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The exponential increase in the speed of computers during the
past few decades has made it possible to perform simulations
that were utterly unfeasible one generation ago. But in many
cases, the development of more efficient algorithms has been
at least as important.

One of the most widely used schemes to simulate many-
body systems is the Markov-chain Monte Carlo method
(MCMC) that was introduced in 1953 by Metropolis et al.[1] In
this algorithm the average properties of a system are estimat-
ed by performing a random walk in the configurational space,
where each state is sampled with a frequency proportional to
its Boltzmann weight. In the Metropolis algorithm, this is ach-
ieved by attempting random moves from the current state of
the system to a new state. Depending on the ratio of the
Boltzmann weights of the new and old states, these trial
moves may be either accepted or rejected. Metropolis et al.
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showed that the acceptance probability of trial moves can be
chosen such that Boltzmann sampling is achieved.

One important application of the MCMC method is the esti-
mation of the Landau free energy F of the system given in
Equation (1) as function of some order parameter:

FðQÞ ¼ �kT ½lnPðQÞ� ð1Þ

There are many situations where the MCMC method does not
yield an accurate estimate of F, because it fails to explore con-
figuration space efficiently. This is, for instance, the case in
“glassy” systems that tend to get trapped for long times in
small pockets of configuration space. In the early 1990s the so-
called parallel-tempering (PT) technique was introduced to
speed up the sampling in such systems.[3,6]

In a parallel-tempering Monte Carlo (MC) simulation, n simu-
lations of a particular model system are carried out in parallel
at different temperatures (or at different values of some other
thermodynamic field, such as the chemical potential or a bias-
ing potential). Each of these copies of the system is called a
replica. In addition to the regular MC trial moves, one occa-
sionally attempts to swap the temperatures of a pair of these
systems (say i and j). The swapping move between tempera-
tures i and j is accepted or rejected according to a criterion
that guarantees detailed balance, for example, see Equa-
tion (2):

PaccðijÞ ¼
eDbijDEij

1þ eDbijDEij
ð2Þ

where Dbij is the difference of the inverse of swapping temper-
atures, and DEij is the energy difference of the two configura-
tions. Although there are other valid acceptance rules, we
used the one in Equation (2) because it was easy to imple-
ment.

To facilitate the sampling of high free-energy states (“diffi-
cult” regions), we used adaptive umbrella sampling.[8,9] In this
(iterative) scheme, a biasing potential is constructed using the
histogram of the states, sampled during an iteration as follows
in Equation (3):

WIðQ,TÞ ¼ WI�1ðQ,TÞ�a ln½PIðQÞ� ð3Þ

where W is the biasing potential function of an order parame-
ter Q, I is the iteration number, a is a constant that controls
the rate of convergence of W (a typical value for a is 0.05), and
T is the temperature. After iteration, W converges to the
Landau free energy. As a consequence, P(Q)~exp[�bF(q)]exp-
[W(Q)] becomes essentially flat and the biased sampling ex-
plores a larger fraction of the configuration space. During the
MC sampling we include the bias, and only at the end of the
simulation do we compute the free energy F(Q) from Equa-
tion (4):

FðQÞ ¼ �kT ½lnPðQÞ þWðQ,TÞ� ð4Þ

where P(Q) is the probability of observing a state characterized

by the order parameter Q, and W(Q,T) is the biasing potential
of the last iteration computed at temperature T. Combined
with parallel tempering, the acceptance rule for the tempera-
ture swapping move is then described by Equations (5) and
(6):

accij ¼
eDbijDEijþDWij

1þ eDbijDEijþDWij

ð5Þ

DWij ¼ WIðQi ,TjÞ�WIðQj ,TjÞ þWIðQj ,TiÞ�WIðQi ,TiÞ ð6Þ

where i and j are replica indices, and I is the iteration number.
We refer to this scheme as APT (adaptive parallel temper-
ing).[10,11]

In the conventional MCMC method all information about re-
jected trial moves is discarded. Recently one of us proposed a
scheme that makes it possible to include the contributions of
rejected configurations in the sampling of averages.[2] Herein,
we show how this approach can be used to increase the
power of the parallel-tempering scheme.

In this scheme, we only retain information about PT moves
that have been accepted. However, in the spirit of ref. [2] , we
can include the contribution of all PT trial moves, irrespective
of whether they are accepted. The weight of the contribution
of such a virtual move is directly related to its acceptance
probability. For instance, if we use the symmetric acceptance
rule for MC trial moves, then the weights of the original and
new (trial) state in the sampling of virtual moves are given by
Equations (7) and (8):

PN ¼ eDbDEO!NþDWO!N

1þ eDbDEO!NþDWO!N

ð7Þ

PO ¼ 1
1þ eDbDEO!NþDWO!N

ð8Þ

where DWO!N is defined in Equation (6). We are not limited to
a single trial swap of state i with a given state j. Rather, we can
include all possible trial swaps between the temperature
state i and all N�1 remaining temperatures. Our estimate for
the contribution to the probability distribution Pi correspond-
ing to temperature i is then given by the following sum in
Equation (8)

PiðQÞ ¼
XN�1

j¼1

�
1

1þ eDbijDEijþDWij

�
dðQi�QÞ

þ
XN�1

j¼1

�
eDbijDEijþDWij

1þ eDbijDEijþDWij

�
dðQj�QÞ

ð9Þ

where the delta functions select the configurations with order
parameter Q. As we now combine the parallel-tempering algo-
rithm with a set of parallel virtual moves, we refer to the pres-
ent scheme as virtual-move parallel tempering (VMPT).

To measure the efficiency of VMPT, we computed the free-
energy landscape of a simple lattice-protein model. In this
model, interaction with a substrate can induce a conformation-

www.chemphyschem.org


al change in the proteins. For the same system we had already
explored the use of the conventional APT scheme.[10]

Specifically, the model protein that we consider represents a
heteropolymer containing 80 amino acids, while the substrate
has a fixed-space arrangement and contains 40 residues (see
Figure 1). The configurational energy of the system is defined
as Equation (10):

EC ¼ E intra þ E inter ¼
XNC

i

� XNC

j 6¼i

CijSij þ
XNS

j0 6¼i0

Cij0Sij0

�
ð10Þ

where the indices i and j run over the residues of the protein,
while j’ runs only over the elements of the substrate; C is the
contact defined as Equation (11):

Cij ¼
�
1 if i neighbor of j
0 otherwise

ð11Þ

and Sij is the interaction matrix.
For S we use the 20G20 matrix
fitted by Miyazawa and Jerni-
gan[7] on the basis of the fre-
quency of contacts between
each pair of amino acids in
nature.

We change the identity of the
amino acids along the chain by
“point mutations” which, in this
context, means changes of a
single amino acid. In doing so
we explore the sequence space
of the protein and the substrate,
and we minimize at the same
time the configurational energy
of the system in two distinct
configurations, one bound (Fig-
ure 1a) and one unbound (Fig-
ure 1b). The design scheme is
the same as that used in
ref. [10]. In this scheme, trial mu-
tations are accepted if the Mon-
te Carlo acceptance criterion is
satisfied for both configurations.

The result of the design pro-
cess is a model protein that has
the ability to change its confor-
mation when bound to the sub-
strate. The sampling of the con-
figurations is performed with
three basic moves: corner-flip,
crankshaft, and branch rotation.
The corner-flip involves a rota-
tion of 1808 of a given particle
around the line joining its neigh-
bors along the chain. The crank-
shaft move is a rotation by 908
of two consecutive particles. A

Figure 1. Spatial arrangement of the chain in the structures used to test the
model (a,b), and intermediate structure (c) (Q=25).

Table 1. Simulation parameters used for comparing the VMPT algorithm with the old scheme. In simulation I
we used the same parameters for both algorithms. The results in Figure 2 show that VMPT was much more effi-
cient in sampling the free energy. In simulation II, we increased by two orders of magnitude the number of
steps of the simulation with APT to obtain a sampling of comparable F(Q) to the one computed using the new
VMPT scheme (Figure 4). Execution times computed on an SGI Altix 3700 with Intel Itanium II, 1.3 GHz

Simulation Temperatures [k�T�1] Number of itera-
tions

Sampling
steps

APT exec. time
[s]

VMPT exec.
time [s]

I 0.1, 0.125, 0.143,
0.167, 0.2, 0.222,
0.23, 0.25, 0.27,
0.29, 0.31, 0.33,
0.35, 0.37, 0.4,

0.444, 0.5

400 4G108 2600 3200

II 0.1, 0.125, 0.143,
0.167, 0.2, 0.222,
0.23, 0.25, 0.27,
0.29, 0.31, 0.33,
0.35, 0.37, 0.4,

0.444, 0.5

1000 2G1010 150000

Figure 2. Average free energy computed with five runs (108 MC steps, Table 1 I) of the old scheme, compared
with the result of five VMPT simulations (108 MC steps, Table 1 I), at T=0.1 k�1T�1. The points with F=0 corre-
spond to values of Q that have not been sampled.

www.chemphyschem.org


branch rotation is a turn, around
a randomly chosen pivot parti-
cle, of the whole section starting
from the pivot particle and
going to the end of the chain.
For all these moves we use a
symmetric acceptance rule
[Eq. (12)] with the addition of
the biasing potential calculated
with the umbrella sampling
scheme of Equation (3):

accO!N ¼ ebDEO!NþDWO!N

1þ ebDEO!NþDWO!N

ð12Þ

where DEO!N is the energy dif-
ference between the new and
the old state [Eq. (10)] , and
DWO!N is the difference in the
bias potential from the same
states [Eq. (3)] . We sample the
free energy as a function of two
order parameters, of which the
first is the conformational
energy defined in Equation (10),
and the second is the difference
between the number of contacts
belonging to two reference
structures (e.g. , 1 and 2), that is
[Eq. (13)]:

QðCÞ¼
XN

i<j

½Cð1Þ
ij Cij�Cð2Þ

ij Cij� ð13Þ

where Cð1Þ
ij and Cð2Þ

ij are the con-
tact maps of the reference struc-
tures, and Cij is the contact map
of the instantaneous configura-
tion. The order parameter that
measures the change in the
number of native contacts is de-
fined as follows: as we consider
two distinct native states, we
take these as the reference
structures. Every contact that
occurs to state 1 has a value +1
and every contact that belongs
to structure 2 has a value �1.
Contacts that appear in both 1
and 2, or do not appear in
either, do not contribute to the
order parameter.

The reason why we assign
negative values to native contacts of structure 2 is that we
compute the free-energy difference between the protein in
configurations 1 and 2. If we had assigned 0 to the contacts of
structure 2 then we would not have been able to distinguish it

from unfolded configurations that do not have any native con-
tacts at all. For our specific case, Cð1Þ

ij represents the structure
in Figure 1a, while Cð2Þ

ij corresponds to the one shown in Fig-
ure 1b, and Q has values between �15 and 30. Because the

Figure 3. Plot of the free-energy landscapes computed with the VMPT algorithm (a) and the standard APT scheme
(b). The free energies F(EC,Q) are a function of the conformational energy EC [Eq. (10)] and of the number of native
contacts Q [Eq. (13)] . It is important to notice the big difference in the sampling; in fact, the number of points
sampled with VMPT is 30 times larger than that with APT.

Figure 4. Average free energy computed with five long runs (1010 MC steps, Table 1 II) of the old scheme, com-
pared with the result of five shorter VMPT simulations (108 MC steps Table 1 I), at T=0.5 kT�1.
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number of native contacts includes the contacts with the sub-
strate of the reference state, it can be used to compute the
free-energy difference between the unbound state and the
specifically bound one.

We performed 15 simulations, five of them with VMPT
(using the parameters in Table 1 I) and the other ten with APT
(five using the parameters in Table 1 I, and five with the param-
eters in Table 1 II). In Figure 2 we compare the average free en-
ergies at T=0.1 (with error bars). We only show those free en-
ergies that were sampled in all five simulations of each group.
It is clear that the VMPT approach leads to a much better sam-
pling of the free-energy landscape. The advantage of the
VMPT approach becomes even more obvious if we plot the
free-energy “landscape” as function of two order parameters
(viz. the conformational energy [Eq. (10)] and the number of
native contacts). In this case the APT method is almost useless,
as only small fragments of the free-energy landscape can be
reconstructed. The total number of points sampled with VMPT
is 20 times larger than that with APT, and the energy range
probed is one order of magnitude larger (see Figure 3).

To check the accuracy of the VMPT method, we compared
the average free energy obtained by APT and VMPT at high
temperatures where the APT scheme works reasonably well. As
can be seen in Figure 4 the two methods agree well in this
regime, although a much longer APT simulation was needed.
Even though the APT runs required 20 times more MC cycles,
the method still probes about 30% less of the free-energy
landscape than the VMPT scheme.

As the implementation described above is not based on a
particular feature of the system under study, the results ob-
tained suggest that the VMPT method may be useful for the
study of any system that is normally simulated using parallel
tempering. Examples of the application of parallel tempering
in fully atomistic simulations of protein folding can be found
in refs. [12, 13] .
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