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CHAPTER 1

Introduction

1.1. Background.

Bose-Einstein condensation (BEC) predicted already in 1924 [1, 2] has been observed recent
(1995) in pioneering experiments with clouds of magnetically trapped alkali atoms at JILA [3], MIT
[4] and RICE [5], and later in more than a dozen laboratories all over the world. The phenomenon wa
spotted by the mass media and called “a new form of matter”. Since then the field of quantum gase
has greatly expanded, attracting a wide attention of both scientific community and general public.

The idea of BEC originally came from quantummechanical analogy between matter waves ir
non-interacting gases and light waves. Indeed, as the temperature of a sample drops, the de Brocg
wavelength of particles increases. Below a certain temperature (Bose condensation point), a char:
teristic particle wavelength exceeds the mean interparticle separation and the wave packets of partic
start overlapping. Then the quantum statistics comes into play. Under this condition, for bosons (pa
ticles with an integer spin) it is favorable to fill a single quantum state. The latter state represents
macroscopic quantum object which is usually called Bose condensate and manifests itself as a phze
transition accompanied by a sudden change of physical properties of the sample.

The phenomenon of BEC lies in the basis of our understanding of much of statistical and con
densed matter physics. After the original Einstein analysis of Bose condensation in an ideal ga:
the superfluidity in helium was considered by London (1938) as a possible manifestation of BEC ir
strongly interacting systems. The notion of Bose-condensation led to the first successful phenomen
logical model of superconductivity [6] and was further developed into the concept of spontaneou:
symmetry breaking [7]. Since then, the implications of BEC were found at every scale in the physica
world. Bose condensation of hypothetical Higgs particles appears to be an important constituent ¢
modern unified theory of electroweak interactions [7]. The remedies of the BEC phase transition righ
after the Big Bang should persist for a very long time and may be responsible for the recently discov
ered large-scale inhomogeneity of the mass distribution in the Universe [8]. Another kind of artifacts
remaining from those times are so called “cosmic strings”, hypothetical analogues of vortex rings
in liquid helium [9]. BEC of pions, the particles mediating the strong interaction of nuclons inside
atomic nuclei, is expected to occur in very massive atomic nuclei or inside the core of neutron star
(see [10] for a review). In particular, the non-periodic variations of gamma-radiation coming from
rapidly spinning pulsars may be attributed to the dissipative dynamics of vortices inside the superflui
core of the stars [11]. All mentioned phenomena, though different in energy and spatial scales, ha\
much in common and can be described within a single theoretical framework based on the idea ¢
spontaneous symmetry breaking.

BEC experiments in ultra-cold gases provide a beautiful example of Bose-condensation in al
interacting system. Contrary to a classical gas, for a Bose-condensed gas the interaction betwe
atoms, though being very weak, plays an important role and dilute ultra-cold gases demonstrate tl
whole variety of physical phenomena characteristic for superfluid systems. From a theoretical poir
of view, these systems are close to an ideal gas. The presence of a small parameter related to the r:
of interparticle interaction radius to the mean interparticle separation (gaseous parameter) provids
a deep understanding of underlying physical phenomena, from first principles. On the experiment:
side, the magnetically trapped gaseous samples are well isolated from the environment and can



2 1. INTRODUCTION

controlled by relatively simple optical techniques. This could be compared with research of liquid
helium, which has been a major experimental source of information about interacting Bose con-
densed systems, where the evidence of BEC comes from an experiment as difficult as measurement
of momentum distribution of helium particles by neutron scattering, and no closed theory is available
because of the high density of the samples. This combination of experimental and theoretical “ac-
cessibility” of BEC in ultra-cold gases allows one to get a good insight in fundamental concepts of
condensed matter physics and perform a precision test of existing theories.

The achievement and studies of BEC in ultra-cold gases require cooling of metastable atomic
samples, which became possible due to recent progress in manipulation, trapping and cooling of
cold atoms. In fact, the Bose-Einstein condensate in a trapped gas can be considered as a coherent
standing matter wave in a trap, which is in many ways similar to a laser mode excited inside an optical
cavity. Further exploiting this analogy makes it feasible to create an atom laser capable of generating
coherent beams of cold atoms. Now this technology is being actively developed in view of possible
applications ranging from precise atom interferometry and cold collision studies to atom lithography
and quantum computing.

First attempts to reach quantum degeneracy in atomic gases began with atomic hydrogen more
than 20 years ago. In the first set of experiments hydrogen atoms in the lower Zeeman state were
trapped in a “magnetic bottle” (with walls covered by liquid helium) and cooled to sub-Kelvin tem-
peratures [12—14]. This approach was promising, since due to a rather large density of the gas sample
one expected a relatively high BEC transition temperature. But at realistic achievable temperatures
the density required for BEC turned out to be so high that recombination losses and heating became
crucial [12-16]. In the second set of experiments, performed at MIT and the University of Ams-
terdam, spin polarized atoms were magnetically trapped (wall-less confinement) and further cooled
down by evaporation. The first observation of BEC in spin polarized hydrogen has been recently
reported by the hydrogen group at MIT [17]. Another important experimental achievement came
from the University of Turku (Finland), where the regime of quantum degeneracy was reached in a
two-dimensional gas of hydrogen atoms adsorbed on the surface of liquid helium [18]. This opens an
interesting direction of research, since the nature of BEC in low dimensional systems is drastically
different from that in three dimensions.

Another constituent of successful BEC experiments came from the developments of laser-based
techniques for manipulating cold neutral atoms, such as laser cooling and magneto-optical trapping
(see [19-21] for review). Alkali atoms are much better suited for optical manipulations than atomic
hydrogen, since their optical transitions can easily be excited with commercially available CW lasers.
The temperature of such a sample can be further lowered by transferring atoms from the magneto-
optical to a magnetostatic trap and evaporatively cooling them [22,23]. Such a combination of optical
and evaporative cooling has led to the discovery of BEC in ultra-cold alkali atom gases. There is
an increasing number of successful BEC experiments Wiltb [3, 24-27],23Na [4, 28-30], and
interesting experiments with.i on BEC in gases with attractive interparticle interaction [5]. There
are also ongoing experiments on vapors of cesium, potassium and metastable triplet helium.

From a theoretical point of view, the situation in dilute Bose-condensed trapped gases is unique
compared with, for example, liquid helium. First, due to a very low density of the Bose condensates,
many of the physical properties of the system can be understood within the so called “mean-field”
approximation. A characteristic feature of the mean-field approach in dilute gases is the principal role
of two-body interparticle interactions, whereas the effects of higher-order collisions lead to a relatively
slow decay of the system due to recombination. In dilute ultra-cold gases the interparticle interaction
is characterized by a single parameterthe two-bodys-wave scattering length. Secondly, finite
size effects enhance the manifestation of interparticle interaction in physical properties of trapped
condensates and make their behavior even qualitatively different from that in spatially homogeneous
weakly interacting gases.
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A principal question for BEC in atomic gases concerns the sign of the scattering lengtr
a > 0 elastic interaction between atoms is repulsive and the Bose condensate is stable with respe
to this interaction. lia < 0 elastic interaction is attractive and this is the origin of a collapse of the
condensate in a homogeneous gas [31]. For trapped gases witld) the situation is practically
the same, provided the interaction between particles exceeds the level spacing in the trapping fie
[32, 33]. If this interaction is much smaller than the level spacing, due to the finite size effects there
is a gap between the ground state and one-particle excitations and it is possible to form a metastal
Bose-condensed state [33]. Among the alkalis there are atomic gases with both positive and negati
a [34].

1.2. Outline of the Thesis.

This Thesis is devoted to theoretical investigation of dynamics and kinetics of dilute Bose - con-
densed trapped gases. The key aspect that links together the various parts of the Thesis is relatec
the role of interparticle interaction in the described macroscopic quantum phenomena. The results «
the Thesis are of direct relevance for the ongoing experimental studies.

The Thesis is organized in the following way. After the Introduction (Chapter 1) in Chapter 2
we give a brief overview of BEC theory for ultra-cold gases. In Chapter 3, we discuss the issue
of two and three body interactions in ultra-cold gases. The first section is devoted to three-bod
recombination, the process in which two atoms form a bound state and a third one carries awa
the binding energy. This process may be thought as an initial stage in the formation of cluster:
intermediate in size between individual atoms and bulk matter. Three-body recombination limits
achievable densities in trapped ultra-cold gases and, hence, places limitations on the possibilities
observe Bose-Einstein condensation.

Then, in the second section we develop the idea of manipulating the value and the sign of th
scattering length by using nearly resonant light. Since changitigectly affects the mean field in-
teraction between the atoms, this offers a possibility to investigate macroscopic quantum phenomel
associated with BEC by observing the evolution of a Bose condensed gas in response to light. As tl
light essentially couples the ground and excited atomic states and the interaction between atoms
the excited state is much stronger than in the ground state, already at moderate light intensities tl
scattering amplitude can be significantly changed.

The manipulation of the interparticle interaction opens the way of studying macroscopic quan-
tum phenomena associated with the dynamics of the condensates. Together with other possibilitie
such as instantaneous changing the trap frequencies [33] or changing the interparticle interaction |
external magnetic field [35], the laser activation of a Bose-condensate should lead to the creation
macroscopically excited, but yet coherent condensate states. At the same time, the trapped Bo:s
Einstein condensates are well isolated from the environment, and thus the appearance of relaxati
dynamics first observed at JILA at effectively zero temperature poses a question of how the gas sar
ple, being initially a pure condensate, subsequently reaches a new equilibrium state. This is direct
related to the fundamental problem of the appearance of irreversibility in a quantum system with :
large number of particles. Also, the question of the formation of a thermal component, remains tc
be fully resolved. In Chapter 4 we analyze the dynamics of two trapped interacting Bose-Einsteir
condensates in the absence of thermal cloud and identify two regimes for the evolution: a regime
slow periodic oscillations and a regime of strong non-linear mixing leading to the damping of the
relative motion of the condensates.

The description of the detailed behavior of evolving condensates at finite temperatures require
to develop a theory beyond the mean field. This relates, in particular, to the temperature-depende
damping rates and energy shifts of elementary excitations of a condensate. In Chapter 5 we devel
a finite temperature perturbation theory capable of calculating the damping rates and energy shifts
the excitations in both spatially homogeneous and trapped Bose-Einstein condensates.
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Of fundamental interest are macroscopically excited Bose-condensed states, such as vortices in
non-rotating traps. The creation and observation of quantum vortices is a promising option for ob-
serving superfluidity in trapped gases, as quantization of circulation and the related phenomenon of
persistent currents are the most striking properties of superfluids. These studies are especially in-
teresting for the investigation of the relation between Bose-Einstein condensation and superfluidity.
In Chapter 6 we develop a theory for the dissipative dynamics of a vortex state in a trapped Bose-
condensed gas at finite temperature and draw a scenario of decay of this state in a static trap.



CHAPTER 2

Overview

Bose-Einstein condensation is a quantum statistics phenomenon which occurs in a system
bosons (particles with an integer spin) when the characteristic thermal de Broglie wavelength of
the particles exceeds the mean interparticle separation. In this Chapter we give a brief introduction
to the BEC physics, outlining important concepts and basic methods used for theoretical studies ¢
trapped ultra-cold gases throughout the Thesis.

2.1. Thermodynamics of an ideal Bose-gas.

We start with thermodynamic description of an ideal gasvobosons in a harmonic trapping
potential. The gas sample is assumed to be in thermal equilibrium at tempé&ratue we will cal-
culate thermodynamic averages over the grand canonical ensemble, where the system is characteri
by chemical potentigk and fluctuating number of particles. This approach is well justified in trapped
Bose gases by the fact that the number of particles in current BEC experiment may be aslbfgh as
and in the thermodynamic limit\' — oo) the grand canonical description is equivalent to that in the
canonical ensemble (fixed and fluctuatingy).

The energy spectrum of an individual atom in a harmonic trap is characterized by a set of thre
non-negative integer quantum numbérg = {n,, n,,n.} and reads

€{n} = Z hwi(n; +1/2),
7::1'7y,z
wherew,, w, andw, are the trap frequencies along three Cartesian directions. Hereinafter we adop
the conventiorkg = 1(kp is the Boltzmann constant). The average number of particles in the state
{n} is given by the well known Bose-Einstein expression:

Nalequy) = (el0r=/T — 1)1,

The value of the chemical potential is fixed by the condition

(2.1.1) N(T,p) =Y  Np(er) = N,
A

which expresses the total number of particles through the sum of the occupation numbers of all avai
able states.

Since in the thermodynamic limit the Bose-condensation phenomenon occurs at temperature
greatly exceeding the ground state enexgiw of a particle in the trapping potential, for the calcula-
tion of thermodynamic functions &t > hw we can use a quasiclassical approximation. This can be
accomplished in Eq.(2.1.1) by turning from summation over the discrete quantum states to integratic
over the classical phase space:

d3rd?
(212) N(T7 /J’) = /ﬁ;NB(E(par))a

wheree(p,r) = p?/2m + >, mw?r?/2 is the classical Hamiltonian depending on the particle coor-
dinater and momentunp. The integral in Eq.(2.1.2) can be calculated by introducing the auxiliary
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integral [ ded(e — ¢(p, r)) = 1in the integrand and changing the order of the integrations. This leads
to the equation

N(Tp) = [ deNste) [ GEo(e — e(p.x)).

The second integral a function of the excitation energy and represents the quasiclassical density of
states, which depends on the symmetry of the trapping potential. The calculation of the remaining

integral over the energy leads to the following relation between the chemical potential and the number
of particles!

T3
h3w3
wherew = (w,w,w.)'/3. For high temperatures the argument= exp (11/T) of the (-function is
small,{3(a) ~ «, and the chemical potential is large and negative:

7\
~—-TlogN|—| .
ur-Tlog (o)

With further decrease of temperature the argument of the logarithm decreases and the chemical po-
tential approaches zero asapproaches. Fora > 1 the(-function diverges and Eq.(2.1.3) does not
have solutions, which means that at temperatures smaller than

N\ /3
(2.1.4) T, = hw <<3(1)>

the quasiclassical approach breaks down. The temperéjuie called the BEC temperature, or

the critical temperature of the BEC phase transition. The appearance of Eq.(2.1.4) can be easily
understood qualitatively. The characteristic de Broglie wavelength of a particle at a given temperature
is A ~ /h?/mT. At a given temperature the particles fill the spatial region characterized by the
thermal sizdr ~ /T /mw?. For the maximum density of the particles in the trap we hayg, ~

N/I3. and for the mean interparticle separatibA- (13./N)'/3. Ford ~ X the thermal wavepackets

start overlapping and the atoms loose their identity and the gas sample enters the regime of quantum
degeneracy, defined by the conditibn< 7., with 7, from Eq.(2.1.4). This estimate reproduces the
transition temperature (2.1.4) up to a numerical coefficient of the order of unity. Since the number of
particles in the BEC experiments is usually very large, typically 10* — 107, the phase transition
occurs at temperatures greatly exceeding the ground state energy. Hence, the number of populated
states in the trap at temperatufés- T, remains very large. This justifies our classical treatment of
excited states.

To resolve the apparent contradictiorfak 7. one has to return to Eqg.(2.1.1), where at very low
temperatures the first term corresponding to the ground state turns out to be larger than the contribu-
tion of all other terms. Indeed, at very low temperatures the occupation number of the ground state,
given by

(2.1.3) Gs(e"'") = N,

Ny = (e(eo—u)/T _ 1)—1

diverges. This means that the chemical potential counted from the ground state gnerg{; log(1+

1/Ny), is very close to zero and the occupation number of the ground State macroscopically

large. Moreover, since the ground state is never degenerate, the occupation number of the next higher
state is smaller thatV, for sufficiently low temperature (nice discussion of this issue can be found

in [37]). In fact, for any temperature beld#y. the sum in Eqg.(2.1.1) can be transformed to integra-

tion only for excited states , whereas the occupation of the ground state has to be added explicitly.

Y

'Here we introduce the generalized Riemgrunction: ¢, () = >_02 , a™/n".
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FIGURE 2.1.1. The time sequence from JILA [36] experiment. The slides from left
to right correspond to lower temperatures.

This observation, together with the observation that the chemical potential is negligible at very low
temperatures, leads to the following expression

37” 3
(2.1.5) N = No—f—/éﬂ_;l_l)pNB( (P, 1)) |u=0

for the total number of particles in the sampldak 7T.. This equation determines the number of par-
ticles in the ground state of the system (Bose-Einstein condensate) as a function of temperature. T
rest of the particles are called excitations, or above condensate particles. The number of excitations
given by the second term in Eq. (2.1.5) and can be readily calculatéd’) = N — N, = N(T/T.)>.

From this we find the number of particles in the condensate

(2.1.6) No = N(1— (T/T.)%).

This expression predicts accumulation of a macroscopic number of particles in the ground state
temperatures belo.. If the total number of particles is sufficiently large, the effect can be dramatic.
This is seen, for example, in the JILA experiment (Fig.2.1.1). The quantitative comparison of the
prediction of Eq.(2.1.6) with experimental data is shown in Fig.2.1.2.

2.2. BEC in an interacting gas.

In order to describe an interacting system we turn to the Hamiltonian of a trapped Bose gas i
second quantization
h2A -
H= /d%«qﬁ (—— +V(r )> U(r)+

/ drd*r'Vig(r — ') (0) U1 (') (r) B (r'),

—

(2.2.1)

DO |
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FIGURE2.1.2. The fraction of condensate particles as a function of temperature. Here
the dashed line shows the prediction of Eq.(2.1.6) and the dots stand for measured
values (the distinguishable shift of the Bose-condensation temperature originates in
interaction effects and thus can not be accounted by Eq.(2.1.6) derived for an ideal

gas)

where ¥ (r) is the field operator of atomd/(r) is the external potential, anld,(r) is the poten-
tial of interaction between two atoms. In ultra-cold dilute Bose-gases the characteristic de Broglie
wavelength of particles and the mean interparticle separation are usually much larger than the charac-
teristic radius of interparticle interaction. This means that the interaction poteéptiel (2.2.1) can
be approximated by a zero-range poterttia(r), provided the coupling constabtis chosen to give
the same asymptotic behavior of the wavefunction at large interparticle separation as the solution of
exact scattering problem corresponding to the potehtial This givesl = 4rh*a/m.

The Hamiltonian (2.2.1) does not imply any statistics. The difference between Bose and Fermi
particles comes from the commutation relations betwee®dthperators. For Bose-statistics we have

(2.2.2) (Ut (r), ¥(r)] = 6(r —r').

Commuting thel-operators with the Hamiltonian , we obtain the following equation of motion
v R2A P

2.2. h—— = (——— V).

(2.2.3) th 5 ( o +V(e)+U )

From this equation we see that interparticle interaction in low-temperature gases leads to the appear-
ance of an “effective” potentidl,;; = U¥¥ acting on a particle and proportional to the density
operator at the point. Since the density is always positive, the sign of the potential energy is de-
termined by the sign of the coupling constdht In particular, if the scattering length is positive,

then the potential energy of interparticle interaction increases with density, and thus we are dealing
with effectively repulsive interaction. Far < 0 the interaction energy is negative and for a spatially
homogeneous gas sample it is energetically favorably to shrink to as small volume as possible, i.e.
to collapse. Therefore, a spatially homogeneous gas characterized by a negative scattering length is
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thermodynamically unstable. The solution of the operator equation (2.2.3) allows one, in principle
to access any interesting property of an interacting Bose-gas. At the same time, the equation is tc
complicated and its full solution is generally not possible.

The apparent difficulty is conveniently resolved for a weakly interacting Bose-condensed gas b
using the concept of spontaneous symmetry breaking. As we have already seen, in a non-interacti
system Bose-condensation manifests itself as a sudden appearance of macroscopic occupation of
ground state. This provides an abrupt change of such macroscopic properties as heat capacity at
transition point and therefore the BEC phase transition is of the second order. According to the gener
theory of second order phase transitions, the system below the critical temperature is characterized
a non vanishing order parameter, a quantity which disappears above the critical temperature. Sin
a distinctive feature of a Bose-condensed system is the appearance of macroscopically populat
guantum state (condensate), the condensate wavefunction is the corresponding order parameter. Tt
the idea is to replace the analysis of Eq.(2.2.3) by the solution of a classical equation for the orde
parameter, i.e. for the condensate wavefunction.

To give a quantitative meaning to these arguments, we spli#tbperator in two parts. The first
one, is responsible for the creation/annihilation of particles in the Bose-condensed state. This sta
is macroscopically populated, and in the thermodynamic limit we can neglect the commutator fol
the condensate part of thle-operator and consider this part as a classical quawitgatisfying the
classical version of Eq.(2.2.3):

ov h2A ~
(2.2.4) ih 8t0 = (=5~ + V() + T[T To.
This equation is called the Gross-Pitaevskii (GP) [38—40] equation and constitutes the backbone ¢
the mean-field description of Bose condensates at zero temperature. It represents the Schrodin
equation for a condensate particle moving in the external poténtigland the mean field of all other
condensate particles. The finite-temperature generalizations of Eq.(2.2.4) are discussed in Chaptel
The remaining part of th&-operator, denoted below &g, describes excitations and preserves the
commutation relations (2.2.2).

Eq.(2.2.4) has a discrete set of solutions characterized by a static density profile. Separating
trivial time-dependence by the substitutidn — ¥, exp(—iut), in equilibrium we obtain a static
equation for the condensate wavefunction

2

R2A N
(2.2.5) ¥ = (=5 — +V(r) + U[%[*) Vo,

For a spatially homogeneous Bose-condensed gas, i.e. for a gas sample contained within a big b
with V(r) = 0 everywhere inside, we find the spatially independent solution in the form

(2.2.6) Uy = /ngexp(i®),

where the condensate density,, and the global phasa&, are spatially independent everywhere
except in the vicinity of the walls. The density of the condensate particles and the chemical potentic
are related to each other in a simple way= Un,. The phase can not be found from the equation
and therefore is determined by the initial conditions leading to every different realization of a Bose-
condensation experiment. This allows one to say that the global ghappears spontaneously in

the course of Bose-condensation. An interesting discussion of this subject is presented in [41]. Tt
appearance of this ambiguity is in fact a consequence of the gauge symmetry of the initial Hamiltonia
(2.2.2).

2Except in a number of exactly solvable cases, such as, the 1D case for the attractive interparticle interaction, tim
dependent dynamics of a condensate in a harmonic trap in 2D, and topological excitations (vortices and kinks).
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Together with the normalization condition

(2.2.7) Ny :/d3r|\110|2,

the ground-state solution of Eq.(2.2.5) gives a relation betweand the number of particles in the
trapped condensaté),. To analyze possible static solutions of Eq.(2.2.5) we first turn to the case

of negligible interparticle interactiol’ — 0. This means that the mean-field term is small and

GP equation coincides with the Schrodinger equation for a particle moving in an external potential
V(r). For the special case of a harmonic trapping potential the solutions of Eq.(2.2.5) exist only for a
discrete set of values of the chemical potential, coinciding with energy states of a quantum harmonic
oscillator. This gives an infinite set of excited Bose-condensed states characterized by different values
of the condensate energy per particle. For the ground Bose-condensed state we get the wavefunction
corresponding to the chemical potentied= > . hw; /2

(2.2.8) Wo(r) = v/No ] [ exp(—a?/215)/(xloi)' "2,

wherel; = (h/mw;)'/? is the localization length of the ground state in a harmonic oscillator with
frequencyw;. To find out an error brought by neglecting the mean-field interaction term, one should
compare its maximum value (reached at the center of the condensate) with the trap frequencies. Using
Eq.(2.2.8) we see that the interaction effects are negligible under the condition

U|T(0)?

2.2.9 = _— 1.
(2.2.9) n = max | —— | <
This is the case for rather small condensates, where

Ny K mln IL! 201.

This has an important consequence for a trapped Bose-condensate with attractive interaction between
particles. As we have seen from thermodynamic considerations, in the spatially homogeneous case
such a condensate is unstable. At the same time, under the condition (2.2.9) the collapse in a trapped
gas is suppressed, since in a trapped gas there is & gapbetween the condensate and elementary
excitations. Therefore, for sufficiently small Bose-condensates, due to a discrete character of the
energy spectrum in a finite system, a condensate with macroscopically large number of particles can
exist even for attractive interparticle interaction [33].

In the opposite limiting case > 0 the shape of the condensate is dominated by the interparticle
interaction. Here the interaction smears out the discrete structure of the energy levels and a condensate
with attractive interaction is clearly unstable. In this overview we limit ourselves to positive values
of U. In this case the condensate wavefunction can be found by disregarding the kinetic energy term
in EQ.(2.2.5). This corresponds to the so called “Thomas-Fermi” approximation and leads to the
algebraic expression for the condensate wavefunction [42,43]:

(2.2.10) rF () = [PV

U
if » > V(r) and zero otherwise. For a harmonic trap the condensate has a parabolic shape with
the sizel.; = (2u/mw?)/? in thei-th direction. Close to the condensate border the Thomas-Fermi
approximation fails and the exact shapelgfhas to be found from Eq.(2.2.5) by treating all terms on
the equal footing, or should be calculated numerically. Substituting the maximum depsity =
u/U to the criterion (2.2.9) we see that this criterion is equivaleBtig, ., < hiw. Using EqQ.(2.2.7),
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the chemical potential in the Thomas-Fermi regime is related to the number of condensate particle
as

150m3/ %5
129/2
Throughout the Thesis we are mainly interested in the properties of the Thomas-Fermi condensate
since it is just this case which is analogous to the bulk superfluid matter. For the same number c
condensate particles there are also stationary solutions of Eq.(2.2.5), corresponding to higher valu

of the chemical potential. These are excited Bose-condensed states characterized by the conden:
wavefunction having one or more nodes.

)2/5N2/5.

p= 0

2.3. Dynamics of Bose-condensates

The solution (2.2.10) represents an approximation to the ground state condensate wavefun
tion and does not contain any time dependence. The time-dependent dynamics of trapped Bos
condensates in the mean-field approximation is studied within the framework of the time depender
GP equation (2.2.4). For arbitrary Thomas-Fermi paramet&is; the solution can only be obtained
numerically. At the same time, in harmonic traps the dynamics can be approached by using the pre
ence of a scaling symmetry inherent to the Hamiltonian (2.2.1). This is the case for the evolution unde
variations of both the trap frequencies [44—-46] and the interparticle interaction (scatteringdgngth
in 3D Thomas-Fermi condensates [47]. Consider a condensate trapped in 3D harmonic trap chare
terized by trapping frequencies(t) in every spatial direction. Neglecting the spatial derivatives of
the condensate density profile and turning to rescaled coordinate and time vapjables /b;(t),

7= ["dt/ ], bs(t), we introduce a function,(p, ) such that

1 mr? b,(t)
2.3.1 Uo(t,r) = ———— ; ) : —iut(t)).
( ) o(t,7) T, 63/2@))(0(&77') exp (i % ok bi(l) ipT(t))
Then, settingy, /0t = 0, the equation of motion
L 0¥, R2A mw?(t)rg N )
D _— = - v N e \I} \I]
(2.3.2) h 5 ( 2m+zi 5 T Ul | %

is reduced to the stationary GP equation in gheariables fory,(p), with the initial (constant) fre-
guencies and scattering length. Assume, that the variation of trap frequencies is switched on at t
timet = 0. Then, the scaling parametér$t) satisfy the initial conditionsb; (0) = 1, b(0) = 0 and,

in the simplest case of varying only the frequencies in a spherically symmetric trap, are determine
by the equations

(2.3.3) b(t) +w?(t)b(t) = wa /b (t),

wherewy = w(0) is the initial value of trap frequency. This means that in theariablesy,(p) is
just the initial static condensate wavefunction, and Eq.(2.3.1) gives a universal scaling solution fo
the wavefunction of the evolving condensalg(r, ¢), at any timer.

According to Eq.(2.3.1), the condensate evolves in time by changing its size but preserving th
shape. The scaling approach has been successfully used to explain the data of the JILA [48] and M
[49] experiments on free expansion of condensates after switching off the trap and the measuremel
of eigenfrequencies of the lowest oscillation modes of trapped condensates [50, 51].

To illustrate how the eigenfrequencies of small condensate oscillations can be found within the
scaling approach, we consider the evolution of a spherically symmetric condensate after a small abru
change of the frequency from, to ws. The conditionw; — wy| < wp guarantees that actually only
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FIGURE 2.3.1. Time sequence of condensate oscillations in a magnetic trap measured
by non-destructive imagining technique (MIT) [49]

one mode of the condensate oscillations is excited, and the solution for the scaling parameter, obtained
from Eq.(2.3.3), is given by

(2.3.4) b(t) = by + (1 — bg) cos(Vbwot),

whereby = (wo/w;)%* is the equilibrium value. This solution describes undamped spherically sym-
metric oscillations of the condensate occurring at frequafigy, (analogues behavior in a cylindrical
trap is shown in Figure 2.3.1). The requirement of small frequency change guarantégssivary
close tol and the condensate wavefunction (2.3.1) is close to the equilibrium shape. As the differ-
ence between the final and the initial frequencies increases, the number of excited modes also grows
and the behavior of the system becomes more and more complicated. In particular, one can expect
the interaction between excited modes and stochastization of their motion [47], and the damping of
condensate oscillations already at zero temperature [52].

In the linear regime, where the deviation of the condensate wavefunction from its equilibrium
value is small, one can find a general solution of Eq.(2.2.4) for an arbitrary external poténtjal
The solution is a superposition of the equilibrivkg and elementary excitations of the condensate.
The equations for the excitations are obtained by linearizing Eq.(2.2.4) with regard to small deviations
of ¥, from its equilibrium value, i.e. with regard to fluctuating (quantum) ferof the field® For a
spatially inhomogeneous Bose-condensed gas , after removing trivial phase factors by the substitution
(Tg, ¥') — (g, V') exp(—iut), we obtain

ih@\if’/@t = (—EQA/Zm + V(r) — -+ 2[7|\I’0|2)\if’ + ﬁ‘l’g\iﬁ,
iU /0t = (<R [2m + V(x) = p+ 20 W)V + DU,

Egs.(2.3.5) are linear, and therefore a general solution can be written in the form of the Bogolyubov
transformation:

(2.3.6) U = " (u, (x)b, exp(—ie,t) — v, (r)b] exp(ie,t)),

v

(2.3.5)

3The analysis of elementary excitations of a spatially homogeneous Bose-condensed gas was performed in a different
form by Bogolyubov [53].
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where the eigenfunctions,, v, and eigenfrequencies of elementary excitations follow from the
system of linear equations:

e, = (—F2A/2m+ V() - p+ 20 %ol )u, — U3,
—ev, = (=R*A/2m+V(r) — p+2U|Vo|*)v, — U u,.
Similar equations have been found by De-Gennes [54] for inhomogeneous superconductors, and nc

EQgs.(2.3.5) are called Bogolyubov-De Gennes equations. The eigenfunctions are normalized by tt
condition

(2.3.7)

(2.3.8) /dgr(|u,,|2 w2 = 1.
Together with Eq.(2.3.6), this allows one to rewrite the Hamiltonian (2.2.1) in the form
(2.3.9) H=Hy+) eblb,

whereH, is the ground state (condensate) energy. This Hamiltonian may be interpreted as the sum ¢
the ground state energy and the energies of excitations (Bogolyubov quasiparticles) characterized
the operators, andb!. The commutation relations (2.3.8) ensure that thelpatr’ is a pair of Boson
annihilation/creation operators and thus the operidfigris an operator of the occupation number of
the statev. In thermal equilibrium we havé(b,) = Nz(e,). Since the number of quasiparticles is
not conserved, the chemical potential of the gas of excitation is zero [31].

For the spatially homogeneous case Egs.(2.3.7) are solved forupatss in the form of plain
waves characterized by the wavevedtorThe corresponding eigenfrequencies are given by the Bo-
golyubov dispersion law

27.2\\ 2 27.2
2310) ek:¢<hk> S
2m m

For largek, such that, > p, the dispersion relation (2.3.10) recovers the Hamiltonian of a classical
particle moving in the mean field of the condensate

h2k? ~
€ = + noU.
2m
In the opposite limiting case, for smai] the dispersion relation is linear in
(2311) € — Cgk’,

and the corresponding elementary excitations are sound waves (phonons) propagating with the velc
ity cs = /h?u/m, which depends on the interparticle interaction.

The spectrum of elementary excitations of a trapped Bose-condensed gas, following from EQ:
(2.3.7), depends on the trapping potentidt). For the low-energy excitations( < 1) of Thomas-
Fermi condensates in harmonic traps the problem has been solved analytically [55-57]. For exampl
in a spherically symmetric trap elementary excitations are characterized by three quantum number
angular momentuny, its projectionm, and the principle quantum numbercounting the number
of nodes for the radial part of the wavefunction. Due to a finite size of the condensate the energ
spectrum is discrete. It is given by the relation [55]

(2.3.12) €n = hw(2n® + 2nl + 3n +1)*/2,

(here the states belonging to the same valué afid differentm are degenerate). For the lowest
spherically symmetric excitation (breathing mode) we have- 1, I = 0 ande;q = Fw+/5, in
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full agreement with the result of the scaling theory (2.3.4). Inside the condensate spatial region the
normalized wavefunctions'f = u, F vy) are given by

+
= (4n + 20 + 3) 2u(1 —r?/12) V2 r lP(l+1/2,0) 1— 27’_2
b 13 € l.) " 2)’

whereP,E“’b)(r) are classical Jacobi polynomials. Outside the condensate spatial region the wave-
functionsf, = f., and coincide with the wavefunction of a particle (with enetgyin the harmonic
oscillator potential.

For the case of cylindrical symmetry the wavefunctions have a similar form [56, 57]

o gy E1/2
f3:<2“(1 s ZQ)) W5, 2),

€u

wherep = p/l,, 2 = z/l, andW (p, 2) = pI™ B,.(p, z) exp(ima), with m being the projection of the
angular momentum on the symmetry axis, &g, (p, Z) polynomials ofp andz. These polynomials
and the corresponding eigenenergigsan be found from the equatlons

0% (2|m] + 1)

17— )+ DD 2 T

.0

op

82 62

2 nm ~ ~ o

822) + 2(712(4);2) - m)]Bnm(pa Z) - 07

wheref = w,/w, is the ratio of the axial to radial frequency. Quadrupole oscillations with- 2
(n = 0) are purely radial, andys = v/2hw,. For the quadrupole oscillations with = 0 (n = 2)
there are two coupled frequencies [45, 55, 58]:

1/2

3 3
=ty |24 500 [ S o

The frequencies;, ande,, were studied experimentally in details by the JILA [48] and MIT [49]
groups. The measured values of the frequencies for small temperatures agree well with the above
outlined results of the mean field theory [45, 55, 58]. In later experiments at higher temperatures also
temperature-dependent frequency shifts and damping of the elementary excitations have been ob-
served [50, 51]. These effects originate from the interaction between quasiparticles and thus their de-
scription requires a development of beyond mean-field description of trapped Bose-condensed gases.
Such a theory is presented in Chapter 5 and allows us to calculate higher order corrections (with
respect to small gaseous paramétei®)) to the eigenenergies of the excitations.

2.4. Superfluidity and vortices.

The form of the energy spectrum of low energy excitations is closely related to the phenomenon
of superfluidity (in liquid helium observed as viscous-free flow) [31]. Consider a liquid flowing with
a constant velocity along a capillary. Due to the presence of viscosity, i.e. the friction of the liquid
against the walls or the friction within the liquid itself, the kinetic energy of the liquid would be
dissipated and the flow would gradually slow down. It is more convenient to discuss the flow in a
reference frame moving with the liquid. In such a system the liquid is at rest and the walls of the
capillary move with velocity—v. Once the viscosity is present, the liquid should start moving. This
motion arises from the appearance of elementary excitations in the liquid. Suppose that an elementary
excitation characterized by momentgrand energy, appears in the liquid. Then, since the liquid is
not moving, the energy of the liquill, is equal to the energy of the excitatignand the momentum
of the liquid F, is equal to the momentum of the excitatipnReturning to the reference frame, where
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the capillary is at rest, we recalculate the momentum and energy by using the well-known Galileal
transform:

E = Ey + Pov + Mv?/2,

P=Py,+ Mv,
wherel/ is the mass of the liquid. Settifg, = p andE, = ¢,, we have
E = ¢, +pv + Mv*/2.

Since Mv?/2 is the initial energy of the moving liquid, the energy change due to the appearance of
the excitation isAe = ¢, 4+ pv, and in order to initiate the motion of the liquid this quantity should
be negative.

The energy changaAce is minimum whenp andv are antiparallel, and the conditiake < 0 is
equivalent to

(2.4.1) v > 6,/p.

This condition for the occurrence of excitations in a moving liquid should be fullfiled for at least
some values op. Hence, finding the condition of the existence of dissipativeless (superfluid) flow
is equivalent to finding the minimum af,/p. Geometrically, this ratio is a slope of the line (in the

(p, €,)-plane) linking the origin and a given point on thgcurve. Its minimum value is given by

the point at which the line coincides with the tangent of the curve. If this minimum is not zero, then
for the liquid moving with velocity less than a certain value the dissipation ceases and the liquic
exhibits the phenomenon of superfluidity. The application of this criterion to the dispersion relation
(5.2.18) shows, that a spatially homogeneous dilute Bose-condensed gas can flow without frictio
with velocities less than the speed of soupdThe condition (2.4.1) is known as the Landau condition
for the critical velocity.

The demonstration of superfluidity in a trapped Bose-condensed gas is not an easy task, since
trapped condensate is a comparatively small finite system. As the size of the condensate in the traf
l. = (2u/mw?)'/2, the lowest possible wavevectbr~ 1/1.. Then, according to Eq.(2.3.11), for the
lowest phonon-like excitations we obtain- /aw, which agrees with the result of Eq.(2.3.12). Clearly,
the system can not be excited by an external perturbation with frequency below the trap frequenc
and this property has nothing to do with Bose condensation. It is just a consequence of the finite si:
of the system.

The manifestation of superfluidity in trapped condensates can be found through the creation ar
observation of macroscopically excited Bose-condensed states, such as vortices carrying persist
currents. The existence quantized vortices follows from general properties of a superfluid flow an
therefore is inherent to any superfluid system. Remarkably, much of the physical properties of th
vortex states, as well as their dynamics, can be understood from general considerations, without ev
using the microscopic Hamiltonian (2.2.1).

Calculating the current density for the wavefunction (2.2.6) we obtain

5 5
jcond - Z_(qjsv\yo — V\IIS\I/()) = —nOV(ID
m m
This quantity has a meaning of macroscopic current density associated with condensate particle

This motion may exist even in thermodynamic equilibrium. It is non-dissipative and therefore the
velocity

h
(2.4.2) vg = —Vo
m
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determines the velocity of superfluid fldwAs it is obvious from this equation, the superfluid motion
is potential flow, i.erotvs = 0 (the latter property is also known as irrotational nature of a superfluid
flow).

This brings a very important difference in the rotational properties of normal and superfluid lig-
uids. Consider a classical liquid in a vessel rotating with angular vel€kitipue to friction against
the walls, the liquid as a whole would be gradually driven into rotation together with the vessel. In a
superfluid, only the “normal” component, i.e. the gas of excitations, follows the rotation of the walls,
while the superfluid component remains at rest. In fact, it can not rotate as a whole, since such a
motion would implyvs = € x r for the velocityvg at a given point. Thenrotvg = 2£2, which
contradicts with the property of irrotational flow for a superfluid in motion.

At the same time, for sufficiently larg@ the state with the superfluid at rest becomes thermody-
namically unstable. In fact, the energy of the system in the rotating frame is given by

E' =E - (MQ),

where E and M are the energy and angular momentum of the superfluid in the lab frame. The
condition of thermodynamic equilibrium is that this quantity is a minimum. For a sufficiently fast
rotation the state withl/ # 0 has lower energy that th& = 0 state, i.e. the superfluid motion
should eventually occur. The apparent contradiction of this statement with the irrotational nature of
superfluid flow is solved by the assumption that the vorticity occurs only on certain lines inside the
liquid, where the velocity is singular. The rest of the liquid executes the motionraity = 0.
These lines are known as vortex lines or vortex filaments. In a finite system they either terminate on
the surface of the liquid or exist in the form of closed loops (vortex rings).

The superfluid velocity s is singular at the vortex line and, hence, the circulatiomgpélong the
contourC' embracing the vortex is not zero and has a finite value2say

(2.4.3) 7{ vgdl = 27K.
c

Using (2.4.2), we see that the same contour integral is equiakigm, whered® is the phase change
along the contour. The latter quantity has to be an integer multipligr pivhich immediately leads
to the quantization of circulation [59]:

K= EZ,
m
whereZ is an integer called the charge of the vortex.

Eq.(2.4.3) is sufficient for finding the velocity field surrounding the vortex. This equation is
similar to the Stokes theorem in magnetostatics, with the magnetic field replaseddmnd electric
currents being analogous the vortex filaments. Therefore, the solution of Eq.(2.4.3) can be obtained
by using the Biot-Savart law. For an infinitely long vortex line we hayér) = [k x £|/r, wherer
Is the distance from the vortex filament, ands the vector along the vortex line, with the modulus
equal to the vortex circulation. This shows the presence of a persistent current around the vortex line.
Interaction of a vortex with the thermal background causes the appearance of mutual friction forces
leading to the dissipative dynamics and eventual decay of vortex states in trapped Bose-condensed
gases.

4Although the velocity of superfluid flow coincides with the velocity of condensate particles, the density of superfluid
component differs from the condensate density. This follows already from the fact that at zero temperature the entire liquid
is superfluid, whereas the number of particles in the condensate can be aslif#, ascording to the measurements in
liquid He.



CHAPTER 3

Two and three body interactions in ultra-cold gases.

3.1. Three-body recombination of ultra-cold atoms to a weakly bound level

We discuss three-body recombination of ultra-cold atoms to a weakly boleweél. In this case,
characterized by large and positive scattering lengtfor pair interaction, we find a repulsive ef-
fective potential for three-body collisions, which strongly reduces the recombination probability and
makes simple Jastrow-like approaches absolutely inadequate. In the zero temperature limit we obta
a universal relation, independent of the detailed shape of the interaction potential, for the (event) rate
constant of three-body recombination. = 3.9ha* /m, wherem is the atom mass.

Three-body recombination, the process in which two atoms form a bound state and a third on
carries away the binding energy, is an important issue in the physics of ultra-cold gases. This proce
represents the initial stage in the formation of clusters intermediate in size between individual atom
and bulk matter. Three-body recombination limits achievable densities in high-field-seeking spin:
polarized atomic hydrogen [60—63] and in trapped alkali atom gases (see [64] and references therei
and, hence, places limitations on the possibilities to observe Bose-Einstein condensation in the:
systems.

Extensive theoretical studies of three-body recombination in ultra-cold hydrogen [60—-63] and
alkalis [64] showed that the rate constant of this procegs, strongly depends on the shape of the
potential of interaction between atoms and on the energies of bound states in this potential. In alkal
the recombination is caused by elastic interatomic interaction, and in the zero temperatusgJimit
varies approximately ag [64], wherea is the scattering length for pair interaction.

All these studies, except one in spin-polarized hydrogen (see [61-63]), rely on Jastrow-like ap
proximations for the initial-state wavefunction of three colliding atoms. Recent progress in the quan
tum three-body problem for the case where only zero orbital angular momenta of particle motion ar
important [65] opens a possibility for rigorous calculations of three-body recombination in ultra-cold
atomic gases. In this Section we consider the extraordinary case of recombination (induced by elast
interaction between atoms) to a weakly bourldvel. The term “weakly bound” means that the size
[ of the diatomic molecule in this state is much larger than the characteristic radius of intefaction
(the phase shift fog-wave scattering comes from distances R.). In this case the scattering length
is positive and related to the binding enetegyby (see, e.g., [66])

(3.1.1) a=h/\/mey ~1> R,

(m is the atom mass), and elastic\Wave) scattering in pair collisions is resonantly enhanced at
collision energie¥’ < ¢y. As we show, large andl imply a rather large recombination rate constant
aree. At the same time, for large positive we find a repulsive effective potential for three-body
collisions, which strongly reducesg... In the limit of ultra-low initial energiedr < ¢, we obtain a
universal relation independent of the detailed shape of the interaction potentiak 3.9%a* /m.

The dependenca,..  a* can be understood from qualitative arguments. For atoms of equal
mass the energy conservation law for the recombination process reads

(3.1.2) 3Wk; /4m = e,
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FIGURE 3.1.1. Three possible sets of coordinates for a three-body system. The rela-
tive coordinates arg, between two particles, ang between their center of mass and
the third particle.

wherek; ~ 1/a is the final-state momentum of the third atom relative to the center of mass of the
molecule. Recombination to a weakly bousitevel occurs in a collision between two atoms, when

a third atom is located inside a sphere of radius a around the colliding pair. For such locations

of the third atom, characterized by a statistical weight- ni® (n is the gas density), this atom and
one of the colliding atoms form the weakly bound state with probability of order unity. The number
of recombination events per unit time and unit volume, = arecn®, can be estimated agowv(ni?),
wheres = 8ma? is the cross section for pair collisions. One may put velocity hk;/m, which
givesayec ~ 8mha /m.

One can also understand qualitatively the existence of a repulsive effective potential for three-body
collisions and the reduction af.... In the mean field picture the interaction in a three-body system
at (maximum of the three) interparticle separations> R. can be written adnh?*n,a/m, where
n. ~ 1/r®is the “particle density” inside a sphere of radiug-ora > 0 this interaction is repulsive,
which makes the statistical weightsmaller tham/? and decreases the numerical coefficient in the
above estimate foty.. The tail of the three-body effective potentialrat> a was found in [67].
Arguments clearly showing the absence of any “kinematic” repulsion independent of the value and
sign ofa are given in [68].

A particular system that should exhibit three-body recombination to a weakly bolevel is a
gas (or a beam) of helium atoms. The He-He potential of intera&fion has a well with a depth of
11 K. There is only one bound state in this well, with orbital angular momentum0 and binding
energyes, ~ 1.3 mK (see [69] and references therein). The scattering leagth100 A found for
this potential satisfies criterion (3.1.1). The existence of theditmer, the world’s largest diatomic
molecule { ~ 50 A), has been established experimentally [70]. Another system which is likely to
have three-body recombination to a weakly bourevel is spin-polarized metastable triplet helium,

a gas of helium atoms in th#S state with spins aligned. The interaction potential [71] for a pair
of spin-polarized H&(S) atoms supports anlevel with binding energy, ~ 2 mK, which leads to
a ~ 100 A and important consequences for the decay kinetics of this system [72, 73].

We confine ourselves to three-body recombination of identical atoms at collision enérgies,
to a weakly bound molecularlevel. In this case the recombination rate constagtcan be found
from the equation

on [d%k 3h*k; n?
(3-1-3) Vrec:arecn?):f/@ﬂ)fg |Tif|25 <Wf - 50> X g

Heren?/6 stands for the number of triples in the gd%; = f¢if/¢§c°)*d3xd3x’ is the T-matrix
element for three-body recombination, the coordin&tes’) are specified in Fig. 3.1.1; is the true
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wavefunction of the initial state of the triple, amﬁo) is the wavefunction of free motion of the third
atom relative to the center of mass of the molecule formed in the recombination event); Bwith

w}o) can be written as a sum of three components, each expressed in terms of one of the three differe
sets of coordinates (see Fig. 3.1.1):

(3.1.4) v = 0(X,Y) + (X, Y) + (XY,

(3.1.5) o = (1/VB)e(x,y) + o(X.Y) + o(x",y")],
P(X,Y) = to(x) exp(ikyy),

wherey)y is the wavefunction of the weakly bound molecular state. The interaction between colliding
atoms is regarded as a sum of pair interactibiis). The quantityl is the part of the interaction
which is not involved in constructing the wavefunction (3.1.5), i.e., if the molecule is formed by
atoms 1 and 2 (the first term in Eq.3.1.5), thén= V(r; —r3)+ V(r, —r5), et cet. Using Eq.(3.1.5),

(3.1.6) Ty = 2V3 [ded®' v, (a:)cos(%)\/(m’)exp(—ikfx')wi.

The initial wavefunction of the triple is best represented in hyperspherical coordinates. The
hyperradius, defined gs = (22/2 + 2y%/3)'/2, is invariant with respect to the transformations
z,y — =',y — z”,y". The hyperangles are defined @s= arctan(v/3z/2y), and similarly for
o/ ando”. For E <« ¢4 only zero orbital angular momenta of the particle motion are important, and
the wavefunction) can be written as [65]

) @y(a, p)
3.1.7
( ) Z \/_ sin a cos a’

The functions?, («, p) are determined by the equation
(3.1.8)

82(1))\(06 ,0) 2m 4 w/2—|m/6—«l
TV V2psina)p? | @, (a, +—/ do' @, (d, p)|=M(p) @ (av, p).
5o vV (V2psina)p”| 2a(a; p) Vs e, p)|=A(p) (e, p)

with boundary condition®, (0, p) = ®5(7/2,p) = 0 and normalizatiory,® 21D, (o, p)|2da = /4.

The sum in EQ.(3.1.7) is over all eigenvaluegorresponding to three free atoms at infinite inter-
particle separation. At ultra-low collision energies the lowest shgh alone gives a very good
approximation, and we can confine ourselves to thighen the functior¥(p) can be found from

the (hyper)radial equation in which the quantityp) serves as an effective potential [65]. Under
the conditionE < ¢, at interparticle distances much smaller than their De Broglie wavelength this
equation reads

2 59 Ap) —4 B

The functionF)(p) should be finite fop — 0 and is normalized such thas (p) — 1 for p — oc.

In our case the pair interaction potenti&{r) supports a weakly boundlevel, and the scattering
length is positive and much larger than the characteristic radius of interagtiéor this potential.
Forp > R, the function®, («, p) takes the form (cf. [65])

g(p)a| (V2p/a)sin(mv/2/2)x0(v2pa) + (8/V3)sin(rVA/6)] ,a < Re/p
g(p)sin [VX(a = 7/2)] ,a > Re/p.

(3.1.10) ®)(a, p) =
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FIGURE 3.1.2. (left) The “effective potentialX as a function op/a. The solid curve

is obtained from Eq.(3.1.8) using the ground state He-He poteatial{00A), and the
dashed from Eq.(3.1.12). (right) The wavefunctiiy{p/a) obtained from Eq.(3.1.9).
The solid curve corresponds tdp) for the ground state He-He potential, and the
dashed curve ta(p) from Eq.(3.1.12).

whereg(p) = [1 + sin(7v/A)/7v/A]"/2 andy, (r) is the solution of the Schrédinger equation for the
relative motion of a pair of particles,

n(o* 20
(3.111) (st 2 ) V) ) =0
normalized such thaty — 1 — a/r asr — oo. Matching the wavefunctions (3.1.10)@t= R./p <
1, to zero order iR, /p we obtain the following relation fok(p) at distancep > R, (cf. [65]):

\/§p ) T 8 . T s

(3.1.12) Tsm(\/xg)%—% sm(\/xg) —\/Xcos(\/xg).
For p >> a this equation yields\(p) = 4 +48a/+/27p, and thus the potential term in Eq.(3.1.9) varies
asa/p3. EQ.(3.1.12) is universal in the sense thadepends only on the ratig/a, but not on the
detailed shape df (r). The same statement holds #x(p) at distancep > R..

For infinite separation between particles, i.e., Jor> oo and all hyperangles larger thdt /p,
we havey\ ~ 2 and®,(a, p) ~ sin2a. Accordingly, from Eq.(3.1.7) with(p) — 1, eachy in
Eq.(3.1.4) becomes equal {g2/3, and the initial wavefunctiog; — V6.

The “effective potential’\(p) and the functiorFy (p) for three ground-state He atoms+ 100A)
are presented in Fig. 3.1.2. The potentidl) was taken from [69]. Fop > 100A our numerically
calculated\(p) coincides (within 10%) with that following from Eq.(3.1.12), ensuring a universal
dependence of, onp/a. As A(p) is repulsive,F) is strongly attenuated at < a (see Fig. 3.1.2).
This leads to a strong reduction ©f when all three particles are within a sphere of radius.

We first consider the theoretical limit of weak binding, where the scattering lengtid the
binding energy, are related by Eq.(3.1.1), the wavefunction of the bound molecular state at distances
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x> RIS

(3.1.13) dole) = ———exp (~2)

[ xTr) = — ex -,
0 V2ra<x P a

and the final momenturh; = 2/+/3a. From Eq.(3.1.13) one can see that the distance between the
two atoms which will form the bound state should be of ordefo take away the binding energy
the third atom should approach one of them to a distance of diderThe main contribution to

the integral in Eq.(3.1.6) comes from distanees- a andz’ ~ R, < a. Therefore we may put
p~\/2/3z,a =a" ~ /3, anda’ =~ /32’ /2x. Then the initial wavefunction takes the form

(3.1.14) i & (1/V3)xo(¢") Fr(V2z/V/3a),

with F)(z) =2 Fy(2)g(z)sin(y/A(2)7/2) andz = p/a. Puttingk ;x'~0 and using[d®z'V (') xo(z') =
4mh?a/m , from Eq.(3.1.6) we obtaiff; ; = 487%/2h2a®/2G /m, where

(3.1.15) G = / dz sin(z/V2) exp(—z+/3/2) F\(2).
0
The main contribution to this integral comes fram- 1 (p ~ a), where\ and F, (and, henceF))
are universal functions gf/a. ThereforeG is a universal number independent of the poterfial).
Direct calculation yield€z = 0.0364. With the abovel;; andG, from Eq.(3.1.3) we arrive at the
recombination rate constant
22
PTG R s 59l g
V3 m m

The dependence. x a*, instead ofare. x a2, is a consequence of the recombination to a
weakly bound s level and can be also obtained within the Jastrow approximation for the initial wave:
function: 1;; = v6xo(r1 — ra)xo(ra — rs)xo(rs — ry). This approximation was proved to be a good
approach for atomic hydrogen [61-63] and was later used for alkali atoms [64]. In our case, instea
of Eq.(3.1.14), we obtait;; ~ v/6xo(z')x2(x) and arrive at Eq.(3.1.16), with 4 orders of magnitude
larger numerical coefficient. Such a very large discrepancy occurs because both results are determir
by distances: ~ a, where in our (rigorous) theony; is strongly reduced by the repulsive effective
potential (see above). In the Jastrow approximation this reduction is not present. Motggusr,
resonantly enhanced at distanees: a. Thus, for largex the Jastrow approximation gives a wrong
picture of three-body collisions and is absolutely inadequate to describe recombination to a weakl
bounds level.

The strong reduction af,e. due to the presence of a repulsive effective potential for three-body
collisions can be treated as “quantum suppression” of three-body recombination (see related discL
sions in [68, 74]). Nevertheless,. remains finite in the zero temperature limit. In fact, due to large
values ofq, it is rather large. It is also worth noting that for large arejativescattering length the
quantityA(p) should have the form of a potential well, with a repulsive core at sppalhd the picture
of recombination collisions can be completely different.

In trapped gases the kinetic energy of the third atom acquired in the recombination process usual
exceeds the trap barrier, and such atoms escape from the trap. Thus, the loss rate foratems is
—Ln?, with L = 3. For three-body recombination of ground-state He atoms Eq.(3.1.16) gives
L ~ 2-10"% cmf/s. As the He-He interaction haB. ~ 15A< q, this value ofL is a very
good approximation. More accurate calculation, uskig) and F)\(p) determined for the He-He
interaction (solid curves in Fig. 3.1.2), gives a correction of 10%. The dam@btained for three-
body recombination of spin-polarized Bé§) atoms. In this case the result is less accurate, since the
characteristic radius of interaction is somewnhat larger< 354).

(3.1.16) Orec =
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Qualitatively, the picture of an effective repulsion in three-body collisions, implying a strong
reduction in the recombination rate constant, can be valid for systems with positive scattering length
a ~ R.. One can find such systems among the ultra-cold alkali atom gases.

3.2. Influence of resonant light on the scattering length in ultra-cold gases.

We develop the idea of manipulating the scattering lenagthlow-temperature atomic gases by
using nearly resonant light. As found, if the incident light is close to resonance with one of the bound
p levels of electronically excited molecule, then virtual radiative transitions of a pair of interacting
atoms to this level can significantly change the value and even reverse the signTble decay
of the gas due to photon recoil, resulting from the scattering of light by single atoms, and due to
photoassociation can be minimized by selecting the frequency detuning and the Rabi frequency. Our
calculations show the feasibility of optical manipulations of trapped Bose condensates through a
light-induced change in the mean field interaction between atoms, which is illustratédi for

The recent successful experiments on Bose-Einstein condensation (BEC) in magnetically trapped
gases oRb [3], Li [5] and Na [4] have generated a lot of interest in macroscopic quantum behavior
of atomic gases at ultra-low temperatures. These experiments were enabled by efficient evaporative
[22, 23] and optical cooling [20, 21] methods combined to reach the necessary temperatures (

11 K) and densitied 012 < n < 10* cm™3.

A principal question for BEC in atomic gases concerns the sign of the scattering lerfigth
the pair elastic interaction. Far > 0 elastic interaction between atoms is repulsive and the Bose
condensate is stable with respect to this interactiom.<tf0 elastic interaction is attractive and this is
the origin of a collapse of the condensate in a homogeneous gas [31]. For trapped gases Witte
situation is likely to be the same, provided the interaction between particles exceeds the level spacing
in the trapping field [32, 33]. If this interaction is much smaller than the level spacing, there is a gap
for one-particle excitations and it is possible to form a metastable Bose-condensed state [33]. Among
the alkalis there are atomic gases with positive as well as with negaf4]. Also the magnetic
field dependence af was predicted [35].

In this Section we develop the idea of manipulating the value and the sign of the scattering length
by using nearly resonant light. Since changindirectly affects the mean field interaction between
the atoms, this offers a possibility to investigate macroscopic quantum phenomena associated with
BEC by observing the evolution of a Bose condensed gas in response to light. Also optical control
of cold elastic collisions is attracting interest [75, 76]. The physical picture of the influence of the
light field on the elastic interaction between atoms is the following: A pair of atoms absorbs a photon
and undergoes a virtual transition to an electronically excited quasimolecular state. Then it reemits
the photon and returns to the initial electronic state at the same kinetic energy. As the interaction
between atoms in the excited state is much stronger than in the ground state, already at moderate light
intensities the scattering amplitude can be significantly changed.

The presence of the light field also induces inelastic processes, such as photon recoil and light
absorption in pair collisions (with regard to cold collisions see refs. [77, 78] for review). Photon
recoil is the result of the scattering of light by single atoms. At subrecoil temperatures, typical for
achieving BEC, recoiling atoms are lost as they overcome the confining barrier and escape from the
trap. The probability of light scattering by single atoms is proportion&t65)?, where(2 is the Rabi
frequency and is the frequency detuning of the light with respect to a single atom at rest. To suppress
the recoil losses the ratid/6 needs to be sufficiently small. Then, for positivevhere the light is at
resonance with continuum states of excited quasimolecules, the chamgelicdlso be proportional
to (©2/6)? and thus very small. To have small recoil losses in combination with a significant change of
a, the detuning should be large and negative and not too far from a vibrational resonance with one
of the boundp states of the electronically excited molecule. However, the vicinity of the resonance
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will also lead to photoassociation in pair collisions, followed by spontaneous emission and loss fron
the trap. Hence, the frequency detuningwith respect to the/-th (nearest) vibrational resonance
should greatly exceed the line width of the resonance. We established that it is possible to change t
scattering length substantially and even switch its sign without excessive recoil or photoassociatio
losses. This will be illustrated fGiLi.

We consider low gas densities satisfying the condition

(3.2.1) n\* < 1,

where) is the optical wavelength. Then collective optical effects [79,80] are absent, and at sufficiently
low temperatures the line broadening of optical transitions is determined by the natural line widtr
I' = 4d?/3h(\/27)3, whered is the transition dipole moment. We analyze the influence of incident
light with large (6| > T') and negative frequency detuning on the interaction in a pair of atoms, with
vanishing wavevector of relative motiok,— 0. The light frequency is assumed to be nearly resonant
with a highly excited vibrationgb level (with vibrational quantum numberand binding energy,)

in the interaction potentidl (r) of the attractive excited electronic state of the quasimolecule, i.e., the
frequency detuning with respect to this levgl,= § — ¢, is much smaller than the local vibrational
level spacingAe, = ¢, — ¢,41 (hereafter all frequencies are given in energy units). Then radiative
transitions of the pair from the ground electronic state to the exciteddeme most important. These
transitions predominantly occur at interparticle distancesthe vicinity of the outer turning point;

for the relative motion of atoms in the bound statée., V(r;) = —¢,. Unlesse,, is very largey, is
determined by the long-range partlofr), represented by the resonance dipole term, Hnd|j| are

still much larger than the Zeeman and fine structure splitting, then at interparticle distances releval
for radiative transitions the polarization vector of the attractive excited quasimolecularestate,
parallel to the internuclear axis, ahdr) = —2d?/r®. Hence, as, ~ |§| > T, we haver, < \.

For sufficiently large,, andd spontaneous emission of excited molecules predominantly produces
non-trapped atoms with kinetic energies of orderThese atoms practically do not interact with the
driving light and escape from the trap. Therefore, the problem of finding the scattering length in
the presence of light is equivalent to a scattering problem which can be be described in terms ¢
wavefunctions of the ground and excited electronic quasimolecular states. These states are coup!
by light, and spontaneous emission from the excited state can be taken into account by adding tt
“absorptive part™—:I" (the spontaneous emission rate for molecules is twice as large as that for single
atoms) to the interaction potentiél(r).

In the Born-Oppenheimer approximation the total wavefunction of the quasimolecule in the pres
ence of light can be written agr)|g) + ¢ (r)|e), where|g > and|e > are the electron wavefunctions
of the ground and excited electronic states. The wavefunctions of the relative motion of atoms i
these stategj(r) and«(r), can be found from the system of coupled Schrédinger equations:

(322) I A 60) 4 U()0) + Q£(0)0(0) = 0.
(323) L A )+ () D () 1€ )01 =0

where{(r) = (e,e\(r)), U(r) is the interaction potential in the ground electronic state, eynithe
polarization vector of light. The Rabi frequency is definedlas dE/+/2, whereFE is the amplitude

of the electric field of light. In Egs. (3.2.2) and (3.2.3) we neglect the light shifts at infinite separation
between atoms and omit the recoil. These equations lead to the integral equation for

(3.2.4) ¢<r>=qso(r>+ﬂ?/dr“dr'c<r':r>s<r“)é(r':r')g(r'm(r').

Here G(r,r’) and G(r,r’) are the Green functions of Egs. (3.2.2) and (3.2.3) With= 0. The
wavefunctionp, describes the relative motion of atoms with zero energy for the poténtiglin the
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absence of light. This function is a solution of Eq.(3.2.2) vik= 0. The Green functiot(r,r’)
has the form

Nom qﬁ(r)i) (ryr <71
(3.2.5) G“J>-—zﬁ%><{ o(r)oulr"), 7> 7 }

where gy (r) is a solution of the same Schrédinger equation as thapfor), but contains only an
outgoing spherical wave at large ¢o(r) — 1/r for r — oco. As the frequency detuning of light was
chosen such thad,| < Ae,, the bound state should give the dominant contribution(r, r’) and
we may use

(3.2.6) G(r,r') = = (r)ey(r')/ (8, +il),
where, (r) is the wavefunction of this state in the absence of light. Accordingly, the dependence
of the rhs of Eq.(3.2.4) om(r) will be only contained in the integral = [ d®r’¢(r')&(r" )y (r').

Multiplying both sides of Eq.(3.2.4) b§(r)«%(r) and integrating oved®r, we express through the
overlapintegraly = [ d®r’¢o(r')&(r')¢(r'). Then the exact solution of Eq.(3.2.4) is straightforward:

Q21 [dr'ep, (r)E(r)G(r, 1)
3.2.7 = —
( ) ¢(r) ¢0(r) 5,,+(Q2/A5,/)5+Z1—‘
The quantity(2?/Ae, )3 describes the light-induced shift of theth vibrational resonance, and the
numerical factod = Ae, [drdr'G(r,r")&(r )¢ (r)E(r" ), (r'). As in the limit of zero energies only the
s-wave contribution tas(r) andey(r) is important, the scattering length in the presence of light can

be found from the asymptotic form @f(r) at large distancess(r) — 1 — a/r for r — co. At large
r the Green functiod(r, r’) = ma¢y(r') /4nh*r, and Eq.(3.2.7) yields

(©2/8e)f
5, + (2/Ae,))3+iT ¥
with @ the scattering length in the absence of light, and the numerical factor

B = (mAe, /4mh?r,)|Io|%.

It should be emphasized that Eq.(3.2.8) is valid for any ratio betyigéand(Q?/Ac, ).

Unlesse, and|d| are huge, the turning point separatigns large enough for, and o to be
smooth functions of at distances ~ r, where the main contribution originates to the integrals in
the equations fop, I, and 5. Putting¢o(r) = ¢o(re), ¢o(r) = ¢o(r;) in the integrands of these
equations and using a linear approximation¥far) = —2d?/r? in the vicinity ofr;, we obtain

(3.2.9) B=087¢3(r); B =0.81>fo(re)go(rs).

The functionfy(r) = r¢o(r) is tending tol for » — co. For the level spacing the WKB approximation
gives

(3.2.10) Ag, = 1.97r5,,(rt/r0)1/2 <L gy.

The characteristic distaneg = md?/h?. For alkali atoms, greatly exceeds the optical wavelength
(ro > 10° A) and, hencery > A > r,.

The presence of other boupdevels and continuum states of the excited quasimolecule changes
Eq.(3.2.6) for the Green functiad. Our analysis, relying on the exact expressionGoshows that
in order to omit the contribution of virtual transitions to these states and, hence, retain the validity of
Eq.(3.2.8) it is sufficient to havig, | and2 much smaller than the level spacifg,. The condition
Q) <« Aeg, leads to important physical consequences. The radiative transitions occur in a narrow range
of distances near,, characterized by the widthr ~ r,(r,/ry)'/%. As the characteristic velocity in
this regionv ~ /e, Ar/mr;, the interaction timeAt ~ Ar/v of the quasimolecule with light is
such thatQAt ~ (Q/Ae,)(r;/m0)"/¢ < 1. Then, turning to a classical picture, one can say that the

(3.2.8) a=a+




3.2. INFLUENCE OF RESONANT LIGHT ON THE SCATTERING LENGTH IN ULTRA-COLD GASES. 25

“population” of the excited quasimolecular state will be small. This ensures the absence of effect
analogous to power broadening in the single atom case.

The light changes the real part of the scattering length and introduces an imaginary part. Th
frequency dependence of &2and Im: has a resonance structure:

2°6¢, m Q26T
el LA e
Ae,(Z+T2) 0 T T A (4 T2)
where¢, = §, + (Q*/Ae, ). The real part determines the mean field interaction between atoms. The
light-induced change of this interaction is given by

(3.2.12) n(U — U) = hr. ! = 47h*(Rea — @)n/m.

The imaginary part of: originates from the photoassociation process in pair collisions, followed by
spontaneous emission. The inverse decay time due to this process is

(3.2.13) L= 8rh|lmaln/m.

Tpa

(3.2.11) Rex=a+

Exactly at resonancé,( = 0) the mean field interaction is the same as in the absence of light, and the
photoassociation rate is the largest.

For small Rabi frequency EQ.(3.2.11) goes over into the result of perturbation theory and bott
7, ' andr,.' are proportional td2*. The former can be treated as a “light shift” of the mean field
interaction and the latter will be nothing else than the ordinary photoassociation rate at a low ligh
power. For(Q?/Ae,)3 > |4,| the driving light shifts the interacting pair of atoms out of resonance.
As the corresponding shift is proportionak®d, the light-induced change of the mean field interaction
becomes independent 6f It will be determined by Eq.(3.2.12) with Re- @ = (3/6)r,. On the
contrary, the photoassociation rate {ndecreases als/22.

The amplitude of binary interaction, affected by light, undergoes damped oscillations and reache
its stationary value (3.2.8) on a time scale of ofdet (for I' < maz{|é,|, 2} itaverages to Eq.(3.2.8)
much faster). This is much shorter than the characteristic response time of a dilute trapped gas, whi
cannot be faster than,. To have an appreciable modification of the mean field interaction without
excessive photoassociatian,should be short compared ig,, i.e., the condition

(3.2.14) |Rea| > |Ima|

should hold. As follows from Eq.(3.2.11), this is the case|fpf > I'. The change of the scatter-
ing length Re — @ ~ (Q22(/A¢,(,)r; can exceed,, whereas the imaginary part efwill be much
smaller. The scattering length can be changed in both directions simply by changing theign of

In addition, the time, should be much smaller than the decay timdue to the photon recoil of
single atoms, caused by light scattering. Sincé = (2/§)*T'/2, this is the case fol{| ~ ¢,)

(3.2.15) n\* > |(,|/4As,,

as follows from Egs. (3.2.11), (3.2.9) and (3.2.10) assumipg > I' to simultaneously satisfy
condition (3.2.14). A3(,| < Aeg,, the inequality (3.2.15) is not in contradiction with our starting
assumption (3.2.1) and can be fulfilled in alkali atom gases at densitie$0'® — 10'* cm2 by an
appropriate choice d?, the levelr andJ, .

All the above results remain valid for finite momenta of colliding atomsg min(r; ™, @,
lal™h) .

We performed calculations foiL.i by using spectroscopic information on the location of bopnd
levels in the excited electronic stéfe; [81]. The potential of interaction in the ground st&¥& was
taken from [82], the scattering length in the absence of light beirg—14 A. Eq.(3.2.11) was used
to calculate the scattering lengttunder the influence of light nearly resonant for vibratignkdvels
of the®x} state, with quantum numbers ranging from= 77 (¢, = 2.8K) to v = 66 (¢, = 28.7K).
We find that for(2 in the ranges — 40 mK (light power ranging fron10 to 1000 W/cn¥) it is possible to
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FIGURE 3.2.1. The scattering length féLi as a function of the frequency detuning

of light, 4, /T, from the excited boungd levelv: a) 2 = 10 mK, ¢, = 9.1K; b) Q@ = 40

mK, ¢, = 20.1K. The solid curve represents the real parupaind the dashed curve

the imaginary part. The dotted line corresponds to the scattering length in the absence
of light.

significantly change the scattering length and even make it positive while maintdmifjg< |Res|
(see Fig.3.2.1). The recoil loss timevaries from100 to 1 ms.

Our results show the feasibility to optically manipulate the mean field interaction between atoms
and open prospects for new optical experiments in trapped gases. For example, once a gas is in a
Bose-condensed state, instantaneous switching of the signhanges the sign of the non-linear in-
teraction term in the Ginzburg-Gross-Pitaevskii equation for the condensate wavefunction and causes
the trapped condensate to evolve in a completely different way than a condensate set into motion
by changing the trap frequency. The evolution will involve two time scatgsind the inverse trap
frequencyw; !, and continue after the light is switched off. Because of the light-induced decay pro-
cesses, the light should be switched on only for a time much shorter,thBlence, besides the above
discussed condition, < 7., experiments should be arranged such that > 1. This is feasible
with the above values fat.. As in most cases, will be much smaller than the characteristic time for
elastic collisions, the evolving condensate will not be in equilibrium with above-condensate particles.

In trapped gases with negative scattering length one may expect a stabilization of the condensate
by switchinga to positive values. Of particular interest is the case where the signso$witched
from positive to negative. In a quasihomogeneous Bose-condensealdas>( iw;) this should
induce a “collapse” of the condensate, caused by elastic interatomic interaction. The investigation of
this phenomenon is of fundamental interest.



CHAPTER 4

Dynamics of BEC at zero temperature

We analyze the dynamics of two trapped interacting Bose-Einstein condensates in the absence
thermal cloud and identify two regimes for the evolution: a regime of slow periodic oscillations and a
regime of strong non-linear mixing leading to the damping of the relative motion of the condensates
We compare our predictions with an experiment recently performed at JILA.

The experimental evidence for Bose-Einstein condensation in trapped atomic gases [3-5] he
attracted a lot of attention, as the presence of a macroscopically occupied quantum state makes 1
behavior of these gases drastically different from that of ordinary gas samples. Trapped Bose-Einste
condensates are well isolated from the environment and, at the same time, can be excited by defor
ing the trap or changing the interparticle interaction. The question of how the gas sample, bein
initially a pure condensate, subsequently reaches a new equilibrium state is directly related to tt
fundamental problem of the appearance of irreversibility in a quantum system with a large number
particles. Thus far the time dependent dynamics of trapped condensates has mainly been analyzed
a single condensate [32,44-46,52,83] on the basis of the Gross-Pitaevskii equation for the condens
wavefunction. Remarkably, already in this mean field approach the stochastization in the condensa
evolution has been found [45], and the damping of the condensate oscillations has been observ
numerically [52]. However, the question of the formation of a thermal component, addressed in [45]
has not been investigated.

In this Chapter we study the evolution of a richer system, a mixture of two interacting condensate
(a andb), in the situation where initially the thermal cloud is absent. The properties of a static two-
component trapped condensate, including the issue of spatial separatiomadridié components
due to interparticle interaction [84, 85], were investigated in [86—89]. The response of the system t
small modulations of the trap frequency has also been studied numerically [90]. In our case the
andb condensates have initially the same density profile and are set into motion mostly by an abrug
displacement of the trap centers. The main goal of our work is to study the dynamics of spatia
separation of the two condensates and analyze how the system can acquire statistical properties ¢
reach a new equilibrium state. From a general point of view, we are facing the problem raised b
Fermi, Pasta and Ulam [91]. They considered classical vibrations of a chain of coupled non-linea
oscillators, to analyze the emergence of statistical properties in a system with a large number
degrees of freedom. As has been revealed later, the appearance of statistical properties require
sufficiently strong non-linearity leading to stochastization of motion [92], whereas for small non-
linearity the motion remains quasiperiodic (see e.g. [93]).

We consider a situation in which the two condensatesidb see harmonic trapping potentials
of exactly the same shape, and the interparticle interactions characterized by the scattering lengt
(qqy Gqy @Nday, are close to each other. The control parameter, determining the possibilities of non-
linear mixing and stochastization, is the relative displacemgat the trap centers. We identify two
regimes for the evolution. In the first one the relative motion of the condensates exhibits oscillation:
at a frequency much lower than the trap frequencyn the other regime there is a strong non-linear
mixing leading to the damping of the relative motion, and the system has a tendency to approach
new equilibrium state. We compare our predictions with the results of the JILA experiments [94, 95]
on a two-component condensate®aRb atoms in theF’ = 1,m = —1 andF = 2,m = 1 states.
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FIGURE 4.0.1. Time evolution of the binary condensate mixture [94] with a relative
sag of 0.4m (3% of the width of the combined distribution prior the expansion) and
the trap frequenc§9H =.

In these experiments the double condensate was prepared from a single condensate inkhe state
1,m = —1 (a) by driving a two-photon transition which coherently transfers half of the atoms to the
stateF =2, m =1 (b).

We mostly perform our analysis in the mean field approach relying on the Gross-Pitaevskii equa-
tions for the wavefunctiong, and¢, of thea andb condensates. This approach corresponds to the
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classical limit of the evolution of a quantum field, the subsequent corrections being proportional to
small parametefna?_)/? (n is the gas density) and, hence, manifesting themselves only on a rather
large time scale. The two coupled Gross-Pitaevskii equationg,fande, normalized to unity read

h2A
(4016) Zhat¢s =|—-5—+ Ue — U + Z gEE’Nf-:' |¢6' |2 ¢€'

2m
e'=a,b

Hereg... = 4rh?a../m are the coupling constants for elastic interaction between atoms in the states
¢ ande’, m is the atom mass, andl,, U. are the number of atoms and trapping potential forsthe
condensate. As in the JILA experiment, we choose the initial conditjg(D) = ¢,, where the (real)
wavefunctiong, corresponds to the ground state of Eq.(4.0.16) with all atoms in #tate and no
trap displacement. The chemical potential of this ground state is denoted as

We consider ther and b condensates in the Thomas-Fermi regirhe & i) and assume the
number of condensate atomg = N, = N/2! . The first set of our calculations is performed for the
evolution of the condensates in a spherically symmetric trapping potéigtial = mw?r2/2 which at
t =0 is displaced along the axis by a distance,/2 for thea atoms, and by-z,/2 for theb atoms.
We present the results for the time dependence of the mean separation between the condensates,

(4.0.17) u(t) = /d3r 2 (|ga(r, t)]* — |ou(r, t)[?).

For the curves in Fig.4.0.2 the coupling constants@te= gu, = gw, and forzg = 0 our initial
state is an equilibrium state &at> 0. In this state the Thomas-Fermi radius of the condenBgte:
(2u/mw?)1/? serves as unit of length, and the shapepis determined by:/hw. Hence, forz, # 0
the dependence of the quantityR, onwt is governed by the parameterghiw andz,/ Ro.

Our results reveal two key features of the evolution dynamics. The first one, for a tiny displace-
mentz, is a periodic motion with slow frequencies which turn out to be sensitive to small variations
in the values of the coupling constants. The other feature, for much laygeut still zo < Ry, is a
strong damping in the relative motion of the two condensates, as observed at JILA [94].

In order to understand the physics behind the evolution pattern, we first perform a linear analysi
of EQ.(4.0.16). For the case whejg = g., = gs, = g, and the displacemeny is sufficiently small, we
linearize Eq.(4.0.16) with respect to small quantities, = (¢, —¢o) andz,. Then, for the quantity
0p_ =dp,— ¢y, describing the relative motion of the condensates, we obtain the equation

2
A
(4.0.18) ihd,0¢_ = —Z—m +Us— pu+ Ngd2| 66_ + S_,

with the source ternS_ =mw?zz¢o. For the quantityo., = 5o, +3d¢, we find an equation decoupled
from d¢_ and without source terms. Hence, the initial conditian (r,0) = 0 allows us to put
dp4(r,t) =0fort > 0.

For S_ =0 Eq.(4.0.18) is the equation for the wavefunction of a particle moving in the potential
V =Uy—p+N g¢?. Stationary solutions of this equation provide us with the eigenmodes of oscillations
of the condensates with respect to each other. In the Thomas-Fermi limit the poteraraginating
from the kinetic energy of the condensate, is a smooth functionin$ide the condensate spatial
regionr < Ry V = h*(A¢g)/2mepy < hw. Forr > Ry this potential is close té/, — p and is
much steeper. Replacirig by an infinite square well of radiuB, we obtain the energy spectrum
of eigenmodes with large quantum numbersE,,; = (whw)?(2n + [)?/16p, wherel is the orbital
angular momentum. This explains the appearance of oscillations at a frequency much smaller than
in our numerical calculations (see Fig.4.0.2a), since the energy scale in the spectfuntjg: <
hw . For the latter reason we call these eigenmodes soft modes. Note that the soft modes for ti

We solve Eq.(4.0.16) numerically, using cylindrical symmetry, on a finite grid with a splitting technique. Numerical
accuracy is tested by changing the grid and checking energy consendlipB (< 10~° for ¢ = 100s).
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FIGURE 4.0.2. Mean separation between the condensates versus time in isotropic
traps forg., = gu = g andpu/hw = 29.2. Relative displacement;, = 6.66 x
10™R, (a), andzy, = 7.16 x 107 2R, (b). Solid curves: numerical integration of
Eq.(4.0.16). Dotted curves: analytical prediction for (a) (see text), and the linear model
relying on Eq.(4.0.21) for (b).

relative motion of the two condensates also exist in the spatially homogeneous case where they have
a free-particle spectrum [84].

As in our linear approach we have, (r,t) = 0, EQq.(4.0.17) for the mean separation between
the condensates reducesd@) = 2 [ d*r z ¢ Re{d¢_}, and the contribution ta(t) comes from the
components of¢_ with [ = 1, m; = 0. Solving Eq.(4.0.18) with the initial conditio®y_(r,0) = 0,
we obtainu(t) as a superposition of components, each of them oscillating at an eigenfrequency of a

soft mode:
2
Bt
/d37’90n1z¢0 [l—cos < hl ﬂ,

2mw?

(4.0.19) u(t)=z) T

n>1
where ¢, is the wavefunction of the soft mode with= 1,m; = 0 and main quantum number
n. Damping of oscillations ofi(¢) could, in principle, originate from the interference between the
components with different in Eq.(4.0.19). However, the source basically populates only the
lowest soft mode, irrespective of the valuezgf the amplitude of oscillations at the lowest eigen-
frequency in Eq.(4.0.19) (the term with = 1) greatly exceeds the sum of the amplitudes of other
terms. Hence, these oscillations remain undamped. For the same reason their frequency and ampli-
tude can be found witkp,,; replaced by the functiongp, normalized to unity. Using the Thomas-
Fermi approximation for the condensate wavefunction [42, 43]r) = 15(1 —r?/R2)/87 R} for
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r < Ry, and¢y = 0 for r > Ry, we obtainEy;; = hQ = (7/4)(hw)?/u which is very close
to £y, = 1.62(hw)?/u calculated numerically. Then, retaining only the leading term=( 1) in
Eq.(4.0.19), we findi(t) ~ 2o (4p/7hw)?[1 —cos(Q2t)] shown in dotted line in Fig.4.0.2a. As one can
see, the condition of the linear regime< R, requires a very small displacement

(4.0.20) 29 < (hw/p)? R,

and already a moderatg as in Fig.4.0.2b is sufficient to drive the system out of the linear regime.

We have performed a similar linear analysis for the case whgre: g., # gm, but the relative
difference between the coupling constants is small. Also in this case the sbumestly generates
oscillations of the condensates relative to each other at a single freg{¥nreyw. For a relative
difference between the coupling constants much smaller thapfu)?, the frequency?’ coincides
with the soft-mode frequencdy found above. Otherwise the sign @f = g.. + g, — 294, becomes
important. In particular, for positive_ > |g.. — gw| @lready a moderate difference between the
coupling constants strongly increases the frequedicgompared td?. In this case we obtain un-
damped oscillations &’ ~ (g_/ga.)/?w. Forg_ < 0, already in they, = 0 case, a breathing mode
in which the two condensates oscillate out of phase becomes unstable, and the system evolves
from the initial state. Note that for a small difference between the coupling constants the conditior
g_ < 0is equivalent to the criterion of spatial separation of the condensates in the homogeneous cas
GaaGob < ggb [84! 85]

We now turn to the large, regime (Fig.4.0.2b) where we find a strong damping of the oscillations
of the mean separation between the condensates,In order to prove the key role of non-linearity
in this regime, we first attempt a linear model assuming that the denkities inside the square
brackets of Eq.(4.0.16) are not evolving:

(4.0.21) > Nogeo|dr® = Ngldol*.

In contrast to the analysis which led to Eq.(4.0.19), the displacemeastnow explicitly included

in the Hamiltonian through the termsmw?zzy/2 in U,;, and the number of populated oscillation
modes depends ofy. However, for the parameters in Fig.4.0.2b we find that only a few modes are
populated, and the interference between them can not account for the damping found numerical
(dotted versus solid curve in Fig. 4.0.2b).

We argue that the damping in our calculations mostly originates from non-linearity of the sys-
tem, which increases the number and amplitude of populated oscillation modes and provides &
interaction between them. As a result, the evolution of the condensate wavefungtiamsl ¢,
becomes chaotic. This can be seen from Fig.4.0.3 where we compare the spectral Rlgnsity
|71 fOTdt n(0,t) exp (ivt)|* of the density at the origim(0, ¢) with an identically defined spectral
density R, (v) of u(t) for the parameters in Fig.4.0.2b affld= 110/w. The functionR,(v) has
a smooth envelope at large with peaks corresponding to the islands of regular motion. On the
contrary, R, (v) exhibits pronounced peaks atof orderw, without any smooth background. This
picture provides a clear signature of stochastization in the system [93] and prompts us to represe
each of the condensate wavefunctions in Eq.(4.0.16) as a superposition of two constituents: (i)
slowly oscillating regular part conserving the phase coherence properties; (i) a composition of high
energy excitations characterized by stochastic motion. Only the slow constituent contributes to suc
macroscopic quantities ast), since the contribution of the fast stochastic part is averaged out.

Our analysis is consistent with the general statement that for a large population of various 0s
cillation modes the non-linear interaction between them leads to stochastization in the motion o
excitations with sufficiently high energy [93]. This allows us to employ the mechanism of stochastic
heating [93] for explaining the damping of oscillationsudf): The mean field interaction between
the fast stochastic and the slowly oscillating parts leads to energy transfer from the slow to the fas
part.
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FIGURE 4.0.3. Spectral densitieB,(v) (a) and R,(v) (b) for the parameters in
Fig.4.0.2b and’ = 110/w (see text).

The evolution of the occupation numbers of the modes of the fast stochastic part is governed by
kinetic equations [93] and eventually slows down. The rate of energy and particle exchange between
the two constituents then reduces. After a sufficiently long time only small linear oscillations of the
condensates survive, mostly at the lowest eigenfrequency and the gas sample as a whole could be
thought as being close to a steady state. However the damping of the remaining oscillations and the
ultimate evolution of the fast stochastic part towards the thermal equilibrium require an analysis be-
yond the mean field approach. For the parameters in Fig.4.0.2b, using the semiclassical Bogolyubov
approach [96] and relying on the conservation of energy and number of particles, we find an equilib-
rium temperaturéyq ~ 0.6 and a condensed fraction , ~ 0.9, for N = 5 x 10°.

The last set of our calculations relates to the recent JILA experiment [94] where the evolution
of a two-component’Rb condensate has been investigated. In the conditions of this experiment we
solved numerically Eq.(4.0.16) by taking, = 55A and the ratiog., : ge : ge» = 1.03 : 1 : 0.97.

We also explicitly included in these equations #i2ems expansion of the clouds after switching off

the trapping potential. The results of our calculations are presented in Fig.4.0.4. As in Fig.4.0.2b,
we find a strong damping of the oscillations of the mean separation between the conderisates,
Our numerical results are in fair agreement with the experimental data, although the damping in the
experiment is somewhat larger. We extended the calculations to twice the maximum experimental
time and found small oscillations which remain undamped on this time scale.

Our data for the JILA experiment [94] can be analyzed along the same lines as the results in
Fig.4.0.2b, with a damping originating from stochastization in the evolution of the condensate wave-
functions. The equilibrium temperature is closeutocorresponding to condensed fractions ~
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FIGURE 4.0.4. Mean separation between the condensates in the JILA experiment ver-
sus evolution time in the traps, afte2ams free expansion. Dots with error bars: JILA
experiment. Solid curve: our numerical calculation.

7% ~ 0.9. The large value of the condensed fraction explains why phase coherence between the
andb components could be observed even after the damping of the motidn)¢95]. The damping
time of the small remaining oscillations, estimated along the lines of [97], will be of drdecond.

We believe that the stochastic regime identified from our calculations is promising for investi-
gating the loss of phase coherence and the formation of a new thermal component in initially purel
Bose-condensed gas samples. An interesting possibility concerns the observation of a continuo
change in the phase coherence between #redb components with increasing the trap displacement
and, hence, decreasing the final Bose-condensed fraction.
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CHAPTER 5

Finite Temperature Perturbation Theory for a Bose-condensed Gas

We develop a finite temperature perturbation theory (beyond the mean field) for a Bose-condense
gas and calculate temperature-dependent damping rates and energy shifts for Bogolyubov excitatiol
of any energy. The theory is generalized for the case of excitations in a spatially inhomogeneou
(trapped) Bose-condensed gas, where we emphasize the principal importance of inhomogeneity
the condensate density profile and develop the method of calculating the self-energy functions. Tl
use of the theory is demonstrated by calculating the damping rates and energy shifts of low-enerc
excitations, i.e. t excitations with energies much smaller than the mean field interaction betweel
particles. The damping is provided by the interaction of these excitations with the thermal excitations
We emphasize the key role of stochastization in the behavior of the thermal excitations for dampin
in non-spherical traps. The damping rates of the lowest excitations, following from our theory, are in
fair agreement with the data of recent JILA and MIT experiments. For the quasiclassical excitations
the boundary region of the condensate plays a crucial role, and the result for the damping rates anc
energy shifts is drastically different from that in spatially homogeneous gases. We also analyze th
frequency shifts and damping of sound waves in cylindrical Bose condensates and discuss the role
damping in the recent MIT experiment on the sound propagation.

5.1. Introduction

Recent developments in the physics of ultra-cold gases have led to the discovery of Bose-Einste
condensation (BEC) in trapped clouds of alkali atoms [3-5] and stimulated a tremendous boost i
theoretical studies of weakly interacting Bose gases. As in previous years, these studies rely ¢
the binary approximation for the interparticle interaction. The latter is characterized by the 2-body
scattering lengthy, which assumes the presence of a small gaseous paramétet. 1 (n is the
gas density). Especially intensive are the attempts to reach beyond the ordinary mean field approa
and to develop a theory which can properly describe the behavior of finite temperature elementat
excitations of a trapped Bose-condensed gas and in particular, explain the JILA [50] and MIT [51]
experiments on energy shifts and damping rates of the excitations.

The commonly used mean field theory (for> 0) is based on the Bogolyubov quasiparticle
approach developed originally for a spatially homogeneous Bose-condensed/gas at[53] and
employed by Lee and Yang [98] (see also [99]) at finite temperatures. The generalization of the
Bogolyubov method for spatially inhomogeneous systems has been described by De Gennes [54].
the case of a Bose-condensed gas it should be completed by the equation for the wavefunction of t
spatially inhomogeneous condensate, derived by Pitaevskii [40] and Gross [38, 39].

For spatially homogeneous gases the theory beyond the mean field approach was also develop
Beliaev [100] constructed the zero-temperature diagram technique which allows one to find correc
tions to the energies of Bogolyubov excitations, proportionéhta®)'/2, wheren, is the condensate
density. The corrections are provided by the interaction between the excitations (in particular, throug
the condensate) and contain both real (energy shift) and imaginary (damping rate) parts= At
the latter originates from spontaneous decay of a given excitatjaio fwo other excitationsy(and
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~"), with smaller energies and momenta:
(5.1.1) v—y+7.

A universal expression for the chemical potential in terms of the self-energy functions has been found
by Pines and Hugenholtz [101]. It should be emphasized that the corrections proportiopat to
already depend on the contribution of 3-body interactions and, hence, can not be obtained within the
binary approximation.

The Beliaev approach was employed by Popov [102] at finite temperatures. In this case the cor-
rections to the Beliaev self-energies contain infra-red singularities, i.e. they tend to infinity for mo-
mentap — 0. This prompted Popov to make a renormalization of the theory, which links the micro-
scopic approach with phenomenological Landau hydrodynamics [31]. The Popov theory eliminates
the infra-red singularities and allows one to describe the behavior of low-energy excitations (phonons)
at temperatures much smaller than the mean field interparticle interaglib(l/ = 4rh%a/m, with
m being the atom mass). The damping of phonons in this temperature range is determined by the Be-
liaev damping processes and has also been calculated by Hohenberg and Martin [103]. A simplified
approach within the dielectric formalism was used by Szepfalusy and Kondor [104] for calculating
the damping rates of excitations in the phonon branch of the spectrum. They found that at tempera-
turesT > noU the damping rate of a given excitation) (originates from the scattering of thermal
excitations { and+’) on the excitation’ through the processes:

(5.1.2) v+y =4

Since the characteristic energies of the thermal excitationg turn out to be much larger than

the energy of the excitatiom, this damping channel can be represented as scattering of “resonance”
excitations moving in phase with the excitatiwand, hence, is exactly analogous to Landau damping.

It should be noted that the damping rates can be simply found by considering the interaction between
the excitations as a small perturbation and using Fermi’s golden rule. This allows one to properly
take into account the Bogolyubov nature of the thermal excitations. The damping rates of phonons
in a spatially homogeneous Bose-condensed gas, in particular for the Szepfalusy-Kondor mechanism,
have been calculated in the recent contributions [97, 105-108].

In order to reach beyond the mean field theor§’at n,U one should further develop the Popov
approach. One can also proceed along the lines of the Beliaev theory, since any physical quantity
should be determined by combinations of the Beliaev self-energies, which do not contain the infrared
singularities. We choose the latter way and construct the perturbation theory for a Bose-condensed
gas, which allows us to find the next to leading order terms (the terms proportignghto'/?) in the
energy spectrum of the elementary excitations. As in [104,105,107,108], we consider the excitations
in the so-called collisionless regime, where their De Broglie wavelength is much smaller than the
mean free path of the thermal excitations.

We start with the case of a spatially homogeneous Bose-condensed gas and find temperature-
dependent energy shifts and damping rates for Bogolyubov excitations of any energy. At temperatures
T > noU the small parameter of the theory proves to be

T

(5.1.3) ——(noa®)*? « 1,
TL(]U

in contrast tonga® < 1 for T = 0. The appearance of the extra fact(ﬂ/(zoﬁ) originates from
the Bose occupation numbers of thermal excitations with energies of egtlewhich are the most
important in the perturbation theory. As shown below, the damping of excitations with energies

e, ~ noU is determined by both the Szepfalusy-Konder{ v <+ ~') and Beliaev ¢ < v + 7'
processes, and can no longer be treated as Landau damping.
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The theory is generalized for the case of excitations in a spatially inhomogeneous (trapped) Bost
condensed gas. A new ingredient here is related to the inhomogeneous density profile of the co
densate and the discrete structure of the excitation spectrum. We develop the method of calculatit
the self-energy functions and derive the equations for finding the wavefunctions and energies of th
excitations (generalized Bogolyubov-De Gennes equations).

The use of the theory is demonstrated by three examples. The first one concerns quasiclas
cal low-energy excitations of a trapped Bose-condensed gas in the Thomas-Fermi regime. The ter
"low-energy" assumes that the excitation energys much smaller than the mean field interparticle
interactionn,, U (ng,, IS the maximum condensate density), and the quasiclassical character of the
excitations requires the conditiap > fw, wherew is the characteristic trap frequency. We consider
anisotropic harmonic traps, where the discrete structure of the excitation spectrum is not importar
(see below). On the contrary, the inhomogeneity of the condensate density profile has a crucial co
sequence for the damping rates and energy shifts of quasiclassical low-energy excitations. The mc
important turns out to be the boundary region of the condensate, wbléfrjsﬁ ~ ¢,. Therefore, the
result for the damping rates and energy shifts is completely different from that in spatially homoge-
neous gases.

Secondly, we analyze the frequency shifts and damping of axially propagating sound waves i
cylindrical Bose condensates. As found, the nature of damping is similar to that in the case of phonor
in spatially homogeneous Bose condensates. We show that the attenuation of axially propagatir
sound wave packets in the recent MIT experiment [109] can be well explained as a consequence
this damping.

Finally, we consider the damping of the lowest excitations of a trapped Bose condensate. Th
damping of low-energy excitations differs fundamentally from the damping of Bogolyubov excita-
tions in an infinitely large spatially homogeneous gas. In the latter case, characterized by a continuu
of excitations, any given excitation can decay into two excitations of lower energy and momentum vie
the Beliaev mechanism (5.1.1). In atrapped Bose-condensed gas the character of the discrete struct
of the spectrum of excitations makes the Beliaev damping impossible under conservation of energ
Therefore, irrespective of the relation betwdeand, the damping of the lowest excitations has to
be provided by their interaction with the thermal excitations via the Szepfalusy-Kondor (SK) process
(5.1.2). As the energieB,, of the thermal excitations are much larger than the eneigies hw of
the lowest excitations, the SK damping mechanism of the lowest excitations can be treated as Land;
damping.

Summarizing these three examples we see, that in a trapped Bose-condensed gas the damping
low-energy excitations is determined by the behavior of their wavefunctions and by the distribution of
the level spacings of thermal excitations with energdies< p, which depends on the trap symmetry.
We emphasize that stochastization in the behavior of these thermal excitations plays a key role fc
damping in non-spherical traps. In contrast to quasiclassiGat{ hw) low-energy excitations, the
damping of the lowest excitation&( ~ hw) is determined by the behavior of the excitations in the
entire condensate region. For this case the damping rates following from our theory are in a goo
agreement with the data of the JILA experiment [50] and reasonably well explain the results of the
experiment at MIT [51]. In the latter case the experimental conditions correspond to a crossove
between the collisionless and hydrodynamic regimes, and the measured values of the damping ra
are somewhat lower than the results of our calculations.

5.2. General equations

We consider a weakly interacting Bose-condensed gas confined in an external péténtial
The grand canonical Hamiltonian of the gas can be writteélas: H, + H;, where (hereinafter
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FIGURE 5.2.1. The set of diagrams contributing to the normal self-en&rgiHere

a solid line with an arrow represents the normal Green fungiosolid line without

an arrow corresponds to the anomalous Green fundtipwhite circle stands for the
interaction vertexU and the black circle represents a sum of two white circles, one
being a direct interaction and the other an exchange interaction. Dashed lines stand
for the condensate wave functigfin,. The self-energy pail*™ can be obtained by a
time-reversal(i.e. the change—» —t andp — —p) of the graphs shown above.

m=~h=1)

(5.2.1) Hy = /d?’r\iﬁ(r) (—é +V(r)— u) W(r),
2

and the term

(5.2.2) i, = %/d?’r@T(r)\iJT(r)\if(r)\if(r),

assumes a point interaction between atoms. The field operator of ﬁrtbr)mn be represented as the
sum of the above-condensate pafaind the condensate wavefunctip= (¥) which is ac-number.
As the interparticle interactiof/; contains both terms conserving the number of above-condensate
particles and terms transferring two above-condensate particles to the condensate (or two condensate
particles to the above-condensate part), the diagram technique should include both the normal Green
functionG and the anomalous Green functién(see, e.g. [100]).

The sums of the contributions of all irreducible diagrams will be represented by the natjnal (
and anomalous}{,) self-energies (see Fig.5.2.1 and 5.2.2). The former corresponds to the processes
conserving the number of above-condensate particles, and the latter describes absorption (or emission)
of two patrticles to (out of) the condensate. The Green function and self-energy operators satisfy
Beliaev-Dyson equations [100, 102]

(5.2.3) G = G+GYG+GY,F,
(5.2.4) F = G'StF+ GG,
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FIGURE 5.2.2. The set of graphs contributing to the anomalous self-engrgyhe
notations are the same as for the Fig. 5.2.1.

where the Green functiors andG™ describe forward and backward propagation of a particle char-
acterized by the HamiltoniaH,,.

We confine ourselves to the case of repulsive interaction between the atomd). To de-
velop the finite temperature perturbation theory for calculating dynamic properties and finding the
excitation spectrum of a weakly interacting Bose-condensed gas we will use the non-equilibriun
generalization [110] of the Matsubara diagram technique. In Egs. (5.2.3),(5.2.4) we perform an ar
alytical continuation of the Matsubara frequencigs= 277’5 (5 is an integer number) to the upper
half-plane, which corresponds to the replacemént— ¢ + ¢0. Then, multiplying both sides of
Egs. (5.2.3) and (5.2.4) by ! and(G™) !, respectively, we arrive at the system of equations in the
frequency-coordinate representation:

625)  GErn = | <5 + V)~ ut 30| Glarnr) + S FEn ) + 8 - 1)

A
(5.2.6) —eF(g;r,r') = [—5 +V(r)—p+ Eﬂs)} Fler,r') +Xa.(e)G (g1, 1),
Here the action of the integral self-energy operators on the Green functions is written in a compac
form [ d&®r"S(e;r,r")G(e;r",1") = X(e)G(e;r, r’) (and similar relations for the other combinations).

The solutions of Egs. (5.2.5),(5.2.6) can be written in the form of the Bogolyubov transformation
for the Green functions

Gler,r) = 3 { B | w0500

e+i10—¢, e+10+¢,

Flar ) - -3 {2050 | w050

e+i0—¢, e+10+¢,
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where the index stands for the set of quantum numbers, and the eigenfunatjgns and eigenen-
ergiese, satisfy generalized Bogolyubov-De Gennes equations

(52.7) fu0) = =5 VOO —Z,En ),
(528) —E,,’U,,(r) = |:_§+V(r)_H+Z+(€V):|’Uu(r)_Ea(gu)uu(r)'

Egs. (5.2.7),(5.2.8) should be completed by a generalized Gross-Pitaevskii equation for the condensate
wavefunction:

(5.2.9) {—% V) - (5 - za>|ﬁo] Wo(r) = 0

and by the normalization condition

/d% (no(r) + (1)) = N,

whereng(r) = |o(r)|? is the condensate density,(r) = (¥'I(r)¥’(r)) is the density of above-
condensate particles, aiddthe total number of particles in the gas.

In the Bogolyubov-De Gennes approach only the terms bilinedr loperators are retained in
the interaction Hamiltoniad/;, which assumes that the condensate density is much larger than the
density of above-condensate particles. Then, the self-energy operators take the form

(5.2.10) S(e,r,r') = 2noUd(r —r'),
(5.2.11) So(er,t') = ngUs(r —r').

The result of their action on the condensate wavefunclig(r) and the functions.,(r), v,(r) is
reduced to

(e, ) Wo(r) = /d?’r’E(sl,,r,r’)\I/o(r’) — 2mo (1) Wo(r)

and similar relations for the other combinations. Then, Eq.(5.2.9) becomes the ordinary Gross-
Pitaevskii equation

(5.2.12) [—%+V(r) —u+n0(r)z7] To(r) =0,

and Egs. (5.2.5),(5.2.6) are transformed to the ordinary Bogolyubov-De Gennes equations
(5.2.13) ey (r) = {—% + V() —p+ 2n0(r)ﬁ] uy (1) = no(r)Uv, (1),

(5.2.14) —e,u,(r) = {—% +V(r)—p+ 2n0(r)z7] 0, (1) = 1o () Uy ().

Taking into account Eq.(5.2.12), in terms of the functigijs = u, + v, these equations can be
rewritten as

A AT
(5.2.15) e f, (r) = <—§+ 2%°> 2 (r)
(5.2.16) e ff(r) = (—% + ?;00 +2|\Ifo|2(7> £ (r).
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For a trapped Bose-condensed gas in the Thomas-Fermi regime, M/hera()maxf] IS much
larger then the spacing between the trap levels, the kinetic energy term in Eq. (5.2.12) can be omitte
and one has [42,43]

(5.2.17) Uy = w

U

if the argument of the square root is positive and zero otherwise. For the low-energy excitation:
(e, < nOmﬁ) of Thomas-Fermi condensates Egs. (5.2.15),(5.2.16) can be reduced to hydrodynami
equations obtained by Stringari [55] and solved in the case of spherically symmetric harmonic po
tential V' (r) and for some excitations in a cylindrically symmetric potential. An analytical method of
solving Egs. (5.2.15),(5.2.16) (or the corresponding hydrodynamic equations) for the low-energy ex
citations of Thomas-Fermi condensates in an anisotropic harmonic poléatijahas been developed
in [56,111].

For a spatially homogeneous gas the generalized Gross-Pitaevskii equation (5.2.9) is equivale
to the Pines-Hugenholtz identity [101]. In the Bogolyubov approach it simply gjveSnoﬁ, and
Egs. (5.2.13),(5.2.14) lead to the Bogolyubov spectrum

(5.2.18) gp = \/(192/2)2 +noUp?,

wherep is the momentum of the excitation.

Under the conditiom, > n/, for which the Bogolyubov approach was originally developed, one
can simply putz, equal to the total density in Eq.(5.2.18). Forn’ ~ ng, which can be the case at
T > pu, the dispersion law becomes essentially temperature dependent [98, 99]. In a spatially homc
geneous gas the temperature dependence predominantly originates just from the presence of ab
condensate particles, witlf ~ n(T/T,)*? whereT, = 3.31n%? is the BEC transition temperature.
This leads to the replacement — nq +n'in EQ.(5.2.10) and giveg = (n + 2n')U. The dispersion
law will be still given by Eq.(5.2.18) in which the condensate density is now temperature dependent
no =n[1— (T/T.)*?].

5.3. Spatially homogeneous Bose-condensed gas

In this section we present the results for the damping rates and energy shifts of elementary e
citations in an infinitely large spatially homogeneous Bose-condensed gas. As one can see fro
Egs.(5.2.13),(5.2.14), for finding the energy spectrum and wavefunctions of the excitations it is suffi
cient to calculate the self-energiEs X1 andX,. We will perform the calculations in the frequency-
momentum representation and for physical transparency consider temperatures

(5.3.1) T > nogU

(the opposite limiting case has been discussed by Popov [102] with regard to the phonon branch
the excitation spectrum). In the zero order approximation in the parart§°r¢:-bt¢e?r)1/2 we have the
well-known mean field resulie© = SO+ = 2(ng + U, S = nU, with n/© = n(T/T,)3/2

(see above). In this approach we obtain the Bogolyubov quasiparticle excitations with the spectrur

(5.2.18), which we use in order to calculate the next ordénj)rm3)1/2. The latter is determined by

the contribution of diagrams containing one quasiparticle loop [102] (see Figures 5.2.1 and 5.2.2]
Actually in this approach we represent the Hamlltonlan as the sum of the (diagonalized) Bogolyubo
Hamiltonian and the perturbatldﬁ.m originating fromH, (5.2.2) and containing the terms propor-
tional to W, U’ and U":

(53.2)  Hix = U/d3r[ﬁfo(r)‘1"*(r){‘i”*(r)+‘i"(r)}‘if’(r)+(1/2)‘1”T(r)‘i”f(f)‘i”(r)‘if’(f)]-
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Retaining only the temperature-dependent contributions, after laborious calculations for the normal
self-energy we obtait = X + %) where

SW(P) =X"(P)+3(P),
Sn(P) =20%ng / (gT‘ig(anrnk)(

2A,By + BBy, — 4B, C, + 2C,C},
€+ ert &g

24, B, + AgAy — A4,C, + 2C,C
€— &g — €k

) — 8(mnoa®) VT,

(5.3.3)

d? — 1
(5.3.4) X (P) =20 /< 25367367_&(2Aqu+2AkBq+2BkBq+4C’qu—4AkC’q—4Bq0k).
q

HereP = {¢,p}, k = q+p, E, = p?/2, ¢, is given by Eq.(5.2.18), is the equilibrium occupation
number,C, = noU/2¢, and A,, B, = (+e, + E, + noU)/2¢,. Similarly, the correction to the
anomalous self-energy is given by

SO(P) = SI(P)+ (P,
SP) = 20 [ e ) (

2A,By — 2B,C, — 2A,Cy, + 3C,C,
E+er+éq

243B, — 2440, — 2B,Cy + 3C,Ci
E—&q— €k

> — 4(mnea®) VT,

(5.3.5)

~ d3q  ng—ny
53.6) X' (P) = 2U? 4
(536) wi(P) m [ e

(5.3.7) (24 A, +2B, B, +6C,Cy— 2A,C, — 24,C — 2B, — 2B, ().

The resonant parts”, 3! originate from the terms where one of the intermediate quasiparticles is
created and another one annihilated, and the non-resonant&fjaét§ from the terms where both
intermediate quasiparticles are created (annihilated). Temperature independent terms in the non-
resonant parts, found by Beliaev [100], are omitted in Egs.(5.3.3)-(5.3.6).

Each of the self-energies (5.3.3)-(5.3.6) is singulaPat> 0 and at least for small momenta the
corrections become larger than the mean field values (5.2.10). Nevertheless, keeping in mind that any
physical quantity is determined by the combinations of the self-energies, which do not contain the
infra-red singularities, we will still treat® andx{" as perturbations.

For a spatially homogeneous gas the Pines-Hugenholtz identity > (P) — X,(P))|p—o gives
the first order correction to the chemical potential

(5.3.8) p = —By/ng; B =12(md®)"’T,

and the relation between, and the chemical potential, = noU — 3,/ny, coincides with that found

by Popov [102]. Thet, v functions in generalized Bogolyubov-De Gennes equations (5.2.7), (5.2.8)
can be written as, exp(ipr) andv, exp(ipr), and in terms of the functiong> = u, + v, these
equations take the form

(5.3.9) (e=S7(P)f, = (%2 + 5+(P)> ,

(5.3.10) (=S~ (P)fF = (%2 + 2nU + si(p)> f,
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where
»(1) 4 »n+@1)

(5.3.11) St = +T+ﬂ\/n_o:|:2a,
»(1) _ »+1)

5.3.12 - =z =

(5.3.12) S 5

Considering the term§~, ST in Egs. (5.3.9),(5.3.10) as small perturbations wespste, in the ex-
pressions for these quantities, following from Egs. (5.3.3)-(5.3.6). Then, solving Egs. (5.3.9),(5.3.10)

for the excitation energy we obtain= ¢, + 51(,1), where

E
(5.3.13) elD= 2—”SI(P)+2%’Sf(P)+S‘(P) .
€p p P—(epP)

As 1V and =" are complex, the correction to the excitation energy has both a real and an
imaginary part:s,(,l) = ¢, —il',. The former gives the energy shift, and the latter is responsible for

damping of the excitations.

5.3.1. Phonon branch of the excitation spectrumFor the phonon branch of the excitation
spectrum £, < noU) we calculate analytically botfe, andT', on the basis of Egs.(5.3.3)-(5.3.13).
Under the conditiorl’ > noU the Beliaev damping processes (5.1.1) can be neglected, and the
non-resonant contributions to the quantiti#§sand.S—are purely real:

2 ~ d®q Tu
+n _ = /__2
5= 35 1o U/(27r)345%53
3 1 1
5.3.14 2 (B —E)l+e2-2
( ) {(8k+8q) (B o) +E 2(8—6k—6q+6+6k+6q) ’

- [ d’¢ Tu
5.3.15 ST =-2U0 2Eke — 2
( ) / (2m)3 46%83( KE — 2pE),

~ d®q Tu 1 1
5.3.16) St"=—2U | —— 4% + 8E? — 462 + 2442 .
( ) 5 /(2%)%5%53{” TRk A Ms(s—sk—sq+e+6k+eq)

A part of the resonant terms acquire a non-resonant character, and it is convenient to separate e
of the guantitiesS{", S~ into two parts, i.e.SI(”), S=() which contain a resonant denominator

(¢ 4+ e, — ex)~! and the partss; ™, $=() which do not contain this denominator. Then from
Egs.(5.3.3)-(5.3.6) we obtain

(5.3.17) St — 20 / (gjjg 422:;3 (Ex — Eg)? — (ex — &g)? — €2€%+2u2)’
(5.3.18) S =20 / %%(2/& + € ;fj“u),
(5.3.19) St = 20 / (;i?g 42’23 (82 + 18E2 + 4412),
and
(5.3.20) Sz = QU/ (37:33 4?;2 (e + 563— ex) € f 2
k€q q k)€ T H
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- dq Tu g2 2E 1
5.3.21 S~ = —2U/ 2
( ) (2m)3 4eje? (5+sq—6k)( M+Ek+u)’

(5.3.22)

GHom) _ 2(7/ d*q Ty e(4p® + 83 + 8E7)
T (2m)%defer  (eteg—ex)

Only the resonant terms (5.3.20)-(5.3.22) containing the denomitaters, — &5, + i0)~! have an
imaginary part and, hence, contribute to the damping rate. From (5.3.20)-(5.3.22) and (5.3.13) we
find

5 [ dq T ? 2 2F 2(c2 + B}
(5.3.23) rp:_ImQU/( g 1p € { ey, R (ex + ,c)}.

2m)3 deje2 e + €4 — e T VEr + p? %

The corresponding resonant contributti to the energy shift is given by the real part of the same
expression (with opposite sign). Purely real non-resonant terms (5.3.14)-(5.3.19) only contribute to
the energy shifts in Eq.(5.3.13). There is a contributighproportional tas and a contributiore}*
proportional top?/e:

. 3¢ T 2 2F
(5.3.24) sen = 207 / (dq a { Kok k1

LG+ E) B
21)3 4ejel ’

ept+u? Ep+p p I

ns 7 d3q T,U 2(Ey — E 2;“
(5.3.25) ger :2U/( (Bk — Eq)

3 4222 ’
2m)3 deje? €

where(E, — E,)* = (pq + p*/2)*/m>.
Performing the integration in Egs.(5.3.23)-(5.3.25) and settiag:,,, we obtain

de, ~ 2e,(n0a®) T/,

e, = (—8.41 — VT)ep(noa®) 2T/
and
0en® = —2¢/1/3 x g,(noa®)*T/ .
For the damping rat€, and the total shiffe, = dc], + dej + dej° we find

T

(5.3.26) de, =~ —7sp—~(n0a3)1/2,
noU
3827

(5.3.27) I, = ¢ T (noa®)'/2.
4n0U

The damping raté',, described solely by the resonant contributions, originates from quasi-resonant

scattering of thermal excitations from a given excitation (Landau damping) and is abgént at

Both the energy shift and the damping rate are determined by the interaction of a given excitation with
intermediate quasiparticles having energigs- noU. The damping rat&’, (5.3.27) coincides with

that found in recent contributions [105, 107, 108] and contains a slight numerical difference from the
earlier Szepfalusy-Kondor result [104]. The energy shift for the phonon branch of the spectrum was
also calculated in [105]. In the latter work the expansion of the self-energy functions near the point
e = ¢, was used and formally divergent integrals were canceling each other in the final expression for
the energy shift, which have led to the result by approximately factor 6 smaller then the shift (5.3.26)
obtained by the exact integration.
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0 20 40 60 80 100

FIGURE5.3.1. The damping rafe, (solid line) and the energy shift, (dashed line)
versusr = (g,/noU). BothT', andée, are given in the units dof (nga®)'/2.

5.3.2. General case (arbitrary excitation energies)Egs.(5.3.26),(5.3.27) clearly show that the
small parameter of the theory (& /n,U)(noa®)/? < 1 (see Eq.(5.1.3)), whereas in the zero temper-
ature approach [100] the small parametémigz®)!/? < 1. The presence of an additional large factor
T/noﬁ at finite temperatureg > noﬁ originates from the Bose enhancement of diagrams contain-
ing one quasiparticle loop: Compared to the zero-temperature case the contribution of each of the
diagrams is multiplied by the Bose factoy = [exp (g,/T) — 1]7* (or 1 4+ n,). As the most important
are intermediate quasiparticles with energigs- noU, for T >> noU the Bose facton, ~ T/n0(~].

A criterion similar to Eq.(5.1.3) was found by Popov [99, 102] as the condition which allows one to
use the mean-field approach at finite temperatures and to renormalize the theory for reaching beyo
this approach.

Remarkably, the criterion (5.1.3) is fulfilled even at temperatures very clo$g téor AT =
T. - T < T. we haven, ~ nAT/T., and Eq.(5.1.3) giveAT/T, > (nya®)'/3, which coincides
with the well known Ginzburg criterion [112] for the absence of critical fluctuations. The criterion
(5.1.3) also ensures that the main contribution to the damping rate originates from the interaction c
a given excitation with thermal excitations through the condensate, i.e., from the first tefi in
(5.3.2).

For any excitation energy, < 7' the energy shift and damping rate, being expressed in units of
T (noa®)'/2, turn out to be universal functions of the parametﬁ/moﬁ. These functions, calculated
numerically from Eq.(5.3.13) on the basis of Egs. (5.3.3)-(5.3.6) and (5.3.11),(5.3.12), are presente
in Fig. 5.3.1. One can easily check that under condition (5.1.3) both the damping rate and energ
shift are always much smaller thap In the phonon branch of the excitation spectrum< nOINJ)
the results of the numerical calculations coincide with those following from Eqgs. (5.3.26), (5.3.27).
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Fore, < noU the damping rate<{I',) increases witlz,,, reaches its maximum aj, ~ 10n,U, and
then slowly decreases with further increase of The energy shift foe, < noU is negative. The
modulus of the shift increases with and reaches its maximumat ~ 4noU. Further increase af,
decreasepie,|. The latter is equal to zero fay, ~ 60100, and becomes positive at larget

For single-particle excitations( = p*/2 > noﬁ), calculating the self-energy functions (5.3.11)
and (5.3.12), from Eq.(5.3.13) we obtain

~\1/2
(5328) (55]) = 4(7Tn0a3)1/2T 1—12.6 (M) ,
2¢ep
o\ /9
(5.3.29) T, = 16(mnea®)"?T [ 222 | In (&)
2617 ’TL()U

The damping rate can be written Bs ~ (7'/¢,)noov,, wheres = 8ma? is the elastic cross section,
andwv, the particle velocity. This damping rate exceeds the Beliaev temperature-independent term
nov, even atl’ close toT,, if AT =T, — T > ¢,. In contrast to the phonon branch of the spectrum,
fore, 2 noU the damping is provided by both the Szepfalusy-Kondo#-(y +» +') and Beliaev
(v «» v++') processes and, hence, can no longer be treated as Landau damping. The small parameter
of the theory is still given by Eq.(5.1.3), since evereat> noU the energy of at least one of the
thermal excitations is of order,U.

The above results for the damping rate and energy shift of a given excitation are obtained in the
so called collisionless regime: We assume that the de Broglie wavelength of the excitatiois,
much larger than the mean free path of thermal quasiparticles with ener@i@fi, which are mostly
responsible for the damping and shifts. Itis also assumed that the excitation engrgsitly exceeds
the damping rate of these thermal excitations. The latter is of Gttteja®)'/? (see Fig. 5.3.1), and for
& S noU the two requirements of the collisionless regime are well satisfied under condition (5.1.3).
In the phonon branch of the excitation spectrum « noﬁ) these requirements are equivalent to
each other, and the collisionless criterion can be simply written as

(5.3.30) ep > T(nga®)"/2.

As clearly seen, in the phonon branch one can always find excitations which do not satisfy Eq.(5.3.30)

and, hence, require a hydrodynamic description with regard to their damping rates and energy shifts.
The collisionless criterion (5.3.30) provides an additional argument on support of the above used

perturbative approach for solving Egs. (5.3.9), (5.3.10). Under condition (5.3.30) theSterm

T(nea®)? < e,, 8F < e,(T/noU)(noa®)/2 < p% andS* < (U Je,)T (noa®)? < noU.

The non-mean-field shifts,, is actually the shift of the excitation energyat a given condensate
densityn,. On the other hand, is determined by the Bogolyubov dispersion law (5.2.18), with
the temperature-dependent condensate dengify), and, hence, is temperature-dependent by itself.
Therefore, at a givef one will also have the mean-field temperature-dependent energyies[]*ﬁﬁ:

ep(T) — €,(0). As the condensate density decreases with increasing tempercmg]frés always

negative. Fofl” > n,U it greatly exceeds the above calculated shiftat anyp. The ratio(del /de,,)
decreases with temperature, but evenifox ny one has

(5.3.31) 5™ = —£,(0) v
p?/2 4 2ne(0)U

and(0e™/de,) ~ (T/neU)"/? > 1.
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5.4. Spatially inhomogeneous Bose-condensed gas

We now generalize the above obtained results for the case of elementary excitations in a spatial
inhomogeneous (trapped) Bose-condensed gas. As already mentioned in the introduction, a ne
ingredient here is related to the inhomogeneous density profile of the condensate and the discre
structure of the excitation spectrum. This requires us to develop a new method of calculating the sel
energy functions in generalized Bogolyubov-De Gennes equations (5.2.7), (5.2.8). The self-enerc
operators in these equations are the sums of the zeroth and first order terms:

(5.4.1) Sa(e,r, ) = n(r)Us(r —r') + 50,
(5.4.2) Se,r,r) = 2ng(r) + nOUS(r —r) + %W,
and a similar relation fo*. At temperatures’ > nOmﬁ the zero order value of the above-

condensate density in the condensate spatial region is coordinate independent and equal to the abc
condensate density in the ideal gas approact(T) = 2.6(7/2r)*/2. On the contrary, the self-
energiesz™), n depend explicitly on the condensate density. Due to the discrete structure of the
energy spectrum of excitations the expressions for these quantities should be written in the form c
sums over the discrete states of intermediate quasipartiglesin the frequency-coordinate repre-
sentation we have

Y(e,,r,r") =X"(e,, 1, ") + X (e, 1, 1),

S (e, 1,1) = 20o(0) T () T2 D (0, + 1) <2uv(f)u7(r’)w(r)w(r’) + (1)t (1)t (1) (1)

+ — 4ty (1) 1y () uy (Nvyr (1) + 2uy (N oy (1) uy (N vy (1)
E—Ey—Ey

20, (1), (1) (N (1) + vy (g (v Ny (r') = 4oy (v, (1w (r) v, (r')
E+ eyt ey

(5.4.3) 2u7(r):ﬁr;)u:ir)v7'(r’)> . 8(n07ra3)1/2T6(r . r/)’

n7/ — TL,Y

S (g, 1,1") = 2Wo(r) o (x') U7 Zm—e
YTy

!

(2“7(r)uv(r,)uv’(r)uv’(r,) + 2 (1)t (1) vy (N oy (1) 4 20 (1) vy (1) vy (Hvy (r')+
(5.4.4) 4wy (r)vy(r" )y (N)vy (r') — duy (r)us (r" )y (F)vy (r') — duy (£ oy (1) vy (Noy(r')).

Yo =X0(e,,r,1") + X0 (e, 1),

S (e, 1,1') = 20 () Wo(r) T2 ) (ny +ny)

e

<2u7(r)u7(r’)vy (N)vp (1) = 26y (N uy (r )y (v (r')

—2u, (1), (1) vy () (1) + 3uy (Mo (M) uy vy (F)
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205 ()0 (1 Yot (P (1) = 20 (1o (1Yt () (1)
Eteytey

20 (1) v (1) (Nt (1) + 3t (1) vy (1) uq (1) vy (1) 3y1/2 /
(5.45) — Sy > — 4(noma®)2TS(r — 1),

ny — TL,Y

22(61,, I‘, I") = 2‘1’0(1‘)\1’0(1'/)02 Zg‘—}—g—g
YTy

(20 (1)t (Yt (F i () 20 (o (F Y () () = Gty ()0 (1 ot () ()~
2t (Yt (1Yt (1Y (1) = 20t ()0 (1 Yt (0t (1) = 21ty (0, (1) () ()~

(5.4.6) 20, (1) vy (r)wy (o, (r')).

As we saw in the previous section, in the spatially homogeneous case all physical quantities are
determined by the contribution to the self-energy functibfs, 2 from intermediate quasiparticles
with energies of order the mean field interaction between particles. The same holds for a spatially
inhomogeneous (trapped) Bose-condensed gas in the Thomas-Fermi regime, where the mean field in-
teractionng,, U greatly exceeds the level spacing in the trapping potential. The intermediate quasipar-
ticles with energies of ordet,,,,U are essentially quasiclassical. With regard to the integral operator
(=M — x£{M)__, in the generalized Gross-Pitaevskii equation (5.2.9), which is solely determined by
non-resonant contributions, this immediately allows one to replace the summation over the discrete
intermediate states by integration. The kernel of this integral operator varies at digtarces of

order the correlation length,, = 1/\/710(7 which is much smaller than the characteristic size of the
condensate. Therefore, the result of the operator action on the condensate wavefunction can be written
in the local density approximation and, hence, should rely on Eq.(5.3.8) with coordinate-dependent
condensate density(r):

(5.4.7) [0 —xM] | o(r) = /d3r’ [V (e, rr) =2V r)] |, Yolr) = —BE(r).

This result can be easily obtained from Egs. (5.4.3)-(5.4.6), where one should#$ut, neglect the
difference between, ande.,, and make a summation ovef. Replacing the summation overby
integration one should also take into account that for quasiclassical excitations the fuq)f¢tioas
be represented in the form
~ -\ F1/2
62+(n0(r)U)2—n0(r)U
(5.4.8) fFOr)= | X2 £ (1),

Ey

where|f,(r)]* is the ratio of the local to total density of states for Bogolyubov quasiparticles of a
given symmetry, described by the classical Hamiltonian

(5.4.9) H(p,1) = /(52/2)? + o0 Up2.

On the basis of Eq.(5.4.7) we obtain the generalized Gross-Pitaevskii equation in the form

A ~
(5.4.10) <—5 FV(r) — i+ U0 — 5\1/0) Ty =0,
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whereji = u — 2n/©(T)U is coordinate independent. Compared to the ordinary Gross-Pitaevskii

equation (5.2.12), Eq.(5.4.10) contains an extra tem{?U — 5¥]¥, in the lhs. One can easily
check that Eq.(5.4.10) coincides with the equation

—% FV(r) — p+ U|Wo|? + U + (W) | ¥ =0
obtained by averaging the non-linear Schrodinger equation for the field operator (see [113]). A
mentioned above, fdF >> n,U the above-condensate density= (¥t ¥’} in the condensate spatial
region is mainly determined by the coordinate-independent (ideal gas) contribdfiqii”). The
coordinate-dependent correction to the above-condensate deridity,) = ('f(r)¥’'(r)) — n'©®,
turns out to be equal to the anomalous aver@ge )V (r)):

n'D(r) = (T(r)T(r :—&f(r).
(r) = (@(r)e(r) o
Accordingly, the quantity2n/©U — g, ¥, = U (2(W"10) 4 (U'TF')),
Taking advantage of Eqgs (5.4.1), (5.4.2) and (5.4.10), the generalized Bogolyubov-De Genne
equations (5.2.7), (5.2.8) are reduced to

(5.4.11) (e, = S)f, (r) = <—§ + ?;00 + S+> ()
6412  C-SIE0 — (-3 5 AnPT ) L)

where the quantitie${, S— are given by Egs. (5.3.11), (5.3.12), andis the exact value of the
excitation energy. Egs. (5.4.10), (5.4.11) and (5.4.12) represent a complete set of equations for findi
the energy shifts and damping rates of the elementary excitations.

A precise calculation of the self-energy functions in Egs. (5.4.11), (5.4.12) depends on the valu
of £, and on the trapping geometry. In this section we will make general statements on how the
calculation can be performed. In most of the cases (except the case of the lowest excitations wil
zero orbital angular momentum in spherically symmetric traps) the characteristic time scale in th
self-energy operatord,/c,, is much smaller than the inverse level spacing in the trap. Therefore,
the summation over the discrete intermediate states can be replaced by integration. This is a dire
consequence of the general statement that the time-dependent discrete Fourier sum can be replace
its integral representation at times much smaller than the inverse frequency spacing (see e.g., [114]

The kernels of the non-resonant parts of the self-energy operaigrandS ", vary at distances

= 1/4/noU. As Iy is much smaller than the
characteristic size of the condensate, the non-resonant parts of the self-energies can be calculate
the local density approximation. The same statement holds for the quastjfitsand S~ origi-
nating from the resonant parts of the self-energy operators. This approach gives the enedgy shift
(5.3.24), withn, replaced by by the coordinate-dependent densjty). For quasiclassical excita-
tions we also obtain Eq.(5.3.25) for the shiff)* (for the lowest excitations the calculation of this
shift, analogous tp?/¢ in the spatially homogeneous case, requires some more investigation).

The calculation of the resonant contributiofis™ and S~ to the self-energies is more subtle.
Using Eq.(5.4.8) for the functions,, v, = f£ in Egs. (5.4.4), (5.4.6), one can see that all resonant
contributions contain the quantity

Q) = 5 BB,

,,+67—57 +10

/
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Writing (e, + ¢, — e, +i0)~! as the integral over timé™ d¢ exp{i(e, + &, — £, 4 i0)t}, we obtain

(5.4.13) Q') =i / dt exp (i) K (1,1, 1),
0
where the quantum-mechanical correlation function
(5.4.14) (r,r't) Z Fo OV F (0 £ (D) o () exp {i(ey — e4 + 0)t} .

We will turn from the mtegratlon over the quantum statésf the quasiclassical thermal excitations
to the integration along the classical trajectories of motion of Bogolyubov-type quasiparticles in the
trap. Following a general method (see [115-117]) , we obtain

dST”d?’p

(5.4.15) K (r,r 1) 2971/5(”— N)o(ry(t) —r)éle, — H(p.r") =g~

wherer ,(t) is the coordinate of the classical trajectory with initial momenjuignd coordinate.
Eq.(5.4.15) will be used in the next sections where we demonstrate the facilities of the theory.
Concluding this section, we emphasize the key role of harmonicity of the trapping potential for
temperature-dependent energy shifts of the excitations. As mentioned in the previous section, in the
spatially homogeneous case at a given temperature the non-mean-field shift is much smaller than
the shiftse™ appearing in the mean field approach simply due to the temperature dependence of the
condensate density in the Bogolyubov dispersion law (5.2.18). For the Thomas-Fermi condensate in a
harmonic confining potential the situation is different. In this case the spectrum of low-eagrgy (
nonU ) excitations is independent of the mean field interparticle interaatjgy (chemical potential)
and the condensate density profile [55,56,111]. Hence, the temperature-dependent energy shifts can
only appear due to non-Thomas-Fermi corrections. For finding these corrections one should use the
mean field self-energiés, (¢, 1,1 ) = no(H)US(r—r' ), (e, 1,1 ) = 2(no(r)+n/©@)Us(r—r' ), where
the only difference from th& = 0 case is related to the presence of above-condensate particles in
the condensate spatial region at firilitehrough the coordinate-independent t&xni® U in 3. Then
Egs. (5.4.11), (5.4.12) take the form of ordinary Bogolyubov-De Gennes equations (5.2.15),(5.2.16),
and Eq.(5.4.10) becomes the ordinary Gross-Pitaevskii equation (5.2.12), with the chemical potential
u replaced byi. The latter circumstance changes the condensate wavefunction compared to that
atT = 0 and ensures the temperature dependenck,ofAccordingly, the excitation energies
in Egs. (5.2.15),(5.2.16) also become temperature dependent. This type of approach, which for a
spatially homogeneous gas would immediately lead to the result of Lee and Yang [98], has been
used in recent numerical calculations of the energy shifts of the lowest quadrupole excitations in
spherically symmetric [118] and cylindrically symmetric [119, 120] harmonic traps. The presence of
the coordinate-dependent part of the above-condensate derisity,), in these calculations is not
adequate, since the anomalous average equal to this part was omitted and equations for the excitations
did not contain the corrections to the self-energies, also proportioriahtd)'/2. However, afl’ >
noU , wheren’) < n'®), the coordinate-dependent part)(r) as itself should not significantly
influence the result, and the calculations [118-120] should actually demonstrate how important are
the mean field non-Thomas-Fermi effects. The results of [119, 120] show the absence of energy shifts
of the excitations at temperaturés < 0.67, in the JILA experiment [50] and in this sense agree
with the experimental data, but do not describe the upward and downward shifts of the excitation
energies, observed experimentally at higher temperatures (in this respect it is worth mentioning that
the calculations [121] performed for the thermal cloud in the hydrodynamic regime agree surprisingly
well with the experiment [50]). On the other hand, the calculation [120] shows a downward shift of
the energy of the lowest quadrupole excitation with increasing temperature in the conditions of the
MIT experiment [51]. This is consistent with the experimental data and indicates that for not very
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small Thomas-Fermi parameteyno,nﬁ the mean field non-Thomas-Fermi effects can be important
for temperature-dependent shifts of the lowest excitations.

Below we will assume a sufficiently small Thomas-Fermi parameiezr()mﬁ and demonstrate
the use of the theory by the examples where the influence of non-Thomas-Fermi effects on the ener
shifts of the excitations is not important.

5.5. Quasiclassical excitations in a trapped Bose-condensed gas

We first consider the damping and energy shifts of quasiclassicab(w) low-energy excitations
of a trapped Thomas-Fermi condensate, i.e., the quasiclassical excitations with energies much smal
than the mean field interaction between partielgsU. In this case, for the condensates in a harmonic
confining potential the ground state wave function can be found on the basis of Egs. (5.4.10), (5.4.11
(5.4.12). Neglecting the kinetic energy term in Eq.(5.4.10), we arrive at a quadratic equatiion for
Expanding the solution of this equation in powergiaind retaining only the terms independengof
and the terms linear i, for the condensate density we obtain

(5.5.1) no(r) = fio(r) + B+/7io (1) /T,

whereny(r) = (i — V(r))/U is the density of the Thomas-Fermi condensate in the ordinary mean
field approach.

For quasiclassical excitations the terms in Eqgs. (5.4.11) and (5.4.12), originating from the kinetic
energy of the condensate, can be omitted from the very beginning [56]. Then, using Eq.(5.5.1) an

treating the terms containing~ and St as perturbations, we obtaip = ¢ + "), wherez is

the excitation energy in the mean field approach, and the correction to the excitation e(ﬁ)eﬁgy
de, —1I', is given by the relation

(552) 0= 157155) + 5 (U181 + 28VRdA7) + (F118215))

Hereff(o) are the zero-order wavefunctions of the excitations, determined by the ordinary Bogolyubo
De Gennes equations (5.2.15), (5.2.16), with= .

In the case of quasiclassical excitations also the kernels of resonant parts of integral operators
Eqg.(5.5.2) vary on a distance sc#e- ' | which does not exceed the correlation lenfggh This can
be already seen from Egs. (5.4.13), (5.4.15): The characteristic timelgealia Eq.(5.4.13) is much
shorter thanu~! and important is only a small part of the classical trajectory, where the condensate
density is practically constant amnglt) = r + vt, with v = 9H/0p. The correlation length, is not
only much smaller than the size of the condensate, but also smaller than the width of the boundai
region of the condensate, wheugU ~ ¢,. Therefore, the action of all integral operators on the
functionsff(o) in Eq.(5.5.2) can be calculated in the local density approximation. Accordingly, for
each of these operators one can use the quantity following from Egs. (5.3.3)-(5.3.6) withg(r)
andp from the Bogolyubov dispersion laW (p,r) = ¢,. Then, using Egs. (5.4.8) we can express the
energy shiftde, and the damping ratg, through the energy shiftz,;(r) and damping raté&',,(r)
of the excitation of energy, in a spatially homogeneous Bose-condensed gas with the condensate
density equal t@i(r):

553) I R G e

24 (7o (1)U 24110 (r)U

(5.5.4) r, = /d3r|f,,(r)|2I‘,,h(r).
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The second term in the integrand of Eq.(5.5.3) originates from the temperature dependence of the
shape of the condensate wavefunction. For any i@, (r)U this positive term dominates over
the negative terme,,,(r). The latter circumstance can be easily established from the resufis, for
in Fig. 5.3.1. Thus, for quasiclassical low-energy excitations the energydshifvill be always
positive, irrespective of the trapping geometry and the symmetry of the excitation.

We confine ourselves to the case of cylindrical symmetry, where for the states with zero angular
momentum one finds

(5.5.5) D)2 = 2 —,
ml,l, log (21/e,)pr/€2 + (o (r)U)?

with [, = (2ji/w,)/?, 1. = (2fi/w.)"/? being the characteristic size of the condensate in the radial
and axial directionw,, w, the radial and axial frequencies, apdhe radial coordinate. The main
contribution to the integrals in Egs.(5.5.3),(5.5.4) comes from the boundary region of the condensate,
whereng(r) ~ ¢,. From Egs. (5.4.11),(5.4.12) one can easily see that in this region the possibility to
omit the non-Thomas-Fermi effects originating from the kinetic energy of the condensate requires the
conditione, > w?3f!/3. This condition ensures that the characteristic width of the boundary region
greatly exceeds the excitation wavelength, and we arrive at the following relations for the energy
shifts and damping rates of the excitations:

€ T
(5.5.6) e, ~ 8L (figma®)"/?,
fi log (2u/€u)( o)
€ T
(5.5.7) I, ~ 9,/Z———(fgma®)'/%
V7 Tog @ifen) o)

It is important to emphasize that in the boundary region of the condensate, responsible for the
energy shifts and damping rates of the quasiclassical excitations, the quaitifiess 1, andx.\”
are determined by the contribution of intermediate quasiparticles which have energies comparable
with £,. Moreover, in this spatial region the quasiparticle energies are of order the local mean field in-
terparticle interaction. As a consequence, the energy&hif{5.5.6) and the damping rakg (5.5.7)
are practically independent of the condensate density profile. For the same reason the damping rate
is determined by both the Szepfalusy-Kondor and Beliaev damping processes. Therefore, similarly
to the damping of excitations with energigs> noU in a spatially homogeneous gas, the damping
of quasiclassical low-energy excitations of a trapped Bose-condensed gas can no longer be treated as
Landau damping.

5.6. Sound waves in cylindrical Bose condensates

The derivation of Egs. (5.5.6), (5.5.7) assumes that the motion of the excitagauasiclassical
for all degrees of freedom. We now turn to the condensate excitations in cigar-shaped cylindrical
traps, which are quasiclassical only in the axial direction and correspond to the lowest modes of the
radial motion. We will consider low-energy excitations (< ng,,U), i.e., the excitations with the
axial wavelength much larger than the correlation ledggh In the recent MIT experiment [109]
localized excitations of this type were created in the center of the trap by modifying the trapping
potential using the dipole force of a focused off-resonant laser beam. Then, a wave packet traveling
along the axis of the cylindrical trap (axially propagating sound wave) was observed. In the mean
field approach the sound waves propagating in an infinitely long (axially homogeneous) cylindrical
Bose condensate have been discussed in [122-124].

For revealing the key features of the non-mean-field effects (damping and the change of the sound
velocity) we confine ourselves to the same trapping geometry. With regard to realistic cylindrical traps
this will be a good approach if the mean free path of sound waves is smaller than the characteristic
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axial size of the sample. As found in [122], for axially propagating sound waves radial oscillations of
the condensate are absent, and the wavefuncfigns (27ig(p)U /ex) /2 fy, with

(5.6.1) Jr =

exp (1kz)

2
7rlp

andk being the axial momentum. The dispersion law
(5.6.2) er = ck

is characterized by the sound velocity equalfe,,U/2)'/2, wherefiy,, = ji/U is the maximum
density of the Thomas-Fermi condensate in the ordinary mean field approach.

It should be noted from the very beginning that, according to Eq.(5.5¢}),is related to the
corrected value of the maximum condensate densjtyasnom = nom — (8/U)\/nom. Therefore,
being interested in the sound velocity at a given value of the maximum condensate density, one shou
substitute this expression to Eq.(5.6.2). This immediately changes the sound velocity to

(5.6.3) ¢ = (ngnU/2)"?
in the leading term (5.6.2) of the dispersion law and provides a contribution to the frequency shift of
the sound wave
T
(5.6.4) 08, = —¢}, 0 = (ﬂngma?’)lﬂ.

Nom

The damping rate and other contributions to the frequency shift can be found directly from
Eq.(5.5.2) by using the wavefunctiorfs (5.6.1). The intermediate quasiparticles giving the main
contribution to the damping rate and frequency shift have enetgies nomU, i.e. much larger
than the frequency of the considered sound waydsee below). Therefore, similarly to the case
of phonons in a spatially homogeneous condensate, the non-resonant terms analsgéust@,

S{™ andS—™ contribute only to the frequency shift. As already mentioned above, the characteristic
distance scalép — p/| in the kernels of the corresponding self-energies is of order the correlation
lengthl..,, and the sum of their contributions to the frequency shift can be calculated by using the
local density approximation for the action of the self-energy operators on the fungfiois gives

the non-resonant contribution to the frequency shiff,(p) = (—8.4 — \/7)(nea®)"/*T/(noU) and

the non-resonant contributiaia?* (p) = 2/7 x (nga®)*T/(neU), with ng = 7(p) . Then, we can
express the total non-resonant p&fi’ of the frequency shift of the sound wave through the quantity
Opa(p) = dei(p) + 83 (p):

665 o= [ @olnl { om0 + DN b o, 2 gty
2n0(p)U nOmU

The resonant terms analogous49™ and S~ in Egs.(5.3.19)-(5.3.21) contribute to both the
frequency shift and damping rate. This means that the latter is determined by the Szepfalusy-Kond
scattering processes and, since the characteristic energies of intermediate quasiparticles are m
larger thare,, can be treated as Landau damping. The resonant contributions to the frequency shi
and damping rate can not be found in the local density approximation, as the characteristic distan
scale|p — p'| in the kernels of the self-energy operators in Eqg.(5.5.2) is of order the radial size of
the condensate. For finding these contributions one has to substitute the resonant parts of the s¢
energies, (5.4.3)-(5.4.6), to Eq.(5.5.2) and, by using Eqgs.(5.4.13)-(5.4.15), turn from summation ove
guasiclassical stateg 4’ of intermediate quasiparticles to the integration along classical trajectories
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of their motion. Then, a direct calculation of the quantify= dc}" — ¢I'; yields
drd3p

666) 5 —iSl - [ e / dtesp (i) [ B1,(0)07,(0(p.1)3(e, ~H(p.1) ot

wherer (p, t) is the classical trajectory starting at the phase space poims$ on the (hyper)surface
of constant energy.,, ®x,(r) = fx(2)Fy(p), and

()= 263+ (710 (p)U > =0 (p) Uy f€2 + (7o (p) U)?
exy/ €2+ (o (p)U)?

Generally speaking, the integration in Eq.(5.6.6) is a tedious task as it requires a full knowledge
of the classical trajectories on a time scalel /e;. This is also the case in the idealized cylindrical
trap, because of coupling between the radial and axial degrees of freedom. We will rely on the
approach which assumes a fast radial motion of quasiparticles compared to their motion in the axial
direction and, hence, requires the frequency of the sound wayejgnificantly smaller than the
radial frequency,. Then on a time scale 1/¢; the quasiparticles with energiesn,U (which are
the most important for the energy shifts and damping of the sound wave) oscillate many times in the
radial direction, whereas their axial variablep, t), p.(p, t) only slightly change and, hence, can be
adiabatically separated from the fast radial variablg@st), p,(p, ). In this case it is convenient to
integrate Eq,(5.6.6) ovelp , and, using Eq.(5.6.1), represent it in the form

(5.6.7)

2~
o= ik [ e, 5 [[avesp i) [ papap.as TALEERDD oy i o,
i V& + ()0

where the integration is performed over the entire classically accessible region of the phase space.
Sincez(p, t) is close toz, in the exponent of the integrand we can weite, t) — z = v,, where

the axial velocity, is obtained from the exact Hamiltonian equations of motion by averaging over the

fast radial variablesv, = (0H(p,r)/0p.),. For the classical radial motioa (> w,) the averaging

procedure simply reduces to integration odgrunder the conditior/ (p,r) = ¢, at fixed values of

£+, p. andz, with the weight proportional to the local density of states for the radial motion:

(D =57 [ ()E + Gl D) 22mpd,

whereg = [ (&2 + (70(p)U)?) V227 pdp. Finally, averaging the functioR, (p(t)) over the fast radial
variables and integrating oveét in Eq.(5.6.7), we obtain

22U e.dn (F(p))?
5.6.8 o = & de, 2 ”/ddz—”.
( ) k 812 / = de., =ap gsk — v, + 40

The resonant contribution to the frequency shift, given by the real part of Eq.(5.6.8), after the integra-

tion proves to bés}, ~ —2.3¢4 (T /nomU)(noma®)'/2 The sum of this quantity with the non-resonant
term (5.6.5) andz; (5.6.4) leads to the frequency shift of the sound wave

F.

o

T
(5.6.9) Oc, ~ —56k(n0ma3)1/2—~
’ngmU
The imaginary part of Eq.(5.6.8) gives the damping rate
T
(5610) Fk = 8.66k(n0ma3)1/2—~

Nom U
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Except for the numerical coefficients, Egs,(5.6.9), (5.6.10) are similar to Eq.(5.3.26), (5.3.27) for
the damping rate and energy shift of phonons in a spatially homogeneous Bose condensate. TI
a consequence of the fact that the condensate boundary region practically does not contribute
the damping rate and frequency shift of axially propagating sound waves, in contrast to the case ¢
excitations quasiclassical for both axial and radial degrees of freedom.

In the MIT experiment [109] the characteristic spatial size of created localized excitations was
A =~ 20 pm and, accordingly, so was the initial wavelength of propagating sound. According to
the experimental data, the propagating pulse died out during 25 ms, and after that only the lowe
guadrupole excitation characterized by a much loner damping t#m&0( ms) was observed. We
believe that the attenuation of axially propagating sound in the MIT experiment [109] on the time
scale of 25 ms can be well explained as a consequence of damping. The characteristic frequency of t

waves in the packet can be estimated as: 2m/n0m0/2/)\. Then Eq.(5.6.10) gives the damping
rate independent of the condensate densjfy. In the MIT experiment the temperatufe~0.5 uK
was roughly only twice as large as.,,U , which decreases the damping rate by approximaxely
compared to that given by Eq.(5.6.10). In these conditions we obtain a characteristic damping time
15 ms, relatively close to the measured value.

The relative change of the sound velocity/c = de /ey, increases with decreasing condensate
densityn,,,. However, even at the lowest densities of the MIT experiment [169] & 104 cm3)
the quantitydc/c does not exceed 5% and is practically invisible.

5.7. Damping of low-energy excitations in a trapped Bose-condensed gas

In this section we use our theory for the calculation of damping of the lowest excitations (i.e.
the excitations with energidav ~ ¢ < p) of a trapped condensate in the Thomas-Fermi regime
at finite temperatureg > hw ranging almost up to the BEC phase transition temperature. We will
again assume the inequality (5.1.3) (with = n,,,) which ensures that the main contribution to the
damping rate comes from the first termé,, (5.3.2), proportional t&'3, and the damping is actually
caused by the interaction of the lowest excitations with the thermal excitations through the condensa
and is governed by the SK process (5.1.2). The damping rate is given by the part of Eq.(5.6.6) in whic
the functions?, ., (r) = f,(r)F,(r), and the wavefunctions of the lowest excitations:

—-1/2
(5.7.1) fo = (H zi> W, (ri/1:),

with polynomialsW¥, introduced in Chapter 2.
Eq.(5.6.6) can also be found within the first order perturbation theof,in

1| <y'|Hinlry> |2
57.2 T=ImS =
(5.7.2) B B Bt Byt i0

7Y

whereN,, = [exp (E,/T)—1]~! are equilibrium occupation numbers for the thermal excitations. The
transition matrix element can be represented in the form

(NW_ NW’)?

A U v ! /
(573) <’)/|I{int|7/")/>: 5 [SHuvv’_(Hy;y_H'yv_Hgv )] )

whereH,., = [ d*r¥(r)f; (r)f; (r)f"(r)andH)" = [ d*rT(r) f; (x) 5 (r) £ (x).
Since energies of the thermal excitatiddis>/w, these excitations are quasiclassical and, simi-
larly to the spatially homogeneous case, one can write

[ reo

P = | B2/ B3+ )02 = )0
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Then, using Eq(5.7.1), from Eq.(5.7.3) we obtain

~\1/2
. E,U )
(5.7.4) < | Hine|vy >=<2 I li) / dPr®,, (r) f,(r) £ (r),

where®,,.(r) = W, (r;/l;)F,(r), and

2E2-+ (o(1) D)2 —no(r) 0y B2 + (no(r) D)2

Ey\/Eng(no(r)U)?

For the distribution of energy levels of the thermal excitations with a given set of quantum
numbersy determined by the trap symmetry (in cylindrically symmetric trgpis the projection
M of the orbital angular momentum on the symmetry axis) we will use the statistical Wigner-
Dyson [125-127] approach which assumes ergodic behavior of the excitations. Then, the quantum
spectrum of the thermal excitations is random and the sum in Eq.(5.7.2) can be replaced by the in-
tegralde dEy Y 55 9,9y Ry in which g, (E,) is the density of states for the excitations with a
given sety, andRW the level correlation functlon In non-spherical harmonic traps, > 1 and,
hence,R,,, ~ 1. Then, puttingV, — N, = E,(dN, /dE,) and writing(E,, — E, + E, +i0) * as the
integral over time [ “dtexp{i(E, — E, + E,+i0)t/h}, from Egs. (5.7.2), (5.7.4) we obtain:

(5.7.6)
E}U (E, +i0)t )
L= on2 ], ZRGZ / gy dE, / dtexpzih / Erd®r'®,,(r)®;. () K, (r, ', t)
The quantummechanical correlation function

617 K Z/gydE efi BB L 06 )70,

(5.7.5) F,(r)=

and, similarly to the transformation of Eq.(5.4.14) to (5.4.15), can be written as

30 301"
(-78) ng (r,) /5(rll—r)5(rp(t|rlljp)—r/)é(Ey—H(P,r"))?Zicfii)z

where again the classical Bogolyubov Hamiltonféfp, r) is given by Eq.(5.4.9), and,(t|r,p) is the
coordinate of the classical trajectory with initial momentprand coordinate. Then, Eq.(5.7.6) is
reduced to the form

(5.7.9)T,= h2Hl / VdE / dt exp <z—>/<I>,,7(r)CD’;V(rC|(t|r,p))5(E7—H(p,r))%.

We first consider temperaturé&s>> u, where the main contribution to the integral in Eq.(5.7.9)
is provided by the thermal excitations with energies < . In this case the use of the statistical
approach in non-spherical traps is justified by the fact that, as shown in [57, 111], the motion of
corresponding classical Bogolyubov-type quasiparticles is strongly chaotic at energies ofi.order
The characteristic values pfandt in Eq.(5.7.9) are of ordefmn,(r)U)/? andh/E,, respectively.
For the lowest excitationgq, ~ Aw) the characteristic values pfin Eq.(5.7.9) are of ordempy)'/?,
and the result of integration can be represented in the form

(5.7.10) r, = Auf;(nomag’)lm

whereA, is a numerical coefficient which depends on the form of the wavefunction of the low-energy
excitationv. In contrast to the case @&f, > hw, the calculation of4, requires a full knowledge of
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FIGURE 5.7.1. The damping rate, versusT for the JILA trapping geometry. The
solid (dashed) curve and boxes (triangles) correspond to our calculation and the exper-
imental data [50] for the excitations withf = 2 (M = 0), respectively.

classical trajectories of (stochastic) motion of Bogolyubov-type quasiparticles in the spatially inho-
mogeneous Bose-condensed gas. In this respect the damping of the lowest excitations has a stron
non-local character and, hence, can not be found in any type of a local density approximation. Th
same statement holds for the resonant part of the shifts of the lowest excitations.

The criterion of the collisionless regime for the excitations with energigs- ;. assumes that
their damping timé" ;' is much larger than the oscillation period in the tap and, hence, the mean
free path greatly exceeds the size of the condensate. From Eq.(5.7.10) We~itii/R) (noma®)/?
and obtain the collisionless criterion

(5.7.11) (T/hw) (nema®)'/? < 1.

Due to collective character of the excitations the criterion (5.7.11) is quite different from the Knudsen
criterion in ordinary thermal samples.

Remarkably, both Eq.(5.7.11) and the assumption of stochastic behavior of thermal excitation
with energies of order are well satisfied in the conditions of the JILA [50] and MIT [51] experi-
ments, where the temperature dependent damping of the lowest quadrupole excitations in cylindrical
symmetric traps has been measured at temperatures significantly larger. tidoe JILA experi-
ment [50], where the ratio of the axial to radial frequenity: w,/w, = /8, concerns the damping
of two quadrupole excitationst/ = 2, E, = v/2w,, andM = 0, E, = 1.8w,. Our numerical calcu-
lation of Eq.(5.7.9), with¥V,, from [56], givesA, ~ 7for M = 2andA, ~ 5for M = 0. This leads
to the damping rat€, (7") which is in agreement with the experimental data [50] (see Fig. 5.7.1).

In the MIT experiment [51], whergg = 0.08, the damping rate has been measured for the
guadrupole excitation witd/ = 0, E, = 1.58w.. In this case we obtaid, =~ 10. The corre-
sponding damping ratg,(7") (5.7.10) monotonously increases withand for the conditions of the
MIT experiment [51] ranges from s™! atT ~ 200 nK to 18 st atT =~ 800 nK. These results
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somewhat overestimate the damping rate compared to the experimental data. In fact, the exact match
between the presented theory and the measured values for the damping rates can not be expected.
The reason is that the in the high temperature part of experirfiept (1), which can be compared

with our calculations, the Ihs of Eq.(5.7.11) is of order one. This means that the measurements were
performed for the intermediate range of densities and temperatures, which corresponds to a crossover
between the collisionless and hydrodynamic regimes. In the latter case the inequality opposite to
(5.7.11) is satisfied, and the damping rates are expected to be smaller (see, e.g. [102]).

Importantly, under the condition (5.7.11) the damping ateof the low-energy excitations is
much larger than the damping rdfe of the oscillations of the thermal cloud. This phenomenon
was observed at JILA [50]. One can easily find thatfos> 1 the damping raté&'; ~ novr, where
n ~ (mT/27h?)%/? is the characteristic density of the thermal cloud= 87a? the elastic cross
section, andr ~ /T /m the thermal velocity. Accordingly, the ratit /T, is just of order the Ihs of
Eq.(5.7.11).

In spherically symmetric traps at any excitation energies one has a complete separation of vari-
ables, which means that the classical motion of Bogolyubov-type quasiparticles is regular. The ex-
citations are characterized by the orbital angular momeritamd its projection}/, and for given
[, M the level spa(:ing;1 ~ hw can greatly exceed the interactions provided by the non-Bogolyubov
Hamiltonian terms proportional t6’3 and¥"*. In such a situation the discrete structure of the energy
spectrum of thermal excitations becomes important, and one can get nonlinear resonances instead of
damping. On the other hand, stochastization of motion of thermal excitations can be provided by their
interaction with each other or with the heat bath. In this case the dampinD,(&t&.10) follows di-
rectly from Eq.(5.7.6) by using the Dyson relation for the level correlation function [27],(~ 1)
and ., from the WKB analysis of Eq.(2.3.5).

For T'< u the picture of damping of low-energy excitations changes, dipogill be determined
by the contribution of thermal excitations with energies-T'. In this case, the lower is the rafity ;1
the more questionable is the assumption of ergodic behavior of the thermal excitations. But, even if
the stochastization is present,7asignificantly lower than: the temperature dependent damping of
the lowest excitations will be rather small. For cylindrically symmetric traps from Egs. (5.7.6), (5.7.9)
one can find’, ~ (E,/h)(T/u)*/?(noma®)"/>.

5.8. Concluding remarks

In conclusion we have developed a finite-temperature perturbation theory (beyond the mean field)
for a spatially homogeneous Bose-condensed gas and calculated temperature-dependent energy shifts
and damping rates for Bogolyubov excitations of any energy. The theory is generalized for the case
of excitations in a spatially inhomogeneous (trapped) Bose-condensed gas and used for calculating
the energy shifts and damping rates of low-energy quasiclassical excitations. We also analyzed the
frequency shifts and damping of axially propagating sound waves in cylindrical Bose condensates.
For the lowest elementary excitations we used our theory to calculate the damping rates. Our results
are in excellent agreement with the data of the JILA experiment [50] for the lowest quadrupole exci-
tations in a cylindrical trap and reasonably well explain the MIT experiment [51]. In the latter case
the generalization of the presented theory in the hydrodynamics domain remains to be developed (see
e.g. [102] and [128, 129] for the latest developments).

There is still a question of what is the nature of temperature-dependent energy shifts on approach-
ing 7. and how to explain the JILA [50] and MIT [51] experiments where these shifts have been
measured for the lowest quadrupole excitations. Among other approaches [130, 131] we would es-
pecially mention the recent contribution [132], where the shifts where studied in an effectively local
approximation. Although the results of the calculation seem to fit the experiment, we would like to
emphasize that for the lowest excitations the nonlocal character of related energy shifts and damping
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rates should manifest itself in any scheme of calculations and purely local calculations can not give
full account for the experimental results.



60

5. FINITE TEMPERATURE PERTURBATION THEORY FOR A BOSE-CONDENSED GAS



CHAPTER 6

Dissipative dynamics of a vortex state in a trapped Bose-condensed gas.

We discuss dissipative dynamics of a vortex state in a trapped Bose-condensed gas at finite te
perature and draw a scenario of decay of this state in a static trap. The interaction of the vortex
with the thermal cloud transfers energy from the vortex to the cloud and induces the motion of the
vortex core to the border of the condensate. Once the vortex reaches the border, it immediately dt
cays through the creation of excitations. We calculate the characteristic life-time of a vortex state anc
address the question of how the dissipative dynamics of vortices can be studied experimentally.

The recent successful experiments on Bose-Einstein condensation (BEC) in trapped clouds
alkali atoms [3-5] have stimulated a great interest in the field of ultra-cold gases [96]. One of the
goals of ongoing studies is to investigate the nature of a superfluid phase transition in ultra-col
gases and to make a link to more complicated quantum systems, such as superfluid helium. (
particular interest is the relation between Bose-Einstein condensation and superfluidity. Howeve
being the most spectacular manifestation of the phase transitibteirsuperfluidity has not yet been
observed in trapped gases. A promising way of studying superfluidity in trapped gases is the creatic
of quantum vortices, as quantization of circulation and the related phenomenon of persistent curren
are the most striking properties of superfluids.

A widely discussed option of creating vortices in trapped gases assumes the rotation of a sligt
asymmetry of a cylindrical trap after achieving BEC, or cooling down the gas sample below the Bose
condensation temperature in an already rotating trap [133,134]. Another possibility is a rapid quenc
of a gas sample near the critical temperature, which should lead to creation of vortices even in a no
rotating trap [135]. It is worth mentioning the ideas to create the vortex state in a Bose-condensed g:
by optical means [136, 137], and the idea to form vortex rings in the regime of developed turbulenc:
[138]. The spatial size of the vortex core in the Thomas-Fermi regime is too small to be observed
and for visualizing the vortex state it is suggested to switch off the trap and let the cloud ballistically
expand. Then the size of the vortex core will be magnified approximately by the same factor as th
size of the expanding condensate [139].

Similarly to the recently studied kink-wise condensates [136, 140, 141], vortices are the example
of macroscopically excited Bose-condensed states. In a non-rotating trap the vortex state has a higt
energy than the ground-state Bose condensate, i.e. the vortex is thermodynamically unstable [14
144]. On the other hand, a quantum vortex with the lowest possible circulation (the vortex “charge’
equal tol), is dynamically stable (small perturbations do not develop exponentially with time; see
[139, 145] and refs. therein). Therefore, the vortex state can only decay in the presence of dissipatiy
processes.

In this Letter we discuss dissipative dynamics of a vortex state in a trapped Bose-condensed gas
finite temperatures and show how the interaction of the vortex with the thermal cloud leads to deca
of the vortex state in a static trap. According to our scenario, the scattering of thermal excitation:
by a vortex provides the energy transfer from the vortex to the thermal cloud and induces motior
of the vortex core to the border of the condensate, where the vortex decays by creating elementa
excitations. We calculate the characteristic life-time of the vortex state and discuss how the dissipati\
dynamics of vortices can be studied experimentally.
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We first briefly outline the main features of vortex behavior in a superfluid, known from studies
of liquid helium. The motion of a vortex in a superfluid of density satisfies the Magnus law
(see [146—148] and refs therein):

(601) ps(VL — VS) x K =F.

Herevy, is the velocity of the vortex line, ands the velocity of superfluid at the vortex line. The
vectork is parallel to the vortex line and is equal to the circulation carried by the vortex. The force
F acting on the vortex originates from the mutual friction between the normal component and the
moving vortex line, and is usually small. Assuming the absence of frickoa ()), the vortex moves
together with the superfluid component, (= vg). In the presence of a vortex at the poigtthe
superfluid velocitys(r) satisfies the equations

(6.0.2) rotvg = 2rkd(r —ro); divwg = 0

and is related to the phaseof the condensate wave-functionas= V ¢. This leads to quantization
of the circulation:x = Zh/m [59], whereZ is an integer (the charge of the vortex) ands the mass
of the condensate particle. Below we will consider vortex states fith 1, which are dynamically
stable ([139, 145] and refs. therein).

Egs.(6.0.2) are similar to the equations of the magnetostatic problem, with the magnetic field
replaced by the velocitys and the electric current replaced gy The velocity field around an
infinitely long straight vortex line is analogous to the magnetic field of a straight current:

(6.0.3) vs(r) = [k x r]/r2.

The vortex itself can experience small oscillations of its filament, characterized by the dispersion law
lw(k)| = kk?In(1/ak)/2 [31], wherek is the wave vector of the oscillations, andhe radius of the

vortex core. In a weakly interacting Bose-condensed gas the core radius is of order the healing length
a = (h?/mpu)*/?, wherey is the chemical potential.

We will see that the dissipative dynamics of a vortex state is insensitive to the details of the density
distribution in a gas. The spatial size of the Thomas-Fermi condensate trapped in a harmonic potential
of frequencyw is R = (2u/mw?)'/2. Therefore, for finding the superfluid velocity in this case,
we may consider a vortex in a spatially homogeneous condensate in a cylindrical vessel oRradius
with the vortex line parallel to the axis of the cylinder. For the vortex line at distanfrem the axis,
the velocity field can be found by using the “reflection” method [146]. In a non-rotating trap, in order
to compensate the normal component of the velocity field (6.0.3) everywhere on the surface of the
cylinder, we introduce a fictious vortex with opposite circulation on the other side of the vessel wall,
i.e. at distancd?/x, from the cylinder axis. At the position of the vortex the “reflection” induces the
velocity

[FI, X Xo]

R2 _ 332.

As vg =~ vy, the vortex line will slowly drift around the axis of the trap.The characteristic time for
the formation of the velocity field (6.0.4) is; ~ R/cs, Wherec, = /u/m is the velocity of sound.

Sufficiently far from the border of the Thomas-Fermi condensate, i.e. outside the spatial region where
R — r¢ < R, the drift period isry, ~ zq/vs ~ R?/k and greatly exceeds the timg :

TR R

Tdr CsTdr
This means that we can neglect retardation effects and, in particular, the emission of phonons by the
moving vortex. In other words, the “cyclotron” radiation is prohibited, since the waveleggthof
sound which would be emitted exceeds the gizef the condensate.
According to the above mentioned magnetostatic analogy, in a non-rotating trap the potential
energy of the system (vortex plus its reflection) can be thought as the energy of two counter flowing

(6.0.4) Vg =

a
~ =<1



6. DISSIPATIVE DYNAMICS OF A VORTEX STATE IN A TRAPPED BOSE-CONDENSED GAS. 63

currents. Since the currents attract each other, the energy is negative and decreases with displac
the vortex core towards the wall. In other words, it is energetically favorable for the vortex to move
to the border of the vessel. Near the border the velocity of the vortex exceeds the Landau critice
velocity, and in a homogeneous superfluid the vortex decays through the creation of phonons [14€
In a trapped gas the condensate density strongly decreases near the border, and the vortex can de
by emitting both collective and single-particle excitations. The motion of the vortex towards the
wall requires the presence of dissipation, as in the frictionless approach the velocity of the vortex cor
coincides with the velocity (6.0.4) which does not contain a radial component. Thus, just the presenc
of dissipative processes provides a decay of the vortex state (see [143] and related discussion [141]
the stability of a kink state).

The dissipation originates from the scattering of elementary excitations by the vortex and is relate
to the friction forceF in Eq.(6.0.1), which is nothing else than the momentum transferred from the
excitations to the vortex per unit time. This force can be decomposed into longitudinal and transvers
components:

(6.0.5) F=—-Du—D'uxk/k,

whereu = v, — v, Vv, is the velocity of the normal component, afg D’ are longitudinal and
transverse friction coefficients, respectively. In a statictrapv;,, as the normal component is at rest
(v, = 0). The friction force has been investigated in relation to the attenuation of the second sound i
superfluid*He, where the the transverse component is most important [149-151] (see also [147] fo
review). For a straight infinite vortex line (parallel to thexis), a general expression for the friction
force in a homogeneous superfluid is obtained in terms of the scattering amplitude) [151]:

on ’ 5(Ek — Ekl)
=g -0

3k 3K
ey~ 4%l

Herep, is the local mass density of the normal componknk, are the wave vectors of the incident
and scattered excitations(E;) = (exp(Ey/T) — 1)~'are the Bose occupation numbers for the
excitations,E}, is the excitation energy, arid the gas temperature. Comparing the second terms of
Egs. (6.0.5) and (6.0.6), one immediately arrives at the universal expression for the transverse frictic
coefficient: D’ = kp,,, assuming that the first term of Eq.(6.0.6) does not contribufe’ {447, 151].

We now turn to our analysis of the dissipative dynamics of the vortex state in a non-rotating trap
related to the motion of the vortex core (line) to the border of the condensate. This motion occurs o
top of small oscillations of the vortex filament and a slow drift (6.0.4) of the vortex core. The radial
component of the velocity of the vortex core is determined by the longitudinal friction coeffiBient
For finding these quantities in dilute Bose-condensed gases, the analysis of [147,149-151] can or
be used at very low temperaturés & ), where the number of thermal excitations is very small
and, hence, the longitudinal friction force is extremely weak.

The situation is drastically different in the temperature rafige i, which is the most interesting
for trapped Bose-condensed gases. We will consider the Timit> 4 and first analyze how the
vortex scatters excitations with energi€s = n. These excitations are single particles, and their De
Broglie wave length is much smaller than the spatial $tzef the condensate. The most important
is the interaction of the excitations with the vortex at distances from the vortex limea < R.
Therefore, the corresponding friction force in a trapped condensate can be found in the local densi
approximation: We may use Eq.(6.0.6), derived for a homogeneous superfluid, and then replace tl
condensate density, by the Thomas-Fermi density profile of the trapped condensate.

The Hamiltonian of the single-patrticle excitationsh?d?/2m + 2ny(r)g — p, where the second
term originates from the mean-filed interparticle interaction, witfr) is the density of the vortex

(6.0.6) | f (K, K)?



64 6. DISSIPATIVE DYNAMICS OF A VORTEX STATE IN A TRAPPED BOSE-CONDENSED GAS.

state,g = 4nh%a,./m, a,. is the scattering length, and= ny(00)g (no(oc) = ng). Forr — oo we
haveH (k,r) = h*k?/2m + u. Hence, the interaction Hamiltonian responsible for the scattering of
excitations from the vortex can be written as

Hin = 2[no(r)g — il -
For the vortex charg€ = 1, at distances < a the interaction Hamiltoniad;,,, ~ —2u. Forr > a
we haveny(r) ~ (u — h*/2mr?)/g, andH;,, =~ —h*/mr®. The scattering amplitude in Eq.(6.0.6)
can be written ag'(k, k') = 27d(k, — k) f(k, k"), where the 2D scattering amplitude in the Born
approximation is given by

(6.0.7) fk,k') = / d*r Hipy (r)e'.

Hereq = k — k’ is the momentum transferred from the excitation to the vortex. As the amplftude
only depends oiqg|, the first term in Eq.(6.0.6) is purely longitudinal.

For gqa < 1, which corresponds to small angle scattering, from Eq.(6.0.7) we olftain
(h?/m)log(1/qa) . Forga > 1 we find|f(q)|> ~ (h?/m)?sin®(qa — w/4)/(aq)?®. Using these results
in Eq.(6.0.6), we see that the main contribution to the integral over momenta comes from efgrgies
satisfying the inequalityy < Ej, < T. A direct calculation of the longitudinal friction coefficient
gives

(6.0.8) D = kpn(T)(nog/T)?,
where the density of the normal component
1 [on , & m>/213/?

= —— ~ 0.1
Pn="73 ] 9E," (2rh)? [

A collective character of excitations with energies ~ p can influence the numerical coefficient
in Eg.(6.0.8), and for this reason we did not present the exact value of this coefficient in the single-
particle approximation. In cylindrical traps the behavior of excitations with enerfgies . (and
somewhat larger) is stochastic [57, 111], and hence the discrete structure of the spectrum is not im-
portant (see Chapter 5).

The coefficientD « T', and Eq. (6.0.8) can be rewritten Bsx Anyé, where the quantity

(6.0.9) € = (noal,)"*(T/p) < 1

is a small parameter of the finite-temperature perturbation thedfy>at ;. The inequalityt < 1
remains valid even near the BEC transition temperature, except the region of critical fluctuations (see
Chapter 5).

Relying on Eq.(6.0.8) for the longitudinal friction force, we consider the motion of the vortex line
to the border of the condensate in a static trap, where the normal component is at rest. Assuming a
small friction in Egs.(6.0.1) and (6.0.5), for finding a friction-induced small quanjjty vs we only
retain the terms linear in the dissipation coefficiebtand D’. Then we obtain the equation

ps|(VL —Vs) X k] = —Dvg — D'[vs X K|/k

which has a solution of the form, = v\"# + v\”[k x r]/kr. For the radial ¢{(”) and tangential

(v'®)) components of the velocity of the vortex line we find
(6.0.10) U(LT) = Duvg/psk; U(L¢) =wvs(l — D'/psk).

>From EQs.(6.0.10) it is clear that the radial motion of the vortex is governed by the value of the
longitudinal friction coefficient, whereas the transverse friction (lordanskii force) simply slows down
the drift velocity (6.0.4) of the vortex. The radial velociztz({) < wg, Which is guaranteed by the
inequality (6.0.9).
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The time dependence of the distanggof the vortex line from the axis of a cylindrical trap
follows from the equation of radial motion for the vortek;,/dt = v\"”. With Eq.(6.0.10) for,\”
and Eq.(6.0.4) fovg, for the characteristic time of motion of the vortex from the center of the trap to
the border we obtain

(6.0.11) "~ / © droml = e (0g) !
e - hzopn T ’

wherezr,,;,, is the initial displacement of the vortex line from the axis of the trap. The vortex velocity
is the smallest near the axis, and the main contribution to the integral in Eq.(6.0.11) comes fron
distances;, < R. Therefore, we can neglecg in the numerator of the integrand and put= ps(0),

no = ne(0). Then, Eq.(6.0.11) yields

mR2ps nog 1/2
6.0.12 ~ (—) (R /Z ).
(6.0.12) T () R )
This result is only logarithmically sensitive to the exact value,gf,, and we can put,,.;,, ~ a.
Once the vortex reaches the border of the condensate, it immediately decays. Hence, the time
can be regarded as a characteristic life-time of the vortex state in a static trap. Interestingly, the dec:
rate can be written as

E T
(6.0.13) T~ ?O(n()maic)lp <;) ,
whereny,, is the maximum condensate density, diid~ h?/mR? is the energy of excitation corre-
sponding to the motion of the vortex core with respect to the rest of the condensate (excitation witl
negative energy, found in the recent calculations [142, 144,145,152, 153]). EQq.(6.0.13) is similar t
the damping rate of low-energy excitations of a trapped condensate, found beyond the mean-fie
approach [96,97]. Both rates are proportional to the small paraig€sed.9).

For Rb and Na condensates at densitigs- 10'*crm ™2 and temperature)0 < 7' < 500 nK, in
the static traps with frequenci@és < w < 100 Hz the life-timer of the vortex state ranges frobnl
to 10 s. This range of times is relevant for experimental studies of the dissipative vortex dynamics.

A proposed way of identifying the presence of a vortex state in a trapped Bose-condensed gs
assumes switching off the trap and observing a ballistically expanding gas sample [139]. As follow:
from the numerical simulations [139], at zero temperature the expansion of a condensate with a vorte
occurs along the lines of the scaling theory [44,46]. The shape of the Bose-condensed state is nea
preserved and its spatial size is increasing. Due to expansion the density of the condensate decrea
and the size of the vortex core increases to match the instantaneous value of the healing length. Ti
should allow one to detect the vortex through the observation of a hole in the density profile of the
condensate.

It is important to emphasize that at temperatdfes> i the thermal cloud will expand with the
thermal velocityv ~ /T /m which is much larger than the expansion velocity of the condensate
(the latter is of order the sound velocity). Therefore, after a short tim®/v the thermal component
flies away, and the dissipation-induced motion of the vortex core ceases. Accordingly, the expansic
of the Bose-condensed state will be essentially the same as that at zero temperature. This means
the relative displacement of the vortex core from the trap center practically remains the same as befo
switching off the trap. Therefore, the dissipative motion of the vortex towards the border in the initial
static trap can be studied by switching off the trap at different times and visualizing the position of
the vortex core in a ballistically expanding condensate.

In conclusion, we have developed a theory of dissipative dynamics of a vortex state in a trappe
Bose-condensed gas at finite temperatures and calculated the decay time of the vortex with char
equal tol in a static trap. Our theory can be further developed to analyze the motion of vortices in
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rotating traps and, in particular, to calculate a characteristic time of the formation of the vortex state
in a trap rotating with supercritical frequency.
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Summary

In this Thesis we develop a theory of dynamical and kinetic properties of trapped Bose conden
sates.

In Chapter 2 we review theoretical grounds of the physics of Bose-condensed gases. We discu
such concepts as Bose-Einstein phase transition, macroscopic description of an interacting Bos
condensed gas, elementary excitations and their description in terms of Bogolyubov-de Gennes eqt
tions, and vortex states in superfluids.

Then, in Chapter 3 we inspect the interparticle interaction in ultra-cold gases. First, we turn to the
discussion of three-body recombination of ultra-cold atoms to a weakly belsgel. In this case
characterized by large and positive scattering lengtbr pair interaction, in the zero temperature
limit we obtain a universal relation, independent of the detailed shape of the interaction potential, fo
the (event) rate constant of three-body recombinatien:= 3.9ha* /m, wherem is the atom mass.

Then, we develop the idea of manipulating the value and the sign of the scattering length. Since tr
scattering length directly affects the mean field interaction between the atoms, this offers a possibilit
to investigate macroscopic quantum phenomena associated with BEC by observing the evolution of
Bose condensed gas in response to light. The physical picture of the influence of the light field on th
elastic interaction between atoms is the following: A pair of atoms absorbs a photon and undergoe
a virtual transition to an electronically excited quasimolecular state. Then it reemits the photon an
returns to the initial electronic state at the same kinetic energy. As the interaction between atoms |
the excited state is much stronger than in the ground state, already at moderate light intensities tl
scattering amplitude can be significantly changed.

In Chapter 4 we discuss the dynamics of two trapped interacting Bose-Einstein condensates in tt
absence of thermal cloud. The main goal of our work is to study the dynamics of Bose condensate
and analyze how the system can acquire statistical properties and reach a new equilibrium state. \
identify two regimes for the evolution: a regime of slow periodic oscillations and a stochastic regime
of strong non-linear mixing leading to the damping of the relative motion of the condensates. We
compare our predictions with an experiment recently performed at JILA, and argue that the occurrenc
of the stochastic regime provides a route to achieving a new thermal equilibrium in the system.

In Chapter 5 we develop a finite temperature perturbation theory (beyond the mean field) for :
Bose-condensed gas and calculate temperature-dependent damping rates and energy shifts for
golyubov excitations of any energy. The theory is generalized for the case of excitations in a spatiall
inhomogeneous (trapped) Bose-condensed gas, where we emphasize the principal importance of
homogeneity of the condensate density profile and develop the method of calculating the self-enerc
functions. The use of the theory is demonstrated by calculating the damping rates and energy shifts
low-energy excitations, i.e. the excitations with energies much smaller than the mean field interactio
between particles. The damping is provided by the interaction of these excitations with the therme
excitations. We emphasize the key role of stochastization in the behavior of the thermal excitation
for damping in non-spherical traps. The damping rates of the lowest excitations, following from our
theory, are in fair agreement with the data of recent JILA and MIT experiments. For the quasiclassice
excitations the boundary region of the condensate plays a crucial role, and the result for the dampir
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rates and energy shifts is drastically different from that in spatially homogeneous gases. We also an-
alyze the frequency shifts and damping of sound waves in cylindrical Bose condensates and discuss
the role of damping in the recent MIT experiment on the sound propagation.

Finally, in Chapter 6, we turn to dynamics of macroscopically excited Bose condensate states. In
particular, we discuss dissipative dynamics of a vortex state in a trapped Bose-condensed gas at finite
temperature and draw a scenario of decay of this state in a static trap. The interaction of the vortex
with the thermal cloud transfers energy from the vortex to the cloud and induces the motion of the
vortex core to the border of the condensate. Once the vortex reaches the border, it decays through
the creation of phonons. We calculate the characteristic life-time of the vortex state and address the
question of how the dissipative dynamics of vortices can be studied experimentally.



Samenvatting

In dit proefschrift wordt een theorie over de dynamische en kinetische eigenschapen van ee
opgesloten Bose-condensaat ontwikkeld.

In hoofdstuk 2 geven we een overzicht over de theoretische basis van de natuurkunde van Bos
gecondenseerde gassen. We bespreken concepten als de Bose- Einstein- faseovergang (BEC)
makroscopische beschrijving van een Bose-gecondenseerd gas, elementaire excitaties en hun besc
jving in termen van Bogolyubov-de-Gennes-vergelijkingen en vortex-toestanden in superfluida.

Vervolgens, in hoofdstuk 3 wordt de wisselwerking tussen deeltjes in ultrakoude gassen beschous
Eerst richten we de discussie op de drie-deeltjes-recombinatie van ultrakoude atomen naar een zw
gebondens-niveau. In dit geval, dat wordt gekarakteriseerd door een grote en positieve verstrooi-
ingslengten voor paarwisselwerking, krijgen we, in de limiet dat de temperatuur naar nul gaat, een
universele relatie voor de drie-deeltjes- (gebeurtenis-) recombinatieconstante, die niet afhankelijk |
van de precieze vorm van de interactiepotentiagk = 3.9%a* /m, metm de atoommassa.

Vervolgens wordt het idee ontwikkeld om de waarde en het teken van de verstrooiingslengte t
manipuleren. Omdat de verstrooiingslengte direct de gemiddeld-veld-interactie tussen de atome
beinvloedt, biedt dit de mogelijkheid om macroscopische quantum-fenomenen te onderzoeken d
geassocieerd zijn aan BEC, door van een Bose-gecondenseerd gas de reactie op licht te observe
Het natuurkundige beeld van de invloed van het lichtveld op de elastische interactie tussen atome
is het volgende: Een atomenpaar absorbeert een foton en ondergaat een virtuele overgang naar
electronisch aangeslagen quasimolekulaire toestand. Vervolgens zendt het het foton weer uit en ke
terug in de oorspronkelijke electronische toestand met de zelfde kinetische energie. Omdat de inte
actie tussen atomen in aangeslagen toestand veel sterker is dan tussen grondtoestandsatomen, k:
verstrooiingsamplitude al bij een matige lichtintensiteit significant veranderd worden.

In hoofdstuk 4 bespreken we de dynamica van twee opgesloten wisselwerkende Bose-Einstei
condensaten in de afwezigheid van een thermische wolk. Het hoofddoel van ons werk is de dynami
te bestuderen van Bose-condensaten en te analyseren hoe het systeem statistische eigenschappe
verkrijgen en een nieuwe evenwichtstoestand bereikt. We onderscheiden twee ontwikkelingsregime
een regime van langzame periodische oscillaties en een stochastisch regime van sterke niet-linez
menging dat tot het dempen van de relatieve beweging van de condensaten leidt. We vergelijke
onze voorspellingen met een experiment dat recentelijk in JILA is uitgevoerd en argumenteren dat h
voorkomen van het stochastische regime een route biedt om in het systeem tot een nieuw thermis
evenwicht te komen.

In hoofdstuk 5 ontwikkelen we een eindige- temperatuur-storingstheorie (voorbij de gemiddeld-
veldbenadering) voor een Bose-gecondenseerd gas, en berekenen temperatuur-afhankelijke del
ingssnelheden en energieverschuivingen voor Bogolyubov-excitaties van willekeurige energie. D
theorie wordt veralgemeniseerd voor het geval van excitaties in een ruimtelijk inhomogeen (gevar
gen) Bose-gecondenseerd gas, waar we benadrukken hoe belangrijk inhomogeniteiten in het dichth
dsprofiel van het condensaat zijn, en ontwikkelen de methode om zelfenergiefunkties uit te rekene
Het nut van de theorie wordt gedemonstreerd door de dempingssnelheid en de energieverschuivi
van laag-energetische excitaties uit te rekenen. Dit zijn excitaties met energieén die veel lager zijn dz
de gemiddeld-veld-interactie van deze excitaties. De demping wordt veroorzaakt door de interacti
van deze excitaties met thermische excitaties. We benadrukken de sleutelrol van de stochastisering
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het gedrag van de thermische excitaties voor demping in niet-bolvormige vallen. De dempingssnelhe-
den van de laagste excitaties volgens onze theorie, zijn in redelijke overeenstemming met recente data
van JILA en MIT experimenten. In het geval van quasiklassieke excitaties, speelt het randgebied van
het condensaat een cruciale rol, en het resultaat voor de dempingssnelheden verschilt drastisch van
dat in ruimtelijk homogene gassen. We analyseren ook de frequentieverschuivingen en de demping
van geluidsgolven in cylindrische Bosecondensaten en bespreken de rol van demping in het recente
MIT experiment aan geluidsvoorplanting in een Bose-condensaat.

Tenslotte, in hoofstuk 6, wordt de dynamica van macroscopisch aangeslagen Bosecondensaten
behandeld. In het bijzonder bespreken we dissipatieve dynamica van een vortextoestand in een opges-
loten Bose-gecondenseerd gas bij eindige temperatuur en schetsen een vervalsscenario van deze toe-
stand in een statische val. De interactie van de vortex met de thermische wolk hevelt energie over van
de vortex naar de wolk en induceert de beweging van de vortexkern naar de rand van het condensaat.
Wanneer de vortex de rand heeft bereikt, vervalt het door de opwekking van fononen. We bereke-
nen de karakteristieke levensduur van de vortextoestand en behandelen de vraag hoe de dissipatieve
dynamica van vortices het beste experimenteel kan worden bestudeerd.



