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CHAPTER 1

Introduction

1.1. Background.

Bose-Einstein condensation (BEC) predicted already in 1924 [1, 2] has been observed recently
(1995) in pioneering experiments with clouds of magnetically trapped alkali atoms at JILA [3], MIT
[4] and RICE [5], and later in more than a dozen laboratories all over the world. The phenomenon was
spotted by the mass media and called “a new form of matter”. Since then the field of quantum gases
has greatly expanded, attracting a wide attention of both scientific community and general public.

The idea of BEC originally came from quantummechanical analogy between matter waves in
non-interacting gases and light waves. Indeed, as the temperature of a sample drops, the de Broglie
wavelength of particles increases. Below a certain temperature (Bose condensation point), a charac-
teristic particle wavelength exceeds the mean interparticle separation and the wave packets of particles
start overlapping. Then the quantum statistics comes into play. Under this condition, for bosons (par-
ticles with an integer spin) it is favorable to fill a single quantum state. The latter state represents a
macroscopic quantum object which is usually called Bose condensate and manifests itself as a phase
transition accompanied by a sudden change of physical properties of the sample.

The phenomenon of BEC lies in the basis of our understanding of much of statistical and con-
densed matter physics. After the original Einstein analysis of Bose condensation in an ideal gas,
the superfluidity in helium was considered by London (1938) as a possible manifestation of BEC in
strongly interacting systems. The notion of Bose-condensation led to the first successful phenomeno-
logical model of superconductivity [6] and was further developed into the concept of spontaneous
symmetry breaking [7]. Since then, the implications of BEC were found at every scale in the physical
world. Bose condensation of hypothetical Higgs particles appears to be an important constituent of
modern unified theory of electroweak interactions [7]. The remedies of the BEC phase transition right
after the Big Bang should persist for a very long time and may be responsible for the recently discov-
ered large-scale inhomogeneity of the mass distribution in the Universe [8]. Another kind of artifacts
remaining from those times are so called “cosmic strings”, hypothetical analogues of vortex rings
in liquid helium [9]. BEC of pions, the particles mediating the strong interaction of nuclons inside
atomic nuclei, is expected to occur in very massive atomic nuclei or inside the core of neutron stars
(see [10] for a review). In particular, the non-periodic variations of gamma-radiation coming from
rapidly spinning pulsars may be attributed to the dissipative dynamics of vortices inside the superfluid
core of the stars [11]. All mentioned phenomena, though different in energy and spatial scales, have
much in common and can be described within a single theoretical framework based on the idea of
spontaneous symmetry breaking.

BEC experiments in ultra-cold gases provide a beautiful example of Bose-condensation in an
interacting system. Contrary to a classical gas, for a Bose-condensed gas the interaction between
atoms, though being very weak, plays an important role and dilute ultra-cold gases demonstrate the
whole variety of physical phenomena characteristic for superfluid systems. From a theoretical point
of view, these systems are close to an ideal gas. The presence of a small parameter related to the ratio
of interparticle interaction radius to the mean interparticle separation (gaseous parameter) provides
a deep understanding of underlying physical phenomena, from first principles. On the experimental
side, the magnetically trapped gaseous samples are well isolated from the environment and can be
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controlled by relatively simple optical techniques. This could be compared with research of liquid
helium, which has been a major experimental source of information about interacting Bose con-
densed systems, where the evidence of BEC comes from an experiment as difficult as measurement
of momentum distribution of helium particles by neutron scattering, and no closed theory is available
because of the high density of the samples. This combination of experimental and theoretical “ac-
cessibility” of BEC in ultra-cold gases allows one to get a good insight in fundamental concepts of
condensed matter physics and perform a precision test of existing theories.

The achievement and studies of BEC in ultra-cold gases require cooling of metastable atomic
samples, which became possible due to recent progress in manipulation, trapping and cooling of
cold atoms. In fact, the Bose-Einstein condensate in a trapped gas can be considered as a coherent
standing matter wave in a trap, which is in many ways similar to a laser mode excited inside an optical
cavity. Further exploiting this analogy makes it feasible to create an atom laser capable of generating
coherent beams of cold atoms. Now this technology is being actively developed in view of possible
applications ranging from precise atom interferometry and cold collision studies to atom lithography
and quantum computing.

First attempts to reach quantum degeneracy in atomic gases began with atomic hydrogen more
than 20 years ago. In the first set of experiments hydrogen atoms in the lower Zeeman state were
trapped in a “magnetic bottle” (with walls covered by liquid helium) and cooled to sub-Kelvin tem-
peratures [12–14]. This approach was promising, since due to a rather large density of the gas sample
one expected a relatively high BEC transition temperature. But at realistic achievable temperatures
the density required for BEC turned out to be so high that recombination losses and heating became
crucial [12–16]. In the second set of experiments, performed at MIT and the University of Ams-
terdam, spin polarized atoms were magnetically trapped (wall-less confinement) and further cooled
down by evaporation. The first observation of BEC in spin polarized hydrogen has been recently
reported by the hydrogen group at MIT [17]. Another important experimental achievement came
from the University of Turku (Finland), where the regime of quantum degeneracy was reached in a
two-dimensional gas of hydrogen atoms adsorbed on the surface of liquid helium [18]. This opens an
interesting direction of research, since the nature of BEC in low dimensional systems is drastically
different from that in three dimensions.

Another constituent of successful BEC experiments came from the developments of laser-based
techniques for manipulating cold neutral atoms, such as laser cooling and magneto-optical trapping
(see [19–21] for review). Alkali atoms are much better suited for optical manipulations than atomic
hydrogen, since their optical transitions can easily be excited with commercially available CW lasers.
The temperature of such a sample can be further lowered by transferring atoms from the magneto-
optical to a magnetostatic trap and evaporatively cooling them [22,23]. Such a combination of optical
and evaporative cooling has led to the discovery of BEC in ultra-cold alkali atom gases. There is
an increasing number of successful BEC experiments with87

Rb [3, 24–27], 23Na [4, 28–30], and
interesting experiments with7Li on BEC in gases with attractive interparticle interaction [5]. There
are also ongoing experiments on vapors of cesium, potassium and metastable triplet helium.

From a theoretical point of view, the situation in dilute Bose-condensed trapped gases is unique
compared with, for example, liquid helium. First, due to a very low density of the Bose condensates,
many of the physical properties of the system can be understood within the so called “mean-field”
approximation. A characteristic feature of the mean-field approach in dilute gases is the principal role
of two-body interparticle interactions, whereas the effects of higher-order collisions lead to a relatively
slow decay of the system due to recombination. In dilute ultra-cold gases the interparticle interaction
is characterized by a single parametera, the two-bodys-wave scattering length. Secondly, finite
size effects enhance the manifestation of interparticle interaction in physical properties of trapped
condensates and make their behavior even qualitatively different from that in spatially homogeneous
weakly interacting gases.
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A principal question for BEC in atomic gases concerns the sign of the scattering lengtha. For
a > 0 elastic interaction between atoms is repulsive and the Bose condensate is stable with respect
to this interaction. Ifa < 0 elastic interaction is attractive and this is the origin of a collapse of the
condensate in a homogeneous gas [31]. For trapped gases witha < 0 the situation is practically
the same, provided the interaction between particles exceeds the level spacing in the trapping field
[32, 33]. If this interaction is much smaller than the level spacing, due to the finite size effects there
is a gap between the ground state and one-particle excitations and it is possible to form a metastable
Bose-condensed state [33]. Among the alkalis there are atomic gases with both positive and negative
a [34].

1.2. Outline of the Thesis.

This Thesis is devoted to theoretical investigation of dynamics and kinetics of dilute Bose - con-
densed trapped gases. The key aspect that links together the various parts of the Thesis is related to
the role of interparticle interaction in the described macroscopic quantum phenomena. The results of
the Thesis are of direct relevance for the ongoing experimental studies.

The Thesis is organized in the following way. After the Introduction (Chapter 1) in Chapter 2
we give a brief overview of BEC theory for ultra-cold gases. In Chapter 3, we discuss the issue
of two and three body interactions in ultra-cold gases. The first section is devoted to three-body
recombination, the process in which two atoms form a bound state and a third one carries away
the binding energy. This process may be thought as an initial stage in the formation of clusters
intermediate in size between individual atoms and bulk matter. Three-body recombination limits
achievable densities in trapped ultra-cold gases and, hence, places limitations on the possibilities to
observe Bose-Einstein condensation.

Then, in the second section we develop the idea of manipulating the value and the sign of the
scattering length by using nearly resonant light. Since changinga directly affects the mean field in-
teraction between the atoms, this offers a possibility to investigate macroscopic quantum phenomena
associated with BEC by observing the evolution of a Bose condensed gas in response to light. As the
light essentially couples the ground and excited atomic states and the interaction between atoms in
the excited state is much stronger than in the ground state, already at moderate light intensities the
scattering amplitude can be significantly changed.

The manipulation of the interparticle interaction opens the way of studying macroscopic quan-
tum phenomena associated with the dynamics of the condensates. Together with other possibilities,
such as instantaneous changing the trap frequencies [33] or changing the interparticle interaction by
external magnetic field [35], the laser activation of a Bose-condensate should lead to the creation of
macroscopically excited, but yet coherent condensate states. At the same time, the trapped Bose-
Einstein condensates are well isolated from the environment, and thus the appearance of relaxation
dynamics first observed at JILA at effectively zero temperature poses a question of how the gas sam-
ple, being initially a pure condensate, subsequently reaches a new equilibrium state. This is directly
related to the fundamental problem of the appearance of irreversibility in a quantum system with a
large number of particles. Also, the question of the formation of a thermal component, remains to
be fully resolved. In Chapter 4 we analyze the dynamics of two trapped interacting Bose-Einstein
condensates in the absence of thermal cloud and identify two regimes for the evolution: a regime of
slow periodic oscillations and a regime of strong non-linear mixing leading to the damping of the
relative motion of the condensates.

The description of the detailed behavior of evolving condensates at finite temperatures requires
to develop a theory beyond the mean field. This relates, in particular, to the temperature-dependent
damping rates and energy shifts of elementary excitations of a condensate. In Chapter 5 we develop
a finite temperature perturbation theory capable of calculating the damping rates and energy shifts of
the excitations in both spatially homogeneous and trapped Bose-Einstein condensates.
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Of fundamental interest are macroscopically excited Bose-condensed states, such as vortices in
non-rotating traps. The creation and observation of quantum vortices is a promising option for ob-
serving superfluidity in trapped gases, as quantization of circulation and the related phenomenon of
persistent currents are the most striking properties of superfluids. These studies are especially in-
teresting for the investigation of the relation between Bose-Einstein condensation and superfluidity.
In Chapter 6 we develop a theory for the dissipative dynamics of a vortex state in a trapped Bose-
condensed gas at finite temperature and draw a scenario of decay of this state in a static trap.



CHAPTER 2

Overview

Bose-Einstein condensation is a quantum statistics phenomenon which occurs in a system of
bosons (particles with an integer spin) when the characteristic thermal de Broglie wavelength of
the particles exceeds the mean interparticle separation. In this Chapter we give a brief introduction
to the BEC physics, outlining important concepts and basic methods used for theoretical studies of
trapped ultra-cold gases throughout the Thesis.

2.1. Thermodynamics of an ideal Bose-gas.

We start with thermodynamic description of an ideal gas ofN bosons in a harmonic trapping
potential. The gas sample is assumed to be in thermal equilibrium at temperatureT , and we will cal-
culate thermodynamic averages over the grand canonical ensemble, where the system is characterized
by chemical potential� and fluctuating number of particles. This approach is well justified in trapped
Bose gases by the fact that the number of particles in current BEC experiment may be as high as106

and in the thermodynamic limit (N !1) the grand canonical description is equivalent to that in the
canonical ensemble (fixedN and fluctuating�).

The energy spectrum of an individual atom in a harmonic trap is characterized by a set of three
non-negative integer quantum numbersfng = fnx; ny; nzg and reads

�fng =
X

i=x;y;z

~!i(ni + 1=2);

where!x, !y and!z are the trap frequencies along three Cartesian directions. Hereinafter we adopt
the conventionkB = 1(kB is the Boltzmann constant). The average number of particles in the state
fng is given by the well known Bose-Einstein expression:

NB(�fng) = (e(�fng��)=T � 1)�1:

The value of the chemical potential is fixed by the condition

N(T; �) =
X
�

NB(��) = N;(2.1.1)

which expresses the total number of particles through the sum of the occupation numbers of all avail-
able states.

Since in the thermodynamic limit the Bose-condensation phenomenon occurs at temperatures
greatly exceeding the ground state energy� ~! of a particle in the trapping potential, for the calcula-
tion of thermodynamic functions atT � ~! we can use a quasiclassical approximation. This can be
accomplished in Eq.(2.1.1) by turning from summation over the discrete quantum states to integration
over the classical phase space:

N(T; �) =

Z
d3rd3p

(2�~)3
NB(�(p; r));(2.1.2)

where�(p; r) = p2=2m +
P

im!2
i r

2
i =2 is the classical Hamiltonian depending on the particle coor-

dinater and momentump. The integral in Eq.(2.1.2) can be calculated by introducing the auxiliary
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integral
R
d�Æ(�� �(p; r)) = 1 in the integrand and changing the order of the integrations. This leads

to the equation

N(T; �) =

Z
d�NB(�)

Z
d3rd3p

(2�~)3
Æ(�� �(p; r)):

The second integral a function of the excitation energy and represents the quasiclassical density of
states, which depends on the symmetry of the trapping potential. The calculation of the remaining
integral over the energy leads to the following relation between the chemical potential and the number
of particles:1

T 3

~3!3
�3(e

�=T ) = N;(2.1.3)

where! = (!x!y!z)
1=3. For high temperatures the argument� = exp (�=T ) of the �-function is

small,�3(�) � �, and the chemical potential is large and negative:

� � �T logN

�
T

~!

�3

:

With further decrease of temperature the argument of the logarithm decreases and the chemical po-
tential approaches zero as� approaches1. For� > 1 the�-function diverges and Eq.(2.1.3) does not
have solutions, which means that at temperatures smaller than

Tc = ~!

�
N

�3(1)

�1=3

(2.1.4)

the quasiclassical approach breaks down. The temperatureTc is called the BEC temperature, or
the critical temperature of the BEC phase transition. The appearance of Eq.(2.1.4) can be easily
understood qualitatively. The characteristic de Broglie wavelength of a particle at a given temperature
is � � p

~2=mT . At a given temperature the particles fill the spatial region characterized by the
thermal sizelT �

p
T=m!2. For the maximum density of the particles in the trap we havenmax �

N=l3T and for the mean interparticle separationd � (l3T=N)1=3. For d � � the thermal wavepackets
start overlapping and the atoms loose their identity and the gas sample enters the regime of quantum
degeneracy, defined by the conditionT < Tc, with Tc from Eq.(2.1.4). This estimate reproduces the
transition temperature (2.1.4) up to a numerical coefficient of the order of unity. Since the number of
particles in the BEC experiments is usually very large, typicallyN � 104 � 107, the phase transition
occurs at temperatures greatly exceeding the ground state energy. Hence, the number of populated
states in the trap at temperaturesT � Tc remains very large. This justifies our classical treatment of
excited states.

To resolve the apparent contradiction atT < Tc one has to return to Eq.(2.1.1), where at very low
temperatures the first term corresponding to the ground state turns out to be larger than the contribu-
tion of all other terms. Indeed, at very low temperatures the occupation number of the ground state,
given by

N0 = (e(�0��)=T � 1)�1;

diverges. This means that the chemical potential counted from the ground state energy,� = �T log(1+
1=N0) , is very close to zero and the occupation number of the ground stateN0 is macroscopically
large. Moreover, since the ground state is never degenerate, the occupation number of the next higher
state is smaller thanN0 for sufficiently low temperature (nice discussion of this issue can be found
in [37]). In fact, for any temperature belowTc the sum in Eq.(2.1.1) can be transformed to integra-
tion only for excited states , whereas the occupation of the ground state has to be added explicitly.

1Here we introduce the generalized Riemann�-function:�r(�) =
P
1

n=1
�n=nr:
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FIGURE 2.1.1. The time sequence from JILA [36] experiment. The slides from left
to right correspond to lower temperatures.

This observation, together with the observation that the chemical potential is negligible at very low
temperatures, leads to the following expression

N = N0 +

Z
d3rd3p

(2�~)3
NB(�(p; r))j�=0(2.1.5)

for the total number of particles in the sample atT < Tc. This equation determines the number of par-
ticles in the ground state of the system (Bose-Einstein condensate) as a function of temperature. The
rest of the particles are called excitations, or above condensate particles. The number of excitations is
given by the second term in Eq. (2.1.5) and can be readily calculated:N 0(T ) = N�N0 = N(T=Tc)

3.
From this we find the number of particles in the condensate

N0 = N(1� (T=Tc)
3):(2.1.6)

This expression predicts accumulation of a macroscopic number of particles in the ground state at
temperatures belowTc. If the total number of particles is sufficiently large, the effect can be dramatic.
This is seen, for example, in the JILA experiment (Fig.2.1.1). The quantitative comparison of the
prediction of Eq.(2.1.6) with experimental data is shown in Fig.2.1.2.

2.2. BEC in an interacting gas.

In order to describe an interacting system we turn to the Hamiltonian of a trapped Bose gas in
second quantization

Ĥ =

Z
d3r	̂y(r)

�
�~

2�

2m
+ V (r)

�
	̂(r)+

1

2

Z
d3rd3r0V12(r� r0)	̂y(r)	̂y(r0)	̂(r)	̂(r0);(2.2.1)
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FIGURE 2.1.2. The fraction of condensate particles as a function of temperature. Here
the dashed line shows the prediction of Eq.(2.1.6) and the dots stand for measured
values (the distinguishable shift of the Bose-condensation temperature originates in
interaction effects and thus can not be accounted by Eq.(2.1.6) derived for an ideal
gas)

where	̂(r) is the field operator of atoms,V (r) is the external potential, andV12(r) is the poten-
tial of interaction between two atoms. In ultra-cold dilute Bose-gases the characteristic de Broglie
wavelength of particles and the mean interparticle separation are usually much larger than the charac-
teristic radius of interparticle interaction. This means that the interaction potentialV12 in (2.2.1) can
be approximated by a zero-range potential~UÆ(r), provided the coupling constant~U is chosen to give
the same asymptotic behavior of the wavefunction at large interparticle separation as the solution of
exact scattering problem corresponding to the potentialV12. This gives~U = 4�~2a=m.

The Hamiltonian (2.2.1) does not imply any statistics. The difference between Bose and Fermi
particles comes from the commutation relations between the	-operators. For Bose-statistics we have

[	̂y(r); 	̂(r0)] = Æ(r� r0):(2.2.2)

Commuting the	-operators with the Hamiltonian , we obtain the following equation of motion

i~
@	̂

@t
= (�~

2�

2m
+ V (r) + ~U	̂y	̂)	̂:(2.2.3)

From this equation we see that interparticle interaction in low-temperature gases leads to the appear-
ance of an “effective” potentialVeff = ~U	̂y	̂ acting on a particle and proportional to the density
operator at the pointr. Since the density is always positive, the sign of the potential energy is de-
termined by the sign of the coupling constant~U . In particular, if the scattering length is positive,
then the potential energy of interparticle interaction increases with density, and thus we are dealing
with effectively repulsive interaction. Fora < 0 the interaction energy is negative and for a spatially
homogeneous gas sample it is energetically favorably to shrink to as small volume as possible, i.e.
to collapse. Therefore, a spatially homogeneous gas characterized by a negative scattering length is
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thermodynamically unstable. The solution of the operator equation (2.2.3) allows one, in principle,
to access any interesting property of an interacting Bose-gas. At the same time, the equation is too
complicated and its full solution is generally not possible.2

The apparent difficulty is conveniently resolved for a weakly interacting Bose-condensed gas by
using the concept of spontaneous symmetry breaking. As we have already seen, in a non-interacting
system Bose-condensation manifests itself as a sudden appearance of macroscopic occupation of the
ground state. This provides an abrupt change of such macroscopic properties as heat capacity at the
transition point and therefore the BEC phase transition is of the second order. According to the general
theory of second order phase transitions, the system below the critical temperature is characterized by
a non vanishing order parameter, a quantity which disappears above the critical temperature. Since
a distinctive feature of a Bose-condensed system is the appearance of macroscopically populated
quantum state (condensate), the condensate wavefunction is the corresponding order parameter. Then,
the idea is to replace the analysis of Eq.(2.2.3) by the solution of a classical equation for the order
parameter, i.e. for the condensate wavefunction.

To give a quantitative meaning to these arguments, we split the	-operator in two parts. The first
one, is responsible for the creation/annihilation of particles in the Bose-condensed state. This state
is macroscopically populated, and in the thermodynamic limit we can neglect the commutator for
the condensate part of the	-operator and consider this part as a classical quantity	0 satisfying the
classical version of Eq.(2.2.3):

i~
@	0

@t
= (�~

2�

2m
+ V (r) + ~U j	0j2)	0:(2.2.4)

This equation is called the Gross-Pitaevskii (GP) [38–40] equation and constitutes the backbone of
the mean-field description of Bose condensates at zero temperature. It represents the Schrödinger
equation for a condensate particle moving in the external potentialV (r) and the mean field of all other
condensate particles. The finite-temperature generalizations of Eq.(2.2.4) are discussed in Chapter 5.
The remaining part of the	-operator, denoted below aŝ	0, describes excitations and preserves the
commutation relations (2.2.2).

Eq.(2.2.4) has a discrete set of solutions characterized by a static density profile. Separating a
trivial time-dependence by the substitution	0 ! 	0 exp(�i�t), in equilibrium we obtain a static
equation for the condensate wavefunction

�	0 = (�~
2�

2m
+ V (r) + ~U j	0j2)	0:(2.2.5)

For a spatially homogeneous Bose-condensed gas, i.e. for a gas sample contained within a big box
with V (r) = 0 everywhere inside, we find the spatially independent solution in the form

	0 =
p
n0 exp(i�);(2.2.6)

where the condensate density,n0, and the global phase,�, are spatially independent everywhere
except in the vicinity of the walls. The density of the condensate particles and the chemical potential
are related to each other in a simple way:� = ~Un0. The phase� can not be found from the equation
and therefore is determined by the initial conditions leading to every different realization of a Bose-
condensation experiment. This allows one to say that the global phase� appears spontaneously in
the course of Bose-condensation. An interesting discussion of this subject is presented in [41]. The
appearance of this ambiguity is in fact a consequence of the gauge symmetry of the initial Hamiltonian
(2.2.1).

2Except in a number of exactly solvable cases, such as, the 1D case for the attractive interparticle interaction, time
dependent dynamics of a condensate in a harmonic trap in 2D, and topological excitations (vortices and kinks).
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Together with the normalization condition

N0 =

Z
d3rj	0j2;(2.2.7)

the ground-state solution of Eq.(2.2.5) gives a relation between� and the number of particles in the
trapped condensate,N0. To analyze possible static solutions of Eq.(2.2.5) we first turn to the case
of negligible interparticle interaction~U ! 0. This means that the mean-field term is small and
GP equation coincides with the Schrödinger equation for a particle moving in an external potential
V (r). For the special case of a harmonic trapping potential the solutions of Eq.(2.2.5) exist only for a
discrete set of values of the chemical potential, coinciding with energy states of a quantum harmonic
oscillator. This gives an infinite set of excited Bose-condensed states characterized by different values
of the condensate energy per particle. For the ground Bose-condensed state we get the wavefunction
corresponding to the chemical potential� =

P
i ~!i=2

	0(r) =
p
N0

Y
i

exp(�x2i =2l20i)=(�l0i)1=2;(2.2.8)

whereli = (~=m!i)
1=2 is the localization length of the ground state in a harmonic oscillator with

frequency!i. To find out an error brought by neglecting the mean-field interaction term, one should
compare its maximum value (reached at the center of the condensate) with the trap frequencies. Using
Eq.(2.2.8) we see that the interaction effects are negligible under the condition

� = max
i

�����
~U j	0(0)j2

~!i

������ 1:(2.2.9)

This is the case for rather small condensates, where

N0 � min
j

Q
i l0i

al20j
:

This has an important consequence for a trapped Bose-condensate with attractive interaction between
particles. As we have seen from thermodynamic considerations, in the spatially homogeneous case
such a condensate is unstable. At the same time, under the condition (2.2.9) the collapse in a trapped
gas is suppressed, since in a trapped gas there is a gap� ~! between the condensate and elementary
excitations. Therefore, for sufficiently small Bose-condensates, due to a discrete character of the
energy spectrum in a finite system, a condensate with macroscopically large number of particles can
exist even for attractive interparticle interaction [33].

In the opposite limiting casea > 0 the shape of the condensate is dominated by the interparticle
interaction. Here the interaction smears out the discrete structure of the energy levels and a condensate
with attractive interaction is clearly unstable. In this overview we limit ourselves to positive values
of ~U . In this case the condensate wavefunction can be found by disregarding the kinetic energy term
in Eq.(2.2.5). This corresponds to the so called “Thomas-Fermi” approximation and leads to the
algebraic expression for the condensate wavefunction [42,43]:

	TF
0 (r) =

s
�� V (r)

~U
;(2.2.10)

if � > V (r) and zero otherwise. For a harmonic trap the condensate has a parabolic shape with
the sizelci = (2�=m!2

i )
1=2 in the i-th direction. Close to the condensate border the Thomas-Fermi

approximation fails and the exact shape of	0 has to be found from Eq.(2.2.5) by treating all terms on
the equal footing, or should be calculated numerically. Substituting the maximum densityn0max =
�= ~U to the criterion (2.2.9) we see that this criterion is equivalent to~Un0max � ~!. Using Eq.(2.2.7),
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the chemical potential in the Thomas-Fermi regime is related to the number of condensate particles
as

� = (
15 ~Um3=2!3

�29=2
)2=5N

2=5
0 :

Throughout the Thesis we are mainly interested in the properties of the Thomas-Fermi condensates,
since it is just this case which is analogous to the bulk superfluid matter. For the same number of
condensate particles there are also stationary solutions of Eq.(2.2.5), corresponding to higher values
of the chemical potential. These are excited Bose-condensed states characterized by the condensate
wavefunction having one or more nodes.

2.3. Dynamics of Bose-condensates

The solution (2.2.10) represents an approximation to the ground state condensate wavefunc-
tion and does not contain any time dependence. The time-dependent dynamics of trapped Bose-
condensates in the mean-field approximation is studied within the framework of the time dependent
GP equation (2.2.4). For arbitrary Thomas-Fermi parameters�=~!i the solution can only be obtained
numerically. At the same time, in harmonic traps the dynamics can be approached by using the pres-
ence of a scaling symmetry inherent to the Hamiltonian (2.2.1). This is the case for the evolution under
variations of both the trap frequencies [44–46] and the interparticle interaction (scattering lengtha)
in 3D Thomas-Fermi condensates [47]. Consider a condensate trapped in 3D harmonic trap charac-
terized by trapping frequencies!i(t) in every spatial direction. Neglecting the spatial derivatives of
the condensate density profile and turning to rescaled coordinate and time variables�i = ri=bi(t),
� =

R t
dt=
Q

i bi(t), we introduce a function�0(�; �) such that

	0(t; r) =
1Q

i b
1=2
i (t)

�0(�i; �) exp (i
X
i

mr2i
2~

_bi(t)

bi(t)
� i��(t)):(2.3.1)

Then, setting@�0=@t = 0, the equation of motion

i~
@	0

@t
=

 
�~

2�

2m
+
X
i

m!2
i (t)r

2
i

2
+ ~U j	0j2

!
	0(2.3.2)

is reduced to the stationary GP equation in the�-variables for�0(�), with the initial (constant) fre-
quencies and scattering length. Assume, that the variation of trap frequencies is switched on at the
time t = 0. Then, the scaling parametersbi(t) satisfy the initial conditions:bi(0) = 1, _b(0) = 0 and,
in the simplest case of varying only the frequencies in a spherically symmetric trap, are determined
by the equations

�b(t) + !2(t)b(t) = !2
0=b

4(t);(2.3.3)

where!0 = !(0) is the initial value of trap frequency. This means that in the� variables�0(�) is
just the initial static condensate wavefunction, and Eq.(2.3.1) gives a universal scaling solution for
the wavefunction of the evolving condensate,	0(r; t), at any timet.

According to Eq.(2.3.1), the condensate evolves in time by changing its size but preserving the
shape. The scaling approach has been successfully used to explain the data of the JILA [48] and MIT
[49] experiments on free expansion of condensates after switching off the trap and the measurements
of eigenfrequencies of the lowest oscillation modes of trapped condensates [50,51].

To illustrate how the eigenfrequencies of small condensate oscillations can be found within the
scaling approach, we consider the evolution of a spherically symmetric condensate after a small abrupt
change of the frequency from!0 to !f . The conditionj!f � !0j � !0 guarantees that actually only
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FIGURE 2.3.1. Time sequence of condensate oscillations in a magnetic trap measured
by non-destructive imagining technique (MIT) [49]

one mode of the condensate oscillations is excited, and the solution for the scaling parameter, obtained
from Eq.(2.3.3), is given by

b(t) = b0 + (1� b0) cos(
p
5!0t);(2.3.4)

whereb0 = (!0=!f )
2=5 is the equilibrium value. This solution describes undamped spherically sym-

metric oscillations of the condensate occurring at frequency
p
5!0 (analogues behavior in a cylindrical

trap is shown in Figure 2.3.1). The requirement of small frequency change guarantees thatb0 is very
close to1 and the condensate wavefunction (2.3.1) is close to the equilibrium shape. As the differ-
ence between the final and the initial frequencies increases, the number of excited modes also grows
and the behavior of the system becomes more and more complicated. In particular, one can expect
the interaction between excited modes and stochastization of their motion [47], and the damping of
condensate oscillations already at zero temperature [52].

In the linear regime, where the deviation of the condensate wavefunction from its equilibrium
value is small, one can find a general solution of Eq.(2.2.4) for an arbitrary external potentialV (r).
The solution is a superposition of the equilibrium	0 and elementary excitations of the condensate.
The equations for the excitations are obtained by linearizing Eq.(2.2.4) with regard to small deviations
of 	0 from its equilibrium value, i.e. with regard to fluctuating (quantum) part	0 of the field.3 For a
spatially inhomogeneous Bose-condensed gas , after removing trivial phase factors by the substitution
(	0;	

0)! (	0;	
0) exp(�i�t), we obtain�
i~@	̂0=@t = (�~2�=2m+ V (r)� �+ 2~U j	0j2)	̂0 + ~U	2

0	̂
0y;

�i~@	̂0y=@t = (�~2�=2m+ V (r)� �+ 2~U j	0j2)	̂0y + ~U	�2
0 	̂0:

(2.3.5)

Eqs.(2.3.5) are linear, and therefore a general solution can be written in the form of the Bogolyubov
transformation:

	̂0 =
X
�

(u�(r)b� exp(�i��t)� v�(r)b
y
� exp(i��t));(2.3.6)

3The analysis of elementary excitations of a spatially homogeneous Bose-condensed gas was performed in a different
form by Bogolyubov [53].
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where the eigenfunctionsu�, v� and eigenfrequencies�� of elementary excitations follow from the
system of linear equations:�

��u� = (�~2�=2m+ V (r)� �+ 2 ~U j	0j2)u� � ~U	2
0v� ;

���v� = (�~2�=2m+ V (r)� �+ 2~U j	0j2)v� � ~U	�2
0 u� :

(2.3.7)

Similar equations have been found by De-Gennes [54] for inhomogeneous superconductors, and now
Eqs.(2.3.5) are called Bogolyubov-De Gennes equations. The eigenfunctions are normalized by the
condition Z

d3r(ju� j2 � jv� j2) = 1:(2.3.8)

Together with Eq.(2.3.6), this allows one to rewrite the Hamiltonian (2.2.1) in the form

Ĥ = Ĥ0 +
X
�

��b
y
�b�;(2.3.9)

whereH0 is the ground state (condensate) energy. This Hamiltonian may be interpreted as the sum of
the ground state energy and the energies of excitations (Bogolyubov quasiparticles) characterized by
the operatorsb� andby�. The commutation relations (2.3.8) ensure that the pairb� ; b

y
� is a pair of Boson

annihilation/creation operators and thus the operatorby�b� is an operator of the occupation number of
the state�. In thermal equilibrium we havehby�b�i = NB(��). Since the number of quasiparticles is
not conserved, the chemical potential of the gas of excitation is zero [31].

For the spatially homogeneous case Eqs.(2.3.7) are solved for pairsuk; vk in the form of plain
waves characterized by the wavevectork. The corresponding eigenfrequencies are given by the Bo-
golyubov dispersion law

�k =

s�
~2k2

2m

�2

+ �
~2k2

m
:(2.3.10)

For largek, such that�k � �, the dispersion relation (2.3.10) recovers the Hamiltonian of a classical
particle moving in the mean field of the condensate

�k =
~
2k2

2m
+ n0 ~U:

In the opposite limiting case, for smallk, the dispersion relation is linear ink:

�k = cSk;(2.3.11)

and the corresponding elementary excitations are sound waves (phonons) propagating with the veloc-
ity cS =

p
~2�=m, which depends on the interparticle interaction.

The spectrum of elementary excitations of a trapped Bose-condensed gas, following from Eqs.
(2.3.7), depends on the trapping potentialV (r). For the low-energy excitations ("� � �) of Thomas-
Fermi condensates in harmonic traps the problem has been solved analytically [55–57]. For example,
in a spherically symmetric trap elementary excitations are characterized by three quantum numbers:
angular momentuml, its projectionm, and the principle quantum numbern counting the number
of nodes for the radial part of the wavefunction. Due to a finite size of the condensate the energy
spectrum is discrete. It is given by the relation [55]

�nl = ~!(2n2 + 2nl + 3n+ l)1=2;(2.3.12)

(here the states belonging to the same value ofl and differentm are degenerate). For the lowest
spherically symmetric excitation (breathing mode) we haven = 1, l = 0 and �10 = ~!

p
5, in
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full agreement with the result of the scaling theory (2.3.4). Inside the condensate spatial region the
normalized wavefunctions (f�

� = u� � v�) are given by

f�
nl =

�
(4n+ 2l + 3)

l3c

�1=2�
2�(1� r2=l2c)

�

��1=2�
r

lc

�l

P (l+1=2;0)
n

�
1� 2

r2

l2c

�
;

whereP (a;b)
n (r) are classical Jacobi polynomials. Outside the condensate spatial region the wave-

functionsf+nl = f�
nl and coincide with the wavefunction of a particle (with energy�nl) in the harmonic

oscillator potential.
For the case of cylindrical symmetry the wavefunctions have a similar form [56,57]

f�
� =

�
2�(1� ~�2 � ~z2)

"�

��1=2

W (~�; ~z);

where~� = �=l�, ~z = z=lz andW (~�; ~z) = �jmjBnm(�; z) exp(im�), withm being the projection of the
angular momentum on the symmetry axis, andBnm(~�; ~z) polynomials of~� and~z. These polynomials
and the corresponding eigenenergies"� can be found from the equations

[(1� ~�2 � ~z2)(
@2

@~�2
+

(2jmj+ 1)

~�

@

@~�
+ �2 @

2

@~z2
) � 2(~�

@

@~�

+�2 @
2

@~z2
) + 2(

�2nm
~2!2

�

�m)]Bnm(~�; ~z) = 0;

where� = !z=!� is the ratio of the axial to radial frequency. Quadrupole oscillations withm = 2

(n = 0) are purely radial, and"02 =
p
2~!�. For the quadrupole oscillations withm = 0 (n = 2)

there are two coupled frequencies [45,55,58]:

��20 = ~!�

"
2 +

3

2
�2 �

r
(2� 3

2
�2)2 + 2�2

#1=2
:

The frequencies�02 and��20 were studied experimentally in details by the JILA [48] and MIT [49]
groups. The measured values of the frequencies for small temperatures agree well with the above
outlined results of the mean field theory [45,55,58]. In later experiments at higher temperatures also
temperature-dependent frequency shifts and damping of the elementary excitations have been ob-
served [50,51]. These effects originate from the interaction between quasiparticles and thus their de-
scription requires a development of beyond mean-field description of trapped Bose-condensed gases.
Such a theory is presented in Chapter 5 and allows us to calculate higher order corrections (with
respect to small gaseous parameter(n0a

3)) to the eigenenergies of the excitations.

2.4. Superfluidity and vortices.

The form of the energy spectrum of low energy excitations is closely related to the phenomenon
of superfluidity (in liquid helium observed as viscous-free flow) [31]. Consider a liquid flowing with
a constant velocityv along a capillary. Due to the presence of viscosity, i.e. the friction of the liquid
against the walls or the friction within the liquid itself, the kinetic energy of the liquid would be
dissipated and the flow would gradually slow down. It is more convenient to discuss the flow in a
reference frame moving with the liquid. In such a system the liquid is at rest and the walls of the
capillary move with velocity�v. Once the viscosity is present, the liquid should start moving. This
motion arises from the appearance of elementary excitations in the liquid. Suppose that an elementary
excitation characterized by momentump and energy�p appears in the liquid. Then, since the liquid is
not moving, the energy of the liquidE0 is equal to the energy of the excitation�p and the momentum
of the liquidP0 is equal to the momentum of the excitation,p. Returning to the reference frame, where



2.4. SUPERFLUIDITY AND VORTICES. 15

the capillary is at rest, we recalculate the momentum and energy by using the well-known Galilean
transform:

E = E0 +P0v +Mv2=2;

P = P0 +Mv;

whereM is the mass of the liquid. SettingP0 = p andE0 = "p, we have

E = �p + pv +Mv2=2:

SinceMv2=2 is the initial energy of the moving liquid, the energy change due to the appearance of
the excitation is�� = �p + pv, and in order to initiate the motion of the liquid this quantity should
be negative.

The energy change�� is minimum whenp andv are antiparallel, and the condition�� < 0 is
equivalent to

v > �p=p:(2.4.1)

This condition for the occurrence of excitations in a moving liquid should be fullfiled for at least
some values ofp. Hence, finding the condition of the existence of dissipativeless (superfluid) flow
is equivalent to finding the minimum of�p=p. Geometrically, this ratio is a slope of the line (in the
(p; �p)-plane) linking the origin and a given point on the�p curve. Its minimum value is given by
the point at which the line coincides with the tangent of the curve. If this minimum is not zero, then
for the liquid moving with velocity less than a certain value the dissipation ceases and the liquid
exhibits the phenomenon of superfluidity. The application of this criterion to the dispersion relation
(5.2.18) shows, that a spatially homogeneous dilute Bose-condensed gas can flow without friction
with velocities less than the speed of soundcS. The condition (2.4.1) is known as the Landau condition
for the critical velocity.

The demonstration of superfluidity in a trapped Bose-condensed gas is not an easy task, since a
trapped condensate is a comparatively small finite system. As the size of the condensate in the trap is
lc = (2�=m!2)1=2, the lowest possible wavevectork � 1=lc. Then, according to Eq.(2.3.11), for the
lowest phonon-like excitations we obtain� � ~!, which agrees with the result of Eq.(2.3.12). Clearly,
the system can not be excited by an external perturbation with frequency below the trap frequency,
and this property has nothing to do with Bose condensation. It is just a consequence of the finite size
of the system.

The manifestation of superfluidity in trapped condensates can be found through the creation and
observation of macroscopically excited Bose-condensed states, such as vortices carrying persistent
currents. The existence quantized vortices follows from general properties of a superfluid flow and
therefore is inherent to any superfluid system. Remarkably, much of the physical properties of the
vortex states, as well as their dynamics, can be understood from general considerations, without even
using the microscopic Hamiltonian (2.2.1).

Calculating the current density for the wavefunction (2.2.6) we obtain

jcond =
i~

m
(	�

0r	0 �r	�
0	0) =

~

m
n0r�:

This quantity has a meaning of macroscopic current density associated with condensate particles.
This motion may exist even in thermodynamic equilibrium. It is non-dissipative and therefore the
velocity

vS =
~

m
r�(2.4.2)
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determines the velocity of superfluid flow.4 As it is obvious from this equation, the superfluid motion
is potential flow, i.e.rotvS = 0 (the latter property is also known as irrotational nature of a superfluid
flow).

This brings a very important difference in the rotational properties of normal and superfluid liq-
uids. Consider a classical liquid in a vessel rotating with angular velocity
. Due to friction against
the walls, the liquid as a whole would be gradually driven into rotation together with the vessel. In a
superfluid, only the “normal” component, i.e. the gas of excitations, follows the rotation of the walls,
while the superfluid component remains at rest. In fact, it can not rotate as a whole, since such a
motion would implyvS = 
 � r for the velocityvS at a given pointr. ThenrotvS = 2
, which
contradicts with the property of irrotational flow for a superfluid in motion.

At the same time, for sufficiently large
 the state with the superfluid at rest becomes thermody-
namically unstable. In fact, the energy of the system in the rotating frame is given by

E0 = E � (M
);

whereE andM are the energy and angular momentum of the superfluid in the lab frame. The
condition of thermodynamic equilibrium is that this quantity is a minimum. For a sufficiently fast
rotation the state withM 6= 0 has lower energy that theM = 0 state, i.e. the superfluid motion
should eventually occur. The apparent contradiction of this statement with the irrotational nature of
superfluid flow is solved by the assumption that the vorticity occurs only on certain lines inside the
liquid, where the velocity is singular. The rest of the liquid executes the motion withrotvS = 0:
These lines are known as vortex lines or vortex filaments. In a finite system they either terminate on
the surface of the liquid or exist in the form of closed loops (vortex rings).

The superfluid velocityvS is singular at the vortex line and, hence, the circulation ofvS along the
contourC embracing the vortex is not zero and has a finite value, say2��:I

C

vSdl = 2��:(2.4.3)

Using (2.4.2), we see that the same contour integral is equal to~Æ�=m, whereÆ� is the phase change
along the contour. The latter quantity has to be an integer multiplier of2�, which immediately leads
to the quantization of circulation [59]:

� =
~

m
Z;

whereZ is an integer called the charge of the vortex.
Eq.(2.4.3) is sufficient for finding the velocity field surrounding the vortex. This equation is

similar to the Stokes theorem in magnetostatics, with the magnetic field replaced byvS and electric
currents being analogous the vortex filaments. Therefore, the solution of Eq.(2.4.3) can be obtained
by using the Biot-Savart law. For an infinitely long vortex line we havevS(r) = [� � r̂]=r, wherer
is the distance from the vortex filament, and� is the vector along the vortex line, with the modulus
equal to the vortex circulation. This shows the presence of a persistent current around the vortex line.
Interaction of a vortex with the thermal background causes the appearance of mutual friction forces
leading to the dissipative dynamics and eventual decay of vortex states in trapped Bose-condensed
gases.

4Although the velocity of superfluid flow coincides with the velocity of condensate particles, the density of superfluid
component differs from the condensate density. This follows already from the fact that at zero temperature the entire liquid
is superfluid, whereas the number of particles in the condensate can be as low as10%, according to the measurements in
liquid He.



CHAPTER 3

Two and three body interactions in ultra-cold gases.

3.1. Three-body recombination of ultra-cold atoms to a weakly bounds level

We discuss three-body recombination of ultra-cold atoms to a weakly bounds level. In this case,
characterized by large and positive scattering lengtha for pair interaction, we find a repulsive ef-
fective potential for three-body collisions, which strongly reduces the recombination probability and
makes simple Jastrow-like approaches absolutely inadequate. In the zero temperature limit we obtain
a universal relation, independent of the detailed shape of the interaction potential, for the (event) rate
constant of three-body recombination:�rec = 3:9~a4=m, wherem is the atom mass.

Three-body recombination, the process in which two atoms form a bound state and a third one
carries away the binding energy, is an important issue in the physics of ultra-cold gases. This process
represents the initial stage in the formation of clusters intermediate in size between individual atoms
and bulk matter. Three-body recombination limits achievable densities in high-field-seeking spin-
polarized atomic hydrogen [60–63] and in trapped alkali atom gases (see [64] and references therein)
and, hence, places limitations on the possibilities to observe Bose-Einstein condensation in these
systems.

Extensive theoretical studies of three-body recombination in ultra-cold hydrogen [60–63] and
alkalis [64] showed that the rate constant of this process,�rec, strongly depends on the shape of the
potential of interaction between atoms and on the energies of bound states in this potential. In alkalis
the recombination is caused by elastic interatomic interaction, and in the zero temperature limit�rec

varies approximately asa2 [64], wherea is the scattering length for pair interaction.
All these studies, except one in spin-polarized hydrogen (see [61–63]), rely on Jastrow-like ap-

proximations for the initial-state wavefunction of three colliding atoms. Recent progress in the quan-
tum three-body problem for the case where only zero orbital angular momenta of particle motion are
important [65] opens a possibility for rigorous calculations of three-body recombination in ultra-cold
atomic gases. In this Section we consider the extraordinary case of recombination (induced by elastic
interaction between atoms) to a weakly bounds level. The term “weakly bound” means that the size
l of the diatomic molecule in this state is much larger than the characteristic radius of interactionRe

(the phase shift fors-wave scattering comes from distancesr < Re). In this case the scattering length
is positive and related to the binding energy"0 by (see, e.g., [66])

a = ~=
p
m"0 � l� Re(3.1.1)

(m is the atom mass), and elastic (s-wave) scattering in pair collisions is resonantly enhanced at
collision energiesE � "0. As we show, largea andl imply a rather large recombination rate constant
�rec. At the same time, for large positivea we find a repulsive effective potential for three-body
collisions, which strongly reduces�rec. In the limit of ultra-low initial energiesE � "0 we obtain a
universal relation independent of the detailed shape of the interaction potential:�rec = 3:9~a4=m.

The dependence�rec / a4 can be understood from qualitative arguments. For atoms of equal
mass the energy conservation law for the recombination process reads

3~2k2f=4m = "0;(3.1.2)
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FIGURE 3.1.1. Three possible sets of coordinates for a three-body system. The rela-
tive coordinates arex, between two particles, andy, between their center of mass and
the third particle.

wherekf � 1=a is the final-state momentum of the third atom relative to the center of mass of the
molecule. Recombination to a weakly bounds level occurs in a collision between two atoms, when
a third atom is located inside a sphere of radiusl � a around the colliding pair. For such locations
of the third atom, characterized by a statistical weightw � nl3 (n is the gas density), this atom and
one of the colliding atoms form the weakly bound state with probability of order unity. The number
of recombination events per unit time and unit volume,�rec = �recn

3, can be estimated asn2�v(nl3),
where� = 8�a2 is the cross section for pair collisions. One may put velocityv � ~kf=m, which
gives�rec� 8�~a4=m.

One can also understand qualitatively the existence of a repulsive effective potential for three-body
collisions and the reduction of�rec. In the mean field picture the interaction in a three-body system
at (maximum of the three) interparticle separationsr � Re can be written as4�~2n�a=m, where
n� � 1=r3 is the “particle density” inside a sphere of radiusr. Fora > 0 this interaction is repulsive,
which makes the statistical weightw smaller thannl3 and decreases the numerical coefficient in the
above estimate for�rec. The tail of the three-body effective potential atr � a was found in [67].
Arguments clearly showing the absence of any “kinematic” repulsion independent of the value and
sign ofa are given in [68].

A particular system that should exhibit three-body recombination to a weakly bounds level is a
gas (or a beam) of helium atoms. The He-He potential of interactionV (r) has a well with a depth of
11 K. There is only one bound state in this well, with orbital angular momentumj = 0 and binding
energy"0 � 1:3 mK (see [69] and references therein). The scattering lengtha � 100 Å found for
this potential satisfies criterion (3.1.1). The existence of the He2 dimer, the world’s largest diatomic
molecule (l � 50 Å), has been established experimentally [70]. Another system which is likely to
have three-body recombination to a weakly bounds level is spin-polarized metastable triplet helium,
a gas of helium atoms in the23S state with spins aligned. The interaction potential [71] for a pair
of spin-polarized He(23S) atoms supports ans level with binding energy"0 � 2 mK, which leads to
a � 100 Å and important consequences for the decay kinetics of this system [72,73].

We confine ourselves to three-body recombination of identical atoms at collision energiesE � "0
to a weakly bound moleculars level. In this case the recombination rate constant�rec can be found
from the equation

�rec=�recn
3=

2�

~

Z
d3kf
(2�)3

jTif j2Æ
�
3~2k2f
4m

� "0

�
�n

3

6
:(3.1.3)

Heren3=6 stands for the number of triples in the gas,Tif =
R
 i

~V  
(0)�
f d3xd3x0 is theT -matrix

element for three-body recombination, the coordinates(x; x0) are specified in Fig. 3.1.1, i is the true
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wavefunction of the initial state of the triple, and (0)
f is the wavefunction of free motion of the third

atom relative to the center of mass of the molecule formed in the recombination event. Both i and
 
(0)
f can be written as a sum of three components, each expressed in terms of one of the three different

sets of coordinates (see Fig. 3.1.1):

 i = ~ (x; y) + ~ (x0; y0) + ~ (x00; y00);(3.1.4)

 
(0)
f = (1=

p
3)[�(x; y) + �(x0; y0) + �(x00; y00)];(3.1.5)

�(x; y) �  0(x) exp(ikfy);

where 0 is the wavefunction of the weakly bound molecular state. The interaction between colliding
atoms is regarded as a sum of pair interactionsV (r). The quantity~V is the part of the interaction
which is not involved in constructing the wavefunction (3.1.5), i.e., if the molecule is formed by
atoms 1 and 2 (the first term in Eq.3.1.5), then~V = V (r 1� r 3)+V (r 2� r 3), et cet. Using Eq.(3.1.5),

Tif=2
p
3

Z
d3xd3x0 0(x)cos

�
kfx
2

�
V (x0)exp(�ikfx0) i:(3.1.6)

The initial wavefunction of the triple is best represented in hyperspherical coordinates. The
hyperradius, defined as� = (x2=2 + 2y2=3)1=2, is invariant with respect to the transformations
x; y ! x0; y0 ! x00; y00. The hyperangles are defined as� = arctan(

p
3x=2y), and similarly for

�0 and�00. ForE � "0 only zero orbital angular momenta of the particle motion are important, and
the wavefunction~ can be written as [65]

~ =
X
�

F�(�)p
6

��(�; �)

sin� cos�
:(3.1.7)

The functions��(�; �) are determined by the equation

�@
2��(�; �)

@�2
+
2m

~2
V (
p
2� sin�)�2

 
��(�; �)+

4p
3

Z �=2�j�=6��j

j�=3��j

d�0��(�
0; �)

!
=�(�)��(�; �);

(3.1.8)

with boundary conditions��(0; �) = ��(�=2; �) = 0 and normalization
R �=2

0
j��(�; �)j2d� = �=4.

The sum in Eq.(3.1.7) is over all eigenvalues� corresponding to three free atoms at infinite inter-
particle separation. At ultra-low collision energies the lowest such�(�) alone gives a very good
approximation, and we can confine ourselves to this�. Then the functionF�(�) can be found from
the (hyper)radial equation in which the quantity�(�) serves as an effective potential [65]. Under
the conditionE � "0 at interparticle distances much smaller than their De Broglie wavelength this
equation reads �

� @2

@�2
� 5

�

@

@�
+
�(�)� 4

�2

�
F�(�) = 0:(3.1.9)

The functionF�(�) should be finite for�! 0 and is normalized such thatF�(�)! 1 for �!1.
In our case the pair interaction potentialV (r) supports a weakly bounds level, and the scattering

length is positive and much larger than the characteristic radius of interactionRe for this potential.
For�� Re the function��(�; �) takes the form (cf. [65])

��(�; �)=
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h�p
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�
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�=2)�0(

p
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3)sin(�
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g(�) sin
hp

� (�� �=2)
i
; � > Re=�;

(3.1.10)
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FIGURE 3.1.2. (left) The “effective potential”� as a function of�=a. The solid curve
is obtained from Eq.(3.1.8) using the ground state He-He potential (a = 100Å), and the
dashed from Eq.(3.1.12). (right) The wavefunctionF�(�=a) obtained from Eq.(3.1.9).
The solid curve corresponds to�(�) for the ground state He-He potential, and the
dashed curve to�(�) from Eq.(3.1.12).

whereg(�) = [1 + sin(�
p
�)=�

p
�]�1=2 and�0(r) is the solution of the Schrödinger equation for the

relative motion of a pair of particles,�
�~

2

m

�
@2

@r2
+

2

r

@

@r

�
+ V (r)

�
�0(r) = 0;(3.1.11)

normalized such that�0 ! 1� a=r asr !1. Matching the wavefunctions (3.1.10) at� = Re=��
1 , to zero order inRe=� we obtain the following relation for�(�) at distances�� Re (cf. [65]):

p
2�

a
sin
�p
�
�

2

�
+

8p
3
sin
�p
�
�

6

�
=
p
� cos

�p
�
�

2

�
:(3.1.12)

For�� a this equation yields�(�) = 4+48a=
p
2��, and thus the potential term in Eq.(3.1.9) varies

asa=�3. Eq.(3.1.12) is universal in the sense that� depends only on the ratio�=a, but not on the
detailed shape ofV (r). The same statement holds forF�(�) at distances�� Re.

For infinite separation between particles, i.e., for� ! 1 and all hyperangles larger thanRe=�,
we have

p
� � 2 and��(�; �) � sin 2�. Accordingly, from Eq.(3.1.7) withF�(�) ! 1, each~ in

Eq.(3.1.4) becomes equal to
p
2=3, and the initial wavefunction i !

p
6.

The “effective potential”�(�) and the functionF�(�) for three ground-state He atoms (a � 100Å)
are presented in Fig. 3.1.2. The potentialV (r) was taken from [69]. For� > 100Å our numerically
calculated�(�) coincides (within 10%) with that following from Eq.(3.1.12), ensuring a universal
dependence ofF� on �=a. As �(�) is repulsive,F� is strongly attenuated at� < a (see Fig. 3.1.2).
This leads to a strong reduction of i when all three particles are within a sphere of radius� a.

We first consider the theoretical limit of weak binding, where the scattering lengtha and the
binding energy"0 are related by Eq.(3.1.1), the wavefunction of the bound molecular state at distances
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x� Re is

 0(x) =
1p
2�a

1

x
exp

�
�x
a

�
;(3.1.13)

and the final momentumkf = 2=
p
3a. From Eq.(3.1.13) one can see that the distance between the

two atoms which will form the bound state should be of ordera. To take away the binding energy
the third atom should approach one of them to a distance of orderRe. The main contribution to
the integral in Eq.(3.1.6) comes from distancesx � a andx0 � Re � a. Therefore we may put
� �

p
2=3x, � = �00 � �=3, and�0 � p3x0=2x. Then the initial wavefunction takes the form

 i � (1=
p
3)�0(x

0) ~F�(
p
2x=

p
3a);(3.1.14)

with ~F�(z)=zF�(z)g(z)sin(
p
�(z)�=2) andz = �=a. Puttingkfx0�0 and using

R
d3x0V (x0)�0(x

0)=

4�~2a=m , from Eq.(3.1.6) we obtainTif =48�3=2~2a5=2G=m, where

G =

Z 1

0

dz sin(z=
p
2) exp(�z

p
3=2) ~F�(z):(3.1.15)

The main contribution to this integral comes fromz � 1 (� � a), where� andF� (and, hence,~F�)
are universal functions of�=a. ThereforeG is a universal number independent of the potentialV (r).
Direct calculation yieldsG = 0:0364. With the aboveTif andG, from Eq.(3.1.3) we arrive at the
recombination rate constant

�rec =
512�2G2

p
3

~

m
a4 � 3:9

~

m
a4:(3.1.16)

The dependence�rec / a4, instead of�rec / a2, is a consequence of the recombination to a
weakly bound s level and can be also obtained within the Jastrow approximation for the initial wave-
function: iJ =

p
6�0(r 1 � r 2)�0(r 2 � r 3)�0(r 3 � r 1). This approximation was proved to be a good

approach for atomic hydrogen [61–63] and was later used for alkali atoms [64]. In our case, instead
of Eq.(3.1.14), we obtain iJ �

p
6�0(x

0)�2
0(x) and arrive at Eq.(3.1.16), with 4 orders of magnitude

larger numerical coefficient. Such a very large discrepancy occurs because both results are determined
by distancesx � a, where in our (rigorous) theory i is strongly reduced by the repulsive effective
potential (see above). In the Jastrow approximation this reduction is not present. Moreover, iJ is
resonantly enhanced at distancesx < a. Thus, for largea the Jastrow approximation gives a wrong
picture of three-body collisions and is absolutely inadequate to describe recombination to a weakly
bounds level.

The strong reduction of�rec due to the presence of a repulsive effective potential for three-body
collisions can be treated as “quantum suppression” of three-body recombination (see related discus-
sions in [68, 74]). Nevertheless,�rec remains finite in the zero temperature limit. In fact, due to large
values ofa, it is rather large. It is also worth noting that for large andnegativescattering length the
quantity�(�) should have the form of a potential well, with a repulsive core at small�, and the picture
of recombination collisions can be completely different.

In trapped gases the kinetic energy of the third atom acquired in the recombination process usually
exceeds the trap barrier, and such atoms escape from the trap. Thus, the loss rate for atoms is_n =
�Ln3 , with L = 3�rec. For three-body recombination of ground-state He atoms Eq.(3.1.16) gives
L � 2 � 10�27 cm6/s. As the He-He interaction hasRe � 15Å� a, this value ofL is a very
good approximation. More accurate calculation, using�(�) andF�(�) determined for the He-He
interaction (solid curves in Fig. 3.1.2), gives a correction of 10%. The sameL is obtained for three-
body recombination of spin-polarized He(23S) atoms. In this case the result is less accurate, since the
characteristic radius of interaction is somewhat larger (Re � 35Å).
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Qualitatively, the picture of an effective repulsion in three-body collisions, implying a strong
reduction in the recombination rate constant, can be valid for systems with positive scattering length
a � Re. One can find such systems among the ultra-cold alkali atom gases.

3.2. Influence of resonant light on the scattering length in ultra-cold gases.

We develop the idea of manipulating the scattering lengtha in low-temperature atomic gases by
using nearly resonant light. As found, if the incident light is close to resonance with one of the bound
p levels of electronically excited molecule, then virtual radiative transitions of a pair of interacting
atoms to this level can significantly change the value and even reverse the sign ofa. The decay
of the gas due to photon recoil, resulting from the scattering of light by single atoms, and due to
photoassociation can be minimized by selecting the frequency detuning and the Rabi frequency. Our
calculations show the feasibility of optical manipulations of trapped Bose condensates through a
light-induced change in the mean field interaction between atoms, which is illustrated for7Li.

The recent successful experiments on Bose-Einstein condensation (BEC) in magnetically trapped
gases ofRb [3], Li [5] andNa [4] have generated a lot of interest in macroscopic quantum behavior
of atomic gases at ultra-low temperatures. These experiments were enabled by efficient evaporative
[22, 23] and optical cooling [20, 21] methods combined to reach the necessary temperatures (T <
1� K) and densities1012 < n < 1014 cm�3.

A principal question for BEC in atomic gases concerns the sign of the scattering lengtha for
the pair elastic interaction. Fora > 0 elastic interaction between atoms is repulsive and the Bose
condensate is stable with respect to this interaction. Ifa < 0 elastic interaction is attractive and this is
the origin of a collapse of the condensate in a homogeneous gas [31]. For trapped gases witha < 0 the
situation is likely to be the same, provided the interaction between particles exceeds the level spacing
in the trapping field [32, 33]. If this interaction is much smaller than the level spacing, there is a gap
for one-particle excitations and it is possible to form a metastable Bose-condensed state [33]. Among
the alkalis there are atomic gases with positive as well as with negativea [34]. Also the magnetic
field dependence ofa was predicted [35].

In this Section we develop the idea of manipulating the value and the sign of the scattering length
by using nearly resonant light. Since changinga directly affects the mean field interaction between
the atoms, this offers a possibility to investigate macroscopic quantum phenomena associated with
BEC by observing the evolution of a Bose condensed gas in response to light. Also optical control
of cold elastic collisions is attracting interest [75, 76]. The physical picture of the influence of the
light field on the elastic interaction between atoms is the following: A pair of atoms absorbs a photon
and undergoes a virtual transition to an electronically excited quasimolecular state. Then it reemits
the photon and returns to the initial electronic state at the same kinetic energy. As the interaction
between atoms in the excited state is much stronger than in the ground state, already at moderate light
intensities the scattering amplitude can be significantly changed.

The presence of the light field also induces inelastic processes, such as photon recoil and light
absorption in pair collisions (with regard to cold collisions see refs. [77, 78] for review). Photon
recoil is the result of the scattering of light by single atoms. At subrecoil temperatures, typical for
achieving BEC, recoiling atoms are lost as they overcome the confining barrier and escape from the
trap. The probability of light scattering by single atoms is proportional to(
=Æ)2, where
 is the Rabi
frequency andÆ is the frequency detuning of the light with respect to a single atom at rest. To suppress
the recoil losses the ratio
=Æ needs to be sufficiently small. Then, for positiveÆ, where the light is at
resonance with continuum states of excited quasimolecules, the change ofa will also be proportional
to (
=Æ)2 and thus very small. To have small recoil losses in combination with a significant change of
a; the detuningÆ should be large and negative and not too far from a vibrational resonance with one
of the boundp states of the electronically excited molecule. However, the vicinity of the resonance
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will also lead to photoassociation in pair collisions, followed by spontaneous emission and loss from
the trap. Hence, the frequency detuningÆ� with respect to the�-th (nearest) vibrational resonance
should greatly exceed the line width of the resonance. We established that it is possible to change the
scattering length substantially and even switch its sign without excessive recoil or photoassociation
losses. This will be illustrated for7Li.

We consider low gas densities satisfying the condition

n�3 � 1;(3.2.1)

where� is the optical wavelength. Then collective optical effects [79,80] are absent, and at sufficiently
low temperatures the line broadening of optical transitions is determined by the natural line width
� = 4d2=3~(�=2�)3, whered is the transition dipole moment. We analyze the influence of incident
light with large (jÆj � �) and negative frequency detuning on the interaction in a pair of atoms, with
vanishing wavevector of relative motion,k ! 0. The light frequency is assumed to be nearly resonant
with a highly excited vibrationalp level (with vibrational quantum number� and binding energy"�)
in the interaction potentialV (r) of the attractive excited electronic state of the quasimolecule, i.e., the
frequency detuning with respect to this level,Æ� = Æ � "�, is much smaller than the local vibrational
level spacing�"� = "� � "�+1 (hereafter all frequencies are given in energy units). Then radiative
transitions of the pair from the ground electronic state to the excited level� are most important. These
transitions predominantly occur at interparticle distancesr in the vicinity of the outer turning pointrt
for the relative motion of atoms in the bound statev, i.e.,V (rt) = �"�. Unless"� is very large,rt is
determined by the long-range part ofV (r), represented by the resonance dipole term. If"� andjÆj are
still much larger than the Zeeman and fine structure splitting, then at interparticle distances relevant
for radiative transitions the polarization vector of the attractive excited quasimolecular state,e�, is
parallel to the internuclear axis, andV (r) = �2d2=r3. Hence, as"� � jÆj � �, we havert � �.

For sufficiently large"� andÆ spontaneous emission of excited molecules predominantly produces
non-trapped atoms with kinetic energies of order"�. These atoms practically do not interact with the
driving light and escape from the trap. Therefore, the problem of finding the scattering length in
the presence of light is equivalent to a scattering problem which can be be described in terms of
wavefunctions of the ground and excited electronic quasimolecular states. These states are coupled
by light, and spontaneous emission from the excited state can be taken into account by adding the
“absorptive part”�i� (the spontaneous emission rate for molecules is twice as large as that for single
atoms) to the interaction potentialV (r).

In the Born-Oppenheimer approximation the total wavefunction of the quasimolecule in the pres-
ence of light can be written as�(r )jgi+ (r)jei, wherejg > andje > are the electron wavefunctions
of the ground and excited electronic states. The wavefunctions of the relative motion of atoms in
these states,�(r) and (r), can be found from the system of coupled Schrödinger equations:

�~
2

m
4r �(r) + U(r)�(r ) + 
�(r ) (r) = 0;(3.2.2)

�~
2

m
4r (r)+(V (r)�i��Æ) (r)+
�(r)�(r )=0;(3.2.3)

where�(r) = (e�e�(r)), U(r) is the interaction potential in the ground electronic state, ande� the
polarization vector of light. The Rabi frequency is defined as
 = dE=

p
2, whereE is the amplitude

of the electric field of light. In Eqs. (3.2.2) and (3.2.3) we neglect the light shifts at infinite separation
between atoms and omit the recoil. These equations lead to the integral equation for�(r ):

�(r)=�0(r)+
2

Z
dr 00dr 0G(r 00;r)�(r 00) ~G(r 00;r 0)�(r 0)�(r 0):(3.2.4)

HereG(r ; r 0) and ~G(r ; r 0) are the Green functions of Eqs. (3.2.2) and (3.2.3) with
 = 0. The
wavefunction�0 describes the relative motion of atoms with zero energy for the potentialU(r) in the
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absence of light. This function is a solution of Eq.(3.2.2) with
 = 0. The Green functionG(r ; r 0)
has the form

G(r ; r 0) =
m

4�~2
�
�

�0(r)~�0(r
0) r < r0

~�0(r)�0(r
0); r > r0

�
(3.2.5)

where ~�0(r) is a solution of the same Schrödinger equation as that for�0(r), but contains only an
outgoing spherical wave at larger: ~�0(r)! 1=r for r !1. As the frequency detuning of light was
chosen such thatjÆ� j � �"�, the bound state� should give the dominant contribution to~G(r ; r 0) and
we may use

~G(r ; r 0) = � �(r) �
�(r

0)=(Æ� + i�);(3.2.6)

where �(r) is the wavefunction of this state in the absence of light. Accordingly, the dependence
of the rhs of Eq.(3.2.4) on�(r) will be only contained in the integralI =

R
d3r 0�(r 0)�(r 0) �

�(r
0).

Multiplying both sides of Eq.(3.2.4) by�(r) �
�(r) and integrating overd3r , we expressI through the

overlap integralI0 =
R
d3r 0�0(r 0)�(r 0) �

�(r
0). Then the exact solution of Eq.(3.2.4) is straightforward:

�(r)=�0(r)�
2I0
R
dr 0 �(r 0)�(r 0)G(r ; r 0)

Æ� + (
2=�"�)� + i�
:(3.2.7)

The quantity(
2=�"�)� describes the light-induced shift of the�-th vibrational resonance, and the
numerical factor�=�"�

R
drdr 0G(r ;r 0)�(r ) �

�(r)�(r
0) �(r 0). As in the limit of zero energies only the

s-wave contribution to�(r) and�0(r) is important, the scattering length in the presence of light can
be found from the asymptotic form of�(r) at large distances:�(r) ! 1 � a=r for r ! 1. At large
r the Green functionG(r ; r 0) = m�0(r 0)=4�~2r, and Eq.(3.2.7) yields

a = a+
(
2=�"�) ~�

Æ� + (
2=�"�)� + i�
rt;(3.2.8)

with a the scattering length in the absence of light, and the numerical factor
~� = (m�"�=4�~

2rt)jI0j2:
It should be emphasized that Eq.(3.2.8) is valid for any ratio betweenjÆ� j and(
2=�"�)�.

Unless"� and jÆj are huge, the turning point separationrt is large enough for�0 and ~�0 to be
smooth functions ofr at distancesr � rt where the main contribution originates to the integrals in
the equations for�, I0 and ~�. Putting�0(r) = �0(rt), ~�0(r) = ~�0(rt) in the integrands of these
equations and using a linear approximation forV (r) = �2d2=r3 in the vicinity ofrt, we obtain

~� = 0:8�2�20(rt); � = 0:8�2f0(rt)�0(rt):(3.2.9)

The functionf0(r) = r ~�0(r) is tending to1 for r !1. For the level spacing the WKB approximation
gives

�"� = 1:9�"�(rt=r0)
1=2 � "� :(3.2.10)

The characteristic distancer0 = md2=~2. For alkali atomsr0 greatly exceeds the optical wavelength
(r0 > 105 Å) and, hence,r0 � �� rt.

The presence of other boundp levels and continuum states of the excited quasimolecule changes
Eq.(3.2.6) for the Green function~G. Our analysis, relying on the exact expression for~G, shows that
in order to omit the contribution of virtual transitions to these states and, hence, retain the validity of
Eq.(3.2.8) it is sufficient to havejÆ� j and
 much smaller than the level spacing�"�. The condition

� �"� leads to important physical consequences. The radiative transitions occur in a narrow range
of distances nearrt, characterized by the width�r � rt(rt=r0)

1=3. As the characteristic velocity in
this regionv � p

"��r=mrt, the interaction time�t � �r=v of the quasimolecule with light is
such that
�t � (
=�"�)(rt=r0)

1=6� 1. Then, turning to a classical picture, one can say that the
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“population” of the excited quasimolecular state will be small. This ensures the absence of effects
analogous to power broadening in the single atom case.

The light changes the real part of the scattering length and introduces an imaginary part. The
frequency dependence of Rea and Ima has a resonance structure:

Rea=a+

2 ~���

�"�(�2�+�2)
rt; Ima=� 
2 ~��

�"�(�2�+�2)
rt;(3.2.11)

where�� = Æ� +(
2=�"�)�. The real part determines the mean field interaction between atoms. The
light-induced change of this interaction is given by

n( ~U � ~U) � ~��1
a = 4�~2(Rea� a)n=m:(3.2.12)

The imaginary part ofa originates from the photoassociation process in pair collisions, followed by
spontaneous emission. The inverse decay time due to this process is

��1
pa = 8�~jImajn=m:(3.2.13)

Exactly at resonance (�� = 0) the mean field interaction is the same as in the absence of light, and the
photoassociation rate is the largest.

For small Rabi frequency Eq.(3.2.11) goes over into the result of perturbation theory and both
��1
a and��1

pa are proportional to
2. The former can be treated as a “light shift” of the mean field
interaction and the latter will be nothing else than the ordinary photoassociation rate at a low light
power. For(
2=�"�)� � jÆ� j the driving light shifts the interacting pair of atoms out of resonance.
As the corresponding shift is proportional to
2, the light-induced change of the mean field interaction
becomes independent of
. It will be determined by Eq.(3.2.12) with Rea � a = (~�=�)rt. On the
contrary, the photoassociation rate (Ima) decreases as1=
2.

The amplitude of binary interaction, affected by light, undergoes damped oscillations and reaches
its stationary value (3.2.8) on a time scale of order��1 (for �� maxfjÆ� j;
g it averages to Eq.(3.2.8)
much faster). This is much shorter than the characteristic response time of a dilute trapped gas, which
cannot be faster than�a. To have an appreciable modification of the mean field interaction without
excessive photoassociation,�a should be short compared to�pa, i.e., the condition

jReaj � jImaj(3.2.14)

should hold. As follows from Eq.(3.2.11), this is the case forj�� j � �. The change of the scatter-
ing length Rea� a � (
2 ~�=�"���)rt can exceedrt, whereas the imaginary part ofa will be much
smaller. The scattering length can be changed in both directions simply by changing the sign of��.

In addition, the time�a should be much smaller than the decay time�r due to the photon recoil of
single atoms, caused by light scattering. Since��1

r = (
=Æ)2�=2, this is the case for (jÆj � "�)

n�3 � j�� j=4�"� ;(3.2.15)

as follows from Eqs. (3.2.11), (3.2.9) and (3.2.10) assumingj�� j � � to simultaneously satisfy
condition (3.2.14). Asj�� j � �"�, the inequality (3.2.15) is not in contradiction with our starting
assumption (3.2.1) and can be fulfilled in alkali atom gases at densitiesn � 1013 � 1014 cm�3 by an
appropriate choice of
, the level� andÆ� .

All the above results remain valid for finite momenta of colliding atoms,k � min(r�1
t ; jaj�1;

jaj�1) .
We performed calculations for7Li by using spectroscopic information on the location of boundp

levels in the excited electronic state3�+
g [81]. The potential of interaction in the ground state3�+

u was
taken from [82], the scattering length in the absence of light beinga � �14 Å. Eq.(3.2.11) was used
to calculate the scattering lengtha under the influence of light nearly resonant for vibrationalp levels
of the3�+

g state, with quantum numbers ranging from� = 77 ("� = 2:8K) to � = 66 ("� = 28:7K).
We find that for
 in the range5�40mK (light power ranging from10 to1000W/cm2) it is possible to
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FIGURE 3.2.1. The scattering length for7Li as a function of the frequency detuning
of light, Æ�=�, from the excited boundp level�: a)
 = 10 mK, "� = 9:1K; b) 
 = 40
mK, "� = 20:1K. The solid curve represents the real part ofa, and the dashed curve
the imaginary part. The dotted line corresponds to the scattering length in the absence
of light.

significantly change the scattering length and even make it positive while maintainingjImaj � jReaj
(see Fig.3.2.1). The recoil loss time�r varies from100 to 1 ms.

Our results show the feasibility to optically manipulate the mean field interaction between atoms
and open prospects for new optical experiments in trapped gases. For example, once a gas is in a
Bose-condensed state, instantaneous switching of the sign ofa changes the sign of the non-linear in-
teraction term in the Ginzburg-Gross-Pitaevskii equation for the condensate wavefunction and causes
the trapped condensate to evolve in a completely different way than a condensate set into motion
by changing the trap frequency. The evolution will involve two time scales:�a and the inverse trap
frequency!�1

t , and continue after the light is switched off. Because of the light-induced decay pro-
cesses, the light should be switched on only for a time much shorter than�r. Hence, besides the above
discussed condition�a � �r, experiments should be arranged such that!t�r � 1. This is feasible
with the above values for�r. As in most cases�r will be much smaller than the characteristic time for
elastic collisions, the evolving condensate will not be in equilibrium with above-condensate particles.

In trapped gases with negative scattering length one may expect a stabilization of the condensate
by switchinga to positive values. Of particular interest is the case where the sign ofa is switched
from positive to negative. In a quasihomogeneous Bose-condensed gas (n ~U � ~!t) this should
induce a “collapse” of the condensate, caused by elastic interatomic interaction. The investigation of
this phenomenon is of fundamental interest.



CHAPTER 4

Dynamics of BEC at zero temperature

We analyze the dynamics of two trapped interacting Bose-Einstein condensates in the absence of
thermal cloud and identify two regimes for the evolution: a regime of slow periodic oscillations and a
regime of strong non-linear mixing leading to the damping of the relative motion of the condensates.
We compare our predictions with an experiment recently performed at JILA.

The experimental evidence for Bose-Einstein condensation in trapped atomic gases [3–5] has
attracted a lot of attention, as the presence of a macroscopically occupied quantum state makes the
behavior of these gases drastically different from that of ordinary gas samples. Trapped Bose-Einstein
condensates are well isolated from the environment and, at the same time, can be excited by deform-
ing the trap or changing the interparticle interaction. The question of how the gas sample, being
initially a pure condensate, subsequently reaches a new equilibrium state is directly related to the
fundamental problem of the appearance of irreversibility in a quantum system with a large number of
particles. Thus far the time dependent dynamics of trapped condensates has mainly been analyzed for
a single condensate [32,44–46,52,83] on the basis of the Gross-Pitaevskii equation for the condensate
wavefunction. Remarkably, already in this mean field approach the stochastization in the condensate
evolution has been found [45], and the damping of the condensate oscillations has been observed
numerically [52]. However, the question of the formation of a thermal component, addressed in [45],
has not been investigated.

In this Chapter we study the evolution of a richer system, a mixture of two interacting condensates
(a andb), in the situation where initially the thermal cloud is absent. The properties of a static two-
component trapped condensate, including the issue of spatial separation of thea andb components
due to interparticle interaction [84, 85], were investigated in [86–89]. The response of the system to
small modulations of the trap frequency has also been studied numerically [90]. In our case thea
andb condensates have initially the same density profile and are set into motion mostly by an abrupt
displacement of the trap centers. The main goal of our work is to study the dynamics of spatial
separation of the two condensates and analyze how the system can acquire statistical properties and
reach a new equilibrium state. From a general point of view, we are facing the problem raised by
Fermi, Pasta and Ulam [91]. They considered classical vibrations of a chain of coupled non-linear
oscillators, to analyze the emergence of statistical properties in a system with a large number of
degrees of freedom. As has been revealed later, the appearance of statistical properties requires a
sufficiently strong non-linearity leading to stochastization of motion [92], whereas for small non-
linearity the motion remains quasiperiodic (see e.g. [93]).

We consider a situation in which the two condensatesa andb see harmonic trapping potentials
of exactly the same shape, and the interparticle interactions characterized by the scattering lengths
aaa, aab andabb are close to each other. The control parameter, determining the possibilities of non-
linear mixing and stochastization, is the relative displacementz0 of the trap centers. We identify two
regimes for the evolution. In the first one the relative motion of the condensates exhibits oscillations
at a frequency much lower than the trap frequency!. In the other regime there is a strong non-linear
mixing leading to the damping of the relative motion, and the system has a tendency to approach a
new equilibrium state. We compare our predictions with the results of the JILA experiments [94, 95]
on a two-component condensate of87Rb atoms in theF = 1;m = �1 andF = 2;m = 1 states.
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FIGURE 4.0.1. Time evolution of the binary condensate mixture [94] with a relative
sag of 0.4�m (3% of the width of the combined distribution prior the expansion) and
the trap frequency59Hz.

In these experiments the double condensate was prepared from a single condensate in the stateF =
1;m = �1 (a) by driving a two-photon transition which coherently transfers half of the atoms to the
stateF = 2;m = 1 (b).

We mostly perform our analysis in the mean field approach relying on the Gross-Pitaevskii equa-
tions for the wavefunctions�a and�b of thea andb condensates. This approach corresponds to the
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classical limit of the evolution of a quantum field, the subsequent corrections being proportional to a
small parameter(na3""0)1=2 (n is the gas density) and, hence, manifesting themselves only on a rather
large time scale. The two coupled Gross-Pitaevskii equations for�a and�b normalized to unity read

i~@t�"=

"
�
~
2�

2m
+ U" � �+

X
"0=a;b

g""0N"0 j�"0j2

#
�":(4.0.16)

Hereg""0 = 4�~2a""0=m are the coupling constants for elastic interaction between atoms in the states
" and"0, m is the atom mass, andN", U" are the number of atoms and trapping potential for the"
condensate. As in the JILA experiment, we choose the initial condition�a;b(0) = �0, where the (real)
wavefunction�0 corresponds to the ground state of Eq.(4.0.16) with all atoms in thea state and no
trap displacement. The chemical potential of this ground state is denoted as�.

We consider thea and b condensates in the Thomas-Fermi regime (~! � �) and assume the
number of condensate atomsNa=Nb=N=21 . The first set of our calculations is performed for the
evolution of the condensates in a spherically symmetric trapping potentialU0(r)=m!2r2=2 which at
t=0 is displaced along thez axis by a distancez0=2 for thea atoms, and by�z0=2 for theb atoms.
We present the results for the time dependence of the mean separation between the condensates,

u(t) =

Z
d3r z (j�a(r ; t)j2 � j�b(r ; t)j2):(4.0.17)

For the curves in Fig.4.0.2 the coupling constants aregaa = gab = gbb, and forz0 = 0 our initial
state is an equilibrium state att � 0. In this state the Thomas-Fermi radius of the condensateR0 =
(2�=m!2)1=2 serves as unit of length, and the shape of�0 is determined by�=~!. Hence, forz0 6= 0
the dependence of the quantityu=R0 on!t is governed by the parameters�=~! andz0=R0.

Our results reveal two key features of the evolution dynamics. The first one, for a tiny displace-
mentz0, is a periodic motion with slow frequencies which turn out to be sensitive to small variations
in the values of the coupling constants. The other feature, for much largerz0, but still z0 � R0, is a
strong damping in the relative motion of the two condensates, as observed at JILA [94].

In order to understand the physics behind the evolution pattern, we first perform a linear analysis
of Eq.(4.0.16). For the case wheregaa=gab=gbb=g, and the displacementz0 is sufficiently small, we
linearize Eq.(4.0.16) with respect to small quantitiesÆ�a;b=(�a;b��0) andz0. Then, for the quantity
Æ��=Æ�a�Æ�b, describing the relative motion of the condensates, we obtain the equation

i~@tÆ�� =

�
�
~
2�

2m
+ U0 � �+Ng�20

�
Æ�� + S�;(4.0.18)

with the source termS�=m!2z0z�0. For the quantityÆ�+=Æ�a+Æ�b we find an equation decoupled
from Æ�� and without source terms. Hence, the initial conditionÆ�+(r ; 0) = 0 allows us to put
Æ�+(r ; t) = 0 for t � 0.

ForS�=0 Eq.(4.0.18) is the equation for the wavefunction of a particle moving in the potential
V =U0��+Ng�20. Stationary solutions of this equation provide us with the eigenmodes of oscillations
of the condensates with respect to each other. In the Thomas-Fermi limit the potentialV , originating
from the kinetic energy of the condensate, is a smooth function ofr inside the condensate spatial
regionr < R0: V = ~

2(��0)=2m�0 � ~!. For r > R0 this potential is close toU0 � � and is
much steeper. ReplacingV by an infinite square well of radiusR0 we obtain the energy spectrum
of eigenmodes with large quantum numbersn: En;l = (�~!)2(2n + l)2=16�, wherel is the orbital
angular momentum. This explains the appearance of oscillations at a frequency much smaller than!
in our numerical calculations (see Fig.4.0.2a), since the energy scale in the spectrum is(~!)2=� �
~! . For the latter reason we call these eigenmodes soft modes. Note that the soft modes for the

1We solve Eq.(4.0.16) numerically, using cylindrical symmetry, on a finite grid with a splitting technique. Numerical
accuracy is tested by changing the grid and checking energy conservation (ÆE=E < 10

�5 for t = 100s).
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FIGURE 4.0.2. Mean separation between the condensates versus time in isotropic
traps forgaa = gab = gbb and�=~! = 29:2. Relative displacement:z0 = 6:66 �
10�4R0 (a), andz0 = 7:16 � 10�2R0 (b). Solid curves: numerical integration of
Eq.(4.0.16). Dotted curves: analytical prediction for (a) (see text), and the linear model
relying on Eq.(4.0.21) for (b).

relative motion of the two condensates also exist in the spatially homogeneous case where they have
a free-particle spectrum [84].

As in our linear approach we haveÆ�+(r ; t) = 0, Eq.(4.0.17) for the mean separation between
the condensates reduces tou(t) = 2

R
d3r z �0RefÆ��g, and the contribution tou(t) comes from the

components ofÆ�� with l = 1;ml = 0. Solving Eq.(4.0.18) with the initial conditionÆ��(r ; 0) = 0,
we obtainu(t) as a superposition of components, each of them oscillating at an eigenfrequency of a
soft mode:

u(t)=z0
X
n�1

2m!2

En1

����
Z
d3r'n1z�0

����
2 �

1�cos

�
En1t

~

��
;(4.0.19)

where'n1 is the wavefunction of the soft mode withl = 1;ml = 0 and main quantum number
n. Damping of oscillations ofu(t) could, in principle, originate from the interference between the
components with differentn in Eq.(4.0.19). However, the sourceS� basically populates only the
lowest soft mode, irrespective of the value ofz0: the amplitude of oscillations at the lowest eigen-
frequency in Eq.(4.0.19) (the term withn = 1) greatly exceeds the sum of the amplitudes of other
terms. Hence, these oscillations remain undamped. For the same reason their frequency and ampli-
tude can be found with'n1 replaced by the functionz�0 normalized to unity. Using the Thomas-
Fermi approximation for the condensate wavefunction [42, 43]:�20(r) = 15(1� r2=R2

0)=8�R
3
0 for
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r < R0, and�0 = 0 for r > R0, we obtainE11 � ~
 = (7=4)(~!)2=� which is very close
to E11 = 1:62(~!)2=� calculated numerically. Then, retaining only the leading term (n = 1) in
Eq.(4.0.19), we findu(t)� z0(4�=7~!)

2[1�cos(
t)] shown in dotted line in Fig.4.0.2a. As one can
see, the condition of the linear regimeu� R0 requires a very small displacement

z0 � (~!=�)2R0;(4.0.20)

and already a moderatez0 as in Fig.4.0.2b is sufficient to drive the system out of the linear regime.
We have performed a similar linear analysis for the case wheregaa 6= gab 6= gbb, but the relative

difference between the coupling constants is small. Also in this case the sourceS� mostly generates
oscillations of the condensates relative to each other at a single frequency
0 � !. For a relative
difference between the coupling constants much smaller than(~!=�)2, the frequency
0 coincides
with the soft-mode frequency
 found above. Otherwise the sign ofg� = gaa + gbb � 2gab becomes
important. In particular, for positiveg� � jgaa � gbbj already a moderate difference between the
coupling constants strongly increases the frequency
0 compared to
. In this case we obtain un-
damped oscillations at
0 � (g�=gaa)

1=2!. Forg� < 0, already in thez0 = 0 case, a breathing mode
in which the two condensates oscillate out of phase becomes unstable, and the system evolves far
from the initial state. Note that for a small difference between the coupling constants the condition
g� < 0 is equivalent to the criterion of spatial separation of the condensates in the homogeneous case,
gaagbb < g2ab [84,85].

We now turn to the largez0 regime (Fig.4.0.2b) where we find a strong damping of the oscillations
of the mean separation between the condensates,u(t). In order to prove the key role of non-linearity
in this regime, we first attempt a linear model assuming that the densitiesj�"0j2 inside the square
brackets of Eq.(4.0.16) are not evolving:X

"0

N"0g""0j�"0j2 ! Ngj�0j
2 :(4.0.21)

In contrast to the analysis which led to Eq.(4.0.19), the displacementz0 is now explicitly included
in the Hamiltonian through the terms�m!2zz0=2 in Ua;b, and the number of populated oscillation
modes depends onz0. However, for the parameters in Fig.4.0.2b we find that only a few modes are
populated, and the interference between them can not account for the damping found numerically
(dotted versus solid curve in Fig. 4.0.2b).

We argue that the damping in our calculations mostly originates from non-linearity of the sys-
tem, which increases the number and amplitude of populated oscillation modes and provides an
interaction between them. As a result, the evolution of the condensate wavefunctions�a and�b

becomes chaotic. This can be seen from Fig.4.0.3 where we compare the spectral densityRn(�) =

jT�1
R T

0
dt n( 0; t) exp (i�t)j2 of the density at the originn(0; t) with an identically defined spectral

densityRu(�) of u(t) for the parameters in Fig.4.0.2b andT = 110=!. The functionRn(�) has
a smooth envelope at large�, with peaks corresponding to the islands of regular motion. On the
contrary,Ru(�) exhibits pronounced peaks at� of order!, without any smooth background. This
picture provides a clear signature of stochastization in the system [93] and prompts us to represent
each of the condensate wavefunctions in Eq.(4.0.16) as a superposition of two constituents: (i) a
slowly oscillating regular part conserving the phase coherence properties; (ii) a composition of high-
energy excitations characterized by stochastic motion. Only the slow constituent contributes to such
macroscopic quantities asu(t), since the contribution of the fast stochastic part is averaged out.

Our analysis is consistent with the general statement that for a large population of various os-
cillation modes the non-linear interaction between them leads to stochastization in the motion of
excitations with sufficiently high energy [93]. This allows us to employ the mechanism of stochastic
heating [93] for explaining the damping of oscillations ofu(t): The mean field interaction between
the fast stochastic and the slowly oscillating parts leads to energy transfer from the slow to the fast
part.
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FIGURE 4.0.3. Spectral densitiesRn(�) (a) andRu(�) (b) for the parameters in
Fig.4.0.2b andT = 110=! (see text).

The evolution of the occupation numbers of the modes of the fast stochastic part is governed by
kinetic equations [93] and eventually slows down. The rate of energy and particle exchange between
the two constituents then reduces. After a sufficiently long time only small linear oscillations of the
condensates survive, mostly at the lowest eigenfrequency and the gas sample as a whole could be
thought as being close to a steady state. However the damping of the remaining oscillations and the
ultimate evolution of the fast stochastic part towards the thermal equilibrium require an analysis be-
yond the mean field approach. For the parameters in Fig.4.0.2b, using the semiclassical Bogolyubov
approach [96] and relying on the conservation of energy and number of particles, we find an equilib-
rium temperatureTeq� 0:6� and a condensed fraction
a;b � 0:9, for N = 5� 105.

The last set of our calculations relates to the recent JILA experiment [94] where the evolution
of a two-component87Rb condensate has been investigated. In the conditions of this experiment we
solved numerically Eq.(4.0.16) by takingaab = 55Å and the ratiogaa : gab : gbb = 1:03 : 1 : 0:97.
We also explicitly included in these equations the22 ms expansion of the clouds after switching off
the trapping potential. The results of our calculations are presented in Fig.4.0.4. As in Fig.4.0.2b,
we find a strong damping of the oscillations of the mean separation between the condensates,u(t).
Our numerical results are in fair agreement with the experimental data, although the damping in the
experiment is somewhat larger. We extended the calculations to twice the maximum experimental
time and found small oscillations which remain undamped on this time scale.

Our data for the JILA experiment [94] can be analyzed along the same lines as the results in
Fig.4.0.2b, with a damping originating from stochastization in the evolution of the condensate wave-
functions. The equilibrium temperature is close to�, corresponding to condensed fractions
a �
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FIGURE 4.0.4. Mean separation between the condensates in the JILA experiment ver-
sus evolution time in the traps, after a22 ms free expansion. Dots with error bars: JILA
experiment. Solid curve: our numerical calculation.


b � 0:9. The large value of the condensed fraction explains why phase coherence between thea
andb components could be observed even after the damping of the motion ofu(t) [95]. The damping
time of the small remaining oscillations, estimated along the lines of [97], will be of order1 second.

We believe that the stochastic regime identified from our calculations is promising for investi-
gating the loss of phase coherence and the formation of a new thermal component in initially purely
Bose-condensed gas samples. An interesting possibility concerns the observation of a continuous
change in the phase coherence between thea andb components with increasing the trap displacement
and, hence, decreasing the final Bose-condensed fraction.
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CHAPTER 5

Finite Temperature Perturbation Theory for a Bose-condensed Gas

We develop a finite temperature perturbation theory (beyond the mean field) for a Bose-condensed
gas and calculate temperature-dependent damping rates and energy shifts for Bogolyubov excitations
of any energy. The theory is generalized for the case of excitations in a spatially inhomogeneous
(trapped) Bose-condensed gas, where we emphasize the principal importance of inhomogeneity of
the condensate density profile and develop the method of calculating the self-energy functions. The
use of the theory is demonstrated by calculating the damping rates and energy shifts of low-energy
excitations, i.e. t excitations with energies much smaller than the mean field interaction between
particles. The damping is provided by the interaction of these excitations with the thermal excitations.
We emphasize the key role of stochastization in the behavior of the thermal excitations for damping
in non-spherical traps. The damping rates of the lowest excitations, following from our theory, are in
fair agreement with the data of recent JILA and MIT experiments. For the quasiclassical excitations
the boundary region of the condensate plays a crucial role, and the result for the damping rates and
energy shifts is drastically different from that in spatially homogeneous gases. We also analyze the
frequency shifts and damping of sound waves in cylindrical Bose condensates and discuss the role of
damping in the recent MIT experiment on the sound propagation.

5.1. Introduction

Recent developments in the physics of ultra-cold gases have led to the discovery of Bose-Einstein
condensation (BEC) in trapped clouds of alkali atoms [3–5] and stimulated a tremendous boost in
theoretical studies of weakly interacting Bose gases. As in previous years, these studies rely on
the binary approximation for the interparticle interaction. The latter is characterized by the 2-body
scattering lengtha, which assumes the presence of a small gaseous parameterna3 � 1 (n is the
gas density). Especially intensive are the attempts to reach beyond the ordinary mean field approach
and to develop a theory which can properly describe the behavior of finite temperature elementary
excitations of a trapped Bose-condensed gas and in particular, explain the JILA [50] and MIT [51]
experiments on energy shifts and damping rates of the excitations.

The commonly used mean field theory (fora > 0) is based on the Bogolyubov quasiparticle
approach developed originally for a spatially homogeneous Bose-condensed gas atT ! 0 [53] and
employed by Lee and Yang [98] (see also [99]) at finite temperatures. The generalization of the
Bogolyubov method for spatially inhomogeneous systems has been described by De Gennes [54]. In
the case of a Bose-condensed gas it should be completed by the equation for the wavefunction of the
spatially inhomogeneous condensate, derived by Pitaevskii [40] and Gross [38,39].

For spatially homogeneous gases the theory beyond the mean field approach was also developed.
Beliaev [100] constructed the zero-temperature diagram technique which allows one to find correc-
tions to the energies of Bogolyubov excitations, proportional to(n0a

3)1=2, wheren0 is the condensate
density. The corrections are provided by the interaction between the excitations (in particular, through
the condensate) and contain both real (energy shift) and imaginary (damping rate) parts. AtT = 0
the latter originates from spontaneous decay of a given excitation (�) to two other excitations (
 and
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0), with smaller energies and momenta:

� ! 
 + 
0:(5.1.1)

A universal expression for the chemical potential in terms of the self-energy functions has been found
by Pines and Hugenholtz [101]. It should be emphasized that the corrections proportional ton0a

3

already depend on the contribution of 3-body interactions and, hence, can not be obtained within the
binary approximation.

The Beliaev approach was employed by Popov [102] at finite temperatures. In this case the cor-
rections to the Beliaev self-energies contain infra-red singularities, i.e. they tend to infinity for mo-
mentap ! 0. This prompted Popov to make a renormalization of the theory, which links the micro-
scopic approach with phenomenological Landau hydrodynamics [31]. The Popov theory eliminates
the infra-red singularities and allows one to describe the behavior of low-energy excitations (phonons)
at temperatures much smaller than the mean field interparticle interactionn0 ~U ( ~U = 4�~2a=m, with
m being the atom mass). The damping of phonons in this temperature range is determined by the Be-
liaev damping processes and has also been calculated by Hohenberg and Martin [103]. A simplified
approach within the dielectric formalism was used by Szepfalusy and Kondor [104] for calculating
the damping rates of excitations in the phonon branch of the spectrum. They found that at tempera-
turesT � n0 ~U the damping rate of a given excitation (�) originates from the scattering of thermal
excitations (
 and
0) on the excitation� through the processes:

� + 
 ! 
0:(5.1.2)

Since the characteristic energies of the thermal excitations
, 
0 turn out to be much larger than
the energy of the excitation�, this damping channel can be represented as scattering of “resonance”
excitations moving in phase with the excitation� and, hence, is exactly analogous to Landau damping.
It should be noted that the damping rates can be simply found by considering the interaction between
the excitations as a small perturbation and using Fermi’s golden rule. This allows one to properly
take into account the Bogolyubov nature of the thermal excitations. The damping rates of phonons
in a spatially homogeneous Bose-condensed gas, in particular for the Szepfalusy-Kondor mechanism,
have been calculated in the recent contributions [97,105–108].

In order to reach beyond the mean field theory atT > n0 ~U one should further develop the Popov
approach. One can also proceed along the lines of the Beliaev theory, since any physical quantity
should be determined by combinations of the Beliaev self-energies, which do not contain the infrared
singularities. We choose the latter way and construct the perturbation theory for a Bose-condensed
gas, which allows us to find the next to leading order terms (the terms proportional to(n0a

3)1=2) in the
energy spectrum of the elementary excitations. As in [104,105,107,108], we consider the excitations
in the so-called collisionless regime, where their De Broglie wavelength is much smaller than the
mean free path of the thermal excitations.

We start with the case of a spatially homogeneous Bose-condensed gas and find temperature-
dependent energy shifts and damping rates for Bogolyubov excitations of any energy. At temperatures
T � n0 ~U the small parameter of the theory proves to be

T

n0 ~U
(n0a

3)1=2 � 1;(5.1.3)

in contrast ton0a3 � 1 for T = 0. The appearance of the extra factor (T=n0 ~U) originates from
the Bose occupation numbers of thermal excitations with energies of ordern0 ~U , which are the most
important in the perturbation theory. As shown below, the damping of excitations with energies
"� � n0 ~U is determined by both the Szepfalusy-Kondor (� + 
 $ 
0) and Beliaev (� $ 
 + 
0)
processes, and can no longer be treated as Landau damping.
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The theory is generalized for the case of excitations in a spatially inhomogeneous (trapped) Bose-
condensed gas. A new ingredient here is related to the inhomogeneous density profile of the con-
densate and the discrete structure of the excitation spectrum. We develop the method of calculating
the self-energy functions and derive the equations for finding the wavefunctions and energies of the
excitations (generalized Bogolyubov-De Gennes equations).

The use of the theory is demonstrated by three examples. The first one concerns quasiclassi-
cal low-energy excitations of a trapped Bose-condensed gas in the Thomas-Fermi regime. The term
"low-energy" assumes that the excitation energy"� is much smaller than the mean field interparticle
interactionn0m eU (n0m is the maximum condensate density), and the quasiclassical character of the
excitations requires the condition"� � ~!, where! is the characteristic trap frequency. We consider
anisotropic harmonic traps, where the discrete structure of the excitation spectrum is not important
(see below). On the contrary, the inhomogeneity of the condensate density profile has a crucial con-
sequence for the damping rates and energy shifts of quasiclassical low-energy excitations. The most
important turns out to be the boundary region of the condensate, wheren0(r) ~U � "�. Therefore, the
result for the damping rates and energy shifts is completely different from that in spatially homoge-
neous gases.

Secondly, we analyze the frequency shifts and damping of axially propagating sound waves in
cylindrical Bose condensates. As found, the nature of damping is similar to that in the case of phonons
in spatially homogeneous Bose condensates. We show that the attenuation of axially propagating
sound wave packets in the recent MIT experiment [109] can be well explained as a consequence of
this damping.

Finally, we consider the damping of the lowest excitations of a trapped Bose condensate. The
damping of low-energy excitations differs fundamentally from the damping of Bogolyubov excita-
tions in an infinitely large spatially homogeneous gas. In the latter case, characterized by a continuum
of excitations, any given excitation can decay into two excitations of lower energy and momentum via
the Beliaev mechanism (5.1.1). In a trapped Bose-condensed gas the character of the discrete structure
of the spectrum of excitations makes the Beliaev damping impossible under conservation of energy.
Therefore, irrespective of the relation betweenT and�, the damping of the lowest excitations has to
be provided by their interaction with the thermal excitations via the Szepfalusy-Kondor (SK) process
(5.1.2). As the energiesE
 of the thermal excitations are much larger than the energiesE� � ~! of
the lowest excitations, the SK damping mechanism of the lowest excitations can be treated as Landau
damping.

Summarizing these three examples we see, that in a trapped Bose-condensed gas the damping of
low-energy excitations is determined by the behavior of their wavefunctions and by the distribution of
the level spacings of thermal excitations with energiesE
 < �, which depends on the trap symmetry.
We emphasize that stochastization in the behavior of these thermal excitations plays a key role for
damping in non-spherical traps. In contrast to quasiclassical (E� � ~!) low-energy excitations, the
damping of the lowest excitations (E� � ~!) is determined by the behavior of the excitations in the
entire condensate region. For this case the damping rates following from our theory are in a good
agreement with the data of the JILA experiment [50] and reasonably well explain the results of the
experiment at MIT [51]. In the latter case the experimental conditions correspond to a crossover
between the collisionless and hydrodynamic regimes, and the measured values of the damping rates
are somewhat lower than the results of our calculations.

5.2. General equations

We consider a weakly interacting Bose-condensed gas confined in an external potentialV (r).
The grand canonical Hamiltonian of the gas can be written asĤ = Ĥ0 + Ĥ1, where (hereinafter
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FIGURE 5.2.1. The set of diagrams contributing to the normal self-energy�. Here
a solid line with an arrow represents the normal Green functionG, solid line without
an arrow corresponds to the anomalous Green functionF , white circle stands for the
interaction vertex~U and the black circle represents a sum of two white circles, one
being a direct interaction and the other an exchange interaction. Dashed lines stand
for the condensate wave function

p
n0. The self-energy part�+ can be obtained by a

time-reversal(i.e. the changet! �t andp ! �p) of the graphs shown above.

m = ~ = 1)

Ĥ0 =

Z
d3r	̂y(r)

�
��

2
+ V (r)� �

�
	̂(r);(5.2.1)

and the term

Ĥ1 =
eU
2

Z
d3r	̂y(r)	̂y(r)	̂(r)	̂(r);(5.2.2)

assumes a point interaction between atoms. The field operator of atoms	̂(r) can be represented as the
sum of the above-condensate part	̂0 and the condensate wavefunction	0=h	̂iwhich is ac-number.
As the interparticle interaction̂H1 contains both terms conserving the number of above-condensate
particles and terms transferring two above-condensate particles to the condensate (or two condensate
particles to the above-condensate part), the diagram technique should include both the normal Green
functionG and the anomalous Green functionF (see, e.g. [100]).

The sums of the contributions of all irreducible diagrams will be represented by the normal (�)
and anomalous (�a) self-energies (see Fig.5.2.1 and 5.2.2). The former corresponds to the processes
conserving the number of above-condensate particles, and the latter describes absorption (or emission)
of two particles to (out of) the condensate. The Green function and self-energy operators satisfy
Beliaev-Dyson equations [100,102]

G = G+G�G +G�aF ;(5.2.3)

F = G+�+F +G+�aG;(5.2.4)
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FIGURE 5.2.2. The set of graphs contributing to the anomalous self-energy�a. The
notations are the same as for the Fig. 5.2.1.

where the Green functionsG andG+ describe forward and backward propagation of a particle char-
acterized by the Hamiltonian̂H0.

We confine ourselves to the case of repulsive interaction between the atoms (a > 0). To de-
velop the finite temperature perturbation theory for calculating dynamic properties and finding the
excitation spectrum of a weakly interacting Bose-condensed gas we will use the non-equilibrium
generalization [110] of the Matsubara diagram technique. In Eqs. (5.2.3),(5.2.4) we perform an an-
alytical continuation of the Matsubara frequencies�j = 2�Tj (j is an integer number) to the upper
half-plane, which corresponds to the replacementi�j ! " + i0. Then, multiplying both sides of
Eqs. (5.2.3) and (5.2.4) byG�1 and(G+)�1, respectively, we arrive at the system of equations in the
frequency-coordinate representation:

"G("; r ; r) =
�
��

2
+ V (r)� �+�(")

�
G("; r ; r 0) + �a(")F("; r ; r 0) + Æ(r � r 0);(5.2.5)

�"F("; r ; r 0) =
�
��

2
+ V (r)� �+ �+(")

�
F("; r ; r 0) + �a(")G("; r ; r 0):(5.2.6)

Here the action of the integral self-energy operators on the Green functions is written in a compact
form

R
d3r00�("; r ; r 00)G("; r 00; r 0) � �(")G("; r ; r 0) (and similar relations for the other combinations).

The solutions of Eqs. (5.2.5),(5.2.6) can be written in the form of the Bogolyubov transformation
for the Green functions

G("; r ; r 0) =
X
�

�
u�(r)u��(r

0)

"+ i0� "�
+
v�(r)v��(r

0)

"+ i0 + "�

�
;

F("; r ; r 0) = �
X
�

�
u�(r)v��(r

0)

"+ i0� "�
+
v�(r)u��(r

0)

"+ i0 + "�

�
;
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where the index� stands for the set of quantum numbers, and the eigenfunctionsu�, v� and eigenen-
ergies"� satisfy generalized Bogolyubov-De Gennes equations

"�u�(r) =

�
��

2
+V (r)��+�("�)

�
u�(r)��a("�)v�(r);(5.2.7)

�"�v�(r) =

�
��

2
+V (r)��+�+("�)

�
v�(r)��a("�)u�(r):(5.2.8)

Eqs. (5.2.7),(5.2.8) should be completed by a generalized Gross-Pitaevskii equation for the condensate
wavefunction: �

��

2
+ V (r)� �+ (�� �a)j"!0

�
	0(r) = 0(5.2.9)

and by the normalization conditionZ
d3r (n0(r) + n0(r)) = N;

wheren0(r) = j	0(r)j2 is the condensate density,n0(r) =


	0y(r)	0(r)

�
is the density of above-

condensate particles, andN the total number of particles in the gas.
In the Bogolyubov-De Gennes approach only the terms bilinear inb	0 operators are retained in

the interaction Hamiltonian̂H1, which assumes that the condensate density is much larger than the
density of above-condensate particles. Then, the self-energy operators take the form

�("; r ; r 0) = 2n0 eUÆ(r � r 0);(5.2.10)

�a("; r ; r 0) = n0 eUÆ(r � r 0):(5.2.11)

The result of their action on the condensate wavefunction	0(r) and the functionsu�(r), v�(r) is
reduced to

�("�)	0(r) =
Z

d3r0�("� ; r ; r 0)	0(r 0) = 2n0(r)eU	0(r)

and similar relations for the other combinations. Then, Eq.(5.2.9) becomes the ordinary Gross-
Pitaevskii equation �

��

2
+ V (r)� �+ n0(r)eU�	0(r) = 0;(5.2.12)

and Eqs. (5.2.5),(5.2.6) are transformed to the ordinary Bogolyubov-De Gennes equations

"�u�(r) =

�
��

2
+ V (r)� �+ 2n0(r)eU�u�(r)� n0(r)eUv�(r);(5.2.13)

�"�v�(r) =

�
��

2
+ V (r)� �+ 2n0(r)eU� v�(r)� n0(r)eUu�(r):(5.2.14)

Taking into account Eq.(5.2.12), in terms of the functionsf�� = u� � v� these equations can be
rewritten as

"�f
�
� (r) =

�
��

2
+

�	0

2	0

�
f+� (r)(5.2.15)

"�f
+
� (r) =

�
��

2
+

�	0

2	0

+ 2j	0j2 eU� f�� (r):(5.2.16)
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For a trapped Bose-condensed gas in the Thomas-Fermi regime, where� � n0max
eU is much

larger then the spacing between the trap levels, the kinetic energy term in Eq. (5.2.12) can be omitted
and one has [42,43]

	0 =

s
�� V (r)eU ;(5.2.17)

if the argument of the square root is positive and zero otherwise. For the low-energy excitations
("� � n0m eU) of Thomas-Fermi condensates Eqs. (5.2.15),(5.2.16) can be reduced to hydrodynamic
equations obtained by Stringari [55] and solved in the case of spherically symmetric harmonic po-
tentialV (r) and for some excitations in a cylindrically symmetric potential. An analytical method of
solving Eqs. (5.2.15),(5.2.16) (or the corresponding hydrodynamic equations) for the low-energy ex-
citations of Thomas-Fermi condensates in an anisotropic harmonic potentialV (r) has been developed
in [56,111].

For a spatially homogeneous gas the generalized Gross-Pitaevskii equation (5.2.9) is equivalent
to the Pines-Hugenholtz identity [101]. In the Bogolyubov approach it simply gives� = n0 eU , and
Eqs. (5.2.13),(5.2.14) lead to the Bogolyubov spectrum

"p =

q
(p2=2)2 + n0 eUp2;(5.2.18)

wherep is the momentum of the excitation.
Under the conditionn0 � n0, for which the Bogolyubov approach was originally developed, one

can simply putn0 equal to the total densityn in Eq.(5.2.18). Forn0 � n0, which can be the case at
T � �, the dispersion law becomes essentially temperature dependent [98, 99]. In a spatially homo-
geneous gas the temperature dependence predominantly originates just from the presence of above
condensate particles, withn0 � n(T=Tc)

3=2 whereTc = 3:31n2=3 is the BEC transition temperature.
This leads to the replacementn0 ! n0+n0 in Eq.(5.2.10) and gives� = (n0+2n0)eU. The dispersion
law will be still given by Eq.(5.2.18) in which the condensate density is now temperature dependent:
n0 = n

�
1� (T=Tc)

3=2
�
.

5.3. Spatially homogeneous Bose-condensed gas

In this section we present the results for the damping rates and energy shifts of elementary ex-
citations in an infinitely large spatially homogeneous Bose-condensed gas. As one can see from
Eqs.(5.2.13),(5.2.14), for finding the energy spectrum and wavefunctions of the excitations it is suffi-
cient to calculate the self-energies�, �+ and�a. We will perform the calculations in the frequency-
momentum representation and for physical transparency consider temperatures

T � n0 ~U(5.3.1)

(the opposite limiting case has been discussed by Popov [102] with regard to the phonon branch of
the excitation spectrum). In the zero order approximation in the parameter(n0a

3)
1=2 we have the

well-known mean field result:�(0) = �(0)+ = 2(n0 + n0(0))eU, �(0)
a = n0 eU, with n0(0) = n(T=Tc)

3=2

(see above). In this approach we obtain the Bogolyubov quasiparticle excitations with the spectrum
(5.2.18), which we use in order to calculate the next order in(n0a

3)
1=2. The latter is determined by

the contribution of diagrams containing one quasiparticle loop [102] (see Figures 5.2.1 and 5.2.2).
Actually in this approach we represent the Hamiltonian as the sum of the (diagonalized) Bogolyubov
Hamiltonian and the perturbationbHint originating from bH1 (5.2.2) and containing the terms propor-
tional to	0	̂

03 and	̂04:

Ĥint = ~U

Z
d3r[	0(r)	̂0y(r)f	̂0y(r) + 	̂0(r)g	̂0(r) + (1=2)	̂0y(r)	̂0y(r)	̂0(r)	̂0(r)]:(5.3.2)
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Retaining only the temperature-dependent contributions, after laborious calculations for the normal
self-energy we obtain� = �(0) +�(1), where

�(1)(P ) = �n(P ) + �r(P );

�n(P ) = 2eU2n0

Z
d3q

(2�)3
(nq + nk)

�
2AkBq + AqAk � 4AkCq + 2CqCk

"� "q � "k
�

2AqBk +BqBk � 4BkCq + 2CqCk

"+ "k + "q

�
� 8(�n0a

3)1=2T;(5.3.3)

�r(P ) = 2eU2n0

Z
d3q

(2�)3
nq�nk
"+"q�"k (2AqAk+2AkBq+2BkBq+4CkCq�4AkCq�4BqCk):(5.3.4)

HereP = f";pg, k = q + p, Ep = p2=2, "p is given by Eq.(5.2.18),nq is the equilibrium occupation
number,Cp = n0 eU=2"p andAp; Bp = (�"p + Ep + n0 eU)=2"p. Similarly, the correction to the
anomalous self-energy is given by

�(1)
a (P ) = �n

a(P ) + �r
a(P );

�n
a(P ) = 2eU2n0

Z
d3q

(2�)3
(nk + nq)

�
2AkBq � 2AkCq � 2BqCk + 3CqCk

"� "q � "k
�

2AqBk � 2BkCq � 2AqCk + 3CkCq

"+ "k + "q

�
� 4(�n0a

3)1=2T;(5.3.5)

�r
a(P ) = 2eU2n0

Z
d3q

(2�)3
nq � nk

"+ "q � "k
�(5.3.6)

(2AkAq+2BkBq+6CkCq�2AkCq�2AqCk�2BqCk�2BkCq):(5.3.7)

The resonant parts�r;�r
a originate from the terms where one of the intermediate quasiparticles is

created and another one annihilated, and the non-resonant parts�n;�n
a from the terms where both

intermediate quasiparticles are created (annihilated). Temperature independent terms in the non-
resonant parts, found by Beliaev [100], are omitted in Eqs.(5.3.3)-(5.3.6).

Each of the self-energies (5.3.3)-(5.3.6) is singular atP ! 0 and at least for small momenta the
corrections become larger than the mean field values (5.2.10). Nevertheless, keeping in mind that any
physical quantity is determined by the combinations of the self-energies, which do not contain the
infra-red singularities, we will still treat�(1) and�(1)

a as perturbations.
For a spatially homogeneous gas the Pines-Hugenholtz identity� = (�(P ) � �a(P ))jP!0 gives

the first order correction to the chemical potential

�(1) = ��pn0; � = 12(�a3)1=2T;(5.3.8)

and the relation betweenn0 and the chemical potential,� = n0 eU � �
p
n0, coincides with that found

by Popov [102]. Theu; v functions in generalized Bogolyubov-De Gennes equations (5.2.7), (5.2.8)
can be written asup exp(ipr ) andvp exp(ipr ), and in terms of the functionsf�p = up � vp these
equations take the form

("� S�(P ))f�p =

�
p2

2
+ S+

�(P )

�
f+p ;(5.3.9)

("� S�(P ))f+p =

�
p2

2
+ 2n0 eU + S+

+(P )

�
f�p ;(5.3.10)
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where

S+
� =

�(1) +�+(1)

2
+ �

p
n0 � �a;(5.3.11)

S� =
�(1) � �+(1)

2
:(5.3.12)

Considering the termsS�, S+
� in Eqs. (5.3.9),(5.3.10) as small perturbations we put" = "p in the ex-

pressions for these quantities, following from Eqs. (5.3.3)-(5.3.6). Then, solving Eqs. (5.3.9),(5.3.10),
for the excitation energy we obtain" = "p + "

(1)
p , where

"(1)p =

�
Ep

2"p
S+
+(P )+

"p
2Ep

S+
�(P )+S

�(P )

�
P!("p;p)

:(5.3.13)

As �(1) and�(1)
a are complex, the correction to the excitation energy has both a real and an

imaginary part:"(1)p = Æ"p � i�p. The former gives the energy shift, and the latter is responsible for
damping of the excitations.

5.3.1. Phonon branch of the excitation spectrum.For the phonon branch of the excitation
spectrum ("p � n0 ~U) we calculate analytically bothÆ"p and�p on the basis of Eqs.(5.3.3)-(5.3.13).
Under the conditionT � n0 ~U the Beliaev damping processes (5.1.1) can be neglected, and the
non-resonant contributions to the quantitiesS+

� andS�are purely real:

S+n
� =

2

3
�
p
n0 � 2 ~U

Z
d3q

(2�)3
T�

4"2k"
2
q

�

�
("k + "q)

2 � (Ek � Eq)
2 + "2 � "3

2
(

1

"� "k � "q
+

1

"+ "k + "q
)

�
;(5.3.14)

S�n = �2 ~U
Z

d3q

(2�)3
T�

4"2k"
2
q

(2Ek"� 2�");(5.3.15)

S+n
+ = �2 ~U

Z
d3q

(2�)3
T�

4"2k"
2
q

�
4�2 + 8E2

k � 4"2k + 2�2"(
1

"� "k � "q
+

1

"+ "k + "q
)

�
:(5.3.16)

A part of the resonant terms acquire a non-resonant character, and it is convenient to separate each
of the quantitiesS+r

� , S�r into two parts, i.e.S+(rr)
� , S�(rr) which contain a resonant denominator

(" + "q � "k)
�1 and the partsS+(rn)

� , S�(rn) which do not contain this denominator. Then from
Eqs.(5.3.3)-(5.3.6) we obtain

S+rn
� = 2~U

Z
d3q

(2�)3
T�

4"2k"
2
q

((Ek � Eq)
2 � ("k � "q)

2 � "2
�2

"2k + �2
);(5.3.17)

S�rn = 2~U

Z
d3q

(2�)3
T�

4"2k"
2
q

(2�"+ "
2Ek�

Ek + �
);(5.3.18)

S+rn
+ = �2 ~U

Z
d3q

(2�)3
T�

4"2k"
2
q

(8"2k + 18E2
k + 4�2);(5.3.19)

and

S
+(rr)
� = 2~U

Z
d3q

(2�)3
T�

4"2k"
2
q

"3

("+ "q � "k)

�2

"2k + �2
;(5.3.20)
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S�(rr) = �2 ~U
Z

d3q

(2�)3
T�

4"2k"
2
q

"2

("+ "q � "k)
(2�+

2Ek�

Ek + �
);(5.3.21)

S
+(rr)
+ = 2 ~U

Z
d3q

(2�)3
T�

4"2k"
2
q

"(4�2 + 8"2k + 8E2
k)

("+ "q � "k)
:(5.3.22)

Only the resonant terms (5.3.20)-(5.3.22) containing the denominator(" + "q � "k + i0)�1 have an
imaginary part and, hence, contribute to the damping rate. From (5.3.20)-(5.3.22) and (5.3.13) we
find

�p = �Im2 ~U

Z
d3q

(2�)3
T�

4"2k"
2
q

"2

"+ "q � "k

(
� �"2k
"2k + �2

� 2Ek�p
"2k + �2

+
2("2k + E2

k)

�

)
:(5.3.23)

The corresponding resonant contributionÆ"rp to the energy shift is given by the real part of the same
expression (with opposite sign). Purely real non-resonant terms (5.3.14)-(5.3.19) only contribute to
the energy shifts in Eq.(5.3.13). There is a contributionÆ"np proportional to" and a contributionÆ"nsp
proportional top2=":

Æ"np = 2~U"

Z
d3q

(2�)3
T�

4"2k"
2
q

�
�"2k

"2k + �2
+

2Ek�

Ek + �
� 2

("2k + E2
k)

�
� E2

k

�

�
;(5.3.24)

Æ"nsp = 2~U

Z
d3q

(2�)3
T�

4"2k"
2
q

2(Ek � Eq)
2�

"
;(5.3.25)

where(Ek � Eq)
2 = (pq+ p2=2)2=m2.

Performing the integration in Eqs.(5.3.23)-(5.3.25) and setting" = "p, we obtain

Æ"rp � 2"p(n0a
3)1=2T=�;

Æ"np = (�8:41�p�)"p(n0a3)1=2T=�
and

Æ"nsp = �2p�=3� "p(n0a
3)1=2T=�:

For the damping rate�p and the total shiftÆ"p = Æ"rp + Æ"np + Æ"nsp we find

Æ"p � �7"p T

n0 eU (n0a
3)1=2;(5.3.26)

�p = "p
3�3=2T

4n0 eU (n0a
3)1=2:(5.3.27)

The damping rate�p, described solely by the resonant contributions, originates from quasi-resonant
scattering of thermal excitations from a given excitation (Landau damping) and is absent atT = 0.
Both the energy shift and the damping rate are determined by the interaction of a given excitation with
intermediate quasiparticles having energies"q � n0 eU. The damping rate�p (5.3.27) coincides with
that found in recent contributions [105, 107, 108] and contains a slight numerical difference from the
earlier Szepfalusy-Kondor result [104]. The energy shift for the phonon branch of the spectrum was
also calculated in [105]. In the latter work the expansion of the self-energy functions near the point
" = "p was used and formally divergent integrals were canceling each other in the final expression for
the energy shift, which have led to the result by approximately factor 6 smaller then the shift (5.3.26)
obtained by the exact integration.
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FIGURE 5.3.1. The damping rate�p (solid line) and the energy shiftÆ"p (dashed line)
versusx = ("p=n0 eU). Both�p andÆ"p are given in the units ofT (n0a3)1=2.

5.3.2. General case (arbitrary excitation energies).Eqs.(5.3.26),(5.3.27) clearly show that the
small parameter of the theory is(T=n0 ~U)(n0a3)1=2 � 1 (see Eq.(5.1.3)), whereas in the zero temper-
ature approach [100] the small parameter is(n0a

3)1=2 � 1. The presence of an additional large factor
T=n0 eU at finite temperaturesT � n0 eU originates from the Bose enhancement of diagrams contain-
ing one quasiparticle loop: Compared to the zero-temperature case the contribution of each of these
diagrams is multiplied by the Bose factornq = [exp ("q=T )� 1]�1 (or 1+nq). As the most important
are intermediate quasiparticles with energies"q � n0 eU, for T � n0 eU the Bose factornq � T=n0 eU.
A criterion similar to Eq.(5.1.3) was found by Popov [99, 102] as the condition which allows one to
use the mean-field approach at finite temperatures and to renormalize the theory for reaching beyond
this approach.

Remarkably, the criterion (5.1.3) is fulfilled even at temperatures very close toTc. For�T =
Tc � T � Tc we haven0 � n�T=Tc, and Eq.(5.1.3) gives�T=Tc � (n0a

3)1=3, which coincides
with the well known Ginzburg criterion [112] for the absence of critical fluctuations. The criterion
(5.1.3) also ensures that the main contribution to the damping rate originates from the interaction of
a given excitation with thermal excitations through the condensate, i.e., from the first term inĤint

(5.3.2).
For any excitation energy"p � T the energy shift and damping rate, being expressed in units of

T (n0a
3)1=2, turn out to be universal functions of the parameter"0=n0 eU . These functions, calculated

numerically from Eq.(5.3.13) on the basis of Eqs. (5.3.3)-(5.3.6) and (5.3.11),(5.3.12), are presented
in Fig. 5.3.1. One can easily check that under condition (5.1.3) both the damping rate and energy
shift are always much smaller than"p. In the phonon branch of the excitation spectrum ("p � n0 eU)
the results of the numerical calculations coincide with those following from Eqs. (5.3.26), (5.3.27).
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For "p . n0 eU the damping rate (��p) increases with"p, reaches its maximum at"p � 10n0 eU, and
then slowly decreases with further increase of"p. The energy shift for"p . n0 eU is negative. The
modulus of the shift increases with"p and reaches its maximum at"p � 4n0 eU. Further increase of"p
decreasesjÆ"pj. The latter is equal to zero for"p � 60n0 eU, and becomes positive at larger"p.

For single-particle excitations ("p = p2=2� n0 eU), calculating the self-energy functions (5.3.11)
and (5.3.12), from Eq.(5.3.13) we obtain

Æ"p = 4(�n0a
3)1=2T

241� 12:6

 
n0 eU
2"p

!1=235 ;(5.3.28)

�p = 16(�n0a
3)1=2T

 
n0 eU
2"p

!1=2
ln

�
2"p

n0 eU
�
:(5.3.29)

The damping rate can be written as�p � (T="p)n0�vp, where� = 8�a2 is the elastic cross section,
andvp the particle velocity. This damping rate exceeds the Beliaev temperature-independent term
n�vp even atT close toTc, if �T = Tc � T � "p. In contrast to the phonon branch of the spectrum,
for "p & n0 eU the damping is provided by both the Szepfalusy-Kondor (� + 
 $ 
0) and Beliaev
(� $ 
+
0) processes and, hence, can no longer be treated as Landau damping. The small parameter
of the theory is still given by Eq.(5.1.3), since even at"p � n0 eU the energy of at least one of the
thermal excitations is of ordern0 eU .

The above results for the damping rate and energy shift of a given excitation are obtained in the
so called collisionless regime: We assume that the de Broglie wavelength of the excitation,1=p, is
much larger than the mean free path of thermal quasiparticles with energies� n0 eU , which are mostly
responsible for the damping and shifts. It is also assumed that the excitation energy"p greatly exceeds
the damping rate of these thermal excitations. The latter is of orderT (n0a

3)1=2 (see Fig. 5.3.1), and for
"p . n0 eU the two requirements of the collisionless regime are well satisfied under condition (5.1.3).
In the phonon branch of the excitation spectrum ("p � n0 eU) these requirements are equivalent to
each other, and the collisionless criterion can be simply written as

"p � T (n0a
3)1=2:(5.3.30)

As clearly seen, in the phonon branch one can always find excitations which do not satisfy Eq.(5.3.30)
and, hence, require a hydrodynamic description with regard to their damping rates and energy shifts.

The collisionless criterion (5.3.30) provides an additional argument on support of the above used
perturbative approach for solving Eqs. (5.3.9), (5.3.10). Under condition (5.3.30) the termS� .

T (n0a
3)1=2 � "p , S+

� . "p(T=n0 eU)(n0a3)1=2 � p2, andS+
+ . (n0 eU="p)T (n0a3)1=2 � n0 eU.

The non-mean-field shiftÆ"p is actually the shift of the excitation energy"p at a given condensate
densityn0. On the other hand,"p is determined by the Bogolyubov dispersion law (5.2.18), with
the temperature-dependent condensate densityn0(T ), and, hence, is temperature-dependent by itself.
Therefore, at a givenT one will also have the mean-field temperature-dependent energy shiftÆ"mf

p =

"p(T ) � "p(0) . As the condensate density decreases with increasing temperature,Æ"mf
p is always

negative. ForT � n0 eU it greatly exceeds the above calculated shiftÆ"p at anyp. The ratio(Æ"mf
p =Æ"p)

decreases with temperature, but even forn0 � n0 one has

Æ"mf
p = �"p(0) n0(T )eU

p2=2 + 2n0(0)eU ;(5.3.31)

and(Æ"mf
p =Æ"p) � (T=n0 eU)1=2 � 1.
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5.4. Spatially inhomogeneous Bose-condensed gas

We now generalize the above obtained results for the case of elementary excitations in a spatially
inhomogeneous (trapped) Bose-condensed gas. As already mentioned in the introduction, a new
ingredient here is related to the inhomogeneous density profile of the condensate and the discrete
structure of the excitation spectrum. This requires us to develop a new method of calculating the self-
energy functions in generalized Bogolyubov-De Gennes equations (5.2.7), (5.2.8). The self-energy
operators in these equations are the sums of the zeroth and first order terms:

�a("; r ; r’ ) = n0(r)eUÆ(r � r’ ) + �(1)
a ;(5.4.1)

�("; r ; r’ ) = 2(n0(r) + n0(0))eUÆ(r � r’ ) + �(1);(5.4.2)

and a similar relation for�+. At temperaturesT � n0m eU the zero order value of the above-
condensate density in the condensate spatial region is coordinate independent and equal to the above-
condensate density in the ideal gas approach:n0(0)(T ) = 2:6(T=2�)3=2. On the contrary, the self-
energies�(1), �(1)

a depend explicitly on the condensate density. Due to the discrete structure of the
energy spectrum of excitations the expressions for these quantities should be written in the form of
sums over the discrete states of intermediate quasiparticles
,
0. In the frequency-coordinate repre-
sentation we have

�("� ; r ; r 0) = �n("� ; r ; r 0) + �r("� ; r ; r 0);

�n("� ; r ; r 0) = 2	0(r)	0(r
0) ~U2

X

;
0

(n
 + n
0)

�
2u
(r)u
(r 0)v
0(r)v
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(r 0)u
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0(r 0)
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0
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� 8(n0�a

3)1=2TÆ(r � r 0);(5.4.3)
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0) ~U2
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�a = �n
a("� ; r ; r
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2v
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(r 0)u
0(r)u
0(r 0)� 2v
(r)v
(r 0)u
0(r)v
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(r)v
(r 0)u
0(r)u
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0(r 0)
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�
� 4(n0�a

3)1=2TÆ(r � r 0);(5.4.5)
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As we saw in the previous section, in the spatially homogeneous case all physical quantities are
determined by the contribution to the self-energy functions�(1),�(1)

a from intermediate quasiparticles
with energies of order the mean field interaction between particles. The same holds for a spatially
inhomogeneous (trapped) Bose-condensed gas in the Thomas-Fermi regime, where the mean field in-
teractionn0m eU greatly exceeds the level spacing in the trapping potential. The intermediate quasipar-
ticles with energies of ordern0m eU are essentially quasiclassical. With regard to the integral operator
(�(1) � �

(1)
a )"!0 in the generalized Gross-Pitaevskii equation (5.2.9), which is solely determined by

non-resonant contributions, this immediately allows one to replace the summation over the discrete
intermediate states by integration. The kernel of this integral operator varies at distancesjr � r’ j of

order the correlation lengthlcor = 1=

q
n0 eU which is much smaller than the characteristic size of the

condensate. Therefore, the result of the operator action on the condensate wavefunction can be written
in the local density approximation and, hence, should rely on Eq.(5.3.8) with coordinate-dependent
condensate densityn0(r):�

�(1) � �(1)
a

�
"!0

	0(r) =
Z

d3r0
�
�(1)("; r ; r’ )� �(1)

a ("; r ; r’ )
�
"!0

	0(r’ ) = ��	2
0(r):(5.4.7)

This result can be easily obtained from Eqs. (5.4.3)-(5.4.6), where one should put"� = 0, neglect the
difference between"
 and"
0, and make a summation over
0. Replacing the summation over
 by
integration one should also take into account that for quasiclassical excitations the functionsf�
 can
be represented in the form

f�(0)
 (r)=

0@
q
"2
+(n0(r) ~U)2�n0(r) ~U

"


1A�1=2f
(r);(5.4.8)

wherejf
(r)j2 is the ratio of the local to total density of states for Bogolyubov quasiparticles of a
given symmetry, described by the classical Hamiltonian

H(p; r) =
q
(p2=2)2 + ~n0(r) ~Up2:(5.4.9)

On the basis of Eq.(5.4.7) we obtain the generalized Gross-Pitaevskii equation in the form�
��

2
+ V (r)� ~�+ eU j	0j2 � �	0

�
	0 = 0;(5.4.10)
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where~� = � � 2n0(0)(T ) ~U is coordinate independent. Compared to the ordinary Gross-Pitaevskii
equation (5.2.12), Eq.(5.4.10) contains an extra term[2n0(0) eU � �	0]	0 in the lhs. One can easily
check that Eq.(5.4.10) coincides with the equation�

��

2
+ V (r)� �+ eU j	0j2 + eU(2h	̂0y	̂0i+ h	0	0i)

�
	0 = 0

obtained by averaging the non-linear Schrödinger equation for the field operator (see [113]). As
mentioned above, forT � n0 eU the above-condensate densityn0 = h	0y	0i in the condensate spatial
region is mainly determined by the coordinate-independent (ideal gas) contributionn0(0)(T ). The
coordinate-dependent correction to the above-condensate density,n0(1)(r) = h	̂0y(r)	̂0(r)i � n0(0),
turns out to be equal to the anomalous averageh	(r)	(r)i:

n0(1)(r) = h	(r)	(r)i = ��
p
n0(r)

3eU :

Accordingly, the quantity[2n0(0) eU � �	0]	0 = eU(2h	̂0y	̂0i+ h	0	0i).
Taking advantage of Eqs (5.4.1), (5.4.2) and (5.4.10), the generalized Bogolyubov-De Gennes

equations (5.2.7), (5.2.8) are reduced to

("� � S�)f�� (r) =

�
��

2
+

�	0

2	0

+ S+
�

�
f+� (r)(5.4.11)

("� � S�)f+� (r) =

�
��

2
+

�	0

2	0

+ 2j	0j2 eU + S+
+

�
f�� (r);(5.4.12)

where the quantitiesS+
� , S� are given by Eqs. (5.3.11), (5.3.12), and"� is the exact value of the

excitation energy. Eqs. (5.4.10), (5.4.11) and (5.4.12) represent a complete set of equations for finding
the energy shifts and damping rates of the elementary excitations.

A precise calculation of the self-energy functions in Eqs. (5.4.11), (5.4.12) depends on the value
of "� and on the trapping geometry. In this section we will make general statements on how the
calculation can be performed. In most of the cases (except the case of the lowest excitations with
zero orbital angular momentum in spherically symmetric traps) the characteristic time scale in the
self-energy operators,1="�, is much smaller than the inverse level spacing in the trap. Therefore,
the summation over the discrete intermediate states can be replaced by integration. This is a direct
consequence of the general statement that the time-dependent discrete Fourier sum can be replaced by
its integral representation at times much smaller than the inverse frequency spacing (see e.g., [114]).

The kernels of the non-resonant parts of the self-energy operators,S+n
� andS�n, vary at distances

jr � r’ j which do not exceed the correlation lengthlcor = 1=

q
n0 eU . As lcor is much smaller than the

characteristic size of the condensate, the non-resonant parts of the self-energies can be calculated in
the local density approximation. The same statement holds for the quantitiesS+rn

� andS�rn origi-
nating from the resonant parts of the self-energy operators. This approach gives the energy shiftÆ"np
(5.3.24), withn0 replaced by by the coordinate-dependent densityn0(r). For quasiclassical excita-
tions we also obtain Eq.(5.3.25) for the shiftÆ"nsp (for the lowest excitations the calculation of this
shift, analogous top2=" in the spatially homogeneous case, requires some more investigation).

The calculation of the resonant contributionsS+rr
� andS�rr to the self-energies is more subtle.

Using Eq.(5.4.8) for the functionsu� ; v� = f�� in Eqs. (5.4.4), (5.4.6), one can see that all resonant
contributions contain the quantity

Q(r ; r 0) =
X

0

f
(r)f
(r 0)f
0(r)f
0(r 0)
"� + "
 � "
0 + i0

:
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Writing ("� + "
 � "
0 + i0)�1 as the integral over time
R1
0
dt expfi("� + "
 � "
0 + i0)tg, we obtain

Q(r ; r 0) = i

Z 1

0

dt exp (i"�t)K
(r ; r 0; t);(5.4.13)

where the quantum-mechanical correlation function

K
(r ; r 0; t) =
X

0

f
(r)f
(r 0)f
0(r)f
0(r 0) exp fi("
 � "
0 + i0)tg :(5.4.14)

We will turn from the integration over the quantum states
0 of the quasiclassical thermal excitations
to the integration along the classical trajectories of motion of Bogolyubov-type quasiparticles in the
trap. Following a general method (see [115–117]) , we obtain

K
(r ; r 0; t) = g�1


Z
Æ(r 00 � r)Æ(r 00p(t)� r 0)Æ("
 �H(p; r 00))

d3r00d3p

8�3
;(5.4.15)

wherer p(t) is the coordinate of the classical trajectory with initial momentump and coordinater .
Eq.(5.4.15) will be used in the next sections where we demonstrate the facilities of the theory.

Concluding this section, we emphasize the key role of harmonicity of the trapping potential for
temperature-dependent energy shifts of the excitations. As mentioned in the previous section, in the
spatially homogeneous case at a given temperature the non-mean-field shift is much smaller than
the shiftÆ"mf appearing in the mean field approach simply due to the temperature dependence of the
condensate density in the Bogolyubov dispersion law (5.2.18). For the Thomas-Fermi condensate in a
harmonic confining potential the situation is different. In this case the spectrum of low-energy ("� �
n0m eU ) excitations is independent of the mean field interparticle interactionn0m eU (chemical potential)
and the condensate density profile [55, 56, 111]. Hence, the temperature-dependent energy shifts can
only appear due to non-Thomas-Fermi corrections. For finding these corrections one should use the
mean field self-energies�a("; r ; r’ ) = n0(r)eUÆ(r�r’ ),�("; r ; r’ ) = 2(n0(r)+n0(0))eUÆ(r�r’ ), where
the only difference from theT = 0 case is related to the presence of above-condensate particles in
the condensate spatial region at finiteT through the coordinate-independent term2n0(0) eU in �. Then
Eqs. (5.4.11), (5.4.12) take the form of ordinary Bogolyubov-De Gennes equations (5.2.15),(5.2.16),
and Eq.(5.4.10) becomes the ordinary Gross-Pitaevskii equation (5.2.12), with the chemical potential
� replaced by~�. The latter circumstance changes the condensate wavefunction compared to that
at T = 0 and ensures the temperature dependence of	0. Accordingly, the excitation energies"�
in Eqs. (5.2.15),(5.2.16) also become temperature dependent. This type of approach, which for a
spatially homogeneous gas would immediately lead to the result of Lee and Yang [98], has been
used in recent numerical calculations of the energy shifts of the lowest quadrupole excitations in
spherically symmetric [118] and cylindrically symmetric [119, 120] harmonic traps. The presence of
the coordinate-dependent part of the above-condensate density,n0(1)(r), in these calculations is not
adequate, since the anomalous average equal to this part was omitted and equations for the excitations
did not contain the corrections to the self-energies, also proportional to(n0a

3)1=2. However, atT �
n0 eU , wheren0(1) � n0(0), the coordinate-dependent partn0(1)(r) as itself should not significantly
influence the result, and the calculations [118–120] should actually demonstrate how important are
the mean field non-Thomas-Fermi effects. The results of [119,120] show the absence of energy shifts
of the excitations at temperaturesT < 0:6Tc in the JILA experiment [50] and in this sense agree
with the experimental data, but do not describe the upward and downward shifts of the excitation
energies, observed experimentally at higher temperatures (in this respect it is worth mentioning that
the calculations [121] performed for the thermal cloud in the hydrodynamic regime agree surprisingly
well with the experiment [50]). On the other hand, the calculation [120] shows a downward shift of
the energy of the lowest quadrupole excitation with increasing temperature in the conditions of the
MIT experiment [51]. This is consistent with the experimental data and indicates that for not very
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small Thomas-Fermi parameter!=n0m eU the mean field non-Thomas-Fermi effects can be important
for temperature-dependent shifts of the lowest excitations.

Below we will assume a sufficiently small Thomas-Fermi parameter!=n0m eU and demonstrate
the use of the theory by the examples where the influence of non-Thomas-Fermi effects on the energy
shifts of the excitations is not important.

5.5. Quasiclassical excitations in a trapped Bose-condensed gas

We first consider the damping and energy shifts of quasiclassical ("� � !) low-energy excitations
of a trapped Thomas-Fermi condensate, i.e., the quasiclassical excitations with energies much smaller
than the mean field interaction between particlesn0m eU . In this case, for the condensates in a harmonic
confining potential the ground state wave function can be found on the basis of Eqs. (5.4.10), (5.4.11),
(5.4.12). Neglecting the kinetic energy term in Eq.(5.4.10), we arrive at a quadratic equation for	0.
Expanding the solution of this equation in powers of� and retaining only the terms independent of�
and the terms linear in�, for the condensate density we obtain

n0(r) = ~n0(r) + �
p
~n0(r)=eU;(5.5.1)

where~n0(r) = (~� � V (r))=eU is the density of the Thomas-Fermi condensate in the ordinary mean
field approach.

For quasiclassical excitations the terms in Eqs. (5.4.11) and (5.4.12), originating from the kinetic
energy of the condensate, can be omitted from the very beginning [56]. Then, using Eq.(5.5.1) and
treating the terms containingS� andS+

� as perturbations, we obtain"� = "
(0)
� + "

(1)
� , where"(0)� is

the excitation energy in the mean field approach, and the correction to the excitation energy"
(1)
� =

Æ"� � i�� is given by the relation

"(1)� =hf�� jS�jf+� i+
1

2

�
hf�� jS+

+ + 2�
p
~n0jf�� i+ hf+� jS+

� jf+� i
�
:(5.5.2)

Heref�(0)� are the zero-order wavefunctions of the excitations, determined by the ordinary Bogolyubov-
De Gennes equations (5.2.15), (5.2.16), with"� = "

(0)
� .

In the case of quasiclassical excitations also the kernels of resonant parts of integral operators in
Eq.(5.5.2) vary on a distance scalejr � r’ j which does not exceed the correlation lengthlcor. This can
be already seen from Eqs. (5.4.13), (5.4.15): The characteristic time scale1="� in Eq.(5.4.13) is much
shorter than!�1 and important is only a small part of the classical trajectory, where the condensate
density is practically constant andr p(t) = r + vt, with v = @H=@p. The correlation lengthlcor is not
only much smaller than the size of the condensate, but also smaller than the width of the boundary
region of the condensate, wheren0 eU � "�. Therefore, the action of all integral operators on the
functionsf�(0)� in Eq.(5.5.2) can be calculated in the local density approximation. Accordingly, for
each of these operators one can use the quantity following from Eqs. (5.3.3)-(5.3.6), withn0 = ~n0(r)
andp from the Bogolyubov dispersion lawH(p; r) = "�. Then, using Eqs. (5.4.8) we can express the
energy shiftÆ"� and the damping rate�� through the energy shiftÆ"�h(r) and damping rate��h(r)
of the excitation of energy"� in a spatially homogeneous Bose-condensed gas with the condensate
density equal to~n0(r):

Æ"� =

Z
d3rjf�(r)j2

8<:Æ"�h(r)+ "��
p
~n0(r)q

"2�+(~n0(r) ~U)2+~n0(r) ~U

9=;;(5.5.3)

�� =

Z
d3rjf�(r)j2��h(r):(5.5.4)
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The second term in the integrand of Eq.(5.5.3) originates from the temperature dependence of the
shape of the condensate wavefunction. For any ratio"�=n0(r)eU this positive term dominates over
the negative termÆ"�h(r). The latter circumstance can be easily established from the results forÆ"�h
in Fig. 5.3.1. Thus, for quasiclassical low-energy excitations the energy shiftÆ"� will be always
positive, irrespective of the trapping geometry and the symmetry of the excitation.

We confine ourselves to the case of cylindrical symmetry, where for the states with zero angular
momentum one finds

jf�(r)j2 = ~�

�l�lz log (2~�="�)�
q
"2� + (~n0(r) ~U)2

;(5.5.5)

with l� = (2~�=!�)
1=2, lz = (2~�=!z)

1=2 being the characteristic size of the condensate in the radial
and axial direction,!�, !z the radial and axial frequencies, and� the radial coordinate. The main
contribution to the integrals in Eqs.(5.5.3),(5.5.4) comes from the boundary region of the condensate,
where~n0(r) � "�. From Eqs. (5.4.11),(5.4.12) one can easily see that in this region the possibility to
omit the non-Thomas-Fermi effects originating from the kinetic energy of the condensate requires the
condition"� � !2=3~�1=3. This condition ensures that the characteristic width of the boundary region
greatly exceeds the excitation wavelength, and we arrive at the following relations for the energy
shifts and damping rates of the excitations:

Æ"� � 8

r
"�
~�

T

log (2~�="�)
(~n0ma

3)1=2;(5.5.6)

�� � 9

r
"�
~�

T

log (2~�="�)
(~n0ma

3)1=2:(5.5.7)

It is important to emphasize that in the boundary region of the condensate, responsible for the
energy shifts and damping rates of the quasiclassical excitations, the quantitiesS�(1), S+(1), and�(1)

a

are determined by the contribution of intermediate quasiparticles which have energies comparable
with "�. Moreover, in this spatial region the quasiparticle energies are of order the local mean field in-
terparticle interaction. As a consequence, the energy shiftÆ"� (5.5.6) and the damping rate�� (5.5.7)
are practically independent of the condensate density profile. For the same reason the damping rate
is determined by both the Szepfalusy-Kondor and Beliaev damping processes. Therefore, similarly
to the damping of excitations with energies"p > n0 eU in a spatially homogeneous gas, the damping
of quasiclassical low-energy excitations of a trapped Bose-condensed gas can no longer be treated as
Landau damping.

5.6. Sound waves in cylindrical Bose condensates

The derivation of Eqs. (5.5.6), (5.5.7) assumes that the motion of the excitation� is quasiclassical
for all degrees of freedom. We now turn to the condensate excitations in cigar-shaped cylindrical
traps, which are quasiclassical only in the axial direction and correspond to the lowest modes of the
radial motion. We will consider low-energy excitations ("� � n0m eU), i.e., the excitations with the
axial wavelength much larger than the correlation lengthlcor. In the recent MIT experiment [109]
localized excitations of this type were created in the center of the trap by modifying the trapping
potential using the dipole force of a focused off-resonant laser beam. Then, a wave packet traveling
along the axis of the cylindrical trap (axially propagating sound wave) was observed. In the mean
field approach the sound waves propagating in an infinitely long (axially homogeneous) cylindrical
Bose condensate have been discussed in [122–124].

For revealing the key features of the non-mean-field effects (damping and the change of the sound
velocity) we confine ourselves to the same trapping geometry. With regard to realistic cylindrical traps
this will be a good approach if the mean free path of sound waves is smaller than the characteristic
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axial size of the sample. As found in [122], for axially propagating sound waves radial oscillations of
the condensate are absent, and the wavefunctionsf�k = (2~n0(�)eU="k)�1=2fk, with

fk =
1p
�l2�

exp (ikz)(5.6.1)

andk being the axial momentum. The dispersion law

"k = ck(5.6.2)

is characterized by the sound velocity equal to(~n0m eU=2)1=2, where~n0m = ~�=eU is the maximum
density of the Thomas-Fermi condensate in the ordinary mean field approach.

It should be noted from the very beginning that, according to Eq.(5.5.1),~n0m is related to the
corrected value of the maximum condensate densityn0m as~n0m = n0m � (�=eU)pn0m. Therefore,
being interested in the sound velocity at a given value of the maximum condensate density, one should
substitute this expression to Eq.(5.6.2). This immediately changes the sound velocity to

c = (n0m eU=2)1=2(5.6.3)

in the leading term (5.6.2) of the dispersion law and provides a contribution to the frequency shift of
the sound wave

Æ"k = �"k 6T

n0m eU (�n0ma
3)1=2:(5.6.4)

The damping rate and other contributions to the frequency shift can be found directly from
Eq.(5.5.2) by using the wavefunctionsfk (5.6.1). The intermediate quasiparticles giving the main
contribution to the damping rate and frequency shift have energies" � n0m eU, i.e. much larger
than the frequency of the considered sound wave,"k (see below). Therefore, similarly to the case
of phonons in a spatially homogeneous condensate, the non-resonant terms analogous toS+n

� , S�n,
S+rn
� andS�rn contribute only to the frequency shift. As already mentioned above, the characteristic

distance scalej� � �0j in the kernels of the corresponding self-energies is of order the correlation
length lcor, and the sum of their contributions to the frequency shift can be calculated by using the
local density approximation for the action of the self-energy operators on the functionsf�k . This gives
the non-resonant contribution to the frequency shift,Æ"nk(�) = (�8:4 � p

�)(n0a
3)1=2T=(n0 ~U) and

the non-resonant contributionÆ"nsk (�) = 2
p
� � (n0a

3)1=2T=(n0 ~U), with n0 = ~n0(�) . Then, we can
express the total non-resonant partÆ"ntk of the frequency shift of the sound wave through the quantity
Ænkh(�) = Æ"nk(�) + Æ"nsk (�):

Æ"ntk =

Z
d2�jfkj2

(
Ænkh(�) +

�
p
~n0(�)

2~n0(�)eU "k

)
� "k

4:5T

n0m eU (�n0ma
3)1=2:(5.6.5)

The resonant terms analogous toS+rr
� andS�rr in Eqs.(5.3.19)-(5.3.21) contribute to both the

frequency shift and damping rate. This means that the latter is determined by the Szepfalusy-Kondor
scattering processes and, since the characteristic energies of intermediate quasiparticles are much
larger than"k, can be treated as Landau damping. The resonant contributions to the frequency shift
and damping rate can not be found in the local density approximation, as the characteristic distance
scalej� � �

0j in the kernels of the self-energy operators in Eq.(5.5.2) is of order the radial size of
the condensate. For finding these contributions one has to substitute the resonant parts of the self-
energies, (5.4.3)-(5.4.6), to Eq.(5.5.2) and, by using Eqs.(5.4.13)-(5.4.15), turn from summation over
quasiclassical states
, 
0 of intermediate quasiparticles to the integration along classical trajectories
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of their motion. Then, a direct calculation of the quantityÆrk = Æ"rrk � i�k yields

Ærk = i
"2k
~U

2

Z
d"


dn

d"


Z 1

0

dt exp (i"kt)

Z
�k
(r)��k
(r(p; t))Æ("
�H(p; r))

d3rd3p

(2�)3
;(5.6.6)

wherer(p; t) is the classical trajectory starting at the phase space points(r ;p) on the (hyper)surface
of constant energy"
, �k
(r) = fk(z)F
(�), and

F
(�)=
2"2
+(~n0(�) ~U)

2�~n0(�) ~U
q
"2
+(~n0(�) ~U)2

"


q
"2
+(~n0(�) ~U)2

:

Generally speaking, the integration in Eq.(5.6.6) is a tedious task as it requires a full knowledge
of the classical trajectories on a time scale� 1="k. This is also the case in the idealized cylindrical
trap, because of coupling between the radial and axial degrees of freedom. We will rely on the
approach which assumes a fast radial motion of quasiparticles compared to their motion in the axial
direction and, hence, requires the frequency of the sound wave,"k, significantly smaller than the
radial frequency!�. Then on a time scale� 1="k the quasiparticles with energies� ~n0 ~U (which are
the most important for the energy shifts and damping of the sound wave) oscillate many times in the
radial direction, whereas their axial variablesz(p; t), pz(p; t) only slightly change and, hence, can be
adiabatically separated from the fast radial variables�(p; t), p�(p; t). In this case it is convenient to
integrate Eq,(5.6.6) overdp� and, using Eq.(5.6.1), represent it in the form

Ærk = i
"2k
eU

4�2l2�

Z
"kd"


dn

d"


Z
dt exp (i"kt)

Z
�d�dpzdz

F
(�)F
(�(p; t))q
"2
 + (~n0(�)eU)2 exp fi(z � z(p; t))g;

(5.6.7)

where the integration is performed over the entire classically accessible region of the phase space.
Sincez(p; t) is close toz, in the exponent of the integrand we can writez(p; t) � z = vz, where

the axial velocityvz is obtained from the exact Hamiltonian equations of motion by averaging over the
fast radial variables:vz = h@H(p; r)=@pzi�. For the classical radial motion ("
 � !�) the averaging
procedure simply reduces to integration overd� under the conditionH(p; r) = "
 at fixed values of
"
, pz andz, with the weight proportional to the local density of states for the radial motion:

h(:::)i� = g�1
Z
(:::)("2
 + (~n0(�)eU)2)�1=22��d�;

whereg =
R
("2
 +(~n0(�)eU )2)�1=22��d�. Finally, averaging the functionF
(�(t)) over the fast radial

variables and integrating overdt in Eq.(5.6.7), we obtain

Ærk =
"2k
eU

8�3l2�

Z
d"


"
dn

d"


Z
dzdpzg

hF (�)i2�
"k � pzvz + i0

:(5.6.8)

The resonant contribution to the frequency shift, given by the real part of Eq.(5.6.8), after the integra-
tion proves to beÆ"rk � �2:3"k(T=n0m eU)(n0ma3)1=2. The sum of this quantity with the non-resonant
term (5.6.5) andÆ"k (5.6.4) leads to the frequency shift of the sound wave

Æ"k � �5"k(n0ma3)1=2 T

n0m eU :(5.6.9)

The imaginary part of Eq.(5.6.8) gives the damping rate

�k = 8:6"k(n0ma
3)1=2

T

n0m eU :(5.6.10)
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Except for the numerical coefficients, Eqs,(5.6.9), (5.6.10) are similar to Eq.(5.3.26), (5.3.27) for
the damping rate and energy shift of phonons in a spatially homogeneous Bose condensate. This
a consequence of the fact that the condensate boundary region practically does not contribute to
the damping rate and frequency shift of axially propagating sound waves, in contrast to the case of
excitations quasiclassical for both axial and radial degrees of freedom.

In the MIT experiment [109] the characteristic spatial size of created localized excitations was
� � 20 �m and, accordingly, so was the initial wavelength of propagating sound. According to
the experimental data, the propagating pulse died out during 25 ms, and after that only the lowest
quadrupole excitation characterized by a much loner damping time (� 300 ms) was observed. We
believe that the attenuation of axially propagating sound in the MIT experiment [109] on the time
scale of 25 ms can be well explained as a consequence of damping. The characteristic frequency of the

waves in the packet can be estimated as"� � 2�
q
n0m ~U=2=�. Then Eq.(5.6.10) gives the damping

rate independent of the condensate density~n0m. In the MIT experiment the temperatureT �0.5�K
was roughly only twice as large asn0m eU , which decreases the damping rate by approximately20%
compared to that given by Eq.(5.6.10). In these conditions we obtain a characteristic damping time of
15 ms, relatively close to the measured value.

The relative change of the sound velocity,Æc=c = Æ"k="k, increases with decreasing condensate
densityn0m. However, even at the lowest densities of the MIT experiment [109] (n0m � 1014 cm�3)
the quantityÆc=c does not exceed� 5% and is practically invisible.

5.7. Damping of low-energy excitations in a trapped Bose-condensed gas

In this section we use our theory for the calculation of damping of the lowest excitations (i.e.
the excitations with energies~! � " � �) of a trapped condensate in the Thomas-Fermi regime
at finite temperaturesT � ~! ranging almost up to the BEC phase transition temperature. We will
again assume the inequality (5.1.3) (withn0 = n0m) which ensures that the main contribution to the
damping rate comes from the first term inHint (5.3.2), proportional tô	03, and the damping is actually
caused by the interaction of the lowest excitations with the thermal excitations through the condensate
and is governed by the SK process (5.1.2). The damping rate is given by the part of Eq.(5.6.6) in which
the functions��
(r) = f�(r)F
(r), and the wavefunctions of the lowest excitations:

f� =

 Y
i

li

!�1=2
W�(ri=li);(5.7.1)

with polynomialsW� introduced in Chapter 2.
Eq.(5.6.6) can also be found within the first order perturbation theory inHint:

��= Im
X


0

1

~

j <
0jĤintj�
> j2
E
�E
0+E�+i0

(N
�N
0);(5.7.2)

whereN
 = [exp (E
=T )�1]�1 are equilibrium occupation numbers for the thermal excitations. The
transition matrix element can be represented in the form

<
0jĤintj�
>=
~U

2

h
3H�

0�(H�



0 �H�
0


 �H

0

� )
i
;(5.7.3)

whereH�

0 =
R
d3r	0(r)f

�
� (r)f

�

 (r)f

��

0 (r)andH

0

� =
R
d3r	0(r)f

�
� (r)f

+

 (r)f

+�

0 (r).

Since energies of the thermal excitationsE
�~!, these excitations are quasiclassical and, simi-
larly to the spatially homogeneous case, one can write

f�
 (r) =

�
E
=(

q
E2


 + (n0(r) ~U)2 � n0(r) ~U)

��1=2
f
(r):
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Then, using Eq(5.7.1), from Eq.(5.7.3) we obtain

< 
0jĤintj�
 >=
 
E�

~U

2
Q

i li

!1=2Z
d3r��
(r)f
(r)f

�

0(r);(5.7.4)

where��
(r) =W�(ri=li)F
(r), and

F
(r)=
2E2


+(n0(r) ~U)2�n0(r) ~U
q
E2


+(n0(r) ~U)2

E


q
E2


+(n0(r) ~U)2
:(5.7.5)

For the distribution of energy levels of the thermal excitations with a given set of quantum
numbers~
 determined by the trap symmetry (in cylindrically symmetric traps~
 is the projection
M of the orbital angular momentum on the symmetry axis) we will use the statistical Wigner-
Dyson [125–127] approach which assumes ergodic behavior of the excitations. Then, the quantum
spectrum of the thermal excitations is random and the sum in Eq.(5.7.2) can be replaced by the in-
tegral

R
dE
dE
0

P
~
~
0 g
g
0R

0 in which g
(E
) is the density of states for the excitations with a

given set~
, andR

0 the level correlation function. In non-spherical harmonic trapsg
E� � 1 and,
hence,R

0 � 1. Then, puttingN
�N
0 = E�(dN
=dE
) and writing(E
�E
0+E�+i0)

�1 as the
integral over timei

R1
0
dtexpfi(E
�E
0+E�+i0)t=~g, from Eqs. (5.7.2), (5.7.4) we obtain:
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(5.7.6)

The quantummechanical correlation function

K
(r; r
0; t)=

X
~
0

Z
g
0dE
0exp

�
i
(E
�E
0)t

~

�
f
(r)f

�

 (r

0)f �
0(r)f
0(r0):(5.7.7)

and, similarly to the transformation of Eq.(5.4.14) to (5.4.15), can be written asX
~


g
K
(r; r
0; t) =

Z
Æ(r00�r)Æ(rp(tjr00;p)� r0)Æ(E
�H(p; r00))

d3pd3r00

(2�~)3
;(5.7.8)

where again the classical Bogolyubov HamiltonianH(p; r) is given by Eq.(5.4.9), andr p(tjr,p) is the
coordinate of the classical trajectory with initial momentump and coordinater . Then, Eq.(5.7.6) is
reduced to the form

��=
E2

�
~U

2~2
Q

ili
Re
Z
dE


dN


dE


Z 1

0

dt exp

�
i
E�t

~

�Z
��
(r)���
(r cl(tjr,p))Æ(E
�H(p; r))

d3rd3p

(2�~)3
:(5.7.9)

We first consider temperaturesT � �, where the main contribution to the integral in Eq.(5.7.9)
is provided by the thermal excitations with energiesE
 < �. In this case the use of the statistical
approach in non-spherical traps is justified by the fact that, as shown in [57, 111], the motion of
corresponding classical Bogolyubov-type quasiparticles is strongly chaotic at energies of order�.
The characteristic values ofp andt in Eq.(5.7.9) are of order(mn0(r) ~U)1=2 and~=E�, respectively.
For the lowest excitations (E� � ~!) the characteristic values ofp in Eq.(5.7.9) are of order(m�)1=2,
and the result of integration can be represented in the form

�� = A�
E�

~

T

�
(n0ma

3)1=2;(5.7.10)

whereA� is a numerical coefficient which depends on the form of the wavefunction of the low-energy
excitation�. In contrast to the case ofE� � ~!, the calculation ofA� requires a full knowledge of
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FIGURE 5.7.1. The damping rate�� versusT for the JILA trapping geometry. The
solid (dashed) curve and boxes (triangles) correspond to our calculation and the exper-
imental data [50] for the excitations withM = 2 (M = 0), respectively.

classical trajectories of (stochastic) motion of Bogolyubov-type quasiparticles in the spatially inho-
mogeneous Bose-condensed gas. In this respect the damping of the lowest excitations has a strongly
non-local character and, hence, can not be found in any type of a local density approximation. The
same statement holds for the resonant part of the shifts of the lowest excitations.

The criterion of the collisionless regime for the excitations with energiesE
 � � assumes that
their damping time��1� is much larger than the oscillation period in the trap!�1 and, hence, the mean
free path greatly exceeds the size of the condensate. From Eq.(5.7.10) we find���(T=~)(n0ma3)1=2
and obtain the collisionless criterion

(T=~!)(n0ma
3)1=2 � 1:(5.7.11)

Due to collective character of the excitations the criterion (5.7.11) is quite different from the Knudsen
criterion in ordinary thermal samples.

Remarkably, both Eq.(5.7.11) and the assumption of stochastic behavior of thermal excitations
with energies of order� are well satisfied in the conditions of the JILA [50] and MIT [51] experi-
ments, where the temperature dependent damping of the lowest quadrupole excitations in cylindrically
symmetric traps has been measured at temperatures significantly larger than�. The JILA experi-
ment [50], where the ratio of the axial to radial frequency� = !z=!� =

p
8, concerns the damping

of two quadrupole excitations:M = 2, E� =
p
2!�, andM = 0, E� = 1:8!�. Our numerical calcu-

lation of Eq.(5.7.9), withW� from [56], givesA� � 7 for M = 2 andA� � 5 for M = 0. This leads
to the damping rate��(T ) which is in agreement with the experimental data [50] (see Fig. 5.7.1).

In the MIT experiment [51], where� = 0:08, the damping rate has been measured for the
quadrupole excitation withM = 0, E� = 1:58!z. In this case we obtainA� � 10. The corre-
sponding damping rate��(T ) (5.7.10) monotonously increases withT and for the conditions of the
MIT experiment [51] ranges from4 s�1 at T � 200 nK to 18 s�1 at T � 800 nK. These results
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somewhat overestimate the damping rate compared to the experimental data. In fact, the exact match
between the presented theory and the measured values for the damping rates can not be expected.
The reason is that the in the high temperature part of experiment (T � �), which can be compared
with our calculations, the lhs of Eq.(5.7.11) is of order one. This means that the measurements were
performed for the intermediate range of densities and temperatures, which corresponds to a crossover
between the collisionless and hydrodynamic regimes. In the latter case the inequality opposite to
(5.7.11) is satisfied, and the damping rates are expected to be smaller (see, e.g. [102]).

Importantly, under the condition (5.7.11) the damping rate�� of the low-energy excitations is
much larger than the damping rate�T of the oscillations of the thermal cloud. This phenomenon
was observed at JILA [50]. One can easily find that forT � � the damping rate�T � n�vT , where
n � (mT=2�~2)3=2 is the characteristic density of the thermal cloud,� = 8�a2 the elastic cross
section, andvT �

p
T=m the thermal velocity. Accordingly, the ratio�T=�� is just of order the lhs of

Eq.(5.7.11).
In spherically symmetric traps at any excitation energies one has a complete separation of vari-

ables, which means that the classical motion of Bogolyubov-type quasiparticles is regular. The ex-
citations are characterized by the orbital angular momentuml and its projectionM , and for given
l;M the level spacingg�1
 � ~! can greatly exceed the interactions provided by the non-Bogolyubov
Hamiltonian terms proportional to	03 and	04. In such a situation the discrete structure of the energy
spectrum of thermal excitations becomes important, and one can get nonlinear resonances instead of
damping. On the other hand, stochastization of motion of thermal excitations can be provided by their
interaction with each other or with the heat bath. In this case the damping rate��(5.7.10) follows di-
rectly from Eq.(5.7.6) by using the Dyson relation for the level correlation function [127] (g
E��1)
andf
 from the WKB analysis of Eq.(2.3.5).

ForT<� the picture of damping of low-energy excitations changes, since�� will be determined
by the contribution of thermal excitations with energiesE
�T . In this case, the lower is the ratioT=�
the more questionable is the assumption of ergodic behavior of the thermal excitations. But, even if
the stochastization is present, atT significantly lower than� the temperature dependent damping of
the lowest excitations will be rather small. For cylindrically symmetric traps from Eqs. (5.7.6), (5.7.9)
one can find�� � (E�=~)(T=�)

3=2(n0ma
3)1=2.

5.8. Concluding remarks

In conclusion we have developed a finite-temperature perturbation theory (beyond the mean field)
for a spatially homogeneous Bose-condensed gas and calculated temperature-dependent energy shifts
and damping rates for Bogolyubov excitations of any energy. The theory is generalized for the case
of excitations in a spatially inhomogeneous (trapped) Bose-condensed gas and used for calculating
the energy shifts and damping rates of low-energy quasiclassical excitations. We also analyzed the
frequency shifts and damping of axially propagating sound waves in cylindrical Bose condensates.
For the lowest elementary excitations we used our theory to calculate the damping rates. Our results
are in excellent agreement with the data of the JILA experiment [50] for the lowest quadrupole exci-
tations in a cylindrical trap and reasonably well explain the MIT experiment [51]. In the latter case
the generalization of the presented theory in the hydrodynamics domain remains to be developed (see
e.g. [102] and [128,129] for the latest developments).

There is still a question of what is the nature of temperature-dependent energy shifts on approach-
ing Tc and how to explain the JILA [50] and MIT [51] experiments where these shifts have been
measured for the lowest quadrupole excitations. Among other approaches [130, 131] we would es-
pecially mention the recent contribution [132], where the shifts where studied in an effectively local
approximation. Although the results of the calculation seem to fit the experiment, we would like to
emphasize that for the lowest excitations the nonlocal character of related energy shifts and damping



5.8. CONCLUDING REMARKS 59

rates should manifest itself in any scheme of calculations and purely local calculations can not give a
full account for the experimental results.
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CHAPTER 6

Dissipative dynamics of a vortex state in a trapped Bose-condensed gas.

We discuss dissipative dynamics of a vortex state in a trapped Bose-condensed gas at finite tem-
perature and draw a scenario of decay of this state in a static trap. The interaction of the vortex
with the thermal cloud transfers energy from the vortex to the cloud and induces the motion of the
vortex core to the border of the condensate. Once the vortex reaches the border, it immediately de-
cays through the creation of excitations. We calculate the characteristic life-time of a vortex state and
address the question of how the dissipative dynamics of vortices can be studied experimentally.

The recent successful experiments on Bose-Einstein condensation (BEC) in trapped clouds of
alkali atoms [3–5] have stimulated a great interest in the field of ultra-cold gases [96]. One of the
goals of ongoing studies is to investigate the nature of a superfluid phase transition in ultra-cold
gases and to make a link to more complicated quantum systems, such as superfluid helium. Of
particular interest is the relation between Bose-Einstein condensation and superfluidity. However,
being the most spectacular manifestation of the phase transition in4He, superfluidity has not yet been
observed in trapped gases. A promising way of studying superfluidity in trapped gases is the creation
of quantum vortices, as quantization of circulation and the related phenomenon of persistent currents
are the most striking properties of superfluids.

A widely discussed option of creating vortices in trapped gases assumes the rotation of a slight
asymmetry of a cylindrical trap after achieving BEC, or cooling down the gas sample below the Bose-
condensation temperature in an already rotating trap [133,134]. Another possibility is a rapid quench
of a gas sample near the critical temperature, which should lead to creation of vortices even in a non-
rotating trap [135]. It is worth mentioning the ideas to create the vortex state in a Bose-condensed gas
by optical means [136, 137], and the idea to form vortex rings in the regime of developed turbulence
[138]. The spatial size of the vortex core in the Thomas-Fermi regime is too small to be observed,
and for visualizing the vortex state it is suggested to switch off the trap and let the cloud ballistically
expand. Then the size of the vortex core will be magnified approximately by the same factor as the
size of the expanding condensate [139].

Similarly to the recently studied kink-wise condensates [136,140,141], vortices are the examples
of macroscopically excited Bose-condensed states. In a non-rotating trap the vortex state has a higher
energy than the ground-state Bose condensate, i.e. the vortex is thermodynamically unstable [142–
144]. On the other hand, a quantum vortex with the lowest possible circulation (the vortex “charge”
equal to1), is dynamically stable (small perturbations do not develop exponentially with time; see
[139,145] and refs. therein). Therefore, the vortex state can only decay in the presence of dissipative
processes.

In this Letter we discuss dissipative dynamics of a vortex state in a trapped Bose-condensed gas at
finite temperatures and show how the interaction of the vortex with the thermal cloud leads to decay
of the vortex state in a static trap. According to our scenario, the scattering of thermal excitations
by a vortex provides the energy transfer from the vortex to the thermal cloud and induces motion
of the vortex core to the border of the condensate, where the vortex decays by creating elementary
excitations. We calculate the characteristic life-time of the vortex state and discuss how the dissipative
dynamics of vortices can be studied experimentally.
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We first briefly outline the main features of vortex behavior in a superfluid, known from studies
of liquid helium. The motion of a vortex in a superfluid of density�s satisfies the Magnus law
(see [146–148] and refs therein):

�s(vL � vS)� � = F:(6.0.1)

HerevL is the velocity of the vortex line, andvS the velocity of superfluid at the vortex line. The
vector� is parallel to the vortex line and is equal to the circulation carried by the vortex. The force
F acting on the vortex originates from the mutual friction between the normal component and the
moving vortex line, and is usually small. Assuming the absence of friction (F = 0), the vortex moves
together with the superfluid component (vL = vS). In the presence of a vortex at the pointr 0 the
superfluid velocityvS(r) satisfies the equations

rotvS = 2��Æ(r � r 0); divvS = 0(6.0.2)

and is related to the phase� of the condensate wave-function asvS =r�. This leads to quantization
of the circulation:� = Z~=m [59], whereZ is an integer (the charge of the vortex) andm is the mass
of the condensate particle. Below we will consider vortex states withZ = 1, which are dynamically
stable ( [139,145] and refs. therein).

Eqs.(6.0.2) are similar to the equations of the magnetostatic problem, with the magnetic field
replaced by the velocityvS and the electric current replaced by�. The velocity field around an
infinitely long straight vortex line is analogous to the magnetic field of a straight current:

vS(r) = [�� r ]=r2:(6.0.3)

The vortex itself can experience small oscillations of its filament, characterized by the dispersion law
j!(k)j = �k2 ln(1=ak)=2 [31], wherek is the wave vector of the oscillations, anda the radius of the
vortex core. In a weakly interacting Bose-condensed gas the core radius is of order the healing length
a = (~2=m�)1=2, where� is the chemical potential.

We will see that the dissipative dynamics of a vortex state is insensitive to the details of the density
distribution in a gas. The spatial size of the Thomas-Fermi condensate trapped in a harmonic potential
of frequency! is R = (2�=m!2)1=2. Therefore, for finding the superfluid velocityvS in this case,
we may consider a vortex in a spatially homogeneous condensate in a cylindrical vessel of radiusR,
with the vortex line parallel to the axis of the cylinder. For the vortex line at distancex0 from the axis,
the velocity field can be found by using the “reflection” method [146]. In a non-rotating trap, in order
to compensate the normal component of the velocity field (6.0.3) everywhere on the surface of the
cylinder, we introduce a fictious vortex with opposite circulation on the other side of the vessel wall,
i.e. at distanceR2=x0 from the cylinder axis. At the position of the vortex the “reflection” induces the
velocity

vS =
[�� x0]

R2 � x2
0

:(6.0.4)

As vS � vL, the vortex line will slowly drift around the axis of the trap.The characteristic time for
the formation of the velocity field (6.0.4) is�R � R=cs, wherecs =

p
�=m is the velocity of sound.

Sufficiently far from the border of the Thomas-Fermi condensate, i.e. outside the spatial region where
R� x0 � R, the drift period is�dr � x0=vS � R2=� and greatly exceeds the time�R :

�R
�dr
�

R

cs�dr
�

a

R
� 1:

This means that we can neglect retardation effects and, in particular, the emission of phonons by the
moving vortex. In other words, the “cyclotron” radiation is prohibited, since the wavelengthcs�dr of
sound which would be emitted exceeds the sizeR of the condensate.

According to the above mentioned magnetostatic analogy, in a non-rotating trap the potential
energy of the system (vortex plus its reflection) can be thought as the energy of two counter flowing
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currents. Since the currents attract each other, the energy is negative and decreases with displacing
the vortex core towards the wall. In other words, it is energetically favorable for the vortex to move
to the border of the vessel. Near the border the velocity of the vortex exceeds the Landau critical
velocity, and in a homogeneous superfluid the vortex decays through the creation of phonons [146].
In a trapped gas the condensate density strongly decreases near the border, and the vortex can decay
by emitting both collective and single-particle excitations. The motion of the vortex towards the
wall requires the presence of dissipation, as in the frictionless approach the velocity of the vortex core
coincides with the velocity (6.0.4) which does not contain a radial component. Thus, just the presence
of dissipative processes provides a decay of the vortex state (see [143] and related discussion [141] of
the stability of a kink state).

The dissipation originates from the scattering of elementary excitations by the vortex and is related
to the friction forceF in Eq.(6.0.1), which is nothing else than the momentum transferred from the
excitations to the vortex per unit time. This force can be decomposed into longitudinal and transverse
components:

F = �Du�D0u� �=�;(6.0.5)

whereu = vL � vn, vn is the velocity of the normal component, andD;D0 are longitudinal and
transverse friction coefficients, respectively. In a static trapu = vL, as the normal component is at rest
(vn = 0). The friction force has been investigated in relation to the attenuation of the second sound in
superfluid4He, where the the transverse component is most important [149–151] (see also [147] for
review). For a straight infinite vortex line (parallel to thez-axis), a general expression for the friction
force in a homogeneous superfluid is obtained in terms of the scattering amplitudef(k; k0) [151]:

F =

�Z
@n

@Ek

~(ku)
Z

(k � k0)
Æ(Ek � Ek0)

Æ(kz � k0z)

jf(k; k 0)j2
d3k

(2�)3
d3k0

(2�)3

�
� [u� �]�n:(6.0.6)

Here�n is the local mass density of the normal component,k; k0 are the wave vectors of the incident
and scattered excitations,n(Ek) = (exp(Ek=T ) � 1)�1are the Bose occupation numbers for the
excitations,Ek is the excitation energy, andT the gas temperature. Comparing the second terms of
Eqs. (6.0.5) and (6.0.6), one immediately arrives at the universal expression for the transverse friction
coefficient:D0 = ��n, assuming that the first term of Eq.(6.0.6) does not contribute toD0 [147,151].

We now turn to our analysis of the dissipative dynamics of the vortex state in a non-rotating trap,
related to the motion of the vortex core (line) to the border of the condensate. This motion occurs on
top of small oscillations of the vortex filament and a slow drift (6.0.4) of the vortex core. The radial
component of the velocity of the vortex core is determined by the longitudinal friction coefficientD.
For finding these quantities in dilute Bose-condensed gases, the analysis of [147, 149–151] can only
be used at very low temperatures (T � �), where the number of thermal excitations is very small
and, hence, the longitudinal friction force is extremely weak.

The situation is drastically different in the temperature rangeT & �, which is the most interesting
for trapped Bose-condensed gases. We will consider the limitT � � and first analyze how the
vortex scatters excitations with energiesEk & �. These excitations are single particles, and their De
Broglie wave length is much smaller than the spatial sizeR of the condensate. The most important
is the interaction of the excitations with the vortex at distances from the vortex liner � a � R.
Therefore, the corresponding friction force in a trapped condensate can be found in the local density
approximation: We may use Eq.(6.0.6), derived for a homogeneous superfluid, and then replace the
condensate densityn0 by the Thomas-Fermi density profile of the trapped condensate.

The Hamiltonian of the single-particle excitations is~
2
k̂
2=2m + 2n0(r)g � �, where the second

term originates from the mean-filed interparticle interaction, withn0(r) is the density of the vortex
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state,g = 4�~2asc=m, asc is the scattering length, and� = n0(1)g (n0(1) � n0). For r ! 1 we
haveĤ(k̂; r) = ~

2
k̂
2=2m + �. Hence, the interaction Hamiltonian responsible for the scattering of

excitations from the vortex can be written as

Ĥint = 2 [n0(r)g � �] :

For the vortex chargeZ = 1, at distancesr � a the interaction Hamiltonian̂Hint � �2�. Forr � a
we haven0(r) � (� � ~

2=2mr2)=g, andĤint � �~
2=mr2: The scattering amplitude in Eq.(6.0.6)

can be written asf(k; k 0) = 2�Æ(kz � k0z)
~f(k; k 0); where the 2D scattering amplitude in the Born

approximation is given by

~f(k; k0) =

Z
d2rHint(r)eiqr :(6.0.7)

Hereq = k � k 0 is the momentum transferred from the excitation to the vortex. As the amplitude~f
only depends onjqj, the first term in Eq.(6.0.6) is purely longitudinal.

For qa � 1, which corresponds to small angle scattering, from Eq.(6.0.7) we obtain~f �
(~2=m) log(1=qa) . Forqa� 1 we findj ~f(q)j2 � (~2=m)2 sin2(qa� �=4)=(aq)3:Using these results
in Eq.(6.0.6), we see that the main contribution to the integral over momenta comes from energiesEk

satisfying the inequality� . Ek � T . A direct calculation of the longitudinal friction coefficient
gives

D � ��n(T )(n0g=T )1=2;(6.0.8)

where the density of the normal component

�n = �
1

3

Z
@n

@Ep

p2
d3p

(2�~)3
� 0:1

m5=2T 3=2

~3
:

A collective character of excitations with energiesEk � � can influence the numerical coefficient
in Eq.(6.0.8), and for this reason we did not present the exact value of this coefficient in the single-
particle approximation. In cylindrical traps the behavior of excitations with energiesE � � (and
somewhat larger) is stochastic [57, 111], and hence the discrete structure of the spectrum is not im-
portant (see Chapter 5).

The coefficientD / T , and Eq. (6.0.8) can be rewritten asD / ~n0�, where the quantity

� = (n0a
3
sc)

1=2(T=�)� 1(6.0.9)

is a small parameter of the finite-temperature perturbation theory atT � �. The inequality� � 1
remains valid even near the BEC transition temperature, except the region of critical fluctuations (see
Chapter 5).

Relying on Eq.(6.0.8) for the longitudinal friction force, we consider the motion of the vortex line
to the border of the condensate in a static trap, where the normal component is at rest. Assuming a
small friction in Eqs.(6.0.1) and (6.0.5), for finding a friction-induced small quantityvL�vS we only
retain the terms linear in the dissipation coefficientsD andD0. Then we obtain the equation

�s[(vL � vS)� �] = �DvS �D0[vS � �]=�

which has a solution of the formvL = v
(r)
L r̂ + v

(�)
L [� � r ]=�r. For the radial (v(r)) and tangential

(v(�)) components of the velocity of the vortex line we find

v
(r)
L = DvS=�s�; v

(�)
L = vS(1�D0=�s�):(6.0.10)

>From Eqs.(6.0.10) it is clear that the radial motion of the vortex is governed by the value of the
longitudinal friction coefficient, whereas the transverse friction (Iordanskii force) simply slows down
the drift velocity (6.0.4) of the vortex. The radial velocityv(r)L � vS, which is guaranteed by the
inequality (6.0.9).
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The time dependence of the distancex0 of the vortex line from the axis of a cylindrical trap
follows from the equation of radial motion for the vortex,dx0=dt = v

(r)
L . With Eq.(6.0.10) forv(r)L

and Eq.(6.0.4) forvS, for the characteristic time of motion of the vortex from the center of the trap to
the border we obtain

� �

Z R

xmin

dx0m(R2 � x2
0)�s

~x0�n

�n0g

T

�1=2

;(6.0.11)

wherexmin is the initial displacement of the vortex line from the axis of the trap. The vortex velocity
is the smallest near the axis, and the main contribution to the integral in Eq.(6.0.11) comes from
distancesx0 � R. Therefore, we can neglectx0 in the numerator of the integrand and put�s = �S(0),
n0 = n0(0). Then, Eq.(6.0.11) yields

� �
mR2�s
~�n

�n0g

T

�1=2

ln(R=xmin):(6.0.12)

This result is only logarithmically sensitive to the exact value ofxmin, and we can putxmin � a.
Once the vortex reaches the border of the condensate, it immediately decays. Hence, the time�

can be regarded as a characteristic life-time of the vortex state in a static trap. Interestingly, the decay
rate can be written as

��1 �
E0

~
(n0ma

3
sc)

1=2

�
T

�

�
;(6.0.13)

wheren0m is the maximum condensate density, andE0 � ~
2=mR2 is the energy of excitation corre-

sponding to the motion of the vortex core with respect to the rest of the condensate (excitation with
negative energy, found in the recent calculations [142, 144, 145, 152, 153]). Eq.(6.0.13) is similar to
the damping rate of low-energy excitations of a trapped condensate, found beyond the mean-field
approach [96,97]. Both rates are proportional to the small parameter� (6.0.9).

For Rb and Na condensates at densitiesn0 � 1014cm�3 and temperatures100 . T . 500 nK, in
the static traps with frequencies10 . ! . 100 Hz the life-time� of the vortex state ranges from0:1
to 10 s. This range of times is relevant for experimental studies of the dissipative vortex dynamics.

A proposed way of identifying the presence of a vortex state in a trapped Bose-condensed gas
assumes switching off the trap and observing a ballistically expanding gas sample [139]. As follows
from the numerical simulations [139], at zero temperature the expansion of a condensate with a vortex
occurs along the lines of the scaling theory [44,46]. The shape of the Bose-condensed state is nearly
preserved and its spatial size is increasing. Due to expansion the density of the condensate decreases,
and the size of the vortex core increases to match the instantaneous value of the healing length. This
should allow one to detect the vortex through the observation of a hole in the density profile of the
condensate.

It is important to emphasize that at temperaturesT � � the thermal cloud will expand with the
thermal velocityvT �

p
T=m which is much larger than the expansion velocity of the condensate

(the latter is of order the sound velocitycs). Therefore, after a short timeR=vT the thermal component
flies away, and the dissipation-induced motion of the vortex core ceases. Accordingly, the expansion
of the Bose-condensed state will be essentially the same as that at zero temperature. This means that
the relative displacement of the vortex core from the trap center practically remains the same as before
switching off the trap. Therefore, the dissipative motion of the vortex towards the border in the initial
static trap can be studied by switching off the trap at different times and visualizing the position of
the vortex core in a ballistically expanding condensate.

In conclusion, we have developed a theory of dissipative dynamics of a vortex state in a trapped
Bose-condensed gas at finite temperatures and calculated the decay time of the vortex with charge
equal to1 in a static trap. Our theory can be further developed to analyze the motion of vortices in
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rotating traps and, in particular, to calculate a characteristic time of the formation of the vortex state
in a trap rotating with supercritical frequency.
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Summary

In this Thesis we develop a theory of dynamical and kinetic properties of trapped Bose conden-
sates.

In Chapter 2 we review theoretical grounds of the physics of Bose-condensed gases. We discuss
such concepts as Bose-Einstein phase transition, macroscopic description of an interacting Bose-
condensed gas, elementary excitations and their description in terms of Bogolyubov-de Gennes equa-
tions, and vortex states in superfluids.

Then, in Chapter 3 we inspect the interparticle interaction in ultra-cold gases. First, we turn to the
discussion of three-body recombination of ultra-cold atoms to a weakly bounds level. In this case
characterized by large and positive scattering lengtha for pair interaction, in the zero temperature
limit we obtain a universal relation, independent of the detailed shape of the interaction potential, for
the (event) rate constant of three-body recombination:�rec = 3:9~a4=m, wherem is the atom mass.

Then, we develop the idea of manipulating the value and the sign of the scattering length. Since the
scattering length directly affects the mean field interaction between the atoms, this offers a possibility
to investigate macroscopic quantum phenomena associated with BEC by observing the evolution of a
Bose condensed gas in response to light. The physical picture of the influence of the light field on the
elastic interaction between atoms is the following: A pair of atoms absorbs a photon and undergoes
a virtual transition to an electronically excited quasimolecular state. Then it reemits the photon and
returns to the initial electronic state at the same kinetic energy. As the interaction between atoms in
the excited state is much stronger than in the ground state, already at moderate light intensities the
scattering amplitude can be significantly changed.

In Chapter 4 we discuss the dynamics of two trapped interacting Bose-Einstein condensates in the
absence of thermal cloud. The main goal of our work is to study the dynamics of Bose condensates
and analyze how the system can acquire statistical properties and reach a new equilibrium state. We
identify two regimes for the evolution: a regime of slow periodic oscillations and a stochastic regime
of strong non-linear mixing leading to the damping of the relative motion of the condensates. We
compare our predictions with an experiment recently performed at JILA, and argue that the occurrence
of the stochastic regime provides a route to achieving a new thermal equilibrium in the system.

In Chapter 5 we develop a finite temperature perturbation theory (beyond the mean field) for a
Bose-condensed gas and calculate temperature-dependent damping rates and energy shifts for Bo-
golyubov excitations of any energy. The theory is generalized for the case of excitations in a spatially
inhomogeneous (trapped) Bose-condensed gas, where we emphasize the principal importance of in-
homogeneity of the condensate density profile and develop the method of calculating the self-energy
functions. The use of the theory is demonstrated by calculating the damping rates and energy shifts of
low-energy excitations, i.e. the excitations with energies much smaller than the mean field interaction
between particles. The damping is provided by the interaction of these excitations with the thermal
excitations. We emphasize the key role of stochastization in the behavior of the thermal excitations
for damping in non-spherical traps. The damping rates of the lowest excitations, following from our
theory, are in fair agreement with the data of recent JILA and MIT experiments. For the quasiclassical
excitations the boundary region of the condensate plays a crucial role, and the result for the damping
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rates and energy shifts is drastically different from that in spatially homogeneous gases. We also an-
alyze the frequency shifts and damping of sound waves in cylindrical Bose condensates and discuss
the role of damping in the recent MIT experiment on the sound propagation.

Finally, in Chapter 6, we turn to dynamics of macroscopically excited Bose condensate states. In
particular, we discuss dissipative dynamics of a vortex state in a trapped Bose-condensed gas at finite
temperature and draw a scenario of decay of this state in a static trap. The interaction of the vortex
with the thermal cloud transfers energy from the vortex to the cloud and induces the motion of the
vortex core to the border of the condensate. Once the vortex reaches the border, it decays through
the creation of phonons. We calculate the characteristic life-time of the vortex state and address the
question of how the dissipative dynamics of vortices can be studied experimentally.



Samenvatting

In dit proefschrift wordt een theorie over de dynamische en kinetische eigenschapen van een
opgesloten Bose-condensaat ontwikkeld.

In hoofdstuk 2 geven we een overzicht over de theoretische basis van de natuurkunde van Bose-
gecondenseerde gassen. We bespreken concepten als de Bose- Einstein- faseovergang (BEC), de
makroscopische beschrijving van een Bose-gecondenseerd gas, elementaire excitaties en hun beschri-
jving in termen van Bogolyubov-de-Gennes-vergelijkingen en vortex-toestanden in superfluida.

Vervolgens, in hoofdstuk 3 wordt de wisselwerking tussen deeltjes in ultrakoude gassen beschouwd.
Eerst richten we de discussie op de drie-deeltjes-recombinatie van ultrakoude atomen naar een zwak
gebondens-niveau. In dit geval, dat wordt gekarakteriseerd door een grote en positieve verstrooi-
ingslengtea voor paarwisselwerking, krijgen we, in de limiet dat de temperatuur naar nul gaat, een
universele relatie voor de drie-deeltjes- (gebeurtenis-) recombinatieconstante, die niet afhankelijk is
van de precieze vorm van de interactiepotentiaal:�rec = 3:9~a4=m, metm de atoommassa.

Vervolgens wordt het idee ontwikkeld om de waarde en het teken van de verstrooiingslengte te
manipuleren. Omdat de verstrooiingslengte direct de gemiddeld-veld-interactie tussen de atomen
beinvloedt, biedt dit de mogelijkheid om macroscopische quantum-fenomenen te onderzoeken die
geassocieerd zijn aan BEC, door van een Bose-gecondenseerd gas de reactie op licht te observeren.
Het natuurkundige beeld van de invloed van het lichtveld op de elastische interactie tussen atomen
is het volgende: Een atomenpaar absorbeert een foton en ondergaat een virtuele overgang naar een
electronisch aangeslagen quasimolekulaire toestand. Vervolgens zendt het het foton weer uit en keert
terug in de oorspronkelijke electronische toestand met de zelfde kinetische energie. Omdat de inter-
actie tussen atomen in aangeslagen toestand veel sterker is dan tussen grondtoestandsatomen, kan de
verstrooiingsamplitude al bij een matige lichtintensiteit significant veranderd worden.

In hoofdstuk 4 bespreken we de dynamica van twee opgesloten wisselwerkende Bose-Einstein-
condensaten in de afwezigheid van een thermische wolk. Het hoofddoel van ons werk is de dynamica
te bestuderen van Bose-condensaten en te analyseren hoe het systeem statistische eigenschappen kan
verkrijgen en een nieuwe evenwichtstoestand bereikt. We onderscheiden twee ontwikkelingsregimes:
een regime van langzame periodische oscillaties en een stochastisch regime van sterke niet-lineaire
menging dat tot het dempen van de relatieve beweging van de condensaten leidt. We vergelijken
onze voorspellingen met een experiment dat recentelijk in JILA is uitgevoerd en argumenteren dat het
vóórkomen van het stochastische regime een route biedt om in het systeem tot een nieuw thermisch
evenwicht te komen.

In hoofdstuk 5 ontwikkelen we een eindige- temperatuur-storingstheorie (voorbij de gemiddeld-
veldbenadering) voor een Bose-gecondenseerd gas, en berekenen temperatuur-afhankelijke demp-
ingssnelheden en energieverschuivingen voor Bogolyubov-excitaties van willekeurige energie. De
theorie wordt veralgemeniseerd voor het geval van excitaties in een ruimtelijk inhomogeen (gevan-
gen) Bose-gecondenseerd gas, waar we benadrukken hoe belangrijk inhomogeniteiten in het dichthei-
dsprofiel van het condensaat zijn, en ontwikkelen de methode om zelfenergiefunkties uit te rekenen.
Het nut van de theorie wordt gedemonstreerd door de dempingssnelheid en de energieverschuiving
van laag-energetische excitaties uit te rekenen. Dit zijn excitaties met energieën die veel lager zijn dan
de gemiddeld-veld-interactie van deze excitaties. De demping wordt veroorzaakt door de interactie
van deze excitaties met thermische excitaties. We benadrukken de sleutelrol van de stochastisering in
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het gedrag van de thermische excitaties voor demping in niet-bolvormige vallen. De dempingssnelhe-
den van de laagste excitaties volgens onze theorie, zijn in redelijke overeenstemming met recente data
van JILA en MIT experimenten. In het geval van quasiklassieke excitaties, speelt het randgebied van
het condensaat een cruciale rol, en het resultaat voor de dempingssnelheden verschilt drastisch van
dat in ruimtelijk homogene gassen. We analyseren ook de frequentieverschuivingen en de demping
van geluidsgolven in cylindrische Bosecondensaten en bespreken de rol van demping in het recente
MIT experiment aan geluidsvoorplanting in een Bose-condensaat.

Tenslotte, in hoofstuk 6, wordt de dynamica van macroscopisch aangeslagen Bosecondensaten
behandeld. In het bijzonder bespreken we dissipatieve dynamica van een vortextoestand in een opges-
loten Bose-gecondenseerd gas bij eindige temperatuur en schetsen een vervalsscenario van deze toe-
stand in een statische val. De interactie van de vortex met de thermische wolk hevelt energie over van
de vortex naar de wolk en induceert de beweging van de vortexkern naar de rand van het condensaat.
Wanneer de vortex de rand heeft bereikt, vervalt het door de opwekking van fononen. We bereke-
nen de karakteristieke levensduur van de vortextoestand en behandelen de vraag hoe de dissipatieve
dynamica van vortices het beste experimenteel kan worden bestudeerd.


