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We compute rates and pathways for nucleation in a sheared two dimensional Ising model with
Metropolis spin flip dynamics, using Forward Flux Sampling (FFS). We find a peak in the nucleation
rate at intermediate shear rate. We analyse the origin of this peak using modified shear algorithms
and committor analysis. We find that the peak arises from an interplay between three shear-mediated
effects: shear-enhanced cluster growth, cluster coalescence and cluster breakup. Our results show
that complex nucleation behaviour can be found even in a simple driven model system. This work
also demonstrates the use of FFS for simulating rare events, including nucleation, in nonequilibrium

systems.
I. INTRODUCTION

The nucleation of a stable phase from a metastable
one is a ubiquitous and important phenomenon. Most
progress in understanding the physics of nucleation has
been made for “quasi-equilibrium” systems, in which the
system dynamics obeys detailed balance and the transi-
tion is from a metastable to a thermodynamically stable
state. However, many important nucleation processes
both in nature and in industry happen in driven sys-
tems, such as those under shear, whose dynamics do not
obey detailed balance. Despite its importance, nucle-
ation in driven systems remains poorly understood. In
this paper, we compute rates and transition paths for a
driven nucleation process: nucleation under shear in a
two dimensional Ising model. We use the recently de-
veloped Forward Flux Sampling rare event simulation
method ﬂ, 2, B] We find that the nucleation rate shows
a striking nonmonotonic dependence on the shear rate,
and that this is due to an interplay between three shear-
mediated effects: shear-enhanced cluster growth, cluster
coalescence and cluster breakup.

Nucleation under shear remains poorly understood
M, B] It is expected that high enough shear rates will
impede nucleation. Some studies of crystal nucleation
|6, [7, |§] find that nucleation rates decrease monotoni-
cally with shear rate; others suggest that crystallisation
may be enhanced at low shear rates E, |E, |ﬁ|, |ﬁ] A
recent experimental study found a minimum in the crys-
tal nucleation rate as a function of shear rate for charged
colloids m] Crystallisation from sheared glassy states is
even more complicated, both experimentally and numer-
ically [12, [14]. For binary mixtures [15] and isotropic-
to-lamellar transitions [16], shear is predicted to increase
the critical temperature. Physical mechanisms for the
effect of shear on nucleation may include hydrodynamic
effects, cluster coalescence, cluster breakup, layering due
to the shear flow, and suppression of polydispersity. In

this work, we study an idealised model in which many of
these effects are not included (perhaps most significantly,
transport processes are not modelled). Our motivation is
to provide a fundamental basis on which to build an un-
derstanding of more complex systems. Our results may
however be relevant to driven solid materials m, |E]

The Ising model provides a paradigm for many phe-
nomena in statistical physics, including nucleation. Nu-
cleation in this model, in the absence of external driving,
has been extensively studied m, , , , , , , é,
@, @] Ising models have proved a valuable tool for test-
ing the Classical Nucleation Theory (CNT)|29, 30, 31], in
which nucleation is coarse-grained to one dimension, the
largest cluster size coordinate, and modelled as a transi-
tion over a free energy barrier that arises due to compe-
tition between the favourable chemical potential of the
growing cluster and its unfavourable interfacial free en-
ergy. An attempt has been made to extend the CNT
to sheared systems @] In the absence of shear, tran-
sition path analysis has shown the importance of order
parameters other than the largest cluster size in the nu-
cleation mechanism, in both two and three dimensions
|33, 34]. This large body of information on nucleation
in the absence of driving makes the Ising model an at-
tractive test system for nonequilibrium nucleation prob-
lems. Metastability and nucleation of nonequilibrium
steady states generated by coupling to two different heat
baths has been studied in a two-dimensional Ising model
@, @] Although, to our knowledge, nucleation under
shear has not been investigated for the Ising model, the
maximum likelihood path has recently been computed for
nucleation under shear in a finite system defined by a dy-
namical equation for the nucleation order parameter, in
the absence of applied field M] In this paper, we study a
sheared two-dimensional Ising model. We find that even
for this highly simplified system, nucleation under shear
is a complex process that depends on multiple physical
mechanisms.

The Forward Flux Sampling (FFS) method used in this
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work allows the computation of rate constants, transition
paths and stationary probability distributions for rare
events in equilibrium or nonequilibrium systems Im, 2, @]
Rare events, such as nucleation, are notoriously difficult
to simulate, because the waiting time between events is
typically much longer than the timescale of the event
itself, meaning that few, if any, events are observed in
a typical simulation run. Rare event simulation meth-
ods developed for equilibrium systems include Bennett-
Chandler methods ?ﬁ] transition path sampling [40],
(partial path) transition interface sampling [41], mile-
stoning [42] and string methods [43]. Both TPS and
the string method have been applied to Ising nucleation

i] However, these methods require knowledge
of the steady state phase space density, making them un-
suitable for nonequilibrium problems. FFS does not re-
quire knowledge of the phase space density. The method
uses a series of interfaces in phase space between the ini-
tial and final states, defined by an order parameter which
need not be the reaction coordinate. In earlier work, we
and others have shown that FFS correctly reproduces the
nucleation behaviour of a two dimensional Ising model in
the absence of shear [28, [38].

In section [Il we give details of our simulation model
and the FFS method applied to this system. In section
[Tl we present results for the nucleation rate as a function
of the shear rate. We then analyse the physical mecha-
nism behind the suppression of nucleation at high shear
rates in section [Vl In section [V] we discuss the roles
of shear-enhanced cluster growth and coalescence in the
enhancement of nucleation at low shear rates. We test
our ideas with an analysis of cluster growth in section
[VIl with a comparison to a modified shear algorithm in
section [VII and with an analysis of the transition state
ensemble in section [VIIIl Finally, we present our conclu-
sions in section [X1

II. SIMULATION DETAILS
The sheared two-dimensional Ising model

Our system consists of a two-dimensional L x L square
lattice of up-down spins with nearest-neighbour spin-spin
interactions, coupling to an external magnetic field, and
periodic boundary conditions in the x and y directions.
The Hamiltonian for the spin-spin and spin-field interac-
tions is

H:—JZUin—hZUh (1)

where o; = +1 is the state of spin ¢, J is the coupling
constant between neighbouring spins and & the external
magnetic field - both in units of k7. The prime in-
dicates that the sum is restricted to nearest-neighbour
interactions. Our simulations use Metropolis spin-flip
dynamics. In each Monte Carlo cycle, we make L x L

attempts to flip a spin. In each attempt, we choose a
spin at random, attempt to flip it, and accept or reject
the flip according to the Metropolis rule. An alterna-
tive choice of dynamics, not considered here, would be
the Kawasaki scheme in which up spins diffuse between
lattice sites [43).

All the simulations described here use a lattice of size
L = 65, and coupling constant J = 0.65kgT. We apply
an external magnetic field h = 0.05kp7T in all simula-
tions. Our coupling constant J is larger than the critical
coupling J. ~ 0.44kgT @] Considering the system in
the absence of shear, the thermodynamically stable state
is ferromagnetic, with net positive magnetisation, mean-
ing that the system tends to have the majority of its spins
in the up state (o = +1). The alternative ferromagnetic
state with net negative magnetisation (most spins in the
down state) is metastable, and if initiated in a predom-
inantly down state, the system will remain in that state
for a significant time before undergoing a nucleation tran-
sition to the thermodynamically stable up state [26]. We
are interested in the rates and pathways for this transi-
tion. In the absence of shear, this system is identical to
that investigated by Sear [28] and previously by some of

|, except that we now use a larger box size, since we
have found that the nucleation rate is more sensitive to
system size in the presence of shear. For the shear rates
used in this study, L = 65 is large enough to ensure that
our computed nucleation rate is independent of L. The
free energy barrier in the absence of shear is =~ 22kpT,
so that we are working at moderate supersaturation. We
therefore expect nucleation to proceed via the growth of
a single large cluster of up spins.

We apply shear to the system using a method similar
to that of Cirillo et al [47]. After each Monte Carlo cy-
cle, we make M, x L attempts to shear the system (M,
is the number of attempted shear steps per row per MC
cycle). In each attempt, we carry out a shear step with
probability Ps;. A shear step consists of choosing a row
js at random, and shifting all lattice sites with j > j, to
the right by one lattice site. The net result is that row j
is shifted to the right by on average jM;P; lattice sites
per Monte Carlo cycle. The shear rate is thus given by
4 = MsPs. We have verified that the choice of M and
P, does not matter for a given product . We note that
care must be taken to maintain the correct identity of
the neighbour sites in the periodic image lattices above
and below the simulation box - after a shifting move,
the identity of these neighbours is changed. Our method
for achieving this is described in Appendix [Al This al-
gorithm imposes, on average, a linear velocity field on
the underlying lattice. In a real physical system, the ve-
locity field is not imposed externally but emerges as a
consequence of the internal dynamics of the system, so
that the shear algorithm used here is somewhat artificial.
However, our purpose here is to investigate the effects of
a linear velocity field on the system; furthermore, this al-
gorithm has the advantages of being simple to implement
and homogeneous across the simulation box.



Forward Flux Sampling

We have used the Forward Flux Sampling (FFS)
method [1, 12, 13] to calculate nucleation rates and tran-
sition paths for the formation of the steady state with
predominantly up spins (the up state), from the steady
state with predominantly down spins (the down state).
This rare event sampling method uses a series of inter-
faces in phase space between the initial and final states
to force the system from the initial state A to the final
state B in a ratchet-like manner. An order parameter
A(z) is defined (where x represents the phase space co-
ordinates), such that the system is in state A if A(x) < Ao,
and it is in state B if A(z) > A, while a series of non-
intersecting planes (interfaces) \; (0 < i < n) lie be-
tween states A and B, such that any path from A to B
must cross each interface, without reaching \;;; before
Ai. Provided enough configurations are obtained at the
first interface to ensure good sampling, the choice of or-
der parameter A(z) should not affect the calculated rate
constant or transition paths (i.e. A(x) need not be the
true reaction co-ordinate) - although it may affect the
computational efficiency of the method.

Full details of the FFS method are given in Refs [1, 2],
and a detailed analysis of its computational efficiency is
given in Ref [3]. Briefly, the transition rate I from A to
B is decomposed as [41, 48]:

n—1

I=0p,=0s0PMnlho) =Pao [ POisaX). (2)
=0

where @A,n is the average flux of trajectories crossing
from A to B, ®4  is the average flux of trajectories cross-
ing Ao in the direction of B, P(A,|\o) is the probability
that a trajectory that crosses \g in the direction of B will
eventually reach B before returning to A, and P(\;11|\;)
is the probability that a trajectory which reaches \;,
having come from A, will reach A;;; before returning
to A. The flux (i)A)Q is computed using a simulation in
the A state, during which configurations corresponding
to crossings of the first interface Ay coming from A are
also stored. This collection of configurations is then used
to initiate trial runs which either reach the next interface
A1 or go back to Ao, generating an estimate for the con-
ditional probability P(\1]|Ao) as well as a new collection
of configurations at A;; the trial run procedure is then
iterated until B is reached. The rate constant I is then
obtained from Eq.(2]), and a correctly weighted collection
of trajectories from A to B is obtained by tracing trial
runs that eventually arrive at A, , via successive interfaces
back to A. In practice, rather than storing all configu-
rations for all trial runs during the FFS procedure, it is
sufficient to store the initial collection of configurations
at Ag, together with limited information about each con-
figuration in each collection at intermediate interfaces \;,
indicating its “parent” configuration in the collection at
the previous interface A;_1, and the value of the random
number seed used to initiate the relevant trial run. In

this way, transition paths can easily be reconstructed af-
ter the FFS sampling procedure, without the need for ex-
cessive data storage. In an earlier study, we have shown
that FFS correctly reproduces the nucleation behaviour
of a two dimensional Ising model in the absence of shear
[38].

For the simulations described in this paper, the param-
eter A was defined as the total number of up spins in the
simulation box. This is a global order parameter: an al-
ternative might be to use the size of the largest cluster of
up spins. For FFS, we do not expect the rate constant or
the transition path ensemble to depend on the choice of
order parameter (we will later analyse trajectories using
the largest cluster size). Others have experienced sam-
pling problems when using global order parameters in
FFS [49]; this was not the case in this work. We used 39
interfaces for our FFS calculations (except in section [V]),
defining the A state at A < A9 where A\g = 25 up spins,
and the B state at A > \,, where A,, = 2005 up spius (the
total number of spins in our system being 65x65 = 4225).
The spacing between interfaces varies between 5 and 200
up spins. We collected 1000 configurations at interface Ag
and repeated each FFS calculation 25 times. The num-
ber of trials at each interface varied between 1300 and
7000. Our results do not depend on the precise choice of
the number or position of the interfaces.

III. NUCLEATION RATE AS A FUNCTION OF
SHEAR RATE
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Figure 1: Rate of homogeneous nucleation I as a function of
shear rate 4 for h = 0.05kg7T and J = 0.65kpT.

Figure [1l shows the rate I of homogeneous nucleation
as a function of the shear rate 4. The nucleation rate
shows a striking nonmonotonic dependence on +. For
low shear rates, I increases apparently linearly with +,
before reaching a maximum around ¥ = 0.06. For shear
rates 4 > 0.06, I decreases nonlinearly with increasing
4. For 4 = 0, our result is in good agreement with the



value of 3.3 x 10713 per MC cycle per site obtained by
Sear [2§].

()

Figure 2: Configurations from the transition state ensemble,
obtained as described in Appendix [Bl (a): ¥ = 0.0, (b): ¥ =
0.06, (c): 4 = 0.12.

Figure [2] shows representatives of the transition state
ensemble (TSE; these are transition path configurations
from which a newly initiated trajectory has probability
Pg = 0.5 of reaching B before A) for shear rates 4 = 0.0,
4 = 0.06 and ¥ = 0.12. It is clear that the shape of
the growing cluster is strongly affected by the shear. An
observation of the transition paths shows that, for high
shear rates, the growing cluster eventually connects with
its periodic images to form a horizontal stripe across the
box, which then expands vertically to fill the box. This
has also been seen for nucleation under shear in the un-
physical case of no supersaturation [44]. In our simula-
tions, stripe formation occurs well beyond the transition
state, and does not affect the nucleation rate (since we
have verified that I is independent of L).

In the following sections, we attempt to elucidate the
physical origin of the nonmonotonic dependence of I on
4 shown in Figure[Il We first consider the origin of the
decrease in I with ¥ at high 4, and then turn to the
mechanisms behind the increase in I() for low 4.

IV. SUPPRESSION OF NUCLEATION AT HIGH
SHEAR RATE

We first seek an explanation for the decrease in nu-
cleation rate I with shear rate 4 for 4 > 0.06 in Fig-
ure [l Figure 2 shows that the growing clusters become
elongated in the direction of the shear. The extent of
this elongation is governed by a balance between the fre-
quency of shear steps and the growth rate of the cluster.
It seems intuitive that for high shear rates, the elonga-
tion due to the shear will exceed the rate at which the
cluster can grow, leading to shear-induced breakup of the

growing cluster, and a corresponding decrease in the ho-
mogeneous nucleation rate.

(b) (c)

Figure 3: Configurations from the transition state ensemble
with rattle shear, obtained as described in Appendix [Bl (a):
4 =0.0, (b): 4 = 0.06, (c): 4= 0.12.
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Figure 4: I versus 4 for h = 0.05kg7T, for regular shear (cir-
cles) and rattle shear (squares). The regular shear results are
the same as in Figure [I

To test this hypothesis, we performed a set of simu-
lations in which the direction of the shear (to the right
or to the left along the x axis) was chosen at random
for each shear step. We call this algorithm “rattle shear”.
On average, the system makes as many row shifts to the
right as it does to the left, so we do not expect clusters
to be elongated by the shear. This is confirmed in Figure
B, which shows that TSE configurations are not notice-
ably elongated, even for high shear rates. Fig @ shows
I versus 4 for the rattle shear (squares), as well as for
the “regular” shear algorithm (circles). As expected, the
regime in which I decreases with 4 has been abolished
for the rattle shear algorithm, at least within this range
of 4 values. This appears to confirm our hypothesis that



the decrease in [ for large 7 is due to shear-induced elon-
gation of the growing cluster, leading to eventual cluster
breakup.

Figure M also shows that nucleation is enhanced less
strongly at low shear rates for rattle shear than for the
regular shear algorithm. This suggests that multiple
shear steps occurring in the same direction are an impor-
tant feature in the nucleation enhancement mechanism;
a topic which is explored further in the next sections.

V. ENHANCEMENT OF NUCLEATION AT
LOW SHEAR RATE
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Figure 5: A square cluster (left) undergoes one shear step
to make a shape with two concave kinks and two additional
corner sites. Kink sites are labelled K and corner sites C.

We turn next to the increase in nucleation rate I with
shear rate 4 observed in Figure [ for low shear rates,
4 < 0.06. This behaviour could have (at least) two pos-
sible origins. Firstly, the shear algorithm changes the
shape of the growing cluster and this may increase its
tendency to grow. One way in which this could happen
is by increasing the surface roughness of the cluster: our
shear algorithm creates kinks in the growing cluster, and
these are favourable sites for further cluster growth. The
rate of growth due to spin flips is therefore likely to be
enhanced by the shear. This mechanism is illustrated in
Figure [l where two kinks (labelled K) and two corner
sites (labelled C) are created by a shear step. Although
the corner sites have a tendency to flip to the down state,
this is counteracted by the greater tendency (due to the
applied field) of the kink sites to flip to the up state.
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Figure 6: The shear algorithm can drive isolated spins to-
gether into small clusters. The top three rows are shifted to
the right by a shear step, causing two isolated up spins to fuse
into a small cluster.

Figure 7: The shear algorithm can drive isolated spins and
small clusters towards the largest cluster. (a): Initially, a
large square cluster is surrounded by 4 isolated “up” spins and
3 smaller clusters (b): A shear step occurs and the top half of
the simulation box is shifted by one lattice space to the right
(c): The cluster grows in the tz directions via Metropolis
spin flips enhanced by the concave kinks created by the shear
(d): In the resulting configuration, the largest cluster has
coalesced with one smaller cluster and has also become one
lattice space closer to the small cluster at the bottom right.

A second possible mechanism for the increase in I with
4 is shear-induced coalescence between isolated up spins
or small clusters and the growing nucleus. The shear al-
gorithm is expected to drive together isolated up spins,
causing an increased abundance of small clusters in the
system, as illustrated in Figure These may then co-
alesce with the largest cluster. Moreover, isolated spins
and small clusters can also be driven towards the largest
cluster by the shear algorithm. This is illustrated in Fig-
ure[7l A shear step creates a kink in the largest cluster
(Fig[Ma — b). This is a favourable site for growth, which
tends to fill in the clefts created by the kink - with the
result that the cluster grows preferentially in the x di-



rection (Fig[dc). This growth reduces the gap between
the largest cluster and surrounding clusters in the +x
directions (Fig[dd). Alternatively, multiple shear steps
occurring at the second row from the top in Figure [Th
would shift the small cluster at the top left of the box
towards the largest cluster, eventually resulting in coa-
lescence, without the need for any growth of the largest
cluster. Figures [@l and [0 demonstrate that our shear al-
gorithm can promote growth of the largest cluster by
coalescence, even though the system dynamics consists
only of Metropolis spin flips and shear steps (diffusion of
spins is not modelled).

VI. ANALYSIS OF CLUSTER GROWTH

To elucidate the role of enhanced cluster growth and
coalescence in shear-enhanced nucleation, we first anal-
ysed the ensemble of transition paths generated by the
FFS simulations at shear rates ¥ = 0.0, ¥ = 0.06 and
4 = 0.12. For each shear rate, we computed the con-
tributions to the growth of the largest cluster of “single
spin flip growth” (events in which the size of the largest
cluster changes by +1 spin) and of coalescence (events
in which the size of the largest cluster increases by more
than one spin). We also measured the contribution of
cluster breakup events, in which the size of the largest
cluster decreases by more than one spin (an “event” here
refers to a single attempted spin flip in our Metropolis
Monte Carlo scheme, or a shear step). The results are
plotted as an average over the transition path ensemble,
as a function of the committor Pg, in Figure[® The com-
mittor function Pg(z) is the probability that a trajectory
initiated from a configuration x will reach the final state
B before the initial state A - this provides a convenient
measure for the progress of the transition.

Figure Bh shows that, for all shear rates, the largest
cluster increases in size as the transition progresses in a
rather similar manner, although the shear causes a slight
difference in cluster size: N.(¥ = 0.06) < N.(¥ = 0.0) <
N (¥ = 0.12). However, Figure Bb, c, and d show that
despite this apparent similarity, the contributions of sin-
gle spin flips, coalescence and breakup events to clus-
ter growth are all strongly affected by the shear. Both
single spin flip growth and coalescence are enhanced for
4 = 0.06 compared to the zero shear case, and strongly
enhanced for ¥ = 0.12. However, this is balanced by
a strong increase in the negative contribution of clus-
ter breakup events in the presence of shear. This sug-
gests that both the mechanisms outlined above (shear-
enhanced single spin flip growth and shear-enhanced co-
alescence), as well as cluster breakup, are likely to play a
significant role in the nucleation mechanism in the pres-
ence of shear.
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Figure 8: (a): Largest cluster size N. plotted as a function
of the committor Pg, averaged over 25 transition paths. (b):
Contribution of single spin flips (i.e. spin flips where AN, =
£1) to Ne. (c) Contribution of coalescence events (i.e. spin
flips where AN, > 1) to Ne. (d) Contribution of breakup
events (i.e. spin flips where AN, < —1) to N.. In all plots,
circles represent results for ¥ = 0.0, squares for 4 = 0.06 and
diamonds for 4 = 0.12. Note the different scales on the N,
axis.

VII. A MODIFIED SHEAR ALGORITHM

We would like to quantify the contributions of shear-
enhanced cluster growth and coalescence to the increase
in nucleation rate with shear rate shown in Figure[Il To
do this, we devised a modified shear algorithm in which
shear-induced coalescence is largely eliminated. This is
the same as the regular shear algorithm (see section [[)),
except that after each shear step, spins in the rows imme-
diately above and below the “break point” are allowed to
equilibrate with no shear for N., Metropolis Monte Carlo
steps. During this equilibration, all spins in the largest
cluster and its immediate neighbours are held fixed, even
if they lie in the rows mentioned above. The effect of
this equilibration is that the largest cluster (and its im-
mediate neighbours) is sheared as normal, while the sur-
rounding “bath” of spins is maintained close to equilib-
rium (there may still be small clusters in the bath which
have broken off from the largest cluster). It is not neces-
sary to equilibrate all rows after a shear step. Our system
has only nearest-neighbour interactions, and the effect of
the shear is simply to change the juxtaposition of the two
rows adjacent to the break point; all other rows remain
unchanged during a shear step. We have used Ngg = 5
equilibration steps after each shear step (although in fact
we find that N, = 1 is sufficient).

We expect this modified algorithm significantly to re-
duce shear-induced cluster coalescence. The shear cannot
form small clusters or drive surrounding spins and clus-
ters towards the largest cluster, as illustrated in Figure
[[ Coalescence events in which the shear directly merges
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Figure 9: Contributions to the largest cluster size as in Figure
[8 for the modified and regular shear algorithms for 4 = 0.06.
Red squares: modified shear algorithm; black squares: regular
shear algorithm (both for 4 = 0.06). Results are compared
to those for the regular shear algorithm in the absence of
shear, shown by the black circles. (a): Largest cluster size
Nc. (b): Contribution of single spin flips (i.e. spin flips where
AN. = #£1) to N.. (c) Contribution of coalescence events
(i.e. spin flips where AN, > 1) to N.. (d) Contribution of
breakup events (i.e. spin flips where AN, < —1) to N.. Note
the different scales on the N, axis.

clusters, as illustrated in Figure [6] may still occur, how-
ever, as may events where the largest cluster is broken
up by the shear and subsequently re-coalesces. This type
of modified shear algorithm might also be useful for in-
vestigating the effects of coalescence for more complex
systems with long-range interactions or off-lattice par-
ticles: however, in these cases it would be necessary to
equilibrate the whole bath after every shear step (or from
time to time in the case of continuous shear). If the nucle-
ation mechanism proceeds via the coalescence of multiple
large clusters (at large supersaturation), this approach is
unlikely to be useful. However, our simulations are at
moderate supersaturation so that we believe nucleation
occurs via the growth of a single large cluster.

Figure [0 shows the contributions to cluster growth of
single spin flips, coalescence and breakup (as in Figure[]),
for the modified shear algorithm, compared to the regu-
lar algorithm, for 4 = 0.06 (moderate shear). Transition
paths were extracted from a FFS calculations: for the
modified algorithm, we used 32 interfaces and Ap = 805,
as the algorithm is computationally expensive. We veri-
fied that this change of FFS parameters has no effect on
the computed rate constant, since by A = 805 the paths
are completely committed to nucleation.

As expected, single spin flip growth is enhanced by
shear for the modified algorithm in the same way as for
the regular algorithm (in Figure@b, the data for the mod-
ified algorithm with 4 = 0.06 overly those for the regular
algorithm with 4 = 0.06). Turning to Figure @k, we see

that the coalescence contribution is significantly reduced
for the modified algorithm (red squares) compared to the
regular algorithm (black squares). However, some shear
enhancement of coalescence still remains in the modi-
fied algorithm, since the results for the modified algo-
rithm with 4 = 0.06 (red squares) do not coincide with
those for the regular algorithm in the absence of shear
(black circles). We speculate that these remaining coa-
lescence events involve clusters breaking up and then re-
coalescing (these events are not suppressed by our mod-
ified algorithm). Another possibility may be that the
shear changes the largest cluster in such a way that it
becomes more prone to attaching other clusters, even in
an equilibrium bath. Figure @d shows the contribution
of cluster breakup. Cluster breakup is also partially re-
duced in the modified algorithm compared to the regular
algorithm. We expect the largest cluster to be stretched
by the shear in the same way for both algorithms - so
we might expect the contribution of cluster breakup to
be the same for both algorithms. However, some coales-
cence events result immediately in breakup, if the incom-
ing small cluster is not well attached to the largest clus-
ter. Suppressing these coalescence events in our modified
algorithm may therefore also decrease the rate of breakup
events.
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Figure 10: I versus + for h = 0.05kpT, for “regular” shear
(circles) and the modified shear algorithm (squares). The
“regular” shear results are the same as in Figure [

Figure [10 shows the nucleation rate I as a function of
the shear rate 4 for the modified algorithm, as well as the
original results from Figure [[I The modified algorithm
gives the same qualitative behaviour for I(¥), but the
nucleation rate is reduced by a factor which increases
with the shear rate. These results suggest that shear-
induced interactions between the growing cluster and the
surrounding sheared “bath” of spins play a significant role
in enhancing nucleation for shear rates ¥ > 0.03.



VIII. ANALYSIS OF THE TRANSITION STATE

ENSEMBLE

To further test the role of cluster coalescence in the
nucleation mechanism, we have analysed the committor
function Pp(z). This is the probability that a trajec-
tory initiated from a configuration z will arrive in the
B state before the A state. Surfaces in configurational
space on which Pp takes a fixed value are known as the
isocommittor surfaces. In particular, the transition state
surface has Pg = 0.5. It is important to be clear about
which configurations  we use to define the isocommit-
tor surfaces. Because our system is driven by shear and
its dynamics do not obey detailed balance, the path en-
sembles for the forward and reverse transitions need not
lie in the same region of configurational space, so that
the transition state surfaces for the forward and reverse
transitions need not be the same for a nonequilibrium
problem ﬂ] Even for cases where detailed balance is
obeyed, it is important to define whether the isocom-
mittor surface is computed using configurations from the
path ensemble or using Boltzmann-weighted configura-
tions sampled from the entire phase space. We will study
here the transition state surface for the forward paths:
i.e. we will analyse the collection of configurations in
the forward path ensemble with Pg = 0.5. These con-
figurations are members of the transition state ensemble
(TSE) for the forward transition. We will carry out this
analysis for three different shear rates ¥ = 0.0, ¥ = 0.06
and 4 = 0.12. The TSE configurations were extracted
from the transition paths as described in Appendix [Bl

Committor analysis can be used to test whether a cho-
sen order parameter p is important in the transition
mechanism, by computing the correlation between the
value of 1 and the committor value, for configurations
in the transition paths. If p is found to be strongly cor-
related with the committor, then it is likely that this
order parameter captures (at least some of) the essential
physics underlying the transition. For this nucleation
problem, we know that the largest cluster size N, is an
order parameter that couples strongly to the committor -
large clusters have a greater probability of continuing to
grow than small clusters. In Classical Nucleation The-
ory, it is assumed that N, is the only important order
parameter. However, in the presence of shear, other or-
der parameters, which couple to the shear, must also be
important. Since we have postulated that cluster coales-
cence plays an important role in the nucleation mecha-
nism in the presence of shear, we seek an order parameter
1 that is coupled to coalescence.

Figure Ml illustrates one such order parameter: the lo-
cal density of up spins surrounding the largest cluster.
The coalescence mechanism illustrated in Figure [[is ex-
pected to depend on the density of up spins in the regions
to the right and left of the cluster, but not in the regions
directly above and below. We therefore define local den-
sities p, and p, as the density of up spins surrounding
the largest cluster, located a distance |z| < & or |y| < ¢

[ | [ |
N N N
B N
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N = N N N
(2 (b)

Figure 11: Order parameters for local density of “up” spins:
po is the density of “up” spins, not in the largest cluster, in
the shaded region in panel (a), while p, is the density of “up”
spins, not in the largest cluster, in the shaded region in panel

(b).

from the edge of the largest cluster respectively, where &
is a cutoff distance. These regions are shown schemati-
cally in Figure [[TIh and b. If shear-induced coalescence
is indeed important in the nucleation mechanism, we ex-
pect p, but not p, to be correlated with the committor
in the presence of shear. Neither p, nor p, is expect to
correlate with the committor in the absence of shear.
To test whether p, and p, are correlated with the
committor, we extract TSE configurations (which have
Pg = 0.5) from our transition paths, and look for nega-
tive correlation between p, or p, and the largest cluster
size N, for these configurations. We know that N, is an
important order parameter for this transition. If another
order parameter p is also important then we would ex-
pect both N, and p to determine the committor value.
Specifically, TSE configurations can achieve Pg = 0.5 by
having a large value of N, but only a small value of p,
or alternatively a small value of N, may be compensated
by a large value of . This implies that if p is positively
correlated with the committor, then for the TSE config-
urations, p should be negatively correlated with N,.
Figure[I2ltests whether this negative correlation exists.
The main panels show scatter plots of p, versus N, for
configurations in the TSE (each configuration is repre-
sented by one dot), for £ = 5 lattice sites. In the absence
of shear (¥ = 0.0), there is no significant correlation be-
tween p, and N, but significant negative correlation is
observed for ¥ = 0.06 and ¥ = 0.12. The correlation coef-
ficient (“r-value”) is larger for 4 = 0.12 than for 4 = 0.06,
suggesting that the importance of coalescence increases
with shear rate. The insets in Figure [I2] show the same
scatter plots for p,. No significant correlation is present
in the absence of shear (a) or when 4 = 0.06 (b). This
supports our hypothesis that local density in the x but
not the y direction is important in the presence of shear.
For the highest shear rate, 4 = 0.12, we do observe sig-
nificant negative correlation between p, and N, but the
magnitude of the correlation coefficient is much less for p,
than for p,. Taken together, these results suggest that
the shear-induced coalescence mechanism illustrated in
Figureslfland [l does capture some of the essential physics
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Figure 12: Scatter plots of p, (main panel) or p, (inset) versus
size of largest cluster N, for TSE configurations (defined as
configurations in transition paths with Pp = 0.5), for (a):
4 = 0.0, (b): ¥ =0.06 and (c): ¥ = 0.12. Order parameters
p= and py were defined as above with & = 5 lattice sites. 95%
confidence intervals for the correlation coefficient (“r value”)
between p and N. are given in each panel [50].

of the nucleation mechanism.

Since we believe that shear also enhances “single spin
flip” cluster growth, we would like to repeat the above
analysis for an order parameter that measures the ten-
dency of the cluster to grow. However, this has proved
difficult. Order parameters based on measuring the num-
ber of kinks in the perimeter of the largest cluster tend to
covary with the size of the largest cluster, so that scat-
ter plots of u versus N, are not an objective measure.
These order parameters are also affected by the shape
of the cluster, which is affected by the shear. Attempts
to measure directly the propensity of the cluster to grow
by single spin flips failed to produce significant negative
correlation, possibly because this propensity fluctuates
greatly during cluster growth.

IX. DISCUSSION

In this paper, we have used Forward Flux Sampling
(FFS) to calculate rate constants and transition paths
for homogeneous nucleation in a sheared two dimensional
Ising model. Our results show a striking nonmonotonic
dependence of the nucleation rate I on the shear rate 4.
We have investigated the physical mechanisms underly-
ing this behaviour by analysing transition paths and the
transition state ensemble, as well as by comparison to
several modified shear algorithms. Our conclusions are
that the observed decrease in I(¥) for large 7 is due to
shear-mediated breakup of the growing cluster, while the
increase in I (%) for small 4 is due to shear-induced cluster
coalescence as well as to shear-enhanced “single spin flip”
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growth of the largest cluster. The contributions of shear-
enhanced cluster coalescence and single spin flip growth
appear to be of the same order of magnitude.

Our analysis has been strongly influenced by work on
(quasi-)equilibrium systems, in which the goal is often
to identify the “reaction coordinate”. This is the collec-
tive coordinate which most strongly correlates with the
committor for the transition. If the true reaction coordi-
nate could be identified, it is believed that the transition
could be coarse-grained into a one-dimensional diffusion
problem, over a free energy barrier in the reaction co-
ordinate, in the manner of Classical Nucleation Theory.
Several methods have been proposed for identifying the
optimal reaction coordinate [34, 51, [52]. We were mo-
tivated by this approach in our attempts to find order
parameters that correlate negatively with N, in Section
[Vl However, it is not clear whether the reaction coordi-
nate is such a useful concept for driven systems as it is
for equilibrium systems. As discussed in section [VIII the
isocommittor surfaces for the forward and backward tran-
sitions are not necessarily the same for driven systems, so
the reaction coordinates may be different for the forward
and backward processes. Moreover, the reaction coor-
dinate is usually assumed to be a function only of the
spatial coordinates of the system - whereas in systems
that are not in local equilibrium, dynamical coordinates
(momenta) may also be important. Even if a collective
coordinate which correlated precisely with the committor
could be found, it is not clear whether the complex dy-
namics of the driven system could then be coarse-grained
into a one-dimensional model. Our preliminary investi-
gations suggest that it may be possible to construct a
one-dimensional “CNT-like” model for Ising nucleation
under shear, along the lines of a toy model proposed by
Cerda et al |9, 53].

The two dimensional Ising model studied in this pa-
per is an idealised system, and the algorithm used here
to apply shear is far from realistic. In particular, our
dynamics includes no spin transport and our shear algo-
rithm imposes a linear “velocity gradient” on the system.
In experimental systems, mass transport, hydrodynamic
effects, etc, undoubtedly play a role. Effects of mass
transport could be included using an Ising model with
Kawasaki dynamics [45] instead of Metropolis spin flips
as used here. This would require some reservoir of up
spins to be provided. In the absence of driving, the choice
of dynamical update rule has very significant effects on
system behaviour [54]: a comparison between Metropolis
and Kawasaki dynamics for nucleation under shear would
be an interesting topic for further work. Despite its sim-
plicity, the Ising model has made important contributions
to the understanding of nucleation phenomena in equi-
librium systems, and is likely to yield important insights
also for nonequilibrium systems. Moreover, the mecha-
nisms identified here - shear-induced cluster breakup, en-
hanced cluster growth and cluster coalescence - are likely
to play a significant role in experimental nucleation under
shear. The discreteness of our model may be a cause for



concern: for example, the “kink” mechanism for shear-
enhanced single spin flip growth illustrated in Figure ()
is a discrete phenomenon. However, our results show
that cluster coalescence is of approximately equal impor-
tance, and, in any case, preliminary results indicate that
the observed qualitative behaviour is not dependent on
the size of the largest cluster [53]. We are encouraged by
recent two dimensional Brownian Dynamics simulations
of charge stabilised and attractive colloids, in which simi-
lar nonmonotonic behaviour of the crystal nucleation rate
was observed [9], although the underlying physical mech-
anisms were postulated to be somewhat different. Future
work will investigate the role of transport processes for
nucleation under shear in simple model systems and ex-
tend our work to more complex models.
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Appendix A: THE SHEAR ALGORITHM

Here, we describe the algorithm used to apply shear
to the Ising system. The algorithm is similar to that of
Cirillo et al |47] but rows are shifted by only one lattice
site. The algorithm required the parameters M, (number
of attempted row shifts per row per MC cycle) and P
(probability of a row shift happening in each attempt)
to be assigned, for a given shear rate 4. This is done as
follows: if 4 <1, Mg =1 and Ps =+4. If ¥ > 1, then M;
and P; are allocated such that M is the smallest integer
value such that M;P; = 4 and 0 < Py < 1. Although this
is the strategy used to assign M and P; in this paper,
we have verified that our results do not depend on the
choice of M, and P; for a given +.

We then simulate the system using the usual Metropo-
lis Monte Carlo algorithm, except that after each MC
cycle, we carry out Mg x L attempts to shear the system
by one lattice site. Each attempt consists of:

(1) choose a random number 0 < r <1

(2) If r < Ps, go on to (3)

(3) choose a row j. at random (using a second random
number)

(4) for all spins with y co-ordinate j > j., carry out the
x co-ordinate transformation i — i + 1 - taking proper
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account of periodic boundary conditions
(5) update the stored information on y-direction periodic
boundary conditions, as detailed below

‘A‘B‘C‘D‘Ef A/B|C|D|E |F
At

AB|C|D|E|F FI|A B |CD |E
A/B|C|D|E|F FI|A B |CD |E
A/B|C|D|E|F FI|A B |CD |E
ABCDEF_>ABCDEF
AB|C|D|E|F A/B|C|D|E|F
AB|C|D|E|F A/B|C|D|E|F
e A a1

A|B|C|D|E |F FIA|B|C|D |E

Figure 13: Schematic illustration of a row shift in the shear-
ing algorithm. Columns are labelled by letters. The square
simulation box is shown flanked by the bottom and top rows
of the neighbouring boxes in the up and down direction in the
periodic array (shown in grey). The small arrows indicate the
neighbours of each lattice site in the top and bottom rows of
the box in the up and down directions. A shear step results
in a shift of all rows in the top half of the box by one lattice
site. This results in a change of identity of the neighbours
of the top and bottom rows of the lattice, as shown by the
slanting arrows.

In the absence of shear, we apply periodic boundary
conditions (PBC) in the x and y directions. In the pres-
ence of shear, PBC apply in exactly the same way in
the x direction, but care is required in the y direction.
As illustrated in Figure I3 a shear step results in a
displacement of the identity of the “up” neighbours of
the top row and the “down” neighbours of the bottom
row. Therefore, in addition to storing the spin vari-
ables o at each lattice site, for every configuration, we
also store two integers, gup and gqown. The identity of
the “up” neighbour of the spin at position [i; L] (where
rows are numbered 1 — L) is [i + gup — nL;1], while
the identity of the “down” neighbour of the spin at po-
sition [i;1] is [i + gdown — mL; L]. The integers n and
m are chosen to ensure that 1 < ¢4 gy, —nL < L and
1 <4+ gigown — mL < L. Each time a shear step is car-
ried out, gup and gqown are updated by gup — gup — 1
and ggown — gdown + 1. It is essential when carrying out
the FFS simulations and when reconstructing the tran-
sition paths from the FFS sampling that g., and gaown
are stored for each configuration.

Appendix B: SAMPLING THE TRANSITION
STATE ENSEMBLE

To obtain configurations from the transition path en-
semble with Pg = 0.5 (TSE configurations), we first re-
generate the transition paths from the FFS simulation, as
described in section [[II Having regenerated a transition
path, we then fire 16 trial runs from every 10th configu-
ration along this path, and monitor the number of trials



5(1) that reach B before A. If 7 < Ns(l) <9, we then
fire a further 100 trial runs from this configuration, and
monitor the number trials NS(2) that reach B rather than
A. T 40 < N5(2) < 50, we consider this configuration a
member of the Pg = 0.5 ensemble. This procedure pro-
duces a collection of configurations with a range of Pp
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values around the desired value of 0.5. The parameters
of the method can be adjusted to balance computational
expense with accuracy. This approach is slightly differ-
ent from that of Pan and Chandler |33], who include both

Ns(l) and NS(2) in the final computed value of Pg.
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