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Abstract

A random walk problem with particles on discrete double infinite linear grids is discussed. The model is based
on the work of Montroll and others. A probability connected with the problem is given in the form of integrals
containing modified Bessel functions of the first kind. By using several transformations, simpler integrals are
obtained from which for two and three particles asymptotic approximations are derived for large values of the
parameters. Expressions of the probability forn particles are also derived.
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1. Introduction

The subject of random motion is one on which an enormous amount of mathematical studies have
been made. We mention in this respect the classical work of Rayleigh, Smoluchowski, Chandrasekhar,
and countless others[6]. In this paper, we are interested in the specialization of this general notion to
random walk on a periodic lattice, where a particle makes random jumps between neighbouring sites of
this lattice. In this respect we refer in particular to the pioneering work by Montroll and his collaborators
which has provided the inspiration for the present work.
We shall very briefly indicate the method of Montroll’s approach, where throughout this paper we

shall limit ourselves to random walks on one (or more) linear (1D) lattice chains. We shall also suppose
that the jump probabilities of a random walker to the left and to the right are equal, and hence equal to
p = 1

2. Initially, the time is considered to be discrete, which means that we consider the situation of the
particle after a discrete number of jumpsn, which is equivalent to allowing the particle to jump once in
every unit of time. Montroll et al.[4,5] now introduce two quantities which are of very great importance.
These are

1. Pn(�), the probability that the random walker will be at site� after thenth jump.
2. fn(�), the probability that the random walker will be at site� after thenth jumpfor the first time.

Of course, it is assumed that before the first jump (n= 0) the particle is at the origin (�= 0).
The functionPn(�) satisfies the following equation:

Pn(�)= 1
2Pn−1(�− 1)+ 1

2Pn−1(�+ 1). (1.1)

(If at epochn − 1, the particle is at either� − 1 or � + 1, it will have a probabilityp = 1
2 to be

at � at epochn. If it is anywhere else at epochn − 1, its chance of being at� one jump later, is
zero.) This equation also shows that the random walk, as described above, is a Markoff process, in
that the state(�) of the random walker at a given epochn depends only on that atonemoment
earlier.
Montroll then introduces a generating functionU(�, z)=∑∞

n=0Pn(�)zn. This functionU(�, z) is then
calculated explicitly, from whichPn and various moments over� can be calculated. For details we refer
to [4] and[5]. We also refer to these papers for the treatment of the first passage timesfn(�) and the
corresponding generating functionF(�, z) = ∑∞

n=0 fn(�)zn. The quantityfn(�) is the probability of
reaching the site� for the first time at thenth jump.
For the sake of completeness we give the explicit expressions forU(�, z) andF(�, z):

U(�, z)=
(z
2

)�
2F1

(
�+ 1

2
,
�+ 2

2
; �+ 1; z2

)
= 1√

1− z2

(
1− √

1− z2

z

)�
,

F (�, z)=
(z
2

)�
2F1

(
�

2
,
�+ 1

2
; �+ 1; z2

)
− ��,0

√
1− z2 = U(�, z)− ��,0

U(0, z)
, (1.2)

from which explicit forms ofPn(�) andfn(�) follow.
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Montroll et al.[5] also present amethod of treating the time as a continuous variable. Thenwe introduce
as fundamental quantities the following probability densities:

P(�, t)dt : the probability density for the random walker tobeat � during interval(t, t + dt).
F (�, t)dt : the probability density for the random walker toarrive at � during interval(t, t + dt)

for the first time.
(1.3)

Jumps are now taken to occur at random timest1, t2, t3, . . . . This implies the introduction of the random
variablesT1 = t1, T2 = t2 − t1, . . . Tn = tn − tn−1, which have the common density�(t). For�(t) we
take the exponential density�(t)= �e−�t , where� is the average number of jumps made by the random
walker per unit of time. From this point on we shall concentrate on the first-passage probability density
function, that being the one which we shall need most in the following applications.
We also introduce the probability densities

�0(t)= �(t), �n(t)=
∫ t

0
�(t − �)�n−1(�)d�, n= 1,2,3, . . . . (1.4)

The function�n(t) can be interpreted as the probability density that thenth jump of the random walker
takes place in the time interval(t, t + dt). We have

�n(t)= �n e−�t tn−1

(n− 1)! , n= 1,2,3, . . . . (1.5)

It can now easily been understood that[5]

F(�, t)=
∞∑
n=0

fn(�)�n(t). (1.6)

If we use the�n(t) given above and thefn(�) that follow from the second line of (1.2), we obtain

F(�, t)= 2−�e−�t t−1
∞∑
n=0

(�/2)n (�/2+ 1/2)n
n! (�+ 1)n

(�t)�+2n

(�+ 2n− 1)! , (1.7)

where(a)n denotes Pochhammer’s symbol defined by

(a)0 = 1, (a)n = a(a + 1) · · · (a + n− 1), n= 1,2,3, . . . . (1.8)

Comparing the expansion in (1.7) with that of the modified Bessel function of the first kind,
see[1, Ch. 9],

I�(z)=
∞∑
n=0

(z/2)�+2n

n!�(� + n+ 1)
, (1.9)

and using the duplication formula of the gamma function

�(2z)= 22z−1√
�

�(z)�
(
z+ 1

2

)
, (1.10)
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Fig. 1. The random walks forA andB.

an explicit form forF(�, t) is obtained:

F(�, t)= e−�t �

t
I�(�t). (1.11)

From[1, Eq. 11.4.13]it follows that for� �= 0∫ ∞

0
F(�, t)dt = �

∫ ∞

0
e−�t I�(�t)

dt

t
= 1. (1.12)

It is of interest to consider the problem of several simultaneous random walkers on a lattice chain,
and the behaviour in time of their mutual configuration. It is as an introduction to this work that we
shall consider two, three,. . ., independent random walkers on separate lattice chains. We begin with two
random walkers and consider the situation as shown inFig. 1.

Remark 1. The integers�A and�B may separately assume negative values. However, to avoid the use
of absolute value signs, we consider only positive values of�A and�B . But all results hold for negative
values when we replace these quantities by their absolute values.

We are interested in finding the probability that particleA arrives at�A beforeparticleB arrives at�B .
The solution to this problem is an intermediate result for the treatment of a 1D-grid randomwalk problem
of an agglomeration of many particles.
We know that the probability density forA to arrive for the first time at�A in the interval(t, t + dt) is

F(�A, t)dt = �A

t
e−�t I�A(�t)dt. (1.13)

It is now obvious that the desired probability can be written as

P(t�A � t�B )=
∫ ∞

0
dtA F (�A, tA)

∫ ∞

tA

dtBF (�B, tB), (1.14)

where t�A is the time that particleA reaches the site�A for the first time, and similar fort�B . The
independence of the walkers is expressed by the fact that it is the product of twoF -functions which is
being integrated.



138 J.B. Sanders, N.M. Temme / Journal of Computational and Applied Mathematics 182 (2005) 134–149

Using (1.12) we have

P(t�A � t�B )= 1−
∫ ∞

0
dtAF (�A, tA)

∫ tA

0
dtBF (�B, tB) (1.15)

and interchanging the order of integration in this integral, we derive the symmetry properties (which are
evident from the random walk problem)

P(t�A � t�B )= 1− P(t�B � t�A), hence P(t�A = t�B )= 1
2, if �A = �B. (1.16)

If �A = �B we can also use integration by parts∫ ∞

0
dtAF (�, tA)

∫ ∞

tA

dtBF (�, tB)= −
∫ ∞

0

[∫ ∞

tA

F (�, �)d�

]
d

[∫ ∞

tA

F (�, �)d�

]
= 1

2

[∫ ∞

0
F(�, �)d�

]2
= 1

2
. (1.17)

In this paper we derive asymptotic expansions ofP(t�A � t�B ) given by

P = �A�B

∫ ∞

0

dtA
tA
e−tAI�A(tA)

∫ ∞

tA

dtB
tB
e−tB I�B (tB). (1.18)

In (1.18), the scale factor� has been absorbed intA andtB , because ofdtt = d�t
�t .

We will give one expansion that holds for large values of�A and one for the case that both parameters
�A and�B are large. We also give an expansion that holds just when the sum�A + �B is large.

2. Transforming the integral

Westudy the integral (1.18).Weusewell-knownproperties of themodifiedBessel function to transform
the double integral in (1.18) into a single integral.
The inner integral in (1.18) can be modified by evaluating

S�(t) := �

∫ ∞

t

e−sI�(s)
ds

s
. (2.1)

where�= 1,2, . . . . We use the integral representation (see[1, Eq. 9.6.19])

In(s)= 1

�

∫ �

0
es cos � cosn�d� (2.2)

for integer values ofn. Integrating by parts we obtain

�

s
I�(s)= 1

�

∫ �

0
es cos � sin � sin ��d�. (2.3)
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It follows that

�

∫ ∞

t

e−psI�(s)
ds

s
= 1

�

∫ �

0
d� sin � sin ��

∫ ∞

t

ds e−s(p−cos �)

= e−pt

�

∫ �

0

sin � sin ��

p − cos�
et cos � d�, (2.4)

which holds forp�1. It follows thatS�(t) of (2.1) can be written as

S�(t)= e−t

�

∫ �

0

sin � sin ��

1− cos�
et cos � d� = e−t

�

∫ �

0
cot

1

2
� sin ��et cos � d�. (2.5)

Using this relation and interchanging the order of integration in (1.18), we obtain

P = �A

∫ ∞

0
e−t I�A(t)S�B (t)

dt

t

= �A

�

∫ �

0
cot

1

2
� sin �B�

[∫ ∞

0
e−2t+t cos � I�A(t)

dt

t

]
d�. (2.6)

Invoking again (2.3) we obtain

P = 1

�2

∫ �

0
d�2

sin �2 sin �B�2
1− cos�2

∫ �

0
d�1

sin �1 sin �A�1
(1− cos�1)+ (1− cos�2)

. (2.7)

The�1-integral can be evaluated. An easier way is to use in (2.6) the Laplace integral

�

∫ ∞

0
e−pt I�(t)

dt

t
=
(
p +

√
p2 − 1

)−�
, �>0, p�1, (2.8)

which follows from[1, 29.3.53]by takinga = 1, b = −1. This gives

P = 1

�

∫ �

0
cot

1

2
� sin �B�

(
p +

√
p2 − 1

)−�A
d�, p = 2− cos�. (2.9)

3. Asymptotic expansions

We give three asymptotic expansions:

• one for large�A, with �B fixed, or small,
• one for large�A and�B , with �A ∼ �B ,
• one uniform expansion in which one or both parameters may be large.

3.1. The case�A?�B

We start from (2.9) in the form

P = 1

�

∫ �

0
f (�)e−�A	(�) d�, (3.1)
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where

f (�)= cot 12� sin �B�, 	(�)= ln

(
p +

√
p2 − 1

)
, p = 2− cos�. (3.2)

First we observe that

	′(�)= sin �√
p2 − 1

= cos 12�√
1+ sin2 12�

. (3.3)

Hence,	(�) is an increasing function on[0, �] with

	(0)= 0, 	′(0)= 1, 	′(�)= 0. (3.4)

It follows that

P ∼ 1

�

∫ �0

0
f (�)e−�A	(�) d�, (3.5)

where�0 is a fixed number in(0, �), and the error in this approximation is exponentially small when�A
is large.
Carrying out an integration by parts in the form

P ∼ −1
��A

∫ �0

0

f (�)

	′(�)
de−�A	(�) (3.6)

leads to

P ∼ −1
��A

f (�)

	′(�)
e−�A	(�)

∣∣∣∣�=�0

�=0
+ 1

��A

∫ �0

0
f1(�)e

−�A	(�) d�, (3.7)

where

f1(�)= d

d�

f (�)

	′(�)
. (3.8)

We can repeat this procedure, and compute the integrated terms. The terms at�0 can be neglected because
they give exponentially small contributions compared with the contributions from� = 0. Note that we
cannot take�0 = �, because	′(�)= 0.
In this way we obtain the asymptotic expansion

P ∼ 1

��A

[
a0 + a1

�A
+ a2

�2A
+ · · ·

]
, (3.9)
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Fig. 2. Graphs ofP(t�A � t�B ) based on the asymptotic approximation (3.9) (thin curves), compared with graphs based on
expansion (3.34) (thick curves). The thin and thick graphs deviate from each other because of the failure of the non-uniform
approximations for large values of�B .

where, fork = 0,1,2, . . . ,

ak = fk(0)

	′(0)
, fk+1(�)= d

d�

fk(�)

	′(�)
, f0(�)= f (�). (3.10)

The coefficientsak with odd indices are zero. This follows from observing thatf (�) and	′(�) are even
functions; see (3.2) and (3.3). Hence,f1(�) of (3.8) is odd. By using the recursion in (3.10) it follows
thatf2k(�) is even, and thatf2k+1(�) is odd. The first non-zero coefficients are

a0 = 2�B, a2 = 2
3�B(1− �2B), a4 = 1

30�B(23− 80�2B + 12�4B). (3.11)

In Fig. 2we compare the approximations based on (3.9) with values obtained by using the expansion
in (3.34), which holds when�A + �B is large. We see that for smaller values of�B the graphs of the
asymptotic approximation (3.9) are in agreement with the graphs obtained from the expansion that holds
when at least one of the parameters�A or �B is large. The failure of the non-uniform approximations
(shown as thin curves) is due to the failure of the asymptotic approximation (3.9) that has been chosen
for this case.

3.2. The case�A ∼ �B , both large

We replace in (2.9)�A by � and�B by �+ �. We know thatP = 1
2 if � = 0. We expand (2.9) for large

values of�, keeping� fixed. We have

P = 1
2 + P1 + P2, (3.12)
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where

P1 = 1

�

∫ �

0
cot

1

2
�(cos�� − 1) sin ��

(
p +

√
p2 − 1

)−�
d�

=I
1

�

∫ �

0
cot

1

2
�(cos�� − 1)ei��

(
p +

√
p2 − 1

)−�
d�,

P2 = 1

�

∫ �

0
cot

1

2
� sin �� cos��

(
p +

√
p2 − 1

)−�
d�

=R
1

�

∫ �

0
cot

1

2
� sin ��ei��

(
p +

√
p2 − 1

)−�
d�. (3.13)

Let

g(�)= cot 12� (cos�� − 1), 	(�)= −i� + ln

(
p +

√
p2 − 1

)
. (3.14)

Then we integrate by parts in the integral forP1

1

�

∫ �

0
g(�)e−�	(�) d� = − 1

��

∫ �

0

g(�)

	′(�)
de−�	(�), (3.15)

and we obtain an expansion as in (3.9),

P1 ∼ 1

��

[
b0 + b1

�
+ b2

�2
+ · · ·

]
, (3.16)

where, fork = 0,1,2, . . . ,

bk = I
gk(0)

	′(0)
, gk+1(�)= d

d�

gk(�)

	′(�)
, g0(�)= g(�). (3.17)

It turns out that the coefficients with even indices are zero. To verify this we can use a similar argument
as for theak in (3.10). The first non-zero coefficients are

b1 = −1
2�
2, b3 = 1

4�
2, b5 = 1

96�
2(4�4 − 20�2 − 77). (3.18)

In a similar way, leth(�)= cot 12� sin ��. Then

P2 ∼ 1

��

[
c0 + c1

�
+ c2

�2
+ · · ·

]
, (3.19)

where, fork = 0,1,2, . . . ,

ck =R
hk(0)

	′(0)
, hk+1(�)= d

d�

hk(�)

	′(�)
, h0(�)= h(�). (3.20)

It turns out that the coefficients with even indices are zero. The first non-zero coefficients are

c0 = �, c2 = 1
6�(�

2 − 1), c4 = − 1
240�

2(12�4 + 20�2 − 77). (3.21)
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3.3. The case�A + �B large

Because of (see (3.4))

e−�A	(�) ∼ e−�A�, � → 0, (3.22)

we have for large values of�A

P ∼ 2

�

∫ ∞

0

sin �B�

�
e−�A� d� = 2

�
arctan

�B

�A
, (3.23)

where we used[1, Eq. 29.3.110].
Observe that this estimate perfectly reflects the properties ofP mentioned in (1.16); also, it is less

than unity, as the probabilityP itself is. Moreover, in this estimate large values of�B do not disturb the
approximation.
Result (3.23) is obtained by combining the dominant behaviour of e−�A	(�) near the origin with the

complete form sin�B�, without expanding this function.
Wemodify the integration by parts procedure of Section 3.1, by including the (possible large) parameter

�B in the “phase function”	(�). We can do this by writing sin�B� = Iei�B�. A complication is the pole
of the function cot12�, which singularity is removable in combination with the function sin�B�.
To perform the integration by parts procedurewe proceed in the followingway. In (2.9) we can consider

�B as a continuous parameter, and we can differentiate with respect to�B .We also observe thatPvanishes
with �B . We have

�P

��B
= 1

�
R

[∫ �

0
� cot

1

2
�ei�B�

(
p +

√
p2 − 1

)−�A
d�

]
. (3.24)

We write this in the form

�P

��B
= 2

�
RQ, (3.25)

where

Q=
∫ �

0
f (�)e�(�) d�, (3.26)

with

f (�)= 1
2� cot

1
2�, �(�)= i�B� − �A ln

(
p +

√
p2 − 1

)
. (3.27)

We integrate by parts, starting with

Q=
∫ �

0

f (�)

�′(�)
de�(�) = f (�)

�′(�)
e�(�)

∣∣∣∣�=�

�=0
+
∫ �

0
f1(�)e

�(�) d�, (3.28)

where

f1(�)= − d

d�

f (�)

�′(�)
. (3.29)
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We repeat this procedure, and compute the integrated terms. Again, the terms at� = � can be neglected.
We obtain

Q ∼ d0 + d1 + d2 + · · · , (3.30)

where

dk = −fk(0)
�′(0)

, fk(�)= − d

d�

fk−1(�)
�′(�)

, k = 0,1,2, . . . , (3.31)

andf0(�)= f (�). Again, all coefficients with odd index vanish. This follows from

�′(�)= i�B − �A
sin �√
p2 − 1

= i�B − �A
cos 1/2�√
1+ sin2 1/2�

, (3.32)

which is an even function andf (�) is also even. Hence,f1(�) in (3.29) is odd; and so on.
We have

d0 = 1

�A − i�B
, d2 = 2�A + i�B

6(�A − i�B)4
, d4 = 23�2A + 129i�A�B + 2�2B

60(�A − i�B)7
. (3.33)

Considering (3.25), taking the real parts of the coefficients and integrating the real parts over the interval
[0, �B], we find

P ∼ 2

�
(e0 + e2 + e4 + e6 · · ·), (3.34)

where

e2k =
∫ �B

0
d2k(�

′
B)d�

′
B. (3.35)

The first few are

e0 = arctan
�B

�A
,

e2 = �A�B(�
2
A − �2B)

3(�2A + �2B)
3 ,

e4 = �A�B(�
2
A − �2B)(23�

4
A − 354�2A�

2
B + 23�4B)

60(�2A + �2B)
6 ,

e6 = �A�B(�
2
A − �2B)(249�

8
A − 10796�6A�

2
B + 40630�4B�

4
A − 10796�6B�

2
A + 249�8B)

126(�2A + �2B)
9 . (3.36)

We see that the shown coefficientse2, e4, e6 vanish when�A=�B , and that in facte2k(�A, �B)= 1
2��k,0−

e2k(�B, �A), k=0,1,2, . . . .These properties are in agreement with the relations forP in (1.16). Because
there is no symmetry in (2.9) with respect to�A and�B , they do not follow from the construction of the
coefficientsd2k ande2k.
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Whenwe scale the parameters by putting�B=
�A, we see that the shown coefficients obey the relation

d2k = O(�−2kA ), (3.37)

uniformly with respect to
�0. When we write (3.30) with a remainder, that is,

Q= d0 + d2 + · · · + d2k−2 +
∫ �

0
f2k(�)e

�(�) d�, (3.38)

a straightforward analysis shows that similarly

f2k(�)= O(�−2kA ), (3.39)

uniformly with respect to
�0 and� ∈ [0, �]. This shows the nature of the uniform asymptotic expansion
ofQ, and, after integrating, the nature of the expansion for the probabilityP.
By expanding the coefficientsek in (3.36) for large�A with �A?�B , we obtain the coefficients of the

non-uniform expansion of Section 3.1.

4. Three particles and more

For three random walkersA,B,C the probability integral reads

P(t�A � t�B � t�C )=
∫ ∞

0
dtA F (�A, tA)

∫ ∞

tA

dtB F (�B, tB)
∫ ∞

tB

dtC F (�C, tC), (4.1)

with the density as in (1.13). That is,

P(t�A � t�B � t�C )= �A�B�C

∫ ∞

0

dtA
tA
e−tAI�A(tA)

∫ ∞

tA

dtB
tB
e−tB I�B (tB)

∫ ∞

tB

dtC
tC
e−tC I�C (tC).(4.2)

It gives the probability that particleA reaches site�A, before particleB reaches�B , whileB reaches site
�B , before particleC reaches�C .
Firstweobserve that theprobability for threeparticlesarrivingat the samesite�, that is,�A=�B=�C=�,

equals13! . This easily follows from (cf. (1.17))∫ ∞

tA

dtBF (�, tB)
∫ ∞

tB

dtCF (�, tC)= 1

2

[∫ ∞

tA

F (�, �)d�

]2
. (4.3)

Substituting this in (4.2), performing another integration by parts, and using (1.12), gives the value1
3! .

Using the same method we infer that forn particles the probability for alln particles arriving at the same
site� equals1

n! .



146 J.B. Sanders, N.M. Temme / Journal of Computational and Applied Mathematics 182 (2005) 134–149

Repeating the steps used for obtaining (2.7), and replacing all Bessel functions by using (2.3), we easily
find for (4.3)

P(t�A � t�B � t�C )= 1

�3

∫ �

0
d�
sin � sin �C�

1− cos�

∫ �

0
d�

sin � sin �B�

2− cos� − cos�

×
∫ �

0
d�

sin � sin �A�

3− cos� − cos� − cos�
. (4.4)

Evaluating the�-integral gives

P = 1

�2

∫ �

0

∫ �

0

sin � sin �C�

1− cos�

sin � sin �B�

2− cos� − cos�

(
q +

√
q2 − 1

)−�A
d�d�, (4.5)

whereq = 3− cos� − cos�.
From the above analysis it is clear how a similar integral representation can be obtained forn random

walkersA1, A2, . . . , An. The probability can be written in the form of then-fold integral

P(t�A1
� t�A2 � · · · � t�An )= 1

�n

∫ �

0
d�1 · · ·

∫ �

0
d�n

n∏
j=1

sin �j sin �Aj �j
p̃j

, (4.6)

where

p̃j =
n∑
k=j

(1− cos�k)= 2
n∑
k=j

sin2
1

2
�k, j = 1,2, . . . , n. (4.7)

Integrating the�1 integral gives

P = 1

�n−1

∫ �

0
d�2 · · ·

∫ �

0
d�n

(
p +

√
p2 − 1

)−�A1 n∏
j=2

sin �j sin �Aj �j
p̃j

, (4.8)

where

p = 1+ p̃2 = n−
n∑
j=2

cos�j . (4.9)

4.1. Asymptotic approximations for three particles

For large values of�A the main contributions to the integral in (4.5) come from the origin� = 0,� = 0.
To see this we observe that

q +
√
q2 − 1= 3− cos� − cos� +√

(2− cos� − cos�)(4− cos� − cos�)

= 1+
√

�2 + �2 + O(�2, ��, �2), (4.10)

and that(
q +

√
q2 − 1

)−�A
= e

−�A ln
(
q+

√
q2−1

)
∼ e−�A

√
�2+�2, (4.11)
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as�, � → 0. We also have

� sin �

1− cos�
∼ 2,

� sin �

2− cos� − cos�
∼ 2�2

�2 + �2
(4.12)

as�, � → 0.
This motivates us to consider as a first approximation

P ∼ 4

�2

∫ �

0
d�
∫ �

0
d�
sin(�C�)

�

sin(�B�)

�

�2

�2 + �2
e−�A

√
�2+�2, (4.13)

where we have used (4.5), (4.11) and (4.12).
Next we use polar coordinates for� and� by writing

� = r cos	, � = r sin 	, 0�r��, 0�	� 1
2�. (4.14)

We extend the finite square in the(�, �)-plane to the quarter plane and obtain

P ∼ 4

�2

∫ 1
2�

0
d	
∫ ∞

0
r dr

sin(�Cr cos	)

r cos	

sin(�Br sin 	)

r sin 	
sin2	e−�Ar . (4.15)

Ther integral can be found in[3, Eq. (3.947)], that is,∫ ∞

0
e−ar sin(br) sin(cr) dr

r
= 1

4
ln
a2 + (b + c)2

a2 + (b − c)2
, (4.16)

and can be proved by differentiation with respect toa. We obtain

P ∼ 1

�2

∫ 1
2�

0
tan	 ln

�2A + (�C cos	 + �B sin 	)2

�2A + (�C cos	 − �B sin 	)2
d	, (4.17)

which can be written as

P ∼ 1

�2

∫ 1
2�

0
tan	 ln

1+ u cos 2	 + v sin 2	

1+ u cos 2	 − v sin 2	
d	, (4.18)

where

u= �2C − �2B

2�2A + �2B + �2C
, v = 2�C�B

2�2A + �2B + �2C
. (4.19)

Whenv is small we can expand

ln
1+ u cos 2	 + v sin 2	

1+ u cos 2	 − v sin 2	
= ln

1+ v sin 2	
1+u cos 2	

1− v sin 2	
1+u cos 2	

= 2
∞∑
n=0

1

2n+ 1

v2n+1 sin2n+1 2	
(1+ u cos 2	)2n+1

, (4.20)
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which gives

P ∼ 2

�2

∞∑
n=0

v2n+1

2n+ 1

∫ 1
2�

0
tan	

sin2n+1 2	
(1+ u cos 2	)2n+1

d	. (4.21)

This expansion is useful when�A is large compared with�B and�C .
The integral in (4.21) can be written in terms of a Gauss hypergeometric function, and the sum can be

written as anAppell function. This does not give further insight, however.We prefer to give a few further
estimates.
For examining the convergence of the series in (4.21), observe that

tan	
sin2n+1 2	

(1+ u cos 2	)2n+1
�

2

(1− u)2n+1
, (4.22)

with

1− u= 2�2A + 2�2B
2�2A + �2B + �2C

, (4.23)

which is bounded away from 0, unless�C is much larger than�A and�B .
It follows that expansion (4.21) can be viewed as an asymptotic expansion for small values ofv for the

right-hand side in (4.18).
Of further interest is that whenu= 0, that is,�B = �C we can evaluate the right-hand side of (4.21) in

terms of elementary functions. In fact we obtain by using∫ 1
2�

0
sin2n+2	 cos2n 	d	 = �

(
n+ 3

2

)
�
(
n+ 1

2

)
�(2n+ 2)

, (4.24)

a Gauss hypergeometric function, that can be written as an elementary function

P ∼ 1

�
v 2F1

(
1

2
,
1

2
; 3
2
; v2

)
= 1

�
arcsinv, v = �2B

�2A + �2B
. (4.25)

When�A = �B = �C this becomes

P ∼ 1

�
arcsin

1

2
= 1

6
, (4.26)

which is the exact value.

5. Discussion and concluding remarks

We have discussed in this paper a method of considering different simultaneous independent 1D-
random walks. This work has been motivated by an attempt to describe the agglomeration of a number
of random walkers on a linear chain which will be fixed when they come to occupy nearest neighbour
positions on the chain. In treating this problem it turns out to be possible to effect a transformation of
coordinates whichmakes the evolution equation become separable, such that we obtain a product of “one-
particle” equationswhich can then bemathematically treated as independent randomwalkers as described



J.B. Sanders, N.M. Temme / Journal of Computational and Applied Mathematics 182 (2005) 134–149149

in this paper. However, it turns out that this separation is possible only when the jump probabilities in
both directions are equal. This is the reason why we have limited ourselves to equal jump probabilities
in this work.
For two particles we have given a complete asymptotic description for the case when�A and/or�B

are large. For three particles we have also given asymptotic results, but a full description becomes a very
complicated matter.
Very recently a paper[2] has appeared which treats a related problem (with discrete time steps) by a

different method, involving stochastic matrices.
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