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Internal Dynamics of Supercoiled DNA Molecules
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ABSTRACT The intramolecular diffusive motion within supercoiled DNA molecules is of central importance for a wide array of
gene regulation processes. It has recently been shown, using fluorescence correlation spectroscopy, that plasmid DNA exhibits
unexpected acceleration of its internal diffusive motion upon supercoiling to intermediate density. Here, we present an indepen-
dent study that shows a similar acceleration for fully supercoiled plasmid DNA. We have developed a method that allows
fluorescent labeling of a 200-bp region, as well as efficient supercoiling by Escherichia coli gyrase. Compared to plain circular
or linear DNA, the submicrosecond motion within the supercoiled molecules appears faster by up to an order of magnitude.
The mean-square displacement as a function of time reveals an additional intermediate regime with a lowered scaling exponent
compared to that of circular DNA. Although this unexpected behavior is not fully understood, it could be explained by conforma-
tional constraints of the DNA strand within the supercoiled topology in combination with an increased apparent persistence
length.
INTRODUCTION

In bacterial cells, DNA molecules are twisted around their

axis, yielding a supercoiled topology (Fig. 1 a) (1). This twist

is actively introduced by the gyrase enzyme (2) and leads to

a build-up of torsional stress in the circular molecules and

a typical intertwined geometry, as well as the formation of

branches made of plectonemes. How a single site within

this supercoiled topology moves around by diffusion is

a nontrivial problem, which depends on various unknown

parameters like effective bending stiffness and hydrody-

namic coupling. At the same time, it is an issue with direct

biological relevance. For instance, the expression of genes

often depends on the colocalization of distant chromosomal

sites (3,4). An understanding of the diffusive motion of

supercoiled DNA is therefore essential for a quantitative

understanding of many cellular phenomena.

The internal diffusion dynamics of linear DNA strands has

been investigated theoretically (5–7), in bulk experiments

(8), and most recently at the single-molecule level (9,10).

In these latter experiments, the dynamic motion of the ends

of DNA strands was recorded using fluorescence correlation

spectroscopy (FCS) (11). In accordance with theoretical

considerations, the mean-square displacement (MSD) of

the DNA ends showed a deviation from the linear scaling

of pure diffusion at low timescales. The first study (9) was

consistent with the Rouse model for a semiflexible polymer

without hydrodynamic coupling, in which the MSD follows

a power law of ~t1/2. A later study (10) found better agree-

ment with the Zimm model, which assumes hydrodynamic

coupling between molecule segments and predicts a depen-

dence of ~t2/3.
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The analytical theory (12) of supercoiled DNA dynamics

is much less developed, with most current insight coming

from computer simulations (13–15). Experimental investiga-

tion has been pioneered by Langowski and co-workers, who

employed the dynamic light scattering (DLS) technique

(15–19). These experiments revealed rotational and transla-

tional diffusion modes, as well as an internal diffusion

coefficient and relative movement amplitude (15). The FCS

method is complementary, since it allows one to measure

the mean-square displacement of one site and its dependence

on time, and thus makes it possible to investigate subdiffusive

behavior. We also mention another approach, in which the

diffusion of a labeled site on a bacterial chromosome was

monitored using time-lapse microscopy (20). However, the

time resolution of this technique is limited to ~0.1 s, which

makes it not useful for the question of interest here.

The FCS technique cannot straightforwardly be extended

from the linear to the supercoiled case, due to technical chal-

lenges in combining the attachment of fluorescent labels with

efficient supercoiling of the DNA. Here, we present what we

consider a novel method that allows for the construction of

labeled supercoiled DNA molecules to high superhelical

densities, opening up an FCS-based analysis. This method

complements a recent independently developed technique

that allows labeling and supercoiling to intermediate densities.

METHOD

Uniformly labeled, short fragments (220 bp) were cut from labeled plasmids,

and then inserted into unlabeled plasmids. The resulting closed circular

DNA topology was subsequently supercoiled in an in vitro reaction using

Escherichia coli gyrase. To obtain the starting DNA material, plasmids

pDNR-LIB (Clonetech, Mountain View, CA) of 4200 bp size are grown in

E. coli cells (strain DH1aZ1), extracted, and purified (miniprep kit, Qiagen,

Venlo, The Netherlands). Labeling with Alexa 546 fluophores is done by

means of a platinum conjugate-based linkage system (ULYSIS, Amersham
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Biosciences, Fairfield, CT), resulting in a labeling density of ~1 dye mole-

cule/20 bp. The following steps are depicted schematically in Fig. 1. Labeled

and unlabeled plasmid samples are both digested with restriction enzyme

BglI (New England Biolabs, Ipswich, MA), leading to a small fragment

(S) of ~220 bp and a large fragment (L) of ~4000 bp. The fragments are

separated and purified by running them on an agarose gel. Next, the labeled

S and unlabeled L are religated, resulting in the original plasmid with a fluo-

rescently labeled stretch of ~220 bp. The concentration of labeled S was

around threefold that of L in the religation reaction. BglI creates two

noncomplementary, nonpalindromic 3-bp overhangs in pDNR-LIB, thereby

preventing the insertion of multiple fragments S. The labeled plasmid then is

incubated with gyrase (Sigma Aldrich, St. Louis, MO) and analyzed by gel

electrophoresis, revealing a supercoiling density higher than �0.04 (21).

The supercoiled (SC) band is purified from this gel and can be used for

the FCS measurements. To obtain open circular (OC) and linear samples

from the purified SC plasmid, we used the nicking endonuclease N.Alw1

(New England Biolabs) and restriction endonuclease HindIII (New England

Biolabs), cutting the plasmid open at a distance of 12 bp from the label.

We obtain the diffusion dynamics for the three different topologies using

FCS. In FCS, the kinetics of a fluorescent object is measured by monitoring

the fluctuations dI(t) of its emission intensity I(t) in a confocal excitation

beam with a Gaussian profile. The excitation and, consequently, the emis-

sion of these fluorescent entities changes as they move in and out of the focal

volume by Brownian motion. By autocorrelating the recorded intensity

signal, the temporal dynamics of these fluctuations can be quantified. It is

important to note that the mean-square displacement (MSD), hr2ðtÞi, of

a pointlike fluorescent source can be directly derived from the autocorrela-

tion function G(t). For the case of an excitation volume formed by a Gaussian

beam with intensity profile IðrÞ ¼ I0 expð�2ðx2 þ y2Þ=uxy � 2z2=uzÞ, G(t)

is given by Shusterman et al. (9):

GðtÞ ¼ 1

N

�
1 þ 2

3

hr2ðtÞi
u2

xy

��1�
1 þ 2

3

hr2ðtÞi
u2

z

��1=2

: (1)

Here, N is the number of fluorescent entities in the focal volume, and uxy and

uz denote the lateral and axial dimensions of this volume.

Measurements have been performed on a home-built FCS setup based on

an inverted optical microscope. We used a frequency-doubled Nd:YAG

laser at 532 nm (CrystaLaser, Reno, NV) focused by a 63�, 1.4 NA oil

immersion objective (Nikon, Tokyo, Japan). The fluorescent light is passed
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FIGURE 1 Schematic representation of the sample preparation.
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through standard filter sets for Alexa 546/Cy3 and through a pinhole (diam-

eter typically 50 mm), before it is detected by an avalanche photodiode

(APD, Eg&G, Gaithersburg, MD). The APD signal is fed into a hardware

correlator (ALV/5000E) where the autocorrelation function is computed.

Both the diameter of the excitation beam and the pinhole size have been

chosen to minimize possible artifacts like a nongaussian intensity distribu-

tion in the focus (22). Typical laser power at the sample was below 1 mW.

In this regime, no effect of triplet blinking and photobleaching on the diffu-

sion dynamics signal could be observed. Samples were dispensed into the

wells of a microtiter plate with a glass bottom. The system was calibrated

by collecting FCS curves of an aqueous solution of rhodamine 6G molecules

before each measurement (23). To maintain the same focal point distance to

the coverslip for calibration and experiment, the DNA and rhodamine 6G

solution were dispensed into wells of the same microplate, requiring only

a lateral shift to switch between samples. The dimensions of the focal

volume were typically found to be uxy ¼ 390 nm and uz ¼ 2000 nm.

The measurements on DNA molecules have been performed in 4 mM

phosphate buffer (KPO4) with 100 mM KCl as a monovalent salt. DNA

concentrations were in the dilute regime, corresponding to 0.02–0.4 mole-

cules in the confocal volume of ~1.2 fL on average. FCS spectra have

been recorded for 300–600 s typically. Three sample preparations of each

topology have been investigated, and at least three FCS spectra were taken

of each preparation, which showed reproducible results.

RESULTS

First, we characterized the diffusion of the isolated fluores-

cence probe, the labeled segment S. The measured correla-

tion function G(t) of S is shown in Fig. 2 a. At timescales

<1 ms, the internal photodynamics of the fluophores mani-

fests itself in an exponentially decaying process: this is the

contribution of the singlet-to-triplet conversion of the dye

a

b

FIGURE 2 (a) Normalized correlation function, G(t), of the isolated

labeled fragment S. (b) Mean-square displacement of the labeled fragment

S. The data follows a power law t1 (solid line), indicating a point-source

diffusive behavior.
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molecules to the autocorrelation function. Since this contribu-

tion is well separated in time from the diffusive motion of the

DNA monomers, we can fit an Ae�Bt þ G(0) model to derive

N via the y-axis intercept G(0)¼ 1/N in Eq. 1. In this manner,

the MSD of the labeled monomer is obtained from the

measurements using Eq. 1. (Fig. 2 b). The data narrowly

follow the t1 scaling expected for trivial diffusion over a

time span of five decades, thus obeying a point-source

behavior. These results are consistent with expectations, since

the probe length of 65 nm (220 bp) is similar to the persis-

tence length of dsDNA (50 nm) and it can thus be considered

stiff without significant internal dynamics. The strict t1 scaling

also shows that having multiple fluophores on the probe is not

a limitation. When attached to the larger DNA constructs,

deviations from the t1 behavior can thus be attributed to

their internal dynamics. Using hr2ðtÞi ¼ 6DSt, we obtain

a diffusion constant of DS ¼ ð2:0650:2Þ � 10�11m2

s
for the

fragment S.

Next, we investigate the dynamics of the 4200-bp linear

DNA molecule with the labeled fragment S situated at its

end (Fig. 3). For timescales >1 ms, the MSD is linear in

time, reflecting the overall diffusion of the DNA molecule.

Fitting the data in this regime yields a diffusion constant

of Dlin ¼ ð2:2350:21Þ � 10�12m2

s
. For times <1 ms, the

kinetics deviates from this t1 trend, showing subdiffusive

behavior. The fitting of our data in this regime results in

a

b

FIGURE 3 (a) Normalized correlation functions, G(t), of linear DNA

(black) and open circular plasmid DNA (gray). (b) Mean-square displace-

ment of the data in a for linear DNA (black) and open circular DNA

(gray). Straight lines indicate fits to the different regimes for linear

DNA data for times >50 ms, MSD ~t1, and for linear and open circular

DNA data at times <1 ms: MSD t0.59 5 0.065 and t0.52 5 0.05, respectively.
hr2ðtÞi ¼ t0:5950:065. The scaling thus lies between the earlier

observed t0.5 (9) and t0.66 (10), which represent, respectively,

weak (Rouse model) and strong (Zimm model) hydrody-

namic coupling between the DNA monomers. Indeed, it

has been argued theoretically (24–26) that the two models

represent limiting cases.

The data for the OC and SC plasmids is shown in Figs. 3

and 4. First, we note that both the SC and the OC plasmid

also show trivial diffusion, hr2ðtÞi � t, for the molecule as

a whole above 10 ms. In this regime, the OC and linear

data overlap, whereas the SC curve is higher, as the SC

molecule is more compact and therefore shows a faster

diffusive motion. We find a diffusion constant of

Dsc ¼ ð3:850:45Þ � 10�12 m2

s
, i.e., a factor of 1.7 higher

than Dlin. This value is somewhat larger than the reported

ratio of 1.35, as determined by sedimentation studies (27),

though it does agree with results obtained by single-molecule

tracking experiments (28). We find a similar diffusion

constant for the OC and linear DNA, which is unexpected

given the smaller hydrodynamic radius of the circular

topology. Note that these discrepancies in diffusion constant

may be partly attributed to a reduced accuracy of the FCS

technique at the largest timescales. Below 5 ms, the linear

and OC data show a similar behavior, with a slightly higher

MSD and a lower scaling exponent for the OC curve

ðhr2ðtÞi � t0:5250:05Þ.

a

b

FIGURE 4 (a) Normalized correlation functions, G(t), of open circular

DNA (black, upper curve) and supercoiled plasmid DNA (gray, lower

curve). (b) Mean-square displacement of the data in a. Straight lines indicate

fits to the different regimes. Fits to the OC data are as in Fig. 3 b. The data for

SC DNA is fit in the regime below 0.2 ms (t0.54 5 0.06) and in the interme-

diate regime between 0.3 ms and 3 ms (t0.43 5 0.05).
Biophysical Journal 96(12) 4951–4955
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The short-time behavior of the SC DNA segment displays

various counterintuitive features. Given the increased

constraints on the polymer conformation in the supercoiled

topology, one may expect a decreased intramolecular

mobility. However, we instead observe a significantly

increased mobility compared to a linear or circular DNA

segment. At 100 ms we find the MSD magnitude to be around

three times higher for the supercoiled case, reducing the time

required to achieve a certain displacement by an order of

magnitude. This acceleration, which has also been reported

in a recent independent study for lower supercoiling densities

(29), cannot straightforwardly be explained with existing

analytical models or simulations. One possibility is that the

bond-angle correlations of the DNA strands increase due to

constraints in the supercoiled topology, resulting in an

increased apparent persistence length. The observed increase

of the MSD by a factor of 3 would result in an increase of the

apparent persistence length to 120 nm, since the MSD should

be roughly proportional to the persistence length (7).

We note that the observed anomalous diffusion cannot be

explained by molecules passing in different orientations, as

has been theorized (29). One may also consider possible

dynamic quenching behavior of the fluorescent dyes due to

nearby bases resulting from the supercoiling. However, the

opposing strands in the supercoiled geometry are expected

not to touch because of electrostatic repulsion (30). Quench-

ing fluctuations are also not seen in the control measurements

of the labeled segment alone, would be at much faster time-

scales due to the small distances involved, and are therefore

not expected to be the cause of the observed deviations.

Supercoiled DNA displays two subdiffusive regimes

(Fig. 4) rather than the single one seen for linear and OC

DNA. In the first regime, up to 0.2 ms, the data roughly

parallel the MSD of the OC DNA, with a scaling of

~t0.54 5 0.05. Between 0.2 and 10 ms, the MSD bends to

an even lower scaling of ~t0.43 5 0.04, before the curve

follows the expected trivial diffusion of the molecule as

a whole at >10 ms. To explore possible explanations for

the observed behavior, we first consider the scaling of

a free semiflexible chain. Below the persistence length, the

MSD is expected to scale with t0.75 (31). Above the persis-

tence length, the behavior is like that of a flexible chain,

with the MSD scaling exponent dropping to between t0.5

and t0.66. Note that the latter regime would only be visible

for chain lengths significantly larger than the effective persis-

tence length in the supercoiled state. Otherwise, the t0.75

scaling immediately crosses over to the free diffusion

behavior.

In addition, the scaling could be affected by the inter-

twined topology acting as an effective cylindrical confine-

ment, in analogy to the tube model (32) of a molecule in

a polymer melt, where a chain segment is considered to be

confined in a narrow tube formed by the other polymers.

Simulations and theory (24,33) have shown that for such

a confinement, the MSD exhibits three different regimes.
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For short displacements, the chain is not hindered by the

confinement and behaves as if it is free. When reaching the

diameter of the cylindrical confinement, the chain move-

ments become constrained, which results in a decrease of

the MSD scaling exponent. At large timescales, the scaling

of the entire polymer diffusion is followed.

The linking number difference, DLk, allows us to estimate

the length scale of the constraint in the supercoiled topology.

DLk corresponds to the number of DNA crossings in a planar

projection, which are separated by an average distance Lx.

For our plasmid with its high supercoiling density, Lx ¼
30–35 nm, which is smaller than the persistence length of

linear DNA. This makes the transition from unconstrained to

constrained not visible here. One therefore would only see

the crossover from stiff to flexible behavior in this scenario.

Indeed, the bending of the MSD curve at 240 nm is consistent

with this transition, given the increased apparent persistence

length due to supercoiling. The cylindrical confinement acts

in both regimes, and has the effect of lowering the scaling

exponents (from the expected t0.75 to t0.54, and from t0.66 or

t0.5 to t0.43). Note that for plasmids with lower supercoiling

densities, the supercoiling-induced confinement should appear

at higher lengths, so that the pure t0.75 scaling may become

visible.

DISCUSSION

We have presented measurements of the dynamics of a single

site in isolated DNA molecules of fully supercoiled

topology, and compared it with the dynamics in open

circular and linear topologies. To achieve this, we developed

a method for constructing supercoiled DNA plasmids with

a fluorescently labeled segment in vitro. We performed

FCS measurements to determine the diffusive kinetics of

this labeled site in different topologies. The central finding

is that fully supercoiled DNA appears to exhibit a signifi-

cantly faster internal dynamics compared to linear or circular

DNA. These results complement and verify a recent indepen-

dent study that has found a similar acceleration for plasmid

DNA with intermediate supercoiling densities (29).

Although we have put forward possible mechanisms, further

theoretical and computational studies are essential to provide

a full explanation.

The observed acceleration upon supercoiling has direct

implications for the colocalization of two DNA sites and,

consequently, for gene regulation. By how much colocaliza-

tion times are reduced will also depend on other factors, such

as the distance between the sites, and the exact conforma-

tional changes during diffusion. This issue can be addressed

directly, by extending the current method to engineer two

fluorescently labeled sites of different color within each

plasmid, in combination with the fluorescence resonance

energy transfer technique. In addition, the technique pre-

sented here can be used to investigate the changes in rapid

internal dynamics as induced by various DNA-binding
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proteins, such as HNS or SMC, but also by RNA polymerase

as it actively induces conformational changes in the super-

coiled DNA.
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