probed fields. In a recent publication [57] (see also Chapter 3), we ex-
ploited the high symmetry of the standard probe to distinguish the two
in-plane components of the electric field of propagating light. As a result of
the symmetry of the aperture, the in-plane components of the field couple
to the orthogonal modes of the probe fiber and are detected in the two
separate channels of the microscope (Ch1 and Ch2).

6.2.1 Measuring with a standard probe

We first characterize the waveguide performing near-field measurements
with a standard probe. Figure 6.2A illustrates the geometry of the ex-
periment. The light propagates along x̂, the electric field is along ŷ, the
magnetic field is along ẑ. Because the waveguide contains only a weakly
guided TE-mode, the longitudinal component of the electric field is negligi-
ble (see Section 1.2) [15]. The probe can be considered as a subwavelength
metallic ring parallel to the sample surface, because of its cylindrical sym-
metry and the fact that the extension of the evanescent fields in air is only
' 100 nm [115]. The evanescent electric field component Ey induces a
dipolar charge distribution in the probe (see Section 2.1). This induced
oscillating dipole moment py couples to a propagating mode in the probe
fiber and can be detected at the other end of the fiber. The magnetic field
Bz, instead, generates a circular current in the ring, as described by Fara-
day’s law. As a result, the probe exhibits a magnetic dipole moment mz,
in analogy with the magnetic response of a metallic cylinder [68]. How-
ever, the radiation pattern of the magnetic dipole lies in the xy-plane and
the cylindrical symmetry of the system forbids coupling of this magnetic
dipole to the propagating modes in the probe fiber that propagate along
ẑ. Therefore, the fields detected with a standard probe are the in-plane
electric fields [57,72].
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Figure 6.2:
A, Schematic representation of the experiment performed with a standard probe,
which is depicted in gray as a metallic ring. In the upper part, a top view is shown.
The ’ridge’ has been colored differently for clarity. In the lower part, a cross-
section in the zy-plane is shown. The red and green axes correspond to Ch1 and
Ch2, respectively. B, Line-traces of the amplitude obtained scanning a standard
probe along the waveguide. The line traces are normalized to the maximum of Ch1.
Both signals show a standing wave component.

Figure 6.2B show the line-traces of the amplitude detected on Ch1 (red)
and Ch2 (green), obtained by scanning the probe along the center of the
waveguide. Because the only nonvanishing component of the electric field
is along ŷ, we can attribute that the signal detected by Ch1 to Ey and
the Ch2-signal thus corresponds to Ex (Fig. 6.2A). Because in the center
of the waveguide the longitudinal component (Ex), actually, vanishes [15],
Fig. 6.2B allows us to infer the experimental extinction ratio of the two
polarization channels. Since the ratio between the two amplitude signals
is ∼ 1/20 (in terms of intensity ∼ 1/400), we prove that we are able to
properly separate the two polarization states. Furthermore, an evident
oscillation is present in both channels. Because the spatial period (∼ 500
nm) is half a wavelength in the waveguide (see sect. 1.2), we attribute
this oscillation to a standing wave caused by the interference between the
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Figure 6.3:
A, Schematic representation of the experiment performed with a split-probe, which
is depicted in gray as a metallic split-ring. In the upper part, a top view is shown.
The ’ridge’ has been colored differently for clarity. In the lower part, a cross-
section in the zy-plane is shown. The red and green axes correspond to Ch1 and
Ch2, respectively. B, Line-traces of the amplitude obtained scanning a split-probe
along the waveguide. The line traces are normalized to the maximum of Ch2. The
Ch2-signal is comparable to Ch1 and the two standing wave patterns are spatially
shift by half a period. We associate the Ch2-signal with Bz.

forward propagating light and the small fraction of light that is reflected
by the end-facet of the waveguide.

6.2.2 Measuring with a split-probe

The sensitivity of the probe to the various field components of light changes
drastically when the new split-probe is employed. The air-gap is oriented
along ŷ, as shown in Fig. 6.3A. In analogy to the standard probe, Ey and
Bz will induce in the split-probe an electric and magnetic dipole moment
py and mz, respectively. Like for the cylindrical probe, the dipole moment
py will generate an optical signal in Ch1. However, due to the air-gap,
the magnetically induced current cannot flow completely around the ring
and will produce a time-varying dipolar charge distribution across the gap.
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The resulting electric dipole moment along x̂ will oscillate in phase with
the current and, thus, 90 degrees out of phase (in quadrature) with the
driving magnetic field (see Section 2.1). In short, the probe will respond
to Bz with an electric dipole moment px ∝ iBz, analogous to the magnetic
response of split-ring resonators [74,75]. This in-plane magnetically induced
electric dipole moment can now couple to the fiber of the probe. Because
the polarization of this radiation is along x̂, the signal corresponding to Bz
will be detected by Ch2. Hence, the optical signals with an electric and
magnetic origin are detected in Ch1 and Ch2, respectively.

Figure 6.3B shows the measured amplitude of the Ch1- and Ch2-signal
obtained with a split-probe. In contrast to Fig. 6.2B, the signals in the
two channels have now comparable magnitude. The standing wave induced
amplitude modulation of components of the two signals is roughly equal.
However, the most important difference between Fig. 6.2B and 2D is that
the maxima of the two standing waves are shifted in space by half a period.
It is well known that in a standing light wave the amplitude of the magnetic
field is shifted in space by half a period with respect to the amplitude
of the electric field [2]. The spatial shift of the local maxima that we
observe in Fig. 6.3B is therefore a clear signature that Ch2 detects the
light generated by the coupling with Bz. Thus, we have detected the out-
of-plane component of the magnetic field.

6.2.3 Additional experimental tests

To verify our claim of magnetic sensitivity of the probe, we perform two
additional checks. First, we use the same split-probe to measure on a
waveguide oriented along ŷ, while keeping the air-gap oriented along ŷ
(Fig. 6.4A). In order to measure with a rotated probe-ridge orientation,
we use another waveguide with two straight sections connected by a 90
degrees bend. To guide the light across the bend a stronger effective re-
fractive index contrast is required. This is achieved using a 300 nm thick
Si3N4 substrate. This waveguide turns out to be single-mode for TE and
TM. In this configuration the electric field is along x̂, rather than ŷ, and,
thus, it should be detected by Ch2. However, Bz should also be detected by
Ch2, because the orientation of the probe and, consequently, of the mag-
netically induced electric dipole moment has not changed. This means that
the channel with higher signal should now be Ch2. This is indeed experi-
mentally observed, as shown in Fig. 6.4B. Although the ratio between the
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Figure 6.4:
A, Schematic representation of the experiment performed with a split-probe, which
is depicted in gray as a metallic split-ring. Same configuration than Fig. 6.3A but
the waveguide is rotated by 90 degrees. In the upper part, a top view is shown. The
’ridge’ has been colored differently for clarity. In the lower part, a cross-section
in the zy-plane is shown. The red and green axes correspond to Ch1 and Ch2,
respectively. B, Line-traces of the amplitude obtained scanning a split-probe along
the waveguide. The line traces are normalized to the maximum of Ch2. Both Ex

and Bz are projected along x̂ and, thus, detected by Ch2. Consequently, the spatial
shift of the standing wave patterns does not occur anymore.

Ch1- and Ch2-signal is only ' 0.27 (in terms of intensity is ' 0.07), the
ratio is higher than expected (see Fig. 6.2B). We attribute this to a minute
in-plane rotation of the air-gap with respect to ŷ. When the air-gap is not
perfectly aligned with ŷ, the probe projects a fraction of Bz on Ch1. More
importantly, because in this configuration the split-probe does not separate
Ex and Bz, the amplitude maxima of the two channels are no longer shifted
in space with respect to each other, as indicated by the dashed lines in Fig.
6.4B.

As a second test, we analyze the phase difference ∆φ between the com-
plex signals in Ch1 and Ch2 when the conditions of the setup, such as
the strain on the fibers, different probes and the orientation of the con-
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Figure 6.5:
A, Phase difference ∆φ between the complex signals of Ch1 and Ch2 for the mea-
surement of Fig. 6.5B for different experimental conditions. B and C, Normalized
Distributions of Re(Ey) and Re(Bz), respectively. The images have been obtained
by raster scanning the split-probe in the configuration shown in Fig. 6.5B over an
area 2.2×3.4 µm2. The white dashed lines represent the position of the waveguide.
The green dashed line is a guide to the eye that indicates the π/2 phase shift of
the two wave fronts.

nectors, are changed. We use the experimental configuration shown in Fig.
6.3A. The magnetically induced electric dipole moment should be px ∝ iBz.
Hence, considering that we are far below the resonance wavelength of the
split-probe (we estimate a resonant wavelength of λo = 1300 nm and a
width ∆λo = 50 nm for the resonance based on methods for split-ring
resonators (see Section 2.1) [68]), the Ch2-signal should be in quadrature
with the driving magnetic field. Because Bz and Ey are in phase and Ch1
follows Ey, the Ch1-signal should therefore be in quadrature with the Ch2-
signal. Figure 6.5A shows for different probe and setup conditions that we
indeed consistently measure a constant phase difference ∆φ = −π/2 (with
a spread of 10%).
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6.3 Conclusion

We conclude by showing in Fig. 6.5B and C the distributions of the signals
of Ch1 and Ch2 corresponding to real part of Ey and iBz, respectively,
detected by raster scanning the split-probe in the experimental configu-
ration of Fig. 6.3A. The white dashed lines represent the position of the
waveguide. A closer look at the wave fronts in Fig. 6.5B and C shows that
the two waves are shifted by π/2, where the green dashed lines can be used
as guide to the eye. In this waveguide the longitudinal component Ex of the
electric field is maximally 10% the transverse component Ey (see Section
1.2). Ex has an antisymmetric distribution with respect to the waveguide
and its maximum amplitude is located close to the edge of the ridge. We
attribute the slight asymmetry of Fig. 6.5C to the antisymmetric contri-
bution of Ey to the Bz-signal detected on Ch2. These images demonstrate
that we simultaneously visualize with phase-sensitivity and subwavelength
resolution the magnetic and electric field distribution of light propagating
through a ridge waveguide. We anticipate that the simultaneous spatially
resolved detection of both magnetic and electric field will open up new fas-
cinating research directions. By redesigning the geometry of the probe, it
should be possible to detect other components of the light field, besides the
three shown in this work. Furthermore, the split-probe can be used as a
movable split-ring resonator and, thus, we can explore the local coupling
between nano-objects that resonantly respond to the magnetic field at opti-
cal frequencies, such as split-ring resonators, double fishnet structures and
stereometamaterials.
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In this work we presented a nanoscale experimental investigation of both
magnetically and electrically induced light-matter interactions. Novel phys-
ical phenomena have been explored that we expect to contribute to the de-
velopment of nano-optics. Here, we will briefly highlight future directions
which directly stem from this work. Our intention is to give a glimpse
of possible new research perspective and stimulate scientific discussions,
rather than present detailed proposals for forthcoming investigations.

The results presented in Chapter 3 and in [29] open the way up for
studies of near-field singular optics. As mentioned in Section 1.3.3, light
singularities are associated with spin angular momentum and orbital an-
gular momentum. Photonic structures with tailored field patterns where
optical vortices and area of circular polarization are present at the nanoscale
can be of interest for microfluidity. Micro- or nano-rods could be optically
trapped in the near field of photonic structures, like a photonic crystal
waveguide, immersed in a liquid. Light in the waveguide would transfer
angular momentum to these rods, which would have a spin and/or an an-
gular rotation. We can envision arrays of these rotating nanorods, each of
them with different angular momenta, which can be used for mixing fluids
at the nanoscale.

Control of the spin state of quantum emitters, such as quantum dots
or molecules, can be achieved with photonic nanostructures. As shown
in Chapter 3, a photonic crystal waveguide has a polarization distribution
that changes handedness in few hundreds of nanometers. Placing molecules
or quantum dots in these areas would provide an unprecedented control on
the spin state at the nanoscale, which is important for future quantum
applications.

In Chapter 4 we showed that we controlled the optical properties of a
photonic crystal nanocavity by magnetic coupling between the near-field
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probe and the resonator. In particular, we decrease the loss of the cavity
exploiting the destructive interference between the magnetically induced
emission of the probe and the out-of-plane radiation of the cavity. This ex-
periment suggests that we can combine photonic crystal and metamaterials
concepts in order to increase the Q of the nanocavity. Metallic nanorings
grown where the magnetic field of an ultra-high-Q [22] nanocavity is max-
imum would act as a ’magnetic mirror’ which reflects back into the cavity
the ’lost’ radiation. Despite the ohmic losses introduced by the metal, the
overall quality of these state-of-the-art nanocavities will increase and the
mode volume will decrease, as shown in Chapter 4, leading to an higher
Q/V .

The fact that a coated probe exhibits a magnetic response suggests that
we can measure the magnetic field performing scattering-Scanning Near-
Field Microscopy (sSNOM). Instead of the standard AFM-probe employed
in sSNOM, we can use a coated probe which scatters the vertical component
of the magnetic field of light. The light generated by this scattering event
would skim along the surface of the sample and can be detected, in analogy
with sSNOM methodologies.

In Chapter 6 we showed that a properly functionalized coated probe can
couple the magnetic field of light to propagating mode in the probe-fiber.
Consequently, we detected the magnetic field at optical frequencies. This
experiment suggests that we can measure also all the other field compo-
nents at optical frequencies, obtaining the full characterizations of propa-
gating light. With modern fabrication technologies, for example focused
ion beam milling, we can engineer the apex of a coated probe such that it
could be more sensitive to some fields and less to others. The only funda-
mental restriction is given by the nature of the modes in the fiber-probe.
Because there are only two orthogonal modes in a single-mode fiber, only
two fields per fiber can be independently detected. Alternatively, we can
envision to use a multimode fiber and create a probe apex that couples
each field to a different mode of the fiber. Although in principle possi-
ble, this option does not seem to be realistic. However, the simultaneous
measurements of orthogonal electric and magnetic field already offers new
fascinating challenges. In fact, it has been suggested that a Heisenberg’s
uncertainty principle might hold for electric and magnetic field [134]. By
performing near-field measurements with a split-probe at the single-photon
level, it would be possible to explore the validity of such inequality.
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Shifting of the resonance
frequency

In chapter 4 we calculated the shift of the resonance of a photonic crystal
nanocavity induced by coated probe exploiting eq. 4.1. In this appendix we
will first derive the relative frequency shift of a photonic crystal eigenmode
induced by a subwavelength object placed in close proximity. Secondly,
we will calculate the resonance shift for the experimental configuration
described in chapter 4 and we will derive eq. 4.1.

A.1 Frequency shift induced by a subwavelength
object

Let us consider a photonic crystal with dielectric constant εpc(r) and that
the magnetic field Ho is an eigenmode of an unperturbed system with
eigenvalue ωo. Thus, the so-called master equation for photonic crystals
must be fulfilled [17]

M̂oHo =
ωo

c

2
Ho, (A.1)

where M̂o = ∇ × (ε−1
pc (r)∇×) and c is the speed of light in vacuum. Let

us now assume that a nano-object with dielectric constant εp is placed at
position ro in close proximity to the photonic crystal. We also can write
a master equation for the object-photonic crystal system at position ro,
eigenmode H and eigenvalue ω = ωo + ∆ω. As the electric susceptibilities
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of the photonic crystal and of the probe sum up, the dielectric function at
position ro becomes ε = εpc(ro) + εp − 1 and thus

M̂H =
ωo

c

2
H, (A.2)

where M̂ = ∇× (ε−1(r)∇×). Hence, from the difference between e.q A.1
and A.2 we obtain

〈Ho, (M̂ − M̂o)H〉 =
(ω2 − ω2

o)
c2

〈Ho,H〉, (A.3)

where 〈f , g〉 =
∫

f∗gd3x is the scalar product of two complex fields f and
g. In order to express eq. A.3 in terms of electric fields, we make use of
the relation 〈f ,∇ × g〉 = 〈∇ × f , g〉. The left side of the eq. A.3 can be
written as

〈Ho, (M̂ − M̂o)H〉 =
1
c2
〈−iωoεpcεoEo,−(

1
ε
− 1
εpc

)iωεεoE〉 =

= − 1
c2
ωωoε

2
o〈Eo, (ε− εpc)E〉, (A.4)

where εo is the electric permittivity of vacuum and we made use of the
Maxwell equation ∇×H = −iωεεoE.

The right side of eq. A.3 can be written as

(ω2 − ω2
o)

c2
〈Ho,H〉 =

(ω2 − ω2
o)

c2
〈 1
iωoµo

∇×Eo,
1

iωµo
∇×E〉 =

=
ω2 − ω2

o

ωωoµ2
oc

2
〈∇×∇×Eo,E〉 =

(ω2 − ω2
o)ω2

o

ωωoµ2
oc

4
〈εpcEo,E〉 =

=
(ω2 − ω2

o)ωo

ωµ2
oc

4
〈εpcEo,E〉, (A.5)

where µo is the magnetic permeability of vacuum and we made use of the
Maxwell equation ∇ × E = iωµoH and of the master equation for the
electric field c2ε−1

pc (r)(∇ ×∇ ×E) = ω2E. Putting eq. (A.3), (A.4), and
(A.5) together yields the relation

ω2 − ω2
o

ω2
=

2ωo∆ω + (∆ω)2

ω2
o + 2ωo∆ω + (∆ω)2

= −〈Eo, (ε− εpc)E〉
〈Eo, εpcE〉

. (A.6)
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A.2 Derivation of equation 4.1

As we experimentally verified in Chapter 4, our coated probe induces only
a minute (∼ 10−4) relative frequency shift of the resonance of the cavity.
As a consequence we can consider ωo � ∆ω and thus [135]

2∆ω
ωo
≈ −〈Eo, (ε− εpc)E〉

〈Eo, εpcE〉
. (A.7)

The current density induced by an electric field in the coated probe is
Jp = (1− εp)iωoεoE and ε− εpc = εp − 1. Thus, we can write that

(ε− εpc)E =
i

ωoεo
Jp. (A.8)

Combining eq. (A.7) and (A.8) we obtain

∆ω ≈ − i
2εo

〈Eo,Jp〉
〈Eo, εpcE〉

= − i
2εo

∫
E∗o · Jpd3x∫
εpcE

∗
o ·Ed3x

= −
i
∫

E∗o · Jpd3x
2UE

.

(A.9)

Because the diameter of the probe is smaller than the wavelength, we
restrict ourselves to the lowest multipole moments of Jp, which are the
probe’s electric and magnetic dipole moments p and m, respectively (see
Section 2.1). We obtain [2]∫

E∗o · Jpd3x = −iωoE
∗
o · p− iωoB

∗
o ·m. (A.10)

Insertion of A.10 into A.9 then yields the desired result

∆ω ≈ −ωoE
∗
o · p + ωoB

∗
o ·m

2UE
, (A.11)

which is equal to eq. 4.1.
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Choosing the unit system

B.1 Introduction

The choice of the ’right’ unit system to use in optics was under debate dur-
ing most part of the last century. Among the others, the Gaussian (CGS)
system and the International System (SI) were the most common. The
initially employed unit system was the CGS system and the introduction
of the SI system was not unanimously accepted. J. A. Stratton wrote in
the 1941 that ”... There is still the felling among many physicists that this
system [the SI system] is being forced upon them by a subversive group
of engineers.” [136]. J. D. Jackson published the first two editions of his
Classical Electrodynamics, one of the most celebrated textbook of electro-
magnetism, in Gaussian units. Only after 36 years, in the third edition, he
employed the SI system but only for part of the book. One of the reason
for such a late adoption can be said with Jackson’s words: ”...Ed Purcell
and I [Jackson] had a pact to support each other in the use of Gaussian
units...” [2]. Analogously, L. D. Landau and E. M. Lifshitz’ Electrodynam-
ics of continuous media and M. Born and E. Wolf’s Principle of optics are
still published in CGS units. However, these are the last ’tories’ who try
to support the use of CGS in textbooks. Nowadays, the SI system appar-
ently won the controversy. In fact, besides few exceptions, the SI system is
employed in all textbooks for physicists and engineers.

Both CGS and SI are ’absolute’ unit system, which means that every
quantity can be expressed in terms of mass (M), length (L) and time (T ).
To achieve an absolute unit system in electromagnetism three proportion-
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ality constants must be introduced. It can be shown that the unit of a
charge q and of a magnetic dipole moment m are

[q] = ε1/2o M1/2L3/2T−1, (B.1)

[m] = µ−1/2
o M1/2L5/2T−1, (B.2)

where εo and µo are the electric permittivity and magnetic permeability
of vacuum, respectively. Moreover, from the fact that the magnetic dipole
moment of a metallic coil is proportional to the current I flowing through
it, we obtain

[m] = γ−1[I]L2 = γ−1ε1/2o M1/2L7/2T−2. (B.3)

where γ−1 is the proportionality constant. For a more detailed discussion
see [136]. By combining eq. B.2 and B.3 we obtain

γ
√
εoµo

=
L

T
= c, (B.4)

where c is the speed of light in vacuum (299,792,458 meters per second).
Nowadays, c is a quantity defined rather than measured and used as basis
for the unit of length1. The choice of the parameters γ, εo and µo sets the
employed unit system and must be such that eq. B.4 is always fulfilled. In
SI units γ = 1, εo = 8.854 ·10−12 F/m and µo = 4π ·10−7 H/m. In contrast,
in CGS system γ = c, εo = 1 and µo = 1, such that εo and µo are dropped
out of the Maxwell equations and c is introduced.

As a result, the SI system is more ’practical’ for measurements. In
fact, the CGS system provides far too small units for typical quantities in
electronics, such as resistance. Also, the CGS units are less intuitive. In
the Gaussian system the capacitance is expressed in cm, the resistance in
s·cm−1 and the inductance in cm−1·s−2, which do not seem to provide an
intuitive description of these quantities. As yet the CGS units have been
supplanted by the SI system, primarily because of practical reasons.

However, the Gaussian system has an interesting and useful property.
As a result of the normalization of µo and εo, the magnetic and electric
quantities have the same unit, emphasizing that they are two faces of the

1”The metre is the length of the path traveled by light in vacuum during a time
interval of 1/299, 792, 458 of a second”, quoted from The International System of Units
(SI), International Bureau of Weights and Measures (2006).
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same coin: light. For example, both electric ad magnetic field are expressed
in g1/2cm−1/2s−1 and both electric and magnetic polarizability are volumes
(cm3). Because in light-matter interaction the magnetic coupling generally
plays a negligible role (see chapter 1), this aspect of the CGS system is
often considered not relevant. With advent of metamaterials, however,
the Gaussian system could come into favor again. These materials exhibit
a magnetic response at optical frequencies comparable with the electric
response and a direct comparison of the magnetic and electric quantities is
often useful.

B.2 Conversion formulas from CGS to SI units

Here, we show the Maxwell equations in CGS and SI units and some conver-
sion formulas from one system to the other. In the following, plain symbols
a denote CGS quantities, overlined symbols a indicate SI quantities. The
Maxwell equations are

∇ ·B = 0, ∇ · B̄ = 0
∇ ·E = 4πρ, ∇ · Ē = ε−1

o ρ̄
∇×B = 4πc−1J + c−1∂tE, ∇× B̄ = µoJ̄ + c−2∂tĒ
∇×E = −c−1∂tB, ∇× Ē = −∂tB̄

(B.5)

where E is the electric field, B is the magnetic field, ρ is the charge density
and J is the current density.

By defining κ = (4πεo)1/2 and considering that c = (εoµo)−1/2 (SI
system), we obtain the following conversion formulas

ρ̄ = κρ, J̄ = κJ
Ē = κ−1E, B̄ = (cκ)−1B,
P̄ = κP , M̄ = cκM ,

(B.6)

where the last two equations also hold for electric and magnetic dipole
moments, respectively.

The parameters which describe the linear response of matter can be
converted using

χ̄e = 4πχe, χ̄m = 4πχm,
ᾱee = κ2αee, ᾱmm = (cκ)2αmm,
σ̄ = κ2σ,

(B.7)
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where χe and χm are the electric and magnetic susceptibility, respectively,
αee and αmm the electric and magnetic polarizability, respectively, and σ is
the conductivity of a metal.

To conclude, we obtain for the nonlinear response of matter

χ̄
(l)
e = 4πκl−1χ

(l)
e , χ̄

(l)
e = 4πκl−1χ

(l)
e (B.8)

where the label l indicate the nonlinear order of the susceptibility.
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Samenvatting

De mensheid is er in geslaagd de interactie tussen licht en materie te be-
heersen om haar kwaliteit van leven te verbeteren. Wij vinden allerdaagse
handelingen, zoals het aanzetten van het licht in een donkere kamer om
onze omgeving te kunnen zien, vanzelfsprekend. Meestal zijn we ons hele-
maal niet bewust van alle lichtmaterie interacties. Als je het lichtknopje
omschakelt beweegt het licht zich door de lucht voort, wordt verstrooid
door de voorwerpen in de kamer, beweegt nogmaals door de lucht en heeft
- uiteindelijk interactie heeft met onze ogen. Pas op dat moment zien we
de kamer.

Tegenwoordig worden verfijnde technieken om de licht-materie inter-
actie te controleren vereist. Snellere overdracht en berekening van infor-
matie kan worden bereikt door optica te gebruiken. Efficiëntere duurzame
energie productie kan worden verkregen met foto-voltäısche systemen en
lasers kunnen worden gebruikt voor zeer nauwkeurige medische methoden.
Nano-optica is een van de moderne antwoorden op deze behoeften. Nano-
optica is sterk toepassingsgericht, niet alleen fundamentele kennis wordt
nagestreefd maar ook een bijdrage aan de maatschappij. Onderzoek naar de
kwantum en klassieke eigenschappen van licht in interactie met geordende,
ongeordende en quasi geordende diëlektrische structuren of metallische en
metaal-diëlektrische materialen die op de nanoschaal op maat gemaakt zijn,
stimuleert de interesse van de wetenschappelijke gemeenschappen van alle
gëındustrialiseerde samenlevingen.

Dit proefschrift overspant drie belangrijke velden binnen de nano-optica:
fotonische kristallen, metamaterialen en nabije-veld microscopie. Door met
een unieke experimentele opstelling het nabije-veld te meten konden we niet
alleen de elektrische maar ook de magnetische eigenschappen van fotonische
nanostructuren bij optische frequenties onderzoeken.

Hoofdstuk 1 bevat een korte samenvatting van de onderwerpen die
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gerelateerd zijn met dit proefschrift. Na een korte introductie over licht-
materie koppeling, beschrijven we enkele van de moderne strategieën die
gebruikt worden om de stroming van licht te controleren zoals fotonisch
kristal golfgeleiders en fotonisch kristal trilholtes. Deze fotonische nanos-
tructuren worden gekarakteriseerd door gecompliceerde interferentie patro-
nen die ontstaan door de meervoudige reflecties die het licht ondergaat.
Omdat in licht velden die uit verschillende golven zijn opgebouwd singu-
lariteiten kunnen voorkomen, zoals we in Hoofdstuk 3 zullen zien, worden
in dit hoofdstuk enkele van de basale concepten van de singuliere optica
beschreven. Om de veld verdeling van licht in fotonische nanostructuren te
visualiseren is een zeer hoge resolutie nodig die standaard microscopie ons
niet kan bieden. Nabije-veld microscopie werd dan gëıntroduceerd als een
krachtig instrument dat ons de benodigde subgolflengte resolutie verschaft.

In Hoofdstuk 2 is de elektromagnetische respons van drie verschillende
nabije-veld sondes besproken. Na overwegingen gebaseerd op de concepten
van metamaterialen, hebben we laten zien dat de koppeling tussen licht
en een gecoate sonde beschreven kan worden door een elektrische en mag-
netische polariseerbaarheids matrix. We hebben ook laten zien dat als we
een lucht gat maken in de aluminium coating, de polariseerbaarheidsmatrix
van de sonde op zon manier verandert dat de detectie van het magnetische
veld mogelijk is. Vervolgens introduceerden we de fase-gevoelige, tijds-
opgeloste nabije-veld microscoop die in alle metingen in dit proefschrift
gebruikt wordt.

In het volgende deel van het proefschrift hebben we enkele van de op-
tische eigenschappen die bediscussieerd zijn in Hoofdstuk 2 experimenteel
bewezen en gebruikt om een nieuw type onderzoek uit te voeren. In Hoofd-
stuk 3 toonden we aan dat een gecoate sonde gecombineerd met een polar-
isatie gevoelige nabije-veld microscoop ons in staat stelt onafhankelijk de
componenten van het elektrische veld van licht dat in het vlak in een 2D fo-
tonisch kristal golfgeleider voort beweegt te meten. Vervolgens vonden we
twee circulair gepolariseerde singulariteiten in het centrum van de golfgelei-
der. We vonden twee ster-C punten met tegengestelde draairichting op een
afstand van slechts 200 nm van elkaar. Ook is de zeer gestructureerde po-
larisatie verdeling van licht dat door de golfgeleider beweegt gedetecteerd.
We vonden de kennis van de polarisatie toestand op de nanoschaal waarde-
volle informatie, voor toekomstige toepassingen gebaseerd op de controle
van de spin toestanden van emitters.

120



Samenvatting

In Hoofdstuk 4 demonstreerden we de koppeling tussen een gecoate
sonde en een fotonische kristal holte door de magnetische component van
het opgesloten licht. We bereikten een niet eerder waargenomen blauw
verschuiving van de holte resonantie en een onverwachte vergroting van de
foton-levensduur in de holte. Deze ontdekkingen zullen onderzoek stim-
uleren dat het gat tussen fotonische kristallen en metamaterialen overbrugt
en de weg openen voor nieuwe strategieën om licht te controleren.

In Hoofdstuk 5 was het koppelingsmechanisme tussen een L3-zijwaarts
gekoppelde nano-holte en de mode van een toegangsgolfgeleider uitgezocht.
Door fase-gevoelige tijdsopgeloste nabije-veld microscopie en daaropvol-
gende Fourier analyse toonden we aan dat de -1 Bloch harmonische van
licht dat in de fotonisch kristal golfgeleider voort beweegt verantwoordelijk
is voor de koppeling tussen golfgeleider en nanoholte. Bovendien bepaalden
we direct de foton levensduur van het opgesloten licht in de holte zonder
enige referentie meting.

In Hoofdstuk 6 toonden we aan dat een gefunctionaliseerde gecoate
sonde een magnetische respons vertoont. We gebruikten deze respons om
direct het magnetische veld bij optische frequenties te bepalen. Door en
nabije-veld experiment uit te voeren op een richel golfgeleider, detecteerden
we de magnetische component van het propagerende licht. Wij geloven dat
deze ontdekkingen een impuls zullen geven aan nabije-veld onderzoek op
een nieuw nauwkeurigheidsniveau waarin ook het magnetische veld van het
licht gedetecteerd wordt door een nabije-veld sonde.

-Translated by Jord C. Prangsma-
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La luce viene utilizzata dagli essere vivente per il loro sostentamento sia in
modi diretti (ad esempio, la fotosintesi clorofilliana delle piante) che indi-
retti (ad esempio, la vista negli animali). Il genere umano, in particolare,
è riuscito a padroneggiare l’interazione tra luce e materia per migliorare la
qualità della propria vita. Diamo per scontato azioni quotidiane, come ac-
cendere la luce in una stanza buia per vedere l’ambiente circostante, senza
apprezzare appieno tutte le interazioni luce-materia che si verificano. In
effetti, la luce propagando attraverso l’aria interagisce con essa, dopodiché
viene riflessa dagli oggetti presenti nella stanza per poi nuovamente propa-
gare attraverso l’aria ed infine viene percepita dai nostri occhi. Solo a quel
punto noi riusciamo a vedere la stanza.

Al giorno d’oggi sono richieste raffinate tecniche per controllare l’intera-
zione luce-materia. Il trasferimento e l’elaborazione delle informazioni in
futuro saranno realizzati più velocemente utilizzando l’ottica; con il sis-
tema fotovoltaico si può ottenere una efficiente produzione di energia a
bassa emissione di carbonio; dispositivi laser possono essere utilizzati per
le più accurate procedure mediche. La nano-ottica è una delle risposte
a queste moderne esigenze. Infatti, la nano-ottica è fortemente orientata
verso future applicazioni, cercando non solo di acquisire nuove conoscenze
di fisica fondamentale, ma anche di creare un beneficio per la società che
sostiene la ricerca stessa. Le indagini sperimentali sull’interazione delle
proprietà quantistiche e classiche della luce con strutture dielettriche disor-
dinate, ordinate e quasi-ordinate, o materiali metallici e metallo-dielettrici
strutturate su scale nanometriche, stimolano l’interesse delle comunità sci-
entifiche di tutte le società industrializzate.

Questa tesi si estende su tre campi centrali della nano-ottica quali
cristalli fotonici, metamateriali e microscopia a campo vicino. Attraverso
esperimenti orientati ad una migliore comprensione di questo moderno tipo
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di microscopia, abbiamo scoperto che è possibile studiare non solo le pro-
prietà elettriche, ma anche le proprietà magnetiche di nanostrutture fo-
toniche a frequenze ottiche.

Nel Capitolo 1 abbiamo fornito una breve sintesi degli argomenti cor-
relati a questa tesi. Dopo una breve introduzione sull’interazione luce-
materia, abbiamo discusso di alcune delle principali odierne strategie im-
piegate per controllare la propagazione della luce, focalizzando la nostra
attenzione sui cristalli fotonici. Questi particolari materiali in futuro po-
tranno essere utilizzati per creare chip miniaturizzati dove lo luce possa
scorrere e le informazioni da essa portate elaborate. Questa futurista tec-
nologia sarà, poiché la luce può trasportare le informazioni molto più ve-
locemene e con una maggiore qualità sulla lunga distanza. Una delle pro-
prietà più significative dei cristalli fotonici è la possibilità di intrappolare
la luce per lunghi periodi di tempo in volumi piccolissimi (nanocavità):
10−19 m3, cioè un milionesimo, di un miliardesimo di una tazzina da caffè.
All’interno dei cristalli fotonici la luce interagisce fortemente con il mate-
riale. A causa di queste interazioni, alcune delle proprietà della luce non
sono più definite in maniera appropriata in specifici punti, detti punti sin-
golari, e la luce stessa non ’sa’ come comportarsi. Questi fenomeni ottici
sono investigati dall’ottica singolare, che viene introdotta in questo capi-
tolo della tesi. Poiché queste singolarità possono apparire in ogni tipo di
onda, l’ottica singolare risulta essere molto importante. Infatti, le scoperte
fatte in questo campo possono essere utilizzate in campi di ricerca com-
pletamente differenti, come la geologia, l’oceanografia, la chimica, la fisica
delle alte energie, la medicina, etc. Per poter osservare queste ed altre
proprietà ottiche dei cristalli fotonici, la comune microscopia non è suffi-
ciente, perchè la massima risoluzione da essa ottenibile è comparabile con
la lunghezza d’onda della luce. Per questo alla fine del Capitolo 1 e nel
Capitolo 2 vengono introdotti sia la microscopia a campo vicino in gene-
rale che il microscopio utilizzato in questo lavoro di tesi. La microscopia
a campo vicino fornisce una risoluzione molto minure della lunghezza della
luce utilizzando una piccolissima sonda che raccoglie una piccola quantita
della luce presente nel campione investigato. In questa tesi viene data un
particolare attenzione alla componente più importante del microscopio: la
sonda (o punta) metallizzata. Il principale risultato di questo lavoro di
tesi è dato dall’interpretazione sulle proprietà ottiche di questa particolare
sonda, proprietà che sono il soggetto di venti anni di dibattito scientifico.
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Abbiamo scoperto che la sonda non è sensibile solamente al campo elettrico
della luce ma anche a quello magnetico. Questa è una sorprendente pro-
prietà, considerando che in natura la luce interagisce con la materia solo
attraverso il campo elettrico. Esempi di tale interazione nella vita di tutti
i giorn sono innumerevoli, fra gli altri le lenti degli occhiali, gli specchi, la
luce diffusa da un banco di nebbia, la distorsione delle immagini data dalla
superficie dell’acqua, etc.. tutte queste interazion avvengono attraverso la
componente elettrica della luce poich ’e la materia esibisce un trascurabile
magentismo. La sonda metallizzata, al contrario, esibisce un forte mag-
netismo che può essere sfruttato per studi di ottica fondamentale e per
applicazioni, come dimostrato in questo libro.

Nella seconda parte della tesi vengono descritti i risultati sperimentali
ottenuti utilizzando le proprietà ottiche della sonda metallizzata descritte
nella prima parte. Qui riportiamo una sintesi dei tre principali risultati
ottenuti. Nel Capitolo 3 abbiamo dimostrato che una sonda metallizzata
può misurare simultaneamente differenti campi elettrici della luce in un
cristallo fotonico. Abbiamo quindi scoperto che il campo elettrico ha una
complicata distribuzione spaziale che varia drasticamente in soli 200 nm
(200 miliardesimi di metro) e presenta alcune delle menzionate singolarità.
Le nostre osservazioni sperimentali risultano estrememamente importanti,
considerando che molte delle future applicazioni per i chip derivanti da
questi materiali si basano sulla conoscenza della distribuzione del campo
elettrico al loro interno.

Nel Capitolo 4 abbiamo dimostrato che si possono controllare le pro-
prietà ottiche di una nanocavità sfruttado il magnetismo di una sonda
metallizzata. Avvicinando la punta alla nanocavità ad una distanza minore
di 20 nm é possible interagire con il campo magnetico della luce intrappo-
lata al suo interno. La luce viene ’trattenuta’ nella cavità più a lungo di
quanto non farebbe senza la sonda nelle vicinanze, come se la sonda fosse un
ago piccolissimo che ’afferra’ la luce e la trattiene dentro una piccolissima
scatola (la nanocavità). Tale esperimento prova che sia possibile migliorare
la qualità di una nanocavità, che si basa solamente sull’interazione elettrica
luce-materia, utilizzando l’interazione magnetica tra la luce e la sonda.

Infine, nel Capitolo 6 abbiamo dimostrato che è possibile sondare il
campo magentico di luce propagante in una struttura fotonica a frequenze
ottiche. Una tale misurazione non era mai stata effettuata poiché, in ge-
nerale, il campo magnetico interagisce cos̀ı debolmente con i materiali che
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non può essere misurato. Modificando la sonda metallizzata è possible au-
mentare l’interazione tra campo magnetico e punta stessa e, quindi, sondare
la componente magnetica della luce. Riteniamo che questi risultati daranno
un forte impulso alle microscopia a campo vicino. Nuove indagini in cui
il campo magnetico viene trattato con pari digità rispetto al campo elet-
trico saranno fondamentali per la comprensione dei neo-nati metamateriali,
i quali esibiscono un forte magnetismo a frequenze ottiche.
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