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1 General Introduction

In this introduction we give a brief overview of the history of complex liquids� We start

with familiar substances and proceed in small steps to more complicated systems� to end

�nally with the subject of this thesis� the cubatic phase in complex liquids�

��� Gas� Liquid and Solid

Most of us never wonder about common things such as sitting on chairs� drinking
beer or breathing air� Yet we can only sit on chairs because they are made from solid

materials as wood� drink beer because it is a liquid and breathe air because it is a gas�
It would be rather di�cult to breathe lumps of oxygen� to drink beer which� as a gas�
would escape from our glass or to attempt siting on a liquid chair�

Yet under special conditions these changes might actually happen� If one cools
oxygen to temperatures below ����oC it becomes liquid and below ���	oC it even
becomes solid� By heating beer most of it will evaporate� and although the chair� if
made from wood� will not melt� our glass might�

The existence of these three di
erent forms of a given substance is more commonly
known for water� If the temperature is below �oC it freezes to form solid ice� it is
liquid in the temperature range from � to ���oC and becomes a vapor above ���oC �
all measured at normal pressure� Because if one would check this on the top of a high
mountain� where the pressure is lower� these temperatures are a bit lower for boiling and
slightly higher for freezing�

These di
erent manifestations of the same material are referred to as phases� Many
materials are able to exhibit a gas� liquid and solid phase� although most of them�
in daily life� will only be found in one phase� By changing the temperature we can
in�uence the phase� for instance melting a solid� This change in appearance is what we
call a phase transition� The phase transitions we are interested in are reversible� which
means that if you change from a liquid to a solid� you can also do the reverse and go
back to the liquid again� This is not always possible� for instance if an egg is boiled 
long
enough� is becomes solid but cannot go back to its initial liquid�like state� The absence
of reversibility means that something else is changed in the process too� In contrast�
water can freeze to ice and melt back to water as many times we like�

The di
erent phases have also di
erent properties� There is of course the obvious
di
erence between a solid and liquid or gas� Whereas we can sit on anything solid 
as
long as it is strong enough�� we cannot do this with a liquid or gas� A gas can easily be
compressed by a pump while for liquids and solids this is very di�cult�

�



� � General Introduction

The property that we are after is that of the structure of a phase� in other words
how do we describe one of the three phases� In order to do so we need to describe
a substance in general� and more precisely what it is it made of� Greek philosophers
already wondered about this question and one of them� Democritus 
����BC�� thought
that each material was made from small particles which could not be divided anymore�
atoms� This speculative idea was in the �	th century used by Avogadro and others�
leading to periodic system of Mendelejev� which lists the di
erent atoms� These atoms
can be chemically bonded with each other to form larger particles or molecules� Any
pure substance consists of many identical molecules� The existence of atoms was� in the
begin of this century� con�rmed by the experiments of Perrin�

But already before this result� the assumption was used and led to the formulation
of the kinetic gas theory by Maxwell� This theory assumes that gas consists out of many
small identical particles which �y randomly through space and only bounce o
 the
container wall� Although these particles also collide among each other this is neglected
which� in the case of an dilute gas� is justi�ed� This apparent random movement of the
particles leads to a homogeneous distribution of particles over the available volume� A
gaseous phase is therefore characterized by the absence of any structure�

This is very similar to a liquid phase� Also a liquid phase is completely disordered�
but at a much higher density than a gas� In contrast with a gas� the collisions and
interactions between particles can no longer be neglected� Particles are still able to
move freely through the available volume� but as they hinder each other considerably it
takes a much longer time to travel from one side to the other side of the container� This
interaction also leads to some local order which might extend over a few times the size
of the particles� But since there is no long range order� also the liquid� although at a
much higher density� is a homogeneous phase�

Figure ���� A schematic drawing of the three di�erent phases in two dimensions�

from left to right a gas� liquid and solid�

Solids� however� are di
erent from gases and liquids in the sense they are not ho�
mogeneous at all� they are ordered� This was already suggested in the ��th century
by mineralogists� based on their discovery that the direction of all faces of a crystal�
like quartz� can be described by integer numbers� From this observation they concluded
that a crystal a three�dimensional periodic arrangement 
lattice� of identical particles
is� This was later� in the beginning of this century� con�rmed by X�ray experiments of
Friedrich and Knipping� and the theoretical work of Von Laue and Bragg� The parti�
cles in a crystal are not able to move freely anymore but can only vibrate about their
equilibrium lattice positions� which are correlated over large distances�



��� Gas� Liquid and Solid �

In �gure ��� these three di
erent phase are visualized in two dimensions� where we
used disks to denote the particles� The gas and liquid are disordered and di
er only in
density� the crystal is a nicely ordered structure�

Although the gas and liquid appear in only one form� for crystals there are many
di
erent regular arrangements of the particles� Carbon for instance is known in three
di
erent structures� diamond� graphite and more recently crystals of Bucky�balls� A
solid is however not always crystalline� Glass for instance is an example of a solid which
does not have any long�range order� These solids are known as an amorphous solids or
glasses�

So far we only discussed the structural di
erences between phases� but not for what
reason these phases exist� The major breakthrough was made by Van der Waals� By
assuming that particles at short�range repel each other and attract each other at long
distances he was able to explain the di
erence between a gas and a liquid� For low
temperatures the attractive forces keep particles together� but not too close due to the
repulsion� to form a liquid� On heating particles begin to move faster and the attraction
is not strong enough anymore to maintain particles together and they will �y apart to
form a gas�

The repulsion for these classical systems could be understood by the assumption of
hard spherical objects for the atoms and molecules� The explanation of the true nature of
this force� however� had to wait until the beginning of this century and the development
of quantum mechanics� which showed that the repulsion is a consequence of the Pauli
exclusion principle� The long range attractions� which now are known as Van der Waals
forces� are due to the presence of dipole�dipole interactions�

As di
erent molecules have di
erent strengths of interactions� materials will in gen�
eral have di
erent properties like the boiling temperature but the general scenario for
the gas�liquid transition remains the same�

By going to lower temperatures the rate at which particles move decreases and the
attractive forces become strong enough to keep particles close together� In fact the forces
become so strong that particles cannot escape from their neighbors anymore� what in a
liquid phase is still possible� and a solid is formed�

In order to explain these phenomena we used the presence of attracting forces� but
in �	�� Alder and Wainwright performed computer simulations on a system of hard
spheres ���� in which case particles do not attract each other at all� but only collide with
each other like billiard balls� Surprisingly these simulations showed that such a system
crystallizes as well� In other words a crystal can be formed by particles which only repel
each other�

More recently other interesting discoveries have been made with respect to the inter�
action between molecules� Computer simulations of C�� indicated that these particles
do have a gas and solid phase but might not have a liquid phase ����

Other simulations on a system of hard spheres showed that if the attraction becomes
very short�range there exist two solid phases having the same structure but di
erent
densities� which is analogous to the gas and liquid phase ����
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��� Liquid Crystals

In the previous section particles or molecules are described as spherical objects� But
in general molecules are not spherical at all� but can have various shapes� An oxygen
molecule in air for instance� is made from two identical oxygen atoms� and a water
molecule is formed by one oxygen and two hydrogen atoms� Although each atom in �rst
approximation is spherical� combinations of them are not� The larger molecules are the
more complex they can be in shape� There are �at or disk�like particles like clay or
benzene aggregates and rod�like particles such as cholesterol� These particles are sti
 in
the sense that their shape is more or less �xed� But there are also chain�like molecules�
as found in plastics� which do not have a speci�c shape� but are �exible and can form
coils�

This opens a much broader perspective with respect to the di
erent phases discussed
in the previous section� Particles now do not only have the possibility to order their
positions but also their orientations� Or combinations� phases in which particles are
ordered with respect to orientation but disordered as far as their positions are concerned�
Or phases for which the positions of the particles are ordered� but only in one dimension
and disordered in the other two dimensions� This is the �eld of liquid crystals� in which a
phase can have properties which remind us of a solid structure combined with properties
found for liquids�

Similar to the freezing of hard spheres� these new phases can also be formed in
absence of long�range attraction� In this thesis we will focus on these liquid crystals�
in which the particles can be described by hard particles� like billiard balls� but now
with other shapes� At �rst glance this seems an highly idealized version of real particles
and interactions� but there are experimental systems available in which only these hard
interactions are present� One such example is the the tobacco mosaic virus 
TMV��
which under the appropriate experimental conditions behave as a hard rod�like particle�
This particle is about ��� nm long and �� nm wide� but can be altered in aspect ratio
by end�to�end aggregation� to make longer particles� or by sonic fragmentation� to make
smaller particles�

Similar to spherical particles at low densities� also rod�like particles will have no
positional order in a dilute solution� And since particles are far away from each other they
can rotate freely and have no preferred direction� This homogeneous liquid phase with
no orientational order is known as the isotropic phase� and is schematically represented
in �gure ����

Figure ���� A schematic drawing of the three di�erent phases of rod�like particles�

from left to right the isotropic a nematic and a smectic phase�



��� Cubatics �

There are two ways in which we can now alter the phase of such a system� either
we change the pressure or we change the temperature� If we increase the pressure or
decrease the temperature the density� in such an isotropic phase for rod�like particles�
will increase and the interaction becomes stronger in the sense that particles hinder each
other more in their movement� If the density is high enough the rods will align and form
an ordered phase� On average all particles are pointing in the same direction and the
system is invariant under rotations about this direction� The positions of the centers
of mass� however are still homogeneously distributed over the available volume� Such
a phase in which there is only orientational and no positional order is called a nematic

phase� and more precisely a uniaxial nematic� where uniaxial is referring to the fact that
there is one preferred direction� This nematic phase illustrated in �gure ����

It was Onsager who in �	�	 showed that this isotropic�to�nematic phase transition
can be explained by assuming that the interaction between the particles is purely repul�
sive ����

As we continue to increase the pressure� the system becomes even denser� At �rst
the particles get more and more aligned� but it turns out that the nematic phase at
high enough density� also undergoes a phase transition� And this time the positions
of the particles become ordered as well� But instead of forming a three�dimensional
crystal� particles will arrange themselves in layers� In these layers the particles are still
distributed homogeneously� while the orientations are aligned and are perpendicular to
the layers� This phase� which schematically is depicted in �gure ���� is called the smectic�

A phase� in which particles are orientationally� and in one dimension positionally� ordered
and disordered in the other two dimensions�

This is still not the end of the story� because �nally the particles in the layers will also
order and form a three�dimensional crystal� So an apparently simple rod�like particle is
able to form four di
erent phases�

But there are many more phases possible� By changing the aspect ratio or going to
more complicated shapes we can form many other liquid crystalline phases� As the name
uniaxial nematic already implied there are also non�uniaxial nematics� This phase� also
called the biaxial phase� has more than one preferred direction� and can for instance
be found in mixtures of rod� and disk�like particles� Both rods and disks prefer to be
aligned with particles of the same species but do not like to point in the same direction
as particles of a di
erent species� This leads a phase with one preferred direction for
the rods and another perpendicular direction for the disks� Also di
erent smectic phases
exist� the direction of the orientations for instance can be tilted with respect to the layers
or be di
erent in successive layers�

��� Cubatics

Computer simulations have contributed to the understanding of the phase transitions
in liquid crystals� because they showed that many of these phases can be explained by
hard�core repulsion only�

In order to study disk�like particles Eppenga and Frenkel simulated in�nitely thin
platelets ���� These particles form a nematic phase but when aligned these particles will
not notice each other anymore� preventing other transitions to happen�
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Mulder and Frenkel used oblate ellipsoids ��� ��� which also formed an nematic phase�
As soon as these particles are aligned however� this system can be scaled along the
average direction of the particles and the system can be mapped upon a hard sphere
system� Also this system therefore does not show any other liquid crystalline phases�

D

L

Figure ���� A schematic drawing of a cut�sphere� with thickness L and diameter D�

Veerman and Frenkel ��� performed computer simulations of cut�spheres 
�gure �����
These particles are formed by removing everything which is further away from the equa�
torial plane than a distance �

�
L� By tuning the ratio of L and the diameter D these

particles can go from in�nitely thin to complete spheres�
For thin particles they found a isotropic�to�nematic� and nematic�to�columnar phase

transition� The latter is a formed by particles in columns� for which the columns are
ordered in a two�dimensional crystal and the particles inside a column behave as a one�
dimensional liquid� For high enough densities the system forms a solid� Thick particles
do not show a nematic phase� instead the isotropic phase freezes directly to a solid�

Figure ���� Snapshot of a cubatic phase for cut�spheres�

For an intermediate value of L�D � ���� Veerman and Frenkel unexpectedly discov�
ered a new phase� of which �gure ��� shows a snapshot� It turned out that this phase
did not have any positional order and therefore is a liquid� There is also no preferred
orientation of the particles� and therefore it is also not a normal nematic phase� But
order is clearly visible� The symmetry of the orientational order is cubic� Instead of one
preferred direction of the particles� there are now three di
erent directions� which are
perpendicular and have equal strength� It is in fact a triaxial nematic phase� because it
is a special form of the biaxial phase� Two perpendicular directions automatically de�ne



��� Cubatics 	

the third direction and they will in general have di
erent strengths� In this case however
they are identical� Analogous the the name nematic� Veerman and Frenkel named this
phase the cubatic phase and this phase is the subject of the present thesis�



2 Technical Introduction

In this chapter we introduce all standard concepts and techniques which are used in this

thesis� These are both theoretical and simulation techniques� We introduce the density

functional theory and the idea of bifurcation analysis� which despite its simplicity is a

powerful tool to study phase transitions� Further more we give a brief introduction in

the concept of computer simulation and a more speci�cally the NPT�ensemble�

��� Statistical Mechanics

If we have two masses interacting through gravitational forces we can still exactly
predict what is going to happen at any point in the future or calculate backwards to
any point in history� But adding one extra mass makes it impossible to solve the time
evolution of the new system� Although we know exactly how the masses interact with
each other and what the equations of motion are there is� in general� no way of telling
whether they will collide and if so at which instant in time or if they will eventually
�y apart �provided this is allowed by the total amount of energy present�� Only by
numerically solving the equations of motion for short successive intervals of time can
this problem be tackled�

It is therefore quite surprising that we can actually tell something about the behavior
of systems which have millions of particles all interacting with each other� This is the
theory of statistical mechanics� It connects the microscopic interactions of the parti�
cles� which determine the equations of motion� with the macroscopic properties of the
complete system�

The connection goes via the Helmholtz free energy F �N� V� T �� which depends on
the number of particles N � the volume V and the temperature T of the system� We
assume that the particles are identical� but the analysis can easily be extended to systems
which contain di�erent species of particles� Note that the free energy does not contain
any detailed information on the particles� That information determines the microscopic
state of the system� It consists of two parts� qN 	 fq�� q�� � � � � qNg the coordinates of
all N particles and pN 	 fp�� p�� � � � � pNg the conjugate momenta of the particles� The
precise form of these coordinates and momenta depends on the particles we want to
describe� For the simple system of point�particles these are only the usual positional
coordinates and linear momenta of the particles� If a particle has a 
nite size however�like
spheres and rigid rods� we need to include orientation and angular momentum� In case of
polymers and �exible rods we also need to describe the internal structure by including

�
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the internal degrees of freedom� The microscopic state of the system is collectively
denoted by 
 	 fqN � pNg�

The interaction between the particles is included via the Hamiltonian HN�q
N � pN� of

the system� which is identical to the total energy for the given state 
� It allows us in
principle to solve all equations of motion and therefore to predict how the microstate of
the system will evolve in the future� But as already mentioned� if that problem cannot
be solved for a relative simple system of three masses only interacting via gravity then
it is impossible to do this for millions of particles� A numerical method would also fail
given the large number of equations which have to be solved for each small step in time�

Macroscopic observables however are not determined by the exact motion of all parti�
cles at each point in time but are obtained from long time averages and are independent
of the initial state of the system� Statistical mechanics makes use of these notions by
taking a weighted average over all microstates� If we work in the canonical ensemble�
which means that we describe the macroscopic system by the number of particles N �
the volume V and the temperature T � the weight function which is used is called the
Boltzmann weight and is proportional to exp��HN�
��kBT �� where kB is the Boltz�
mann constant� Any observable A of the macroscopic system can now be obtained by
integrating over all microstates 


� A �	

R
d
A exp���HN�
��R
d
 exp���HN�
��

�����

where we used � 	 ��kBT � The quantity we are interested in� the Helmholtz free energy�
is directly related to the canonical partition function Z�N� V� T �� This is the integral
over all di�erent microstates of the particles

Z�N� V� T � 	
�

N �h�N

Z
d
 exp���HN�
�� �����

The factor ��N � is a consequence indistinguishability of the particles� The factor ��h�N

is needed to make the partition function dimensionless� This is done using h� which
according to quantum mechanics should be the Planck constant and has the dimension
of angular momentum� The actual value is� as far as classical systems are concerned�
not relevant� since all observables ����� are independent of h� The power of h which is
needed depends on the number of degrees of freedom which the particles of the system
have� If they have position and orientation this is h� per particle� For point�particles�
which do not have any orientation this is only h��

The Helmholtz free energy can now be obtained from the canonical partition function
by taking the logarithm

�F �N� V� T � 	 � log�Z�N� V� T �� �����

In simple systems we can split the Hamiltonian in a part containing the potential en�
ergy UN � which only depends on the coordinates of the particles� and a part containing
the kinetic energy TN � which only depends on the momenta



��� Statistical Mechanics ��

HN�q
N � pN� 	 UN �q

N� � TN�p
N� �����

Point�particles are described completely by their position �x� y� z� in a Cartesian refer�
ence frame� The generalized momenta are the usual linear momenta �px� py� pz�� hence
the kinetic energy of one of these particles is given by

T 	
p�x
�m

�
p�y
�m

�
p�z
�m

�����

Note that the integrals over the momenta can be performed analytically� This allows us
to write the partition function as

Z�N� V� T � 	
�

N �VN
T

Q�N� V� T � 	
�

N �VN
T

Z
dqN exp���UN�q

N�� �����

where we implicitly introduced the con
gurational integral Q�N� V� T � and where VT is
the thermal volume de
ned by

VT 	

s
h���

�����m�
�����

For particles with a 
nite size we need to include the orientation and angular momentum�
There are now � generalized coordinates needed q 	 ��r���� the � position coordinates �r
and in general three angles �� for instance the Euler angles� in order to describe the
orientation� The kinetic energy of the particles has to be extended with the rotational
kinetic energy

T rot 	 �

�
Ix	

�

x �
�

�
Iy	

�

y �
�

�
Iz	

�

z �����

where Ix� Iy and Iz are the principal moments of inertia and 	x� 	y and 	z are the
angular velocities of the particle around the appropriate axis� Also the integration over
these extra generalized momenta can be performed analytically� As a consequence the
thermal volume has to be extended to

VT 	

s
h����

�����m�IxIyIz
�����

In the simple case of an not interacting system �ideal gas�� the con
gurational inte�
gral ����� can be evaluated analytically� Since there is no interaction the energy UN�q

N�
is zero and we obtain

Z�N� V� T � 	
�

N �VT
����V �N ������

where each integral over the position coordinates gives a factor V � the volume� and each
integral over the Euler angles gives a contribution ���� In general however the integral
cannot be evaluated analytically and has to be estimated�
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Suppose that the potential energy of the system is pair�wise additive� Then we can
write the total potential energy as a sum of all pair contributions u�qi� qj� depending
only on the coordinates of the particles

UN �q
N� 	

X
i�j

u�qi� qj� ������

If we also introduce the Mayer�function ��� de
ned by

fij � exp���u�qi� qj��� � ������

we can express the con
gurational integral in terms of the Mayer�functions

Q�N� V� T � 	

Z
dqN

Y
i�j

�� � fij�

	

Z
dqN

�
� �

X
i�j

fij � � � �

� ������

Taking the thermodynamic limit where the number of particles is going to in
nity this
expansion can be used to obtain an expression for the Helmholtz free energy in the form
of a virial series in the low density limit

�F 	N �log�
VT �� ��� �

�

�
Z

dq�dq�f��

� �

�

�
Z

dq�dq�dq�f��f��f�� �O�
��

������

where 
 � N�����V � is the one�particle distribution function of a homogeneous and
isotopic liquid� The 
rst term is the ideal gas contribution of the non�interacting system�
The second and third term are proportional to the second virial coe�cient B� and third
virial coe�cient B�� respectively

B� 	 �
�

�������V

Z
dq�dq�f��

B� 	 �
�

�������V

Z
dq�dq�dq�f��f��f��

������

Note that in this derivation we assumed that the particles do not have any preferred
position or orientation� Hence this formulation is only correct for the positionally and
orientationally disordered phase and serves as a correction to the ideal gas�

��� Density Functional Theory

The formulation for the Helmholtz free energy ������ is only valid for the homo�
geneous isotropic phase� as was already mentioned in the previous section� What we
need� however� is the ability to describe ordered phases as well� Therefore we have to
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generalize the derivation of the previous section and we arrive at the density functional
theory�

For a more detailed description of density functional theory we refer to Evans �����
Here we will only give a brief overview of the main results�

In order to describe the ordered system we de
ne the one�particle distribution func�
tion �ODF�� which we will denote by 
�q� 	 
��r���� It is proportional to the fraction of
particles with given position �r and orientation � and is normalized to the total number
of particles when integrated over q

Z
dq
�q� 	 N ������

In case of a homogeneous isotropic phase this function reduces to the constant number
density 
 	 N�����V � as was found in the previous section�

For a classical many particle system� density functional theory asserts that there
exists a functional W �
� of the ODF for which the following two properties hold

�� For all ODF 
� we have the inequalityW�
� � W�
eq�� where 
eq is the equilibrium
ODF�

�� W�
eq� 	Weq whereWeq is the equilibrium value of the grand canonical potential�

Although the statements are correct� they do not provide a way to explicitly construct
the functional W�
�� Nevertheless we continue to follow along this line of reasoning�
The grand canonical potential W can be related to the Helmholtz free energy F by the
thermodynamic relation W 	 F � �N � where � is the chemical potential� hence we can
write the functional in the form

W�
� 	 F �
�� �

Z
dq
�q� ������

where we introduced the functional F �
�� which corresponds to the Helmholtz free energy
of the system� In equilibrium this functional reduces to the true minimum of the free
energy F �
eq� 	 F � We can split the free energy functional in an ideal contribution and
an excess term ��
� which contains all contributions of the interacting particles in the
system

�F �
� 	

Z
dq
�q��log�
�q�VT �� ��� ��
� ������

where the 
rst term is a generalization of the ideal gas contribution in ������� In order
to obtain the equilibrium ODF we need to 
nd the minimum of the grand canonical
potential� By taking the functional derivative with respect to the ODF we get the
stationarity equation� which is necessary but not su�cient to guarantee a minimum

�W�
�

�
�q�

����
���eq

	
�F �
�

�
�q�

����
���eq

� � 	 � ������

for 
xed values of �� Note that � in this equation for the free energy functional serves
as a Lagrange multiplier to constrain the integral of the ODF as de
ned by �������



�� � Technical Introduction

We are left with the problem of determining the excess free energy ��
�� We could for
instance use the virial expansion� Throughout this thesis however we will approximate
it by the second virial term only� which is also known as the Onsager approximation�
and is obtained by expanding excess term ��
� in equilibrium in the low density limit

��
� 	��
 	 �� �

Z
dq
�q�

��

�
�q�

����
���

�

�

�

Z
dq�dq�
�q��
�q��

���

�
�q���
�q��

����
���

������

The 
rst term on the right�hand side is a constant as therefore has no observable e�ect�
In order to have a stable phase the second term is zero by de
nition� The third term
can be identi
ed with

��
� 	 �

�

Z
dq�dq�
�q��
�q��f���q�� q�� ������

It is the 
rst correction on the ideal gas system and was used by Onsager to explain the
isotropic�to�nematic phase transition in a system of hard elongated particles ���� For this
system it can be shown explicitly that the third and higher virial coe�cients of in
nitely
long rods can be neglected and hence the theory is exact in the isotropic phase� but in
general higher virial coe�cients are relevant� One can however hope that the second
virial approach will give a qualitatively correct description of the system�

Attempting to minimize the free energy functional in the complete available func�
tion space for the ODF is a time consuming and elaborate task that usually involves
evaluating high dimensional integrals in an iterative scheme� Di�culties will arise espe�
cially when the equilibrium ODF is not a smooth but a �uctuating or strongly peaked
function� Instead of solving the complete problem one could try to use trial functions�

Trial functions are a way to reduce the in
nite dimensional function space for the
ODF to a 
nite dimensional� preferably single parameter space� In this parameter space
we then minimize the free energy� Although the corresponding free energy in general
will not be the true free energy� by choosing proper trial functions we obtain a good
estimate� The choice of trial functions is arbitrary as long as they are relevant to the
problem and they are chosen on basis of convenience� which is best illustrated by an
example�

Suppose for instance that we would like to describe Onsager�s system of long rods ����
The equilibrium ODF 
���� now only depending on the angle � of the particles with
respect to the nematic director� can always be expanded in terms of Legendre polyno�
mials� denoted by Pl�cos����� As a trial function we could truncate the expansion after
the fourth Legendre polynomial


��� 	
�X

l��

alPl�cos���� ������

where the constants al are the not yet determined parameters� This particular choice
has two drawbacks� The 
rst one is that the ODF� during the process of minimizing
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the free energy� might become negative� This is unphysical and should be avoided� The
second problem is that this trial function is not capable of forming a strongly peaked
ODF as it should be in the case of elongated particles� Both problems can easily be
solved by using a trial function like


��� 	 exp �a�P��cos����� ������

Trial functions are strongly dependent on the system one is interested in and some
insight in its behavior is essential for the choice of appropriate and convenient functions�

��� Excluded Volume

In the previous section we obtained an expression for the free energy functional F �
�
of an order system as function of the ODF 
�q�� We are going to apply this formalism to
systems of hard particles� Moreover we will focus on systems which have no positional
order but might possibly be orientationally ordered� We therefore de
ne the orientational
distribution function which we will denote by 
���


��r��� 	 n
��� ������

where n 	 N�V is the number density and
R
d�
��� 	 �� If we 
ll this in the free

energy expression ������� perform the integration over the spatial coordinates and divide
by the number of particles we obtain the free energy per particle

�F �
�

N
	 log�nVT �� � �

Z
d�
��� log�
����

� �

�
n

Z
d�d��
���
����E������

������

where E������ is de
ned via the Mayer�function f � which still depends on the pair
potential energy of the particles

E������ 	 �
�

V

Z
d�rd�r �f��� �r���� �r �� ������

For hard�core interactions the only restriction on the particles is that they are not allowed
to overlap� Hence the potential energy for overlapping particles has to be in
nite and
for non overlapping particles the potential is an arbitrary constant which can be chosen
to be zero� Hence the Mayer�function has a simple form

f 	

�
� if no overlap
�� if overlap

������

As a consequence the integral ������ reduces to the integral

E������ 	

Z
overlap

d�r ������
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which is the excluded volume� It is the volume from which the second particle is excluded
for the given orientations in order to avoid overlap of the two particles� as is illustrated
in 
gure ����

Figure ���� The excluded volume of two particles �gray area� for three di�erent
relative orientations� If the center of mass of the second particle is in this volume� the
particles will overlap�

The excluded volume is in general a complicated function E��� of the relative orien�
tation of two particles� and only for simple particles is known analytically�

The free energy ������ has to be minimized for the equilibriumODF� The 
rst integral
is the orientational entropy of the system and is minimal for the isotropic phase� It
will therefore try to keep the system disordered� The second integral is translational
entropy of the system and is proportional to the density� In order to minimize the
free energy it will tend to minimize the excluded volume� According to the Brunn�
Minkowski theorem� this minimum excluded volume for convex particles is reached for
parallel orientations �����

These opposite forces will determine the phase behavior of the system� For low
densities the 
rst term is dominant� favoring an isotropic phase� On increasing the
density this last term becomes more important and will drive the system to an more
ordered phase�

We will use the excluded volume not only as a function of the relative orientation of
two particles but also in the form of a functional of an ODF 


E �
� 	

Z
d��
����E������ ������

This de
nition will allow us not only to formulate the equations in a more compact way�
but also to derive a number of interesting and useful properties�

��� Bifurcation Theory

In the section ��� we have seen that the equilibrium distribution function can be
found by minimizing the Helmholtz free energy functional� This is in general di�cult
task and usually one needs to solve the problem numerically� There is however an
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alternative path which allows us to get some insight in the behavior of the system� the
so�called bifurcation analysis� This technique was for the 
rst time applied on liquid
crystals in ���� by Kayser and Ravech�e for the isotropic�to�nematic phase transition in
a system of long rods ����� and later extended by Mulder �����

Instead of minimizing the free energy functional ������ with respect to the normalized
ODF 
� we can also solve the stationarity equation� The stationarity equation is now
obtained by taking the functional derivative of the free energy ������ with respect to the
ODF 


log�
� � � � nE �
�� � 	 � ������

This equation has the trivial solution 
� 	 �������� which corresponds to the isotropic
phase� As was already mentioned� being a solution of the stationarity equation does
not necessarily mean that it is also the minimum of the free energy� it might also be a
maximum or saddle point� It is obvious that for su�ciently low densities the interaction
between the particles is negligible and therefore the isotropic phase is the equilibrium
state� On increasing the density� however� the particles will start to interact more
strongly and the system will undergo a phase transition� The isotropic phase will there�
fore no longer be the real minimum of the free energy� In fact at high enough density
it will even cease to be a local minimum of the free energy and will change to a local
maximum� But this means that the isotropic phase becomes unstable and any small
variation in the ODF will lead to a lower free energy� The density at which this happens
is called the bifurcation density and is an upper limit for the phase transition�

Symmetry

ψ0

ψ

η0 ψ0

ψ

η0

Figure ���� Generic bifurcation diagrams for a �rst order �left� and continuous �right�
phase transition� The lines represent the solutions of the stationarity equation� The
solid curves are corresponding to minima in the free energy� dashed lines to maxima�
n� is the bifurcation density�

In 
gure ��� the idea of bifurcation is schematically illustrated� 
� is a local minimum
of the free energy up to the density n�� where it becomes unstable with respect to the
solution 
� This solution is characterized by a di�erent symmetry than 
�� In the case
of a 
rst order phase transition the initial branch corresponds to a maximum and only
later on becomes a true minimum of the free energy� Only in the case of a continuous
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phase transition the solution 
 is immediately stable and is the bifurcation density
corresponding to the true transition density�

In order to calculate the bifurcation density we solve the stationarity equation ������
near this point� We expand both the ODF and number density in a small parameter �
around the isotropic ODF 
� and the unknown bifurcation density n�


 	 
� � �
� � ��
� � � � �

n 	 n� � �n� � ��n� � � � �
������

The ODF 
 has to be normalized to unity� This has already been taken care of by the

rst term 
�� As a consequence all other functions 
i have to be normalized to zero�
Filling these expansions into ������ and expanding in � we obtain a coupled non�linear set
of equations in the functions 
i and coe�cients ni� These equations are the bifurcation
equations� The 
rst order equation is given by


�


�

� n�E �
�� 	 � ������

This equation has the form of an eigenvalue problem� and in order to solve it we need
to determine the eigenfunctions and eigenvalues of the excluded volume E � Since this
function in principle is known� we can solve this equation� For each eigenfunction and
corresponding eigenvalue � the remaining equation is ��
� � n�� 	 �� Since we are
interested in the lowest density at which the isotropic phase becomes unstable we need
to 
nd that eigenvalue of the excluded volume that is negative and largest in absolute
value�

As we will see later on there might be several di�erent eigenfunctions corresponding
to the same eigenvalue� In order to determine the function 
� we therefore need to go
to the second bifurcation equation
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�

� �

�

�

�


�

��

� n�E �
�� � n�E �
�� 	 ��

�

Z
d�

���

�

�


�
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������

This equation determines 
� in terms of 
�� The right�hand side of the equation is a
constant� obtained by integrating the left�hand side over d�������� which ensure the
normalization of 
��

This equation allows us also to determine the precise form of 
�� The solutions of 
�

come in families which� within a family� all have the same symmetry but are rotated
with respect to each other� Solving higher order bifurcation equations would lead to a
branch of solutions of the stationarity equation in the ODF�density space emerging from
the bifurcation point and parameterized by ��

Note that in ������ we can always add to 
� a term proportional to 
�� In fact this is
true for all other 
i as well� This would therefore suggest that the functions 
i are not
completely determined by the bifurcation equations� This is not the case� one needs to
realize that the branch of solutions is parameterized by �� but any monotonic function
of � would do as well� By changing the expansion parameter � to �� we can always ensure
that 
� is orthogonal to 
� and all other higher terms in the expansion of the ODF� If
we expand � in terms of the new parameter �
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� 	
X
k��

ak�
k ������

where the coe�cients ak are yet undetermined� substitute this for � in ������ and combine
terms in the same power of �� we can write the ODF as


 	 
� � a�
�� �
�
a�
� � a�

�

�

	
�� � � � �

	 
� � �
�� � �
��
� � � � �

������

where �
i are the expansion term of the ODF if it is expanded in term of �� Since each
coe�cient in front of �n is linear in an and contains the term an
� we can choose the
value of an in order to satisfy orthogonality with 
�� Further more we can choose a�
as we like� determining all coe�cients ai in a unique way� We can therefore impose�
without loss of generality� the following constraints on the ODF

Z
d�
i��� 	 �i�� for i � �Z
d�
i���
���� 	 �i�� for i � �

������

with �i�� the Kronecker delta�
The bifurcation analysis provides us with a bifurcation density� at which the isotropic

phase becomes unstable� and the formal solution of the ODF and number density as func�
tion of �� This branch of solutions of the stationarity equation starts at the bifurcation
point� The symmetry of the ODF is determined by the symmetry of 
� and gives an
indication of what the symmetry of the equilibrium phase might be�

The bifurcation analysis is however not capable of predicting what the the real equi�
librium phase is� Its solutions are only an indication of what might happen� The obtained
bifurcation density is� for the functional in question� a true upper limit for the stability
of the isotropic phase� Only in case of a continuous phase transition this density will
coincide with the actual density at the transition�

It is possible that the bifurcation equations give rise to more then one family of
solutions with di�erent symmetries� In such a case the theory cannot determine in a
simple way what the most stable solution will be�

Despite its simplicity bifurcation theory is a very powerful tool as it gives us a
glance at the actual phase behavior of the system� Although explained here in order to
determine the stability of the isotropic phase� this theory can also be used to study the
stability of ordered phases� The generalization of the equations is straightforward� but
will lead to more complicated expressions� The main problem is here to determine the
ODF 
� as function of the density for an ordered phase� In general this ODF is not
known but one can apply numerical methods in such cases�

��� Thermodynamics

By solving the stationarity equation for the free energy functional we obtain families
of solutions for the ODF as function of the density� For a given density there is in
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general only one ODF corresponding to the true minimum of the free energy� It is
possible however that there are several other locally stable solutions as well� Suppose
that we have only two stable solutions of the free energy and label them by A and B�
We can make a plot of the free energy as function of the inverse number density v 	 ��n
as is done in 
gure ����

f

A

B

v0

f

vB vA

Figure ���� The free energy f as function of v � 	�n the inverse number density�
The solid lines correspond to minima in the free energy� dashed lines to maxima� The
phase B branches of at the bifurcation point v�� On the right site we plotted only
the minimum of the free energy and performed the comment tangent construction
�dotted
dashed line��

In the left 
gure we plotted the free energies for both solutions A and B of the
stationarity equation� At n� 	 ��v�� the bifurcation density� the solution B branches
of from A� which becomes unstable� The true free energy corresponds to the minimum
of all solutions and is plotted in the right part of the 
gure� It is however possible to
construct an even lower free energy as is indicated by the dotted�dashed line�

Instead of having a single phase we can also divide the system in two parts having
a di�erent symmetry� If we split the total system with volume V and N particles in an
A�phase region with volume VA and NA particles and B�phase region with volume VB
and NB particles�

For large number of particles N and large volumes V the Helmholtz free energy is
extensive� which allows us to write the free energy in terms of the free energy f per
particle

F �N� V� T � 	 Nf�v� T � ������

If we neglect the e�ects of the interface we can write the total free energy of the combined
system as

F 	 NAf�vA� �NBf�vB� ������

If we minimize the total free energy with respect to VA and NA� taking into account the
two constraints N 	 NA �NB and V 	 VA � VB� we get two equations
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These equations can be interpreted in a simple way by recognizing that in equilibrium
the pressure P of a system is de
ned by

P 	 �

�
�F

�V

�
N�T

	 �

�
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�
������

and the chemical potential � by
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In order words the conditions for the coexistence between the two phases� both in equi�
librium� are equal pressure and and chemical potential� Inserting these results back in
the total free energy of the combined system will reveal that the free energy as function
of the overall inverse density v is a straight line� connecting the two free energies of
the phases A and B at vA and vB� Moreover the line is tangent at both points to the
free energy curve which follows from ������� This line is the so�called common tangent
construction �dotted�dashed line in 
gure �����

��� NPT�Simulations

As we have mentioned it seems impossible to solve the equations of motion of a
system and following in time as it moves through its phase space� Nevertheless this is
exactly what people nowadays try to do with computer simulations� There are obvi�
ous limitations to the number of particles that can be used� depending on the type of
interaction and of course the combination of computer power and time available�

The 
rst computer simulations on this type of systems were performed by Metropolis
et al ���� in ����� introducing the Metropolis Monte Carlo �MC� method� In the begin�
ning simple models were used� in which molecules were represented by hard spheres and
disks� But a few years later already� in ����� Wood and Parker ���� used the Lennard�
Jones potential in their MC�simulation� making it possible to compare data obtained
from simulation and experiments on for instance liquid Argon�

In ���� Alder and Wainwright ��� used the Molecular Dynamics �MD� method on a
system of hard spheres� showing that hard spheres have a freezing transition� The 
rst
time the MD method was used to simulate a real liquid was in ���� by Rahman �����
who simulated Argon using a system of Lennard�Jones particles�

Since then both simulation methods have been applied to a wide range of systems�
Starting with simple hard particles� but soon on more complicated systems with soft
interactions and non�spherical objects� like water� proteins and polymers�
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Only in MD simulations one tries to solve the equations of motion� For hard spheres
this is simple and can be done without any approximation� because they move at constant
velocities between elastic collisions� But if soft interactions are included� approximations
have to be made� because the forces on the particles change continuously� By making
small steps in time� the equations of motion can be solved numerically� Depending on the
complexity of the system� simulations up to several millions of particles can at present
be done� In general a smaller number of particles ����������� will already describe the
behavior of an in
nite system quite well� All macroscopic observables are computed by
a time average� and since the time evolution of the system is followed� we are also able
to study dynamical quantities�

In a MC�simulation the equation of motions are not solved and as a consequence
dynamical information is lost� Instead we try to evaluate the average ����� directly�
by sampling con
gurations in phase space randomly� Each generated con
guration is
weighted proportional to the Boltzmann factor exp���U�� These weights can however�
depending on the type of system� di�er orders of magnitude� As a consequence a lot of
time can be spend on generating con
gurations with relatively low weights� Metropolis
et al ���� developed a di�erent method in which the con
gurations are chosen from a
distribution� such that by the end of the simulation each state occurred according their
probability of existence� This is achieved by growing a Markov chain of con
gurations�
Starting with an arbitrary con
guration� a new one is generated� by random translation
and or rotation of particles� The new con
guration is accepted according to the tran�
sition probability of going from the old to the new state� given by min��� exp���!U���
The limiting distribution of con
gurations in a Markov chain� ful
lls precisely the re�
quirement needed� Observables can therefore be obtained by an unweighted average over
the generated con
gurations�

In the last �� years many new simulation techniques have been developed for both
methods� for which we refer the reader to the books of Allen and Tildesley ����� and
more recently Frenkel and Smit �����

In this thesis we describe MC�simulations performed on systems of hard particles�
Although there are no forces in these system due to interaction of the particles� the
particle shapes we will study will make it a tedious task to calculate the collisions
between the particles� The MC method is therefore much simpler because we only need
to calculate the potential energy of a con
guration� This is for hard particles very simple�
as the potential energy of a con
guration is zero if there is no overlap in the system and
in
nite if there is an overlap� Hence in MC simulation we only thing need to calculated
whether there are overlaps or not�

We are going to work in the isothermal�isobaric constant�NPT ensemble� This means
that the number of particles N � the pressure P and the temperature T are 
xed� Since
the system is now described by the pressure P and not the volume V � we should not
use the Helmholtz free energy� but we have to use the Gibbs free energy G 	 F � PV �
In this ensemble the average of an observable A is weighted with a slightly di�erent
function than the one described in section ���� namely exp����H � PV ��

� A �	
�

ZNPT

Z
dV exp���PV �

Z
d�rNd�NA exp���U��rN ��N�� ������
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where ZNPT is the appropriate con
gurational integral� In order to change the con
g�
uration we can do two di�erent moves� We can change the position and or orientation
of the particles or we can change the volume of the simulation box in order to allow the
system to relax for given pressure� In the case of moving a hard particle this is simply
checking whether the new position and or orientation cause an overlap in the system�
If this is so then the di�erence in energy is in
nite and the move is rejected� If it does
not cause an overlap the energy di�erence is zero and the move is alway accepted�

For a volume move this is slightly more complicated� because a change in volume
also a�ects the particle positions and hence the integrals over �r in ������� It is therefore
more convenient to express the particle positions in scaled coordinates �s de
ned by

�s 	 L���r ������

where we assumed to have a cubic simulation box with sides L 	 V
�

� � We can now
rewrite the average ������ as

� A �	
�

ZNPT

Z
dV exp���PV �V N

Z
d�sNd�NA exp���U��sN ��N ��

������

The simplest way to incorporate a volume move is by attempting an isotropic expansion
or compression of the system� for which the volume changes from V to V � 	 V � !V
and !V is chosen uniformly from an interval ��!Vmax�!Vmax�� Since the weight of
a microstate according to ������ is proportional to V N exp���PV � the probability of
accepting the move� if it does not produce overlaps� is given by

min��� exp���P �V � � V � �N log�V ��V ��� ������

The maximum volume change !Vmax is chosen such that the acceptance of a volume
move is between the �� and �� per cent ����� During simulations this acceptance ratio
is continuously monitored and if necessary the value of !Vmax is adjusted�

An alternative way to sample the volumes was introduced by Eppenga and Frenkel ����
Instead of making random changes in V it might be useful to change log�V �� by choos�
ing a random value ! logV uniformly from the interval ��! logVmax�! logVmax�� The
acceptance probability for a volume move has to be changed to

min��� exp���P �V � � V � � �N � �� log�V ��V ��� ������

It is straightforward to generalize the volume sampling to non�cubic boxes or to
include potential energies� A volume move is however computationally more expensive�
because it can cause overlaps for particles close together and all pairwise potentials� if
included� are a�ected� In general a volume move will therefore be attempted with a
lower frequency than the normal particle moves�
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In this chapter we investigate the phase behavior of a non�convex particle made up by

connecting three perpendicular elongated rods to form what we will call an Onsager cross�

We will show that� depending on the actual shape� it is possible for some of these par�

ticles to form a cubatic phase� By means of three methods we will draw a schematic

phase diagram of the phase behavior of this class of particles� restricting ourselves to

homogeneous orientationally ordered phases�

��� Introduction

In order to understand the behavior of complex liquids� like liquid crystals� on a
molecular basis one is forced� by the sheer complexity of the molecules involved� to
adopt highly simpli�ed models of inter�particle interactions� These model interactions
are chosen to represent as well as possible the general nature� or at least some aspect�
of the true interactions involved� In the case of liquid crystals it was Onsager who
already in ���	 pioneered the description in terms of hard non�spherical particles 
�� �
He showed that a system of very elongated hard rods would at high enough density form
a uniaxially anisotropic orientationally ordered liquid phase� a nematic liquid crystal�
The origin of this ordering process lies in the fact that the system can gain translational
entropy by aligning the particles and hence decreasing the excluded volume� At high
enough density this gain will outweigh the loss in orientational entropy incurred by
aligning the particles and the resultant ordered phase will have a lower free energy than
the isotropic state� Of course a description in terms of hard interactions is directly
applicable only to lyotropic liquid crystals like the tobacco mosaic virus 
TMV�� which�
in a suitably chosen salt solution� actually behaves like a hard rod� Nevertheless� even
in thermotropic liquid crystals� where phase transitions are induced by decreasing the
temperature� the short range repulsive interactions must also play a role in determining
the phase behavior� This is true a fortiori under typical liquid densities� as the theory
of simple �uids strongly suggest that at least the local structure of a �uid is nearly
completely determined by the short�ranged repulsions� In this case a hard model system
can function as a reference systems to which other aspects of the true interactions 
soft
cores� dispersion interactions� intra�molecular conformational energies� can be added
as a perturbation� To date the hard particle approach to modeling liquid crystalline
behavior has yielded the insight that most of the common liquid crystalline phases can
be understood as the e�ect of packing entropy alone� Moreover� as models go� they are
both easily speci�ed and often quite tractable�

	�



�� � Theory of Crosses

Figure ���� Onsager cross for L�D � �

Given the success of hard particle theories in describing the known liquid crystalline
phases� one can ask if it is possible to use these models to predict novel phases that have
not yet been observed in nature� Apart from the intrinsic fundamental interest of this
question� this would also represent a �rst step towards the �molecular engineering� of
new materials with novel and possibly interesting properties� The aim of this chapter is
to work out a test case of this approach� We have chosen as our example a model due to
Frenkel� which we have dubbed Onsager crosses� They consist of three elongated hard
rods rigidly connected to each other in their centers so as to form a cross with three
mutually orthogonal �beams� 
�gure ����� If the three component rods are equally long�
Frenkel argued� such a system should form a nematic phase with cubic orientational
order� a claim which he backed up with an approximate calculation 
	��� His argument
for the occurrence of this novel �cubatic� phase is based on the fact that if� at a given
density any of the particle�s axes would prefer to order� the remaining axes which by
symmetry are completely equivalent will do so too� Since they are rigidly connected
at right angles to each other� the resultant phase will have three equivalent orthogonal
ordering directions and hence have cubic symmetry� Here we consider a generalization
of the original symmetric crosses by allowing the ratios of the lengths of the components
rods to vary� In this way we obtain a family of particles containing the symmetric crosses
as a special case� which as it turns out has a rather rich phase diagram� As a side product
we re�con�rm Frenkel�s conjecture within the context of a more detailed calculation�

In section ��	 we introduce the Helmholtz free energy as functional of the one�particle
orientational distribution function and derive some basic results from symmetries of our
model�

We will analyze the behavior of our particles in three di�erent ways� In section ��� we
will use a bifurcation analysis which gives a global idea of the phase diagram concerning
the transition from an isotropic phase to ordering� In section ��� try to �nd numerical
solutions which minimize the free energy using trial functions and by analyzing the
distribution functions we obtain the symmetry of the phases and �nd series of transitions�
As a third method we solve the model in section ��� within a Gaussian approximation
which means that we assume that the distribution functions will be sharply peaked�



��	 Free Energy ��

In section ��� we will summarize and combine our results obtained by the di�er�
ent methods� We will discuss the validity of some of our assumptions and give a few
suggestions for further research�

��� Free Energy

In order to study our system we will need an appropriate free energy functional�
Onsager showed that� at least for a �uid of very elongated rods� the excess free energy
can be e�ectively be truncated at second virial coe�cient level� yielding a theory with
the formal structure of a mean��eld theory� Even in the cases were the truncation is
not a priori justi�ed� this approximation still contains the essential ingredients of the
physics of such systems viz� the competition between orientational and translational
entropy�

Though our particles are no longer the elongated rods as in Onsager�s original model�
they do consist of three of these kind of objects� They form together a very open
structure� This means that the probability of multiple overlaps between two particles
in general will be very small� As a consequence we might expect that the rods act
independently of each other� which allows us to use a similar reasoning as Onsager
did and truncate the free energy expansion in virial coe�cients after the second virial
coe�cient� This leads to the following free�energy functional

�f 
�� �

Z
d��
�� ln�
�� �

�

	
�

Z
d��

Z
d���
����
���K
������ � � �f


����

Here f is the free energy per particle which is a functional of � the orientational dis�
tribution function 
ODF�� This ODF is a measure for the fraction of particles with an
orientation � in a �xed reference frame and is normalized to unity� � � 
kBT �

�� the
inverse temperature�

The �rst term of the free energy functional is associated with the orientational en�
tropy of the system� The second term takes into account the interaction between the
particles� described by K
������� being the excluded volume of two particles with given
orientations� The last term is the ideal gas term and does not depend on the the ODF�

In general we need three parameters to describe any orientation �� For this we make
use of the Euler�angles 
�� �� �� describing an arbitrary rotation in ��dimensional space�

A necessary condition for an equilibrium ODF of a system described by a free energy
functional is that it satis�es the stationarity condition

�

��
��

�
f 
��� �

Z
d��
��

�
� � 
��	�

where the second term takes care of the normalization of the ODF� To ensure that the
solution is stable we need to check whether it is a minimum of the free energy and in
case of phase coexistence to equate the chemical potentials and pressures of the di�erent
phases�

The most important contribution to the excluded volume of two elongated rods with
lengths L� and L� and diameters D� and D� is given by
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vexcl � L�L�
D� �D��j sin �j 
����

where � is the angle between the long axis of the particles� We assume that the in�nitely
long rods of our cross�like particles contribute independently to the excluded volume and
neglect the fact that the rods are physically connected� The �rst assumption is based
on the fact that the probability for multiple overlaps between two crosses will be small
compared to that of a single overlap� The last assumption can be justi�ed since the
overlap volume of the rods is of O
D�� and hence its e�ect on the excluded volume is
an order O
D	L� smaller compared to the contribution of the rods�

If we denote the lengths of the three rods by L�� L� and L� pointing respectively in
the x� y and z direction of a particle �xed frame and take equal diameters D for all rods
we obtain for the leading term in the excluded volume of two cross�like particles

vcross �
X
i�j

	L
���
i L

���
j Dj sin�ijj � 	L�D

X
i�j

l
���
i l

���
j j sin �ijj 
����

where li � Li	L and the sum of the lengths of the rods is given by L � L� � L� � L��
It is convenient to express the density in terms of the second virial coe�cient� which is
half of the mean of the excluded volume in the isotropic phase

B� �
�

	

 vcross �I�

�

�
L�D 
����

We now introduce a reduced density 
 � B��� Since the excluded volume interaction
between two particles only depends on their mutual orientation ��� � ���

� �� we de�ne
the reduced excluded volume interaction by

E
���� � K
������

B�
�

�

�

X
i�j

l
���
i l

���
j j sin �ijj 
����

��� Analysis

In general any function of � can be expanded in the rotation matrix elementsDl
m�n
���

However in this case it is convenient to exploit the extra symmetries in our problem in
order to obtain a smaller subset of symmetry adapted functions� The particles� and
therefore the interaction as well� are invariant under rotations over an angle � about
any of the three axes in the particle �xed frame� Together with the identity these three
rotations form the group D� � f�� Rx
��� Ry
��� Rz
��g and lead to the de�nition of the
�l

m�n�functions 
see appendix�

�l
m�n �

�
�p
	

����m����n�� �Dl
m�n � 
��lDl

m��n � 
��lDl
�m�n �Dl

�m��n

�

����

Both m and n are even and chosen to be non�negative� In case of odd values for l both
indices need to be positive in order to de�ne a non�zero function as can be seen directly
form this de�nition�
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To give an impression what these functions look like we here list the four with l � 	�
�rst discussed by Straley 
	��

��
���
�� �

�
�

� cos� � � ��

��
���
�� �

�
�

p
� sin� � cos 	�

��
���
�� �

�
�

p
� sin� � cos 	�

��
���
�� �

�
�

� � cos� �� cos 	� cos 	� � cos � sin 	� sin 	�


����

We are now able to expand the excluded volume interaction 
���� in these symmetry
adapted �l

m�n�functions

E
�� �
X
l�m�n

	l � �

���
El�m�n�

l
m�n
�� 
����

where the coe�cients El�m�n are formally given by

El�m�n �

Z
d�E
���l

m�n
�� 
�����

and are symmetric in m and n 
El�m�n � El�n�m� because the interaction is invariant
under interchanging the particles� In order to calculate these coe�cients El�m�n we need
to evaluate integrals of the typeZ

d�j sin �ijj�l
m�n
�� �

Z
d�j	e���i � 	e

���
j j�l

m�n
�� 
�����

where 	e
�k�
i is the unit vector pointing along the rod li of particle k� This can be achieved

by introducing the rotations qi about the axes of the particle �xed frame

q� � Ry
�		�
q� � Rx
��		�
q� � �


���	�

and using them as coordinate transformations in order to redirect the rods l
���
i and l

���
j

along the z�axis which enables us to obtain a more convenient form for the integrals 
�����

Z
d�jqi	e���z � qj	e

���
z j�l

m�n
�� �

Z
d�j	e���z � 	e���z j�l

m�n
q
��
j �qi�

�
X
m��n�

Z
d�j sin�j�l

m�m�
q��
j ��l

m��n�
���l
n��n
qi�

�
X
m��n�

�l
m�m�
q��

j ��l
n��n
qi�

Z
d�j sin�j�l

m��n�
��


�����

After performing the coordinate transformation in the �rst line we used the proper�
ties 
A�	�� of the �l

m�n�functions� which state that they form a closed set under the
symmetry operations of the cubic group O�

The integral in the last line of 
����� can be calculated exactly and is only nonzero
for m� � n� � � and even values of l 
		� ����	���
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Using the property of the �l
m�n�functions for the inverse rotation 
A���� this gives us

the �nal result for the coe�cients El�m�n

El�m�n �
�

�
�l
X
i�j

lilj�
l
��m
qj��

l
��n
qi�� 
�����

In table ��� the values of �l
��n
qi� are listed for l � 	 and l � ��
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Table ���� The most important values of �l
��n as function of the three di�erent rota�

tions qi�

It is convenient to introduce some shorthand notations analogous to 
�	�� We de�ne
the following inner product for real functions f and g of ��


 f jg ��
Z

f
��g
��d� 
�����

We can also de�ne a functional in this space of real functions by

f 
g�
�� �

Z
d��f
����

��g
���� 
�����

If we apply this last de�nition to E and use that it only depends on relative orientations
we obtain


 f jE 
g� ��

Z
d��

Z
d��E
���

� ���f
���g
��� �
 E 
f �jg � � 
�����

With this new notation we can write the free energy functional 
���� in a more compact
form as
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�f 
�� �
 �j ln� � �
�

	

 
 �jE 
�� � �� �f 
�����

In order to understand the behavior of the excluded volume as a functional we let 
����
work on a �l

m�n�function� If we now use 
A�		� we immediately obtain

E 
�l
m�n� �

X
p

El�n�p�
l
m�p� 
��	��

This means that the total space S
 of the �l
m�n is decomposed into invariant sub�

spaces S l
m by the excluded volume interaction� Moreover 
��	�� shows that for �xed l

the action of E is represented by the same matrix 
El�n�p� in all the subspaces S l
m labeled

by m � �� 	� � � � � l�
We now go back to the stationarity equation 
��	�� With our new notation we can

perform the functional derivative explicitly and write it compact as

ln� � 
E 
��� �� � � 
��	��

where the ODF � satis�es the normalization
 �j� �� �� Any solution which minimizes
the free energy surely has to be a solution of this equation� We assume that the ODF
possesses the same symmetry D� as our particles and hence can be expanded in the
�l

m�n�functions

�
�� �
X
l�m�n

	l � �

���
�l�m�n�

l
m�n
�� 
��		�

with some constant coe�cients �l�m�n� Intuitively this seems justi�ed as a homogeneous
phase with symmetry lower than that of the constituent particles seems implausible� To
our knowledge however no rigorous proof exists for this statement�

We are going to use three di�erent methods to study the behavior of our system� First
we will use a bifurcation analysis to study the transition of the isotropic phase to some
other orientational ordered phase� This is a fast method which gives an global description
of the phase behavior and tells us some of the symmetries of the phases we might expect�
However two problems might occur� it is possible to obtain several phases with di�erent
symmetries and the predicted phase is not necessarily the thermodynamically most stable
phase�

The second method we will use is minimizing the free�energy functional by solving the
stationarity condition 
��	�� numerically� This involves integration which we can only
hope to do properly if they ODF is a not too strongly peaked function� So the results
are useful only for low densities when phases probably are not yet strongly ordered� For
higher densities the results� though might be an indication� are not reliable in predicting
the densities for phase transitions� For these densities we will use a third method� which
is a so called Gaussian approximation� We will assume that for higher densities the ODF
becomes strongly peaked and can be approximated by a combination of Gaussians�
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��� Bifurcation Analysis

����� Method

The isotropic phase is of course a solution of 
��	��� at least for low densities� In that case
the ODF is merely a constant� which is the trivial solution� �� � �	���� If we increase
the density 
� the isotropic phase remains a solution of the stationarity condition� but
fails to be a minimum for the free energy� This means that there is a certain density

� at which �� stops being a local minimum and becomes a local maximum of the free
energy� In other words any anisotropic perturbation would destroy the isotropy of the
system� The density where this occurs is called the bifurcation density and is explicitly
calculated� But in fact the requirement on the equilibrium ODF is stronger since it has
to be the absolute minimum of the free�energy� So the real density at which the isotropic
phase becomes thermodynamically unstable will usually be lower than the bifurcation
density� This implies that the bifurcation density is an upper limit for the density at
which the phase transition will occur and only in case of a continuous transition gives
the right value�

To calculate the bifurcation density we try to �nd a parameter family of solutions
satisfying 
��	��� by means of the following expansion in some small parameter �

� � �� � ��� � ���� � � � �

 � 
� � �
� � ��
� � � � � 
��	��

We want � to remain normalized to unity which leads to 
 �j�i �� �i��� Furthermore we
assume that 
 ��j�i �� �i��� which always can be achieved by rescaling the parameter ��
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Figure ���� Three possible bifurcation schemes� The �rst and second show two sce�
narios for a �rst order transition and the last is of a continuous transition� The points
with value �� can be found by means of a bifurcation analysis�

In �gure ��	 are three possible bifurcation schemes drawn� Some order parameter�
e�g� the second Legendre polynomial 
P�� for nematic order� is sketched as function of
the density� Since the isotropic phase has no structure� the order parameter is zero and
the isotropic solution corresponds to the horizontal axis� At the points labeled with 
�
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the isotropic phase becomes a locally unstable solution of the stationarity equation 
��	��
and another solution branches of�

The �rst one represents a normal �rst order phase transition for which the �rst
term in the density expansion 
� is non�zero and as we will see later will be negative�
The second diagram is also a �rst order transition� It branches of perpendicular to the
horizontal axis 

� � �� and bends back� In both cases the density at which the phase
transition will occur is lower than the calculated value 
�� The last diagram corresponds
to a continues phase transition� Again 
� � � but now the solution does not bend back�
Only in such a case the bifurcation density is the real density for the transition�

If we put the expansions 
��	�� in the stationarity equation 
��	�� we will obtain a
bifurcation equation for every order of �� The �rst and second order equations are given
by

��

��
� 
�E 
��� � � 
��	��

and

��

��

� �

	

�
��

��

��

� 
�E 
��� � 
�E 
��� � const� 
��	��

All contributions which do not depend on � are contained in the Lagrange multiplier ���
This results for the �rst bifurcation in an eigenvalue problem� In the second equation re�
mains a constant� though the �i do not contain constant terms� powers and combinations
of them usually do�

����� Eigenvalues and functions of the excluded volume

The �rst bifurcation equation 
��	�� has taken the form of an eigenvalue problem� There�
fore its wise to �nd out what there is to know about the eigenvalues and eigenfunctions
of the excluded volume functional� At the end of section A�	 it is indicated that the
functional has invariant subspaces E 
S l

m� � S l
m which are spanned by the functions �l

m�n

and is represented by the matrix El�m�n for �xed values of l�
This matrix is given by 
����� and has a special form


El�m�n �
�

�
�lE

l
mE

l
n 
��	��

where

El
m �

X
i

li�
l
��m
qi�� 
��	��

Notice that for odd values of l this means the matrix is zero� For even values of l it has
exactly one non�zero eigenvalue which we will denote by �l and its eigenvector by �l

m�

�l �
X
n

El�n�n �
�

�
�l
X
n

El
nE

l
n 
��	��
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�l
m �

P
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E
l
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�
X
n

el�n�
l
m�n 
��	��

where we implicit have de�ned the coe�cients el�n of the eigenfunctions�
In general �l would be a function in three parameters l�� l� and l�� From equa�

tion 
����� however we know that it is a second order homogeneous polynomial� It also
should be invariant under permutations of the rods and the lengths add up to unity�
Therefore it can be written in the form �l � �l
�	��
ar

� � b
l�l� � l�l� � l�l��� where a
and b are constants and r� � l�� � l�� � l��� From the de�nition 
��	�� of El

n we see that l�
can only appear in combination with �l

��m
q�� � �l
��m
�� �� �� � ���m� From which we

can evaluate a � � and b � 	�l
���
q�� � 	�l� This gives us the general formula for

non�zero eigenvalues

�l �
	
�
�l 

�� �l� r

� � �l�

�l � 
��l�� ��
�

	l � l
l		

�

�����

Since �	� � r� � � we �nd that all eigenvalues are negative or zero� As an example of
the eigenfunctions we write ��

� out

��
� �


�l� � ����
��� �

p
�
l� � l���

�
���p

	
�r� � ��

�����

If we put l� � l� � � we have a particle that is a single long rod� In that case the
eigenfunction is just ��

���� which coincides with the second order Legendre polynomial�

����� Solution

We are now ready to deal with the bifurcation equations� Starting with the �rst 
��	��
we see that we have a simple eigenvalue problem� We have to �nd the lowest density 
�
at which the isotropic phase becomes unstable� If we take for �� any eigenfunction �l

m

we obtain for the bifurcation density


� � � �

���l
� 
���	�

So in order to �nd the lowest 
� we actually have to �nd the absolutely largest but
negative eigenvalue� If we now analyze expression 
����� for the eigenvalues we �nd that
there are two possibilities either �� is the case or ��


� �


�
�
� �

����
� 	

�r���
for r� � �	��

� �
����

� ���
�r���

for r� � �	��

�����

We can distinguish two regions� For r� � �	�� the bifurcation equations are dominated
by terms coming from l � 	 which can be seen as nematic like and the for r� 
 �	��
terms coming from l � � will dominate which are phases with less symmetry like cubatic�
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The �rst part for the solution we obtain by putting r� � �	��� We substitute for the
general solution of the �rst bifurcation equation 
��	��

�� � c��
�
� � c��

�
� 
�����

were the coe�cient c� and c� still have to be calculated� This can be done by �lling this
result in the next bifurcation equation� Before we do this however we �rst note that


 ��
mj
��

��
��

�

����

 E 
��

m�j�� �� �
� 
 ��
mjE 
��� � 
�����

for m � �� 	� Therefore if we take the inner product of the second bifurcation equation
with ��

m we obtain two equations

���

�
��
�cm �

�

	��
�


 ��
mj
c���

� � c��
�
��

� � 
�����

In order to evaluate the right�hand side of the above equations we use again a property
of the �l

m�n�functions� which is in the appendix listed as 
A�	��


�c� �
�

�
��


�
��
E�
c�� � c���


�c� �
�

�
��


�
��
E�
�	c�c��


�����

where the factor �
E� � e���
e
�
��� � �e����� comes from the excluded volume interaction�

We now can eliminate the �rst order density deviation 
� by combining the two�
There remains an equation depending on the coe�cients c� and c� and on �
E�

�
E�c�
c�� � �c��� � �� 
�����

There are two cases to consider� The �rst one is that of �
E� 	� �� If we use as an
arbitrary normalization that c�� � c�� � � we �nd three solutions for �� up to a sign
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�����

The �rst solution �
�z�
� is invariant under rotations around the z�axis� Knowing this it is

easy to check that the other two solutions are the same but with their symmetries around
the y respectively x�axis� These three have all uniaxial symmetry and they represent
the nematic phase which we will denote by N �

The second case we have to consider is that of �
E� � �� This leads according to
equations 
����� to 
� � � and prevents us from calculating c� and c� at this level� It
turns out that we need to solve the fourth order bifurcation equation to determine their
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values� Surprisingly the solution for �� has the same form as before and is not a biaxial
phase as seen by Mulder for spheroplatelets 
����

To determine the global sign of the solution we need to look at the consequences�
For the �rst case we see from 
����� that the sign of 
� is determined by our choice


� �
�

�
��


�
��
E�c�
c�� � �c��� 
�����

We expect that the branch of the stable nematic solutions is connected via the back
bending branch to the bifurcation point� Hence the sign of the solution follows from the
necessity of negative 
�� Since �� 
 � we have to choose the solution as shown in 
�����
if �
E� � � and add a negative overall sign if �
E� 
 ��

In the second case where �
E� � � we have something similar� Since 
� � � we look
at the next terms in the expansion of the density� It turns out that 
� is independent
of the sign of the solution� but 
� is not� If we make the same assumption as before we
have to take the solution as given in 
����� to ensure that 
� is negative�

To see for which particles �
E� � � we have rewritten �
E� in terms of l�� l� and l��
using the fact that they add up to unity

�
E� � �
�l� � ��
�l� � ��
�l� � ��


�r� � 	������
� 
�����

So of these particles one of their rods has length � � and from the other two one is longer
and the other is shorter�

The solution for �
E� � � is invariant under rotations around the director� The main
axis of these particles is the longest of the three rods� Since they include the single rod
we will refer to this phase as a rod�like nematic phase N�� On the other hand we have
the particles with �
E� 
 �� which include a particle which consists of only two rods of
the same length� Again this is a nematic phase but in this case the role of the main
axis is played by the shortest rod which might even vanish� We will refer to this as a
platelet�like nematic phase N�� The boundary between these two regions is formed by
the particles which have one rod of length � � and form a N� as well�

For the second part of the solution for the bifurcation equations we have to put r� 
 �	���
In this case the main contribution to the ODF comes from l � � terms� We now
substitute as general solution

�� � d��
�
� � d��

�
� � d��

�
�� 
���	�

If we work this out in the same way as in the previous subsection we obtain three
equations
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where �
E� is given by
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We can solve this set of equations with normalization d�� � d�� � d�� � �� Using the facts
that �
E� is positive and 
� should be negative we obtain three sets of solutions� The
�rst one is given by

�
�z�
� � ��

�� 
�����

This solution has rotational symmetry around the z�axis of the reference frame� It
is accompanied by the two solutions that are symmetrical around the x and y�axis�
Together they represent the nematic phase� The second set of solutions is given by

�
�z�
� �

r
�

�	
��
� �

r
�

�	
��
�� 
�����

This solution is symmetrical under rotations over �		 about the z�axis� And is also
accompanied by versions for the x and y�axis� The last solution is invariant under
rotation over �		 about the x� y and z�axis and hence corresponds to the cubic group
which in group theory 
	�� is formally denoted by O

�� �

r
�

�	
��
� �

r
�

�	
��
�� 
�����

This solution represents the cubatic phase in it simplest form� However on closer exam�
ination the second set is equivalent to the cubatic solution� For instance 
����� has to
be rotated over an angle of �	� about the z�axis�

On the basis of a bifurcation analysis it is not possible to tell which of these two
types of solution the correct one is�

For the third and �nal part of the solution of the bifurcation equations we set r� � �	���
As a general solution we now take

�� � c��
�
� � c��

�
� � d��

�
� � d��

�
� � d��

�
�� 
�����
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We have as a normalization c���c���d���d���d�� � �� If we follow the same procedure as
before we end up with a set of �ve equations� But we cannot solve it analytical anymore�
The solutions we obtained for the cubatic phase 
����� and 
����� still satisfy and there
are three di�erent nematic like solutions for which c� � d� � d� � ��

There are also other combinations possible� which are independent of the above
mentioned solutions 
not a simple reference rotation�� They can be seen as mixtures of
the two and are less symmetric� Within our set of �l

m�n�functions there are only two
possible symmetries left the D� phase� which has a ��fold axis and the D� phase�

����� The phase diagram

At this moment we cannot tell which transition will occur for a certain particle� Only
which possibilities there are� In fact as we will see later on it is possible to �nd outside
the circle for instance a transition from isotropic to D� phase� which is not given by the
bifurcation analysis� This is a consequence of the fact that a bifurcation analysis only
studies the stability of the isotropic phase against small perturbations� Though it gives
an upper limit for the transition to occur it is not necessary that the symmetry of the
perturbation coincides with the actual phase we end up with�

l=11 l=12

l=13

l=03

N+

N+ N+N-

N- N-

O,N

Figure ���� The phase diagram of the phase transition at lowest density according
to the bifurcation analysis� The lines form the boundary between areas of di�erent
behavior� Points on the dashed line have �� � 	
 outside and inside �� has negative
respectively positive values�

We now know enough of the �rst phase transition to draw a qualitative phase diagram

�gure ����� Our phase diagram is formed by a triangular base in which we can �nd
all possible particles against the density� For simplicity we have drawn only constant
density planes of the phase diagram� The triangular base is the projection of the plane
de�nedf by l�� l�� l� � �� The scales perpendicular to the edges are linear� For instance
at the top of the triangle we have l� � � and l� � l� � �� This points therefore represents
the particle formed by a single rod� On the other hand� the base of the triangle is a line
for which l� � � and represents� except for the edges� particles consisting of only two
rods� All points inside the triangle correspond to particles with three rods�
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The circle corresponds to r� � �	��� i�e� all particles for which �� � �� and in
which case we had to use 
������ There are six straight lines connecting the edges of the
triangle with the circle� These lines are formed by putting one of the li equal to � � and
as we have seen the �rst order term in the density expansion 
� � �� They form the
boundary between the areas for the two nematic phases which we denote by N� and N��
They di�er in the sense that in the �rst case the longest rods want to align and in the
other case the shortest rods� The lines them selves belong to the N� phase�

Inside the circle we have r� 
 �	��� There are two possibilities for the phase transi�
tion� It can go from isotropic�to�cubatic or nematic

From the fact that 
� 	� � we may conclude that the transition will be �rst order�
There is of course the exception for the straight lines in the diagram for which 
� � ��
This can indicate that the transition is continuous� For that reason we plotted for
particles outside the circle the curve 
dashed line� for which the second term in the
density expansion 

�� is zero� Between this curve and the circle 
� is negative� And
outside the curve we have a positive value for 
� and 
� is the �rst negative term� From
this we might expect that in the neighborhood of the lines and going from the inside to
the edges the density at which the phase transition takes place approaches the bifurcation
density�

��� Trial Functions

����� Method

We have seen that the bifurcation analysis gives us an idea of what might happen for
the �rst phase transition� It shows possible symmetries of the phases and for which kind
of particle we might expect them and also estimates the density at which is occurs by
giving an upper limit� What it does not tell is whether the transitions we found also
happen and if they do at which density� This is the problem which we are trying to
solve in this section�

Density functional theory tells us that if we have found the ODF which gives the
minimal free energy 
���� it coincides with the equilibrium ODF and is the stable state
of the system� So what we ought to do is make a trial function with some parameters
in it and try to �nd those parameters which minimizes the free energy� Since the ODF
is a probability distribution function it ought to be positive hence we take the following
Ansatz

�
�� � exp


X
l�m�n

�l�m�n�
l
m�n
��

�

�����

where we have expanded in the complete set of orthogonal eigenfunctions of the excluded
volume interaction� Now the �l�m�n can be seen as parameters of the function �� We can
give them a starting value for �xed density and calculate its free energy� And from this
point using an iterative process to optimize the coe�cients to minimize the free energy�
The normalization is maintained by adjusting �������

Instead of minimizing the free energy however we try to �nd solutions of the station�
arity condition 
��	�� and check afterwards whether it is a minimum for the free energy�
If we use our trial function we obtain
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X
l�m�n

�l�m�n�
l
m�n
�� � 
E 
�� � ��� 
�����

If we now multiply this equation with �l
m�n� integrate over � and use 
����� and the

orthogonality of the eigenfunctions we obtain a set of equations

���

	l � �
�l�m�n � �
 
 �l

m�njE 
�� �� �
 
 �jE 
�l
m�n� � � 
�����

From this result we immediately may conclude that we only have to use those eigen�
functions of the excluded volume that have a non�zero eigenvalue� All of them have we
already de�ned in 
��	��� And we can write our trial function as

�
�� � exp


X
l�m

�l�m�
l
m
��

�

���	�

where the coe�cients �l
m have to satisfy

�l�m � �	l � �

���

�l 
 �l

mj� � 
�����

for even values of l and m where � � m � l and the coe�cient ��
� is determined by

the normalization condition 
 �j� �� �� From these equations the coe�cients can in
principle be calculated self�consistently�

The next thing we have to take care of is identifying each phase by means of an set
order parameters for which we will take the 
 �l

m�n �� If there are non�zero 
 ��
m�n �

we �rst rotate our solution for the ODF in such a way that 
 ��
��� � has the abso�

lute maximal value� This is done by rotating the reference frame as well as the initial
orientation of the particle�

For the nematic phase we could now take for instance the usual second order Legendre
polynomial as an order parameter

N �
 ��
���j� � � 
�����

The problem however is that a non�zero nematic order parameter does not tell us whether
we actually have a nematic phase� So instead of looking whether a certain order param�
eter is non�zero we could better look for order parameters which are zero and give us
better information�

For the isotropic phase we know that the ODF is a constant� This implies that all
order parameters should be zero� Or if we say it the other way around if there is a
non�zero order parameter it is not an isotropic phase�

For the nematic� the D� and the D� phase there is at least one of the rods of the
particles which tend to align and hence 
 ��

��� �	� �� But for the cubatic phase the
ODF should be invariant under rotations over �		 around any of the three frame axes�
Which means that there cannot be any terms present with l � 	� Hence if 
 ��

m�n �� �
and there are non�zero order parameters for l � � we have a cubatic phase�



��� Trial Functions ��

If we �nd that 
 �l
m�n �� ���m we have a solution which is invariant under rotations

around the z�axis and hence a nematic phase� If we further more determine what the
relevant rod in the particle is we know whether we have a rod�like or platelet�like nematic
phase�

Finally if 
 ��
��� �	� � the ODF is not invariant under rotations over �		 around

the z�axis and we cannot have a D� phase� So it has to be the D� phase� Which leaves
for the D� phase that 
 ��

��� �� �� In this case we can again determine the relevant
rod and distinguish between D�� and D���

phase ��
��� ��

��� ��
��� ��

���

Isotopic � � � �
Nematic � �
Cubatic � �
D� �
D�

Table ���� For each phase is indicated which of the order parameters is zero� The
order parameter are determined by evaluating their integral with the ODF ��

We have summarized these results in table ��	 where we indicated for each phase
which order parameters should be zero� We have chosen to use 
 ��

��� � and 
 ��
��� �

but these choices are arbitrary as long as they posses the right symmetry�
Given a solution we can calculate the free energy� As can be seen in 
���� this involves

a ��dimensional integral� but this can be avoided� Since the ODF satis�es 
����� and
the right�hand side which is constant and equals ���� � 	
 we can write the free energy
as

�f �
�

	

 �j ln� � �

�

	
���� � 
 � � �f 
�����

After having checked whether the solution is indeed the minimum of the free energy the
pressure and chemical potential can easily be calculated by

�P � � � ��B�
�� �




 B� �I

�
� �

�

	

 
 �jE 
�� �

�

�����

and

�G

N
� �f �

�P

�
� � � ���� � 	
 � � �f 
�����

where the last term up to a constant is given by � �f � ln 
� If now for di�erent densities
we �nd equal pressure and chemical potential we have coexistence of di�erent phases�

����� Numerical Results

We solve the set of equations that we derived in the previous subsection self�consistently
where we only use the functions with l � 	 and l � �� By using several starting values
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we obtain by means of an iterative process di�erent numerical stable solutions� Given a
stable solution we can calculate the free energy and check whether it is a minimum�

By taking more terms into account the coe�cients change as well as the densities for
which the transitions occurs� But since we are only interested in a qualitative picture this
is of no real importance because the symmetry of the obtained phase remains the same�
We used 
����� to calculate the free�energy and in that way avoid the six�dimensional
integral� But since we truncated the expansion of the ODF at l � � this means that we
also truncate the free�energy� If we �nd solutions of the ODF with di�erent symmetries
we use this approximated value for the free�energy to determine which is the best of
them� So we end up with only an estimate for the density at which the phase transition
will take place but will �nd the right phase�

N+

N-

D4+

D4-

N+ N+

N-

N-

D4+

D4+

D4-

D4-
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I

I

I

I

O

Figure ���� The phase diagram at a density below the bifurcation density����� � 	��
�
The dashed lines denote the boundaries given by the bifurcation analysis of areas with
di�erent behavior�

In the �gures ��� and ��� are two cross�sections of the phase diagrams sketched� They
are drawn for rescaled densities 
 � ���
� respectively 
 � ���
�� This is done in order
to compare the behavior of all particles around their densities of interest� As can be seen
from 
����� this means that the real density in the middle is almost �� times as high as
at the vertices of the triangle� Analogous to the distinction we made between a rod�like
nematic N� and platelet nematic phase N� we can do this also for the D� phase�

The dashed lines represent the boundaries which we obtained from our bifurcation
analysis and we see that they give a reasonable estimate of the real behavior� Around
the points where a straight dashed line meets an edge we �nd at �� percent of the
bifurcation density still an isotropic phase� Though those regions become smaller when
we approach the bifurcation density it remains quit stable and it is possible that for a
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N-
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D4+
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D4-

Figure ���� The phase diagram at a density above the bifurcation density����� � ���
�
The dashed lines denote the boundaries given by the bifurcation analysis of areas with
di�erent behavior�

very small region there is a continuous transition� Due to the approximation of taking
only functions with l � � into account we cannot tell whether it is� As far as we know
all other transitions are �rst order�

As we expected the nematic phase is found mainly outside the circle� there is however
a part of the rod�like nematic phase which extends itself into the circle and also in the
regions where we expected a platelet�like behavior� Apparently the longest rod has large
in�uence on the system� The N� phase is found only in small regions and since a platelet
is a very crude approximation for these particles it is not surprisingly that it remains
not stable for large densities� It disappears for 
 
 ���
� by going to the phase D��

where there is a discrete orientational symmetry around the z�axis�
Inside the circle we could expect the nematic� the cubatic and the D� phase� The

cubatic phase is found in the middle for all particles which resemble the particle with
three equal rods� It is surrounded by the D� phase�

If we increase the density the D� phase appears� along the boundaries between the
phase for which the longest or shortest rod is ordered� It starts at a density of 
 
 ��	
�
around the points where both D� phases and the N� phase meet each other which is
near the points where the dashed lines touch the circle�

For very high densities all particles with no special symmetry end up in the D� phase
in which rods with the same length are aligned� The particles for which two rods have
the same length cannot go beyond theD� phase and they lay on the symmetry lines� The
domains of the nematic and cubatic phase are merely points� the vertices respectively
the middle of the triangle�
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��� Gaussian Approximation

����� Nematics

We can obtain an approximate solution of the Onsager model describing the isotropic�
nematic phase transition for long thin rods if we use the assumption that in the ordered
phase the rods have a strongly peaked distribution around the z�axis which can be
approximated by a Gaussian� The same approximation can be used for the isotropic�
cubatic transition for the symmetrical particle with three rods 
see Frenkel 
	����

It is possible to extend this approximation to our system for all phases� First we
write down again the free energy

�f � � �f � �
�� � 
�
�� 
�����

where the �rst term is the ideal non�interacting system� given by � �f � ln 
 � const� The
second part of the free energy describes the orientational entropy and is given by

�
�� �

Z
d��
�� ln
����
���� 
�����

The last term in the free energy is related to the translational entropy

�
�� �
�

�

Z
d�

Z
d���
���
���

X
i�j

liljj sin �i�jj� 
�����

In the isotropic phase the ODF is a constant� �
�� � �	��� which gives the following
exact results

�fI � ln 
 � 


�PI � 

 � 
��	 
 B� �I

��I � ln 
 � 	
 � �


�����

For a nematic where � is the direction of the ordering axis of particle the factor ���

reduces to ��� The trial function in the original Onsager model is given by

�
�� �
�

�� sinh�
cosh
� cos ��� 
���	�

For large values of � this is a sharply peaked distribution with its main contribution
around � 
 � and � 
 � which we can approximate by Gaussians

�
�� �
�

��
exp

�
����

	

�

� � � � �		�

�
�

��
exp

�
��
� � ���

	

�

�		 � � � ��


�����

The orientational part of the entropy can easily be calculated in this approximation
�
�� 
 ln
��� �� The translational part has three di�erent type of contributions� The
�rst is given by the interaction of the ordering rods which we label by l� and it is the
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longest one in case of a rod�like nematic and the shortest one in case of a platelet�like
nematic

����
�� 
 �l��p
��

� 
�����

This term is important for rod�like particles and for platelet particles it is negligible�
The second type is the interaction between one l� rod along the nematic axis and one
that is perpendicular to it for instance l�

����
�� 
 �l�l�
�

� 
�����

And the last type consist of the interaction between two rods in the plane perpendicular
to the nematic axis� Its main importance is for platelet�like particles� This contribution
though is not proper described by the �rst term of the expansion if we use the Gaussian
approximation which is due to the fact that a typical value for � in this region is �	� too
small for a real Gaussian approximation� For that reason we use the original Onsager
as a trial function to obtain a �t of this contribution which we will denote by J
��

����
�� 
 �l��
�
J
�� �

�l��
�


����� �
����

�
� �	��

��
�

����

��
� ���

��
�� 
�����

The total orientational entropy can now be written as

�
�� �
�l��p
��

�
�

�
l�
�� l�� �

�

�

�� l��

�J
�� 
�����

and only depends on the length of the ordering rod� Since the proper value for �
minimizes the free energy we di�erentiating the expression with respect to � and equate
it to zero

d�f

d�
�

�

�
� 


�
	l��

�
p
��

� �

�

�� l��

�J �
��

�
� �� 
�����

After having solved this equation we can obtain �nally the pressure and chemical po�
tential of the nematic phase for any density�

����� Cubatics

In order to describe the cubatic phase by a Gaussian distribution we switch over to the
xyz�convention of Eulerian axes� In this convention the general rotation is given by �
subsequent rotations around three perpendicular axes

D
�� � e��	Jxe��
Jye���Jz � 
�����

So for the cubatic phase we can use as a Gaussian distribution

�
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�
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����
exp
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�
� 
�����
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There are 	� such contributions corresponding to 	� possible orientations for the particle
to align with the three axes of the system� The orientational part is again easy to
calculate and given by

�
�� � ln

���

	�
� �

�

	
ln


�

	�
�� �

	

�����

For the translational contribution to the free energy we have to add for all possible
orientations the excluded volumes for the aligned and perpendicular pairs of rods� which
gives

�
�� �
�

�
p
��

�
�

��

���	�

If we now minimize the expression for the free energy with respect to the parameter of
the Gaussian � we obtain

� �
��
�

���

�����

This gives us the free energy and hence the pressure and chemical potential of the cubatic
phase in this approximation
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If we combine these with the ones from the previous subsection for the isotropic phase
we can �nd that there is a coexistence between the isotropic and cubatic phase for


I � �����

O � �����


�����

in which case for the value for the parameter � of the Gaussian we obtain

� � ��	�� 
�����

Because of this large value we can justify the Gaussian approximation�

����� The D� and D� phase

In the case of a D� phase there is one ��fold degenerate axis which we assume along the
z�axis� Our trial function has now two parameters� one � describes the strength of the
ordering with respect to the z�axis and the other � describes the strength of the ordering
with respect to the x and y�axis which are in this phase equivalent� The trial function
has � contributions of the form
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For � we �nd again a simple equation
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For � however we get an expression containing an elliptical integral of the second kind

�
�� �� �
�l��p
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�� l��
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�����

Minimizing the free energy with respect to � and � gives for l� � �	� that � � � which
suggest a stronger ordering along the z direction� while for l� 
 �	� the opposite� � � ��
is found and therefore a stronger ordering along the x and y axes�

For the D� phase it is almost the same story as for the D� phase except that there
are now only � possible orientations of the particle and we need � parameters in our trial
function
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There is the simple equation for � but now of � parameters
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and the expression for � is somewhat more complex
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����� Results

If we combine the Gaussian approximations of the di�erent phases we can calculate the
coexistence by equating pressure and chemical potential� In �gure ��� the phase diagram
at reduced density 
	
� � � is drawn� At this density the isotropic phase is unstable
but there are still isotropic areas� It is clear that the Gaussian approximation is cannot
be valid there� Further more we �nd that the boundaries between the cubatic and D�

phase are straight lines� This seems somewhat surprising but is merely a consequence of
losing particle information in the approximation� This can be seen from the expression
for the free energy which only depend on the length of one rod� Therefore if for two
di�erent particles with the same value for l� the same transition occurs the densities are
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Figure ��	� The phase diagram obtained by a Gaussian approximation at a density
equal to the bifurcation density����� � �
� The dashed lines denote the boundaries
given by the bifurcation analysis of areas with di�erent behavior� The shaded regions
correspond to particles which at this density have coexistence between two phases and
therefore do not have a stable phase for this global density�

equal� Though the �gure has a di�erent density scale for both particles this is di�erence
is in too small to make a visible di�erence in this �gure�

The shaded areas in the �gure correspond to particles which phase separate at this
global density into two coexistence phases with di�erent densities� the higher having less
symmetry� There are three relatively large equivalent areas for the isotropic�nematic
phase transition for the rod�like particles and smaller ones for the platelet�like particles�
Some areas are very tiny and cannot be seen in the diagram at all� For instance between
the cubatic and D� phases of both types there is a narrow strip of particles which have
at this density coexistence between the cubatic and D� phase�

It is not observed and intuitive not expected that there are particles which go from
rod�like to platelet�like behavior for instance via a transition from the N� to a D��

phase� Also a phase transition from cubatic phase to a nematic phase� so to a phase
with higher symmetry� is not found� All data con�rmed that phase transitions in this
model can only go to lower symmetries�

If we take a cross�section of the diagram along the symmetry axis for which l� � l�
and we plot now the real densities in units of B�� the isotropic second virial coe�cient
which is equal for all particles� versus l� the length of one of the three rods� The result
is shown in �gure ���� Since the particles are ��fold symmetric around this l� rod they
cannot go beyond the D� phase in which they all will end up with only two exceptions�
the cubatic particle and the single rod particle� As was explained before the N� phase
is very unstable and is only found in a very small region and will for somewhat higher
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Figure ��
� Cross section of the phase diagram along the symmetry line �l� � l�
 of
the density versus the length of the remaining rod�

densities already form a D� phase� The N� phase is much more stable� The isotropic�
cubatic phase transition takes place at a density which is almost �� times as high as the
isotropic�nematic phase transition for the single rod�

��� Discussion

We have investigated the orientational phase behavior of Onsager crosses� which
are non�convex particles formed by rigidly joining three perpendicular elongated rods of
di�erent lengths in their centers� For this model we formulated the Helmholtz free energy
as functional of the single particle orientational distribution function� by truncating the
virial expansion after the second virial coe�cient� assuming that higher order virial
coe�cients can be neglected�

We joined the rods of our Onsager crosses in their centers� But since we assumed
that the rods contribute independently to the excluded volume interaction we e�ectively
treat them as if they are only �xed to each other concerning their orientation� Hence
our results are still valid if the rods are connected in any other way as long as their
orientations are �xed and perpendicular to each other� For shorter rods however this is
not valid anymore and one should use the real excluded volume which does depend on
the way how the rods are connected� As well as that higher virial coe�cients cannot be
neglected anymore and should be taken into account�

We restricted ourselves to homogeneous orientationally ordered phases� of which
there are for this kind of particles four possibilities� The uniaxial nematic phase 
N��
two biaxial nematic phases D� and D�� and the cubatic phase 
O� which is a three�axial
nematic phase� It is obvious that there can also be phases with translational order like
smectic and crystalline phases� We assumed that the densities at which these are stable
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are well above the stable densities for the orientally ordered phases� For shorter rods the
densities become of the same order and translational order should be taken into account�

We used three di�erent methods to study the phase behavior of these systems� a
bifurcation analysis� solving the stability equation of the free energy numerical and an
Gaussian approximation�

To obtain a simple impression of the phase behavior we used a bifurcation analysis�
It is an easy method which gives upper limits for the densities at which phase transitions
take place by calculating the densities at which a phase becomes unstable and for which
distortions this is the case� In order to use it one should therefore know the one particle
distribution function of that phase and in general one doesn�t� except for the isotropic
phase� Furthermore the symmetry of the distortions give only an idea of what the
symmetry of the phase will be� but are not conclusive� The bifurcation theory in our
case gives that the distortions at the lowest density at which the isotropic phase becomes
unstable have a nematic or cubatic symmetry� while the other methods we used also
allowed an isotropic�to�D� transition� The numerical method of solving the stationarity
equation is more reliable and gives all numerical stable solutions� By comparing the
free energies of the solutions with di�erent symmetries one �nds the correct one� which
has the lowest free energy� There are however a number of problems with this method�
One has to choose an expansion of the one particle distribution function and is therefore
limited in the accuracy� Because of the �nite number of terms� the distribution function
has to be smooth� Furthermore this method involves in iteration scheme with multiple
integrations which makes it computationally more expensive�

The Gaussian approximation is a good alternative� It is computationally not expen�
sive and gives the correct symmetries� It relies however on the assumption of peaked
distribution functions and this is not always the case� But with the previous method�
it forms a good combination which can deal over the whole range from low to high
densities�

Depending on the shape of the particles we observe successive phase transitions� The
isotropic phase undergoes a �rst order transition to the nematic� the cubatic or the D�

phase� Which in their turn at higher densities have a transition via the D� phase to
the D� phase� In some cases the D� phase is surpassed� These latter transitions are
within our theory �rst order� According to Landau theory they can also be continuous�
however we did not observe this� We did not �nd any evidence for a direct transition
from the isotropic�to�D� phase�

Instead of the cross�like particles we used� a similar analysis can be done for particles
related to other platonic solids� For instance the combination of four rods leading to a
tetrahedral phase�

The question which remains is whether the cubatic phase can be observed in nature!
To our knowledge so far it has not been seen� There is no direct candidate for cross�like
particles such as tobacco mosaic virus for a long rod� Maybe it is possible in the future to
make this kind of particles� Star like molecules are already produced with short �exible
tails� but we need tails which are more rigid and longer�

Also computer simulations cannot yet deal with these large L	D ratios� It may be
worthwhile to try simulations of these cross�like particles at smaller ratios� One of the
problems we foresee is however the slow dynamics of the particles due to stereometric
hindering which might make these systems rather glassy�
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We do not necessarily have to restrict ourselves to cross�like particles in order to
observe a cubatic phase� In ���	 Veerman and Frenkel 
�� observed it in a totally
di�erent system� They were simulating a system of hard cut spheres� These disk�like
particles are obtained by removing the parts of a sphere with diameter D which are
more then a distance L		 above or below the equatorial plane� For the ratio L	D � ��	
this system formed stacks of particles which were ordered in a cubic symmetry�
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In this chapter we report on simulations of cross�like particles� These particles have the

potential of forming a cubatic phase in the limit of in�nitely large aspect ratios� We

discuss the validity of our approximations for �nite aspect ratios and introduce a new

simulation method for these glass�like systems�

��� Introduction

In the previous chapter we developed a simple theory� which showed that cross�like
particles� formed by three perpendicular elongated rods� are able to form a cubatic phase�
The results were obtained in the limit where the constituent rods of the particles had
in�nitely large aspect ratios�

In this chapter we will investigate the behavior of these particles when the aspect
ratios are �nite� As a consequence we need to describe the particles in more detail� For
long particles the excluded volume is still proportional to L�Dj sin���j� but correction
terms have to be taken into account� The theory� described in the previous chapter�
is also independent of the way in which the rods are connected as long as this is done
rigidly and perpendicular�

From the viewpoint of simulations it is more convenient to choose the particles to be
spherocylinders rather than ellipsoids� because their overlap criterion is easier� Further�
more we assume the � rods to be identical and connected perpendicular to each other
in their centers of mass� in order to obtain a fully symmetric particle�

The fact that these particles are non�convex makes it very di	cult to describe the
systems theoretically� For instance the second virial coe	cient B� in the isotropic phase
of two arbitrary convex particles A and B can be expressed in terms of properties of
the single particles� the volume V � surface area S� and the integrals M and G over the
mean respectively Gaussian curvature 
��


B��A�B� �
�

��
�V �A�G�B� � S�A�M�B� �M�A�S�B� �G�A�V �B�� �����

For non�convex particles this is not possible anymore� The derivation of this relation is
only possible because two convex overlapping particles have a convex volume in com�
mon 
��
� Non�convex particles however can have several unconnected and possibly
non�convex volumes in common� So far the only analytic results known for non�convex
particles are for diatomics and linear symmetric triatomics 
��
�

��



�� � Simulation of Crosses

Also in simulations these cross�like particles are complicated� In order to observe the
cubatic phase large aspect ratios are needed� As the particles extend over a large part
of space in all � directions� they interact with many other particles� As a consequence
we can expect that it is extremely di	cult for these particles to rotate or move around�
and at higher densities these systems will probably show glass�like behavior�

��� Virial Coe�cients

In obtaining our theoretical results on the Onsager crosses we made two basic as�
sumptions� The �rst was that we assumed that the length over diameter ratio goes to
in�nity �L�D � ��� As a consequence we assumed that similar to the case of long
rods� the third and higher virial coe	cients can be neglected� What Onsager 
�
 showed
in fact was that for the isotropic phase the third virial coe	cient of long rods scales as

B�

B�
�

� O�D�L� log�L�D� �����

which o�ers some justi�cation for neglecting higher virial coe	cients as well� This
asymptotic behavior was later con�rmed by numerical evaluation of the virial coe	cients
of spherocylinders and prolate ellipsoids by Frenkel 
�����
� We assumed that in our
case a similar argument could be formulated� allowing us to neglect higher virial terms�

The second assumption we made was treating the di�erent rods as being independent
from each other� Since they are rigidly and perpendicular connected to one another this
has to be corrected� Naively one would expect that corrections are of the order of the
volume which the rods have in common and hence can be neglected as well�

To check the validity of both of these assumption we present here the results of
numerical evaluation of the virial coe	cients of Onsager crosses formed by three identical
rods�

In ���� Ree and Hoover 
��
 reported a Monte Carlo technique to calculate the virial
coe	cients of hard�core particles� based on trial con�gurations� In order to evaluate the
second virial coe	cient B� we put a particle with �xed orientation in the origin and
generate randomly a position and orientation for the second particle in a volume� large
enough to allow all possible overlaps� Since the maximum distance between two crosses
which still touch is L�D� a cubic volume with sides L�D will do� The value of Bcross

�

will be given by

Bcross
� � �

�

Number of overlaps

Number of trials
� Volume �����

However our particles are extremely non�spherical� therefore we do not use this brute
force technique of counting the number of occurrences of overlap� Instead we follow a
method similar to the one used by Frenkel to calculate the virial coe	cients of long
spherocylinders 
��
�

The Onsager crosses consist of three rods and therefore ��� � � pairs of rods can be
formed from two particles� Each of these pairs might or might not overlap� This leads
to ��� � � ��� combinations for which there is an overlap of the two particles� Some of
them are identical and have just a di�erent labeling� If we take this into account there
remain �� di�erent overlap diagrams Di as shown in �gure ���� Each circle represents a
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rod of a cross� and rods belonging to the same particle have the same color� The lines
indicate which pairs of rods are overlapping�

21 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

Figure ���� These are the �� di�erent overlapping con�gurations of � cross�like
particles� Points of the same color correspond to the di�erent spherocylinders of the
same particle� Only the connected points overlap�

The number of overlaps in each diagram are listed in table ���� together with the
number of realizations�

The value of each diagram can be obtained by analyzing the overlapping con�gura�
tions and determine to which diagram it belongs� leading to

Di �
Number of occurrences Di

Number of realizations
� Volume

Number of trials
�����

The second virial coe	cient Bcross
� of the crosses is given by half of the sum of all diagrams

multiplied with the number of realizations�
We will now generate trial con�gurations� for which a chosen pair of rods� say the

pair labeled with ���� is always overlapping� For each diagram Di with ki overlaps only
ki�� times the total number of realizations is now allowed� This allows us to express the
value of the diagram Di under this constraint



�� � Simulation of Crosses

diagram overlaps realizations
� � �
��� � ��
��� � ��
��� � �
������ � ��
����� � �
�������� � ��
����� � �
����� � ��
����� � �
����� � ��
�� � �
�� � �

Table ���� The number of overlaps and realizations of the diagrams Di�

Di �
Number of occurrences Di

ki
�
� Number of realizations� Number of trials

� Volumej��� overlap

�����

The restricted volume leading to an overlap for the ��� pair is the volume averaged over
all orientations leading to a spherocylinder overlap� and hence is twice the second virial
coe	cient Bsphero

�

Bsphero
� �

�

�
L�D � �LD� �

�

�
�D� �����

For the second virial coe	cient this leads to

Bcross
�

Bsphero
�

�

P
i

�

ki
Number of occurrence Di

Number of trials
�����

The probability of �nding an overlap for two spherocylinders is however dependent on the
orientation� For given orientation we put the second particle in the excluded volume of
the ��� pair� We can either generate the orientations randomly and give the con�guration
a weight proportional to the excluded volume� or generate the orientations proportional
to the excluded volume

E��� � �L�Dj sin���j� ��LD� �
�

�
�D� �����

where � is the angle between the directors of the rods�
In summary we put one cross�like particle with �xed orientation in the origin and

generate a random orientation for the second particle� We place the second particle
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randomly in the excluded volume of the ��� pair to ensure overlap and give the con�gu�
ration a weight proportional to the excluded volume� which will depend on the relative
orientation of the ��� pair only�
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Figure ���� The second virial coe�cient of Onsager crosses 	�
 as function of L�D
in terms of the second virial coe�cient of spherocylinders� The contributions of the
diagrams� D� 	�
 and D�� 	�
 are shown as well�

The results for the second virial coe	cient are given in �gure ���� where we plotted
their value in terms of Bsphero

� � Also the contributions of the two diagrams� D� and D��

are shown� The �rst diagram corresponds to a single pair overlap and has the leading
contribution for long aspect ratios� The second diagram corresponds to the overlap of
all pairs of rods and will be the leading term for small values of the aspect ratios� For
completeness we have listed the numerical values for the diagrams as well in table ��� as
function of the aspect ratio L�D in powers of ��� This data is obtained by ��� blocks
of each ��� trial con�gurations�

For small values of L�D the particles are almost spheres� hence all � pairs of rods
are likely to overlap� The main contribution for the virial coe	cient will therefore come
from diagram D��� In this region the di�erence between the shape of a cross and a single
spherocylinder will be marginal� because they both are almost spherical� and the virial
coe	cient of the �rst will be only slightly larger� For increasing value of L�D however�
the particles becomes a very open cluster of rods for which it becomes very unlikely that
there is more then � pair of rods which overlaps� The main contribution will therefore
come from diagram D� with only � overlapping pair of rods� But since there are �
possible pairs of rods the virial coe	cient of the crosses will be approximately � times as
high as the one for spherocylinders� It is there where the rods which form the cross can
be treated independent of each other and our assumption becomes valid� To satisfy this
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L�D Bcross
� �Bsphero

� D��B
sphero
� D���B

sphero
�

���� ���������� ���������� �����������
���� ���������� ���������� ����������
��� ��������� ��������� ����������
��� ��������� ��������� ����������
��� ��������� ��������� ������� � ���	

��� ���������� ��������� ������ � ����

��	 ���������� ���������� ���� � ���


��� ����������� ���������� �
��� ����������� ����������� �

Table ���� The reduced values for second virial coe�cients of crosses� as a function of
length over diameter ratio� The estimated error in the last digit is indicated in paren�

theses�

requirement within one percent we need however a length over diameter ratio of about
���� ����

In order to calculate higher virial coe	cients we evaluate the necessary diagrams 
��

using the method of Frenkel 
��
 of growing a random chain of overlapping particles�

The �rst particle is put in the origin with �xed orientation� Using the brute force
method of generating a random position and orientation until the new particle will
overlap with the last particle in the chain would again have a poor e	ciency for large
aspect ratios�

Instead we select randomly one of the three rods of the last particle which will overlap
with the new particle� Where as for the calculation of the second virial coe	cient we
could choose the ��� pair to overlap� for higher virial coe	cients this is not longer allowed
anymore� because only a restricted set of diagrams would be sampled� We also need to
correct for the fact that we choose a speci�c pair of rods which will overlap� In order
to do so we give each consecutive pair of overlapping particles a weight� This weight
should be proportional to the contribution of this two particle con�guration to the second
virial coe	cient� which as can be seen from ������ inversely proportional to number of
overlapping pairs of rods�

The result of our calculations for the third� fourth and �fth virial coe	cient are
shown in �gure ��� and table ���� This data is obtained by ��� blocks in which we have
grown ��� independent chains of � particles� Note that there is a range of aspect ratio
with negative value for the �fth virial coe	cient� while for rod�like particles this remains
positive 
��� ��
� There is a region �L�D � �� � ��� where both� the fourth and �fth
virial coe	cient� are negative� To our knowledge this is the �rst time such behavior is
observed�

In order to observe the asymptotic behavior of the virial coe	cients we can plot
the scaled virial coe	cients as is shown in �gure ���� Each reduced virial coe	cient is
multiplied with L�D�

Unlike the behavior of the third viral coe	cient of elongated particles� which for
large aspect ratios scales as �D�L� log�L�D�� for cross�like particles all three reduced
virial coe	cients scale proportional to D�L �see �gure �����
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��� ����������� ������������ ����������
��� ������������ ������������ �����������

Table ���� The reduced values for third� fourth and �fth virial coe�cients of crosses�
The estimated error in the last digit is indicated in parentheses�

It is clear that from these observations we have to conclude that the theory presented
in the previous chapter is not able to give good predictions for the phase behavior of
�nite size particles� In order to ensure that the rods of the particle are independent
we need to go to extremely large aspect ratios� Besides the fact that this assumption
is not true for �nite sized particles� we also should take into account the higher virial
coe	cients�

This does not necessarily mean that the general behavior of the system is predicted
wrong as well� it only means that the description is not complete but strongly approxi�
mated� This is also the case for a system of elongated particles� as we make the aspect
ratio smaller the higher virial coe	cients should be taken into account� and the density
for which the isotropic�to�nematic phase transition occurs is overestimated� Nevertheless
this transition itself remains present up to aspect ratios of the order �� depending on
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the precise form of the particles� We therefore might expect similar e�ect to be true for
systems of cross�like particles�

��� Parameter Hopping

As was mentioned before computer simulations on cross�like particles will be ex�
tremely di	cult� In order to observe the cubatic phase we need large aspect ratios� This
leads to particles extending over a large parts of space and therefore interacting with
many neighboring particles� As a consequence particles will be con�ned to a relative
small volume in which it will be very di	cult to rotate as well� One can easily imagine
that at higher densities this system will therefore might get trapped in a localized part
of phase space� in the same way as a �spin� glass might get trapped in one of the many
local minima in the free energy� A conventional simulation will therefore likely fail to
characterize the system properly� and a di�erent method is required�

In order to overcome this problem we introduce the simulation technique of parameter
hopping� It is similar to the umbrella sampling technique as introduced by Torrie and
Valleau 
��
� The idea is to have a series of di�erent Hamiltonians �H�� �H�� � � � � �Hn�
which for instance di�er in temperature or interaction strength� A normal Monte Carlo
simulation is performed on this system described by the usual con�guration space and
an extra variable taking care of the Hamiltonians� Sampling over the new variable
is done by attempting to change the Hamiltonian and accepting with the appropriate
weight� Unlike the normal umbrella sampling method� where by using an external force
the system is biased and in an unphysical state� in this method the system is always
sampled according to the real Boltzmann weight�
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This method was used by several people mentioned by di�erent names but in essence
the same� Lyubartsev et al called it the method of expanded ensembles and used it to
calculate the free energy in a single MC run on a model of electrolyte 
��
� Marinari and
Parisi called it simulated tempering� as it is closely related to simulated annealing� and
used it on the Random Field Ising Model 
��
�

This method is also interesting for the study of the equilibrium behavior of glasses�
because by increasing the temperature the system will expand making it easier to re�
arrange its con�guration and come back to the original temperature� But instead of
simulating only one system which can change it Hamiltonian� we will adopt the method
described by Geyer 
��
 in which several systems with di�erent Hamiltonians are simu�
lated at the same time� Each system has its own Hamiltonian but there is an additional
move in which Hamiltonians are swapped� maintaining one system per Hamiltonian�
An advantage of this method is that for each Hamiltonian after accepting the swap a
completely new con�guration is used� leading to a better sampling of phase space�

In our case for simulating cross�like particles there is however no temperature in�
volved� Instead we use the pressure as new variable� We perform a number of MC
simulations for which the number of particles N is �xed to the same value� but for sev�
eral di�erent pressures P�� P�� � � � � Pn� For these pressures we perform a normal NPT �
simulation in which particles are displaced and rotated� and the volume is allowed to
shrink or expand� After each sweep in which on average each particle has been attempted
to move and rotate once� and also one volume move is tried� we do the extra move of
swapping the pressures� Although we could select arbitrary pressures� it is best to take
successive pressures in order to get a better acceptance�

Suppose we have two systems at pressures P� and P�� with corresponding volumes V�

and V�� The con�gurations C� and C� are completely di�erent� If we look at the swapping
move from the point of view of the con�gurations� by attempting to swap the pressures P�

and P� we continue the simulation for con�guration C� at a new pressure P�� If this
new pressure is lower the con�guration is allowed to expand and can therefore easier
relax and possibly rearrange particles� If the new pressure is higher the con�guration
will increase its density� if possible�

If we look at the same move from the point of view of pressure P�� the swap�move
is in fact a large jump in phase space from a con�guration C� and volume V� to a new
con�guration C� and volume V� and can be regarded as a combination of particle and
volume moves� As far as the particle moves are concerned this is of no importance for
the acceptance of this move� since both con�gurations are without any overlaps� The
swapping move is therefore accepted by the same probability as for a normal volume
move

P �C� � C�� � min��� exp
��P��V� � V��


�
V�

V�

�N

� �����

For pressure P� we have a similar acceptance�

P �C� � C�� � min��� exp
��P��V� � V��


�
V�

V�

�N

� ������
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but as it is a combined move� the complete swap is accepted by the product of both
acceptance probabilities which has the simple form

P �P� � P�� � min��� exp
���P� � P���V� � V��
� ������

These simulations require a parallel computer� but the communication between di�erent
systems is minimal� The only information which needs to be transferred is the infor�
mation concerning pressure and volume to a master program� which will attempt the
swapping moves� and return the outcome� The di�erent systems can than continue the
normal NPT �simulation but possibly for a di�erent pressure� It is a simple matter of
book keeping to extract the information at constant pressure�

��� Cubatic order

In order to make a distinction between di�erent ordered phases we need to de�ne
order parameters� This can be done by using the orientations of the particles to measure
the Dl

m�n�functions� If we then take the appropriate combination we obtain a function
with cubic symmetry

O � �

��
�	

��� �
p
��

��
��	

	�� ��	
��	� �

�

��
�	

	�	 ������

corresponding to the eigenfunction of the excluded volume of a symmetric cross �������
This order parameter however� measures the cubatic order in the reference frame� while
the axes of a cubatic phase need not be along the axes of this frame�

Unlike the case of a nematic phase where a second rank nematic tensor can be used
to calculate the nematic axis 
��
� for the cubatic phase such an analogous tensor is
fourth rank� As a consequence the directions corresponding to the cubatic order cannot
obtained in a simple way� but have to be evaluate numerically� by �nding the frame in
which the order parameter is maximal�

An alternative route is to use order parameters� which are invariant under rotations
of the frame� They are formed by a combination of Dl

m�n�functions

Il �

��X
m�n

Dl
m�n

�Dl
m�n

����

�
	

������

and measure the total order related to the value of l� If there is nematic order present
in the system this will in general be visible by a non�zero value for I�� as it contains the
function D�

��� � P��cos ��� But also I	 will in general be non�zero in a nematic phase�
because D	

��� � P	�cos �� will be non�zero� In order for cubatic order to be present� not
only a non�zero value of I	 is needed but also there should not be any nematic order�
i�e� I� � ��

The de�nition of the order parameters Il however� is positive de�nite� As a conse�
quence their values will� in a simulation� not be identical to zero but �nite and of the
order ��

p
N � where N is the number of particles used in the simulation�
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The cubatic order parameter ������ can be used to de�ne a two�particle cubatic
correlation function GO�r�� The reason is that for a correlation function the relative
orientation between the particles is used� This function can be written as

gO�r� �	
�
P

i�j
�
ui��� � 
uj�r��	 � �

�
� ������

where 
ui and 
u�i are the directors of the rods of both particles�

��� High density phases

For high pressures normal systems will tend to crystallize in a neatly ordered phase�
spheres for instance will crystallize to a face centered cubic crystal� This crystal phase
will in general lead to higher densities than can be reached by a positional disordered
phase� If particles are non�spherical this will have an in�uence on the crystalline behav�
ior� and orientations have to be included� In the case of hard spherocylinders di�erent
crystalline structures can be observed� An good overview of this system as function
of the aspect ratio has recently been published by Bolhuis and Frenkel 
��
� indicating
three di�erent crystal phases�

It is unknown what crystal phase� if any� will be the stable one for cross�like particles�
The highest density for these systems with larger aspect ratio�s will probably not be
reached by a simple perfect positional and orientational ordered phase� because for such
structures a maximum packing fraction can be derived�

Suppose that we have an ordered phase in which one of the three rods is along the
z�axis� If we now consider the particles which have their center of mass in a slab with
thickness D� the diameter of the particles� and try to arrange them in the highest possible
density we need to order them as has been depicted in �gure ����

Figure ���� The most dense packing of cross�like particles� for which the centers of
mass lie within the same plane� and one of the rods is oriented perpendicular to this

plane�

The distance between the centers of mass is in �rst order �

�
L� For a slab of thick�

ness D and volume S this means that the number of particles within the slab is limited
by �S��DL��� The maximum packing fraction �max for this type of phase is therefore
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�max �
Nv�
V

� �

DL�

�

	
�LD� � ���D�L� ������

where v� is the volume of a cross�like particle� It is therefore likely that the most stable
high density phase is not a regular crystal or ordered phase� It might even be possible
that no thermodynamically stable crystalline phase does exist�

In order to obtain high density starting con�gurations for large aspect ratios we
form a crystal phase with perfect orientational order� It is formed by an FCC crystal
arrangement� On the vertices and midpoints of a cubic unit cell the particles are oriented
such that the rods are along the sides of the cube� This �frame work� is than copied and
translated to several points within the unit cell� ensuring that no overlaps occur�

��� Simulation results

We will only discuss here the results for a system for which the crosses have an aspect
ratio of ��� The simulations are performed on a parallel machine using �� simulation
boxes at a time using ��� particles� Starting at low densities in an con�guration made by
random insertion we slowly increase the pressure� In this initial phase of the simulation
the pressure move is very useful� Since all boxes start with more or less the same volumes
the pressure move can be accepted easily�

In �gure ��� the equation of state for this system is shown� For low pressures the
system behaves like normal isotropic �uids� For higher densities the results from com�
pression and the ones starting from an crystal are both indicated� For comparison the
equation of state obtained via a virial series is shown using up to the fourth virial
coe	cient� But already at packing fractions of the order ���� they start to deviate sig�
ni�cantly� Moreover the curve using the fourth virial coe	cients becomes negative as
a consequence of the negative fourth virial coe	cient� For the �fth virial coe	cient it
would be even worse�

The equation of state is formed by � overlapping windows of the pressure� each
window consisting of �� pressures which are chosen equidistant� On the compression
branch there is a good acceptance of the move� on average between �� and �� �� except
near the borders of a patch where con�gurations at both end get isolated� This is due
to con�gurations which are able to compress easier or more di	cult�

In case of the crystal branch this is even worse� The large di�erences in densities are
caused by di�erent crystal structures� since the crystal we used are FCC lattices which
are randomly copied in the unit cell�

The volume of the cross�like particles v� needs a small correction for the fact that
the spherocylinders intersect� This correction with respect to the sum of the volumes of
the rods is small but becomes relevant for short aspect ratio�s

v� �
��

�
D�L�


�
�
�
p
�
�
D� ������

this formula only holds for L 	 D�
Two snapshots ��� give an impression of what these systems look like on both

branches� They are about the same packing fraction of � � ���� One can easily imagine
that these systems behave glassy�
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Figure ��	� The equation of state for crosses with an aspect ratio L�D � �� for
compression 	�
 and crystal 	�
� the latter obtained via expansion or compression
from a generated FCC�like crystal� The curves correspond to the virial equation of
state using second 	solid
� third 	dotted
 and fourth 	dashed
 virial coe�cient�

If we try to compress the system further� this becomes increasingly di	cult� and it
seems impossible to compress the system beyond a packing fraction of ����� In �gure ���
the radial distribution g�r� of the system for several densities is shown� indicating that
there is no real structure present� It is obtained by following a con�guration rather than
sampling at a given pressure�

For completeness we plotted also the cubatic correlation function gO�r� de�ned
by ������ in �gure ���� It only shows a small peak for short length scales� long dis�
tance correlations are absent�

The order parameter used to detect cubatic order is denoted by I	 and is a member of
a class of invariants de�ned by ������� The results for this order parameter for compres�
sion are given in �gure ����� Since by de�nition this order parameter is positive de�nite
the resulting value will be non�zero� The obtained value is of the order

p
��N meaning

that this value is not signi�cantly di�erent from the isotropic phase� The large error
bars for the lower densities are due to large rotations of the particles causing the order
parameter to �uctuate � For the higher densities there seems to be a signi�cant cubatic
order� this is however merely a consequence of the glass�like behavior which makes large
�uctuations impossible� leading to deceptive order parameters�

From these �gures we can only conclude that there is no detectable order in the
system� obtained by compression and can be at most considered to be an disordered
solid or glass� Even the new technique of parameter hopping is in this case not enough
to overcome the problem of �glass��formation�
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Figure ��
� Two snap shots from the simulation� both at the same packing fraction
� � 
��
� The upper one is obtained via compression from an low density isotropic
con�guration� The lower one is obtained starting from a FCC�like crystal�
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Figure ���� The radial distribution for packing fractions 
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 on the compression branch�
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Figure ���� The cubatic correlation function for packing fractions 
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 on the compression branch�
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Figure ���
� The cubatic order parameter on the compression 	�
 and crystal branch 	�
�

We can also start with a perfect aligned system� of the type described in the previous
section� By rotating the particles the system can even increase its density� The radial
distribution g�r� and cubatic correlation function for one density are shown in �gure �����
The peak near r�D � �� is due to the

nearest neighbors in the FCC�lattice� and remains present in all crystals� The cubatic
order parameter for this branch is plotted in �gure ����� together with the values for the
compression branch�

The intermediate values for this order parameter indicate that the crystal is melting�
but has not reached equilibrium yet� Its exact position depends on the chosen form of
crystal�

Since on average the crystal branch has a lower density than the compression branch
the �rst is probably not thermodynamically stable but only mechanical� This probably
means that simulations are just not long enough to reach relax to an disordered structure
as obtained via compression�

The fact that no crystallization or orientational ordering is observed� does not neces�
sarily mean that it is impossible� It only means that if it is possible even the technique
of parameter hopping is not able to overcome the glass behavior of these systems and to
�nd such phase�

Similar behavior is observed for other aspect ratio�s� Larger aspect ratio�s can be
considered but will increase the simulation time needed rapidly� since the interaction
extend over a larger range� Further more the box�lengths in the simulations for L�D � ��
are for the most dense system with � � ���� of the order ��� Larger aspect ratios have
to be considered therefore more carefully� because if the simulation box becomes smaller
that twice the maximal length scale of the simulated particles we cannot use anymore
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Figure ����� The radial distribution 	�
 and cubatic correlation function 	�
 for
� � 
��� on the �crystal� branch�

the closest distance between two particles� to decide whether they interact we will need
to take into account other periodic images as well 
��
� The alternative is to use more
particles� but both methods will require substantially more computing time�

��� Discussion

In this chapter we have investigated the phase behavior of cross�like particles with a
�nite size and checked the validity of approximations made in the previous chapter on
in�nitely large particles�

We �rst calculated the virial coe	cients of these particles in the isotropic phase� In
the Onsager theory of chapter � we assumed that the rods forming the crosses can be
treated independent from each other and that the interaction between two particles can
be approximated by the sum over all pair interactions� However in order to make this
assumption valid within �� we need to go to extremely large aspect ratio of ���� or
larger�

We also assumed that virial coe	cients beyond the second can be neglected� We
found that the reduced third� fourth and �fth virial coe	cients all scale proportional to
the inverse aspect ratio D�L� For the latter two a similar behavior is observed in the
case of spherocylinders and ellipsoids by Frenkel� For the third virial coe	cients these
particles scale however proportional to �D�L� log�L�D��

As could be expected these systems are extremely hard to simulate� Due to their
shape these particles will get entangled leading to a glass�like behavior� In order to
attempt to overcome this problem we introduced the parameter hopping method� And
although this method might be helpful in other glass�like systems� it is not able to
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overcome the glass�formation in these systems as was illustrated by simulation of a
system of cross�like particles with an aspect ratio L�D � ���

The simulations on this system showed no indication of the presence of a cubatic
phase� There exists a crystal phase which is at least mechanically stable� but no other
types of ordering are observed�

In order to observe a cubatic phase one needs to go to even larger systems and aspect
ratios� Con�rmation of the existence of a cubatic phase in systems of cross�like particles
will therefore not be an easy task�

It might be interesting to look at other cross�like particles� for instance the combi�
nation of only two rods with di�erent lengths� According to the theory these particle
change from rod�like to plate�like behavior� Since these particles are only ��dimensional�
they probably will be easier to simulate than the full crosses�



5 Monodisperse Cylinders

In this chapter we develop a simple theory for hard cylinders� For relatively small aspect

ratios of order unity these particles have an interesting property which might lead to

cubatic behavior�

��� Introduction

One of the most studied and by now well understood monodisperse hard particle
systems is that consisting of the spherocylinders� Spherocylinders are cylindrical bodies
with hemispherical caps on either end� The excluded volume of two spherocylinders is
a smooth function of the mutual angle with a clear minimum and maximum at par�
allel� respectively perpendicular orientations� From the point of view of Monte Carlo
simulations where a test is needed to tell whether particles overlap� these particles are
relatively simple� because the test only involves the calculation of the distance between
two line segments�

However� if we would take only the body without caps� i�e� the cylinder� then things
are di�erent� For large aspect ratios the low�density behavior of cylinders and sphero�
cylinders is similar� But at higher density� the di�erence in the structure of the caps
results in di�erent phase behavior� For low aspect ratios there is of course an obvi�
ous distinction between the smooth� almost sphere�like� spherocylinder and the cylinder
itself�

Also the excluded volume behaves di�erently� because� except for both extreme as�
pect ratios� the maximum in the excluded volume is not found anymore for perpendicular
orientations� In spite of the fact that the overlap criterion was known in principle� no
simulations of cylinders have been reported in the literature�

An incentive for studying hard cylinders is the observation of a cubatic phase in
simulations of cut�spheres by Veerman and Frenkel ���� They looked at spherical particles
with diameter D of which the parts that lie more than �

�
L above or below the equatorial

plane are removed� As a function of L�D this particle can change from a sphere to a disk�
like object� Veerman and Frenkel used these particles as a model for plate�like particles �
which unlike the in	nitely thin disks of �
��� have a non�zero excluded volume for parallel
orientations� For the case of L�D � ��
 they found that this system showed an isotropic�
to�cubatic phase transition� Snapshots of the simulations seem to indicate that these
disk�like particles tend to form stacks of typically � � � particles� yielding approximately
a cylindrical shape� Particles within these stacks have the same orientation�

��



�� � Monodisperse Cylinders

In this chapter we will try to explain the existence of this cubatic phase for the
cut�spheres on the level of the stacks that are formed� We assume that the stacks are
perfect monodisperse cylinders and explore their behavior� Since we are interested in the
cubatic phase� which is positionally disordered� we focus on the orientationally ordered
phases only and neglect the possibility of forming crystal or glass phases�

��� Excluded Volume

The excluded volume of two cylinders was already derived in Onsager�s original paper
of ���� ���� For two cylinders of lengths L� and L� and diameters D� and D� respectively
it is given by

E��� ��

�
D�D��D� �D�� sin � � L�L��D� �D�� sin � �

L�

��
�
D�

�
�D�D�E�sin �� �

�

�
D�

�
j cos �j

�
�

L�

��
�
D�

�
�D�D�E�sin �� �

�

�
D�

�
j cos �j

� �����

where � is the angle between the two cylinders and E�x� is the complete elliptical integral
of the second kind �

�� In this chapter we focus on a system of monodisperse cylinders
with length L and diameter D� which reduces this formula to

E��� ��



D� sin � � 
L�D sin � �

LD�

��


� 
E�sin �� �

�



j cos �j

� ���
�

In both extreme limits where the aspect ratio L�D goes to in	nity or to zero this excluded
volume is dominated by a term proportional to sin���� Hence the excluded volume will
be minimal for parallel orientations and maximal near perpendicular orientations�

In the 	rst limit we have a system of long rod�like particles� which will have an
isotropic�to�nematic phase transition as was explained by Onsager ����

In the second limit we have a system of thin disks� which also will have an isotropic�
to�nematic phase transition as was shown by Eppenga and Frenkel by means of Monte
Carlo simulations �
���

There is however an intermediate region of aspect ratios where the behavior of the
excluded volume is di�erent� In 	gure ��� the excluded volume as function of the an�
gle between the directors is plotted for several values of the aspect ratio L�D� For
comparison they are normalized to unity for perpendicular orientations�

Surprisingly the maximum excluded volume of two cylinders is not found for per�
pendicular orientations� but at a smaller angle� In fact for all aspect ratios� with the
exception only of L�D � � the excluded volume shows a local minimum for perpendic�
ular orientations� This can be found directly from ���
� by noticing that its derivative
with respect to � at � � �

�
� is negative� The location of the maximum of the ex�

cluded volume shifts as function of the aspect ratio to smaller angles� The smallest
angle at which the maximum occurs is reached for an aspect ratio of �

�

p
� � ����� where

� � ��

� or ����� degrees� The maximum excluded volume is ����� times that of the
perpendicular orientation� For larger aspect ratios the angle shifts back to �

�
��
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Figure ���� The excluded volume of two identical cylinders as function of the mutual
angle � for di�erent aspect ratios L�D � � and � �solid�� � �dotted�� 	 �dashed� and
�� �dotted
dashed�� The excluded volume is normalized to unity for perpendicular

orientations�

Another striking feature is that� for an aspect ratio of about one the excluded volumes
for parallel and perpendicular orientations are almost the same� This can be seen more
clearly from 	gure ��
 where the ratio of the perpendicular and parallel excluded volume
versus the aspect ratio L�D is plotted�

The minimum of this curve is found at L�D � �

�

p
�� at which point the excluded

volume for the perpendicular orientation is ���

 times that of the parallel orientation�
Near this aspect ratio interesting things might occur� because the excluded volume of
these particles and therefore their mutual interaction has two nearly equivalent preferred
orientations� One of them is the parallel orientation� which as far as orientationally
ordered phases are concerned� gives rise to a nematic phase while the other one is a
perpendicular orientation� This might lead to a phase in which the particles have an
orientational distribution which is not uni�axial� but might exhibit peaks for both parallel
and perpendicular orientations� One could imagine that in such a phase some particles
would be oriented along the z�axis of a suitable chosen system while other particles
would lie in the xy�plane� Within that plane particles could be distributed isotropically�
in which case it would still be a uniaxial phase or there could also be an additional
preferred direction in the plane� in which case it would be a biaxial phase� If one
continues the argument for perpendicular orientations of the particles� they could be
oriented along two perpendicular directions� the x� and y�axis in which case there would
be an overall cubic symmetry� Assuming that this could be realized in the absence of
any translational order� this would then be a cubatic phase�
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Figure ���� The ratio of perpendicular and parallel excluded volume of cylinders as
function of the aspect ratio�

��� Series Expansion

In order to proceed with the excluded volume it is sometimes convenient to expand
it in a series of suitable chosen functions instead of using its normal form� Since it only
depends on the mutual angle between the two directors of the particles an expansion in
Legendre polynomials will do�

For the three functions of ����� we have the following expansions

j cos �j �
�X
i��

c�iP�i�cos ��

sin � �
�X
i��

s�iP�i�cos ��

E�sin �� �
�X
i��

e�iP�i�cos ��

���
�

where P�i are the Legendre polynomials� Since all functions are symmetric with respect
to � � �

�
� all coe�cients with odd indices are zero� Using ��

���� ���

�� and ���
��


from Gradshteyn and Ryzhik �

�� we 	nd for the coe�cients
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Using these results in ����� we can expand the excluded volume of two arbitrary cylinders
in Legendre polynomials�

E��� �
X
i

E�iP�i�cos �� �����

Furthermore the 	rst expansion coe�cient E� is the average excluded volume and hence
twice the value of the second virial coe�cient in the isotropic phase
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�
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��� Free Energy

The simplest way to treat this kind of hard particle systems at low densities� is to
make use of the Helmholtz Free Energy functional� This free energy consists of a part
related to the orientational entropy and a part which is related to the translational
entropy� The latter can be expanded in terms with an increasing number of interacting
particles� The simplest way to proceed would be by truncating this expansion after
the two�body interaction� Such a second virial approach has been very successful in
describing the isotropic�nematic phase transition in systems of elongated particles� in
which case it can be shown explicitly that higher order contributions can be neglected�
For smaller aspect ratios however this is no longer true and higher order terms become
more important� Surprisingly this approach still describes the phase behavior itself in a
qualitatively correct way� but it leads to an overestimate of the densities at which the
transition occurs�

Since we are only interested in orientationally ordered phases� the position depen�
dence can be integrated out and the Helmholtz Free Energy functional per particle can
be written as

�F
N

��� � log�nVT �� � �

Z
d������� log��������� �

�F ex

N
��� �����

where � is the orientational distribution function of a single particle� which measures the
fraction of particles with an orientation �� � �sin 	 cos
� sin 	 sin
� cos 	�� and is normal�
ized to unity� Since these particles are uniaxial their orientation is de	ned completely
by the two polar angles �	� 
�� n is the number density and VT the thermal volume�
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The 	rst term on the right�hand side is the ideal gas contribution� the integral is the
orientational entropy of the system and the last term is the excess free energy which
takes care of the interaction between the particles�

The part of the free energy which is related to the orientational entropy will be
denoted by �

���� �

Z
d������� log��������� �����

In case of an isotropic phase where � � �

��
this term is identical zero� For all other

normalized distribution functions this integral will be positive� Since the equilibrium
phase corresponds to the minimal free energy� this term favors an isotropic phase�

The excess free energy is an in	nite expansion in the density� involving all virial
coe�cients of the particles� For su�ciently low densities� the virial coe�cients beyond
the second can be neglected and this excess term is the integral of the excluded volume
of two cylinders with orientations �� and ��� respectively and given distribution �

�F ex

N
��� � �

�
n

Z
d��d���E���� ��������������� �����

In case of the isotropic phase� where � � �

��
this leads to second virial approximation

�F
N

��� � log�nVT �� � � nBiso
�

������

On increasing densities� higher order corrections have to be taken into account� One of
the ways in which this can be done is by using Parsons approach �
�� which was applied
by Lee to a nematic liquid crystal ����� The basis for this approach is the Carnahan�
Starling equation of state of hard spheres� where the excess free energy is given by

�F ex
CS

N
�

��� 

�

��� 
��
������

where 
 is the volume fraction of the particles� For the hard sphere system the expansion
of this function reproduces the third virial coe�cient exactly and agrees very well with
the exact results� even up to packing fractions of ���� Lee generalized this excess free
energy in order to apply it on elongated particles by multiplying it with the average
excluded volume

�F ex

N
�


��� 

�

��� 
��
� �jEj� �

�v�
����
�

which is normalized with v� the volume of the particles and where we have introduced
the shorthand notation

� �jEj�� ��
Z

d��d��������E���� ����������� ����
�
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Note that in the case of hard spheres the factor ����
� is unity and hence the Carnahan�
Starling equation of state is recovered�

It is convenient to write one of the integrals in the form of a functional de	ned by

E ������� �
Z

d���E���� ���������� ������

Using the expansion of the excluded volume found in ����� this can be rewritten as an
in	nite summation over functionals of the Legendre polynomials

E ������� �
�X
l��

E�iP�i������� ������

These functionals possess a number of important and useful properties that we shall
exploit� In the appendix we brie�y discuss the most relevant properties of these func�
tionals�

��� Bifurcation Analysis

A bifurcation analysis can be used to get a general impression of the In a stable phase�
the orientation distribution function corresponds to a minimum in the free energy� This
means that a small change in this function would give rise to an increase of the free
energy� In other words� the derivative of ����� with respect to � should be zero while
the second derivative should be positive� There is� however� an additional constraint on
the system� the function � should remain normalized to unity� To take care of this we
need to add an additional term to the free energy

��
Z

d������� ������

where � is a Lagrange multiplier� The distribution function � is now implicitly de	ned as
that function which leads to the lowest value of the free energy ������ This means that a
small variation in the distribution function� under the condition that the normalization is
conserved� will not change the value of the free energy� Taking the functional derivative
of the free energy ����� with respect to the distribution function � leads to the stability
or stationarity equation

log��������� �

��� 

�

�v���� 
��
E ������� � � ������

where the excluded volume is now written as a functional of �� The stability of the
homogeneous� isotropic phase can be determined by expanding � and 
 in the small
parameter � about the bifurcation density 
� and isotropic distribution function ��

� � �� � ��� � ���� � � � �

 � 
� � �
� � ��
� � � � � ������
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Expanding the stationarity equation in � leads to a coupled set of bifurcation equations�
The lowest order has the simple form of an eigenvalue problem

��

��

�

���� 

��

�v���� 
���
E ���� � � ������

In order to solve this equation� all eigenvalues of the excluded volume functional need to
be calculated� Since all functions can be expressed as a linear combination of modi	ed
spherical harmonics Cl�m� the most general Ansatz for the eigenfunction � is

� �
X
l

lX
m��l

cl�mCl�m ���
��

If this expression is inserted in the functional of the excluded volume ������ and its
properties are used � see appendix�� we obtain

E ��� �
X
l��l�m

cl�mEl�Cl����Cl�m� �
X
l�m

�
��


l � �
El

�
cl�mCl�m ���
��

From equation ���
�� it is clear that the eigenvalues can be expressed in terms of the
expansion coe�cients of the excluded volume

�l �
��


l � �
El ���

�

Moreover the complete set of spherical harmonics is automatically divided into sub
classes labeled by the index l� which all have the same eigenvalue �l� The spherical
harmonics themselves are therefore a logical basis for the eigenfunctions of the excluded
volume�

The 	rst four eigenvalues are plotted in 	gure ��
 as function of the aspect ratio L�D�
Eigenvalues corresponding to higher values of l are not relevant as far as the bifurcation
behavior is concerned�

To each eigenfunction corresponds a speci	c bifurcation density at which the isotropic
phase becomes unstable with respect to a distortion with that symmetry� This density
can be obtained by applying �������

�

���l
�
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�v���� 
��
� � ���

�

The relevant bifurcation density 
� is the lowest density at which the isotropic phase
becomes locally unstable with respect to some kind of ordering� And since the second
fraction in ���

� is positive� the eigenvalue has to be negative in order to lead to physical
solutions� Moreover in order to make 
� as small as possible the eigenvalue also needs
to be the largest in absolute value� For both small and large aspect ratios this is the
eigenvalue with l � 
�

But from the 	gure we see that there is a region where the eigenvalue with l � �
takes over� At the aspect ratios L�D � ����
��
 and L�D � ����
��� the eigenvalues
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Figure ���� The �rst 
 eigenvalues of the excluded volume functional for cylinders
as function of the aspect ratio�

of l � 
 and l � � have the same value� In between the eigenvalue of l � � is smaller
and hence will lead to a lower bifurcation density� This means that there is a range
of densities at which the isotropic phase becomes unstable with respect to �uctuations
corresponding to those l � � eigenfunctions� while it is still stable with respect to l � 

eigenfunctions�

The most important eigenvalues are therefore are those with index l � 
 and l � ��
and are given by respectively

�� � ��
�

��
D��L� �D��L�D�

�� � � ��

��
�
D���L� 
�D��
L� �D�

���
��

Although �� remains negative for all aspect ratios� �� does not� For aspect ratios between
L�D � ��� and L�D � �� �� becomes positive� Hence the corresponding bifurcation
density becomes negative� This means that the isotropic phase is linearly stable with
respect to l � 
 perturbations of the orientational distribution function�

The next step is to calculate the eigenfunctions corresponding to the eigenvalues �l
in order to determine the symmetry of the new phase� Since all spherical harmonics
with subscript l have the same eigenvalue� any linear combination

�� �

lX
m��l

cl�mCl�m�	� 
� ���
��
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where Clm are the modi	ed spherical harmonics� can be used� Since the 	rst order
bifurcation equation cannot give any additional information the second order bifurcation
equation is needed�
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��
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The function �� can be expanded in spherical harmonics with coe�cients that remain
to be determined� Furthermore� it can be assumed to be orthogonal to ��� If that is not
the case it is possible to rede	ne � in order to achieve this� In fact� the same argument
holds for all other �n�

The left�hand side of ���
�� can be expressed as a sum which is linear in spherical
harmonics� which means that it is really a set of coupled equations in cm� Moreover since
the equation includes the square of �� it is non�linear� There are l relevant equations
related to the functions in ��� the other equations will determine most of ��� These
equations only depend on the coe�cients cl�m of �� and on 
��

In this case� since l � 
 or l � �� these equations can be solved completely� The
solutions of �� always consist of solution families� because any rotation of a solution will
automatically also be a solution� For the case of l � 
 this solution is

�� � C����	� 
� �
�

�
�
��

z � �� ���
��

where we expressed the function in terms of the unit vector �� described by the polar
coordinates 	 and 
�

This solution has a single rotational axis of symmetry� and hence is related to the
nematic phase� For the case of l � � there are two families of solutions� The 	rst one
is given by the fourth Legendre polynomial� the second solution is a more interesting
solution and is a combination of spherical harmonics
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y � ��

z�� 
�

���
��

The 	rst solution is again uniaxial symmetric and corresponds to a nematic phase�
However� the second solution has a di�erent character� It is only invariant under discrete
rotations over ��
 about any of the x�� y� or z�axis� It has a cubic symmetry and hence
is related to the cubatic phase�

Hence� for small and large aspect ratios the isotropic phase 	rst becomes unstable
with respect to �uctuations with a symmetry of the second Legendre polynomial� This
suggests that there is a transition form the isotropic phase to a phase with nematic phase
symmetry�

For the intermediate range of aspect ratios there are two di�erent eigenfunctions�
The 	rst will also lead to a isotropic�to�nematic phase transition� The second however
suggests the possibility of an isotropic�to�cubatic phase transition�
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In 	gure ��� the bifurcation packing fractions are drawn as function of the aspect
ratio� where Parsons approach is used� Note that without the Parsons approach the
packing fractions might be larger than unity� which is unphysical�
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Figure ���� The packing fractions at which the isotropic phase becomes unstable�
with respect to spherical harmonics of order l� as function of the aspect ratio using
Parsons approach�

The bifurcation analysis is� of course� only indicative of the phase behavior� First of
all� it is not at all sure that the cubatic phase is more stable than the nematic phase�
But more important is the fact that the possibility of crystallization is left out and this
might well happen before any orientational ordering takes place� especially given the
relatively high packing fractions involved

��� Trial Functions

As the bifurcation analysis is not able to predict whether a phase transition� that
is possible in principle� occurs in practice� we need a more direct approach� Since the
real equilibrium particle distribution function is that function which minimizes the free
energy we can try to minimize the free energy ����� directly�

Determination of the real distribution function is however a time consuming and
messy task that would involve an iterative scheme for which at all steps a � dimensional
integral should be evaluated� If the distribution function would be smooth and not to
strongly peaked this would in principle still be possible� However� as it will turn out
this is not case� So instead of doing the complete calculation we will make use of trial
functions�

Trial functions are a way to reduce the in	nite dimensional function space for the
distribution function to a 	nite dimensional� preferably single parameter space� In this
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parameter space we then minimize the free energy� The resulting free energy will be
higher than the true free energy� But by choosing proper trial functions� we obtain
a good estimate� There is a considerable degree of freedom in the choice of the trial
functions� Since we know from the bifurcation analysis what di�erent phases might
appear� we can make a reasonable assumption about the symmetry of the trial functions�
For instance we could choose the trial function to be a linear combination of a 	nite
number of modi	ed spherical harmonics

� �
X
l��

lX
m��l

cl�mCl�m�	� 
� ���
��

This would mean that we have to minimize the free energy in the space of coe�cients
cl�m� There are two problems with this expansion� First of all� it is not suited to describe
strongly peaked distribution functions� Secondly� since the distribution function should
be positive for all orientations there is a restriction on the set of coe�cients� From the
point of view of numerics this is not convenient�

It is therefore better to use a trial function which already takes care of both of these
problems� An attractive option is to use is the trial function� that was used by Onsager
in his study of the isotropic�to�nematic phase transition for rod�like particles ���

�z �
�

�� sinh�
cosh���z� ���
��

This function is already normalized to unity and only depends on a single parameter �
and the relative angle of the orientation �� and the direction of the nematic direction�
which is chosen along the z�axis� For small values of � � � the function is constant� For
large � becomes strongly peaked around j�zj � ��

Another advantage of this trial function is that it allows us to evaluate one of the
integrals in the free energy function analytically� This is the integral related to the
orientational entropy � �����

���z� � log�
�

tanh�
�� � �

arctan sinh�

sinh�
���
��

Although the distribution function does not depend on 
� the excluded volume interac�
tion does� This means that the complete evaluation of the second integral of the free
energy would lead to a four dimensional integral� Only one integral over 
 can be done
directly� But there still remains a three dimensional integral� It is however possible to
reduce the integral into ��dimensional integrals only� This can be seen as follows�

We already found a way to expand the excluded volume in terms of Legendre polyno�
mials ����� depending on the relative orientation of the particles� For a single Legendre
polynomial there exists a closure relation �A�
�� which allows us to separate the orien�
tational dependencies�

Pl�cos �� �
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m��l

C�
l�m����Cl�m���

�� ���

�
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Hence the average excluded volume can be written as

� �zjEj�z � �
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���
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where we in the last line made use of the fact that the distribution function � does not
depend on 
 and hence the integrals for m �� � would be zero� We also introduced a
shorthand notation for the average over the distribution function

� f ���

Z
d�������f���� ���
��

The ��dimensional integrals which we are left can now also be evaluated analytically�
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E�ectively we replaced the 
�dimensional integral by an in	nite sum� of known functions�
We are� however� not only interested in the nematic phase but also in the cubatic

phase� So we also need a trial function with the cubatic symmetry� Guided by the results
for the nematic phase we can try to do something similar� Hence as a trial function we
take a linear combinations of Onsager trial functions along the x�� y� and z�axes�

�O � �

�
��x � �y � �z� �

�

�
� sinh�
�cosh���x� � cosh���y� � cosh���z��

���
��

The subscript O of the distribution refers to common symbol for the cubic symmetry
group �

�� This distribution is also normalized to unity and reduces for � � � to the
isotropic distribution function� Unfortunately the integral ����� can no longer not be
evaluated analytically� However for small values of � it can be expanded in � and for
large values of � its behavior is very similar to ���
��

���O� �

Z
�
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��x � �y � �z� log���
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Z
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where the distribution function is separated in the parts along the di�erent axes� The
	rst step is a consequence of the symmetry� The second step is true only for large values
of � when the main contribution� to the integral is coming from �z� But since it is a
��dimensional integral� it can also easily be evaluated numerically�

For the average excluded volume we can perform for this cubatic trial function a
similar trick as we did for the nematic case� For symmetry reasons� we can split the
average excluded volume into two parts

� �OjEj�O �� �

�
� �zjEj�z � ��

�
� �xjEj�z � ���
��

The 	rst part is identical to that of the nematic case� For the second part we have to
take the average over two distribution functions along di�erent axes� For �x we have
the following identity

�x���� � �z�R
����� ���
��

where R is a rotation about the y�axis over �

�
�� which gives for the second term in the

average excluded volume
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where we used that the Euler angles for the rotation R are ��� �
�
�� �� and the rela�

tion �A���� So for the average excluded volume with our cubatic trial function we obtain
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�� � 
Pl���� � Pl ��z ������

With the two trial functions and the expressions we obtained for the free energy we
are now able to calculate the phase coexistence between both phases and the isotropic
phase in order to determine whether an isotropic�to�cubatic phase transition is possible�
For a given aspect ratio and density we need to minimize the free energy with respect to
the parameter �� Using the free energy as function of the density we now can calculate
the pressure and chemical potential per particle from

�P � n�
d�F�N

dn
����
�
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In 	gure ��� we have plotted the packing fraction of the isotropic phase at coexistence
with the nematic phase as function of the aspect ratio� We truncated the expansion
of the excluded volume interaction after respectively the fourth� eighth and sixteenth
term� The di�erence between the latter two is small enough to assume that� we have
essentially converged to the untruncated solution�
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Figure ���� The packing fraction of the isotropic phase at coexistence with the
nematic phase as function of the aspect ratio� The di�erent curves correspond to
taking up to the fourth �dashed�� eighth �dotted� and sixteenth �solid� order Legendre
polynomial in the excluded volume�

The same thing is observed for the cubatic phase� for which the successive approxi�
mations lie even closer together�

The 	nal results of this calculation� based upon an expansion up to order l � ��� are
plotted in 	gure ����

The isotropic�to�nematic transition precedes the isotropic�to�cubatic transition for
all aspect ratios� even in the range of L�D where the isotropic phase was stable with
respect to the second Legendre polynomial for all densities� This seems a contradiction
but the reason lies somewhat deeper in the bifurcation analysis� This analysis deals
only with a linear stability but more importantly the bifurcation density corresponding
to l � � leads to two possible symmetries one of which has the nematic� and the other
the cubatic symmetry� Apparently the 	rst is preferred�

In 	gure ��� the values of the parameter � in the trial functions ���
�� and ���
�� in
the nematic and cubatic phase� are plotted as function of the aspect ratio� The points
correspond to densities at which the ordered phase coexists with the isotropic phase�
For aspect ratios of order unity � shows a strong peak for the nematic phase� Its value
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Figure ��	� The phase diagram of short cylinders as function of the aspect ratio� The
isotropic
nematic transition �solid lines� occurs before the isotropic
cubatic transition
�dashed lines�� The dotted dashed lines are the bifurcation results
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Figure ��
� The � parameters corresponding to the nematic �solid� and cubatic
�dotted� phase at coexistence with the isotropic phase�
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of about ��� corresponds to a value of ���� for the nematic order parameter� For this
strength ��� of the distribution function is contained in a cone with a maximum angle
of �� degrees�

The peaks in the orientational distribution of the cubatic phase are much weaker
and � reaches a minimum for aspect ratios of order unity� The loss in orientational
entropy� caused by ordering� with respect to the isotropic phase� will be therefore larger
in the case of the nematic phase� This is in favor of the cubatic phase� but this e�ect is
not enough to compensate for the contribution to the free energy due to the excluded
volume�

Moreover� even at higher densities we do not observe coexistence between the nematic
and cubatic phase�

��� Discussion

In this chapter we developed a simple theory for the phase behavior of cylinders�
We mainly focused on particles with an aspect ratio of order unity� These speci	c
particles have two preferred directions with respect to each other� Both for parallel and
perpendicular orientations the excluded volume has a �relative� minimum would make
it possible for these particles to form a cubatic phase�

To investigate these systems we developed a simple theory� in which we only looked
at orientations and assumed that there is no positional order� Since the cylinders have
a small aspect ratio� we had to take more�particle e�ects into account� We did this� by
using the Parsons approach�

This gave us an expression for the free energy which we investigated in two ways�
First we used a bifurcation analysis and determined the stability of the isotropic phase�
This analysis showed that for aspect ratios between ��� and ��� the isotropic phase
becomes 	rst unstable with respect to two di�erent symmetries� one nematic the other
cubatic� which allows for the possibility of an isotropic�cubatic phase transition�

The second �variational� method we used was to minimize the Helmholtz free energy
using an Onsager style trial functions� that have nematic symmetry� and a similar trial
function with the cubatic symmetry� These calculations showed that the nematic phase
precedes the cubatic phase for all aspect ratios� and coexistence between the nematic
and cubatic phase could not be found�

Hence� according to this theory� the cubatic phase cannot be found in a system
of monodisperse cylinders� In order to explain the existence of the cubatic phase in a
system of cut�spheres we need to go beyond the simple idea of uniform cylindrical stacks�

As a 	nal remark� we mention that we made two important assumptions� The 	rst
was that we neglected the possibility of crystallization and the second that we used
Parsons approach� It is not obvious that this approach describes correlations in an
e�ective way� In fact there are reasons to doubt it� The packing fractions we obtained
for the isotropic�to�nematic transition at aspect ratios of order unity are about ����
In the case of hard spheres the same approximation already breaks down at packing
fractions of about ��� where crystallization occurs� The high values we obtain therefore
make it likely that we are close to� or even beyond� the point of crystallization and an
orientationally ordered liquid might not be stable at all� Moreover for the ordered phases
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we used the same scaling relation of the virial coe�cient as for the isotropic phase and
this is in general not true�

Although our theory does not yield an isotropic�to�cubatic phase transition� it does
not rule out the possibility altogether� The trial functions of section ��� show that in
the interesting range of aspect ratios the isotropic�to�cubatic transition takes place at a
density which is less than 
� higher than the isotropic�to�nematic transition� And since
we made several approximations only a small correction might be enough to turn the
balance in favor of the cubatic phase�



6 Assembly and Polydispersity of

Cylinders

In this chapter we extend our model for monodisperse cylinders to include aggregation�

in order to explain stack formation observed in the cut�sphere system� the driving force

behind the cubatic phase� We also allow for polydispersity� which tends to destabilize

crystalline behavior�

��� Introduction

In the previous chapter we saw that cylinders with an aspect ratio of order unity are
close to forming a stable cubatic phase� An original approach was to model the cubatic
phase as observed in the systems of cut�spheres in terms of the formation of perfect
cylindrical stacks� In reality however these stacks are neither perfect cylinders nor do
they all have the same shape� As a consequence there is an amount of free energy related
to the internal con�guration of the stacks that was completely ignored�

Furthermore we obtained extremely high packing fractions at which the isotropic�
to�nematic phase transition occurs� and it is likely that crystallization� which possibly
already occurs at lower densities� will play an important role�

In order to investigate both these possibilities we extend the theory developed in the
previous chapter in two ways� First� we replace the description of perfect cylinders by
clusters of disk�like objects which have an e�ective cylindrical shape� The number of
units in a given cluster however may vary�

The second way in which we will extend our theory is by including polydispersity
in the lengths but not of the diameters of the cylinders� As it will turn out� this poly�
dispersity will not only make perpendicular orientations of particles more favorable� but
also has the tendency to destabilize any crystalline structure�

��� Aggregation

Consider a system consisting of N identical particles or monomers� in our case
are thin cylinders� all having their own position and orientation� Assume that these
monomers can aggregate into small clusters of dimers� trimers� etc�� or in general s�
mers� These clusters will have their own average position and orientation� and of course
internal con�guration� These two descriptions� one on the level of the monomers the
other on the level of s�mers� are closely related�

At �xed volume V � and temperature T � the partition function of the system of N
monomers is given by ���	


��
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Z�N� V� T 
 

�

N �VN

Z
dqN exp���UN�qN

 �	��


where V is the thermal volume of a monomer� It depends on the mass and moments
of inertia of the single particle� The generalized coordinates of a single particle ��r and
orientation ��
 are denoted by q�

In order to describe the same system at the di�erent level of clusters we need to de�
scribe the clusters in more detail� We will assume that clusters with the same number of
particles are all similar and therefore behave as if they are a new type of indistinguishable
particles�

The �rst observation is that clusters will contain di�erent numbers of particles� We
assume that the system contains N� single particles� N� dimers� N� trimers and in
general Ns s�mers� The total number of particles however is constrained to N � leading
to the following normalization

N 

X
s

sNs �	��


Furthermore we need to correct for the fact that the monomers are indistinguishable�
The total number of monomers N is distributed over the di�erent sized clusters� which
can be done

N �Q
s�s�


NsNs�
�	��


di�erent ways� The factor Ns� has to be included� because clusters of the same size s
are assumed to be indistinguishable�

If we assume for the moment that clusters of size s behave as a new type of par�
ticle which can be described by the positions and orientations qs of all the monomers
by which it is formed� the total interaction energy can be separated into intra�cluster
interactions Us and inter�cluster interaction Ws�s�� We can thus write the total energy
of the system as

UN �qN
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s

X
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Us��qs
is
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X
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X
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Ws�s���qs
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i
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 �	��


where we used the index is to sum over clusters of size s� Our goal is not to describe
the interactions between the clusters in great detail�

Rather� we use an e�ective interaction that depends only on the average position of
the center of mass and the average orientation only� denoted by Rs� This allows us to
rewrite the partition function as

Z�N� V� T 
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where we abbreviated the set of all average positions and orientations of the clusters
by fRg� If we would have described the system as a mixture of di�erent components
labeled by s� we would have obtained the following expression for the partition function

Z�N� V� T 
 

Y
s

�

Ns�VNs

s

Z
dfRg exp���W �fRg

 �	�	


where Ns is the number of particles of type s and Vs is the thermal volume of a particle
of this species� Comparing equations �	��
 and �	�	
 we can interpret Vs as the thermal
volume of a cluster of s monomers de�ned by

Vs 

VsV�

Qs

�	��


where V� 

R
dRs and Qs denotes the internal con�guration integral of an s�mer

Qs 

�

s�

Z
dqs exp���Us�qs

 �	��


The value of V� depends on the way the clusters are described� If we describe clusters
as spherical objects they do not have an orientation and V� 
 V the proper volume�
If the clusters are not spherical� their orientation should be taken into account for the
description� In that case V� 
 ���V � Extension to more complicated descriptions of the
clusters is straightforward�

The thermal volume of a cluster or assembly of particles is not only dependent on
the total mass and moment of inertia but also on the interaction of the monomers within
the cluster� For instance the monomers could be chemically bonded to each other�

By taking the logarithm of the partition function we obtain the Helmholtz free energy
of the system� For the isotropic mixture we can write this in the form of a virial series�
similar to the one for a one�component system �����
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where we introduced the number density �s 
 Ns�V of an s�mer� The two particle
interaction of an s� and t�mer is put in the e�ective second virial coe�cient Bs�t

� � The
�rst term can be written in a more convenient form by using �	��
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where we used the monomer density � 
 N�V � The �rst summation is identical to � due
to the normalization� If we now introduce xs 
 �s��� i�e� the fraction of s�mers present
in the system� the Helmholtz free energy per monomer can be written as
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where we truncated the expansion after the second virial coe�cient� Note that the
dependence on mass and moments of inertia is completely contained in the �rst term�
and only adds a constant to the free energy� As a consequence these values will never
have any in�uence on any of the observables� The second summation is the entropy
of mixing of multi component system� The third terms contains the interaction of the
particles within a single cluster and the last term is the interaction between di�erent
clusters�

All clusters are in dynamical equilibrium� These clusters themselves are continuously
breaking into smaller clusters and re�assembling into larger clusters� hence this process
can described as a set of chemical reactions� For a stable phase these reactions ought to
be in chemical equilibrium � leading to relations in the chemical potentials of all cluster
sizes� The equilibrium condition of s�mers and t�mers� is given by

t	s 
 s	t �	���


where 	s and 	t are the chemical potentials of an s� respectively t�mer� which are related
to the total Helmholtz free energy by

	s 


�

F


Ns

�
V�T�Ni

�	���


where the volume V � temperature T and the number of clusters of all di�erent clusters Ni

remain �xed� Is is easily veri�ed that this set of equations is solved by

	s 
 s	 �	���


where 	 is the chemical potential of a single monomer�
The goal is to obtain the distribution function fxsg which determines the distribution

of monomers over the clusters� Instead of equating the chemical potentials of each cluster
size by �	���
 we can also minimize the total free energy per particle �	��
 with respect
to xs� By adding the term

�	
X
s

sxs �	���


we ensure the equality of chemical pressures� where 	 is now a Lagrange multiplier�

��� The Isotropic Phase

We will apply the theory described in the previous section to a system of cylinders�
We take monomers with an aspect ratio of L�D as our monomers� typically of the
order ���� For that aspect ratio the cut�spheres form stacks and are able to form a
cubatic phase� In order to compare with results obtained in the previous chapter we use
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again Parsons approach to e�ectively take into account higher virial coe�cients� This
modi�es the Helmholtz free energy to
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where � is the packing fraction� In order to �nd the distribution of di�erent clusters we
have to minimize this free energy expression with respect to the fractions xs� leading to
a set of coupled equations� Furthermore we have to make some assumptions about the
shape of clusters and hence the internal con�gurational integral Qs�

We assume that particles in a s�mer are stacked close together with almost identical
orientations� E�ectively an s�mer can then be described by a cylinder with length Ls

and constant diameter D along the length� Along the direction of the stacks successive
particles are able to move freely such that the maximum distance will not exceed a
certain limit �ls� The average distance is ls� leading to an average length of the stack
Ls 
 sL � �s � �
ls� The distance of the center of mass of a sub�unit with respect to
the axis of the stack will be limited by a small value d and the orientation is con�ned
to the solid angle �� which for all s�mers for simplicity we take to be the same� Since s
particles can be stacked in s� di�erent ways the internal con�guration integral is given
by

Qs 
 V��
�

�
d�ls�
s�� �	���


where V� 
 ��V � �� instead of ��� because we assume the s�mers to be e�ectively
uniaxial
�

Since s�mers have an e�ective volume that is larger than the sum of the volumes of
its sub�units� also the packing fraction has to modi�ed to an e�ective packing fraction

� 
 �
X
s

xs
�

�
D�Ls �	���


In addition to minimizing the free energy with respect to xs we now also need to minimize
with respect to ls� But before we proceed� we �rst introduce some shorthand notations�
We de�ne

� 
 �
�� ��

���� �
�
�	���


which is the factor from the Parsons approach� The second virial coe�cient for two
arbitrary cylinders ���	
 can be written as

Bs�t
� 
 b� � b��Ls � Lt
 � b�LsLt �	���
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where we used the fact that they have equal diameters D� The coe�cients b�� b� and b�
are de�ned by

b� 

��
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D�

b� 
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�	
�� � �
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�

�
D

�	���


If we now take the derivative of the free energy with respect to ls� we obtain the �rst
set of coupled equations�

�

ls
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X
t

xt�b� � b�Lt
 � ��
X
s�t

xsxtB
s�t
� �	���


where �� 
 �
��
ls
��xs�s��

 is independent of s or xs and the common factor �s��
xs
is divided out� We see that our choice leads to an equation which determines the length
scale ls and that it is independent of s� Therefore ls 
 l is the same for all s�mers� This
can be understood by realizing that the derivative of the free energy with respect to the
length scale ls is comparable to the internal pressure of an s�mer�

The second set of equations for which we take the derivative of the Helmholtz free
energy with respect to xs is given by

log xs � log�
�s��Qs

V�

 � ��

X
t

xtB
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� � ��Ls

X
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xsxtB
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� � s	 
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Using this equation with s 
 � enables us to eliminate 	� Combining the result with
equation �	���
 we can express xs in terms of x� and l

xs 
 xs�
�s��Qs

V�

�
exp

�
��
X
t

xt�b� � b�Lt
� �

��s��

�	���


The �nal expression for the distribution xs in the isotropic phase therefore has a simple
form xs 
 x�q

s��� Using the normalization
P

s sxs 
 � we �nd that xs can be expressed
in terms of x� only

xs 
 x����p
x�


s�� �	���


The combination of this equation with �	���
 and �	���
 can now be solved self consis�
tently to yield the numerical value of x� and the length scale l for any given value of the
number density� monomer shape and Qs� The main result is that in the isotropic phase
the distribution of s�mers shows a simple behavior�

Note that all summations over s and�or t can now be expressed in terms of x� only
by
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The last summation will be needed in the next section�

��� Bifurcation Analysis

What we have done so far is to determine the distribution xs for the isotropic phase�
What we are after however is the possible existence of ordered phases� To this end we
perform a bifurcation analysis� First we need to extend the Helmholtz free energy to
include orientational ordering in the system
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This is a functional of the set of 
�s� describing the ordering of the s�mers� The degree
of order� though coupled � for the aggregates of di�erent size will in general not be
equal� We abbreviated the orientational entropy by �� de�ned similar to ����
� The
second virial coe�cient is replaced by half the average excluded volume Es�t of an s� and
t�mer� The last summation involves a set of Lagrange multipliers 	s� that are �xed by
the normalization of the di�erent ODF�s 
�s�� Note that for the isotropic phase� where

�s� 
 �

��
� equation �	���
 reduces to �	��	
�

We now need to minimize the free energy not only with respect to xs and ls but also
with respect to the ODF�s 
s� Taking the derivative with respect to ls a set of equations
similar to �	���
 is obtained� leading to the same conclusion that ls 
 l for all s�mers�

Taking the functional derivatives with respect to the ODF�s 
�s� gives a set of coupled
stationarity equations

log���
�s�
 � �
X
t

xtEs�t�
�t�� 
 	s �	���


In the same fashion as we did for Bs�t
� in �	���
 we can split the functional of the excluded

volume Es�t in

Es�t 
 E ��� � �s � t
E ��� � stE ��� �	���




�� 	 Assembly and Polydispersity of Cylinders

where the exact form of the functionals E ���� E ��� and E ��� can be obtained by substitution
of Ls 
 s�L � l
 � s into Es�t� This reveals an interesting property of the stationarity
equations� because they can now be written as


�s� � exp
�
�
	E ����X� � E ����Y �


�� exp
�
s�
	E ����X� � E ����Y �


�
�	���


where we introduced the abbreviations X and Y for the summations
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X
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X
t
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The relevance of this observation is that the equilibrium ODF�s of all cluster sizes are
proportional to those of the monomers and dimers� Instead of solving a complete set
of coupled stationarity equations only two of these equations in X and Y remain� but
even now it is still di�cult task to solve these equations� Similar behavior is observed
for polydispersity in long rods �����

We will only determine the in�uence of cluster formation on the bifurcation density�
The problem is now more complicated than in the monodisperse case because one should
take into account that the isotropic phase is described not only by the packing fraction ��
but also by the internal length l and distribution xs�

If the expansions are performed as in to the monodisperse case� and the �rst order
bifurcations equations are written in the terms X� and Y� we �nd

X� � ��
�

	
��E ����X�� � ��E ����X�� � ��E ����X�� � ��E ����X��




 �
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��E ����X�� � ��E ����X�� � ��E ����X�� � ��E ����X��




 �

�	���


where �� refers to �	���
 at the bifurcation density� For this set of �rst bifurcation
equations the values which can be used for l and xs are still the equilibrium values of
the isotropic phase�

We can now substitute a combination of modi�ed spherical harmonics for both X�

and Y�� similar to �����
� Since we can expand all the functionals in term of Legendre
polynomials and then make use of the property �A��	
 this reduces to solving� for each
combination of l and m� a set of two linear equations� Since we want to determine the
stability of the isotropic phase we need a non�trivial solution� which requires that the
determinant of �	���
 is zero� This gives us a polynomial equation in l� � and x�� If we
combine this equation with �	���
 and �	���
 these equations can be solved simultane�
ously�

Figure 	�� shows the solutions of �	���
� �	���
 and �	���
 for several ratios of l and L�
The value Qs �	���
� which can be interpreted as a type of binding energy� is along these
lines not constant�

The bifurcation densities are plotted versus the aspect ratio� Instead of the solutions
of x� we indicated the average length of the cluster which� due to �	��	
� is just ��

p
x��

For the limit of the distance l � � the results of the monodisperse case are recovered�
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Figure ���� Bifurcation solutions for l�L � ��� �dotted�� l�L � ���� �dashed��
l�L � ���� �long dashed� and l�L � ����� �dotted dashed�	 The solid curves are the
results of the monodisperse bifurcation equations	 The left 
gures represent the l � �
or Nematic bifurcation� the right two 
gures the l � � bifurcation	

If we look at the l 
 � bifurcation we observe that the stability region which was
obtained in the monodisperse case� has disappeared� This can be easily understood�
because if the ratio l�L is �nite this will lead to a few clusters� that for the particles
in this range of aspect ratios� are more rod�like and will drive the instability� Since in
the monodisperse case the bifurcation density for increasing aspect ratios shifts to lower
values� the same can be observed in this case� This in contrast with thin cylinders� where
clusters of several particles enter the region of aspect ratios of order unity� We recall
that for these aspect ratios in the monodisperse case the stability is enhanced� leading
to a higher bifurcation density� as is also observed in the present case�

Di�erent solutions for the same aspect ratio are made possible by di�erent values of
the parameters in �	���
� The solutions for lower densities correspond to larger values
of Qs� hence weaker coupling� The l 
 � bifurcation of the isotropic shows similar
results� If the distance l between the monomers increases however the order in which
both instabilities occur changes�

These results are interesting� not in the sense that they explain the formation of a
cubatic phase as observed in the cut�sphere system� but because they show that it is
possible� by forming stacks of particles� to decrease the value of bifurcation density and
to destabilize the isotropic phase� On the other hand� it is also possible� for thin discs�
to increase the stability of the isotropic phase� As a consequence the di�erence in the
bifurcation densities for l 
 � and l 
 � becomes smaller� which is in favor of the cubatic
phase�
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��	 Polydispersity

In this section we will investigate the behavior of a polydisperse mixture of cylinders�
As we have seen in the previous chapter the isotropic�to�nematic phase transition oc�
curred at a packing fraction of about ���� Although the exact number might be di�erent
because of the highly approximative way in which the e�ect of higher virial coe�cients is
modeled� there is a clear trend of increasing transition densities in the interesting region
of aspect ratios of order unity� As a consequence crystallization should be considered
as well� It is known that the presence of polydispersity in a system can destroy the
crystalline order� Therefore by allowing for polydispersity the problem of crystallization
might be overcome�

We will assume that we have a system of cylinders with identical diameters� and
polydispersity is only present as a distribution over di�erent lengths of the cylinders�
Apart from the fact that polydispersity will destabilize crystalline phases� there is an�
other reason why it is interesting� The excluded volume ����
 for monodisperse cylinders
is minimal for parallel orientations� but it has a local minimum for perpendicular orienta�
tions� According to the results obtained by the trial function in the case of monodisperse
cylinders �section ��	
� the cubatic phase is nowhere stable In order words the di�erence
in excluded volume between the parallel and perpendicular orientation of particles is
still large enough to stabilize the nematic phase� If we allow for polydispersity however
and look again at the ratio of the perpendicular and parallel excluded volume for two
cylinders with di�erent lengths� we �nd

E�
Ek 


��D � �L� � L�

��D � ��L� � L�



��D�L� � L�

� �L� � L�


�

��D�L� � L�

�	���


This indicates that for given value of L� � L� the ratio becomes smaller if L� �
 L�� In
�gure 	�� the ratio of the perpendicular and parallel excluded volume is plotted� The
minimum found in the monodisperse case is in fact a saddle point in the polydisperse
case� This suggests that the cubatic phase might be stabilized by polydispersity�

We assumed a given distribution function f�l
 for the polydispersity which denotes
the fraction of total particles with a given length �� � l
L� where L is a reference length�
and diameter D� This function is normalized to unity and has an average value of zero

Z
dlf�l
 
 �Z
dlf�l
l 
 �

�	���


The second constraint leads to an average length of L for the particles� And since the
particles have �xed lengths the packing fraction of the system is therefore ����
�D�L�
We also wish to consider order in the system� For this purpose we label the ODF�s of a
given length by 
l� The Helmholtz free energy of this system is given by
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which is similar to �	���
� but the summations over xs are replaced by integrals over l�
Terms involving Lagrange multipliers have been left out� but are easily implemented�
Vl it the thermal volume of cylinder with length �� � l
L� If we consider the system
for given composition f�l
 the second term is constant and will not have any e�ect on
the system� and will therefore be left out� Taking the functional derivative of this free
energy with respect to 
l leads to a stationarity equation similar to �	���
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where we used the same trick as in �	���
 and expanded the excluded volume in a part
independent of l and linear in l� The result is that the ODF 
l can be written as


l � ���
l
� �	���


where �� and �� are two� yet undetermined ODF�s�
If we perform a bifurcation analysis for this system� the �rst bifurcation equation

has the form

�
l
�

�

� ��
	E ����X�� � E ����Y�� � lE ����X�� � lE ����Y��
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for all l� Using the linear property of the excluded volume functionals and performing the
integrations over l� on the right�hand side� leads to the two relevant ODF�s� X 


R
f�l

l

and Y 

R
f�l
l
l� If we multiply both sides with f�l
 respectively f�l
l� and perform

the integration over l making use of �	���
� we obtain two simple coupled equations
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Note that these two equations only depend on f�l
 through the average value of l� in
the second equation� If this average is zero equation �����
 for the monodisperse system
is recovered�
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Since we are interested in non�trivial solutions the determinant of these equation has
to be zero� The results are shown in �gure 	�� for several values of � l� �f �

The vanishing of the l 
 � bifurcation density which in the monodisperse case was
obtained� is only true for the case where the average squared distance between monomers
� l� �
 �� The e�ect of increasing the polydispersity �via this parameter � l� �
 is to
shift the instabilities of the isotropic phase to lower densities� The e�ect on the l 
 �
line is only small� and a su�cient amount of polydispersity in this system will therefore
likely prefer an isotropic�nematic rather than an isotropic�cubatic phase transition�

��� Discussion

In this chapter we developed two simple extensions of the theory for monodisperse
cylinders� In the �rst part we tried to model in a simple fashion the formation of stacks
of cylindrical particles� By combining the description on the level of monomers and on
the level of independent clusters we were able to obtain an expression for the free energy
including the internal con�guration of the clusters�

A bifurcation analysis of this system showed that stack formation can have two
e�ects� it decreases the stability of long particles but for thin particles it has the opposite
e�ect� If the �binding� in the cluster becomes too weak however� the l 
 � bifurcation
precedes the one of l 
 �� which might make the cubatic phase impossible�

In the second part we examined the e�ects of polydispersity in a system of cylinders�
The �rst observation we made is that for cylinders with di�erent lengths� the excluded
volume of perpendicular orientations can be less than for parallel cylinders� This might
help to form a cubatic phase� In order to check this we performed a bifurcation analysis
which revealed that introducing polydispersity lowers the maximum density of stability
in the isotropic phase� The e�ect on the l 
 � bifurcation� however� is much larger and
seems to indicate that too much polydispersity will exclude the possibility of a cubatic
phase�

In both cases we found that the orientational order in the system of particles with
di�erent aspect ratios� due to the special form of the interaction� are closely related�
The problem� which in principle involves di�erent ODF�s for di�erent particle shapes�
reduces to the calculation of only two of these functions� determining all others up to a
normalization constant�

It is not obvious what will be the e�ect of polydispersity on the true transition 
the bifurcation analysis yields merely an indication� Both theories indicate that the
nematic phase is a�ected more than the cubatic phase� In order to check this� the free
energy expressions have to analyzed more carefully� for example by using a Gaussian
approximation�



7 Simulation of Cylinders

In this chapter we report about simulation of hard cylinders� Several di�erent simulation

techniques are used in order to see whether cylinders with relative short aspect ratio can

form a cubatic phase and if not what phase they do form� We consider both monodisperse

and polydisperse systems�

��� Introduction

There have been done already a lot of simulations on the relative simple type of hard
particle systems� The �rst simulations were those on hard spheres systems by Alder
and Wainwright ���� which at that time unexpectedly� crystallized� Since then several
di�erent kind of particles have been studied� ellipsoids �	� 
�� spherocylinders ��
�� cut�
spheres �
�� in�nitely thin rods ���� ��� and plates ��
� ��� The phase behavior of most
of these particles is now well understood from simulations and theory� Some of these
systems are now also experimentally accessible and con�rm the obtained results�

What these particles all have in common is that their shapes are very easy to describe�
This is necessary for a single reason� Hard particles in a simulation are not supposed to
overlap� This means that given two particles with known size� position and orientation�
we should be able to determine whether they overlap or not�

For spheres this is very easy because the only thing which is needed is the distance
between the centers and both radii� Only when the distance is less than the sum of the
radii do the particles overlap� It is not di�cult to imagine that if we change the shape
of the particles this calculation becomes more di�cult� More di�cult means longer
calculation and hence the simulation time needed goes up with increasing complexity of
the particles�

In this chapter we report the results of simulations done on hard cylinders� So far
only approximate simulations of freely rotating� hard cylinders have been reported in
the literature ����� The reason for looking at these particles was already explained in
chapter �� and was related to an attempt to explain the cubatic phase in a system of
cut�spheres� The theory we developed did not allow the existence of a cubatic phase�
but on the way we made several assumptions� which in this chapter will be checked by
means of computer simulations�

As it turns out� the overlap criterion for cylinders is too time consuming at present
to make use of molecular dynamics� We therefore will restrict ourselves to Monte Carlo
simulations in the NPT�ensemble� constant number of particles� pressure and tempera�
ture�

���
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Since we are interested in the possible existence of the cubatic phase we do not
attempt to map out the complete phase diagram as function of the aspect ratio� We
restrict our selves to only one relevant aspect ratio� Based upon the theory of chapter �
we focus on systems with L�D � ���� which is close to the aspect ratio for which the
ratio of the perpendicular and parallel excluded volume is minimal� If cylinders have any
cubatic behavior it should be close to this aspect ratio� Larger aspect ratios resemble
real rod�like particles like shorter ratios will behave more like disc�like particles which
both have a normal isotropic�to�nematic phase transition�

��� Overlap Criterion

As was already mentioned in the introduction� the most important ingredient for
doing computer simulations of hard particles is an overlap criterion� For given sizes of
particles� relative positions and orientations it should be able to tell whether particles
overlap or not� The second requirement is that it should be as simple as possible to
minimize the use of computer time�

In ���� an overview is given of the most widely used overlap criteria� The one for
cylinders is only outlined� It consists out of three steps�

�� spherocylinder overlap� For the �rst step we replace the cylinders by spherocylin�
ders by adding hemispheres on both sides of the cylinders� We then compute the
closest distance between the spherocylinders� If the spherocylinders do not over�
lap the cylinders will not either� If the spherocylinders do overlap we can only
conclude that the cylinders overlap if and only if the vector of shortest distance
intersects both cylindrical parts�

�� disk�disk overlap� If the last condition is not satis�ed we need to continue with
the second step� In this step we check whether there is an overlap of the �at faces
of the cylinders�

�� disk�cylinder overlap� If no overlap is found in of second step� and the spherocylin�
ders in the �rst step did overlap we need to proceed with the third step� which is
the most time consuming one� We have to check whether one of the �at faces of
a cylinder overlaps with the cylindrical part of the other cylinder�

According to ���� this last problem reduces to calculating overlaps between two planar
ellipses� and hence is a special case of the overlap between two ellipsoids�

Suppose we now look in the plane de�ned by the �at face of the �rst cylinder� If
it does not intersect the other cylinder there is no overlap� If there is an intersection
however it is an ellipse or a truncated ellipse if a �at face of the second cylinder also
intersects the same plane �see �gure 
��� � If we proceed along this line we need to
check therefore whether the overlap between the ellipses lies on the allowed parts and
we therefore actually need to calculate a point of intersection�

For ellipsoids there exist two di�erent criteria to determine whether there exists an
overlap or not� The �rst is due to Vieillard�Baron ��	� and the second due to Perram
and Wertheim ��
�� Both criteria determine whether there exists an overlap without
calculating any points which both particles have in common� And this is precisely what
has to be established for the overlap of the two planar ellipses� because one of them need
not be complete�
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Figure ���� Projection of non�overlapping cylinders due to truncation of the ellipse�

The alternative route is to look at the problem as the overlap between a �at face
of one cylinder with a sequence of circles of the second particle� This results in a
fourth order polynomial equation and can in principle be solved analytically� The main
problem with this approach is that during simulations it will result in severe problems�
and not always �nd the correct outcome� The reason for this is that the coe�cients of
the polynomial equation are inversely proportional to the sine of the angle between the
particles� Therefore the coe�cients can di�er orders of magnitudes� which makes it hard
to solve and not always accurate�

The method we applied for the last step in the overlap criterion therefore is a direct
minimization of the distance between a point on the edge of the �rst cylinder and a
point on the axis of the second cylinder� Although it is slower is has proven to be very
reliable�

��� Virial coe	cients

Using the overlap criterion for cylinders as obtained in the previous section we can
calculate the third and fourth virial coe�cients as function of the aspect ratios� The
results are plotted in �gure 
��� In section ��� we already explained the way in which
virial coe�cients can be calculated by growing chains of particles and analyzing to which
diagrams the con�gurations belong�

In chapter � we used the Parsons approach� in which we approximated the higher
virial coe�cients leading to the excess free energy ������� which can be expanded for
low densities� This excess free energy should approximate the real expansion in term of
virial coe�cients

�F ex

N
� B�� �

�

�
B��

� � �

�
B��

� � � � � �
���

Comparison of these two series give us the approximated values for the virial coe�cients

B� �
�

�
v�B�

B� �
�

�
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�
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��

�
v�
�
B�

�
���

These estimated values are for comparison also plotted in �gure 
��� What we observe
is that the general behavior is very similar� but the actual values di�er� The third virial
coe�cient is underestimated and according to the Parsons approach the fourth virial
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Figure ���� The reduced virial coe�cients B��B
�
� � B��B

�
� and B��B

�
� for the

isotropic phase as estimated by the Parsons approach �solid� dotted resp� dashed
curve� and their true values �circles� squares resp� diamonds��

coe�cient is always positive� while for rod�like particles� and hence increasing aspect
ratios� it should become negative ��
��

This disagreement might have some e�ects on the calculated coexistence� but it is
not obvious whether this enough to prefer a cubatic over the nematic phase for aspect
ratios of order unity�

��� The Flip�move

In Monte Carlo simulations we try to sample the complete phase�space in an e�ective
way� It is however possible that a simulation gets stuck in a restricted part of the phase
space� If this is the case we need to broaden the repertoire of possible MC�moves� In
the case of short cylinders such a move exists and is surprisingly simple and e�ective�

From the normal simulation we already have the move of position and orientation of
the particles� and we change the volume anisotropically� One can imagine that in dens
systems the particles are close together and it becomes hard for the particles to move
or rotate� In order to get an acceptance of ������ of the moves this means that we
have a small value for the maximum rotation� with a maximum of about ���� degrees�
depending on aspect ratio and density�

The projections of a short cylinder with diameter D and length L in the direction
parallel and perpendicular to its orientation are a circle with diameter D respectively
a rectangle with sides L and D� These projections have almost the same dimensions
if L and D are of the same magnitude� which is the case for the systems that we are
interested in� Hence it is possible to rotate a short cylinder directly over �� degrees to a
perpendicular orientation without causing an overlap in the system� This ��ip� however
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is much harder to establish via the normal path of rotations� as can be seen in �gure 
���
The reason is simple� the maximum dimension of a cylinder in term of its length and
diameter is

p
L� �D� which can be up to ��� higher than the length or diameter� And

therefore in denser systems there is just not enough room for these rotations to happen�
unless all particles in the neighborhood move away to create the necessary space�

Figure ���� Top view of a hexagonal structure for cylinders with aspect ratio of order
unity� From left to right the angle of the particle in the middle goes from � to ��	 and
somewhere in between� The last causing overlap�

During our simulations on average � out of every �� rotations will be the attempt to
�ip a particle� Here to we select at random an orientation in the plane perpendicular to
the direction of the particle� And accept if there is no overlap in the new situation� The
acceptance of this move depends of course strongly on the aspect ratio and density� but
can be as large as � �� even in a crystalline phase�

��� Crystal Phases

There are several relevant crystalline structures to study for a system of cylinders
with an aspect ratio of order unity� The highest possible density in a system of cylinders
is reached when all cylinders are perfectly aligned in a closed packed structure with
packing fraction � � ��

p
���

The relevant closed packed structure is formed if the particles are packed in an
hexagonally ordered layers� These layers can be stacked in an �AAA� fashion� such that
particles in di�erent layers are exactly on top of each other� It is in principle also possible
to order layers in another fashion for instance �ABC� of shifted randomly with respect of
each other� As it will turn out however these variants are are not stable and will relax
to the AAA�crystal�

This highest packing fraction can also be obtained by a columnar phase� In the
AAA�crystal phase the particles are stacked in perfect columns perpendicular to the
layers� These columns can therefore slide along each other to form a columnar phase�
Although this shifting of the columns is observed in the simulation this is probably a
�nite size e�ect�

In the phases described above the particles are aligned� There is one crystal that
exhibits cubic like orientational order� namely the simple cubic crystal� Therefore we
also use this crystal in which all particles get randomly an orientation along one of the
three crystal axes assigned�

In order to allow for structural relaxation� the box shape was allowed to change� as is
depicted in �gure 
��� This extension was �rst used by Parrinello and Rahman ��
����
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in MD simulations and later by Najafabadi and Yip in MC simulations ����� Allowing
for shape changes is only useful in crystalline structures� because then the presence of
the crystal structure acts as a restoring force and will ensure that the box shape cannot
become extremely anisotropic in contrast� in the liquid phase� such extreme deformations
might occur�

Figure ���� Changing the box shape�

The position of a particle �r in a non rectangular box is

�r � H�s �
���

where �s are scaled coordinates inside a unit cube� H � � �h�	 �h�	 �h�� is a transformation

matrix describing the shape of the box by the vectors �hi representing the sides of the
box� The volume of the simulation box is given by the determinant of the matrix H

V � jHj � �h� � �h� � �h� �
���

��
 Simulation Results

When searching for cubatic order� the most interesting aspect ratios for cylinders are
of order unity� Because the overlap criterion involves a time consuming minimization
we have chosen to concentrate on a single aspect ratio L�D � ����

Figure 
�� shows the equation of state for this system� For comparison we have
also plotted the equation of state obtained from a virial expansion� using the numerical
values up to the �fth virial coe�cient as obtained in section 
�� and the equation of state
obtained from the Parsons approach� which works very well up to the phase transition�

Simulations are performed on a system of 
�� particles� and in each simulation we
use ������ sweeps to get good statistics� In one sweep all particles are moved once on
average and one attempt is made to change the box�size or boxshape� In order to get an
impression what these systems look like� three snapshots for this system are included in
�gure 
�	�

For high pressures we start with a perfect AAA�crystal� which we slowly expand�
Other crystalline structures are not stable� An ABC�crystal will shifts its planes along
each other to form an AAA�structure� The simple cubic phase with cubatic orientations
is also not stable and will also deform to a AAA�crystal�

The �ip�move is extremely e�ective� Even for a packing fraction � � ��
 one out
of every ���� attempted �ips is accepted� But for � � ��	� this is already one out
of every ��� and increases to about 
� near the transition to the isotropic phase� A
simulation without using this �ip move showed that at � � ��	� particles can achieve a
�ip via a continuous rotation� but this occurs with a very low probability� only once in a
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Figure ��	� The equation of state of cylinders with L�D 
 ��� for the isotropic ���
and crystal ��� phase� The solid line denotes the coexistence� the dashed line corre�
sponds to a virial expansion using up to �fth coe�cient and the dotted line correspond
to the Parsons approach�

simulation of ������ sweeps� Therefore the introduction of the �ip move speeds up this
slow �dynamical� process enormously� leading to a faster convergence to equilibrium�

The high acceptance of the �ip move changes the structure of the phase to something
new� because particles can to be oriented either parallel or perpendicular to the z�
direction as can be seen in �gure 
�	� To analyze the structure of the phase we separate
the positional and orientational order�

For the orientational order we calculate the nematic order parameter tenser Q de�ned
by

Qij �

�

�
�ni�nj � �

�
�ij � �
���

where �n are the directors of the particles� This matrix is real� symmetric and traceless�
It can therefore be written in the form

Q �

�
� N � �

� ��

�
N �B �

� � ��

�
N �B

�
A �
�	�

The maximum eigenvalue N corresponds to the nematic order parameter and the cor�
responding eigenvector to the nematic axis of the system� and is closely related to the
average direction of the particles� B is the biaxial order parameter and will be zero in
an uniaxial nematic phase�
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Figure ��
� Three snap shots
from simulations� corresponding to
isotropic �top left�� high density crys�
tal �top right� and ordered phase near
the transition�left�� The packing frac�
tions for these phases are respectively
��
��� ����
 and ������

The cubatic order parameter I� which we calculate is a combination of modi�ed
spherical harmonics� which is invariant under rotations of the frame� It is a member of a
class of invariant order parameters and is de�ned analogous to the one which was used
for the cross�like particles �������

Il �

��X
m

Cl�mC
�
l�m

��

�
�

�
�
�

Although we refer to I� as the cubatic order parameter one should realize that a non�zero
value does not mean that we have cubatic order� In fact in a perfect nematic phase it is
unity� The reason for this is that it is an summation over all C��m� including C��� � P�

the fourth Legendre polynomial� which in an aligned nematic phase is of order unity� A
cubatic phase requires a non�zero I� in combination with the absence of nematic order�
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Figure ���� The orientational order parameters as function of the packing fraction
in the ordered phase� The nematic ���� cubatic ��� and C� ��� order parameters are
non�zero� C� ��� and C� ��� are negligible small�

In order to detect planar order we �nally consider the average of the functions sin l
�
where the angles 
 of the directors of the particles are measured in the plane perpen�
dicular to the average direction obtained from �
�	�

Cl �
 jCl�lj � �
�
�

This order parameter is invariant under rotation of the system about the average direc�
tion�

Figure ���� The orienta�
tional distribution for a con�
�guration at � 
 ������
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The values of the orientational order parameters are shown in �gure 
�
� The ne�
matic order parameter decrease from � at high densities continuously to almost zero
near the transition point� The cubatic order parameter I� has the same behavior� but
remains �nite� indicating that the orientation distribution does not becomes isotropic
but remains ordered� Initially the orientations of the particles in plane are isotropic
but for lower densities the number of particles perpendicular to the average direction
increases and these particles start to interact� This leads to an additional order in plane�
The order is small but signi�cant ��fold as indicated by the order parameter C�� The
order parameters C�� which is similar to the biaxial order parameter� and C� are both
negligible small�

We use the system at packing fraction � � ���	
 to illustrate the order in the phase
near the transition� In �gure 
�
 we plotted all orientations of the particles on a unit
sphere� It is clear that particles are either along the nematic axis or perpendicular to it�
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Figure ���� The bond orientational order parameters Q����� Q���� and Q���� as
function of the packing fraction in the ordered phase�

To characterize the positional order we use the bond orientational order parame�
ters Ql used by Steinhardt et al �����

Ql �

��X
m

jCl�m�r�j�
��

�
�

�
���

where we determine the polar angles of the vector �r connecting neighboring particles�
Only particles within a distance of twice the length of the particles are used�
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The bond orientational order parameters are shown in �gure 
�� and although they
are decreasing for decreasing density there is no change indicating any structural di�er�
ence� This is partially con�rmed by projections of the centers of mass of the particles
in �gure 
���� The top view shows clearly the hexagonal structure� indicating the pres�
ence of columns� The side view shows that columns lie within planes� Observing planes
however is much more di�cult near the transition to the isotropic phase as can be seen
in the front view� This becomes more evident in �gure 
��� where we have determined
which pairs of particles are in the same plane according to some criterion� If particles
lie in a neighboring columns and the distance along the column is less than ��� of the
lengths of the cylinders we consider them to be in the same plane and connect the cen�
ters of mass� providing a guide for the eye to spot the planes� The bonds through the
boundary conditions are not not drawn but are present as well� On average each particle
is connected to ��� neighboring particles� In a perfect crystal this number should be 	�
while if the columns are distributed randomly� it would� at this density� on average be ��

Figure ���
� The projec�
tions of a con�guration at
packing fraction � 
 ������
The top view �right� shows
the hexagonal pattern of the
columns which can be seen
from the side �under�� In
the front view �right under�
planes are more di�cult to
observe�

Finally we show in �gure 
��� the radial distribution function g�r� and the orienta�
tional correlation functions g��r� and g��r�� de�ned by
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gl�r� �
 Pl��n��� � �n�r�� � �
����

Both orientational correlation functions are non�zero over the whole range� although
the value of g��r� is much smaller� It is tempting to assume that this refers to the absence
of nematic order and� because g��r� is non�zero some cubatic�like order is present� This
is in fact not completely true� g��r� is for instance also zero if roughly a third of the
particles is aligned along a given direction and the rest is distributed isotropically in the

Figure ����� In order to
visualize the planes� particles
within the same plane� ac�
cording to some criterion� are
connected to form a network�
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Figure ����� The radial distribution function g�r� ��� and the orientational corre�
lation functions g��r� ��� and g��r� ��� for � 
 ������
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plane perpendicular to that direction� This would still be an uniaxial symmetry and
therefore a nematic�like phase�

There are two problems left before we can conclude what the nature of this phase is�
The �rst is the positional order which we determined� One could argue that the planes
which we indicated are a consequence of the fact that particles are short and therefore
it is likely that many particles lie within the same plane using the sketched criterion� If
these planes are just an artifact the data could also be interpreted as a columnar phase�
In fact during simulations we observe in a single run that some columns slide along their
neighbors to displace over one or two times the dimension of the particle�

The second problem is that the orientational symmetry is ��fold while the positional
order is 	�fold symmetric� The ��fold symmetry can only be explained by interaction
of particles in neighboring columns which are both in plane and prefer to be at right
angles� The mismatch of both symmetries is then possibly a �nite size e�ect�

In order to check this we performed a simulation using �
	� particles at the same
pressure �Pv� � ���� as a small system with only 
�� particles� For the smaller system
at � � ���	
 � ����� and the C� order parameter had a value of ����
 � ����
� The
average packing fraction for the large system was � � ���	� � ����� and the order
parameter C� in this system reduced to ���
�������� compared with the smaller system
the order parameter shows a decrease but does not yet become negligible�

��� Free Energy Calculation

In order to determine the coexistence between the isotropic liquid and the crystal
phase we have �nd points on the equation of state with equal pressure and chemical
potential� To this end we need to determine the free energy� By performing a thermo�
dynamic integration along the equation of state we can evaluate the free energies up to
a constant� For this constant we need to determine one reference point�

In the isotropic phase this is easy because we can use the ideal gas as a reference

F ��� � Fid��� �

Z �

�

d��
P ����� ��

���
�
����

For the crystal phase we use as a reference system an Einstein crystal with the same
structure ����� which in our case a perfectly aligned AAA�crystal is� We connect the two
systems by a one parameter Hamiltonian which consists of two parts� the coupling of
the particles to their equilibrium lattice positions and the alignment for the orientations

H� � �
X
i

��ri � �r�i �
� � �

X
i

sin���i�� �
����

where � is the coupling parameter and �r�i are the lattice positions of the particles� By
slowly increasing the value of � the system will order according to the imposed �eld�
We used here the same coupling parameter for both �elds� but one can also use di�erent
parameters�

The free system with � � � can be related to the Einstein crystal for which � � �
by
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�F ���

N
�
�Fein��max�

N
�
Z �max

�

d� 
 �r� �� �Z �max

�

d� 
 sin� � �� � logV

N

�
����

where 
 �r� �� is the mean square displacement and 
 sin� � �� the average sine
squared of the angle between the directors of the particles and the direction of the
alignment �eld� The last term corrects for the fact that the center of mass during this
simulation needs to be �xed� The value of �max is chosen such that a system using this
Hamiltonian only will not cause any overlaps in the system� For that limit we can derive
the value of the free energy of the Einstein crystal

�Fein��� �
�

�
logN � �

�
�N � �� log�

�

��
��N log�

��

��
� �
����

In the case that overlaps do occur� it is possible to correct for this ����� By simulating
the system for di�erent values of � the integrals in �
���� can be numerically evaluated�
In order to minimize the error we used the Gauss�Legendre quadrature�

The coexistence is obtained is at packing fraction � � ������ ����� for the isotropic
and � � ������ ����� for the crystalline structure�at a pressure �Pv� � 
�
�� ���� �see
�gure 
����

��� Polydispersity

In the previous sections we did not �nd a cubatic phase in a system of hard cylinders
with an aspect ratio L�D � ���� We recall that this aspect ratio was chosen because
it is close to the optimal aspect ratio� as far as the excluded volume is concerned� for
which the cubatic phase is most likely to occur� Instead a crystalline phase is obtained
which melts directly to the isotropic phase� In section 	�� we discussed the e�ects of
polydispersity on a system of cylinders� The bifurcation theory gave an indication that
the isotropic�to�nematic and isotropic�to�cubatic transition shift to lower densities if
polydispersity is added to the system of monodisperse cylinders� In this section we will
check this numerically by starting in the monodisperse case and adding polydispersity�

For studying continuous mixtures the semigrand ensemble is the most suitable ���� ����
It is a combination of the canonical and grand canonical ensemble in which the total
number of particles N is �xed but the identity of a particle� in this case its shape� is
allowed to change� In this fashion a continuous distribution can be obtained�

The way we want to incorporate polydispersity is by keeping the diameters of all
particles �xed but the lengths are allowed to change� This is done by imposing an
activity�ratio distribution exp������L�� ��L����� where ��L� is the chemical potential
as function of the length L of the cylinders and L� is the length of an arbitrary reference
component� To a �rst approximation the resulting distribution function of lengths will
be similar to this imposed one ����� hence we will assume a quadratic function

����L�� ��L��� � ��L� L��
������ �
����
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Figure ����� The orientational order parameters I� and N � and bond orientational
order parameters Q� and Q� as function of the polydispersity parameter � for pressures
�Pv� 
 ��� ���� ���� ���� �	�� ��� and �
�� ����

0.2 0.4 0.6 0.8 1.0 1.2
L/D

p(L)

Figure ����� The composition distribution functions p�L� at �xed pressure
�Pv� 
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which for small values of � will lead to a Gaussian distribution about L� with width ��
In the limit � � � this leads to the monodisperse system with length L��

In addition to the moves already discussed we now allow the the lengths of randomly
chosen particles to change� which is accepted in the usual way ��	��

We did simulations at four di�erent pressures in the stable crystalline region� in
which we slowly increased the polydispersity via the parameter ��

The results for the relevant the most relevant order parameters are summarized
in �gure 
���� Similar to the monodisperse case all order parameters vanish at the
same time� For the higher pressures a larger value of � is required to melt the crystal�
Although at high enough polydispersity the crystal is destabilized� no ordered phase but
the isotropic phase is formed�

For low values for � the distribution function follows the imposed activity and is a
Gaussian distribution at L�� For increasing values of � however� it becomes easier to
change the length considerably from the reference length L� as can be seen in �gure 
����
As a consequence this leads to lower densities and a shift of the peak in the distribution
to lower values� away from the aspect ratio L�D � ��� and a possible cubatic phase� A
nematic phase is not observed either� In order to overcome this problem we should �x
the peak of the distribution� This can be done by altering the value of L� in the imposed
activity� This will then lead to a simulation with �xed average composition function�

��
 Discussion

In this chapter we presented the results of computer simulations for hard cylinders�
We �rst worked out the overlap criterion of these particles� In principle completely the
overlap criterion can be solved analytically� but in practice it is more convenient to use
a numeric minimization scheme�

We used the overlap criterion to obtain the third� fourth and �fth virial coe�cients
an compared them with the approximation for these coe�cients made by the Parsons
approach� showing an acceptable agreement�

In the standard NPT�simulations we introduced the �ip�move which rotates a particle
directly to a perpendicular orientation� Further more we allowed the box shape to change
to an arbitrary parallelepiped for better relaxations in the crystal phase�

We showed the results of simulations for cylinders with an aspect ratio L�D � ����
The prediction of the equation of state provided by the Parsons approach worked sur�
prisingly well up to the density of the phase transition� At high pressures the system is
found in an AAA�crystal� By lowering the pressure particles will reorient due to the �ip
move and deform the perfect crystal�

The phase has still a distinct 	�fold symmetry for the columns but the layers are
less obvious� The orientations are either along the columns or perpendicular to them�
Towards the phase transition a weak but signi�cant ��fold orientational order in plane
develops� which may be due to �nite size e�ects�

The phase coexistence was determined at � � ����� in the isotropic and � � ����� for
the crystal phase� The theory of chapter � predicted for this aspect ratio the isotropic�
to�nematic phase transition at � � ��


 respectively � � ��
��� Not only the densities
are wrong� which can be accounted for by using a better scaling theory� but also the
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wrong symmetry is predicted� caused by the fact that only orientational order was taken
into account� No cubatic phase is found�

By imposing activity�ratio distribution� polydispersity is added to the system� Small
values of the polydispersity are not strong enough to destabilize the crystal phase� Larger
values make it cost less energy to change the aspect ratio�s to lower values� which is used
by the pressure in order to increase the density� As a consequence the distribution of the
particles shifts to smaller aspect ratio�s which do not favor the cubatic phase� Instead
the crystal melts to the isotropic phase�

The simulations con�rm the results of the theory in the sense that there is no
isotropic�to�cubatic phase transition� although the reason is quit di�erent� According to
the theory this was caused by nematic phase which at high densities is more stable� The
true reason however is that at the obtained densities the crystalline order cannot be ne�
glected� The simulations show that the phase transition occurs at a density roughly ���
lower and is to a crystalline phase�

A cubatic phase if possible for cylinders has to be found elsewhere� It can be expected
that for cylinders with an aspect ratio L�D � ��� a cubatic phase will be observed�
because there is at these aspect ratios only a small di�erence in shape between cylinders
and cut�spheres�



A Special Functions

Throughout this thesis� the Helmholtz Free energy as a functional of the one particle
distribution function is employed� This distribution ���r��� can always be expanded in
a set of suitable functions� In general� it is a function of position and orientation� And
the most convenient set of functions to be used depends strongly on the phase under
study� the symmetry of the particles� and their interaction�

In case of an homogeneous phase there is no position dependence and the �r can be
integrated out to obtain the one�particle orientational distribution function ���� which
is proportional to the fraction of particles with an orientation ��

���� �

Z
���r���d�r �A�	�

For all rigid particles this orientation can be described by the three Euler angles
denoted by ��� �� ��� which describe the rotation from a 
xed reference frame f�x� �y� �zg
to the particle�
xed frame f�u� �v� �wg� This rotation consists of a rotation about the z�axis
over �� followed by a rotation about the y�axis over �� and a rotation about the z�axis
over �� The invariant measure of this rotation is given by d� � d� sin���d�d��

A�� Dl
m�n�functions

The set of functions corresponding to the Euler�angles is the set of standard rotation
matrix elements� which are denoted by Dl

m�n���� The complete set is de
ned for integral
and half�integral

values of l and is an extension of the spherical harmonics� For half�integral values the
functions change sign for � � �� and can be related to spins� but in the case of classical
particles these are not needed� The most important properties of these function are
listed below� More details can be found in Brink and Satchler 
����

The Dl
m�n�functions are de
ned by

Dl
m�n����� � e����m��n�dlm�n��� �A���

where the function dlm�n��� is given by

dlm�n��� �
X
t

��	�t
p
�l �m���l �m���l � n���l � n��

�l �m� t���l � n� t��t��t� n�m��
�

�cos �	���l�m�n��t�sin�	���t�n�m
�A���

	�	
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and the indices m and n take the values �l� �l � 	� � � � � l� The Dl
m�n�functions are

orthogonal and normalized by

Z ��

�

d�

Z ��

�

d�

Z �

�

sin���d��Dl�

m��n������Dl
m�n��� �

���

�l � 	

l�l�
m�m�
n�n� �A���

Successive rotations �� and �� give rise to the following closure relation

Dl
m�n������ �

lX
p��l

Dl
m�p����Dl

p�n���� �A���

For an inverse rotation ��� � ���������� we have

Dl
m�n��

��� � Dl
n�m���

� � ��	�m�nDl
�n��m��� �A���

The last property we want to mention is the integral over three Dl
m�n�functionsZ

Dl
m�n���Dl�

m��n����Dl��

m���n�����d� � ���
�

l l� l��

m m� m��

��
l l� l��

n n� n��

�
�A���

where the brackets denote Wigner ��j symbols�These are only non�zero if the l�s values
satisfy the triangle inequality and the m�s or n�s add up to zero�

For the Dl
m�n�functions a useful functional can be de
ned by

Dl
m�n
Dl�

m��n����� �
Z

d��Dl
m�n��

�����Dl�

m��n����� �A���

Separating the ���� and � by using �A���� followed by �A��� will allow evaluation of the
integral over �� which results in

Dl
m�n
Dl�

m��n�� �
���

�l � 	

l�l�
m�n�Dl

m��n �A���

The Dl
m�n�functions are directly related to the spherical harmonics by

Dl
m����� �� �� � C�

l�m��� �� �

r
��

�l � 	
Y �
l�m��� �� �A�	��

where Cl�m are the modi
ed spherical harmonics and in case of both indices of Dl
m�n

being � they reduce to the Legendre polynomials

Dl
������ �� �� � Pl�cos���� �A�		�
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A�� Symmetry adapted functions

The number of Dl
m�n related to a speci
c value of l is ��l�	�� and hence the number

of functions which have to be considered is rapidly increasing� Therefore we like to
restrict ourselves to a limited subset of the complete set� Such an appropriate subset
will in general always follow directly from the symmetries obeyed by the system we like
to study� For instance if we are interested in uniaxial particles we do not really need all
three Euler angles to describe the orientation� two of them will satisfy just as well since
the third angle only rotates the particle about its axis which will cause no observable
e�ect�

We can exploit such symmetries we can make use in order to create a subset of
symmetry adapted functions� Solutions we obtain in the end should always obey the
symmetries and we might just as well save time and take the symmetries into account
from the start�

The place where we the symmetries come into the problem for our systems is always
in the integral of the average excluded volume This excluded volume E depends only
on the relative orientation of the two particles and therefore should not change under
transformations which leave the particles invariant� In order to perform a bifurcation
analysis we then need to expand this excluded volume in an appropriate set of functions�

E������� � E����� ��� �
X
l�m�n

El�m�nDl
m�n��

��
� ��� �A�	��

where �� and �� are the orientations of the particles�
Suppose the particles are invariant under all rotations g of the groupG� The excluded

volume should therefore not change if we apply any of the rotations g� or g� fromG to the
orientations of particles� This leads to a set of equations for the coe�cients El�m�n� But
instead of having the relations among the coe�cients� it is more convenient to use the
rotations for creating functions Sl

m�n which are invariant under rotations of the group G

Sl
m�n��� �

X
g��g��G

Dl
m�n�g

��
� �g��

�
X
p�q

�X
g��G

Dl
m�p�g

��
� �

��X
g��G

Dl
q�n�g��

�
Dl

p�q���

�A�	��

These functions are identical for several combinations ofm and n� hence the total number
of di�erent symmetry adapted functions for given value of l is less than the original
number of ��l � 	���

We only made use here of transformations in the form of rotations� Only re�ections
which conserve parity can be included� since they can be written as a normal rotation as
well� Re�ections that do not conserve parity however are here forbidden� They change
the particle from left�handed to right�handed� which not acceptable in the set of rotation
matrix elements�

If we examine the de
nition of the functional �A��� more carefully we observe an
interesting property in relation with the excluded volume� which can also be used in the
form of a functional ������
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E 
Dl
m�n� �

X
p

El�n�pDl
m�p �A�	��

The functional decomposes the complete set S of Dl
m�n�functions into invariant sub�

spaces Sl
m � fDl

m�ig� Moreover for 
xed values of l the action of the functional E on

the subspace Sl
m is represented for all values of m by the same matrix �El�n�p� This

decomposition will also be true on a set of symmetry adapted functions and helps to
simplify equations which will appear involving the excluded volume�

A�� �l
m�n�functions

In case of the cross�like particles of chapter � there are only four transformations
which leave the general particle invariant� These are the three rotations about the x��
y� and z�axis over � and the identity� In group theory this group is denoted by D� and
is on of the dihedral groups 
����

For the elements of the group D� we can obtain the following identities

Dl
m�n�I� � Dl

m�n��� �� �� � 
m�n

Dl
m�n�Rx���� � Dl

m�n��� �� �� � ��	�l
m��n

Dl
m�n�Ry���� � Dl

m�n��� �� �� � ��	�l�n
m��n

Dl
m�n�Rz���� � Dl

m�n��� �� �� � ��	�n
m�n

�A�	��

Performing the 
rst summation over the elements of the groupD� we get in the de
nition
of the symmetry adapted functions �A�	�� we obtainX

g�D�

Dl
m�p�g� � �	 � ��	�n��
m�p � ��	�l
m��p� �A�	��

So in order to obtain non�trivial functions we need even values for the index m� and
similar for the index n� This leads to the de
nition of the set of �l

m�n�functions

�l
m�n �

�
	p
�

����m����n�� �Dl
m�n � ���lDl

m��n � ���lDl
�m�n �Dl

�m��n

�
�

�A�	��

where the prefactor takes care of the normalization� We choose to label all �l
m�n�functions

with non�negative indicesm and n� Naively one might expect that odd values of l are not
allowed� just as in the case of Legendre Polynomials where the odd valued polynomials
do not have up down symmetry� but here the odd values of l also give rise to non�trivial
functions if and only if both indices m and n are non�zero� The choice of the prefactor
in �A�	�� leads to the following orthogonality relation

Z
d��l�

m��n�����l
m�n��� �

���

�l � 	

l�l�
m�m�
n�n� �A�	��

From �A��� we observe that the �l
m�n�functions are automatically real valued� leading

to a simple relation for inverse orientations

�l
m�n��

��� � �l
n�m��� �A�	��
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It is clear that we cannot 
nd a closure relation as �A��� on the set of �l
m�n�functions�

The reason is simply that a general rotation will always break the symmetry of the
group D� and hence introduce functions which are outside the set of �l

m�n�functions�
There is however a restricted set of rotations which leave our space of functions invariant�
This set consists of the elements of the cubic group O� In order to prove this we only
need to show that this is true for two generators of this group� which are the rotations
over an angle �	� about the y� and z�axis� By distinguishing the di�erent combinations
of zero and non�zero values for the indices m and n� which are both even it is a simple
task to prove that for each element R of the cubic group

�l
m�n��R� �

X
p��

�l
m�p����

l
p�n�R�

�l
m�n��R� �

X
p��

�l
m�p�R��

l
p�n���

�A����

Finally we want a similar expression for the �l
m�n�functions as �A���� Again the only way

to obtain this result is by distinguishing the di�erent combinations of zero and non�zero
indices

Z
�l

m�n����
l�

m��n�����l��

m���n�����d� � ���
�
	

�

p
�

����
��mm�m������mm�m��

��
l l� l��

m ��m� ���m��

��
l l� l��

n 
 �n� 
 ��n��

�
�A��	�

where the brackets denote Wigner ��j symbols and ��� ���� 
 �� 
 �� are �	 and chosen in
such a way that m � ��m� � ���m�� � n � 
 �n� � 
 ��n�� � �� There is only one possible
restriction to this formula� in case m � � or n � � the ��s or 
 �s are not uniquely de
ned�
This causes the ��j symbols to di�er if and only if l� l� � l�� is an odd integer� in which
case the sign changes� To avoid this one should if possible choose the m and n non�zero
by taking a suitable permutation of the �l

m�n�functions�

The de
nition of the functional �A��� for the �l
m�n�functions has the same form

�l
m�n
�

l�

m��n�� �
���

�l � 	

l�l�
m�n��l

m��n �A����

A�� Cl�m�functions

For uniaxial particles only two angles are needed� because the third angle � rotates the
particle around its axis and therefore does not change any observable� For these particles
it not necessary to describe their orientation by the complete set of Dl

m�n� Instead the set
of modi
ed spherical harmonics can be used� The orientation is denoted by �� � ��� ��
the usual polar coordinates and its invariant measure is given by d�� � d� sin���d�� The
normalization changes to



��	 A Special Functions

Z ��

�

d�

Z �

�

sin���d�C�
l�m����Cl�m���� �

��

�l � 	

l�l�
m�m� �A����

If � is the angle between two directions �� and ��� there exists an addition theorem

Pl�cos �� �
lX

m��l

C�
l�m����Cl�m���

�� �A����

which can easily be derived by using �A��� with m � n � � and �A��� on the argu�
ment ������

The de
nition of the functional also has to be adjusted� On the set of modi
ed
spherical harmonics however this can only be de
ned properly for functions depending
only on �� so the second index has to be zero

Pl
Cl��m� ����� �
Z

d���Pl���
� � ���Cl��m������ �A����

which now results in

Pl
Cl��m� � �
��

�l � 	

l�l�Cl�m� �A����

This restriction will however not cause any problems� since the de
nition of this func�
tional will be used for the excluded volume interaction� which normally depends only on
the mutual angle between the directors of the particles and hence can be expanded in
Legendre polynomials only�

This set of functions can also be derived from the de
nition of the symmetry adapted
functions by recognizing that the group of rotations which leaves the particle invariant
is D�� Hence the summations over elements of the symmetry group have to be replaced
by integrations over the angle ��
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Summary

In this thesis the possibility of the existence of a cubatic phase is investigated� This liquid

crystal phase has an orientational order with cubic symmetry but no translational order�

This phase was discovered during computer simulations of a system of disk�like particles�

the cut�spheres� with only hard�core repulsion� So far� however� no experimental system

is known which exhibits this phase� This thesis investigates the possibility of the cubatic

phase in two other systems�

In chapter � the background of the complex �uids is sketched� including the discovery

of the cubatic phase� In chapter � the basic theoretical framework of this thesis is

introduced� in particular the statistical mechanical background of density functional

theory� We then proceed to derive the Helmholtz free energy functional in the second

virial approach� This is the basis of all theoretical work in this thesis� We also introduce

the bifurcation analysis� a simple but powerful tool to study phase transitions in complex

liquids�

In chapter � this technique is applied to a system of 	Onsager crosses
� particles

consisting of three elongated perpendicular rods� By using bifurcation analysis� a free

energy minimization and Gaussian approximation the orientational phase behavior of

these particles is mapped out in the limit where the rods are in�nitely long� We �nd

four di�erent ordered phases
 the nematic� the biaxial� the D� phase and the cubatic

phase� The latter is found when the three constituting rods have approximately the

same length�

In chapter � the validity of the assumptions made in chapter � is checked for �nite

aspect ratios by calculating the second and higher virial coe�cients of perfect crosses� In

addition the parameter hopping method is introduced as a tool to overcome problems in

simulating these cross�like particles� Although in principle a useful simulation technique

for glasses� the entanglement of the crosses are beyond its capacity� No indication for the

cubatic phase or any other type of ordering is observed� A mechanically stable crystal

could be constructed� but did not form spontaneously�

Chapter � describes the theory of monodisperse cylinders as an Ansatz to explain

the cubatic phase of the stacks formed by cut�spheres� The preference for cylinders with

aspect ratios of order unity to be parallel is only slightly larger than for those particles

to be perpendicular� Although the bifurcation analysis was promising� trial functions

indicated that for all aspect ratio�s the isotropic�to�cubatic transition is preceded by the

isotropic�to�nematic transition�

Chapter � describes in a simple way how to incorporate the formation of stacks in

systems of cylinders� by combining the description of such system at the di�erent levels

of monomers and clusters� According to the bifurcation theory the instability of the

isotropic system shifts to lower densities and for thin cylinders near this point stacks are

formed� which possibly can form the cubatic phase� We discuss the e�ect of polydisper�

sity on the bifurcation analysis� Also in this case� the instability of the isotropic phase

���
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shifts to lower density� It was shown not to depend on the actual distribution� but only

on the average length and the mean�squared length�

In chapter � cylinders the virial coe�cients of cylinders are calculated and the out�

come was compared with the results from the Parsons approach� Cylinders with an

aspect ratio of ��� are simulated and showed that the Parsons approach works up to the

�rst order phase transition to a crystalline phase� This phase is an AAA�crystal but in

which planes are not straight but �uctuating� The particles tend to orient in� or per�

pendicular to� the layers� The orientational distribution exhibits a weak but signi�cant

��fold symmetry� On increasing pressure the system slowly evolves to the conventional

AAA�crystal� No indication of a cubatic phase is found� The introduction of polydis�

persity via an imposed activity ratio led to a destabilization of the crystal phase� On

increasing the width of the imposed activity� the distribution of particle lengths� shifts

to lower aspect ratios and away from unity� The ordered phase melts� also in this case

directly to an isotropic phase�



Samenvatting voor Iedereen

�Hallo� hoe gaat het� Wat doe jij zo tegenwoordig��
�Ik ben nu bezig met mijn promotie onderzoek��
�G�oh� wat leuk� En wat doe je dan precies��
�Ik probeer met behulp van theorie en computersimulaties het gedrag van vloeibare
kristallen te beschrijven��
�Jaajaah� klinkt wel ingewikkeld��
Meestal is dit het einde van het gesprek over mijn werk� Een enkele keer is iemand meer
geinteresseerd en vraagt verder� maar over het algemeen neemt het gesprek een andere
wending� Men gaat er namelijk vanuit dat een eventuele uitleg toch te moeilijk is om te
begrijpen�

Speciaal voor deze mensen zal ik hier proberen een idee te geven van de zaken waar
ik mij de afgelopen jaren mee bezig heb gehouden en die in dit proefschrift worden
beschreven� Om dit te bereiken zal ik gebruik maken van analogi�en� Het probleem met
analogi�en is dat ze welliswaar verhelderend kunnen zijn� maar toch vaak de waarheid
geweld aan doen� Dat risico neem ik dan maar�

We starten met de �atomaire hypothese	� de aanname dat ieder zuiver materiaal�
is opgebouwd uit kleine identieke deeltjes� Deze deeltjes zijn zo klein dat we ze niet
kunnen zien met het blote oog� en zelfs niet met een microscoop� Deze kleine deeltjes
noemen we moleculen� Deze moleculen zijn zelf opgebouwd uit nog weer kleinere deeltjes
die we atomen noemen� Die atomen kunnen we beschrijven als hele kleine bolletjes� die
afhankelijk van het soort� een andere grootte hebben� Doordat moleculen zijn opgebouwd
uit deze bouwsteentjes zijn die over het algemeen niet bolvormig� Sommige moleculen�
zoals zuurstof� bestaan uit slechts twee tegen elkaar geplakte atomen� Andere moleculen�
zoals die van plastic� worden gevormd door hele lange ketens van atomen� Omdat de
ketens duizenden of miljoenen atomen lang zijn en soms maar enkele atomen breed zijn
dit net draadjes en ze zijn makkelijk te buigen zonder dat ze meteen breken� Weer
andere moleculen� bijvoorbeeld die van cholesterol� bestaan uit slechts enkele tientallen
atomen en hebben de vorm van een kort� dik stokje en zijn helemaal niet buigzaam�

Hoewel de meeste materialen duidelijk verschillen van elkaar zijn er ook overeen

komsten� Zo kunnen de meeste in drie verschillende toestanden voorkomen� of zoals wij
dat noemen fasen� We onderscheiden de vaste� de vloeibare en de gasvormige fase� Het
bekendste voorbeeld uit het dagelijks leven waarvan we alle drie de vormen kennen is
water� Water is vloeibaar maar als we het voldoende afkoelen ���C
 bevriest het tot ijs�
de vaste fase� en als we het verwarmen tot �����C
 gaat het koken en wordt waterdamp�
de gasvormige fase� Voor veel andere sto�en zijn we die drie fasen niet gewend omdat
ze normaal maar in een van de drie toestanden voorkomen� De zuurstof in de lucht
bijvoorbeeld wordt pas vloeibaar bij een temperatuur van ����oC en indien we het nog
verder afkoelen tot ����oC wordt het vast� Yzer daarentegen moeten we verwarmen tot
����oC om het vloeibaar te maken en pas bij ����oC wordt het gasvormig�

���
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Indien we de drie verschillende verschijningsvormen met elkaar vergelijken vinden
we dat over het algemeen de vaste vorm het hoogst soortelijk gewicht heeft� Dus als
zuivere sto�en uit identieke moleculen bestaan� dan moeten er meer moleculen in een
kubieke meter vaste stof zitten dan in een zelfde volume van de vloeistof of de damp�Een
uitzondering hierop is water� immers de vaste vorm� ijs� blijft op water drijven en moet
dus een lagere dichtheid hebben�

Wat verder opvalt is dat terwijl vloeisto�en en gassen de vorm aan nemen van een
glas of container waarin ze zitten� vaste sto�en een vorm hebben die slechts met moeite
kan worden veranderd�

In bovenstaande �guur is op een simpele manier weergegeven hoe een gas� vloeistof
en vaste stof er uitzien als we dit zouden bekijken op de schaal van de moleculen� De
moleculen worden hier afgebeeld als bolletjes�

Omdat een gas een lage dichtheid heeft zijn de moleculen ver van elkaar verwijderd�
Voor een vloeistof zitten de moleculen veel dichter opeen maar lijken op een willekeurige
manier gestapeld� De dichtheid van een vaste stof is echter nog hoger� Om al die deeltjes
een plaats te geven moeten ze netjes in een rij gaan zitten� Dit is te vergelijken met een
doos suikerklontjes� Als er maar een paar klontjes in de doos zitten liggen ze willekeurig
door de doos verspreid� Maar als we er een heleboel bij gooien zullen ze tegen elkaar
komen te liggen� Als we toch nog meer klontjes in de doos willen doen moeten we ze
netjes op een zelfde manier op een rij leggen� We zeggen dan ook wel dat in een gas en
vloeistof de deeltjes ongeordend zijn� terwijl ze in een vaste stof op een nette� geordende
manier gerangschikt zijn die we kristallijn noemen�

In werkelijkheid zitten moleculen echter helemaal niet stil maar bewegen of trillen en
botsen hierbij voortdurend tegen elkaar� net als biljartballen� Hoe hoger de temperatuur
is� des te sneller bewegen ze� In een gas en vloeistof zullen ze kris
kras door elkaar
bewegen maar in een vaste stof is� zoals in het plaatje te zien is� niet veel ruimte� De
deeltjes zullen als gevolg daarvan voortdurend tegen hun buren weerkaatsen en daardoor
min of meer op de zelfde plaats blijven�

Het is nu ook een intu��tief duidelijk waarom een gas nauwelijks weerstand biedt als
we er met een hand door heen bewegen� Immers als we dit doen zal onze hand tegen de
moleculen aan botsen� wat wij als een zwakke weerstand ervaren� In een vloeistof is de
dichtheid veel hoger en zal onze hand tegen veel meer moleculen aanbotsen en dus een
grotere weerstand voelen� Als we het zelfde bij een vaste stof proberen botst onze hand
tegen de buitenste laag moleculen aan en probeert die te verplaatsen� In tegenstelling
tot in de vloeistof en het gas kunnen deze deeltjes echter niet ver van hun plaats voordat
ze tegen buren aanbotsen� en die weer tegen hun buren� enz� Met als gevolg dat� zodra
we de buitenste laag willen verplaatsen� we het hele object moeten verplaatsen�
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Overigens zijn moleculen geen gewone biljartballen� Op korte afstand van elkaar
zullen ze elkaar namelijk afstoten� wat lijkt op botsen� maar op grotere afstand van
elkaar trekken ze elkaar een beetje aan�

Wat we tot nu toe gezien hebben is dat er drie verschillende fasen zijn� waarvan de
gasvormige en vloeibare fase ongeordend zijn en de vaste fase geordend� Wat we hiervoor
hebben aangenomen is dat ieder materiaal uit kleine deeltjes bestaat� moleculen� die we
als een soort biljartballetjes kunnen beschouwen� Indien we op ieder moment weten op
welke plaats de deeltjes zitten en hoe groot ze zijn weten we in principe genoeg om
zo	n systeem van bolletjes te beschrijven� Zoals eerder vermeld echter� zijn de meeste
moleculen helemaal niet bolvormig� maar bijvoorbeeld staafjes� Dit betekend dat we
niet alleen hun positie moeten weten maar ook in welke richting ze wijzen�

Dit opent nieuwe perspectieven� want in de geordende fase van een vaste stof hebben
we eigenlijk alleen maar gekeken naar de orde in de posities van de deeltjes� maar nu zijn
er ook nog de orientaties van de deeltjes waar we naar kunnen kijken� Ook nu zorgt de
dichtheid� het aantal deeltjes per volume� ervoor dat er orde ontstaat� Als we bijvoor

beeld lucifers in een doosje gooien zullen ze niet alleen willekeurig door elkaar komen
te liggen maar ook allemaal in verschillende richtingen wijzen� We kunnen vervolgens
zo	n doosje schudden en hoewel na a�oop ze anders zullen liggen� zal er nog steeds geen
enkele orde zijn� Als we dit proces herhalen en er steeds meer lucifers bij gooien komt
er een moment dat de lucifers gelijk gaan richten� Er is een geordende fase onstaan
waarbij ook de orientaties van de deeltjes meedoen� Iets dergelijks gebeurt met sommige
staafachtige moleculen� In onderstaande �guur heb ik drie mogelijke fasen van dit soort
deeltjes geschetst�

In het linkse plaatje zijn de deeltjes helemaal niet geordend� In het middelste plaatje
wijzen alle deeltjes gemiddeld in de zelfde richting� maar zijn de posities van de middel

punten van de deeltjes ongeordend� Dit type ordening noemen we een nematische fase�
In het rechtse plaatje is een smectische fase geschetst� daarin zijn zowel de orientaties als
de posities geordend� De deeltjes wijzen allemaal de zelfde kant op en liggen in laagjes�
Dit soort fasen die niet volledig maar slechts ten dele geordend zijn noemen we vloeibare

kristallen� Ze bezitten zowel eigenschappen van vloeisto�en als van kristallen� Zo is er
duidelijk een soort orde aanwezig maar kunnen we een vloeibaar kristal wel roeren� Dit
soort vloeibare kristallen wordt tegenwoordig gebruikt in de beeldschermpjes van reken

apparaten en kwartshorloges en zijn soms beter bekend onder de engelse naam �liquid
crystal display	 �LCD
�
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In ���� werd een nieuw type vloeibaar kristal ontdekt� Niet in een experiment�
maar in een computersimulatie waarbij de deeltjes de vorm hebben van een soort schijf

jes� In onderstaande �guur staat een moment opname van een simulatie van deze fase
weergegeven�

Net zoals in de nematische fase zijn de posities van de schijfjes ongeordend terwijl
de orientaties wel een orde vertonen� Deze is echter anders dan in een nematische fase�
Terwijl in de laatste de deeltjes allemaal in min of meer een en dezelfde richting wijzen
lijken de schijfjes in deze nieuwe fase in drie verschillende richtingen te kunnen wijzen�
Die richtingen zijn bovendien onderling loodrecht� net als de ribben van een kubus� Deze
fase werd dan ook de kubatische fase genoemd� Tot op heden is deze fase nog nooit in
een bestaand systeem aangetoond� Het is deze fase waar dit proefschrift aan gewijd is�

In het eerste deel van dit proefschrift bekijken we deeltjes in de vorm van kruisjes�
Kruisjes hebben van nature al drie verschillende richtingen waarin ze wijzen� Het idee is
dat als lucifers naast elkaar in dezelfde richting willen liggen dit misschien ook wel zo is
voor deze kruisjes en op die manier dus een kubatische fase vormen� Volgens de theorie
die we ontwikkeld hebben is dit inderdaad het geval indien de staafjes die het kruisje
vormen heel erg lang zijn� De computersimulaties voor kleine kruisjes echter� laten zien
dat die geen kubatische fase kunnen vormen�

In het tweede deel van van dit proefschrift bekijken we deeltjes die de vorm hebben
van cylindertjes� die even lang als breed zijn� Als je deze deeltjes van boven bekijkt
lijken ze rond� terwijl van de zijkant op vierkantjes lijken� Hoewel de theorie aanvankelijk
veelbelovend leek te zijn� bleken ze toch geen kubatische fase te kunnen vormen� Dit werd
nog eens bevestigd door computersimulaties� die overigens wel een ander interessante fase
lieten zien�


