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Survival of the Aligned: Ordering of the Plant Cortical Microtubule Array
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The cortical array is a structure consisting of highly aligned microtubules which plays a crucial role in
the characteristic uniaxial expansion of all growing plant cells. Recent experiments have shown
polymerization-driven collisions between the membrane-bound cortical microtubules, suggesting a
possible mechanism for their alignment. We present both a coarse-grained theoretical model and
stochastic particle-based simulations of this mechanism, and we compare the results from these
complementary approaches. Our results indicate that collisions that induce depolymerization are sufficient
to generate the alignment of microtubules in the cortical array.
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Microtubules are a ubiquitous component of the cytos-
keleton of eukaryotic cells. These dynamic filamentous
protein aggregates, in association with a host of micro-
tubule associated proteins (MAPs), are able to self-
organize into dynamic, spatially extended stable structures
on the scale of the cell [1]. In contrast to the more com-
monly studied animal cells, plant cells are encased in a
cellulosic cell wall and generally only expand along a
single well-defined growth axis. A crucial component in
this anisotropic growth process is a plant-unique micro-
tubule structure called the cortical array [2]. This structure
consists of highly aligned microtubules attached to the
inner side of the cell membrane and oriented transversely
to the growth direction (see Fig. 1), and it establishes itself
in a period of about 1 h after cell division. The cortical
array has two particular features, both related to the fact
that the microtubules are bound to the cell membrane [3,4]:
(1) it is effectively a two-dimensional system and (ii) the
cortical microtubules do not slide along the membrane, so
the only displacements are caused by the ongoing poly-
merization and depolymerization processes intrinsic to
microtubules. As a consequence of these two constraints,
the so-called plus end of a growing cortical microtubule
can “collide” with another microtubule. Recent experi-
ments [5] have shown that these collisions indeed occur
and can have three possible outcomes whose relative fre-
quency is determined by the angle between the micro-
tubules involved [see Fig. 2(a)]. The first option is that
the incoming microtubule changes its direction and con-
tinues to grow alongside the microtubule it encountered, an
outcome that is predominant at smaller angles and is
known as “zippering.” The second option is the so-called
“induced catastrophe,” in which the incoming microtubule
switches to the shrinking state. Finally, there is a possibility
that the incoming microtubule simply ‘“‘crosses over” the
obstacle, continuing to grow in its original direction.

In this Letter, we address the question of whether, as has
been posited by Dixit and Cyr [5], these interactions are
sufficient to explain the alignment of microtubules in the
cortical array. To do so, we construct a model for the

0031-9007/10/104(5)/058103(4)

058103-1

PACS numbers: 87.16.Ka, 87.16.ad, 87.16.af, 87.16.Ln

microtubule dynamics and interactions, and we evaluate
it using two complementary approaches: a coarse-grained
theory and particle-based simulations. The theory allows
us to reduce the size of the model parameter space by
identifying the relevant control parameter of the system
and establishes the criteria for spontaneous symmetry
breaking to occur. The simulations explicitly consider the
stochastic dynamics of individual microtubules and are
thereby able to test the validity of the theory. The simula-
tions can also be extended to include known other contrib-
uting effects such as minus-end treadmilling and micro-
tubule severing proteins, but here we focus on a minimal
version of the model that can be addressed using both the
theoretical and simulation approaches in order to establish
a reference system and test the general hypothesis of [5].

Our model differs from existing models for 2D organi-
zation of filamentous proteins in two important ways. First,
in most of these models the filaments are both free to rotate
and translate as a whole [6—10], which is inconsistent with
the experimental observations on the cortical array.
Second, our model explicitly takes into account the dy-
namic instability of the individual microtubules, providing
the potential for intrinsic stabilization of the microtubule
length distribution. This differs from the model by Baulin
et al. [11], in which deterministically elongating micro-
tubules stop growing only while obstructed by other micro-
tubules. The lack of an intrinsically bounded length most
likely precludes the existence of stable stationary states in
their simulations.

FIG. 1. Transverse cortical array in an etiolated dark-grown
Arabidopsis thaliana hypocotyl cell with fluorescently labeled
microtubules. Image courtesy of Jelmer Lindeboom,
Wageningen University.
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FIG. 2. (a) Schematic overview of the included effects and
parameters in the model. (b) Relative frequency of collision
outcomes as a function of angle of incidence used in our model.

For the intrinsic microtubule dynamics in our model, we
use the standard two-state dynamic instability model [12]
in which each microtubule plus end is assumed to be either
growing with a speed v* or shrinking with a speed v~.
This plus end can switch stochastically from growing to
shrinking (a so-called “‘catastrophe’) with rate r,. or from
shrinking to growing (a so-called “‘rescue’’) with rate r, in
a process known as dynamic instability. New microtubules
are nucleated isotropically and homogeneously with a
constant rate r,,. The microtubule minus ends are assumed
to remain attached to their nucleation sites.

Because the persistence length /,, of microtubules is long
(~mm) compared to the average length of a microtubule
(~10 pwm) and thermal motion is inhibited by the attach-
ment to the plasma membrane, microtubules are modeled
as straight rods with kinks at positions where a zippering
event has occurred. A microtubule therefore consists of a
series of connected segments to which we assign an index
i, starting at i = 1 for the segment attached to the nuclea-
tion site. In light of the available evidence, we assume that
the angle-dependent collision outcome probabilities P,
(zippering), P, (induced catastrophe), and P, (crossover)
are independent of the polarity of the microtubules and
therefore need only be defined on the interval [0, Z].

We first analyze this system using a coarse-grained
theory, in which we consider densities of microtubule seg-
ments instead of individual microtubules. From the outset

we assume the system is, and remains, spatially homoge-
neous, and we later restrict ourselves to steady-state solu-
tions. Because microtubules are nucleated isotropically
and can change their orientation after each zippering event,
we introduce separate densities for each segment index i.
Furthermore, length changes and collisions can only occur
in segments that contain the microtubule plus end.
Therefore, we further distinguish the active segments,
containing either a growing (+) or shrinking (—) plus
end and the inactive (0) segments that form the “body”
and tail of the microtubule. Our variables are thus the areal
number densities m{(l, 6, 1) of segments in state o €
{0, —, +} with segment index i, having length / and ori-
entation # (measured from an arbitrary axis) at time f.
From these, we compute the total length density k(6, 1) as

Ko.n =3 [:’ [m> (1,6, 1)+ m(L, 6, 1)

+ m0(1, 6, )]dL. (1)

The segment densities obey a set of evolution equations
that can symbolically be written as

dm; (1,0, 1) = Pyoy[m" ]+ Preeelm; 1 = Py ca[m)]
= Dipg ca [, k] — @,p[mi", k], (2a)
dim; (1,6, 1) = Ppini[m;] = Pregeuelm; 1+ Py car [ ]
+ Pingcalm’, k] + Py [mi", mi, k],
(2b)
amd(l, 6,1) = D [m, k] — @ [mf, m7 1, k] (20)

The arguments in square brackets explicitly display the
functional dependencies of the terms on the right-hand
side. Below, we explain each of these terms briefly and
refer the reader to [13] for a full derivation and an in-depth
analysis. The dynamics of the active growing (+) and
shrinking (—) segments of microtubules unperturbed by
interactions are given by the standard spontaneous catas-
trophe and rescue terms P, ., [m*]=r.m* and
Drouelm™]1=r,m~, and the advective terms
Dyro[m™] = —v" 2 and Dgy[m =] = v~ - due to
growth and shrinkage, respectively [12]. Collisions be-
tween microtubules that lead to an induced catastrophe
cause growing segments to switch to the shrinking
state at a rate given by Dy g lm®, k] =vim*(0) X
[ do' sinAOP.(AO)k(6'), where AO = |6 — 6’| is the col-
lision angle and the geometrical factor sinA# takes care of
the collisional cross section that the density of other micro-
tubules presents to the incoming one. Zippering events
cause growing microtubule plus ends to change direc-
tion, converting previously growing segments to the
inactive state at a rate @, [m", k] = v m"(0) X
[do'sinA6P.(A6)k(6'). Simultaneously, new growing
segments with an index i + 1 are created, which is repre-
sented by the boundary condition m;, (I =0,0') =
k(") [ dodim; (0)sinAOP,(A6). This set of boundary
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conditions is completed by a separate equation for i = 1,
which represents the isotropic nucleation of new micro-
tubules: v*m{ (I =0, ) = r,/(27). Finally, when a seg-
ment shrinks back to the point where it had undergone a
zippering event in the past, a previously inactive segment
can be reactivated into a shrinking state. Here we will not
discuss the details of the rate @, [m;, m;,,, k], which
contains a nontrivial history dependence as a microtubule
segment must ‘“‘unzipper’” in the same direction from
which the zippering segment originally came. We simply
note that in the steady state, Eq. (2¢) requires that this rate
is balanced by the zippering rate discussed above.

In the steady state, the infinite set of Eq. (2) with the
boundary conditions reduces to a set of four coupled non-
linear integral equations. These relate the length density
k(0) to the average segment length, active segment density,
and ratio between inactive and active segments, each being
a function of the angle 6. It follows that, for given inter-
action probabilities P.(f) and P.(6), the remaining pa-
rameters can be absorbed into a single dimensionless
control parameter G, defined as

vt W[, .
o-lmmml ) o

Here we only consider the case G < 0, for which the length
of the microtubules is intrinsically bounded even in the
absence of collisions. In this case, the average length of
noninteracting microtubules is given by [ = (r./v, —
r./v~)~! [12], and the control parameter G can be inter-
preted as G = —I,/I, implicitly defining an interaction
length scale /). As G increases towards 0, the number of
interactions between microtubules increases.

For any value of G there exists an isotropic solution to
(2), for which the total length density p = [ d6k(6) sat-
isfies Iyp(Colop — 2G)> = 8, where ¢, denotes the nth
Fourier cosine coefficient of the product P.(0)| sinf|. The
isotropic length density is therefore an increasing function
of the control parameter G that only depends on the in-
duced catastrophes and not on the probability of zippering.
This can be understood by the fact that zippering only
serves to reorient the microtubules, which has no net effect
in the isotropic state. Although a stationary isotropic solu-
tion exists for all values of G, this solution is only stable for
large negative values of G. As G increases, the number of
interactions between microtubules increases until the iso-
tropic solution becomes unstable. This happens at the
bifurcation point G = G*, given by

¢
G* = (—262)1/3(—(1 — 1). 4)
_2C2
We note that the location of the bifurcation point is deter-
mined solely by the properties of the induced catastrophe
probability P.(6), and, like the density in the isotropic
phase, does not depend on zippering.

To quantify the degree of alignment, we use the standard

2D nematic order parameter S,, defined as S, =

| [37d0e°k(6)]/ [3™ dOk(6). The full bifurcation dia-
gram can be computed by numerically tracing the ordered
solution branch from the bifurcation point, provided that
the products |sinf|P.(6) and |sind|P,(#) have finite
Fourier expansions. We restrict ourselves to an expansion
up to cos4f. The coefficients are constrained by
sin(0)P.(0) = 0 and sin(0)P,(0) = 0. In line with experi-
mental observations [5], we choose the remaining parame-
ters such that P.(f) is monotonically increasing to a
maximum at # = 7/2 and is maximally biased towards
steep collision angles (see [13] for other choices), and
P_(7r/2) = 0. The magnitude of P.(0) and P_(6) is similar
to that observed in experiments, and the crossover proba-
bility is fixed by the requirement P.(0) + P_.(0) +
P.(0) = 1. The resulting interaction probabilities are illus-
trated in Fig. 2(b). We argue that the apparent discrepancy
with experiments, caused by setting P,(0) = 0, is not very
significant for the ordering transition, as collisions between
near-parallel microtubules are infrequent and cause only
slight changes of orientation in case they lead to zippering.

Given our choice for P.(6), we have &, = 3/8 and &, =
—1/4 so that G* = —0.2. The results are representative for

0.6 —

02—

FIG. 3. Comparison between theoretical (solid lines) and
simulation results (symbols). The simulations were performed
on a 80 um X 80 um system with periodic boundary condi-
tions. The spontaneous catastrophe rate was varied to probe
different values of G: r, €[4 X 1073,1.2 X 1072] s~ . The
nucleation rate was set to r, = 0.003 um~2s~! and other pa-
rameters were taken from [4] (interphase BY-2 cells): v' =
0.078 ums™!, v~ =0.164 ums~!, and r, = 6.8 X 1073 s L.
Measurements were performed after equilibrating for 50 000 s
(a) or 250000 s (b); G was increased between measurements.
The standard error of the mean is typically smaller than the
symbols and is otherwise indicated by vertical bars. N = 80 (a),
40 (b).
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a large class of interaction probabilities with G* <0.
Higher modes do not affect the bifurcation point Eq. (4)
and appear to have only minor effects on the bifurcation
diagram. Also, any changes to the overall magnitude of
P.(0) and P_(6) result only in a scaling of the G axis.
Comparing the computed solutions (solid lines) for sys-
tems with [Fig. 3(b)] and without [3(a)] zippering, we note
that zippering has only a minor effect on the ordering
beyond the bifurcation point (see also [13]). This shows
that the “weeding out” of microtubules in the minority
direction through induced catastrophes is by itself suffi-
cient to explain microtubule alignment.

In parallel with the coarse-grained theoretical approach
described above, we performed stochastic particle-based
simulations of the interacting microtubules. Figure 3 shows
the resulting steady-state alignment as a function of G for
systems with and without zippering. In the simulations, the
presence of zippering triggers the formation of microtubule
bundles, in which aligned microtubules colocalize. In this
case, we need to specify how the interaction probabilities
P.(0), P.(6), and P.(#) depend on the number of micro-
tubules that are present in both the incoming and encoun-
tered bundles. We investigate two extreme scenarios. In the
first scenario (single collisions), a microtubule treats a
collision with a bundle as a single collision, disregarding
the other microtubules in both bundles. In the other sce-
nario (multicollisions), we implicitly construct an effective
interaction by sampling from the distribution of all mul-
tiple collisions and their outcomes that can occur between
an arbitrary microtubule from an incoming bundle with the
full set of microtubules in the target bundle [see Fig. 2(a)].

Figure 3(a) shows good agreement between the theoreti-
cal predictions and simulation results when zippering is
absent. As expected, the agreement is less good when
zippering is enabled [Fig. 3(b)], because zippering leads
to strong spatial correlations in the form of microtubule
bundles, which are not accounted for in our mean-field-like
theory. In the case of the multicollision interactions, the
simulations indicate a significantly larger tendency to
align, whereas the system is less likely to align with
“single” interactions. However, in both cases the behavior
remains qualitatively the same as the theoretical predic-
tion, and the alignment occurs over a similar range of G
values.

Finally, we investigated the limit of weak interactions
[P.(0), P.(0) < 1; data not shown] in which the discrep-
ancies due to the mean-field nature of our model should
decrease. Without zippering, simulation results rapidly
converge to the theoretical predictions. In the presence of
zippering, the results for the ““single” interactions deviate
more strongly from the theory, because only a single
collision is registered when a microtubule encounters a
bundle, effectively decreasing the density of interactions.

The multicollision interaction, however, effectively ac-
counts for the bundling, so that for progressively weaker
interactions the transition between the isotropic and or-
dered states converges to the predicted bifurcation point.

Our model of interacting cortical microtubules displays
both isotropic and aligned phases and is based on experi-
mentally observed microscopic effects. The kinetic pa-
rameters appearing in the control parameter G may be
regulated by the cell via MAPs, suggesting a mechanism
for cellular control over creation, maintenance, and sup-
pression of microtubule alignment. Our results indicate
that collision-induced microtubule catastrophes alone
could establish alignment in the cortical array of plant
cells. To what extent other known effects, such as micro-
tubule treadmilling and severing, influence this mechanism
is a question we are currently addressing.
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