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Very few believed [localization] at the time, and even
fewer saw its importance; among those who failed to
fully understand it at first was certainly its author. It
has yet to receive adequate mathematical treatment,
and one has to resort to the indignity of numerical sim-
ulations to settle even the simplest questions about it.

—Philip W. Anderson, Nobel lecture,
8 December 1977

The study of the conductance of electrons belongs to the
very heart of condensed-matter physics. The classical Drude
theory of electronic conductivity was built on the idea of free
electrons scattered by positive ions in metal lattice sites. A key
concept in that description was the mean free path, the average
length an electron travels before it collides with an ion. Accord-
ing to classical theory, the electronic conductivity should be di-
rectly proportional to the mean free path, which experiment
had established as large in metals—around 100 nm, some two
orders of magnitude larger than the lattice constant.

Physicists had to wait for the discovery of quantum me-
chanics to understand why electrons apparently do not scat-
ter from ions that occupy regular lattice sites: The wave char-
acter of an electron causes the electron to diffract from an
ideal crystal. Resistance appears only when electrons scatter
from imperfections in the crystal. With that quantum me-
chanical revision, the Drude model can still be used, but in
the new picture an electron is envisaged as zigzagging be-
tween impurities. The more the impurities, the smaller the
mean free path and the lower the conductivity.

Will any increase in the degree of lattice disorder lead to
just a decrease in the mean free path and thus to a lower con-
ductivity, or might something unusual happen along the
way? That question was raised a half century ago by Philip
Anderson, pictured in figure 1. Beyond a critical amount of
impurity scattering, he discovered, the diffusive, zigzag mo-
tion of the electron is not just reduced, it can come to a com-
plete halt.1 The electron becomes trapped and the conductiv-
ity vanishes.

To appreciate how that’s possible, at least intuitively, one
can start with elementary wave mechanics. Suppose an elec-
tron propagates in a disordered medium from point A to

point B. One has to sum the amplitudes of all possible paths
and square the complex-valued end result to obtain the total
probability that the electron arrives at B. That probability
consists of a sum of squares—the classical, incoherent contri-
bution—plus many cross-product, interference terms. One
could argue that in disordered media, the phases of the in-
terference terms are so random that their sum vanishes on
average. That assumption would bring us back to the diffu-
sion model of metallic conductance. 

But that neglect of interferences is not always justified.
Imagine a wave that travels from point A along a random
path to point B and then goes back to A. In figure 2, two pos-
sible paths are depicted: a randomly chosen path and the
same path traversed in the opposite sense. The two paths in-
terfere constructively and should be treated coherently—that
is, summed before being squared. The probability of the elec-
tron’s returning to A is then twice as large as it would have
been if probabilities were added by first squaring and then
summing. The enhanced backscattering, known as weak lo-
calization, lowers the conductance between A and B by in-
creasing the electron’s likelihood of returning to its starting
point. But can it eventually localize the electron around A? 

Metal–insulator transition
Anderson had been confronted with experiments performed
by George Feher’s group at Bell Labs—experiments that
showed anomalously long relaxation times of electron spins
in doped semiconductors. The concept of localized electrons
could explain the observation but would break with the con-
ventional diffusion picture. To explain the effect, Anderson
used a tight-binding model of an electron in a disordered lat-
tice; at each lattice site an electron feels a random potential
and is allowed to tunnel between nearest neighbor sites with
a constant rate (see figure 3).

Electrons are waves, of course. But rather than thinking
of conduction electrons as extended plane waves with short
lifetimes and small mean free paths, one should instead view
them as standing waves that are confined in space and thus
have long lifetimes. Moreover, not just one or two electrons
are localized by a random well in the landscape of the ran-
dom potential energy; nearly all conduction electrons be-
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come localized in concert. For each electron, the multiple
scattering events add to cancel each other. 

Anderson’s model ushered in a new quantum mechani-
cal view of metal–insulator transitions. And in the early
1960s, Nevill Mott introduced the notion of a mobility edge
that separates extended and localized states (see his article in
PHYSICS TODAY, November 1978, page 42).  Electrons with
large energies—and correspondingly small de Broglie wave-
lengths—behave conventionally and support an electronic
current, Mott argued. But electrons with energies near the
band edge, with correspondingly large de Broglie wave-
lengths, would be localized. The idea of a mobility edge
would develop into one of the most studied concepts of
 condensed-matter physics. For their work on disordered sys-
tems, Anderson, his thesis adviser John van Vleck, and Mott
shared the 1977 Nobel Prize in Physics.

Ironically, Anderson’s 1958 paper hardly got noticed at
first; it was cited just 30 times in the first 10 years. Today, it’s
been cited over 4000 times, though too often as an “unrec-
ognizable monster”2 as described by its creator in 1983. In-
deed, theoreticians have found a variety of ways to look at
localization—from scale-dependent diffusion and fractal
wavefunctions to quantum chaos, dense-point spectra, and
kicked rotors.

Initial challenges and disputes
The original 1958 work demonstrated that Anderson local-
ization, like any other phase transition, strongly depends on
the dimension of the medium. Shortly afterward, theoreti-
cians established that under broad conditions, all quantum
states in one- dimensional disordered systems—thin wires,
say—are localized. That’s counterintuitive, especially when
the kinetic energies of electrons generally exceed typical fluc-

tuations in potential energy. Mott and W. D. Twose usually
get the credit for the discovery, although work by 
M. E. Gertsenshtein and V. B. Vasil’ev already existed in 1959.
To say that all states are localized in thin wires does not, how-
ever, mean that the conduction of a wire is always small. In
1994 John Pendry showed that in a wire of finite length, a
small chance exists that two or more localized modes couple
to form a “necklace state” that leads to full transmission of
electrons.3

Localization in higher dimensions was much harder to
solve. One had to calculate all possible paths that a particle
could take. In 1958 Anderson was unable to include “loops,”
electron paths that eventually come back to the same lattice
site. With his postdoc Ragi Abou-Chacra and David Thouless
he solved the problem 15 years later by considering an elec-
tron hopping randomly on a Cayley tree, a somewhat artifi-
cial but useful fractal model in which it’s impossible for an
electron to return to the same lattice site except by retracing
exactly the same path. Although the fractal model erro-
neously predicted a phase transition in 2D metals, it did
allow researchers to analytically solve, for the first time,
 Anderson localization in higher dimensions and confirmed
Anderson’s conjecture that loops are, in fact, not crucial to
 localize the electron. 

The complex physics behind Anderson localization has
also prompted many disputes. Early on, Mott reasoned that
the mean free path ℓ of a conducting electron could never be
smaller than the lattice constant a; that reasoning gives rise
to a nonvanishing electronic conductivity. The wavelength λ
of conducting electrons at the Fermi surface is of order 2πa.
That makes Mott’s minimal mean free path similar to the one
derived independently in 1960 by Abram Ioffe and Anatoli
Regel, ℓ ≈ λ, though a factor of 2π smaller. There’s not much
left to “wave” anymore for a wave whose mean free path has
become shorter than its wavelength.

Unfortunately, the Mott minimum disagrees with the
now widely accepted scaling theory of localization published
in 1979 by the “gang of four”—Elihu Abrahams, Anderson,
Donald Licciardello, and T. V. Ramakrishnan.4 Never settled,
the controversy was explicitly mentioned by the Nobel com-
mittee in 1977 and Mott defended his position until his death.
Nevertheless, the Ioffe–Regel criterion survived the contro-
versy and was later generalized to more complex media. It is
usually cast in the form kℓ ≈ 1, where the wave vector k = 2π/λ. 
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Figure 1. Philip Anderson shared the 1977 Nobel Prize in
Physics with Nevill Mott and John van Vleck for work on the
electronic structure of magnetic and disordered systems.
(Courtesy of the AIP Emilio Segrè Visual Archives, PHYSICS TODAY
Collection.)
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Scaling of transport parameters
The scaling theory of localization gives deep though qualita-
tive insight into how the localization transition appears in fi-
nite, open media. It predicts that close to the mobility edge,
the conductivity of a material depends on its size, as outlined
in figure 4. That prediction has far-reaching consequences.
For an electron, it means that the diffusion constant is size
dependent. 

Inspired by the work of J. T. Edwards and Thouless,5 scal-
ing theory puts forward a dimensionless scale parameter g
that governs that size dependence. Edwards and Thouless de-
fined the parameter as the ratio between two time scales—the
Heisenberg time and the Thouless time—and showed the
ratio to essentially be a measure of the conductance. The
Thouless time is the time it takes for a conducting electron in-
side the sample to arrive at the boundary through its zigzag
motion, whereas the Heisenberg time is the longest time that
an electron wavepacket can travel inside a finite size sample
without visiting the same region twice. When the Thouless
time exceeds the Heisenberg time, a wavepacket is unable to
reach the boundaries and is localized inside the sample. That
Thouless criterion for Anderson localization thus asserts that
states are localized when g < 1. The criterion also turned out
to have universal validity: Scaling theory adopted the dimen-
sionless conductance g as its only parameter.

Among the theory’s predictions is the existence of 
two critical exponents. One is the exponent with which the
conductivity vanishes with energy as the mobility edge is
 approached; the other governs the divergence of the localiza-
tion length—the typical size of a localized wavefunction—
below the mobility edge. During the 1970s, computer simu-
lations were still rare in the field. But despite Anderson’s
pessimism in 1977, precise values for the exponents were
soon calculated by numerical studies.6

Experiments with electrons
Unfortunately, electron localization was devilishly hard to
confirm. Around 1983 Mikko Paalanen and Gordon Thomas
published conductivity measurements around the metal–
 insulator transition of 3D doped charge- uncompensated sil-
icon. The critical exponents were equal to 0.5 on both sides
of the transition. Charge-compensated semiconductors, in
contrast, were observed to have a critical exponent close to 1.
Numerical work6 had predicted an exponent larger than 2⁄3.
The discrepancy prompted what became known as the “expo-
nent puzzle.” Much later, in 1999, researchers argued that an
exponent of 1 is recovered in the experiments on silicon if the
conductivity is correctly extrapolated to zero temperature.

In 1988, Aart Pruisken established the connection be-
tween Anderson localization and the integer quantum Hall
effect.7 Eight years earlier Klaus von Klitzing’s team had ob-
served that the Hall conductance of a 2D electron gas exhib-
ited plateaus. The conductance is constant with magnetic
field but suddenly rises when the Fermi energy of the con-
ducting electrons approaches the Landau levels—the quan-
tized cyclotron orbits of electrons around magnetic field
lines. The quantum Hall effect could be explained if the elec-
trons were extended near the Landau levels but localized
elsewhere. Pruisken’s team found a magnificent opportunity
to test scaling theory. Thermal processes affect the phase of
the electrons and restrict their quantum coherence over a fi-
nite length. So, by changing the temperature, one changes the
sample size explored by the electrons. The team observed
that the transition between the plateaus exhibited a temper-
ature dependence in beautiful agreement with scaling theory.

Weak localization
In the early 1980s a genuine microscopic theory for localization
in 3 dimensions did not exist and no one knew how the size
dependence of conductance would emerge on a microscopic
scale. Experimental work indicated the existence of weak
 localization—the enhanced backscattering of electron waves
discussed above, now often seen as a precursor to Anderson
localization. Based on that work, Wolfgang Götze, Dieter Voll-
hardt, and Peter Wölfle formulated what became known as the
self-consistent theory, which revealed how conventional mul-
tiple scattering of extended waves breaks down to make way
for Anderson localization,8 something that had always been
questioned by experts, including Anderson himself.9

Classical waves
The self-consistent theory and a 1986 observation of the weak
localization of light by the groups of Akira Ishimaru, of Georg
Maret, and of one of us (Lagendijk) set the stage for a search
for Anderson localization using classical waves such as light
and sound. Sajeev John had already predicted the existence
of a frequency regime in which electromagnetic waves are lo-
calized.10 The question was, at what frequency should the
transition occur? By applying the self- consistent theory of
electron localization to classical waves, Costas Soukoulis,
Ping Sheng, and their colleagues were able to make precise
predictions about where to look.11

Figure 3. The Anderson model. Imagine an electron
(silver) hopping on a two-dimensional lattice with ran-
dom potential energies at each site. Quantum mechan-
ics allows the electron to tunnel from one site to another
through large energy barriers as depicted by the red ar-
rows. The electron’s energy thus changes randomly, al-
though at each lattice site the spatial extent of its wave-
function (sketched below the potential) is assumed
constant, leading to a constant tunneling rate. On an or-
dered lattice with all wells the same depth, the electron
would be completely mobile for a range of energies. But
here, a critical amount of randomness in the well depths
localizes the electron, although on a scale larger than
the lattice constant. For another perspective of what oc-
curs as a lattice changes from perfect to disordered, see
this month’s cover. 



www.physicstoday.org August 2009    Physics Today 27

Classical waves offer certain advantages for studying lo-
calization. Unlike electrons, photons don’t interact with each
other, and wave experiments are easy to control experimen-
tally at room temperature; frequency takes over the role of
electron energy. One drawback of classical waves, however, is
that they do not localize at low frequencies, where the mean
free path becomes large due to weak, Rayleigh, scattering. 

To recognize whether incoming classical waves are local-
ized in a material, one could examine how the transmission
scales with system size. In regular diffusive systems, the
transmission is dictated by Ohm’s law, in which the signal in-
tensity falls off linearly with thickness. In the regime of An-
derson localization, the transmission should decay exponen-
tially with length. However, one should be careful to exclude
absorption effects, which also show up as exponential decay. 

A huge advantage of using classical waves is that other
properties in addition to conductance—for example, the sta-
tistical distribution of the intensity, the complex amplitude of
the waves, and their temporal response—can be measured.
All those properties are expected to be strongly influenced
by localization. In particular, the localized regime is pre-
dicted to exhibit large, non-Gaussian fluctuations of the com-
plex field amplitude and long-range correlations in the inten-
sity at different spots or at different frequencies.

Light
Anything translucent scatters light diffusively. Think, for in-
stance, of clouds, fog, white paint, human bones, sea coral,
and white marble. For those and most other naturally disor-
dered optical materials, the scattering strength is far from
that required for 3D Anderson localization. Systems that scat-
ter more strongly can be synthesized, though. For example,
material can be ground into powder, pores etched into solids,
and microspheres suspended in liquids (see figure 5).

For years researchers have worked with titania powder
that is used in paints for its scattering properties. Thanks to
the powder’s high refractive index (about 2.7) and submicron
grain size, mean free paths are on the order of a wavelength.
Experiments reveal clear signs in the breakdown of normal
diffusion. To observe localization the challenge is to maxi-
mize the scattering without introducing absorption. 

One way is to use light whose frequency is less than the
electronic bandgap of a semiconductor so that it cannot be
absorbed but whose refractive index is still high. In 1997, two
of us (Wiersma and Lagendijk) and coworkers ground gal-
lium arsenide into a fine powder and observed nearly com-
plete localization of near- IR light, as deduced from scale-
 dependent diffusion that was measured.12 Two years later

Frank Schuurmans and coworkers etched gallium phosphide
into a porous network. With a mean free path of only 250 nm,
it is, to date, the strongest scatterer of visible light.

The scale dependence of diffusion is also studied using
time- resolved techniques in which the material is excited by
a pulsed femtosecond source. The time evolution of the op-
tical transmission can be measured down to the one- photon
level. As time increases, so does the sample size explored by
the waves. Scale- dependent diffusion may lead to a time-
 dependent diffusion constant. As a result, the transmission
intensity should fall off at a slow, nonexponential rate. In 2006
Maret’s group measured time tails up to 40 ns in titania pow-
ders that had surprisingly large values for the mean free path
(kℓ ≈ 2.5); they found just such a nonexponential time decay
in transmission.13

Microwaves
At the millimeter wavelengths of microwaves, it’s relatively
easy to shape individual particles, such as metal spheres, that
scatter strongly. By randomly placing the spheres in a tubular
waveguide with transverse dimension on the order of a mean
free path (typically 5 cm), one can study the statistics of how
the microwave field fluctuates. The  quasi-1D geometry of 
the system—essentially a thick wire or multimode fiber—is
advantageous because many theoretical predictions become
relevant, mostly from the DMPK theory. That theory owes its
name to its founders—Dorokhov, Mello, Pereyara, and
Kumar—and takes arguments from chaos theory to make
precise predictions about the full statistical properties of a
wire’s transmission when its length exceeds the localization
length.

The onset of localization is again governed by the dimen-
sionless conductance g, which is here essentially equal to the
ratio of the localization length and the sample length. Using
microwaves, Azriel Genack and colleagues have explored a
broad range of g values, including the localized regime g < 1.
Indeed, their observations of anomalous time-dependent
transmission, scale-dependent diffusion, large fluctuations in
transmission, and long-range correlations of both the inten-
sity and the conductance of microwaves have led to a rich
and complete picture of Anderson localization in thick
wires.14 Statistics, their work illustrates, can reveal the onset
of localization even in the presence of optical absorption.

Acoustics
Ultrasound is particularly well-suited for time-dependent lo-
calization studies because of the long times over which energy
can be monitored. As early as 1990, using inhomogeneous 2D
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Figure 4. According to scaling theory, Anderson localization is a criti-
cal phenomenon, at least in three dimensions. The scaling function β(g)
describes how—or more precisely, with what exponent—the average
conductance g grows with system size L. For a normal ohmic conductor
in D dimensions, the conductance varies as LD − 2; consequently,
β(g) ~ D − 2 for large g. Thus the beta function is positive for three-
 dimensional conductors, zero for two- dimensional conductors, and neg-
ative in one dimension. In the localized regime, g decays exponentially
with sample size so that β(g) is negative. In three dimensions, that leads
to a critical point at which β vanishes for some special value for g associ-
ated with the mobility edge. Lower-dimension systems do not undergo
a genuine phase transition because the conductance always decreases
with system size.  A small 2D conductor, for instance, will look like a
metal in the quasi-extended regime, but all its states are eventually
 localized if the medium is large enough.
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plates, Richard Weaver observed around a point source a gen-
uine concentration of energy whose intensity slowly decayed
due to absorption.15 In a classical picture, waves that survive
absorption can still interfere. 

In 2008 John Page, Sergey Skipetrov, and coworkers re-
ported Anderson localization of ultrasound in a 3D elastic
network of aluminum beads.16 Using a pointlike source of
 ultrasound energy at the entrance of the sample, the group
measured how the elastic energy expands in transverse
 directions. In conventional diffusive samples, that expansion
would grow with the square root of time, behavior reminis-
cent of a Brownian random walk. The transverse confinement
of elastic energy is thus a direct consequence of sound local-
ization. As shown in figure 6, the transverse intensity pattern
measured across the output surface of the sample illustrates
how complex the spatial structure of localized states can be. 

Photonic bandgap materials
A photonic crystal is a periodic lattice that diffracts light
much like a semiconductor diffracts electrons. Thanks to
Bragg reflection, transmission is forbidden for certain wave-
lengths and directions. Several challenges are being pursued,
among them the confinement of light in microcavities, the
guiding of light with unusual dispersion, and the creation of
materials that suppress spontaneous emission. 

Most, if not all, photonic crystals exhibit structural dis-
order to some extent and thus scatter light. In 1984 Sajeev
John predicted the existence of localized states near the band
edges of the spectrum, much like the localized electron states
that occur near the band edges of doped semiconductors. In
a photonic crystal light is easier to localize because its prop-
agation in certain directions is already hindered; John argued
that even a modest amount of disorder is sufficient to do the
job. (See his article in PHYSICS TODAY, May 1991, page 32.)

To date, Anderson localization has never been observed
in 3D photonic bandgap materials, although several experi-
mental efforts are under way. Two years ago a group at the

Technion–Israel Institute of Technology in Haifa reported a
related phenomenon—transverse localization of light in a 2D
bandgap material.17 Mordechai Segev and coworkers de-
signed an experiment to localize a wavepacket along two
transverse directions while it continued to propagate along
the third. Based on a prediction from Lagendijk in 1989,
Segev’s experimental realization meant that researchers
could measure localization in space rather than deduce it
from a transmission spectrum (see PHYSICS TODAY, May 2007,
page 22).

Interactions
The localization problem becomes more complex if one goes
beyond the picture of noninteracting particles. The possibil-
ity that repulsive interactions between electrons could de-
stroy localization was already a worry in the early 1960s. As
for the interaction between localized electrons and phonons,
Mott had considered a model in which thermally excited lat-
tice vibrations provide electrons with the necessary activa-
tion energy to jump between localized states that are close in
energy but spatially distant. That “variable-range hopping”
leads to a stretched exponential dependence of the electric
conductivity on temperature and was widely observed in
doped semiconductors and amorphous metallic compounds.
The success of Mott’s model even prompted the question of
whether the phonons are, in fact, required to provide the ac-
tivation energy. Perhaps interactions between the electrons
themselves could explain the thermally induced electron con-
ductivity in the localized regime.

The first answers came from the work of Larry Fleish-
man and Anderson in 1980. At low enough temperatures,
they argued, repulsive interactions neither destroy the local-
ized electronic states nor induce thermally excited hopping.
Conductance should still vanish at low temperatures.
Around the same time, Boris Altshuler and coworkers found
that interactions between electrons destroy the constructive
interferences and thus lead to a finite, almost diffusive con-
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Figure 5. A gallery of strongly scattering

samples. (a) One-centimeter-diameter alumina
spheres (with index of refraction n = 3.14 at 
10 GHz) embedded in polystyrene foam shells in
a long copper tube. (Image courtesy of Azriel
Genack, Queens College, City University of New
York.) (b) Titanium dioxide particles, 250 nm in
 diameter, imaged by electron microscopy and
used to study time- dependent propagation of
visible light close to localization. (Image courtesy
of Georg Maret, University of Konstanz, Germany.)

(c) An elastic network of 4-mm aluminum beads brazed together. (Image courtesy of John Page, University of Manitoba.) (d)

Porous gallium phosphide, etched in diluted sulphuric acid and imaged by electron microscopy. The pore size is optimized to
scatter visible light. (e) Gallium arsenide powder with n ≈ 3.5 and an average particle size of 1 μm. With this material one can
observe scaling of the mean free path in transmission measurements.
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ductance. Recent work by Denis Basko, Altshuler, and col-
leagues combined the two results and concludes that repul-
sive interactions, together with disorder in the potential en-
ergy landscape, lead to a metal–insulator transition at some
intermediate, finite temperature.18

Cold atoms and beyond
When atoms are cooled to near absolute zero temperature,
their de Broglie wavelength becomes large—fractions of a
 micron. Research groups in Palaiseau, France, and Florence,
Italy, recently observed that the expansion of ultracold atoms
in a disordered 1D potential can be halted—the first evidence
for Anderson localization of atomic gases in one dimension.
An optical interference pattern generates the random poten-
tial from which atoms scatter. The advantage of cold atoms
over electrons is that their interactions, repulsive and attrac-
tive, can be tuned. Three-dimensional localization was re-
cently observed by another French collaboration using
“kicked” cold atoms. The experiment, performed by Julien
Chabé and colleagues in 2008, confirmed a one-parameter
scaling around a mobility edge and found critical exponents
consistent with the 3D Anderson model. For details on the
cold-atoms approach to localization, see the companion arti-
cle by Alain Aspect and Massimo Inguscio on page 30 of this
issue. 

After more than a half century of Anderson localization,
the subject is more alive than ever. The role of interactions in
electron localization is still not well understood and several
groups are now pursuing classical wave localization. Specu-
lations already exist about the localization of seismic waves;
Earth’s volcanic regions may be good places to look since the
mean free path and wavelength of seismic waves are compa-
rable in magnitude. The lesson of history, though, is that lo-
calization often shows up at unexpected places and in unex-
pected disguises. 

We thank Alain Aspect, Denis Basko, Philippe Bouyer, Dominique
Delande, Azriel Genack, François Germinet, Massimo Inguscio, Georg
Maret, John Page, Michael Schreiber, Sergey Skipetrov, David Thou-
less, and Peter Wölfle for their support in writing this article.
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Figure 6. The energy density of 2.4-MHz elastic waves local-
ized in the network of aluminum beads pictured in figure 5c.
In the small, isolated hot spots in the intensity of the wave-
function, the transmitted wave energy is more than 40 times
the ensemble average. The length of each axis is about 15 mm.
(Image courtesy of John Page, University of Manitoba.) 


