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Look, the sun was sleeping in the clouds this morning
up those mountains you can feel the glow

children playing in the valley, flying

in the winds they know that meet below

as their heart was beating fast this morning.
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Chapter 1

Introduction

1.1 Light scattering

An object is visible because it scatters, reflects or absorbs light. In the
first two cases an interaction takes place between light waves and matter in
which the propagation direction of the waves is changed. In this interaction
the light waves do not lose energy. Reflection is very similar to scattering:
one can describe reflection as a special case of scattering in which incoming
and outgoing angle are equal. Apart from being scattered, light can also be
absorbed by an object. In that case, the object dissipates electromagnetic
energy. An object that scatters equally efficient at all wavelengths and does
not absorb, looks white. An object that absorbs strongly at all wavelengths,
looks black. The color of an object can arise both from a wavelength-
dependent scattering efficiency or a wavelength-dependent absorption.

1.1.1 Single scattering

The scattering properties of a single small particle (e.g. a water droplet), are
complicated. An incoming (‘applied’) electromagnetic field on the particle
induces in the particle an electric polarization. This polarization generates
a new electromagnetic field in and around the particle. This new total elec-
tromagnetic field influences again the polarization of the particle, etc. The
total outgoing electromagnetic field is the result of a complicated recursive
process.

For particles which are very small compared to the wavelength of the
light, the angular dependence of the scattered intensity is relatively simple.
In this regime the light is scattered completely isotropically for a polariza-
tion perpendicular to the plane of scattering, and the scattered intensity
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Figure 1.1: Angular dependence of the scattered intensity, both for a polarization
parallel and perpendicular to the plane of scattering, from a spherical particle
(radius 199 nm, refractive index 2.8, wavelength 633 nm), calculated using Mie-
theory [2,3]. The intensity for both polarizations is normalized to the scattered
intensity at zero degree (forward scattering).

has a squared cosine dependence on the scattering angle for a polarization
in the plane of scattering, with zero intensity in the 90 degrees scattering
direction. This is called Rayleigh scattering. For particles which have a
diameter of the order of the wavelength, the angular dependence of the
scattered intensity is quite complex, but can be calculated explicitly for
spherical particles [1,2] (see Fig. 1.1).

The total flux which is scattered or absorbed by a particle is conve-
niently described by a scattering or absorption cross section. A cross sec-
tion denotes a (virtual) area of the incoming beam at the position of the
particle, through which the incoming flux is precisely equal to the specific
flux of interest. For instance, the total scattered flux Fi(w) is given by:

F,(w) = 04(w) L (w), (1.1)

where I;,, is the incoming intensity and o,(w) the scattering cross section,
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with w the angular frequency of the light. Likewise, the absorption cross
section o,ps(w) is defined as the area corresponding to the total absorbed
flux. The extinction of a light beam is caused by both scattering and
absorption. The extinction cross section is therefore defined as the sum of
the absorption and scattering cross section:

Oc(w) = 04(W) + Taps(w). (1.2)

Generally, all cross sections depend on the frequency of the light.
For Rayleigh scattering, the total scattered flux decreases rapidly with

increasing wavelength, that is, the scattering cross section is proportional

to the fourth power of the frequency [2]:

2
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with « the polarizability of the particle and ¢y the vacuum speed of light.
This accounts for the fact that the sky is blue: the blue components of
the sun light are scattered about five times more efficiently than the red
components.

If light is scattered by a collection of particles, one can not simply add
the scattered intensities from the individual particles. Even if a wave is
scattered on average only once because the collection of particles is opti-
cally thin, co-operative effects can occur. The total scattered intensity is
determined by the square of the absolute value of the total electric field:

I(t,r) = % |Ey(t,7) + Eo(t,7) + Es(t,7) + -2, (1.4)

where E;(¢,7) are contributions to the total electric field from different
scattering events. Here n is the effective refractive index of the total system.
Because the summation is performed before taking the absolute value and
the square, interference effects between the different fields are taken into
account. An example of such an interference effect is the appearance of
clouds in the sky when water vapor condenses [4]. Let us consider the
scattering properties of one water droplet in a cloud. Apparently, a water
droplet scatters light much more efficiently than the same amount of water
vapor before it condenses. This can be explained as follows. If one brings
N atoms together within a volume smaller than a cubic wavelength, the



12 Introduction

scattered fields of these atoms will all be in phase. The resulting scattered
intensity will therefore by N? and not N times the scattered intensity of
one atom. This is an example of a collective effect of the scatterers (atoms)
in the water droplet.

1.1.2 Multiple scattering

In the above example we considered the scattering by one water droplet.
We call this single scattering. If we consider the scattering properties of
an (optically thick) cloud, we are dealing with multiple light scattering. In
this multiple scattering regime, light is often assumed to propagate diffu-
sively. Interference effects are assumed to be scrambled, due to the many
random scattering events, and the position and time-dependent intensity is
described by a diffusion equation.

In some cases, interference in a disordered medium can not be neglected,
even for very high orders of scattering. An example is the interference be-
tween waves that have propagated along the same path but in the opposite
directions. Because these waves have travelled over exactly the same dis-
tance, their original phase relation is conserved, even if the path is formed
by a very large number of scattering events. If the waves were originally
in phase, they will interfere constructively when they meet again. This
effect leads to for instance coherent backscattering, which is a general phe-
nomenon for waves that are backscattered from a random medium. Due
to constructive interference between waves that have propagated along the
same path in the opposite direction, the backscattered intensity in the exact
backscattering direction is twice as high as in other directions. Coherent
backscattering is explained in detail in the next chapter. It is an exam-
ple of an interference effect for light that is scattered (theoretically up to
infinitely) many times.

An important concept in multiple scattering theory is the mean free
path. A mean free path is a characteristic length scale describing the scat-
tering process. For instance, the scattering mean free path is defined as the
average distance between two successive scattering events. For a random
distribution of small particles, any mean free path ¢, can in principle be
written in terms of a cross section oy:

1
b = ——, (1.5)

noy

with n the density of the scattering particles. For instance, the scattering

mean free path £, is given by: £, = (no,)™'.
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The transport mean free path ¢; is defined as the average distance the
light travels in the sample before its propagation direction is randomized.
For isotropic scattering, ¢; is equal to ¢,. For anisotropic scattering, the
transport mean free path is given by:

o 1
1 —{cosb) no,’

¢ (1.6)

where (cos 6) is the average cosine of the scattering angle for each scattering
event. The cross section corresponding to the transport mean free path is
called the cross section for radiation pressure o;, which describes the average
momentum transfer to the scatterer. So for the transport mean free path
we can write: ¢, = (no;)~'. Because the transport mean free path is often
the relevant length scale to describe the propagation of light in disordered
systems, we will drop the index ¢ and just use £ to denote the transport
mean free path.

The characteristic length scales relevant for absorption are the inelastic
mean free path ¢; and the absorption mean free path ¢,;,,. The inelastic
mean free path ¢; is defined as the travelled length over which the intensity
is reduced by a factor e~! due to absorption. The absorption mean free
path £, is defined as the (rms) average distance between begin and end
points for paths of length /;:

bars = \/ 2001, (1.7)

Any mean free path can generally be written as the reciprocal of a coefficient
k. Throughout this thesis a consistent notation will be used in which
always: Ky = £;'. For instance the extinction coefficient is given by s, =
01, where £, = (no,) .

1.1.3 Light versus electrons

There are interesting similarities between the propagation of light in a
disordered dielectric and electrons in e.g. a disordered semiconductor or
metal [5,6]. The stationary wave equation for the electric field is very
similar to the stationary Schrédinger equation. The stationary Schrodinger

equation reads:
2

;—mv%(r) + Ep(r) = V(r)p(r), (1.8)
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for a stationary state with energy E for a particle of mass m in a potential
V(7). The stationary wave equation for one of the field components E(r)
of the electric field can be written as (see also section 2.3):

2

—V x V x E(r) + 2 E(r) = V(r,w)E(r), (1.9)

Co
where the ‘potential’ for light is given by:

2

Vir,w) = -2 [e(r) - 1], (1.10)

with €(r) the (position-dependent) dielectric constant of the medium. For
a collection of particles with constant refractive index in a homogeneous
medium, €(r) is constant both inside and outside the particles, and the
double curl of E(r) can be replaced by —V?E(r). In the dynamical prop-
erties of light and electrons, important differences occur [7,8], which is
however beyond the scope of this thesis.

Both for light and electrons in disordered systems, interference effects
can occur. An example of such an interference effect for electrons is An-
derson localization. For electrons in disordered (semi-)conductors, the dif-
fusion is found to disappear completely if the electron scattering mean free
path becomes smaller than some critical value [9,10]. This phenomenon can
be described as an interference effect between counter propagating waves
[10,11]. Due to constructive interference inside the sample between waves
that have propagated along the same path in opposite directions, the return
probability for these waves increases. If the scattering is strong enough, the
diffusion disappears and the waves become localized. In this description of
localization, recurrent scattering events are important [11,12]. These are
events, in which a wave is scattered by a specific scatterer, scattered by at
least one other scatterer, and then returns to this specific scatterer.

The parameter that describes the scattering strength is the scattering
mean free path scaled by the wavelength A of the light: kf, = (27/)\) 4.
The transition to the localized regime occurs for:

ki, <1, (1.11)

which is known as the Ioffe-Regel criterion [13]. Physically this criterion
states that localization occurs if the scattering mean free path becomes
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Figure 1.2: Scattering cross section normalized to the geometrical cross section,
for a sphere with refractive index n = 2.8, versus ka, where k is the wavenumber
of the light and a is the diameter of the sphere. The calculation is performed using
Mie-theory [2,3].

comparable to the effective wavelength, so that a freely propagating wave
can not even build up over one oscillation of the electric field.

The analogy between light and electrons, leads to the question whether
a phenomenon similar to Anderson localization of electrons also exists for
light waves [14]. So far, no experimental evidence for the optical coun-
terpart of Anderson localization in three dimensions has been found. An
important difference between light and electrons in the stationary case, lies
in the frequency dependence of the potential. This w? dependence of the po-
tential leads in the Rayleigh scattering regime, i.e. in the limit w — 0, to the
w* dependence of the scattering cross section [see Eq. (1.3)]. Consequent-
ly, the scattering mean free path increases with w=* at small frequencies
(kf, becomes proportional to w™?), and the Ioffe-Regel criterion for light
can not be fulfilled by simply lowering the frequency as it is possible for
electrons. This is an important reason why Anderson localization of light
is more difficult to achieve than Anderson localization of electrons.

For light, the strongest scattering (corresponding to the smallest values
of kl,) is obtained for wavelengths in the order of the diameter a of the
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Figure 1.3: Principle of a three and four level laser system

scatterers. The (complex) single scattering properties of a particle in this
regime are described by Mie-theory [1,2]. The wavelength dependence of
the scattering cross section is complex, and shows resonances for certain
values of ka (see Fig. 1.2). However, in going from red to blue in the visible
spectrum, there is not such a strong overall trend as there is for Rayleigh
scatterers. This explains why the sky becomes gray when it contains a lot
of (relatively large) dust particles or fog.

1.2 Lasers

The field in optics in which scattering is usually avoided as much as possible,
is the field of laser physics. The requirements for a laser contradict the
presence of (multiple) scattering: the output of a laser should have a very
high degree of unidirectionality, and the emission must be both spatially
and temporally coherent.

Laser is an acronym for Light Amplification by Stimulated Emission of
Radiation. Commonly the word laser is used to denote a laser oscillator.
The essential elements of a laser oscillator are the following [15]: (a) a
medium like a collection of atoms, molecules, or ions, or a semiconducting
crystal, in which suitable optical transitions are possible, (b) an excitation
or pumping mechanism, and (c) an optical feedback mechanism to allow
the generated light to pass several times through the same region of the
excited medium.

Most laser materials can be described as a three or four level system
(see Fig. 1.3). The laser material is excited (either optically or electroni-
cally) from its ground state (0) to some excited state (2) with a very short
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lifetime. Then the system falls rapidly back to some metastable state (1)
with a lifetime ranging from a few nanoseconds to several milliseconds. The
lifetime of this state is referred to as the excited state lifetime 7.. In a three
level system, the transition from this metastable state to the ground state
is the laser transition. In a four level system, the laser transition is a tran-
sition from the metastable state to a state (0’) which decays rapidly to the
ground state (0).

The (optical) decay of the excited metastable state occurs either by
spontaneous or by stimulated emission. In a spontaneous emission process,
the radiated light is isotropic and its spectrum is determined by the broad-
ening of the metastable and ground state. In a stimulated emission process,
the decay is initiated by an incoming wave. In that case, the emitted light
has the same wavelength, phase, and propagation direction as the incoming
light. If the ground state is populated, the reversed process will also take
place and the incoming light is absorbed. The dynamics of the system are
described by a set of rate equations. For a three level system we have:

dNy(r,t
% = —CNQ(T,t)[O'QQWG("',t) =+ 0'01WR(7',t)] (112)
1
+ 0'10CN1(7',t)WR(T,t) + T—Nl('f',t),

and
le(T,t) _dNo(T,t)

dt dt

(1.13)

where c is the speed of light, N; and N, are the populations of respectively
the metastable state and the ground state, ooz, 091, and 019 are the cross
sections for respectively absorption at the pump wavelength [(0) — (2)],
absorption at the emission wavelength [(0) — (1)] and stimulated emis-
sion [(1) — (0)]. Here Wg(r,t) and Wgr(r,t) are the energy densities of
respectively the pump light and the emitted light. The population of the
third level can be neglected due to its very short lifetime. (All population
transferred from (0) to (2) decays almost instantly to (1).) If the energy
levels are equally degenerate, the absorption cross section for a transition
equals the emission cross section: o019 = 0¢; [16]. The amplification of light
at the emission wavelength, is then determined by:

dWR(T, t)

X = (N = No)ooa Wi(r, ). (1.14)
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We see that to obtain amplification, the population in the metastable state
must be larger than in the ground state. This situation is called inversion.
To obtain this situation in a four level system is much easier, because the
ground state (0) of the laser transition is nearly unpopulated.

To obtain a laser oscillator, one requires a feedback mechanism that
allows the light to pass several times through the excited laser material.
This is usually achieved with an optical cavity. In the simplest geometry,
this cavity exists of two parallel mirrors, of which one is partially transmit-
ting. The properties of the laser emission depend strongly on this cavity.
Usually, the oscillator starts from (broad banded) spontaneous emission.
Subsequently only those wavelengths that ‘fit’ in the cavity are amplified,
that is, the wavelength must be equal to the cavity length divided by an
integer. The spectral width of the emission is determined by the quality of
the cavity and the gain, and can be extremely small. Naturally, also the
direction of the laser output is determined by the cavity.

To obtain a high quality coherent laser oscillator, scattering is avoided
as much as possible. The question arises, what would happen if one com-
bines optical amplification with disorder. One could for instance study the
emission from an excited laser material (not placed between cavity mirrors)
in which one introduces a large amount of scattering. Due to the presence
of relatively strong scattering, the residence time of light in the medium
(and thereby the energy density of the light) increases, which will affect the
spectral properties of the emission. Is it possible to obtain a laser oscillator
as described above, in a medium in which the light is multiply scattered?
In such a system, an optical feedback mechanism would be provided by
random scattering. Also, it can be interesting to study the effect of gain on
known multiple scattering interference phenomena like coherent backscat-
tering. Due to the presence of gain, the contribution from long light paths
will become more important. Also, due to the divergens of the intensity
at infinite path lengths, the scattering properties of an amplifying random
medium will depend critically on the sample geometry and size.

1.3 This thesis

In chapter 2 of this thesis, an introduction is given to multiple scattering
theory for light. We will introduce diffusion theory for light in a disor-
dered dielectric, and calculate explicitly the diffusion propagator for a slab
geometry. Also we will explain the Green’s function perturbation theory,
commonly used to treat multiple light scattering. We will calculate ex-
plicitly coherent backscattering from a disordered slab in the diffusion ap-
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proximation. Throughout this thesis we will refer to the various concepts
introduced in chapter 2.

In chapter 3, we will go into the experimental aspects of coherent
backscattering. We will describe a new technique to record coherent
backscattering cones and show some results in the weak scattering regime.

This technique is applied in chapter 4, to find experimental evidence for
recurrent scattering of light in the strong scattering regime, close to where
Anderson localization of light could be expected. Also we will present a
calculation on the enhancement factor in coherent backscattering in the
strong scattering regime, which supports the interpretation of our experi-
mental results.

In chapter 5, we will go into the various aspects of the combination of
optical amplification with multiple scattering. We will demonstrate how
an amplifying random medium can be realized, and investigate the char-
acteristics of the emission from such a medium from a theoretical point of
view.

In chapter 6, we will describe scattering experiments from amplifying
random media, of which coherent backscattering is of particular interest.
Also a calculation is presented on coherent backscattering from amplifying
disordered structures.

V
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Chapter 2

Multiple scattering theory

2.1 Introduction

The propagation of light in a any medium is generally described by
Maxwell’s equations for the electric and magnetic field. To calculate the
electric field in a disordered dielectric like white paint or a colloidal suspen-
sion, one is faced with solving a wave equation with a randomly varying
refractive index. In section 2.3, it will be shown how Green’s function the-
ory is often used to treat this problem. A Green’s function G(ry,r2) that
describes the propagation of the electric field in a random medium is intro-
duced, as well as the four point vertex I'(ry, 7y;r3,7,) that describes the
propagation of the intensity. These concepts are introduced without going
into great detail. For a thorough treatment of multiple light scattering
we refer to the literature on this subject [1-4]. In section 2.4, it will be
shown how the backscattered intensity from a disordered medium can be
calculated explicitly in the diffusion approximation. Because the diffusion
approximation forms an important concept in multiple scattering theory, we
start with introducing the diffusion equation for light in disordered media.

2.2 Diffusion of light

In the diffusion approximation, the propagation of the intensity is described
as a random walk with a characteristic mean free path £. Only the intensity
and not the electric field itself is considered, so the wave character of the
light is not taken into account. Usually also the vector nature of light is
disregarded. In reality, there are two polarization channels over which the
light is distributed in the scattering process. In chapter 3 we will show that

21



22 Multiple scattering theory

good agreement is found between scalar diffusion theory and experimental
data for light backscattered from a disordered sample. In the diffusion
approximation, the intensity I(r,t) is determined by a diffusion equation:

0I(r,t) v
5 —I(r,t), (2.1)

= DV?I(r,t) — 7

where D is the diffusion constant given by D = %fv with £ the transport
mean free path, v is the transport velocity for the light inside the medium,
and ¢; is the inelastic mean free path.

2.2.1 Stationary solution for a slab

Most of the samples that are studied experimentally have a slab geometry.
In the this subsection, the stationary solution to the diffusion equation is
calculated for such a slab geometry. Starting point is Eq. (2.1). In the
stationary case, the time derivative on the left hand side is zero. We can
account for an incoming intensity by adding a source function S(7) on the
right hand side. This yields:

0= 20V2I(r) — lrd(r) + S(r), (2.2)
Defining the intensity propagator F(ri,75) as the solution of:
%£2 V2F(7’1,T2) —glﬁi F(Tl,'f’g) = —6(7’1 —7’2), (23)

one can write the intensity as:

I(r) = / dry F(r1,72)S(rs), (2.4)

where the integral is taken over the volume of the scattering medium. The
intensity propagator F(ry,r) describes the propagation of the intensity in
a disordered slab in the diffusion approximation. By introducing F'(ry,75),
the problem of solving the stationary diffusion equation has been reduced
to finding the solution of Eq. (2.3), which is independent of S(r).
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It is convenient to choose the orientation of the slab such that its in-
terface is perpendicular to the z-axis. Then the system is translationally
invariant over x and y, and one can use the Fourier transform:

F(q,,z,2)= /erF(rl,rg)eirl'qL, (2.5)

where r, = ry, — ry, is perpendicular to z. After Fourier transforming
Eq. (2.3), one obtains:
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10 <8—zf - qi) F(q,,z1,22) —UkiF(q,,21,22) = —0(z1 — z2).  (2.6)

From radiative transfer theory [5], it is known that the diffuse intensity
at the front and rear interface (z = 0 and z = L) of the sample is not
zero, but that the appropriate boundary condition for a slab is found by
taking the intensity zero at a distance zy from the interface. The value
of zy depends on the refractive index contrast between the sample and its
surrounding medium [6]. For an index matched sample interface its value
is: zp ~ 0.7104¢ [5]. Solving Eq. (2.6) with this boundary condition one
finds:

3 cosh[a(L—2z,)] — 3cosh|a(L+2z0—|z4])]
202 asinh[a(L 4 22p)] ’
(2.7)

where z, = 21 + 29, 2qg = 21 — 22, L is the slab thickness, and o = 4/ ;fs +q¢

F(QJ_7Z17Z2) = F(QJ_azsazd) =

with £,;, the absorption length in the medium. One can identify q, with
ki, + ks, where ky, and k;, are the perpendicular components of respec-
tively the incoming and outgoing wavevector. With the intensity propa-
gator F(q,,z1,22), one can calculate the diffuse intensity in a disordered
slab from any source S(r). For an incoming plane wave from z = —oo,
the source function is S(z) = Sy exp (—zk.), where k. is the extinction rate
given by k., = (-1 = (71 + £;'. In section 2.4, we will show how one can
use the intensity propagator F'(71,72) to calculate coherent backscattering
in the diffusion approximation.
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2.3 Multiple scattering of waves

In this section, the formalism is introduced which is commonly used to
describe multiple scattering of light waves. Starting point is the set of
Maxwell’s equations for the electric and magnetic field. Green’s function
theory is used to derive perturbation expansions both for the electric field
and the intensity. Also the (Feynman) diagrams are introduced that can
be used to simplify the notation for the electric field and the intensity.

2.3.1 Electric field

Starting from Maxwell’s equations, the electric field can be shown to fulfill
the time-dependent wave equation [7]:

) E(r,t)-Ve(r) e(r)®E(r,t)
VE(r, 1) + Vo EE - SRS (2.8)

The second term in this equation, containing the gradient of e(r), is zero
in regions of space where €(r) is constant. We will regard a collection of
particles with a constant refractive index in a surrounding medium with
another constant refractive index, so €(r) is constant inside and outside
the particles. In that case, the second term in Eq. (2.8) determines the
boundary condition for the electric field at the particle boundary, and is
zero elsewhere. By using a Fourier transformation with respect to time,
the explicit time dependence in Eq. (2.8) can be removed, and all harmon-
ics of the resulting Fourier representation will follow the time-independent
Helmholtz equation:

V2E(r) + (w/co)’e(r)E(r) = 0, (2.9)

where E(r) denotes one of the field components of the electric field, inside
or outside the scatterers. The same equation holds for the magnetic field
components. Here €(r) is the (random) place-dependent dielectric constant
of the system, w the frequency of the electric field, and ¢, the vacuum speed
of light. The wave equation can be written as:

V2E(r) + (w/co)*E(r) = V(r)E(r), (2.10)

where V(r) is the scattering potential defined as V(r) = —(w/c)?
[e(r) — 1]. For a collection of point like scatterers with polarizability ag, in
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a surrounding medium with dielectric constant 1, the scattering potential

is given by:
V(r) = —ap(w/cy)? Z (r —ry), (2.11)

with r; the positions of the scatterers. For a point like scatterer with
dielectric constant €¢; and radius a in vacuum, the polarizability is given
by ap = a®*(e; —1)/(e1 +2). Introducing the Green’s function Go(ry,75)
as the solution of:

V2Go(r1,72) + (w/co)*Go(r1,12) = —0(ry — 72), (2.12)

one can write the solution to Eq. (2.10) formally as:

E(ry) = Eipn(ry) — /dTQ Go(r1,m2)V (r2) E(ry), (2.13)

where FE;,(r;) is a solution of the homogeneous wave equation obtained by
taking V(r) = 0 in Eq. (2.10). E,,(r1) represents the incoming coherent
wave. Go(ry,r2) is also referred to as the bare Green’s function and de-
scribes the propagation of the field in a medium without scatterers. It is
given by:

e—’Lk | T1—T9 |

Go(r1,7r2) = (2.14)

47 "I"l—’f’2| ’

with & = w/cg. By iterating the recursion relation Eq. (2.13), one obtains
the following perturbation series for the electric field:

B(r)=Eun(r) = [drs Go(rs, ma)V(r2) Eun(r2) (2.15)
+/dr2dr3 Go(r1,72)V(re)Go(1ra, 73)V(1r3) Eipn(73)

—ﬁdrz wdry Go(r1, 1)V (r2)Go(r2,73)V(r3)Go(13, 7))V (rg) Eip (T4)+- - -,

where all integrals are taken over the volume of the sample. The above
expression depends on F;,. To describe the propagation of the field in the
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medium independently of E;,, we use the total Green’s function G(7q,73)
which is defined as the solution of:

V2G(r1,72) + (w/co)’e(r)G(r1,72) = —6(r1 — 72). (2.16)

The Green’s function G(r,7;) describes the field at any point r; in the
medium, due to a source at r,. The perturbation series for G(ry,r;) is:

G(r1,75) = Go(r1,7s) — /draGo(rl,ra)V(ra)Go(ra,rz) (2.17)

+ /dradrbGo(rl,ra)V(ra)GO(ra,rb)V(rb)GO(rb,'rQ)— ------ .

Note that V(r) (given by Eq. (2.11)) contains contributions from all scat-
terers. The first terms of Eq. (2.18) describes propagation without scatter-
ing, the second term equals the sum of all single scattering contributions,
the third term the sum of all double scattering contributions, id. To sim-
plify the notation one can use (Feynman) diagrams. The diagrammatic
representation of the above series is:

G =

4+ —0— (2.18)

Lines represent the bare Green’s function Gy(r1,73), and circles represent
the scattering potential of an individual scatterer: —ag(w/co)?d(r — 7).
Dashed lines connect identical scatterers. For clarity, terms are organized
in such a way, that every row in Eq. (2.18) corresponds to the same order
of scattering. The drawing convention used in this thesis is summarized in
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appendix B. The above series can be simplified by introducing the single
particle t-matrix ¢(r, 72;w) (diagrammatic representation: X ), defined as
the sum of all repeated scattering from one scatterer:

[ P — N
X=0+4+0—0+0—0—0 + 0—O0—O0—O0 + ------
The total Green’s function of the system then reads:
G = +—X—=—F =X —X—=F =X — X — X —

P — N s N
4+ —X—X—X— 4+ —=X—X=—X=—X=  F e

(2.19)

The perturbation series for the t-matrix is called the Born series.
The physical interpretation of this series is that the incoming field in-
duces an electric polarization (first term). This polarization changes the
field around the scatterer, which influences again the polarization (second
terms), etc. The t-matrix for a point scatterer located at r; is to first order:
t(ry, ro;w) = —ag(w/co)?d(ry —r;)d(r1 — 7;). Real physical scatterers have
a finite size. If their diameter is of the order of the wavelength or larger,
they have resonances which are not taken into account in the first order
Born approximation. If we want to incorporate these resonances and still
use point scatterers, we need higher order terms of the Born series. Unfor-
tunately, to higher order the Born series diverges due to the divergence of
Go(ry,7y) for 71 = r5. The problem can be solved by introducing a cut-off
length a for r; — ry of the order of the size of the real physical scatterers.
Then the Born series converges and one finds the t-matrix [8]:

t(ry,royw) = t(w)d(re — r,)d(r1 — 1), (2.20)
with

B ag(w/cy)?
t(w) = — 1 —w?/wi —iag(w/co)®

(2.21)

This t-matrix has one resonance, namely for w = wy = ¢g\/a/ay. The local
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electric polarization P(w,r) induced by the total electric field is given by:
P(w,r) = [e(r) — 1| E(w, ). (2.22)

Using the definition of the t-matrix, one can write this polarization (for a
system of one scatterer) in terms of the incoming field E;, (w,r) as:

P(w,r) = —w—OV(w,r)E(w,r) = ——t(w)E;, (w,r). (2.23)

This means that the t-matrix can be written as a polarizability a(w) of the
scatterer, induced by the incoming field E;, (w,r):

a(w) = — — t(w). (2.24)

The scattering cross section and extinction cross section in terms of the
t-matrix are given by: o, = (47) !|t(w)|? and o, = —(co/w) Im[t(w)]. For
non absorbing particles the extinction cross section is equal to the scattering
cross section, which yields the following condition for the t-matrix:

S (W)= — = Imft(w)]. (2.25)

47 w

The above relation is known as the optical theorem.

The terms in the perturbation series of Eq. (2.19) with dashed lines con-
necting identical scatterers, are called recurrent scattering events. These
are events in which a wave is scattered by a specific scatterer, scattered
by at least one other scatterer and then returns to this specific scatterer.
For relatively weak scattering, recurrent scattering events can be neglect-
ed. This approximation is called the ‘self-avoiding multiple scattering ap-
proximation’ (SAMS). In chapter 4 we will discuss the breakdown of this
approximation at very strong scattering. There we will show how recurrent
events can influence the backscattered intensity from a strongly scattering
sample.

The total Green’s function G(ry,7;) depends on the positions of the
scatterers. A useful quantity is the averaged or ‘dressed’ Green’s function
G(7r1—r3), which is obtained by averaging G(7, r3) over the positions of the
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scatterers. In the SAMS approximation G(r;—r;) can be calculated from
Eq. (2.19), by Fourier transforming to momentum space. In momentum
space the summation can be performed and after transforming back to real
space one finds:

e—ZK |7’1 —T2|

G(ry — 1) = (G(ry,1ry)) = , (2.26)

47 ‘7'1 —’I"Q‘

where K = /(w/co)? + nt is the (complex) effective k-vector for the light
inside the sample, with n the density of scatterers.

2.3.2 Intensity

The intensity is defined as the energy that crosses a unit area per unit of
time. It is given by the magnitude of the cycle average of the Poynting
vector E x B, which can be written as:

I(r) = = |E(r)], (2.27)

with ¢y the vacuum speed of light, and n the refractive index of the medium.
In terms of the total Green’s function G(ry,7;), the intensity is given by:

Con

I(r)= — E(r)E*(r) = -5 //drldr2G(r,rl)G*(r,r2)Em(r1)E;‘n(r2),

(2.28)
where G(ry,7,) is the unaveraged Green’s function given by Eq. (2.19).
The product G G* describes the intensity at any point in the system due

to the product of incoming waves E;,E},. The diagrammatic expansion of
GG* is:

—X— —=X—= —=X—X—X—= —X—X—X=
—X— —X— —X—X—X—= —X—X—X=



30 Multiple scattering theory

PR N
- X — X - —X—X—=X= — X — X=X -

+ + el + o
- X — X = — X — X — X — — X — X=X -

(2.29)

The upper line corresponds to G(ry,73) and the lower line to the complex
conjugate G*(r3,r,). Dashed lines again connect identical scatterers. The
six terms given in Eq. (2.29) are only some examples of the various terms
contributing to G G*.

An important simplification is obtained if G G* is averaged over the po-
sitions of the scatterers. Then the bare Green’s functions together with all
t-matrices not connected by dashed lines, can be replaced by the dressed
Green’s function. This yields:

(G G*) = (2.30)

where double lines represent the dressed Green’s function G(r;—r2).
Usually, (GG*) is stripped from its incoming and outgoing Green’s
functions. This yields the total vertex I'(ry, ry; 73, 74) defined by:
<G(7’1, TQ)G* (7’3, T4)> = G(T1 _T2)G* (T3 —T4) (231)
+ G(rl —7'5)G* (7'3 —’I"7)<F(’I"5, Te;T7, 7'8)>G(’I"6 —’I"Q)G* (’I"g —’I"4),

where an integration is performed over repeated spatial coordinates. The
perturbation series for I'(ry, r9; 73, 74) is given by:
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R N
X X X X ==X X=X =X X X ==X

=+ -+ + + +
X X ==X X ==X X == X=X X = X=X

(2.32)

In the SAMS approximation recurrent scattering events like the fourth term
in Eq. (2.32) are neglected.

The total vertex I'(ry,75;73,74) can be decomposed into the set of
reducible diagrams R(ri,7y;7r3,74) and the set of irreducible diagrams
U(ry,ro;7r3,74). A diagram is irreducible if it can not be split in two
separate diagrams without breaking a dashed line. The following recursion
relation holds for the total vertex in terms of the irreducible vertex:

(D(ry,mo57r3,74)) = (U(ry, m2573,74)) (2.33)
+ (U(r1,75;73,76))G(rs—17)G* (16 —18)(L(r7, 72578, 74)).

All reducible diagrams in I' can be found by iterating this recursion relation,
starting from the zeroth order solution I' = U.

2.4 Backscattered intensity

In this section, the backscattered intensity from a disordered medium is
calculated explicitly in the SAMS approximation. The backscattered in-
tensity is usually described in terms of a bistatic coefficient v defined as
the observed scattered flux per solid angle and per unit of observed area of
the sample at normalized incident flux. In terms of the average scattered
intensity (I(r)) and incident intensity I, the bistatic coefficient can be
written as: )

_ A () (2.34)

A I

with A the observed area of the sample and r the distance from observer
to sample. Starting from the general expression Eq. (2.28) for the intensity



32 Multiple scattering theory

and after averaging over the positions of the scatterers using the definition
of the total vertex, one obtains for the scattered intensity:

Con

<I(T‘)> = T d'f'l..d'l"4 G(T—Tl)G* (T—'l"3) <F(7’1, T2;T3, 7’4)> <E1n(7’2)El*n(T4)>

(2.35)
The dressed Green’s function G(r — r;) and the complex conjugate
G*(r —r3) describe the propagation of the scattered intensity towards the

point of observation and are given by Eq. (2.26). For backscattering,
G(r —r;) can be approximated by:

G(r—r) ~ —647{”“”’1 —ghenfls (2.36)

with r; inside the slab and r far outside the slab, where we have used that:

T

iK jr—ri|~iK <r— ) ~ ikr —iK - ry, (2.37)

with K = k, + %me,us‘lé. Here k = w/cy, k, is the outgoing wavevector,
Ke 1s the extinction coefficient, and pu, = cos 6, with 6 the angle between
k, and z. For the incoming wave FE;,(r ) we take a normalized plane wave
perpendicular to the sample surface, which is damped inside the sample by
Ke:

: 1
Ein(r) = Ey etk = 32, (2.38)
For backscattering in the SAMS approximation, the relevant contribu-
tions to the total vertex are the so called ‘ladder’ diagrams L like the first
and second term in Eq. (2.32) and ‘most-crossed’ diagrams C' like the third
term [9]:
(L(r1, 72373, m4)) = (L(r1, 72573, 74)) + (C(P1, 72573, 74)), (2.39)

with
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and

The sum of all combinations of ladder and most-crossed diagrams, like the
last term in Eq. (2.32), can be neglected after averaging over the positions
of the scatterers.

The ladder diagrams describe incoherent transport of the intensity while
the most-crossed diagrams describe an interference phenomenon called co-
herent backscattering, which is explained in the next section. For point
scatterers, the two incoming coordinates of the ladder diagrams as well as
the two outgoing coordinates have to be equal. Therefore one can write the
ladder series in the form:

(L(r1,ro;ms,mq)) = n |t|? 6(ry — 73)8(ry — 74)6(ry — 75) (2.42)

=+ F(Tl, 7’2)5(7’1 — T3)6(7’2 — T4),

where F'(ry,r2) is an intensity propagator that because of Eq. (2.34) satis-
fies the integral equation:

F(ry, ) = n? [t G(r1—72) [ +n |t|2/dr2 |G(r1—735) [2 F(rg, 72).

(2.43)
Note that the first term in Eq. (2.43) describes single scattering.

The most-crossed series can easily be found from the ladder series by
reversing the bottom line in the diagrammatic expansion (i.e. by revers-
ing the sequence of scattering events for the complex conjugate Green’s
function):

(C(r1,r2;73,74)) = F(r1,72)0(r1 — 74)0 (12 — 73). (2.44)

This means that one can find both (L) and (C) from the same intensity
propagator F(ry,rs).
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This provides us with all the ingredients necessary to calculate the
bistatic coefficient for a semi infinite slab in the xy-plane, illuminated by
a plane wave from z = —oo. It is convenient to separate the total bistatic
coefficient ~; into the contribution from most-crossed diagrams ~, and from
ladder diagrams, with the latter further separated into the single scattering
contribution v, and multiple scattering contribution ~,:

Yt = Vs + Ye + Ye- (245)

Using the above expressions for (L) and (C) in Eq. (2.35), one obtains the
following integrals for the bistatic coeflicients in backscattering:

, 1., -1
Yo(ks) = ﬁ /drl...dme”"s' (71 = 73) g —gkepty " (21 + 23) (2.46)
T

~ 1
X F(r1,m2)d(r1 — 73)0(re — T4)elk('z2 — 1)~ ghe(22 + 24)

)

1 : 1 -1
(k) = —— / dry...dretRs (T1 = T5) = gheps” (21 + 23) (2.47)
4rA
. 1
XF('I"]_, 7'2)5(7'1 — ’I"4)($(7'2 — T3)€lk(z2 B 24)6_51%8(22 + 24),

and

, 1., -1
Yalks) = ﬁ /drl...dme""s‘ (71 —75)g—ghes (21 +23) (2.48)
T

. 1
xn [t §(ry —rs)d(ry — ry)d(ry — TQ)@Zk(ZQ - 24)6_5,%(2:2 + Z4),

with k, the outgoing wavevector.

We have performed thesis integrals explicitly in the diffusion approxi-
mation using the diffusion propagator F'(r;,r,) as calculated in section 2.2
for a slab geometry. The resulting bistatic coefficients are,
for single scattering:

-1
o0 = —He |1 — e L+ pt)| (2.49)
1+ s
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for the multiple scattering ladder diagrams (describing the diffuse back-
ground):

B 3 Zl(l 4 672UL) —|—ZQ(1 _ 672UL) +defL(v+u)
-~ 2Basin|a(L + 2z)] u[(u? — a?)? +v2(v? — 202 — 2u?)]
(2.50)

7@(05)

with

Zy =u(u® —v* — a®) cos[a(L + 220)] + u (v? — u® — &®) cos(aL)  (2.51)

v? — a? — 3u?

+2uvacsinjo(L + 22p)] + uva sin(a L),

u? — o

Zy = v (v® —u® — a?) cos[a(L + 2z)] + 2u’asin(a L) (2.52)

u? —v? + 302

—a (u® +v* — a?)sin[a(L + 2z))] + v’v R

cos(a L),

Zy =2u (u® —v* + &) + 2u (v’ — u® + &®) cos(2zp ) — duvasin(2z a),

(2.53)

and for the most-crossed diagrams (describing interference):

B 3e—ul 1
~ 2Basinh|a(L + 22)] (a2 + 72 + u2)? — (2an)?

Ye(65) X (2.54)

[—2(a® + 1* + u®) cosh(2azg) cos(Ln) — 4an sinh(2az) sin(Ln)
+2%(—a2 +n? — u?) sinh(a(L + 22)) sinh(uL)
—2(a® = n* — u?) cos(Ln) + 2(a® + n* + u®) cosh(a(L + 225)) cosh(uL)
+4ausinh(aL)sinh(uL) — 2(—a® + n* 4+ u*) cosh(aL) cosh(uL)] .

In these expressions, the angular dependence is determined by the follow-

ing parameters: n = k(1 — ), u = k(1 4+ p;t), v = $r.(1 — pt),

and o = +/£,2 + ¢ with ¢, = ksinf. As mentioned before, y, = cos®,
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with 6 the angle between the outgoing wavevector k, and 2, L is the sam-
ple thickness, z, = 0.7104¢, and k. is the extinction coeflicient given by
ke = £71 +£;'. In the limit L — oo (i.e. for a semi-infinite slab), the
expression for 7, reduces to:

3 a+u(l- 6_20‘20)

Ye(0:) = 55— e (2.55)

The above solutions for the bistatic coefficients in backscattering in
the diffusion approximation were checked against the expressions given in
Ref. [10]. Our solutions are written in a different form to be able to compare
them with the bistatic coefficients for backscattering from an amplifying
medium (see chapter 6).

2.5 Coherent backscattering

The physical interpretation of «, and -, is the following. +, describes the
(incoherent) backscattered intensity due to diffusion without interference.
Its angular dependence is weak (see dashed line Fig. 2.1): it decreases
slowly at larger angles. This angular dependence is due to the fact that
under larger outgoing angles, the light travels through a larger part of the
sample, having a larger chance to be scattered or absorbed. The inten-
sity described by ~. originates from interference between reciprocal [11]
waves. This interference effect is called coherent backscattering or weak
localization [12,13] and is a general phenomenon for waves scattered by
random media. Because a random dielectric system obeys reciprocity, any
partial wave that propagates over some distance through the sample and
then leaves the illuminated area in the backscattering direction will have
a counterpropagating counterpart that follows the same path in the oppo-
site direction. These counterpropagating partial waves have travelled over
the same distance in the sample and interfere therefore constructively in
the backscattering direction. This is what is described by the most-crossed
diagrams. The angular dependence of . is strong: it decays rapidly mov-
ing away from the exact backscattering direction (see solid line Fig. 2.1).
Away from exact backscattering, a phase difference develops between the
counterpropagating waves that depends on the relative orientation of the
points where the waves leave the sample. For the ensemble of light paths,
the relative phases will therefore gradually randomize. After averaging over
all light paths, this leads to the cone of enhanced backscattering described

by ve.
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Figure 2.1: Total bistatic coefficient versus scattering angle, calculated in the
diffusion approximation for a non absorbing semi-infinite disordered sample with
mean free path ¢ = 5 ym. Wavelength A\ = 700 nm. Scattering angle zero
corresponds to exact backscattering. The dashed line is 7y, describing the diffuse
background intensity. Dashed and solid line largely overlap, except in and around
exact backscattering where a narrow coherent backscattering cone is present.

2.5.1 Properties of the backscattering cone

The width of the backscattering cone is determined by the average distance
between the first and last scattering event and thereby by the mean free
path . The full width at half maximum is given by [10]:

WN07 n; )‘i _27 %’ (256)

S 2r n. 4 T

with ¢ the (transport) mean free path for light in the medium, \; and n;
respectively the wavelength of the light and the effective refractive index
in the sample, and )\, and n, respectively the wavelength of the light and
the refractive index in the medium between the sample and the point of
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observation (usually air). The ratio n;/n. appears in the above equation
because the outgoing waves are refracted by the refractive index contrast
at the front sample interface. This refractive index contrast also leads to
internal reflection in the sample. Internal reflection enlarges the average
distance between first and last scattering event because the outgoing waves
are partially backreflected in the sample. This leads to a narrowing of the
backscattering cone [6]. Internal reflection is not accounted for in Eq. (2.56).

The enhancement factor E of the backscattering cone is defined as the
ratio of the total intensity at exact backscattering to the diffuse background
intensity at exact backscattering. The diffuse background intensity is the
intensity which would be expected from an incoherent addition of the scat-
tered waves. In the SAMS approximation, F is given by:

_ 7c+7€+7s

E .
Ye+Vs  lo—o

(2.57)

In the exact backscattering direction v. = =, so if v, = 0, the enhance-
ment factor is two. The single scattering contribution -y, is zero for spherical
symmetric scatterers in the helicity conserving polarization channel of the
light. For other polarizations, a single scattering contribution +, is present.
Because a singly scattered wave does not have a distinct reciprocal counter-
part, single scattering does not contribute to the interference. The angular
dependence of v, depends on the nature of the scatterers, but is generally
weak. For point scatterers and scalar waves, it is given by Eq. (2.49). For
a treatment of single scattering from atomic and molecular systems in the
x-ray regime, we refer to Ref. [14].

The shape of the backscattering cone reflects the path length distribu-
tion of the light inside the sample and therefore reveals information about
the internal structure of the sample. If the sample consists of a random
collection of small particles, the mean free path ¢ is inversely proportional
to the density n and scattering cross section o of the particles. In that
case, the width of the cone is a measure for the particle density. For more
complex, e.g. sponge like, random structures it is difficult to identify the
individual scattering elements, in which case the width of the cone is just
a measure for the scattering strength of the material. The shape of the
backscattering cone is sensitive to the sample structure at large depth be-
cause the top of the cone is determined by very long light paths that have
penetrated deep into the sample (features that are due to > 10* scattering
events can be resolved experimentally). In the theoretical case of zero ab-
sorption, the top of the backscattering cone is a cusp for a semi-infinite slab:
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2.5. Coherent backscattering

the derivative of Eq. (2.55) to € is discontinuous at # = 0. The existence
of a cusp is possible, due to the fact that at zero absorption, an infinite
number of light paths contribute to the top of the cone. If absorption is
present either at large depth or throughout the sample, the contribution
from the longer light paths is reduced and consequently the top becomes
rounded.
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Chapter 3

An accurate technique
to record
coherent backscattering

In this chapter, a new technique is described to record the angular distribu-
tion of backscattered light. The technique is accurate over a large scanning
range (500 mrad) which includes the exact backscattering direction, and
the angular resolution is high (100 urad). The technique is particularly
suitable for the study of coherent backscattering from (very strongly scat-
tering) random media. It allowed us to measure the theoretical value of
two of the enhancement factor in coherent backscattering from a weakly
scattering sample.

3.1 Introduction

The technique to record backscattered light which is described in this chap-
ter, was developed for the study of coherent backscattering from random
media. The experimental study of coherent backscattering puts high de-
mands on the accuracy of a setup. A technique suitable for coherent
backscattering experiments can therefore be applied to any situation where
the angular distribution of backscattered light must be known accurately,
for instance for backscattering experiments from rough surfaces or for the
characterization of retro-reflectors.
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Figure 3.1: Principle of setups used previously to record coherent backscattering.
(a) (left) Simplest scheme. The incoming beam is reflected onto the sample with
a small mirror. The backscattered intensity can be recorded over a large angular
range but the region close to exact backscattering can not be observed. A positive
lens is used to collect the scattered light. The detector is placed in the focal plane
of the lens so that one scattering direction corresponds to one position of the
detector. (The refraction of the waves by the lens is not shown.) (b) (right) By
using a beam splitter, the exact backscattering direction can be observed but one
has to correct for the angle-dependent transmission of the optics between sample
and detector (beam splitter, positive lens, polarizer, etc.).

3.1.1 Principle of previous setups

To study coherent backscattering, one must record the angular distribu-
tion of the intensity backscattered from a sample which is illuminated by
a spatially broad light beam. In the experimental studies that have been
published so far, two different schemes were used. In the simplest scheme,
the incoming beam was reflected onto the sample by a mirror (see Fig. 3.1a)
[1,2]. The scattered light is collected with a positive lens. The detector is
placed in the focal plane of the lens so that one scattering direction corre-
sponds to one position of the detector. The use of a mirror allows for a de-
termination of the scattered intensity over a large angular range. However,
the mirror masks the scattered light in and near the exact backscattering
direction, so with this method the top of the backscattering cone can not
be observed. Another approach was to use a beam splitter to reflect the
light onto the sample (see Fig. 3.1b) [3-5]. The scattered light is record-
ed through the beam splitter, so the exact backscattering direction can be
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3.2. Experimental configuration

monitored. Again a positive lens is used to collect the scattered light. The
disadvantage of this scheme is however, that one has to correct for the an-
gular dependence in the transmission characteristics of the beam splitter,
the positive lens, and other detection optics (e.g. a polarizer).

In both schemes it is difficult to shield stray light in a satisfactory man-
ner. The fundamental problem arises from parallax: the screen that is used
to shield stray light must be placed at some distance in front of the sample.
As the detector moves, the light path from sample to detector changes.
Therefore, the field of view of the detector has to be larger than the solid
angle under which it sees the illuminated area on the sample. In practice
this means that an amount of stray light adds to the detected signal. This
yields an extra background in the signal which is even likely to show some
angular dependence. As a result the shape and enhancement factor of the
backscattering cone can not be recorded accurately.

3.2 Experimental configuration

3.2.1 Principle of the setup

We have developed a new method which we call ‘Off-Centered Rotation’
(OCR), to solve the experimental problems described above. The outline
of the setup is drawn in Fig. 3.2a. The incoming light beam is reflected
via a beam splitter onto the sample. The scattered light is collected with a
positive lens (f = 1m). The head of an optical fiber is placed in the focus
of the positive lens. The fiber transports the light to a photo multiplier
tube. Detection optics, beam splitter and sample are placed on a rotating
frame.  The center of rotation C’, is the center C of the sample surface
mirrored with respect to the plane of the beam splitter. Fig. 3.2b shows the
setup after rotation. The incoming beam is directed at C, so after rotation
it still arrives at the center of the sample surface C’. With respect to the
frame, the incoming direction has changed and the direction of detection
is still the same. By rotating the sample around C, the sample surface is
kept at a constant angle with respect to the incoming beam. The rotation is
obtained by placing the sample on a (rotatable) plateau, which is connected
by a twisted band to a disc of the same size that is fixed to the laboratory
frame. Thus the incoming direction on the sample is fixed and the angular
distribution of the scattered light is recorded. The rotation of the setup is
demonstrated around the odd page numbers of this thesis.

The scattered light always follows the same path through the beam
splitter and the detection optics. This is the major advantage of our set-
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Figure 3.2a: Outline of the setup to record the angular distribution of a backscat-
tered intensity. The essence of the setup is that all optical components are placed
on a frame which rotates around C’, which is the mirror image in the beam splitter
(BS) of the center C of the front sample surface. In this way, the path from sample
to detector of the scattered light is always the same. The sample rotates around C
to keep the incoming direction perpendicular to the sample surface. The scattered
light is focused by a positive lens (+) on the head of an optical fiber which is placed
in the focal plane of the lens. The fiber transports the light to a Photo Multiplier
Tube (PMT). The polarizer P is used to select one polarization channel of the
scattered light. The laser beam transmitted through the beam splitter is blocked
by a beam dump (B), that must be of high quality as backreflections would reach
the detector.
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Figure 3.2b: Same setup after rotation to another detection angle.

up: it avoids any corrections for angular dependence in the transmission of
the components. The one remaining angular dependence in the setup is in
the reflection of the incident beam by the beam splitter, but this depen-
dence can in principle be measured to any desired accuracy by replacing
the sample with a detector.

In order to observe a coherent backscattering cone it is necessary to
average over many configurations of the sample. This eliminates the speckle
pattern which is formed if a coherent beam is scattered by a (stationary)
random sample [5]. In a fluid sample, Brownian motion of the particles
provides the required ensemble averaging. Solid samples are mounted on
a small motor which spins them around their axis. An efficient ensemble
averaging is obtained if the sample surface is not exactly perpendicular to
the axis of rotation, so that the sample ‘wiggles’.

3.2.2 Polarization

The polarization of the incoming laser beam is linear, and a polarizer is
mounted in front of the optical fiber head. The parallel or perpendicu-
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lar polarization channel in the scattered light is selected by means of this
polarizer. If experiments with circularly polarized incident light are de-
sired, a quarter-wave plate is mounted in front of the sample to convert the
incoming linear polarization to circular polarization. The two circular com-
ponents of the outgoing scattered light are converted back by this quarter
waveplate to mutually perpendicular linear components. The polarizer in
front of the fiber is used in that case to select the linear polarization that
corresponds to either one of the helicity channels of the scattered light.

A setup with two quarter waveplates, where one is placed in the incident
beam and one in front of the detector, in not possible for the following
reason. The reflection coefficient of the beam splitter depends both on the
angle and on the polarization. An incoming circular polarization would
become elliptical after reflection on the beamsplitter, and the ellipticity
would be angle-dependent. This is why one waveplate is mounted in front
of the sample. The incident and scattered waves will pass this quarter
waveplate under necessarily different angles. Since only at perpendicular
incidence the relative phase shift corresponds to exactly a quarter of a
wave, some mixing of polarizations will occur in directions that are far
from exact backscattering. We used a zero order quarter waveplate because
its angular tolerance is far greater than that of a multi order one. We
found that even at the largest angles studied, the intensity coupled into
the opposite polarization channel remained < 1%. In directions far from
exact backscattering, our random samples scramble the polarization almost
completely. Errors from mixing of polarization due to oblique incidence in
the quarter waveplate, will therefore essentially cancel. We estimate the
overall error in the measured curves due to oblique incidence in the quarter
waveplate to be < 0.1%.

3.2.3 Angular resolution and scanning range

The scanning range of the setup is determined by the size of the beam
splitter. We have used a beam splitter of 5 cm diameter and an incoming
beam diameter of 5 mm, and obtained a scanning range of about 500 mrad.
The angular resolution of the setup was diffraction limited by the diameter
d of the incident beam. With d = 5 mm and using visible light, this limit
is &~ 100 prad. The detection optics (50 pum core fiber, with its tip at a 1
m distance from the sample) allows in principle a resolution of 50 urad.
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Figure 3.3: Overview of some important ghost reflections that can give rise to
experimental artifacts. The scattered light from the sample at point (a) can be
reflected by the front face of the sample window. If the light is reflected to a point
(b) inside the illuminated area, the scattered light from (b) will be recorded by
the detector. If the light is reflected to a point (c) outside the illuminated area,
the scattered light from (c) is blocked by the screen. The screen also blocks the
ghost reflections from the rear side of the beam splitter.

3.2.4 Elimination of important artifacts

Liquid samples are contained in a sample cell. The front window of this
sample cell can give rise to artifacts, mainly due to back reflections from its
front face. (The back face is largely index matched with the sample.) We
have to distinguish between light that is reflected back on the illuminated
region of the sample and the light which is reflected outside this area (see
Fig. 3.3). In the first case, the light is scattered again by the sample and
contributes in backscattering to the backscattering cone. Whether these
contributions can be resolved depends on what the limiting factor on the
angular resolution of the setup is. If the limiting factor is the size of the
illuminated area, these contributions can be resolved. They will affect
the observed shape of the backscattering cone. Because the reflection will
on average increase the distance between first and last scattering event,
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the cone will become narrower. If the angular resolution is lower, these
contributions can not be (fully) resolved, and will lead to a lowering of
the observed enhancement factor. The light that is reflected by the front
window surface to regions outside the illuminated area can not contribute
to the backscattering cone because these waves have no counterpropagating
counterparts. This light will however contribute to the background and will
therefore also lower the observed enhancement factor.

To reduce the above effects, the glass window must be thick (1 cm) and
its front side must be anti-reflection coated. Moreover, the second effect
can be eliminated by placing a diaphragm between the beam splitter and
the positive lens. The aperture of this diaphragm is only slightly larger
than the illuminated region on the sample. It is aligned such that only
scattered light from the illuminated region can reach the detector. Note
that this solution is possible because in our setup the light path from sample
to detector is always the same. This property of the setup also allows to
shield other sources of stray light in a convenient way without the risk of
partly masking the field of view of the detector during part of an angular
scan (‘clipping’).

A glass window can also be used to index match the front interface
of a rigid sample, in order to eliminate internal reflection [6]. The same
considerations hold as for the front window of a liquid sample cell. Great
care has to be taken to ensure a good optical contact between window and
sample surface. We obtained good results if we coated the rear side of the
glass window with collodium and pressed this side with force on the sample.

The beam splitter is a slightly wedged thick window with a 50 % re-
flectance coating on the front side and an anti-reflection coating on the back
side. All (multiple) reflections that arise from the small remaining reflection
of the back surface will be blocked by the diaphragm placed between beam
splitter and positive lens if the beam splitter is sufficiently thick (about
lem). Due to its wedged shape, etalon effects in the beam splitter are also
avoided.

3.2.5 Response of the setup

To check the response of the setup over a large angular range, we have
recorded the backscattering from a very weakly scattering sample (i.e. a
sample with a very large mean free path) (see Fig. 3.4). The backscattering
cone of this (teflon) sample is extremely narrow so the major part of the
scan yields the (almost angle-independent) diffuse background. The solid
line in Fig. 3.4 is the diffuse background in the diffusion approximation
[given by Eq. (2.50)]. Agreement between data and theory is very good.
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Figure 3.4: Backscattered intensity plotted against the scattering angle, where
zero corresponds to exact backscattering. Sample material Teflon, sample interface
index matched. The intensity is scaled such that the diffuse background in the
exact backscattering direction is 1. The solid line is the theoretical shape of the
diffuse background ;.

3.3 Results

3.3.1 Enhancement factor

As explained in section 2.5, the theoretical enhancement factor in the he-
licity conserving polarization channel is two for weak scattering (i.e. in the
SAMS approximation). The behaviour of the enhancement factor at very
strong scattering is discussed in chapter 4. Several experimental studies on
the backscattering cone in the weak scattering regime have been published
[1-5,7-9] but due to experimental difficulties, the reported enhancement
factors have always been considerably lower than the theoretical value of
two. The difficulties arise from the fact that the scanning range of the setup
must be very large compared to the angular resolution, and all stray light
must be completely eliminated. The OCR setup allowed us to measure
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Figure 3.5: Backscattered intensity plotted against the scattering angle, where
zero corresponds to exact backscattering. Sample material ZnO powder, (trans-
port) mean free path £ = 1.9 + 0.1 pm. The intensity is scaled such that the
diffuse background (dashed line) in the exact backscattering direction is 1. The
solid line is the total scattered intensity from Eq. (3.1) in the diffusion approxi-
mation. Insert: enlargement of the top of the cone. The enhancement factor is
1.994 + 0.012.

enhancement factors of 2.000 =+ 0.012 for weakly scattering samples.

In Fig. 3.5, a backscattering cone from a ZnO sample with mean free
path £ = 1.9 pm is shown. The light was circularly polarized by using the
quaterwaveplate in front of the sample, and the helicity conserving channel
was monitored.

The enhancement factor was determined in the following way. The
enhancement factor is defined as the ratio of the total intensity to the diffuse
background intensity at exact backscattering. It is impossible to measure
the diffuse background intensity at exact backscattering directly, however



3.3. Results

the diffuse background is largely angle-independent over the angular extend
of the backscattering cone. One can determine the enhancement factor by
comparing the data with a theoretical expression for the total intensity that
allows for extra background contributions from experimental artifacts:

1(0) = ao[7(0) + (1 + €)7:(0)]- (3.1)

Here ag is a normalization factor, and € 2 0 determines the contribution to
the background intensity due to artifacts, where it is assumed that these
contributions have the same angular dependence as ,. The enhancement
factor is then given by:

Vet (T4 ey  2+4¢

E - 37,
T4+e)v oz 1+e€

(3.2)

where € is determined from the data. Note that in order to determine e
accurately, the scanning range must be large enough to cover at least the
wings of the cone where 7, is almost zero.

We have determined the enhancement factor for various measurements
from samples in the weak scattering regime. The samples are suspensions
of TiO, in 2-methylpentane 2,4-diol and powders of ZnO or BaSO,. The
light was circular polarized and the wavelength was either 514.0 nm or
632.8 nm. The results are shown in Table 3.1. The enhancement factor for
all measurements is in the range 2.000 4+ 0.012. The mean free path was
determined from the width of the cone using equation 2.56.

3.3.2 The shape of the backscattering cone

As can be seen from Fig. 3.5, the shape of the backscattering cone agrees
very well with the backscattering cone calculated in the diffusion ap-
proximation. The intensity propagator F(r;,rs) needed to calculate the
backscattering cone can also be found without making the diffusion ap-
proximation, either numerically for a finite slab [8,9] or analytically for a
semi-infinite slab geometry [10]. This leads to a solution for the backscatter-
ing cone that is exact for scalar waves, but which not necessarily describes
the backscattering cone for light better than the diffusion approximation.
Firstly, light waves are vector waves. Secondly, the exact calculation as-
sumes point scatterers whereas the real physical scatterers are irregularly
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Sample Wavelength | ¢ | Enh. factor
nm pm
BaSO, powder 514.0 2.02 2.011
BaSO, powder 514.0 1.89 2.000
BaSO, powder 632.8 2.31 2.012
BaSO, powder 632.8 2.42 1.993
ZnO powder 514.0 1.89 1.994
ZnO powder 632.8 3.23 1.992
TiO, susp. (£ 1.5 g/ml) 632.8 1.11 2.003
TiO, susp. (£ 1.3 g/ml) 632.8 1.24 2.004

Table 3.1: Enhancement factor for coherent backscattering cones in the helicity
conserving polarization channel for various samples. The (transport) mean free
path ¢ was determined from the width of the cone. We estimate the error in the
listed enhancement factors to be 0.012.

shaped and have a diameter of the order of the wavelength. In the diffusion
approximation no assumption on the type of scatterers is necessary.

The difference between the backscattering cones in both descriptions is
small. The difference occurs in the wings of the cone, which are formed by
the lowest order scattering. Diffusion theory underestimates the contribu-
tion from the lowest order scattering compared to the exact scalar solution
and therefore the wings of the cone in the diffusion approximation decay
more rapidly going to large angles.

We have compared the exact solution and the diffusion approximation
with our data. The residues from subtracting theory from the experimental
cone of Fig. 3.5, are shown in Fig. 3.6. We see from Fig. 3.6 that diffusion
theory describes the backscattering cone surprisingly well. If we calculate
the total squared error x? defined as:

X2 =D lL(8:) — L(6:))%, (3-3)

where I.(6;) is the measured intensity at angle 6; and I;(6;) is the theo-
retical intensity at this angle, we find: x? = 3.8 - 107 for diffusion theory
and x? = 6.8 - 10~* for the exact theory. What remains an open question
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Figure 3.6: Residues from subtracting theory from the experimental cone of
Fig. 3.6 (normalized to the diffuse background at § = 0). Residue 1: diffusion
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approximation, Residue 2: exact scalar solution.



54 An accurate technique to record coherent backscattering

is why the diffusion approximation corresponds better with the data than
the exact solution. A possible explanation lies in the polarization character
of light which is not taken into account in either theory. For the lower or-
der scattering, less light is scattered in the helicity conserving than in the
helicity reversing polarization channel, whereas for the higher orders the po-
larization is completely scrambled. Therefore, the lower order contributions
in the helicity conserving polarization channel are less important than an
exact scalar theory predicts. The diffusion approximation underestimates
the contribution from the lowest orders compared to the exact solution and
this apparantly results in a better description of the backscattering cone.
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Chapter 4

Experimental evidence for
recurrent multiple scattering

4.1 Introduction

In chapter 2, an introduction is given to the theory which is commonly
used to treat multiple light scattering in disordered media. The presented
derivations are valid for relatively weakly scattering media, because recur-
rent scattering is neglected. Recurrent scattering events are events in which
a wave is scattered by a specific scatterer, scattered by at least one other
scatterer and then returns to this specific scatterer. For relatively weak
scattering, recurrent events can be neglected, because the chance of a wave
returning to a specific scatterer is very small. This approximation is called
the ‘self-avoiding multiple scattering’ (SAMS) approximation. In most ex-
perimental studies that have been published so far, the scattering was weak
enough to neglect recurrent scattering.

To explain the relevance of recurrent scattering, a parallel can be drawn
to electron scattering. It is known that the propagation of electrons in
a disordered structure can change tremendously in the strong scattering
regime. Below a critical value of the electron scattering mean free path,
the diffusion of the electrons can disappear. This phenomenon is known
as Anderson localization [1]. The propagation of light in disordered di-
electrics shows interesting similarities to electron transport in disordered
(semi-)conductors [2], and it is challenging to find an optical counterpart
of Anderson localization. Recurrent scattering plays an important role in
the theory of Anderson localization [3,4]. The reduction of the diffusion
constant can be explained by constructive interference between waves that

o7
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have propagated along the same path in opposite directions. Due to this
constructive interference, the probability for a wave to return to a specific
scatterer increases and thereby the probability to propagate away from this
scatterer decreases. So far however, no experimental evidence was present
for the existence of recurrent scattering of light waves in disordered media.

A parameter which is a measure for the scattering strength is (k¢,) !,
where £, is the scattering mean free path and k is the wavenumber of the
light in the medium. If Anderson localization of light is possible, it is
expected to occur at very strong scattering, that is for very small k¢,. For
electrons, a localized state is obtained at k¢, < 1. This criterion is known
as the Ioffe-Regel criterion [5]. For light it is very difficult to obtain samples
in the regime k¢, < 1 (see section 1.1.3). However it is possible to get close
to kl, = 1, where effects from recurrent scattering might already be visible.

In this chapter, we will study coherent backscattering from strongly
scattering media, to find evidence for recurrent scattering of light waves.
The relevant parameter in these experiments is the enhancement factor of
the backscattering cone, which is the ratio of the total scattered intensity
at exact backscattering to the diffuse background. As explained in sec-
tion 2.5.1, the enhancement factor is two in the weak scattering regime, if
the single scattering contribution is eliminated. Single scattering lowers the
enhancement factor because it does not contribute an interference term. In
a single scattering event, a wave enters and leaves the sample on the same
scatterer. If recurrent scattering occurs, we expect the subclass of recurrent
events in which first and last scattering occurs on the same scatterer, to be-
have similar to single scattering (see Fig. 4.1). One can distinguish between
these recurrent events and single scattering, by using circularly polarized
light and monitoring the helicity conserving polarization channel. Single
scattering will not be present in the helicity conserving channel using spher-
ical symmetric scatterers, whereas for recurrent scattering the polarization
will be (at least partly) scrambled. This means we have to measure the
enhancement factor in the helicity conserving channel as a function of the
scattering strength, where deviations from two close to k¢, = 1 would be a
manifestation of recurrent scattering.
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Figure 4.1: Different light paths that contribute to the scattered intensity. (a)
(left) Regular self-avoiding multiple scattering (SAMS). (b) (middle) Single scat-
tering. (c) (right) Recurrent multiple scattering, with first and last scattering
event on the same scatterer. Because the two outgoing waves coincide, this event
behaves similar to single scattering.

4.2 Experimental procedure

4.2.1 Preparation of strongly scattering samples

Various experimental parameters can be varied, but it is difficult to reach
kf, = 1 for optical waves. In the case of electrons, one can simply increase
the wavelength to obtain small values of k¢;. In the optical case this is not
possible, because for wavelengths much larger than the size of the scatter-
ing elements one enters the Rayleigh scattering regime, in which case the
scattering cross section is inversely proportional to A*. For optical waves,
the strongest scattering is obtained if A is in the order of the size of the
scatterers.

In order to obtain strongly scattering samples, one needs a material with
a randomly varying refractive index in which the refractive index contrasts
are as high as possible. Also, the absorption coefficient of the material
should be very small. The presence of a small amount of absorption kills
the contributions from the longest light paths. Most materials that have
negligible absorption at visible wavelengths, have a refractive index of n <
2.0. An exception is TiO, which has a refractive index of n ~ 2.8 and an
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absorption coefficient of x; ~ 10 mm™! at \,,. = 514 nm. Various powders
based on TiO, are used as pigments in the paint industry because of their
strong scattering properties.

We have used a powder of rutile TiO, microparticles that was treated
with SiO,, Al,O3, and organical compounds to prevent the particles from
clustering [6]. The diameter of the particles in this powder is in the range
of 100 nm to 300 nm. The powder was suspended in chloroform and ground
in a planetary micro mill for about 1 minute to break possible clusters. We
found that milling times longer than 5 minutes are undesirable because after
5 minutes the particles start to cluster, possibly because their coating is
removed (see Fig. 4.2). After grinding, the chloroform was left to evaporate.
This way, samples could be obtained with k¢, ~ 6 at \,,. = 514 nm.

Other values of k¢, were obtained by varying the sample material and
wavelength. Apart from TiO,, also ZnO (n = 2.0) and BaSO, (n = 1.6)
were used. The latter is available as a diffuse reflectance coating [7]. Apart
from the refractive index of the scatterers themselves, the refractive index
of the surrounding medium was varied as well, by suspending the TiO,
particles either in methylpentanediol (n = 1.43) or in methanol (n = 1.33).

4.2.2 Enhancement factor in coherent backscattering

We have recorded backscattering cones from the various strongly scatter-
ing samples, using the ‘off-centered rotation’ setup described in chapter 3.
Great care was taken in recording the backscattering cones accurately as
many experimental artifacts also result in an enhancement factor smal-
ler than two. With the setup described in chapter 3, it was possible to
determine the enhancement factor in a reliable way and with the desired
accuracy.

The procedure of determining the enhancement factor is essentially the
same as described in section 3.3.1. We allow for extra contributions to the
intensity from recurrent events where we make the realistic assumptions
that (a) these contributions have the same angular dependence as v, and
(b) the shape of the backscattering cone remains the same. So we compare
our data to the theoretical intensity given by:

1(0) = ao[ve(0) + (1 + €)%(0)], (4.1)

where ag is a normalization factor and e is the relative contribution of
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Figure 4.2: SEM pictures of two TiOy powder samples. (a) (above) Sample struc-
ture after grinding a suspension rutile TiOy powder in chloroform in a planetary
micro mill for 1 minute and letting the suspension dry on a piece of cardboard.
(b) (below) After grinding for 2, 5 minutes the particles form clusters, possibly
because their coating is removed in the grinding process.
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recurrent events. The enhancement factor E in terms of € is then given by:

Ye+ (14 €)ye  2+e¢

E = = .
I4+e)v i 1+e

(4.2)

For v, and ~,, we take the the bistatic coefficients for weak scattering cal-
culated in the diffusion approximation [Egs. (2.50) and (2.54)]. As we have
shown in section 3.3.2, both the diffuse background and the backscattering
cone in the helicity conserving channel are very well described by diffusion
theory.

The enhancement factor was determined by fitting the backscattering
cone of Eq. (4.1) to the data with €, ag, and the cone width W [8] the
adjustable parameters. We found that this procedure gives reliable values
for the enhancement factor provided that the scanning range is so large
that the wings of the cone are almost completely covered. It is important to
know the intensity in the wings because the ratio of top to wings determines
E. We have checked our method of determining F in different ways. To
verify whether the results do not critically depend on the precise theoretical
cone shape, we have used for 7. the exact solution for scalar waves [9]
instead of the diffusion approximation. In that case, the correspondence
between experimental data and theoretical backscattering cone is not as
good as when using diffusion theory, but the behaviour of the enhancement
factor versus k¢, remains the same. We also tried to fit all our results
forcing £ = 2 and keeping the other parameters free. In that case, the
mean squared error of the fit remains essentially the same at large W1,
whereas at small W~ the theoretical cone systematically deviates from
the data and the mean squared error becomes larger by a factor 2 4.

4.2.3 Determination of the mean free path

The mean free path can be found in principle from the width of the cone
using Eq. (2.56): W = (0.7/27)(A./¢), where A, is the wavelength in the
medium between the sample and the detector (air). However, this expres-
sion does not incorporate effects from internal reflection by the refractive
index contrast at the front sample interface. Internal reflection reduces
the width of the backscattering cone [10], so if we wish to infer ¢ from
the width of the cone, we either have to eliminate internal reflection or we
have to estimate how large the effect is and compensate for it. We have
pursued both options in our experiments, in order to be able to compare
the results. Internal reflection was eliminated for some samples by index
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matching the sample interface with a thick (1 cm) glass window. For the
non index matched samples we generalize Eq. (2.56) to [10]:

0.7 Ae
W~ 6—77

4.3
i (43)
where £ must be calculated from the average refractive index of the sample,
as is done in the next section.

4.3 Results

An example of two backscattering cones is shown in Fig. 4.3. The broad
cone corresponds to a sample with a very small mean free path (kf, =
5.8 + 1.0), while the narrow cone corresponds to a sample in the weak
scattering regime. As we can see from the inset, the enhancement factor in
the measurement on the stronger scattering sample, is smaller than two.

We have recorded various backscattering cones from the TiO,, ZnO and
BaSO, powders and from the suspensions of TiO, in methylpentanediol and
methanol. Most samples were prepared both with an index matched and
with a non index matched interface. The measurements were performed at
two wavelengths: 514 nm and 633 nm, and the helicity conserving channel
was monitored. For all measurements, the enhancement factor was deter-
mined as a function of the inverse cone width W~! which is plotted in
Fig. 4.4. The two classes of measurements, one with an index matched and
one with a non index matched sample interface, are shown separately. In
both series the enhancement factor is 2.00 4= 0.01 for large W ! and drops
below 2.00 for very small W', which corresponds to very short mean free
paths.

4.3.1 Enhancement factor versus mean free path

As we are interested in the functional dependence of E on the kf,, we have
to calculate £, from the cone width W. For the index matched series we can
simply use Eq. (4.3) with £ = 1, assuming isotropic scattering (¢, = ¢) [11].
For the non index matched series, we have to estimate £. The reflectivity
R of the sample interface depends on the refractive index contrast at the
boundary. The bulk refractive index (n,,.q) of a collection of particles with
refractive index n, in a surrounding medium with refractive index n; (where
ny < my), is generally much lower than the weighted average of n; and n,
[12]. For the 35 vol% TiOs-air samples, it is estimated to be 1.35 + 0.10,
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Figure 4.3: Two measurements of backscattering cones corresponding to a short
(broad cone) and long (narrow cone) mean free path. The backscattered intensity
is plotted against the scattering angle where zero corresponds to exact backscat-
tering. The solid and dashed line are respectively the cone and diffuse back-
ground from diffusion theory. Narrow cone: BaSO, sample, (scaled) mean free
path kls = 22.6 +1.0. Broad cone: TiOs sample, kfs = 5.8 £1.0. (Both interfaces
non index matched.) The inset shows the top of both cones. The enhancement
factor of the broad cone clearly deviates from 2.00.
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Figure 4.4: Enhancement factor as a function of W1, where W is the width
(FWHM) of the cone. The left graph: series with index matched sample interface,
right graph: series with non index matched interface. For a definition list of used
symbols see the caption of Fig. 4.5.

which results in a reflectivity of R ~ 0.45 [10]. This reflectivity reduces the
width of the cone by a factor £ = 0.62 = 0.07 [10]. Likewise, we estimate
the bulk refractive index of the BaSO,4 and the 35 vol% ZnO-air samples
at about 1.2, yielding a correction factor £ = 0.76 + 0.10.

The above correction for internal reflection is approximate, because
both the calculation of £ from the average refractive index and the cal-
culation of the average refractive index from the sample properties, are
difficult. Therefore, the results from the index matched and non index
matched series of measurements are shown separately in Fig. 4.4. For both
series the same lowering of the enhancement factor is observed, which as-
sures us that this effect is not an artifact induced by internal reflection or
other surface effects. Despite the approximate character of the correction
for internal reflection, both series of measurements merge perfectly if we
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plot the enhancement factor versus kl; (see Fig. 4.5). The enhancement
factor is 2.00£0.01 for k¢, 2 10 and gradually drops below 2.00 for smaller
values of k/,.

4.4 Interpretation

In the SAMS approximation the enhancement factor in the helicity con-
serving channel is exactly two. Therefore a deviation from two at small k¢,
must arise from recurrent scattering events. We propose two new classes
of recurrent events that can reduce the enhancement factor at strong scat-
tering. The first we call the class of ‘loop’ events (see Fig. 4.6a). These are
events that do have a reciprocal counterpart and therefore exhibit an in-
terference term. However, the interference contribution of these events has
the same angular dependence as their background contribution, because
first and last scattering is on the same scatterer. This interference con-
tribution is therefore observed as background, which lowers the observed
enhancement factor. The second class we call the class of recurrent ‘folded’
events (see Fig. 4.6b). These are recurrent multiple scattering events that
are identical to their reciprocal counterpart. Reversing the bottom line
in the diagram does not generate a new diagram. These events only con-
tribute to the diffuse background and do not exhibit an interference term.
Consequently folded events lower the enhancement factor. It is important
to note the difference between folded and loop events. While folded events
lower the enhancement factor because they do not contribute to the inter-
ference, loop events lower only the observed enhancement factor because
their interference contribution is observed as background.

4.5 Theory

In general, the total scattered intensity is determined by the total four-
point vertex I'(ry, ry; 73, 74), which is introduced in chapter 2.
In terms of I'(ry, 7y; 73, 74), the scattered intensity is given by:

Con

(I(r))= - dri.dryG(r—r)G*(r—r3)(L(ry, 72573, 74)) (B (r2) B (T4)),

(4.4)
where E;,(r) is an incoming wave and G(r —r’') is a Green’s function de-

scribing the propagation of the intensity from a point 7' in the sample to
the observation point r. The average denotes an average over different
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Figure 4.5: Enhancement factor plotted against kfs;. Filled symbols corre-
spond to Ayqe = 632.8 nm, whereas others (open and starred) correspond to
Avac = D514.0 nm. The dashed line is the calculated enhancement factor if re-
current scattering from two vector point scatterers is incorporated.
Measurements with non index matched interface:

triangle up = BaSOQy, triangle down = ZnO, square = TiO,, diamond = TiOq
with PMMA.

Measurements with index matched interface:

circle = TiOq in 2-methylpentane 2,4-diol, times = TiOs (with collodion on glass),
star = TiO (thin layer directly on glass), plus = TiO, in methanol. The measured
enhancement factor is 2.00 4 0.01 for k€, 2 10 and significantly smaller than 2.00
for smaller values of k{.
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Figure 4.6: (a) (above) A loop event depicted in real space and an example of
a corresponding diagram. The diagram does have a reciprocal counterpart but
first and last scatterer are the same. (b) (below) A folded scattering event and an
example of a corresponding diagram. Reversing the bottom line does not create a
new diagram, which implicates also that first and last scatterer are the same.

configurations of the medium. The total vertex I'(ry, 75; 73, 7,) contains all
information on the scattering properties of the medium. For weak scatter-
ing, I" can be approximated by the sum of ladder and most-crossed diagrams
which leads to an enhancement factor of two, if single scattering is eliminat-
ed. For strong scattering, recurrent events have to be taken into account.
We will calculate explicitly the correction to the enhancement factor to
first order in the density, which is due to two particle recurrent scattering
events.

As explained in chapter 2, the total vertex can be decomposed into the
set of irreducible diagrams U (7, rq;73,74) and the set of reducible dia-
grams R(r1,r2;73,7,4). In the weak scattering limit, R(ry,rq; 73, 7,4) con-
sists of the ‘ladder’ diagrams describing long-range diffusion, where long-
range means that the distance between first and last scattering event is
(much) larger than the scattering mean free path, and U(ry, rs; 73, 74) con-
sists of all ‘most-crossed’ diagrams describing the interference leading to co-
herent backscattering (see section 2.5). U(ry, 72;73,7,) also contains single
scattering. For strong scattering, the reducible vertex R is a generalization
of the ‘ladder’ diagrams, describing also long-range diffusion. This implies
that R describes the incoherent background in coherent backscattering.
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Following Ref. [13], we can distinguish two subclasses of irreducible
diagrams. One is the set of irreducible diagrams that can be obtained from
R by reversing the scattering sequence in the bottom line (or top line) of
all diagrams in the set R. We call this the set of complementary diagrams
C(ry,ro;r3,7y):

C(ry,r9;73,74) = R(71,79;74,73). (4.5)

The set C generalizes the set of ‘most-crossed’ diagrams and describes the
interference contribution corresponding to R, which means that C describes
the backscattering cone.

The other subclass of irreducible diagrams is denoted by &, and is
simply defined as the total irreducible set minus C. The total vertex is
therefore given by:

'=R+C+S. (4.6)

The vertex S is a closed set under the operation carried out in Eq. (4.5).
Apart from single scattering, it consists of all (recurrent) diagrams that do
not become reducible when reversing the bottom line. Some terms con-
tributing to S are:

JE— N N N
X X=X ==X X = X=X X ==X X X
s= 4+ + 4+
X X X=X =X X ==X X ==X

The diagrams in & are short range on the scale of £, that is, the distance
between first and last scattering event is much smaller than £;. The first
term in this series is conventional single scattering. The second and third
term are ‘folded’ diagrams as introduced in the previous section, and the
fourth and fifth term are ‘loop’ diagrams. The contribution from terms
like the sixth one goes rapidly to zero, if the distance between the par-
ticles is increased. The set & can be interpreted as a generalization of
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single scattering. The angular dependence of S is very weak (like single
scattering), so its contribution to the scattered intensity will appear as dif-
fuse background and lower the observed enhancement factor. The observed
enhancement factor of the backscattering cone is given by:

g YeTIR TS

, (4.8)
YR TS lg=o

where 7vs, v¢, and yr are the bistatic coefficients in backscattering corre-
sponding to the vertices 8, C, and R. (A bistatic coefficient is defined as
the observed scattered flux per solid angle and per unit of observed area of
the sample at normalized incident flux.)

4.5.1 Two particle recurrent scattering

We will evaluate Eq. (4.8) for the helicity conserving polarization channel,
using vector point scatterers. For an evaluation of the enhancement factor
for scalar waves, we refer to Ref. [14]. In the helicity conserving channel at
(exact) backscattering, conventional single scattering is zero (for spherical
symmetric scatterers) and s therefore consists of recurrent scattering only.
This means we have to leading order:

E=2-21| | (4.9)

TR lo=0

where v (0) = 1.736 [15].

To leading order in the density, s consists of recurrent scattering be-
tween only two scatterers [17]. We will therefore consider a system of two
particles and calculate the correction to the total bistatic coeflicient of this
system due to recurrent scattering, where we average over the positions of
both scatterers.

For vector point scatterers, the t-matrix for a single particle a, located
at r,, is given by [19]:

to(r1,72) =t3(ry —7,)0(ry — 74), (4.10)

where t = ¢1 with:
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ap (w/cp)?

t=— :
1—w?/w? —iZag(w/co)?

(4.11)

Here «q is the polarizability of the particle, w the frequency of the light,
and wy the resonance frequency of the scatterer. (Note that this vector
t-matrix is a generalization of the scalar t-matrix given in Eq. (2.20).) The
scattering cross section for a vector point scatterer, in terms of the t-matrix,
is given by: o, = 2(4m) 7! |t(w)[>.

We define the two particle t-matrix T(Q), as the sum of all possible (am-
plitude) diagrams for two vector point scatterers:

(4.12)
where the average over the positions of the scatterers has not yet been per-
formed. In the weak scattering limit, T® s given by the first two terms
of this series. In terms of the individual t-matrices t; and t, of the two
scatterers, T® is given by [18]:

1
1— t1t2G2(7’a — Tb)

T (r),r,) = X (4.13)

{t10(ry —7,)0(ry — 7,) + t20(ry — 73)0(re — 1)
+ t1t.G (1, — 7)[0(r1 — 7,)d(r2 — 1) + 0(r1 — 1)0(r2 — 74)]},

where r, and r; are the positions of the scatterers. The above expression
is a closed form for the two particle t-matrix T® . The series expansion of
the prefactor:

1

=1+ t,;,G? To —Tp) + t,t,G> Ta—13p))2+ -,
1—t1t2G’2(T’a—’I"b) 12 ( b) (1 2 ( b))

generates again the diagrammatic expansion of T® as given by Eq. (4.12).
To first order this prefactor is 1. In that case, the first and second term
of Eq. (4.13) describe single scattering by either one of the particles and
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the third term describes double scattering. The higher order terms of the
prefactor generate all recurrent diagrams in Eq. (4.12).

The vector Green’s function G(r, — r;), which depends only on the
relative positions of both scatterers r = r, — r,, can be decomposed into
a longitudinal part Q(r) and a transverse part P(r):

G(r) = P(kr)A, + Q(kr)##, (4.14)

with P and @ given by [18]:

k 1 1)\ eW
Ply)= — [-14+—+ =)= 4.15
) 47r< +iy+y2> y (4.15)
and .
k 1 1\ %
— o (42 )22 4.16
Q) =24 (2 + ) = (1.16)

where y = kr, and the matrices A, and 7 are projections respectively to
and along the direction of r.

To calculate the two particle bistatic coefficient, we need the total two
particle vertex I'®, which is the square of the two particle t-matrix:

F((I.Qb)(rlﬁr27r37r4) = Tc(zi)(rlaTQ) Tﬁ)*(rs’ﬂi)- (4.17)

With Eq. (4.13), we have a closed expression for I'®. Some terms con-
tributing to I'® are:

=+ 4+ 4+ +
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The first term is single scatterlng; The second and third term are the con-
ventional two particle ladder (R™®) and most-crossed (C*) diagrams. The
other terms are the recurrent dlagrams in 8@ The single scattering term
is zero at backscattering in the helicity conserving polarization channel. To
calculate g for a system of N particles, we subtract R® and ¢® from®
and calculate the two particle recurrent bistatic coefficient. Subsequently,
we average over the positions r, and 7, of the two scatterers and mul-
tiply by the total number of possible pairs of scatterers: %N (N—-1). In
backscattering, using the definition of a bistatic coefficient (2.34), this leads
to:

471'7“

d d
s = %N " Tb /d’l"l d’l"4 (419)

G(r —r))G*(r —r3) e e} - Sﬁ)(rl, T9,T3,T4) €3€) By (1) E (14),

with 8@ =T® — R® _¢® and A the illuminated area of the sample
surface. Here e, and e, are the incoming polarization vectors and e; and ez
the outgoing polarization vectors. For the helicity conserving polarization
channel at exact backscattering we have:

61262263264:=6=w+1y. (4.20)

V2

For the incoming wave, we take a (damped) plane wave along the z-axis:

Ein(r) = ik = 3e) 2 (4.21)

with k. the extinction coefficient in the medium. For non absorbing par-
ticles we have k., = £;'. At (exact) backscattering with r far away from
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the medium, the longitudinal component of G(r —;) can be neglected so
G(r —7,) is given by:

G(r —ry) =G(r —ry) A, (4.22)
where G(r —7,) can be approximated by (see Eq. (2.36)):

ikr S 1
G(r —r) ~ _Zﬂeﬂkz 1T ghes (4.23)

Because 8 is short range we can put r; ~ ry, ~ r3 ~ r,. After performing
the integration over r,..r, we find:

N 1

s = 2V2 47 A

/drae_zﬁeza /d(ra —7,) ee”- 8P (r, —r,) -ee, (4.24)

where we have used that %N (N—-1)~ %N 2 because N is very large. After
performing the integral over r, and taking the limit N — oo, V' — oo, with
N/V — n, we find the bistatic coefficient describing two particle recurrent
scattering:

3n

Vs = e /dr ee’- 8V (r) . ee”, (4.25)

where we have used that ¢, = 1/(no,) = 67/(nft|?). If we divide the above
expression by v, we find the first order density correction to the enhance-
ment factor in going to strong scattering, and [according to Eq. (4.9)] the
enhancement factor itself becomes:

3
E=2—-n 7/dr ee’ - SV (r) - ee*. 4.26
72 (0) SP (r) (4.26)

The integral over the separation vector r can be performed numerically.
Furthermore, because our samples are strongly polydisperse, we average
t, and t, independently over a frequency window which is large compared
to the width of the resonance. The enhancement factor calculated with
Eq. (4.26), is plotted in Fig. 4.5 as a dashed line. We see that the calculation
confirms our interpretation that recurrent scattering manifests itself as a
reduction of the enhancement factor for k¢, < 10.
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Chapter 5

Amplifying random media

5.1 Introduction

This chapter is concerned with the experimental considerations on creating
disordered media that exhibit optical amplification. We will show how
to create a medium in which light waves are both multiply scattered and
amplified in between or during the scattering events. Optical amplification
is obtained through stimulated emission in a laser material. To introduce
scattering in such a material, one can grind a laser crystal like ruby or
Ti:sapphire. Another option is to use latex microparticle combined with
laser dye, either by suspending the particles in a dye solution or by doping
the particles with the dye.

To obtain amplification, the laser material must be brought in inversion.
This excitation is called pumping and can for instance be done optically
with intense laser light. One encounters several problems however, that do
not occur in conventional laser systems. In a conventional laser system, the
pump light is absorbed by the laser material, which is thereby brought into
the desired excited state. If scattering is introduced in such a laser material,
the pump light will be both scattered and absorbed. If the scattering is
much stronger than the absorption, most of the pump light is scattered
out of the system without being absorbed. We will look into this problem
and discuss pumping geometries that can be used to increase the pumping
efficiency.

The intensities required to excite a laser material are high, which is
a complicating factor in the experiments. With a continuous wave (CW)
laser, they can be obtained only if the light is focused to a diameter of a
few tens of micro meters, and the resulting excited volume will therefore
be very small. If we wish to excite a larger volume, we are forced to use

7
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pulsed pump light. This means that our disordered laser material will not
amplify continuously, but only during some limited time window (ranging
from 10 ns to several ms), at a certain repetition rate.

In this chapter we will go into the various possibilities of creating am-
plifying random media, and show some results on powdered laser crystals.

5.1.1 Relevant length scales

In an amplifying random medium, light waves are both multiply scattered
and amplified. The relevant length scales that describe the scattering pro-
cess are the scattering mean free path £, and transport mean free path ¢, as
they were defined in chapter 2. To describe the amplification process, we
define two new length scales: the gain length ¢, and amplification length
Lamp- The gain length is defined as the path length over which the intensity
is amplified by a factor et!. The amplification length is defined as the (rms)
average distance between the begin and end points for paths of length /,:

gamp = 5 (51)

Without scattering, £, is equal to ¢,. The amplification length ¢,,,,
and gain length ¢, are the analogues of the absorption length /., and the
inelastic length ¢; that describe absorption.

For an amplifying medium one can define a critical volume above which
the system becomes unstable. The average total amplification for a wave
inside the sample increases with the volume of the sample, whereas the
loss through the boundaries is proportional to the boundary surface. The
critical volume V,, is defined as the volume at which gain equals loss. Above
the critical volume, the intensity inside the medium diverges.

We will study samples with a slab geometry. In that case, one can
define a critical thickness L., instead of a critical volume, above which the
intensity diverges. The critical thickness is given by (see section 6.3.5):

Ly = mlomy = | =2. (5.2)

Note that L., is proportional to ;.
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5.2 Realizing disordered media with gain

5.2.1 Choice of the laser material

An important factor in realizing an amplifying random medium is the choice
of the laser material. We will consider laser materials which are optically
pumped. Most laser material can be described as a three or four level
system. The material is excited optically to some high energy level that
decays rapidly to a metastable state. The laser transition occurs from this
metastable state to the ground state or to a short lived (and thereby nearly
unpopulated) state above the ground state. (See also section 1.2.)

The relevant cross sections are the absorption cross section o, = of the
pump transition and the stimulated emission cross section o = of the laser
transition. The emission cross section ol . determines the maximum gain
of the system and should therefore be as large as possible. Amplification
is achieved only when the gain at the emission wavelength is larger than
the absorption at this wavelength. The advantage of a four level system is
that the ground state of the laser transition is almost unpopulated, so the
absorption at the emission wavelength in principle can be very small. For
an amplifying random medium, it is more important that o, is large than
it is for regular laser systems. The absorption cross section determines
the inelastic length ¢; for the pump light. If /; is much larger than the
transport mean free path £, most pump light is scattered without being
absorbed. We come back to this problem in the next section. In Table 5.1,
we have listed o, and o for some laser materials. Also listed is the ratio
of the absorption coeflicient to the maximum gain coefficient at the peak
emission wavelength.

Another important parameter is the excited state lifetime 7,. Because
we have to use pulsed pump light, the lifetime of the overall gain in the
system will be limited by 7.. If the excited part of the medium is much
smaller than the critical volume V,,, it will be equal to 7.. Close to the
critical volume, the lifetime of the overall gain is much shorter than 7,
because spontaneously emitted light will be largely amplified, thereby de-
exciting the system. We come back to these effects in section 5.3.

From Table 5.1, we see that the lifetime of the excited state for ruby is
very large. Unfortunately, this material is a three level system and there-
fore the absorption at the emission wavelength is large (Kaps/k, = 0.5).
Laser dye like Rhodamine 6G has the advantage of a very large absorption
and emission cross section. However, experiments with dye have to be per-
formed with picosecond time resolution due to the very short lifetime of the
excited state. Nd:YAG has a reasonably large emission cross section and
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material Aem Aabs Tem Tabs Te Kabs/ kg
(nm) (nm) (m2) (m2) (s) atAa®

latex spheres | 570-630 460-540 | 2.5-1072° | 1.6-1072° | 5.0-107° | 6.8-10~¢
with R6G
Ti:Al, O3 660-1100 | 450-580 | 3.0-1072% | 3.0-1072* | 3.2.107% | 2.5.1073
(Ti:sapphire) | Amae ~780
Cr:Al; O3 692.9 and | 380-430; | 2.5-1072* | 1.2.1072* | 3.0-103 0.5

(ruby) 694.3 520-590
Nd:YAG 1064 visible [1] | 6.5:1072% | 3.6-107* | 2.3.107* | < 107*
Nd:Glass 1054 visible [2] | 3.0-107%* | 2.3.107** | 3.3.107* | < 107*

Table 5.1: Maximum emission cross section o of the laser transition, maximum
absorption cross section afbs of the pump transition, and the excited state lifetime
Te of various laser materials. Also listed are the emission and absorption wave-
lengths. (Note that if a range is specified, the listed values denote the wavelengths
at which the cross sections are 10 % of their maximum value.) All materials are
in principle a four level system, apart from ruby which is a three level system.
In the last column, the ratio of the absorption coefficient to the maximum gain
coefficient at the peak emission wavelength is given. R6G is an abbreviation for
Rhodamine 6G.

[1] Complicated absorption spectrum that covers the visible spectrum, containing
many narrow peaks. The listed absorption cross section is the maximum value at
A = 810 nm.

[2] Same as [1], however the peaks are much broader ( ~ 20 nm).

lifetime and is therefore a good option, although the experiments are then
to be performed in the infrared. A good alternative is Ti:sapphire because
it has a reasonably large emission cross section and excited state lifetime,
and its emission wavelengths are in the visible regime. We have performed
experiments both with ruby and Ti:sapphire.

5.2.2 Optical excitation

In a disordered laser material, optical excitation is more difficult than in
regular lasers, due to scattering of the pump light. We are interested in
systems with a transport mean free path as small as possible, say at least
smaller than 100 gym. To determine the fraction of pump light which is
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actually used to pump the medium, we have performed Monte-Carlo sim-
ulations on powdered laser crystals. The simplest pumping geometry that
we used, was a slab in the xy-plane illuminated by a plane wave from
z = —oo. The depth dependence of the incoming beam in the slab was
an exponentially decaying function: exp (k.z). The z-coordinate of each
injected photon [1] was monitored while it performed a (3 dimensional)
random walk through the slab. Absorption was taken into account by giv-
ing the light a probability x,,; to be absorbed at every scattering event.
The absorption probability is given by:

no(2)

Tabs =

14

with £ and ¢; respectively the transport and inelastic mean free path. Here
n is the total concentration of ions and ny(z) is the local concentration of
ions in the ground state.

The fraction of the light that is absorbed before it leaves the sample
again through one of its interfaces, depends strongly on the ratio ¢;/¢. In
Fig. 5.1 we have plotted this fraction versus ¢;/¢ for a slab with a thickness
of 204, calculated in Monte-Carlo simulations on different pump geome-
tries. The incident pump energy in the simulation was chosen such that
at 100 % efficiency, the sample would just be completely excited. In an
experimental situation, the pump energy will usually be of this order. If
the incident energy is chosen much larger, the pump efficiency becomes
somewhat smaller due to depletion.

For large values of ¢; /¢, the efficiency decreases with increasing ¢;/¢. For
small values of ¢; /¢, the pump efficiency is independent of ¢;/¢. In that case,
the first part of the pump pulse is completely absorbed, thereby creating a
thin layer that is 100 % excited. Subsequent pump light will be scattered
in this layer and absorbed in a next layer. This way a region of 100 %
excitation grows, starting from the sample interface. Further decreasing
¢;/0 does not increase the efficiency of this process.

If the slab is pumped from one side, the excitation level is inhomoge-
neous. (See also section 5.3.) An (almost) homogeneous excitation can
be obtained by pumping the slab from both sides, which also results in a
higher pump efficiency for small ¢;/¢ (see Fig. 5.1).

A solution to enlarge the pump efficiency at large values of ¢;/¢, is to
change the pumping geometry such that the scattered light is reinjected
into the sample. An example of a very efficient geometry is depicted in
Fig. 5.2. The sample is placed on a dichroic mirror, in the focal region of a
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Figure 5.1: Pump efficiency versus ¢;/¢ for different pump geometries, calculat-
ed in a Monte-Carlo simulation. The medium has a slab geometry with optical

thickness 20. The efficiency increases by a factor 2-5 with the parabolic geometry
described in Fig. 5.2.

parabolic mirror. A small hole in the parabolic mirror allows to illuminate
the sample with a (focused) pump beam. The scattered pump light returns
to the sample by reflecting on the parabolic and the flat mirror, as shown.
By choosing the flat mirror transparent for the probe (emission) wavelength,
a probe beam can reach the sample through this mirror. Note that also the
probe transmitted through the sample (although directionally scrambled)
can be monitored. The results of Monte-Carlo simulations on this pumping
geometry are also shown in Fig. 5.1. The reflection coefficient of the flat and
parabolic mirror were chosen respectively 99 % and 97 %, which are realistic
values. The focal length of the parabolic mirror was f = 1 cm. The hole
in the parabolic mirror was chosen 1 mm and the sample diameter 5 mm.
We see from Fig. 5.1, that such a geometry could increase the pumping
efficiency with a factor 2-5.
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/

dichroic mirror
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pump beam sample
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pérabol ib\

mirror

Figure 5.2: Efficient geometry to pump a disordered laser material. The sample
is mounted on a dichroic mirror which is placed in the focal plane of a parabol-
ic mirror. The pump light is incident through a small (e.g. 1 mm) hole in the
parabolic mirror. Pump light that is scattered from the sample is backreflected to
the sample surface via the parabolic and the dichroic mirror. The dichroic mirror
is transparent for the probe (emission) wavelength. Note that the scattered probe
light from both front and rear sample surface can be monitored (Dashed lines).

In Table 5.2, we have listed the value of ¢;/¢ for a few laser materials,
assuming a transport mean free path of £ = 20 pm, and the resulting pump
efficiencies for single sided pumping. For latex spheres with Rhodamine 6G
and highly doped Cr:Al;O3, the pump efficiency equals its maximum value
for this pump geometry. However, for instance for powdered Ti:sapphire
the efficiency is lower than 10 %. Of course the efficiency can be raised by
enlarging ¢ (e.g. by suspending the powdered Ti:sapphire in water), however
we wish to keep the scattering as strong as possible.

In Table 5.2, we have also listed the pump pulse energy required for an
excitation level of 100 %, for a sample of thickness 0.4 mm and diameter
4 mm, which for ¢ = 20 pum, corresponds to a reasonably large sample of
optical thickness 20 and optical diameter 200. The listed pulse energies
take into account the pump efficiency for a simple single sided pumping
geometry.
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material ion/mol. L 0/l pump | pulse
conc. eff. | energy
(10% m3) | (m) (mJ)
latex spheres 1.3 5.0-10~° 2.5 40 % 6.0
with R6G
Ti:Al, O3 (0.15%) 4.7 2.3:1072 | 1.17:10° | 7.7 % 351
Cr:ALO; (0.05%) 1.6 251072 | 1.2310° | 7.4 % | 122
Cr:AL O3 (2.1%) 67 5.9-107* | 2.92.10' | 38 % 992
Nd:YAG (1.1%) 14 20107 | 1.0-10° | 29 % | 269
Nd:Glass (5.0%) 48 0.9-1073 | 4.5-10' | 35 % 771

Table 5.2: Pump efficiency for some laser materials assuming a transport mean
free path £ = 20 pum. The inelastic mean free path {; was calculated from the
maximum absorption cross section assuming a volume fraction of 30 % powdered
laser crystal or 10 % latex spheres with R6G. Also listed is the required pump
energy to fully excite a slab of thickness 0.4 mm and diameter 4.0 mm, taking into
account the pump efficiency. The higher internal energy density in the scatterers
compared to their environment [2,3], is not taken into account. This would yield
smaller values of ¢; (by a factor of 2-4) which would result in more efficient

pumping.

5.2.3 Experimentally realized gain levels

We have performed experiments on ruby and Ti:sapphire because of their
reasonably large emission cross section and excited state lifetime. To obtain
the required pulse energy to excite these materials, we have used a frequen-
cy doubled Q-switched Nd:YAG laser with a pulse duration of 14 ns. The
maximum pulse energy incident on the sample was about 200 mJ, which
for a beam diameter of 5 mm corresponds to a maximum incident intensity
of 7.3-10" J/m?s. A low intensity probe pulse was incident at a time delay
of 14 ns after the pump pulse, on the same side of the sample. (Probe pulse
energy 40 ud, pulse duration 14 ns, and beam diameter 5 mm. Probe and
pump beam overlap on the sample surface.) The temporal profile of the
transmitted and backscattered intensity was recorded. The overall amplifi-
cation in transmission and in backscattering was determined by comparing
the probe intensity with and without pump light. To avoid artifacts from
cumulative heating of the sample after many pump pulses or other long
term effects, the repetition rate of the probe was chosen twice as high at
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the pump repetition rate, so every second probe shot could serve as a ref-
erence measurement without pump light.

In Table 5.3, the results are listed for various ruby and Ti:sapphire sam-
ples. The samples have a slab geometry with thickness 1 mm. We found
that for dry powdered ruby sample, single shot heating poses a problem.
Already at modest pump intensities (3.6-10'° J/m?s corresponding to 10
mJ in 14 ns on an area of 20 mm?), dark burns occur on the sample sur-
face after a few pump pulses. By suspending the ruby powder in glycerol,
this problem is partly solved, however in that case at high intensities, gas
bubbles occur in the sample. The overall gain which is observed with ruby
is very small (2-4 %). Furthermore, because ruby is a three level system
with a large absorption at the laser wavelength, the observed overall gain is
merely reduced absorption. For powdered Ti:sapphire, the problems with
heating are much smaller. Only for the dry Ti:sapphire powders at high
intensities (6.0-10'" J/m?s corresponding to 165 mJ in 14 ns on an area of
20 mm?), we see a small structural change of the sample surface after a few
hours. The colour of the sample remains unchanged. The structural change
is just a redistribution of the powder in the sample cell. For Ti:sapphire
powders in water we encounter no problems from heating of the sample.
The obtained overall gain for Ti:sapphire samples is high both in reflection
(> 100 %) and in transmission (~ 40 %). Also listed in Table 5.3, is the
calculated gain length and the theoretical shortest gain length in the sam-
ple for an excitation level of 100 %. The gain length was calculated from
the overall gain in backscattering using equation 6.14.

The above results show that it is possible to realize an amplifying ran-
dom medium, on which scattering experiments can be performed. Using
powdered Ti:sapphire, average gain lengths in the order of 10 mm can be
obtained in a large (several mm?®) and reasonably strongly scattering (£ <
20 pm) medium. Experiments have to be performed however with pulsed
light at a low repetition rate.

5.3 Calculations on diffusion with gain

The lifetime of the average gain, is determined by the spontaneous emission
rate and the ratio of the size of the excited volume in the sample to the
critical volume V.. If the sample size is close to V., spontaneously emitted
light will be largely amplified thereby de-exciting the system rapidly. To
incorporate this effect in a theoretical description of the system, we have to
take into account the time and position dependence of the excitation level
and of all relevant intensities.
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transmission data

material in L l pump int. | overall | remarks
pm | pm J/m?s gain

ruby air 200 | ~ 10 | 3.6-10'° - dark burns

ruby glycerol | 100 | ~ 40 | 3.6-10"! 24 %

ruby glycerol | 100 | ~ 40 | 7.3-10! - gas bubbles

Ti:sapphire | air 100 | ~ 10 | 1.6-10"* | 16-18 %

Ti:sapphire | air 100 | ~ 10 | 2.5-10"" | 25-31 %

Ti:sapphire | air 100 | ~ 10 | 3.6-10"' | ~ 30 %

Ti:sapphire | air 175 | ~ 10 | 2.1-10Y' | ~ 38 %

Ti:sapphire | air 175 | ~ 10 | 3.0-10" | ~42 %

Ti:sapphire | air 100 | ~ 10 | 6.0-10" - struc. change

backscattering data
material in L ¢ | pump int. | overall | £, | £7"
pm | pm | J/m?3s gain | mm | mm

Ti:sapphire | water 1000 | 40 6.0-101 36 % 139 | 2.3

Ti:sapphire | water 1000 | 40 6.9-101 1% 11.2 | 2.3

Ti:sapphire | water 1000 | 28 6.5-10*! 115% | 134 | 2.3

Ti:sapphire | air [1] 1000 18 6.5-10*! 155 % | 18.6 | 2.3

Ti:sapphire | air [1] 1000 | 18 | 6.9-10' 134 % | 185 | 2.3

Table 5.3: Results of transmission and backscattering measurements on the over-
all gain from powdered ruby (2.1 wt% Crs O3) and powdered Ti:sapphire (0.15 wt%
TizO3). Pump wavelength 532 nm, pulse duration 14 ns. The ruby/air samples
get burnt already at modest pump intensities. The ruby/glycerol samples show
air bubbles at high intensities. The gain of 2-4 % observed for ruby is in reality re-
duced absorption. With the Ti:sapphire, a large gain is obtained without damage
to the sample. Only at the highest pump intensities, a slight structural change is
visible for the Ti:sapphire/air sample.

[1] The medium consists of wet Ti:sapphire particles surrounded by air, and ¢ is
therefore somewhat larger than for a completely dry Ti:sapphire powder.
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If we assume the propagation of light in the sample to be diffusive,
we can describe the time and position-dependent energy density of both
the pump and probe light by a diffusion equation with an absorption re-
spectively gain term that depends on the local excitation of the sample.
The time and position-dependent excitation level is described by the rate
equations of the laser material. Apart from the probe and pump light,
we have to account for amplified spontaneous emission (ASE). We denote
the energy density of the (green) pump light by Wg(r,t), the (red) probe
light by Wg(7,t), and the amplified spontaneous emission by Wa(r,t). For
each position and time-dependent energy density, we can write a diffusion
equation with the appropriate source terms. Absorption of ASE or probe
light is not taken into account. The concentration N;(7,t) of excited laser
particles (ions, molecules, ...) is determined by the rate equation of the
laser material. We assume a four level laser system as described in the
previous section, with a very fast decay rate from level (2) to level (1) and
from level (0’) to the ground state (0), which means level (2) and level (0’)
are nearly unpopulated. The excitation level is given by N;(r,t)/N;, with
N; the total concentration of laser particles. We arrive at the following set
of coupled differential equations describing our system:

8Wcé_(tr,t> _ DVQWG(T’t)_gabsv[Nt—Nl(r,t)]WG(r,t)—i-%IG(T’t) (5.4)
Wg—i’“ﬁ _ DV2WR(T,t)+UemvN1(T,t)WR(T,t)+%IR("'vt) (5.5)
awgii’“ﬁ = DV’Wa(r,) + 0o Ni(r, ) Wa(r,t) + = Ni(r,t)  (5.6)
% — 00Ny — Ni(r, )| We(r, 1)

—OemO Ny (7, 8) [Wr(r,t) + Wa(r,t)] — %Nl(rat%

where v is the transport velocity of the light inside the medium, o4, and
Oem are respectively the absorption and emission cross section, and 7, is
the lifetime of the excited state. D is the diffusion constant given by:

D=, (5.7)

and Ig(r,t) and Ir(r,t) are the intensities of respectively the incoming
pump and probe pulses. For simplicity, we use the same value of the diffu-
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sion constant for the pump and probe light, and for the ASE. The probe
pulse is incident on the front sample interface. The pump pulse is either
incident on both the front and rear interface or on the front interface only.
In the latter case we have:

Ig(r,t) = IGO\/gexp [—Kez] exp [—bw], (5.8)
and
Ir(r,t) = IRO\/gexp [—Kez] exp [—%], (5.9)

where b = 41n(2), k. ~ £~! is the extinction coefficient, and ¢ = ¢y /n, with
n the effective refractive index of the medium.

Here Igo and Igg are the average intensities of respectively the pump
and probe light, 7¢ and 7x are the pulse lengths (FWHM) of respectively
the pump and probe pulse, and t; and ¢y are the points in time at which
the maximum of respectively the pump and probe pulse is incident on the
sample surface. If the pump pulse is incident on both sample interfaces we
modify Eq. (5.8) to:

Ig(r,t) = IGo\/g P [~hez] T e};p [=re(L — 2)] exp [—b%],
(5.10)

We consider a slab with thickness L, which leads to the spatial boundary
condition:

Wea(r,t) = Wg(r,t) = Wa(r,t) =0, (5.11)

for
z=—2zy and z = L+ z. (5.12)

where 2y ~ 0.71 ¢ is the extrapolation length, as defined in section 2.2. The
points in time t5 and tr at which pump and probe pulse are incident are
taken positive and large compared to the pulse lengths 75 and 7z. Therefore
all energy densities are zero before t = 0:

Wa(r,t <0) =Wg(r,t <0) =Wu(r,t <0)=0. (5.13)
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5.3.1 Discretization

Because our system is a slab in the xy-plane illuminated by plane waves in
the z-direction, we can omit the x and y dependence of the energy densities.
This means we can retain only the partial derivative to z in the gradients
in Eqns. (5.4) to (5.7).

The resulting set of coupled partial differential equations can be solved
numerically using a standard (forward Euler) discretization for the time

derivative:
af(zat) . f(Z,t—i—At)—f(Z,t)

o = A (5.14)

and for the second order space derivative the straightforward discretization:

f(z,t)  flz+4 Az,t) —2f(z,t) + f(z — Az,t)
= A : (5.15)

This discretization method has the advantage that it is simple and explicit,
that is, the discretization of the space derivative depends only on f(z,t)
and not on f(z,t + At). The disadvantage is that for small Az, the time
steps At have to be taken very small, to satisfy the stability criterion [4]:

AzZ?
<

At .
- 2D

(5.16)

The physical interpretation of this criterion is that, apart from a numerical
factor, the time steps have to be smaller than the diffusion time across a
distance Az. The descretized set of equations is:

Wea(z+Az,t)+Wea(z— Az, t)—2We(z,t)
Az?

Wa(z,t + At) — Wg(z,t) = At{D

—0apsV[ Ny — Ny(2,8)|[Weal(z,t) + £ g(z,1)} (5.17)

Wr(z+Az,t)+Wgr(z—Az,t)—2Wg(z,t)
Az?

+0emVN1 (2, t)Wg(z,t) + £ (2, 1)} (5.18)

Wa(z+Az,t)+Wa(z—Az, 1) —2W4(2,t)
Az?

Wa(z + Az, t) — Wa(z,t) = At{D
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Ny (2, WA (2 £) + TlNl(z, £} (5.19)
Ni(z + Az, t) — Ni(z,t) = At{owsv[ Ny — Ni(2,1)|Wa(z,t) (5.20)

Ny (2, )Wz, t) + Walz, )] — ~Ni(2,0)},

Te

5.3.2 Backscattered flux

Solving the above set of partial differential equations numerically for prac-
tical values of 0,5, 0em, and 7, at different pump intensities and values of
£, provides us with information about the spatial and temporal distribution
of all relevant energy densities and the excitation level inside the sample.
Also we can calculate the outgoing flux at either the front or rear interface
of the slab, which is determined by the gradient of the energy density at the
sample interface. For the outgoing probe flux at the front sample interface,
we have:

wyet(t) = 4, p Va0 _ 4 Wal0.5) (5.21)
0z 20
where A; is the area of the sample surface. Here we have used that Wg(z, t)
is zero for z = —z,.

In Fig 5.3 we have plotted the outgoing probe flux for a powdered
Ti:sapphire sample (doping level 0.15 wt% Ti,O3) of 0.8 mm thickness
and 4 mm diameter, with a transport mean free path ¢ = 40 pm, for two
pumping geometries. In the upper graph, the sample is pumped from one
side with 14 ns pulses at 532 nm, with pulse energy 200 mJ. In the lower
graph, the same total pump energy is incident on the sample, but now
equally distributed over front and rear sample interface. The dotted lines
indicate the incoming pump and probe pulses, and the dashed line denotes
the outgoing probe flux without amplification. The latter is slightly lower
than the incoming probe flux due to the finite sample thickness which allows
some probe flux to disappear through the back sample interface. The ratio
of the amplified to the unamplified outgoing probe flux indicates the average
overall gain in the sample. Here the overall gain is 163% for single sided
and 142% for double sided pumping.
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Figure 5.3: Outgoing probe flux in backscattering for single sided and two sided
pumping (Wg*(t)) (solid line), for a powdered Ti:sapphire sample (doping level
0.15 wt% TiyO3). Sample thickness: 0.8 mm, diameter: 4 mm, and transport
mean free path: £ = 40 pm. In the upper graph, the sample is pumped from one
side with 14 ns pulses at 532 nm, with pulse energy 200 mJ. In the lower graph,
the same pulse energy is distributed over both sample interfaces. The dashed line
is the outgoing probe flux without amplification (i.e. without pump light). The
dotted line is the incoming probe and pump flux, of which the latter is scaled by
a factor 10®. Also shown is the average excitation level in the sample defined as
the ratio of the concentration of excited laser particles to the total concentration
of laser particles (dash-dot).
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Figure 5.4: Spatial profile of the excitation level just after the pump pulse, for
single sided and two sided pumping, for the same sample and pump geometry as
in Fig. 5.3. The excitation level for two sided pumping is nearly homogeneous,
and its average is slightly larger than the average excitation level for single sided

pumping.

5.3.3 Spatial profile of the excitation level

The advantage of two sided pumping is that the resulting excitation level in
the sample, and thereby the local gain, is nearly homogeneous. In Fig. 5.4,
we have plotted the spatial profile of the excitation level just after the
pump pulse for single and double sided pumping. The pump energy and
the sample parameters are the same as in Fig. 5.3. We see that the
excitation level drops almost linear with increasing z for the single sided
case, whereas the excitation level becomes almost homogeneous if we pump
from two sides. Also the average excitation level is somewhat higher for
two sided pumping. Despite this fact, the average overall gain is smaller for
two sided pumping, as we saw in Fig. 5.3. Apparently, in trying to obtain
a large overall gain in backscattering, the excitation of the sample at small
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Figure 5.5: Depth dependence of the residence time per order of scattering and
per unit thickness 7(z, N), of light that eventually leaves the sample in backscat-
tering. The curves were calculated with a Monte-Carlo simulation of a random
walk in three dimensions for a slab with optical thickness 20 £. Going from left
to right the order of scattering (N ) is 20, 100, 400, 1000, and > 2500 [5]. In the
limit to infinite order of scattering the profile is symmetric around the middle of
the sample (optical depth 10), closely resembling the profile for N > 2500.
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depth is more important than the excitation of the deeper lying parts of
the sample.

This can be explained if we consider the average residence time 7(z, N)
of light in a layer at depth z in the sample, per order of scattering and per
unit of thickness, defined by:

T = / i 7(2z,N)dz, (5.22)

where 7; is the total residence time of the light in the sample. In Fig. 5.5, we
have plotted the depth dependence of 7(z, N), for different orders of scat-
tering, for light that eventually leaves the sample in backscattering. Going
from left to right, the order of scattering for each curve increases where
the most right curve is almost equal to the limiting case of infinite order
of scattering, which is symmetric around the middle of the sample. We see
that even for very long (finite) paths that leave the sample in the backscat-
tering direction, the light spends on average more time in the first half of
the sample. This explains why the (inhomogeneous) excitation profile of
Fig. 5.4 obtained with single sided pumping, yields a larger overall gain,
although the average excitation level is lower than for two sided pumping.

5.3.4 Pulsed amplified spontaneous emission

If we look at the temporal behaviour of the excitation in Fig. 5.3, we see
that after the pump pulse, the excitation level is constant over the time
window in which the probe pulse is present. Here, the excited volume is
below the critical volume V,,. If we increase the pump flux and vary the
sample thickness, we can reach the critical regime in which the system
becomes unstable. In Fig. 5.6, we have plotted the temporal profile of the
amplified spontaneous emission flux in backscattering (W§*(¢)) during and
just after the pump pulse, for various pump fluxes and sample thicknesses.
Also plotted, is the pump flux and the temporal profile of the average
excitation level. Going from left to right, the sample thickness increases,
and going from bottom to top, the pump flux doubles in every graph. We
see that at sufficiently large pump fluxes and (or) large enough sample
thicknesses, the outgoing ASE flux is pulsed.

This pulsed behaviour originates from the combination of a diffusion
process with a time-dependent gain. The relevant length scale to describe
the amplification in the system, is the amplification length ¢,,,,. During
the pump pulse, the following process takes place.
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1. In the beginning of the pump pulse, the average amplification length
in the medium decreases slowly due to the buildup of inversion. The time
scale on which this buildup takes place is determined by the pump flux.

2. When /,,,, reaches a critical value (that is, when the critical thickness
given by L., = 7l,,,, becomes smaller than the sample thickness), the gain
in the sample becomes larger than the loss through the boundaries. This
leads to a large increase of the ASE energy density. The characteristic time
scale corresponding to this buildup of ASE is ¢,/v, where ¢, is the gain
length in the medium and v is the (transport) velocity of the light.

3. The situation that 7¢,,, < L is unstable. The large ASE energy
density will however de-excite the system, which leads to an increase of
Lomp- This increase continues as long as the large ASE energy density is
present. The characteristic time scale on which the ASE energy density
diffuses out of the medium through the front or rear interface, is given by
L?/D.

4. The equilibrium situation would be reached when gain equals loss,
i.e. when 7¢,,,, = L. However, if the buildup of a new inversion is slow
compared to L?/D, €4, will become larger than L and the process starts
all over again.

This process leads to (transient) oscillations in the outgoing ASE flux.
Damping of the oscillations occurs due to the fact that the increase of £,
in step 3 is opposed by re-excitation due to the presence of pump light. The
system reaches therefore after a few oscillations the equilibrium situation
T gmp = L.

In Fig. 5.6, the pump flux and the sample thickness is varied. We see
that for larger pump fluxes (going from bottom to top in the graph), the
oscillations start earlier and are more rapid, which is due to a more rapid
decrease of £,,,,. We also see that at larger pump fluxes, the equilibrium
state is reached earlier. This is due to a larger damping of the oscillation
in step 3. At extremely large pump fluxes, no pulsed output is observed
because the oscillations become overdamped.

Upon increasing the sample thickness L (going from left to right in the
graph), the oscillations also start earlier because the situation 7l,,,, < L
is reached at larger values of /,,,,. The value of £, determines ¢, via

Lomp = 1/€l,/3. The gain length ¢, is inversely proportional to the excita-

tion level, so the obtained excitation level is in principle inversely propor-
tional to the square of the sample thickness. (At large sample thicknesses,
the spatial profile of the pump energy density starts to play a role. The
pump light does not penetrate into the deepest layers of the sample due
to absorption, and the sample is therefore effectively thinner than L.) Be-
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Figure 5.6: Temporal profiles of the amplified spontaneous emission flux in
backscattering from a powdered Ti:sapphire sample (doping level 0.15 wt% TizOs),
transport mean free path ¢ = 100 pm, for different sample thicknesses and average
pumping fluxes. The pulse duration of the pump pulse is 14 ns. Also plotted, is
the temporal profile of the excitation level (dashed) and the pump flux (scaled by
a factor 4-10%) (dotted). Sample diameter 4 mm. Going from left to right, the
thickness of the sample increases in each graph with one mm, starting from 1 mm,
and going from bottom to top, the average pump flux doubles in every graph,
starting from 1.25-107 Js—! = 3.4-10%% photons per second.
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cause the characteristic time scale for the buildup of ASE is ¢,/v, and the
timescale for the diffusion out of the sample is L?/D, oscillations become
slower at larger sample thickness. This again leads to the fact that the
equilibrium state is reached earlier.

In Fig. 5.7, the same graph is plotted as in Fig. 5.6 but now for a half
as long transport mean free path ¢. Because /,,,, is proportional to the
square root of ¢, a decrease of £ leads to an earlier onset of the oscillations.
This again leads to larger values of ¢, and correspondingly smaller values
of the excitation level. Due to a larger ¢, and a smaller diffusion constant
(D = 3vl), the oscillations are slower and the equilibrium state is reached
earlier.

Concluding we can say, that powdered laser materials can show a pulsed
output depending on various experimental parameters. This pulsed be-
haviour is due to the combination of a diffusion ‘loss’ process and a time-
dependent gain process. The consequence for realizing amplifying random
media is, that the pump parameters must be chosen with care. Largely
increasing the pump flux does not necessarily lead to a considerably larger
gain coefficient in the medium.

5.4 Random lasers

The output of an amplifying random medium can show characteristics that
are very similar to laser action. The output can be spectrally narrow and
pulsed. It is tentative to call this system a random laser, however one has to
be careful. It is important to distinguish three different regimes of multiple
scattering with gain, depending on the strength of the scattering.

Very weak scattering and gain

If the scattering is very weak, that is £ is of the order of the sample size, the
role of the scatterers is to scramble the directionality of the light emitted by
the laser material. If we pump a clear laser material in a certain geometry,
ASE will build up in the direction of largest gain, which is generally the
direction in which the excited region is most extended. This yields a direc-
tionality in the output of the system. Due to gain narrowing, the spectrum
of ASE can be very narrow like the output of a laser. Also, due to the build
up of ASE, the temporal behaviour of the emission can be very rapid. The
pulse length of ASE can be much shorter than the lifetime of the excited
state of the laser material, but is always equal to or larger than the pump
pulse length. If one adds some scatterers to the clear laser material, the
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directionality of the ASE is scrambled, and in all directions the output will
be narrow banded and will decay rapidly. In Ref. [6] this effect was mistak-
enly interpreted as random laser action (see Ref. [7]). If one monitors the
emitted light in a direction in which the excited clear laser material shows
no ASE, the introduction of some scatterers will result in a narrowing of
the observed spectrum (see Fig. 5.8), and a shortening of the pulse length
of the emission (see Fig. 5.9). In this regime of very weak scattering, the
only role of the particles is to scramble the directionality of the ASE, which
builds up (also in the absence of scatterers) in the excited laser material.

Weak scattering and gain

If the scattering is stronger so that £ is much smaller than the sample size
but still larger than the wavelength, we are in the regime where the scat-
terers influence the spectrum of the output. In this regime, ASE builds
up along random paths in the sample that are much longer than the di-
rection in which the sample is most extended. This means that due to
the scattering process, ASE can build up in a laser material that would
show no ASE without scatterers. Here the scattering contributes to gain
narrowing, because it largely increases the residence time of the light in the
sample. This also leads to a pulsed output, as we found in section 5.3, and
in this case the pulse duration of the ASE can be shorter than the pump
pulse length. This pulsed output was also observed in Ref. [8], where the
emission characteristics from powdered laser crystals were studied.

In the above described situation of weak scattering with gain, the scat-
tering process induces a narrow spectrum and pulsed output. Therefore
it is tempting to call this effect random laser action. However, to achieve
laser action, some feedback mechanism is required. In a laser, the cavity
mirrors provide this feedback mechanism. Due to this feedback, lasing only
occurs in the spatial modes allowed by the cavity. In the weak scatter-
ing regime, the light waves perform a random walk without returning to a
specific scatterer, so there is no feedback.

Strong scattering and gain

The feedback mechanism which is essential for a laser oscillator, could be
provided by recurrent scattering events that occur, as we have shown in
chapter 4, in the strong scattering regime for k¢ < 10. If the amplification
along a recurrent light path would be strong enough, these recurrent (loop
type) paths could serve as ring cavities for the light. In that case the system
would lase in the modes allowed by these random ring cavities. This we
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would call random laser action.

If we consider a system in which the amplification does not take place
inside the particles but in between two scattering events (e.g. a medium that
consists of TiO, particles suspended in a laser dye solution), the waves do
not have to return to a specific scatterer to attain optical feedback. The
criterium for a feedback mechanism then becomes whether waves return to
a certain position in the amplifying medium surrounding the scatterers.

From an experimental point of view, it is difficult to obtain strong scat-
tering and amplification. One option would be to dope TiO, particles with
e.g. a Rhodamine laser dye. The disadvantage of such a system is that the
lifetime of the excited state is very short (see section 5.2), and experiments
have to be performed with picosecond time resolution. Another option
is to mix a strongly scattering medium like TiO, powder with powdered
Ti:sapphire. In that case however, the presence of Ti:sapphire particles
reduces the scattering strength compared to a pure TiO, powder.
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Figure 5.8: Emission spectrum of a 2.5 - 1073 M solution of Rhodamine 640
perchlorate in methanol pumped by 3 mJ (10 ns) pulses at 532 nm. Pump beam
diameter 1.5 mm. The broad spectrum corresponds to the (spontaneous) emission
from the front window of the dye cell whereas the narrow spectrum corresponds to
the emission (ASE) from the side windows. The same narrow spectrum is observed
from both the front and side windows if a small concentration of TiOo particles
(about 1019 ¢cm~2) is added, making the solution somewhat turbid.
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Figure 5.9: Temporal emission of a 2.5 - 1073 M solution of rhodamine 640
perchlorate in methanol pumped with 58 uJ (30 ps) pulses at 532 nm. The slowly
decaying peak corresponds to the spontaneous emission from the front window
whereas the short peak corresponds to the emission (ASE) from the side windows.
If about 10'° ¢m™3 TiO, particles are added, the short peak is observed in all
directions. The length of the short peak is determined by the time resolution of
the detector which is about 1 ns. The rapid structure following the short peak is
a common artifact from ringing in the fast detection system.
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Chapter 6

Experiments on random
media with gain

6.1 Introduction

The availability of amplifying random media as described in chapter 5,
allows to study multiple scattering (interference) phenomena in active me-
dia. The experimental studies on multiple light scattering so far, have been
restricted mostly to passive and linear random media. One nonlinear ex-
perimental study was performed on powdered LiNbOj crystals [1], where
spatial correlations of second harmonic waves were studied. This system
was nevertheless still a passive medium.

Much interest is shown recently in performing coherent experiments on
active, amplifying random media. In a recent paper by Lawandy et al. laser
effects were reported from suspensions of latex microspheres in laser dye
solutions [2], but the reported phenomenon is not induced by scattering
(see section 5.4). Recently it was shown by Gouedard et al. that powdered
laser crystals can serve as incoherent quasi monochromatic light sources [3].
No coherent multiple scattering experiments have been performed yet on
amplifying random media.

The behaviour of an amplifying random medium is expected to be differ-
ent from that of an (absorbing) passive one. Since the amplification along
a light path depends on the path length, the overall scattering properties
depend strongly on the sample size. As explained in section 5.1.1, there is
for instance a critical sample size, above which the intensity diverges and
the system becomes unstable. In that sense, multiple light scattering with
gain is similar to neutron scattering in combination with nuclear fission [4].
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In this chapter, we will discuss experiments on laser speckle and coher-
ent backscattering from an amplifying random medium. Both experiments,
are a demonstration of the combination of a multiple scattering interference
effect with optical amplification.

6.2 Laser speckle

When coherent laser light is scattered by a random collection of particles
or even a rough surface, the angular dependence of the scattered intensity
shows strong fluctuations known as laser speckle [5]. These fluctuations
are of the order of the average scattered intensity, and at some angles the
scattered intensity is truly zero. This effect is due to interference between
(multiply) scattered waves.

A speckle pattern that is recorded in transmission from a random col-
lection of particles, is very sensitive to the relative positions of the particles.
The pattern changes completely if the particles move over a distance much
smaller than the wavelength. The change of phase of a scattered wave is
due to the motion of all particles from which this wave is scattered. If a
wave is scattered by N particles, its phase will change significantly if each
particle moves over a distance of only 1/N times the wavelength. This ef-
fect is used to study the motion of particles on a length scale much smaller
than the wavelength, in a technique called ‘Diffusing-Wave Spectroscopy’
[6].

One can model a random sample as a waveguide that couples incident
waves from incoming modes « and o' to outgoing modes 3 and ('. For
a random sample, a mode is a solid angle containing one coherence area
(i.e. one speckle spot). The intensity transmission coefficient from incoming
mode a to outgoing mode [ is denoted by T,3. The correlation between
the intensities in different modes is given by: Cupag = (0T0p 6To/5) with
0T = (Top — (Tup))/{Tap), where angular brackets denote an average
over different configurations of the sample. The correlator C,z,p5 con-
sists of three terms describing short range, long range, and ‘infinite range’
correlations [7]. We will not discuss these correlations in this thesis.

If one wants to study the mode properties of an amplifying medium
—for instance, if one wants to realize and study a ‘random laser’— it is
important that the particles are stationary over a length scale much smaller
than the wavelength. One can expect that the large intensities required
to excite the laser material, will locally heat up the sample and induce
structural changes that average out the speckle pattern.



6.2. Laser speckle

6.2.1 Experimental configuration and results

The outline of the setup is relatively simple. A powdered Ti:sapphire sam-
ple is pumped with intense pulses from a frequency doubled Nd:YAG laser
(wavelength 532 nm, pulse duration 14 ns, repetition rate 10 Hz). With
a time delay of 14 ns after the pump pulse, a low intensity probe pulse
is incident on the sample (wavelength 780 nm, pulse duration 14 ns, pulse
energy 85 1J). The transmitted probe light is recorded with an optical fiber
(core diameter 50 pm) at a distance of 40 cm from the sample, which cor-
responds to a solid angle of detection of 125 urad. The scattered intensity
at a fixed position is recorded while the sample rotates. This way, both the
incoming and outgoing angle are varied at the same time [8]. This is a ‘one
mode in, one mode out’ type of experiment, because the light is incident
in one direction, and the solid angle of detection is smaller than the size of
one speckle spot.

The diameter of the probe beam is about 200 gm. Pump and probe
beam are incident on the same side of the sample. The sample has a
slab geometry with a thickness of about 100 pum, and consists of powdered
Ti:sapphire (doping level 0.15 wt% Ti,03). The particles are strongly poly-
disperse and have an average diameter of 10 pym. The preparation of the
samples is described in section 6.3.1.

The pulse energy of the pump light was varied between 0 and 100 mJ,
and the diameter of the pump beam was varied between 4 and 6 mm.
The pump beam was blocked at every second shot and the probe signal
obtained this way without pump light, was averaged separately to serve as
a reference measurement. The detected probe signal was averaged over 25
laser shots. In Fig. 6.1, the transmitted probe intensity is plotted versus the
rotation angle of the sample. The solid line corresponds to a pump energy
of 98 mJ, at a beam diameter of 7.5 mm, which corresponds to a pump
intensity of 1.6-10* J/m?s. The dotted line is the reference measurement
without pump light. The overall gain (i.e. the average gain over all angles)
of the measurement with pump light is 18 %. We see that the introduc-
tion of gain does not change the observed pattern to a large extend. This
behaviour is found for various measurements at low pump intensities. If
we decrease the diameter of the pump beam to 5 mm at the same pulse
energy (corresponding to a pump intensity of 2.4-10'! J/m?s), the observed
pattern changes completely (see Fig. 6.2). This pump intensity is close to
the damage threshold of the sample, which lies about a factor 2-3 above
this intensity.
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Figure 6.1: Normalized transmitted intensity in a solid angle of 125 urad, from a
powdered Ti:sapphire sample, versus rotation angle of the sample. Sample thick-
ness 100 um. The solid line corresponds to a pump intensity of 1.6:10! J/m?s.
The dotted line is a reference measurement without pump light.

6.2.2 Interpretation

From the data, we can draw the following conclusions. We find that a
speckle pattern persists at modest pump intensities. This means that the
sample is stationary over at least the timespan required to record one of
the (about 5 mrad broad) peaks in Fig. 6.1, which is about 50 seconds.
Only if the intensity is increased close to the damage threshold of the
sample, the structure of the speckle pattern changes. This is likely to result
from changes in the sample geometry due to heating of the sample. It is
interesting to note however, that the amplitude of the fluctuations decreases
only slightly. The intensity is averaged over 25 laser shots, which covers a
timespan of 5 seconds. (Because the pump light is blocked every second
shot, the effective repetition rate is 5 Hz.) If the observed fluctuations
would be due to different configurations of the sample at every shot (i.e.
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Figure 6.2: Same as Fig. 6.1 at a larger pump intensity of 2.4- 10** J/m?s

in case the single shot heating is large enough to change the positions of
the scatterers at every shot), the amplitude of the fluctuations would be
of the order of 1/4/25 = 0.2. Also at high pump intensities, the observed
fluctuations are much larger. This means that, if the observed effect is due
to heating, the sample configuration changes over a timescale larger than a
few seconds. We can conclude that it is possible to study one mode of an
amplifying random medium, using modest pump intensities. At high pump
intensities it is difficult to distinguish between effects from an increased
gain and heating effects, because a speckle patterns is very sensitive to a
small movement of the scatterers. An alternative would be to study speckle
in a single shot experiment, in which the whole speckle pattern is recorded
at once with e.g. a CCD camera.
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6.3 Coherent backscattering

As explained in chapter 2, coherent backscattering is a general interference
effect for waves which are backscattered from a random medium. It leads to
a cone of enhanced backscattering in and around the exact backscattering
direction, which usually has a width of the order of a few mrad. Coherent
backscattering is an example of a multiple scattering interference effect.
It is of particular interest because the (top of the) backscattering cone is
due to very long light paths that have penetrated deep into the sample.
Theoretically, paths of infinite length contribute to the cusp in the top of
the backscattering cone. In practice, features due to > 10? scattering events
are experimentally accessible. Because very long light paths contribute to
the top of cone, we expect coherent backscattering to be strongly influenced
by gain.

In the following, we will describe coherent backscattering experiments
on samples of powdered Ti:sapphire. We found in chapter 5, that such
samples can yield a (relatively large) gain of more than 150 %. Also we will
show how diffusion theory can be used to calculate the angular dependence
of the backscattered light from an amplifying random medium.

6.3.1 Samples

The samples consist of powdered Ti:Sapphire crystals. These powders were
prepared by grinding Ti:Sapphire laser rods [10] for about 5 min. in a
planetary micromill. The samples are strongly polydisperse with an average
particle size of 10 ym. The (transport) mean free path ¢ was varied between
18 and 40 pm, by using both dry Ti:sapphire powders and suspensions of
Ti:sapphire powder in water. The samples have a slab geometry, with
thickness 1 mm and diameter 15 mm. The powders and suspensions are
contained in a sample cell with a thick (1 cm) slightly wedged window,
anti-reflection coated on the front side. Great care was taken to prepare
the samples as clean as possible, because we found that any impurity that
absorbs light at the pump wavelength, causes the sample to ‘explode’. That
is, the single shot heating of the sample around an impurity is large enough
to cause serious structural damage to the sample. The long term heating
of the sample due to the intense pump light was however less than 10 K.

6.3.2 Setup

The outline of the setup is drawn in Fig. 6.3. The Ti:Sapphire is optical-
ly pumped through the front sample interface with a frequency doubled
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Nd:YAG laser (wavelength 532 nm) with pulse energies varying between 0
and 190 mJ. After a time delay of 14 ns, the green pump pulse is followed
by a low intensity red probe pulse (wavelength 780 nm). The beams co-
incide spatially on the sample surface and both have a diameter of 5 mm.
The angular distribution of the scattered probe light is recorded using the
off-centered rotation setup as described in chapter 3. In this setup, an
optical fiber and a photo multiplier tube are used to record the scattered
probe light. The probe light is linearly polarized and both the polarization
conserving and reversing channel have been monitored.

To record a backscattering cone, an average must be taken over many
configurations of the sample, to eliminate the spatial speckle pattern which
is always formed if a coherent beam is scattered from a (stationary) sample.
To that end, the sample is rotated slowly around its axis. Because we use
a pulsed probe beam with a pulse duration of 14 ns, the sample is almost
completely stationary over the time window of one probe pulse. This means
that the average over different sample configurations is performed with the
repetition rate of the probe, which is 10 Hz. If we follow the rule of thumb
that the relative fluctuations on the signal due to speckle are of the order of
N2 with N the number of sample realizations, we have to average over
N = 10000 probe shots to obtain a speckle noise level of 1 %. This leads
to measurement times in the order of hours, to record a backscattering
cone. To be able to correct for artifacts from e.g. cumulative heating of
the sample or long term drift, the pump beam is blocked at every other
shot. This way, the sample is pumped just before every second probe pulse
only. The detected signals from even and odd probe pulses are averaged
separately, so one experimental run yields one backscattering cone with
gain, and one reference cone without gain.

The setup has to be aligned such that an angular scan passes through
the top of the backscattering cone, which requires an accuracy of about
100 prad both in the plane of the angular scan and perpendicular to it.
This alignment is more difficult using pulsed light at a low repetition rate,
which is also due to the large number of probe pulses over which one has
to average. To facilitate this procedure, a CCD array is mounted close to
the optical fiber (see Fig. 6.3). The CCD signal is stored and averaged over
several frames. Alignment of the top of the cone on the center of the CCD
array is considerably easier than alignment of the top on the head of the
optical fiber. After alignment on the CCD array, the setup can be rotated
over a (known) angle such that the top of the backscattering cone is aligned
on the fiber. The CCD array could not be used to record backscattering
cones with gain, because for these measurements, the detector must be
gated on a nanosecond timescale (see below).
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Figure 6.3: Setup to record coherent backscattering from amplifying random
media. A high intensity pump pulse (wavelength 532 nm, pulse duration 14 ns,
repetition rate 5 Hz) with pulse energy 0-190 mJ, and low intensity probe pulse
(wavelength 532 nm, pulse duration 14 ns, repetition rate 10 Hz) with pulse energy
40 pd, are incident on the sample. Time delay between pump and probe: 14 ns.
Pump and probe have a diameter of 5 mm, and overlap spatially on the sample.

The principle used to record

the angular distribution of the scattered probe is the

same as described in Fig. 3.2. A CCD camera is mounted close to the detection
fiber to facilitate the alignment. (Legend: BS: beam splitter, B: beam dump,
F: narrow band filter with transmission wavelength 780 + 5 nm, P: polarizer.)
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A problem that arises in scattering experiments on pumped laser ma-
terials, is that one has to distinguish between the scattered probe light
and (amplified) spontaneously emitted light. Usually the bandwidth of the
probe light is (much) smaller than the spectral width of the spontaneous
emission. Therefore, a narrow band interference filter at the wavelength of
the probe light is mounted in front of the detector. Furthermore, the time
dependence of probe light and (amplified) spontaneous emission is usually
very different. If the excited region in the sample is much smaller than the
critical volume (see section 5.3), the characteristic time of the (amplified)
spontaneous emission is close to the lifetime of the excited state of the
laser material. The lifetime of the excited state of Ti:Sapphire is 3.2 us.
By monitoring the scattered light only during a limited time window of a
few nanoseconds, the fraction of detected (amplified) spontaneous emission
becomes negligible. This was done electronically by storing the oscilloscope
trace of the PMT signal, and subsequently averaging the signal over the
time window of 14 ns in which the probe is present.

6.3.3 Results

In Fig. 6.4, backscattering cones are shown as recorded for the same sample
at different pump energies. The probe was linearly polarized and the po-
larization conserving channel was monitored. The solid line is a theoretical
curve calculated with diffusion theory. We will describe this calculation
in the next section. We see that the overall scattered intensity increases
with pump energy. The pump energies for these data were 0, 165, and 190
mJ, which yields an overall gain of resp. 0, 36, and 71 %. We also see
that the shape of the cone changes: upon increasing the gain, the top of
the backscattering cone sharpens. This sharpening becomes even more
apparent if the y-axis is scaled such that the background levels coincide,
which is shown in Fig. 6.5. From Fig. 6.5 we also see that the enhancement
factor is essentially independent of the gain.

In Fig. 6.6, the backscattering cone is shown from the same sample as in
Fig. 6.4, monitoring the polarization reversing channel. We see that in the
polarization reversing channel even without gain, the enhancement factor
of the backscattering cone of these samples is too small to distinguish a
cone from the diffuse background.

6.3.4 Interpretation

The narrowing of the top of the backscattering cone in the polarization
conserving channel, can be understood if one realizes that the shape of
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Figure 6.4: Three backscattering cones in the polarization conserving channel
from the same sample at different pump energy. Sample: 30 % Ti:Sapphire par-
ticles (10 pm) in water, transport mean free path: 40 um. The overall gain of 0
%, 36 %, and 71 %, corresponds to pump energies: 0 mJ, 165 mJ, and 190 mJ.
The intensity is normalized to the diffuse background at zero gain. Solid lines:
calculated curves based on diffusion theory. Upon increasing the gain, the overall
intensity increases and the top of the cone sharpens.
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Figure 6.5: Same backscattering cones as in Fig. 6.4 but y-axis scaled such that
background levels coincide. One can see that the top of the cone sharpens and
that the enhancement factor is essentially independent of the gain.

the cone reflects the path length distribution in the sample. The angu-
lar range of the interference contribution to the backscattering cone from
a certain light path, is inversely proportional to the distance between be-
gin and end point of this path. The average distance between begin and
end point, increases (on average) with the path length. The wings of the
cone are therefore mostly due to contributions from short paths. As we
approach the top of the cone, interference contributions from successively
longer paths add to the intensity. In exact backscattering all paths con-
tribute to the backscattering cone. Because the amplification along a path
depends exponentially on its length, the introduction of gain will mainly
affect the very central region of the backscattering cone. Both the very
central region of the backscattering cone and the diffuse background will
be amplified, while the wings of the cone are hardly affected. This leads
to a sharpening of the top of the cone. Note that the backscattering cone
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Figure 6.6: Backscattering (cones) in the polarization reversing channel from
the same sample at different pump energy. Sample: 30 % Ti:Sapphire particles
(10 pm) in water, transport mean free path: 40 pm. The overall gain of 0 %
and 34 % corresponds to pump energies of: 0 mJ and 165 mJ. The intensity is
normalized to the diffuse background at zero gain. We see that for these samples
the enhancement factor is too small to yield an observable backscattering cone.

is superimposed on an (almost) angular independent diffuse background to
which all light paths contribute.

As explained in section 2.5, the backscattering cone is a consequence
of reciprocity. By the introduction of gain, reciprocity could be broken,
which would lower the enhancement factor of the backscattering cone. After
amplification of a pulse in part of the sample, the probed region is partly
de-excited and the counterpropagating pulse will probe this region in a
different state. For pulse durations comparable to the residence time of
the light in the sample, this could affect reciprocity. In our system we do
not expect this effect to occur, as the pulse duration by far exceeds the
residence time and the pulse energy is low enough to leave the sample in
almost the same state (there is no saturation of the gain at increasing probe
energy). This is consistent with our observation that the enhancement
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factor is essentially independent of the gain (Fig. 6.5).

In the polarization reversing channel, the backscattering cones from
our samples did not exhibit a significant enhancement factor (Fig. 6.6).
In the polarization reversing channel, correlation between the amplitudes
and phases of counterpropagating waves diminishes with increasing order of
scattering [11]. Coherent backscattering in this channel is due to low order
scattering (short paths). Depending on the phase function of the scatter-
ers, the enhancement factor ranges from 1.0 to about 1.2. We expect this
enhancement factor to decrease with gain because long path contributions
are only present in the background and not in the cone. Apparently our
samples exhibit an enhancement factor smaller than 1.05, which does not
allow to measure this dependence of the enhancement factor on gain.

6.3.5 Theory

In chapter 3, we found that the backscattering cone calculated in the diffu-
sion approximation, provides a very good description of coherent backscat-
tering from passive random media. In the following we will use diffusion
theory to calculate the backscattered intensity from an amplifying random
medium. We start from the stationary diffusion equation with gain [4,12]:

%EQ Vf’%lF(Tl,rg)—Ffﬁg F(’I"l,'l"g) = —(5(7’1 —’I"Q). (61)

Here F(71,75) is the intensity Green’s function, k, is the gain coefficient
in the medium, and ¢ is the (transport) mean free path. We assume x, to
be position-independent.

If we use a slab geometry, the appropriate boundary condition is
F(ry,ry) = 0 in planes at distance z, on both sides of the slab, with
zp ~ 0.71¢ [13]. In the conventional way of solving a diffusion equation with
these boundary conditions (used in e.g. Ref. [14] to calculate the backscat-
tering cone from a passive random medium with a slab geometry), the
diffusion propagator F'(ri,rs) is first calculated for an infinite medium.
Subsequently, the boundary conditions for the slab are fulfilled by multi-
ple reflections of F(ry,r5) in ‘mirror planes’ on both sides of the slab [15].
(These ‘mirror planes’ are also referred to as ‘trapping planes’.) This pro-
cedure can not be followed for an amplifying medium, because the diffusion
propagator F'(ri,r,) for an infinite amplifying random medium, diverges
for |ry — ro]— co. Because we have to calculate the angular dependence of
the backscattered intensity, we wish to perform a Fourier transform of the
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form: .
F(q,,z1,2) = /F(rl,r2)e“ﬂi'qld11, (6.2)

with 7, = 7y, — ro, perpendicular to z, where the slab is oriented in
the xy-plane. Here g, is the perpendicular component of the outgoing
wavevector. The integral has to be performed over the whole surface of the
slab, and diverges because F'(ry,ry) diverges for r, — oo.

The solution to this problem is to perform the Fourier transformation
on the original diffusion equation (6.1), before the boundary conditions are
applied. The diffusion equation then reads:

52
0 (8—2% — qi) F(q,,z1,2) + lrgF (g, 21,2) +0(21 —22) =0. (6.3)
The boundary condition now is: F(q,,z1,22) = 0 for z5 = —2zp and 2z, =

L + zy, and for every z;. Solving Eq. (6.3) with this boundary condition
we find:

3cos(B(L — z4)) — 3cos(B(L + 229 — |24]))

F(qL’Zl’ZQ) = F(qL’Zs’zd) =

202 Bsin(B(L 4 22)) ’
(6.4)

where z, = 21 + 22, 24 = 21 — %2, L is the slab thickness, and
B=\/t.2,— . (6.5)

with £,,,, the amplification length in the medium. The amplification length
is defined as the (rms) average distance over which the intensity is amplified
in the medium by a factor e**.

From Eq. (6.4) we can see that F(q,,z2,22) becomes unstable (that
is diverges for small angles) for L + 2zy > L. = mlym,, where L., is the
critical thickness. In practice, if we try to make the amplifying region in
a slab of disordered laser material thicker than L., the gain will saturate
close to L = L., which provides an upper limit for the intensity.

With the solution for the diffusion propagator F(q,,zi,2,) for a slab
geometry, we can calculate the backscattering cone in the same way as was
described in section 2.4 for a passive random medium. From Eq. (2.47),
we can derive the following expression for the bistatic coefficient describing
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the backscattering cone:

1 L 2Lz B
70(95):Z/0 / F(q,,z1,2)cos(zqn)e UZs dz.dz,, (6.6)

where n = ko(1 — p,), u = k(1 + p;'), and p, = cos(d) with 6 is the
angle of the outgoing wavevector k, relative to the z-axis. Here k. is the
extinction coefficient given by k., = £;! — E;l, where ¢, is the scattering
mean free path and ¢, is the gain length in the medium. The incoming
wavevector is taken along the z-axis.

The integrals in Eq. (6.6) can be performed explicitly using the intensity
propagator from Eq. (6.4). The result is:

_ 3e UL 1 y
203Bsin[B(L + 220)] (8% + n* + u?)? — (26n)?

[2(8% 4+ n* + u?) cos(282) cos(Ln) — 460 sin(26z) sin(Ln)
+2§(—ﬂ2 +n? —u?)sin(B(L + 2z)) sinh(ul)
+2(8* = n*— u*) cos(Ln) — 2(8° + 1 + u?) cos(B(L + 22)) cosh(uL)
+4Busin(BL) sinh(uL) + 2(—6° + n* 4+ u”) cos(BL) cosh(uL)] .

Ye(0s) (6.7)

In this expression, 7, u, and § depend on the scattering angle 8. For small
angles, this solution agrees with the results of Ref. [16], in which coherent
backscattering from an amplifying medium was calculated, but in which an
unnecessary approximation was made which makes their result only valid
for the central region around the cusp of the cone. For passive media,
usually the limit L — oo is taken to obtain a much simpler expression. For
amplifying media this is impossible due to the divergence of the intensity
for L > L.,.

It is instructive to compare the backscattering cone with gain to the
cone from a passive medium. To that end, we can look at the parameter
0 defined in Eq. (6.5). We see that (3 is real valued only for small angles,
that is for:

qL = kosin(0) < £} . (6.8)
Otherwise, 3 is purely imaginary. In that case, the trigoniometric functions
in Eq. (6.4) become hyperbolic functions and F(q |, z1, 22) attains the form
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of the diffusion propagator for a passive medium. This means that only
for small angles, gain will affect the backscattering cone. This is consis-
tent with our observations in the previous section. Note that light paths
with a distance d between begin and end point, yield an interference con-
tribution to the backscattered intensity with characteristic angular extent
0 = (kod)~'. With Eq. (6.8) we see, that the angular range in which the
affect of gain is observed, corresponds to the angular extent of interference
contributions from paths with d > £,,,,.

The backscattering cone is superimposed on an angle-independent back-
ground. This background consists of a diffusive term -, and contributions
from paths that have no counterpropagating counterpart like single scat-
tering. From Eq. (2.47), we have the following expression for the bistatic
coefficient describing the diffuse background:

1 fE2h=za _1 -1 _1 —1_
w0 = [ [ Fla=0m,m)e A b are i gz g,
0Jzgq
(6.9)
The integrals in this expression can be performed explicitly using intensity

propagator from Eq. (6.4) at g, = 0. The result is:

3 Zl(l+672uL) 4 22(1—672111’) 4 Z367L(v+u)

T 26Bsin(B(L+22))  u[(u? + B2)2 + v2(26% — 2u2 + v2))]
(6.10)

7@(05)
with
Zy =u(v? —u® — B3*) cos[B(L + 22)] +u (u® —v*® — %) cos(BL)  (6.11)

v? + 3% — 3u?

+2uvfsin[B(L + 2z)] + uwv W 3

sin(3 L),
Zy = v (u? — v — 3%) cos[B(L + 2z,)] + 2u*Bsin(B L) (6.12)

v? — u? + 332

—B (u* + v* + 8)sin[B(L + 220)] + v*v 21

cos(B L),

and

Zy =2u (v’ — v+ %) + 2u (u® — v* + %) cos(22 B) — 4uvBsin(22, B).
(6.13)
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In this expression, the angular dependence is determined by the parameters:
u= Sk (u; 1), v = 3k(u;'—1),and B = \/€;2 — ¢, with p, = cos(f).

amp
Again, due to the divergence of the intensity for L > L.,, one can not take
the limit . — oo to simplify the above expression.

We define the overall gain =, as the average over all angles of the ratio
of the backscattered intensity to the backscattered intensity without am-
plification. Because the angular extent of the backscattering cone is very

small compared to 2w, we can write the overall gain as:

z = el =0bamp) (6.14)
7@(95 - Oaéamp — OO)

This relation allows us to determine the average amplification length ¢,,,,,
from the increase of the backscattered intensity.

Comparing data and theory

The total backscattered intensity is given by the sum of the diffuse back-
ground described by -,, the backscattering cone described by ~., and a
contribution from single scattering and possible experimental stray light.
Over the angular range of the experimental backscattering cones shown
in the previous section, =y, is nearly angle-independent. If we assume the
single scattering and possible stray light to follow the same weak angular
dependence as 7,, we can use equation 3.1 for the total intensity.

The solid lines in Fig. 6.4, are the calculated backscattered intensities
found by using Egs. (6.7) and (6.10) in Eq. (3.1). The mean free path ¢
for this sample and the enhancement factor ¥ were inferred from the zero
gain experiment (bottom curve). The overall gain = was determined from
the increase of the diffuse background intensity (measured at large angles)
[17]. From the overall gain, the gain coefficient x, was calculated using
Eq. (6.14). The gain coefficient is the only parameter that varies between
the three curves in Fig. 6.4. The general agreement between data and
theory is very good.

At large sample thicknesses, the calculated curves are slightly narrow-
er than the measured ones. This effect becomes clear for large gain using
optically thick samples (see Fig. 6.7). The effect is due to the spatial inho-
mogeneity of the inversion. The samples were pumped from the front side,
so the gain decreases with increasing depth. Using the theory of section 5.3,
we can calculate the spatial profile on the gain coefficient for our sample
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Figure 6.7: Backscattered intensity from different samples, versus 6¢, with 6 the
scattering angle relative to backscattering and ¢ the transport mean free path.
Going from bottom to top, the transport mean free path of the samples is resp.
40, 40, and 28 pm, and the pump energy is resp. 0, 180, and 180 mJ. The intensity
is normalized to the diffuse background at zero gain. Solid lines: calculated curves
based on diffusion theory. Because the calculation of the backscattering cone
assumes constant gain, it overestimates the contributions from the longer (deeper
penetrating) paths, resulting in a somewhat narrower cone.
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Figure 6.8: Spatial profile of the gain coefficient kg4, calculated numerically as
described in section 5.3, for the sample and pump energy of the upper curve in
Fig. 6.7. The dashed line is the average value of k4, determined from the data.

and pump parameters. The results are shown in Fig. 6.8. The calculat-
ed backscattering cones assume a position-independent gain coefficient x4,
which is determined from the measured overall gain. This average value of
kg, as determined for the data of the upper backscattering cone in Fig. 6.7
is 0.746 cm~!. We have denoted this value in Fig. 6.8 by a dashed line.
Note that this value agrees well with the average of the calculated spatial
inversion profile.

Longer light paths penetrate deeper into the sample. Because r, is
smaller than its average value at large depths, the assumption of a position-
independent x4 leads to an overestimation of the contribution from longer
light paths to the overall gain. For the calculation of the backscattering
cone, this results in too narrow cones. As we saw in section 5.3, a more
homogeneous gain could be obtained by pumping the sample from two
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sides, which leads however to a somewhat smaller average gain.

6.4 Discussion

We have demonstrated the effect of gain on the multiple scattering in-
terference phenomenon coherent backscattering. In future experiments, it
is interesting to study the combination of amplification with very strong
scattering. We saw in chapter 4, that for very strong scattering recurrent
scattering becomes important. If gain lengths of the order of the scattering
mean free path could be achieved, the importance of recurrent scattering
could be enhanced due to gain. If the amplification along a recurrent light
path is strong enough, this recurrent path could form a ‘random ring cav-
ity’ along which laser action could set in. Another interesting experiment
would be, to study the effect of gain on the diffusion constant in a random
medium. If recurrent scattering becomes more important, the diffusion
constant could decrease upon the introduction of gain.

To obtain strong scattering with amplification is difficult from an ex-
perimental point of view. A very interesting system would be a random
collection of mono-disperse titanium dioxide particles (which scatter very
strongly), doped with laser dye. The technological developments on realiz-
ing such particles are promising.
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Appendix A

List of symbols

Throughout this thesis we use Heaviside-Lorentz units. These are rational-
ized Gaussian units and yield elegant an simple equations. (See J.D. Jack-
son, Classical Electrodynamics, Appendiz on Units and Dimensions (Wiley,
New York, 1975).) They also avoid wandering factors of 4. Both ¢, and
o are equal to 1. To convert any equation to SI units, simply replace E(7)

by /4mey E(r) and €(r) by €(r)/ey, with g = 107 /4wy (A%s*kg~'m™?).

Notation | Explanation Introduction
Os scattering cross section Eq. (1.1)
o cross section for radiation pressure sec. 1.1.1
O abs absorption cross section sec. 1.1.1
Cem emission cross section sec. 5.2.1
o extinction cross section Eq. (1.2)
I scattering mean free path sec. 1.1.2
L transport mean free path Eq. (1.6)
Laps absorption mean free path Eq. (1.7)
l; inelastic mean free path sec. 1.1.2
Lomp amplification mean free path Eq. (5.1)
l, gain mean free path sec. 5.1.1
L, extiction mean free path sec. 1.1.2
Kx reciprocal of £, sec. 1.1.2
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a diameter of a scatterer sec. 1.1.3

D diffusion constant sec. 2.2

Co vacuum velocity of light sec. 2.3.2

c phase velocity of light in a medium sec. 5.3

v transport velocity of light in a medium sec. 2.2

y bistatic coefficient Eq. (2.34)

r total vertex Eq. (2.31)

(all vertices depend on 7y ... 74.)

U irreducible vertex sec. 2.3.2

R reducible vertex sec. 2.3.2

S single scattering vertex sec. 2.4

C most-crossed vertex sec. 2.4

L ladder vertex sec. 2.4

C complementary vertex sec. 4.5

(generalized most-crossed)
R same as R sec. 4.5
S recurrent vertex sec. 4.5
(generalized single scattering)

« polarizability sec. 1.1.1
e(r) dielectric constant Eq. (2.3.1)
Vir) scattering potential Eq. (1.10)

E(r,t) electric field sec. 1.1.1
I(r,t) intensity Eq. (1.4)
We r,A energy density (pump,probe,ASE) sec. 1.2
P(r,t) electric polarization Eq. (2.22)
G(ry,72) | total amplitude Green’s function Eq. (2.16)
G(r1—rs2) | averaged total amplitude Green’s function | sec. 2.3.1
Go(ry,73) | empty space amplitude Green’s function Eq. (2.12)
F(ry,ry) | intensity propagator Eq. (2.3)
t(ry,72) | single particle t-matrix sec. 2.3.1
T®(ry,r,) | two particle t-matrix Eq. (4.12)




Appendix B

Feynman notation

In this thesis the following drawing convention for Feynman scattering dia-
grams is used:

o = Scattering potential —agk?d(r — 7;)

X = Single particle t-matrix
——— = Bare Green’s function Gy(ry,75)
=————= = Dressed Green’s function G(r1,7;)
~~~~~~~~~~~~~~~~~~~~ = Connection between identical scatterers
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Summary

This thesis is concerned with the experimental and theoretical aspects of
multiple scattering of light in both strongly scattering and amplifying ran-
dom media. In chapter 2, an introduction to multiple light scattering theory
is given. The theoretical concepts relevant for this thesis are explained and
the backscattered intensity from a disordered medium with absorption is
calculated explicitly. The bistatic coefficients describing coherent backscat-
tering are presented in a form which allows for a comparison between the
absorption case and the case of an amplifying random medium (treated in
chapter 6).

In chapter 3, a new technique called ‘off-centered rotation’ is described
to perform coherent backscattering experiments. This technique allows for
recording the shape of the backscattering cone in a reliable and accurate
way. The scanning range is about 500 mrad which includes exact backscat-
tering, and the angular resolution is 50-100 prad. This means the ratio
between angular resolution and scanning range is of the order 1:10,000. We
have used this technique to record backscattering cones from various sam-
ples in the weak scattering regime. It allowed us to record the theoretical
enhancement factor of two in the helicity conserving polarization channel.
The shape of the cone was compared with the theoretical expressions from
diffusion theory and with the exact scalar solution. Very good agreement
with diffusion theory was found for various measurements.

In chapter 4, light scattering from very strongly scattering samples is
studied. By performing coherent backscattering experiments, experimental
evidence is found for recurrent scattering of light waves. The availability
of the technique of off-centered rotation allows for a determination of the
enhancement factor versus the (scaled) scattering mean free path. We find
an enhancement factor of 2.00 £ 0.01 in the weak scattering regime. At
very strong scattering (i.e. for k¢, < 10), the enhancement factor is found
to drop below 2.00. This deviation is interpreted as a manifestation of
recurrent scattering. A calculation on the enhancement factor including
recurrent scattering from two particles, confirms this interpretation.
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In chapter 5, amplifying random media are discussed. We go into the
experimental considerations on realizing such media. Different laser materi-
als and excitation schemes are discussed and results on powdered ruby and
Ti:sapphire crystals are given. We find that with powdered Ti:sapphire,
amplifying random samples can be realized with transport mean free paths
down to 20 pm and gain lengths of the order of 10 mm. We examine the
theoretical aspects of amplifying random media by solving numerically the
set of diffusion and rate equations describing light propagation in a pow-
dered laser crystal. Under certain conditions, the spontaneously emitted
light from such a medium is found to exhibit a pulsed behaviour. Finally,
random laser action is discussed.

In chapter 6, experiments are described on amplifying random media.
We have recorded laser speckle patterns from pumped Ti:sapphire pow-
ders. We find that upon increasing the gain the speckle pattern persists
but changes. Furthermore, a study on coherent backscattering from an
amplifying random medium is presented. We find that the central region of
the backscattering cone narrows down upon increasing the gain, due to the
increased importance of the longer light paths. The enhancement factor
remains unchanged. Also a calculation is performed on coherent backscat-
tering from an amplifying random medium in the diffusion approximation.
Very good agreement between data and theory is found.



Samenvatting voor iedereen

Dit proefschrift gaat over licht in wanordelijke media. Een voorbeeld van
een wanordelijk medium is dichte mist. Het licht van bijvoorbeeld de kop-
lamp van een auto wordt in dichte mist diffuus: de lichtstralen die door de
koplamp worden uitgezonden worden op een willekeurige manier van richt-
ing veranderd door de waterdruppels. Deze richtingsverandering noemen
we verstrooiing. In dichte mist zal het licht vele malen verstrooid worden.
Een ander voorbeeld van een wanordelijk medium is witte verf. Witte verf
bestaat uit een willekeurige opeenstapeling van kleine korreltjes die, net als
water druppels, het licht verstrooien.

Je kunt je afvragen hoe licht zich voortplant in een wanordelijk medium
zoals mist. Als je op een kleine schaal kijkt, is dit een zeer ingewikkeld pro-
bleem: een afzonderlijke lichtstraal wordt vele malen van richting veranderd
door de grote hoeveelheid waterdruppels. Op grote schaal lijkt het probleem
echter heel simpel: het licht vormt gewoon een diffuse ‘gloed’. Er is echter
meer aan de hand. Omdat licht zich gedraagt als een golf kan er namelijk
interferentie optreden. Wat is interferentie 7

Interferentie is een effect dat kan optreden voor elk soort golf, zoals
licht, geluid, radiogolven of golven in het water, en ontstaat als twee of
meer golven bij elkaar komen. Als er in een concertzaal (met een te droge
akoestiek) op twee fluiten precies dezelfde toon gespeeld wordt, dan hangt
wat je hoort af van waar je zit in de zaal. Hoe de geluidsgolven van de twee
fluiten optellen, hangt namelijk af van hun onderlinge ‘fase’. Als de beide
golven net dezelfde beweging maken als ze elkaar tegen komen, werken
ze samen en ontstaat er een sterkere beweging. De golven zijn dan ‘in
fase’ en de interferentie is constructief. Het totale geluid dat je dan hoort
is heel hard. Als ze daarentegen net een tegengestelde beweging maken
heffen ze elkaar op. Ze zijn dan ‘uit fase’ met elkaar en de interferentie heet
destructief. Je hoort in dat geval helemaal niets. Als je door de concertzaal
loopt, kom je afwisselend op plaatsen waar de golven constructief optellen
en waar ze elkaar uitdoven, en je hoort het geluid dus harder en zachter
worden.
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Interferentie kan ook optreden voor lichtgolven. Stel, we nemen een
scherm met twee nauwe spleten erin, en belichten dat aan de achterkant
met een zaklamp. De spleten zijn vergelijkbaar met de fluiten in het boven-
staande voorbeeld voor geluidsgolven. Beide spleten zullen aan de voorkant
van het scherm lichtgolven uitzenden. Net als bij de fluiten zal op verschil-
lende plaatsen het licht constructief of destructief interfereren. Als je het
licht dat van de twee spleten afkomt op een wit stuk papier laat vallen, zie
je lichte en donkere lijnen, corresponderend met de plaatsen waar de licht-
golven respectievelijk constructief optellen of elkaar opheffen. Bovendien,
als je de spleten verder van elkaar brengt komen de lichte en donkere lijnen
dichter bij elkaar en omgekeerd. Dit is een beroemd experiment dat voor
het eerst uitgevoerd is door Thomas Young (1773-1829).

Interferentie van licht treedt ook op als het licht verstrooid wordt in bij-
voorbeeld mist of witte verf. Een belangrijk voorbeeld daarvan is ‘coherente
terugverstrooiing’. Als we met bijvoorbeeld een halogeen spotje van een af-
stand schijnen op een wit geverfde muur, dan zal de witte verf het licht in
alle richtingen verstrooien: vanaf iedere plaats in de kamer zie je een lichte
plek op de muur. Als je echter precies op de plaats van het spotje zou kun-
nen gaan staan, zou je iets bijzonders zien. Voor het licht dat van de muur
terug naar het halogeen spotje wordt verstrooid, treedt er namelijk con-
structieve interferentie op. In de richting terug naar het spotje (genoemd
de ‘terugstrooirichting’), wordt er meer licht verstrooid dan in alle andere
richtingen. Waar komt dit effect vandaan 7

Laten we eens twee punten beschouwen in het belichte oppervlak van
de verf. Er is licht dat op het ene punt invalt, en na een wanordelijke
wandeling door de verf vanaf het andere punt weer naar buiten komt. Er
is echter ook licht dat precies het omgekeerde doet. Als het licht in beide
gevallen hetzelfde pad afgelegd heeft, is het als het naar buiten komt nog
steeds in fase. De twee punten op het oppervlak kan je dan vergelijken met
de twee spleten in het experiment van Young. Het licht dat van deze twee
punten afkomt zal ook lichte en donkere strepen geven. leder stel punten
in het belichte oppervlak van de verf geeft een dergelijk streeppatroon.
Het totale verstrooide licht is dus de som van een heleboel streeppatronen,
die variéren van heel fijn tot heel grof. Net als in het experiment van
Young, wordt de afstand tussen de strepen in een patroon bepaald door
de afstand tussen de twee punten in het belichte oppervlak, en de afstand
tussen die twee punten hangt natuurlijk weer samen met de weg die het
licht door het medium heeft gevolgd. Alle streeppatronen hebben echter
één ding gemeen: in de richting terug naar het halogeen spotje vind je
altijd een lichte streep. Daarom is de hoeveelheid licht die in die richting
wordt verstrooid groter dan de hoeveelheid licht in andere richtingen. Om
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coherente terugverstrooiing waar te nemen is lastig, omdat je de verstrooide
hoeveelheid licht wilt meten op de plaats van de lichtbron (het spotje) en
dicht daaromheen. Hoe je dat toch nauwkeurig kunt doen is beschreven in
hoofdstuk 3.

Laten we het eens zwart-wit zien. Als licht op een voorwerp valt, kan
het behalve verstrooid ook geabsorbeerd worden. Als al het licht geab-
sorbeerd wordt, is een voorwerp zwart. Als het gedeeltelijk geabsorbeerd
en gedeeltelijk verstrooid wordt, dan is een voorwerp grijs. Als er helemaal
geen absorptie optreedt, dan is een voorwerp perfect wit. In het dagelijks
leven echter absorberen alle voorwerpen tenminste een klein beetje.

In dit proefschrift worden twee soorten wanordelijke media onderzocht.
Het eerste is een medium dat verstrooit en waarin het omgekeerde van
absorptie plaatsvindt: versterking. Wat gebeurt er als de hoeveelheid
licht meer in plaats van minder wordt bij verstrooiing aan een voorwerp?
Het voorwerp is dan pas echt wat men altijd met wasmiddelen claimt te
bereiken: witter dan wit! In het eerste deel van hoofdstuk 5 wordt uitvoerig
ingegaan op het maken van een dergelijk medium. Ik gebruik daartoe een
kristal van het materiaal titaan-saffier dat ook gebruikt wordt voor een
laser. Dergelijke kristallen zijn in staat om licht te versterken, hetgeen ook
het principe is waar een laser op berust. Om dit kristal licht te laten ver-
sterken moet het eerst ‘opgeladen’ worden met een sterke lichtpuls. Als er
daarna een tweede (zwakkere) puls op het verpoederde kristal valt, zal deze
tweede puls zowel verstrooid als versterkt worden. Nadat het mogelijk was
om een versterkend wanordelijk medium te maken, ben ik experimenten met
dergelijke media gaan doen, waaronder metingen aan coherente terugver-
strooiing. Deze metingen met de bijbehorende theorie staan beschreven in
hoofdstuk 6.

Om meer inzicht te krijgen in het gedrag van versterkende wanordelijke
media, heb ik numerieke berekeningen aan een dergelijk medium gedaan.
Het is bijvoorbeeld interessant om te kijken wat er gebeurt als er in het
opgeladen medium zoveel versterking plaatsvindt dat er per seconde meer
licht ontstaat dan dat er weg kan stromen. Dan wordt de hoeveelheid
licht zeer snel erg groot. Deze situatie kan echter niet onbeperkt blijven
bestaan, en als het medium ‘leeg’ is neemt de hoeveelheid licht weer snel
af. Dit proces kan zich een aantal malen herhalen als het medium steeds
weer opnieuw opgeladen wordt, en het resultaat is dat het medium gepulst
licht uitzendt. Dit staat beschreven in hoofdstuk 5. Aan het einde van dat
hoofdstuk wordt ook besproken in hoeverre dit systeem gezien kan worden
als een ‘wanordelijke laser’.

Behalve versterkende media heb ik ook zeer sterk verstrooiende media
bestudeerd. Een sterk verstrooiend medium is een medium waarin een licht-
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straal zeer vaak achter elkaar verstrooid wordt. De lichtstraal kan zich dus
steeds maar over zeer kleine afstanden vrij voortplanten voordat hij alweer
van richting wordt veranderd. Die afstand waarover een lichtstraal zich
gemiddeld vrij kan voortplanten in een medium, wordt de ‘verstrooiings-
vrijeweglengte’ genoemd. De verstrooiings-vrijeweglengte geeft dus de mate
aan waarin een medium verstrooit. Merk op dat een kleine verstrooiings-
vrijeweglengte een grote mate van verstrooiing betekent.

Als nu een medium zo sterk verstrooit dat de verstrooiings-
vrijeweglengte van dezelfde orde van grootte wordt als de golflengte van
het licht, ontstaat er een vreemde situatie. Een lichtgolf kan zich dan
niet eens meer vrij voortplanten over de afstand van één golflengte. In deze
situatie zou er wat genoemd wordt ‘Anderson lokalisatie’ op kunnen treden.
Dit is een interferentie-effect waarnaar al een tijd gezocht wordt. Door de
zeer sterke verstrooiing zou al het licht langs gesloten paden (‘lussen’) gaan
lopen en daarmee in het medium opgesloten (gelokaliseerd) zijn. Door
coherente terugverstrooiing van een sterk verstrooiend medium te bestu-
deren, hebben we experimenteel bewijs gevonden dat er licht langs gesloten
paden kan gaan lopen. Dit wordt beschreven in hoofdstuk 4.

Wat in de nabije toekomst interessant kan zijn, is de combinatie van zeer
sterke verstrooiing met versterking. Ten gevolge van versterking worden
lange paden in een medium belangrijker: hoe langer een pad, hoe groter
de totale versterking langs het pad is. Door zeer sterke verstrooiing en
versterking te combineren zou het effect van de gesloten paden misschien
zo belangrijk kunnen worden dat Anderson lokalisatie van licht optreedst.
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