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We 
ompute rates and pathways for nu
leation in a sheared two dimensional Ising model with

Metropolis spin �ip dynami
s, using Forward Flux Sampling (FFS). We �nd a peak in the nu
leation

rate at intermediate shear rate. We analyse the origin of this peak using modi�ed shear algorithms

and 
ommittor analysis. We �nd that the peak arises from an interplay between three shear-mediated

e�e
ts: shear-enhan
ed 
luster growth, 
luster 
oales
en
e and 
luster breakup. Our results show

that 
omplex nu
leation behaviour 
an be found even in a simple driven model system. This work

also demonstrates the use of FFS for simulating rare events, in
luding nu
leation, in nonequilibrium

systems.

I. INTRODUCTION

The nu
leation of a stable phase from a metastable

one is a ubiquitous and important phenomenon. Most

progress in understanding the physi
s of nu
leation has

been made for �quasi-equilibrium� systems, in whi
h the

system dynami
s obeys detailed balan
e and the transi-

tion is from a metastable to a thermodynami
ally stable

state. However, many important nu
leation pro
esses

both in nature and in industry happen in driven sys-

tems, su
h as those under shear, whose dynami
s do not

obey detailed balan
e. Despite its importan
e, nu
le-

ation in driven systems remains poorly understood. In

this paper, we 
ompute rates and transition paths for a

driven nu
leation pro
ess: nu
leation under shear in a

two dimensional Ising model. We use the re
ently de-

veloped Forward Flux Sampling rare event simulation

method [1, 2, 3℄. We �nd that the nu
leation rate shows

a striking nonmonotoni
 dependen
e on the shear rate,

and that this is due to an interplay between three shear-

mediated e�e
ts: shear-enhan
ed 
luster growth, 
luster


oales
en
e and 
luster breakup.

Nu
leation under shear remains poorly understood

[4, 5℄. It is expe
ted that high enough shear rates will

impede nu
leation. Some studies of 
rystal nu
leation

[6, 7, 8℄ �nd that nu
leation rates de
rease monotoni-


ally with shear rate; others suggest that 
rystallisation

may be enhan
ed at low shear rates [9, 10, 11, 12℄. A

re
ent experimental study found a minimum in the 
rys-

tal nu
leation rate as a fun
tion of shear rate for 
harged


olloids [13℄. Crystallisation from sheared glassy states is

even more 
ompli
ated, both experimentally and numer-

i
ally [12, 14℄. For binary mixtures [15℄ and isotropi
-

to-lamellar transitions [16℄, shear is predi
ted to in
rease

the 
riti
al temperature. Physi
al me
hanisms for the

e�e
t of shear on nu
leation may in
lude hydrodynami


e�e
ts, 
luster 
oales
en
e, 
luster breakup, layering due

to the shear �ow, and suppression of polydispersity. In

this work, we study an idealised model in whi
h many of

these e�e
ts are not in
luded (perhaps most signi�
antly,

transport pro
esses are not modelled). Our motivation is

to provide a fundamental basis on whi
h to build an un-

derstanding of more 
omplex systems. Our results may

however be relevant to driven solid materials [17, 18℄.

The Ising model provides a paradigm for many phe-

nomena in statisti
al physi
s, in
luding nu
leation. Nu-


leation in this model, in the absen
e of external driving,

has been extensively studied [19, 20, 21, 22, 23, 24, 25, 26,

27, 28℄. Ising models have proved a valuable tool for test-

ing the Classi
al Nu
leation Theory (CNT)[29, 30, 31℄, in

whi
h nu
leation is 
oarse-grained to one dimension, the

largest 
luster size 
oordinate, and modelled as a transi-

tion over a free energy barrier that arises due to 
ompe-

tition between the favourable 
hemi
al potential of the

growing 
luster and its unfavourable interfa
ial free en-

ergy. An attempt has been made to extend the CNT

to sheared systems [32℄. In the absen
e of shear, tran-

sition path analysis has shown the importan
e of order

parameters other than the largest 
luster size in the nu-


leation me
hanism, in both two and three dimensions

[33, 34℄. This large body of information on nu
leation

in the absen
e of driving makes the Ising model an at-

tra
tive test system for nonequilibrium nu
leation prob-

lems. Metastability and nu
leation of nonequilibrium

steady states generated by 
oupling to two di�erent heat

baths has been studied in a two-dimensional Ising model

[35, 36℄. Although, to our knowledge, nu
leation under

shear has not been investigated for the Ising model, the

maximum likelihood path has re
ently been 
omputed for

nu
leation under shear in a �nite system de�ned by a dy-

nami
al equation for the nu
leation order parameter, in

the absen
e of applied �eld [37℄. In this paper, we study a

sheared two-dimensional Ising model. We �nd that even

for this highly simpli�ed system, nu
leation under shear

is a 
omplex pro
ess that depends on multiple physi
al

me
hanisms.

The Forward Flux Sampling (FFS) method used in this

http://arxiv.org/abs/0805.3029v1
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work allows the 
omputation of rate 
onstants, transition

paths and stationary probability distributions for rare

events in equilibrium or nonequilibrium systems [1, 2, 38℄.

Rare events, su
h as nu
leation, are notoriously di�
ult

to simulate, be
ause the waiting time between events is

typi
ally mu
h longer than the times
ale of the event

itself, meaning that few, if any, events are observed in

a typi
al simulation run. Rare event simulation meth-

ods developed for equilibrium systems in
lude Bennett-

Chandler methods [39℄, transition path sampling [40℄,

(partial path) transition interfa
e sampling [41℄, mile-

stoning [42℄ and string methods [43℄. Both TPS and

the string method have been applied to Ising nu
leation

[33, 34, 44℄. However, these methods require knowledge

of the steady state phase spa
e density, making them un-

suitable for nonequilibrium problems. FFS does not re-

quire knowledge of the phase spa
e density. The method

uses a series of interfa
es in phase spa
e between the ini-

tial and �nal states, de�ned by an order parameter whi
h

need not be the rea
tion 
oordinate. In earlier work, we

and others have shown that FFS 
orre
tly reprodu
es the

nu
leation behaviour of a two dimensional Ising model in

the absen
e of shear [28, 38℄.

In se
tion II, we give details of our simulation model

and the FFS method applied to this system. In se
tion

III, we present results for the nu
leation rate as a fun
tion

of the shear rate. We then analyse the physi
al me
ha-

nism behind the suppression of nu
leation at high shear

rates in se
tion IV. In se
tion V, we dis
uss the roles

of shear-enhan
ed 
luster growth and 
oales
en
e in the

enhan
ement of nu
leation at low shear rates. We test

our ideas with an analysis of 
luster growth in se
tion

VI, with a 
omparison to a modi�ed shear algorithm in

se
tion VII, and with an analysis of the transition state

ensemble in se
tion VIII. Finally, we present our 
on
lu-

sions in se
tion IX.

II. SIMULATION DETAILS

The sheared two-dimensional Ising model

Our system 
onsists of a two-dimensional L×L square

latti
e of up-down spins with nearest-neighbour spin-spin

intera
tions, 
oupling to an external magneti
 �eld, and

periodi
 boundary 
onditions in the x and y dire
tions.

The Hamiltonian for the spin-spin and spin-�eld intera
-

tions is

H = −J

′∑

ij

σiσj − h
∑

i

σi, (1)

where σi = ±1 is the state of spin i, J is the 
oupling


onstant between neighbouring spins and h the external

magneti
 �eld - both in units of kBT . The prime in-

di
ates that the sum is restri
ted to nearest-neighbour

intera
tions. Our simulations use Metropolis spin-�ip

dynami
s. In ea
h Monte Carlo 
y
le, we make L × L

attempts to �ip a spin. In ea
h attempt, we 
hoose a

spin at random, attempt to �ip it, and a

ept or reje
t

the �ip a

ording to the Metropolis rule. An alterna-

tive 
hoi
e of dynami
s, not 
onsidered here, would be

the Kawasaki s
heme in whi
h up spins di�use between

latti
e sites [45℄.

All the simulations des
ribed here use a latti
e of size

L = 65, and 
oupling 
onstant J = 0.65kBT . We apply

an external magneti
 �eld h = 0.05kBT in all simula-

tions. Our 
oupling 
onstant J is larger than the 
riti
al


oupling Jc ≈ 0.44kBT [46℄. Considering the system in

the absen
e of shear, the thermodynami
ally stable state

is ferromagneti
, with net positive magnetisation, mean-

ing that the system tends to have the majority of its spins

in the up state (σ = +1). The alternative ferromagneti


state with net negative magnetisation (most spins in the

down state) is metastable, and if initiated in a predom-

inantly down state, the system will remain in that state

for a signi�
ant time before undergoing a nu
leation tran-

sition to the thermodynami
ally stable up state [26℄. We

are interested in the rates and pathways for this transi-

tion. In the absen
e of shear, this system is identi
al to

that investigated by Sear [28℄ and previously by some of

us [38℄, ex
ept that we now use a larger box size, sin
e we

have found that the nu
leation rate is more sensitive to

system size in the presen
e of shear. For the shear rates

used in this study, L = 65 is large enough to ensure that

our 
omputed nu
leation rate is independent of L. The

free energy barrier in the absen
e of shear is ≈ 22kBT ,
so that we are working at moderate supersaturation. We

therefore expe
t nu
leation to pro
eed via the growth of

a single large 
luster of up spins.

We apply shear to the system using a method similar

to that of Cirillo et al [47℄. After ea
h Monte Carlo 
y-


le, we make Ms × L attempts to shear the system (Ms

is the number of attempted shear steps per row per MC


y
le). In ea
h attempt, we 
arry out a shear step with

probability Ps. A shear step 
onsists of 
hoosing a row

js at random, and shifting all latti
e sites with j > js to

the right by one latti
e site. The net result is that row j
is shifted to the right by on average jMsPs latti
e sites

per Monte Carlo 
y
le. The shear rate is thus given by

γ̇ = MsPs. We have veri�ed that the 
hoi
e of Ms and

Ps does not matter for a given produ
t γ̇. We note that


are must be taken to maintain the 
orre
t identity of

the neighbour sites in the periodi
 image latti
es above

and below the simulation box - after a shifting move,

the identity of these neighbours is 
hanged. Our method

for a
hieving this is des
ribed in Appendix A. This al-

gorithm imposes, on average, a linear velo
ity �eld on

the underlying latti
e. In a real physi
al system, the ve-

lo
ity �eld is not imposed externally but emerges as a


onsequen
e of the internal dynami
s of the system, so

that the shear algorithm used here is somewhat arti�
ial.

However, our purpose here is to investigate the e�e
ts of

a linear velo
ity �eld on the system; furthermore, this al-

gorithm has the advantages of being simple to implement

and homogeneous a
ross the simulation box.
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Forward Flux Sampling

We have used the Forward Flux Sampling (FFS)

method [1, 2, 3℄ to 
al
ulate nu
leation rates and tran-

sition paths for the formation of the steady state with

predominantly up spins (the up state), from the steady

state with predominantly down spins (the down state).

This rare event sampling method uses a series of inter-

fa
es in phase spa
e between the initial and �nal states

to for
e the system from the initial state A to the �nal

state B in a rat
het-like manner. An order parameter

λ(x) is de�ned (where x represents the phase spa
e 
o-

ordinates), su
h that the system is in stateA if λ(x) < λ0,

and it is in state B if λ(x) > λn, while a series of non-

interse
ting planes (interfa
es) λi (0 < i < n) lie be-

tween states A and B, su
h that any path from A to B

must 
ross ea
h interfa
e, without rea
hing λi+1 before

λi. Provided enough 
on�gurations are obtained at the

�rst interfa
e to ensure good sampling, the 
hoi
e of or-

der parameter λ(x) should not a�e
t the 
al
ulated rate


onstant or transition paths (i.e. λ(x) need not be the

true rea
tion 
o-ordinate) - although it may a�e
t the


omputational e�
ien
y of the method.

Full details of the FFS method are given in Refs [1, 2℄,

and a detailed analysis of its 
omputational e�
ien
y is

given in Ref [3℄. Brie�y, the transition rate I from A to

B is de
omposed as [41, 48℄:

I = Φ̄A,n = Φ̄A,0P (λn|λ0) = Φ̄A,0

n−1∏

i=0

P (λi+1|λi). (2)

where Φ̄A,n is the average �ux of traje
tories 
rossing

from A to B, Φ̄A,0 is the average �ux of traje
tories 
ross-

ing λ0 in the dire
tion of B, P (λn|λ0) is the probability

that a traje
tory that 
rosses λ0 in the dire
tion of B will

eventually rea
h B before returning to A, and P (λi+1|λi)
is the probability that a traje
tory whi
h rea
hes λi,

having 
ome from A, will rea
h λi+1 before returning

to A. The �ux Φ̄A,0 is 
omputed using a simulation in

the A state, during whi
h 
on�gurations 
orresponding

to 
rossings of the �rst interfa
e λ0 
oming from A are

also stored. This 
olle
tion of 
on�gurations is then used

to initiate trial runs whi
h either rea
h the next interfa
e

λ1 or go ba
k to λ0, generating an estimate for the 
on-

ditional probability P (λ1|λ0) as well as a new 
olle
tion

of 
on�gurations at λ1; the trial run pro
edure is then

iterated until B is rea
hed. The rate 
onstant I is then

obtained from Eq.(2), and a 
orre
tly weighted 
olle
tion

of traje
tories from A to B is obtained by tra
ing trial

runs that eventually arrive at λn, via su

essive interfa
es

ba
k to A. In pra
ti
e, rather than storing all 
on�gu-

rations for all trial runs during the FFS pro
edure, it is

su�
ient to store the initial 
olle
tion of 
on�gurations

at λ0, together with limited information about ea
h 
on-

�guration in ea
h 
olle
tion at intermediate interfa
es λi,

indi
ating its �parent� 
on�guration in the 
olle
tion at

the previous interfa
e λi−1, and the value of the random

number seed used to initiate the relevant trial run. In

this way, transition paths 
an easily be re
onstru
ted af-

ter the FFS sampling pro
edure, without the need for ex-


essive data storage. In an earlier study, we have shown

that FFS 
orre
tly reprodu
es the nu
leation behaviour

of a two dimensional Ising model in the absen
e of shear

[38℄.

For the simulations des
ribed in this paper, the param-

eter λ was de�ned as the total number of up spins in the

simulation box. This is a global order parameter: an al-

ternative might be to use the size of the largest 
luster of

up spins. For FFS, we do not expe
t the rate 
onstant or

the transition path ensemble to depend on the 
hoi
e of

order parameter (we will later analyse traje
tories using

the largest 
luster size). Others have experien
ed sam-

pling problems when using global order parameters in

FFS [49℄; this was not the 
ase in this work. We used 39

interfa
es for our FFS 
al
ulations (ex
ept in se
tion V),

de�ning the A state at λ < λ0 where λ0 = 25 up spins,

and the B state at λ > λn where λn = 2005 up spins (the

total number of spins in our system being 65×65 = 4225).
The spa
ing between interfa
es varies between 5 and 200

up spins. We 
olle
ted 1000 
on�gurations at interfa
e λ0

and repeated ea
h FFS 
al
ulation 25 times. The num-

ber of trials at ea
h interfa
e varied between 1300 and

7000. Our results do not depend on the pre
ise 
hoi
e of

the number or position of the interfa
es.

III. NUCLEATION RATE AS A FUNCTION OF

SHEAR RATE
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Figure 1: Rate of homogeneous nu
leation I as a fun
tion of

shear rate γ̇ for h = 0.05kBT and J = 0.65kBT .

Figure 1 shows the rate I of homogeneous nu
leation

as a fun
tion of the shear rate γ̇. The nu
leation rate

shows a striking nonmonotoni
 dependen
e on γ̇. For

low shear rates, I in
reases apparently linearly with γ̇,
before rea
hing a maximum around γ̇ = 0.06. For shear
rates γ̇ > 0.06, I de
reases nonlinearly with in
reasing

γ̇. For γ̇ = 0, our result is in good agreement with the
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value of 3.3 × 10−13
per MC 
y
le per site obtained by

Sear [28℄.

(a) (b)

(
)

Figure 2: Con�gurations from the transition state ensemble,

obtained as des
ribed in Appendix B (a): γ̇ = 0.0, (b): γ̇ =

0.06, (
): γ̇ = 0.12.

Figure 2 shows representatives of the transition state

ensemble (TSE; these are transition path 
on�gurations

from whi
h a newly initiated traje
tory has probability

PB = 0.5 of rea
hing B before A) for shear rates γ̇ = 0.0,
γ̇ = 0.06 and γ̇ = 0.12. It is 
lear that the shape of

the growing 
luster is strongly a�e
ted by the shear. An

observation of the transition paths shows that, for high

shear rates, the growing 
luster eventually 
onne
ts with

its periodi
 images to form a horizontal stripe a
ross the

box, whi
h then expands verti
ally to �ll the box. This

has also been seen for nu
leation under shear in the un-

physi
al 
ase of no supersaturation [44℄. In our simula-

tions, stripe formation o

urs well beyond the transition

state, and does not a�e
t the nu
leation rate (sin
e we

have veri�ed that I is independent of L).

In the following se
tions, we attempt to elu
idate the

physi
al origin of the nonmonotoni
 dependen
e of I on

γ̇ shown in Figure 1. We �rst 
onsider the origin of the

de
rease in I with γ̇ at high γ̇, and then turn to the

me
hanisms behind the in
rease in I(γ̇) for low γ̇.

IV. SUPPRESSION OF NUCLEATION AT HIGH

SHEAR RATE

We �rst seek an explanation for the de
rease in nu-


leation rate I with shear rate γ̇ for γ̇ > 0.06 in Fig-

ure 1. Figure 2 shows that the growing 
lusters be
ome

elongated in the dire
tion of the shear. The extent of

this elongation is governed by a balan
e between the fre-

quen
y of shear steps and the growth rate of the 
luster.

It seems intuitive that for high shear rates, the elonga-

tion due to the shear will ex
eed the rate at whi
h the


luster 
an grow, leading to shear-indu
ed breakup of the

growing 
luster, and a 
orresponding de
rease in the ho-

mogeneous nu
leation rate.

(a)

(b) (
)

Figure 3: Con�gurations from the transition state ensemble

with rattle shear, obtained as des
ribed in Appendix B (a):

γ̇ = 0.0, (b): γ̇ = 0.06, (
): γ̇ = 0.12.
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Figure 4: I versus γ̇ for h = 0.05kBT , for regular shear (
ir-


les) and rattle shear (squares). The regular shear results are

the same as in Figure 1.

To test this hypothesis, we performed a set of simu-

lations in whi
h the dire
tion of the shear (to the right

or to the left along the x axis) was 
hosen at random

for ea
h shear step. We 
all this algorithm �rattle shear�.

On average, the system makes as many row shifts to the

right as it does to the left, so we do not expe
t 
lusters

to be elongated by the shear. This is 
on�rmed in Figure

3, whi
h shows that TSE 
on�gurations are not noti
e-

ably elongated, even for high shear rates. Fig 4 shows

I versus γ̇ for the rattle shear (squares), as well as for

the �regular� shear algorithm (
ir
les). As expe
ted, the

regime in whi
h I de
reases with γ̇ has been abolished

for the rattle shear algorithm, at least within this range

of γ̇ values. This appears to 
on�rm our hypothesis that
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the de
rease in I for large γ̇ is due to shear-indu
ed elon-

gation of the growing 
luster, leading to eventual 
luster

breakup.

Figure 4 also shows that nu
leation is enhan
ed less

strongly at low shear rates for rattle shear than for the

regular shear algorithm. This suggests that multiple

shear steps o

urring in the same dire
tion are an impor-

tant feature in the nu
leation enhan
ement me
hanism;

a topi
 whi
h is explored further in the next se
tions.

V. ENHANCEMENT OF NUCLEATION AT

LOW SHEAR RATE

K

K

C

C

C

C

C

C

C C

C

C

Figure 5: A square 
luster (left) undergoes one shear step

to make a shape with two 
on
ave kinks and two additional


orner sites. Kink sites are labelled K and 
orner sites C.

We turn next to the in
rease in nu
leation rate I with

shear rate γ̇ observed in Figure 1 for low shear rates,

γ̇ < 0.06. This behaviour 
ould have (at least) two pos-

sible origins. Firstly, the shear algorithm 
hanges the

shape of the growing 
luster and this may in
rease its

tenden
y to grow. One way in whi
h this 
ould happen

is by in
reasing the surfa
e roughness of the 
luster: our

shear algorithm 
reates kinks in the growing 
luster, and

these are favourable sites for further 
luster growth. The

rate of growth due to spin �ips is therefore likely to be

enhan
ed by the shear. This me
hanism is illustrated in

Figure 5, where two kinks (labelled K) and two 
orner

sites (labelled C) are 
reated by a shear step. Although

the 
orner sites have a tenden
y to �ip to the down state,

this is 
ountera
ted by the greater tenden
y (due to the

applied �eld) of the kink sites to �ip to the up state.

Figure 6: The shear algorithm 
an drive isolated spins to-

gether into small 
lusters. The top three rows are shifted to

the right by a shear step, 
ausing two isolated up spins to fuse

into a small 
luster.

(a)

(b)

(
)

(d)

Figure 7: The shear algorithm 
an drive isolated spins and

small 
lusters towards the largest 
luster. (a): Initially, a

large square 
luster is surrounded by 4 isolated �up� spins and

3 smaller 
lusters (b): A shear step o

urs and the top half of

the simulation box is shifted by one latti
e spa
e to the right

(
): The 
luster grows in the ±x dire
tions via Metropolis

spin �ips enhan
ed by the 
on
ave kinks 
reated by the shear

(d): In the resulting 
on�guration, the largest 
luster has


oales
ed with one smaller 
luster and has also be
ome one

latti
e spa
e 
loser to the small 
luster at the bottom right.

A se
ond possible me
hanism for the in
rease in I with

γ̇ is shear-indu
ed 
oales
en
e between isolated up spins

or small 
lusters and the growing nu
leus. The shear al-

gorithm is expe
ted to drive together isolated up spins,


ausing an in
reased abundan
e of small 
lusters in the

system, as illustrated in Figure 6. These may then 
o-

ales
e with the largest 
luster. Moreover, isolated spins

and small 
lusters 
an also be driven towards the largest


luster by the shear algorithm. This is illustrated in Fig-

ure 7. A shear step 
reates a kink in the largest 
luster

(Fig 7 a → b). This is a favourable site for growth, whi
h

tends to �ll in the 
lefts 
reated by the kink - with the

result that the 
luster grows preferentially in the x di-
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re
tion (Fig 7 
). This growth redu
es the gap between

the largest 
luster and surrounding 
lusters in the ±x
dire
tions (Fig 7 d). Alternatively, multiple shear steps

o

urring at the se
ond row from the top in Figure 7a

would shift the small 
luster at the top left of the box

towards the largest 
luster, eventually resulting in 
oa-

les
en
e, without the need for any growth of the largest


luster. Figures 6 and 7 demonstrate that our shear al-

gorithm 
an promote growth of the largest 
luster by


oales
en
e, even though the system dynami
s 
onsists

only of Metropolis spin �ips and shear steps (di�usion of

spins is not modelled).

VI. ANALYSIS OF CLUSTER GROWTH

To elu
idate the role of enhan
ed 
luster growth and


oales
en
e in shear-enhan
ed nu
leation, we �rst anal-

ysed the ensemble of transition paths generated by the

FFS simulations at shear rates γ̇ = 0.0, γ̇ = 0.06 and

γ̇ = 0.12. For ea
h shear rate, we 
omputed the 
on-

tributions to the growth of the largest 
luster of �single

spin �ip growth� (events in whi
h the size of the largest


luster 
hanges by ±1 spin) and of 
oales
en
e (events

in whi
h the size of the largest 
luster in
reases by more

than one spin). We also measured the 
ontribution of


luster breakup events, in whi
h the size of the largest


luster de
reases by more than one spin (an �event� here

refers to a single attempted spin �ip in our Metropolis

Monte Carlo s
heme, or a shear step). The results are

plotted as an average over the transition path ensemble,

as a fun
tion of the 
ommittor PB , in Figure 8. The 
om-

mittor fun
tion PB(x) is the probability that a traje
tory
initiated from a 
on�guration x will rea
h the �nal state

B before the initial state A - this provides a 
onvenient

measure for the progress of the transition.

Figure 8a shows that, for all shear rates, the largest


luster in
reases in size as the transition progresses in a

rather similar manner, although the shear 
auses a slight

di�eren
e in 
luster size: Nc(γ̇ = 0.06) < Nc(γ̇ = 0.0) <
Nc(γ̇ = 0.12). However, Figure 8b, 
, and d show that

despite this apparent similarity, the 
ontributions of sin-

gle spin �ips, 
oales
en
e and breakup events to 
lus-

ter growth are all strongly a�e
ted by the shear. Both

single spin �ip growth and 
oales
en
e are enhan
ed for

γ̇ = 0.06 
ompared to the zero shear 
ase, and strongly

enhan
ed for γ̇ = 0.12. However, this is balan
ed by

a strong in
rease in the negative 
ontribution of 
lus-

ter breakup events in the presen
e of shear. This sug-

gests that both the me
hanisms outlined above (shear-

enhan
ed single spin �ip growth and shear-enhan
ed 
o-

ales
en
e), as well as 
luster breakup, are likely to play a

signi�
ant role in the nu
leation me
hanism in the pres-

en
e of shear.
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Figure 8: (a): Largest 
luster size Nc plotted as a fun
tion

of the 
ommittor PB , averaged over 25 transition paths. (b):

Contribution of single spin �ips (i.e. spin �ips where ∆Nc =

±1) to Nc. (
) Contribution of 
oales
en
e events (i.e. spin

�ips where ∆Nc > 1) to Nc. (d) Contribution of breakup

events (i.e. spin �ips where ∆Nc < −1) to Nc. In all plots,


ir
les represent results for γ̇ = 0.0, squares for γ̇ = 0.06 and

diamonds for γ̇ = 0.12. Note the di�erent s
ales on the Nc

axis.

VII. A MODIFIED SHEAR ALGORITHM

We would like to quantify the 
ontributions of shear-

enhan
ed 
luster growth and 
oales
en
e to the in
rease

in nu
leation rate with shear rate shown in Figure 1. To

do this, we devised a modi�ed shear algorithm in whi
h

shear-indu
ed 
oales
en
e is largely eliminated. This is

the same as the regular shear algorithm (see se
tion II),

ex
ept that after ea
h shear step, spins in the rows imme-

diately above and below the �break point� are allowed to

equilibrate with no shear for Neq Metropolis Monte Carlo

steps. During this equilibration, all spins in the largest


luster and its immediate neighbours are held �xed, even

if they lie in the rows mentioned above. The e�e
t of

this equilibration is that the largest 
luster (and its im-

mediate neighbours) is sheared as normal, while the sur-

rounding �bath� of spins is maintained 
lose to equilib-

rium (there may still be small 
lusters in the bath whi
h

have broken o� from the largest 
luster). It is not ne
es-

sary to equilibrate all rows after a shear step. Our system

has only nearest-neighbour intera
tions, and the e�e
t of

the shear is simply to 
hange the juxtaposition of the two

rows adja
ent to the break point; all other rows remain

un
hanged during a shear step. We have used Neq = 5
equilibration steps after ea
h shear step (although in fa
t

we �nd that Neq = 1 is su�
ient).

We expe
t this modi�ed algorithm signi�
antly to re-

du
e shear-indu
ed 
luster 
oales
en
e. The shear 
annot

form small 
lusters or drive surrounding spins and 
lus-

ters towards the largest 
luster, as illustrated in Figure

7. Coales
en
e events in whi
h the shear dire
tly merges
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Figure 9: Contributions to the largest 
luster size as in Figure

8, for the modi�ed and regular shear algorithms for γ̇ = 0.06.

Red squares: modi�ed shear algorithm; bla
k squares: regular

shear algorithm (both for γ̇ = 0.06). Results are 
ompared

to those for the regular shear algorithm in the absen
e of

shear, shown by the bla
k 
ir
les. (a): Largest 
luster size

Nc. (b): Contribution of single spin �ips (i.e. spin �ips where

∆Nc = ±1) to Nc. (
) Contribution of 
oales
en
e events

(i.e. spin �ips where ∆Nc > 1) to Nc. (d) Contribution of

breakup events (i.e. spin �ips where ∆Nc < −1) to Nc. Note

the di�erent s
ales on the Nc axis.


lusters, as illustrated in Figure 6, may still o

ur, how-

ever, as may events where the largest 
luster is broken

up by the shear and subsequently re-
oales
es. This type

of modi�ed shear algorithm might also be useful for in-

vestigating the e�e
ts of 
oales
en
e for more 
omplex

systems with long-range intera
tions or o�-latti
e par-

ti
les: however, in these 
ases it would be ne
essary to

equilibrate the whole bath after every shear step (or from

time to time in the 
ase of 
ontinuous shear). If the nu
le-

ation me
hanism pro
eeds via the 
oales
en
e of multiple

large 
lusters (at large supersaturation), this approa
h is

unlikely to be useful. However, our simulations are at

moderate supersaturation so that we believe nu
leation

o

urs via the growth of a single large 
luster.

Figure 9 shows the 
ontributions to 
luster growth of

single spin �ips, 
oales
en
e and breakup (as in Figure 8),

for the modi�ed shear algorithm, 
ompared to the regu-

lar algorithm, for γ̇ = 0.06 (moderate shear). Transition

paths were extra
ted from a FFS 
al
ulations: for the

modi�ed algorithm, we used 32 interfa
es and λB = 805,
as the algorithm is 
omputationally expensive. We veri-

�ed that this 
hange of FFS parameters has no e�e
t on

the 
omputed rate 
onstant, sin
e by λ = 805 the paths

are 
ompletely 
ommitted to nu
leation.

As expe
ted, single spin �ip growth is enhan
ed by

shear for the modi�ed algorithm in the same way as for

the regular algorithm (in Figure 9b, the data for the mod-

i�ed algorithm with γ̇ = 0.06 overly those for the regular

algorithm with γ̇ = 0.06). Turning to Figure 9
, we see

that the 
oales
en
e 
ontribution is signi�
antly redu
ed

for the modi�ed algorithm (red squares) 
ompared to the

regular algorithm (bla
k squares). However, some shear

enhan
ement of 
oales
en
e still remains in the modi-

�ed algorithm, sin
e the results for the modi�ed algo-

rithm with γ̇ = 0.06 (red squares) do not 
oin
ide with

those for the regular algorithm in the absen
e of shear

(bla
k 
ir
les). We spe
ulate that these remaining 
oa-

les
en
e events involve 
lusters breaking up and then re-


oales
ing (these events are not suppressed by our mod-

i�ed algorithm). Another possibility may be that the

shear 
hanges the largest 
luster in su
h a way that it

be
omes more prone to atta
hing other 
lusters, even in

an equilibrium bath. Figure 9d shows the 
ontribution

of 
luster breakup. Cluster breakup is also partially re-

du
ed in the modi�ed algorithm 
ompared to the regular

algorithm. We expe
t the largest 
luster to be stret
hed

by the shear in the same way for both algorithms - so

we might expe
t the 
ontribution of 
luster breakup to

be the same for both algorithms. However, some 
oales-


en
e events result immediately in breakup, if the in
om-

ing small 
luster is not well atta
hed to the largest 
lus-

ter. Suppressing these 
oales
en
e events in our modi�ed

algorithm may therefore also de
rease the rate of breakup

events.
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Figure 10: I versus γ̇ for h = 0.05kBT , for �regular� shear

(
ir
les) and the modi�ed shear algorithm (squares). The

�regular� shear results are the same as in Figure 1.

Figure 10 shows the nu
leation rate I as a fun
tion of

the shear rate γ̇ for the modi�ed algorithm, as well as the

original results from Figure 1. The modi�ed algorithm

gives the same qualitative behaviour for I(γ̇), but the

nu
leation rate is redu
ed by a fa
tor whi
h in
reases

with the shear rate. These results suggest that shear-

indu
ed intera
tions between the growing 
luster and the

surrounding sheared �bath� of spins play a signi�
ant role

in enhan
ing nu
leation for shear rates γ̇ > 0.03.
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VIII. ANALYSIS OF THE TRANSITION STATE

ENSEMBLE

To further test the role of 
luster 
oales
en
e in the

nu
leation me
hanism, we have analysed the 
ommittor

fun
tion PB(x). This is the probability that a traje
-

tory initiated from a 
on�guration x will arrive in the

B state before the A state. Surfa
es in 
on�gurational

spa
e on whi
h PB takes a �xed value are known as the

iso
ommittor surfa
es. In parti
ular, the transition state

surfa
e has PB = 0.5. It is important to be 
lear about

whi
h 
on�gurations x we use to de�ne the iso
ommit-

tor surfa
es. Be
ause our system is driven by shear and

its dynami
s do not obey detailed balan
e, the path en-

sembles for the forward and reverse transitions need not

lie in the same region of 
on�gurational spa
e, so that

the transition state surfa
es for the forward and reverse

transitions need not be the same for a nonequilibrium

problem [1℄. Even for 
ases where detailed balan
e is

obeyed, it is important to de�ne whether the iso
om-

mittor surfa
e is 
omputed using 
on�gurations from the

path ensemble or using Boltzmann-weighted 
on�gura-

tions sampled from the entire phase spa
e. We will study

here the transition state surfa
e for the forward paths:

i.e. we will analyse the 
olle
tion of 
on�gurations in

the forward path ensemble with PB = 0.5. These 
on-

�gurations are members of the transition state ensemble

(TSE) for the forward transition. We will 
arry out this

analysis for three di�erent shear rates γ̇ = 0.0, γ̇ = 0.06
and γ̇ = 0.12. The TSE 
on�gurations were extra
ted

from the transition paths as des
ribed in Appendix B.

Committor analysis 
an be used to test whether a 
ho-

sen order parameter µ is important in the transition

me
hanism, by 
omputing the 
orrelation between the

value of µ and the 
ommittor value, for 
on�gurations

in the transition paths. If µ is found to be strongly 
or-

related with the 
ommittor, then it is likely that this

order parameter 
aptures (at least some of) the essential

physi
s underlying the transition. For this nu
leation

problem, we know that the largest 
luster size Nc is an

order parameter that 
ouples strongly to the 
ommittor -

large 
lusters have a greater probability of 
ontinuing to

grow than small 
lusters. In Classi
al Nu
leation The-

ory, it is assumed that Nc is the only important order

parameter. However, in the presen
e of shear, other or-

der parameters, whi
h 
ouple to the shear, must also be

important. Sin
e we have postulated that 
luster 
oales-


en
e plays an important role in the nu
leation me
ha-

nism in the presen
e of shear, we seek an order parameter

µ that is 
oupled to 
oales
en
e.

Figure 11 illustrates one su
h order parameter: the lo-


al density of up spins surrounding the largest 
luster.

The 
oales
en
e me
hanism illustrated in Figure 7 is ex-

pe
ted to depend on the density of up spins in the regions

to the right and left of the 
luster, but not in the regions

dire
tly above and below. We therefore de�ne lo
al den-

sities ρx and ρy as the density of up spins surrounding

the largest 
luster, lo
ated a distan
e |x| ≤ ξ or |y| ≤ ξ

(a)

ξ

(b)

ξ

Figure 11: Order parameters for lo
al density of �up� spins:

ρx is the density of �up� spins, not in the largest 
luster, in

the shaded region in panel (a), while ρy is the density of �up�

spins, not in the largest 
luster, in the shaded region in panel

(b).

from the edge of the largest 
luster respe
tively, where ξ
is a 
uto� distan
e. These regions are shown s
hemati-


ally in Figure 11a and b. If shear-indu
ed 
oales
en
e

is indeed important in the nu
leation me
hanism, we ex-

pe
t ρx but not ρy to be 
orrelated with the 
ommittor

in the presen
e of shear. Neither ρx nor ρy is expe
t to


orrelate with the 
ommittor in the absen
e of shear.

To test whether ρx and ρy are 
orrelated with the


ommittor, we extra
t TSE 
on�gurations (whi
h have

PB = 0.5) from our transition paths, and look for nega-

tive 
orrelation between ρx or ρy and the largest 
luster

size Nc for these 
on�gurations. We know that Nc is an

important order parameter for this transition. If another

order parameter µ is also important then we would ex-

pe
t both Nc and µ to determine the 
ommittor value.

Spe
i�
ally, TSE 
on�gurations 
an a
hieve PB = 0.5 by

having a large value of Nc but only a small value of µ,
or alternatively a small value of Nc may be 
ompensated

by a large value of µ. This implies that if µ is positively


orrelated with the 
ommittor, then for the TSE 
on�g-

urations, µ should be negatively 
orrelated with Nc.

Figure 12 tests whether this negative 
orrelation exists.

The main panels show s
atter plots of ρx versus Nc for


on�gurations in the TSE (ea
h 
on�guration is repre-

sented by one dot), for ξ = 5 latti
e sites. In the absen
e

of shear (γ̇ = 0.0), there is no signi�
ant 
orrelation be-

tween ρx and Nc, but signi�
ant negative 
orrelation is

observed for γ̇ = 0.06 and γ̇ = 0.12. The 
orrelation 
oef-
�
ient (�r-value�) is larger for γ̇ = 0.12 than for γ̇ = 0.06,
suggesting that the importan
e of 
oales
en
e in
reases

with shear rate. The insets in Figure 12 show the same

s
atter plots for ρy. No signi�
ant 
orrelation is present

in the absen
e of shear (a) or when γ̇ = 0.06 (b). This

supports our hypothesis that lo
al density in the x but

not the y dire
tion is important in the presen
e of shear.

For the highest shear rate, γ̇ = 0.12, we do observe sig-

ni�
ant negative 
orrelation between ρy and Nc, but the

magnitude of the 
orrelation 
oe�
ient is mu
h less for ρy

than for ρx. Taken together, these results suggest that

the shear-indu
ed 
oales
en
e me
hanism illustrated in

Figures 6 and 7 does 
apture some of the essential physi
s



9

(a)

100 200 300 400
N

c

0

0.05

0.1
ρ x 100 400N

c

0.1

ρ y

-0.04 < r < 0.09

-0.1 < r < 0.02

(b)

100 200 300 400
N

c

0

0.05

0.1

ρ x 100 400N
c

0.1

ρ y

-0.09 < r < 0.01

-0.26 < r < -0.16

(
)

100 200 300 400
N

c

0

0.05

0.1

ρ x 100 400N
c

0.1

ρ y

-0.27 < r < -0.18

-0.51 < r < -0.43

Figure 12: S
atter plots of ρx (main panel) or ρy (inset) versus

size of largest 
luster Nc for TSE 
on�gurations (de�ned as


on�gurations in transition paths with PB = 0.5), for (a):

γ̇ = 0.0, (b): γ̇ = 0.06 and (
): γ̇ = 0.12. Order parameters

ρx and ρy were de�ned as above with ξ = 5 latti
e sites. 95%


on�den
e intervals for the 
orrelation 
oe�
ient (�r value�)

between ρ and Nc are given in ea
h panel [50℄.

of the nu
leation me
hanism.

Sin
e we believe that shear also enhan
es �single spin

�ip� 
luster growth, we would like to repeat the above

analysis for an order parameter that measures the ten-

den
y of the 
luster to grow. However, this has proved

di�
ult. Order parameters based on measuring the num-

ber of kinks in the perimeter of the largest 
luster tend to


ovary with the size of the largest 
luster, so that s
at-

ter plots of µ versus Nc are not an obje
tive measure.

These order parameters are also a�e
ted by the shape

of the 
luster, whi
h is a�e
ted by the shear. Attempts

to measure dire
tly the propensity of the 
luster to grow

by single spin �ips failed to produ
e signi�
ant negative


orrelation, possibly be
ause this propensity �u
tuates

greatly during 
luster growth.

IX. DISCUSSION

In this paper, we have used Forward Flux Sampling

(FFS) to 
al
ulate rate 
onstants and transition paths

for homogeneous nu
leation in a sheared two dimensional

Ising model. Our results show a striking nonmonotoni


dependen
e of the nu
leation rate I on the shear rate γ̇.
We have investigated the physi
al me
hanisms underly-

ing this behaviour by analysing transition paths and the

transition state ensemble, as well as by 
omparison to

several modi�ed shear algorithms. Our 
on
lusions are

that the observed de
rease in I(γ̇) for large γ̇ is due to

shear-mediated breakup of the growing 
luster, while the

in
rease in I(γ̇) for small γ̇ is due to shear-indu
ed 
luster


oales
en
e as well as to shear-enhan
ed �single spin �ip�

growth of the largest 
luster. The 
ontributions of shear-

enhan
ed 
luster 
oales
en
e and single spin �ip growth

appear to be of the same order of magnitude.

Our analysis has been strongly in�uen
ed by work on

(quasi-)equilibrium systems, in whi
h the goal is often

to identify the �rea
tion 
oordinate�. This is the 
olle
-

tive 
oordinate whi
h most strongly 
orrelates with the


ommittor for the transition. If the true rea
tion 
oordi-

nate 
ould be identi�ed, it is believed that the transition


ould be 
oarse-grained into a one-dimensional di�usion

problem, over a free energy barrier in the rea
tion 
o-

ordinate, in the manner of Classi
al Nu
leation Theory.

Several methods have been proposed for identifying the

optimal rea
tion 
oordinate [34, 51, 52℄. We were mo-

tivated by this approa
h in our attempts to �nd order

parameters that 
orrelate negatively with Nc in Se
tion

V. However, it is not 
lear whether the rea
tion 
oordi-

nate is su
h a useful 
on
ept for driven systems as it is

for equilibrium systems. As dis
ussed in se
tion VIII, the

iso
ommittor surfa
es for the forward and ba
kward tran-

sitions are not ne
essarily the same for driven systems, so

the rea
tion 
oordinates may be di�erent for the forward

and ba
kward pro
esses. Moreover, the rea
tion 
oor-

dinate is usually assumed to be a fun
tion only of the

spatial 
oordinates of the system - whereas in systems

that are not in lo
al equilibrium, dynami
al 
oordinates

(momenta) may also be important. Even if a 
olle
tive


oordinate whi
h 
orrelated pre
isely with the 
ommittor


ould be found, it is not 
lear whether the 
omplex dy-

nami
s of the driven system 
ould then be 
oarse-grained

into a one-dimensional model. Our preliminary investi-

gations suggest that it may be possible to 
onstru
t a

one-dimensional �CNT-like� model for Ising nu
leation

under shear, along the lines of a toy model proposed by

Cerdà et al [9, 53℄.

The two dimensional Ising model studied in this pa-

per is an idealised system, and the algorithm used here

to apply shear is far from realisti
. In parti
ular, our

dynami
s in
ludes no spin transport and our shear algo-

rithm imposes a linear �velo
ity gradient� on the system.

In experimental systems, mass transport, hydrodynami


e�e
ts, et
, undoubtedly play a role. E�e
ts of mass

transport 
ould be in
luded using an Ising model with

Kawasaki dynami
s [45℄ instead of Metropolis spin �ips

as used here. This would require some reservoir of up

spins to be provided. In the absen
e of driving, the 
hoi
e

of dynami
al update rule has very signi�
ant e�e
ts on

system behaviour [54℄: a 
omparison between Metropolis

and Kawasaki dynami
s for nu
leation under shear would

be an interesting topi
 for further work. Despite its sim-

pli
ity, the Ising model has made important 
ontributions

to the understanding of nu
leation phenomena in equi-

librium systems, and is likely to yield important insights

also for nonequilibrium systems. Moreover, the me
ha-

nisms identi�ed here - shear-indu
ed 
luster breakup, en-

han
ed 
luster growth and 
luster 
oales
en
e - are likely

to play a signi�
ant role in experimental nu
leation under

shear. The dis
reteness of our model may be a 
ause for
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on
ern: for example, the �kink� me
hanism for shear-

enhan
ed single spin �ip growth illustrated in Figure 5)

is a dis
rete phenomenon. However, our results show

that 
luster 
oales
en
e is of approximately equal impor-

tan
e, and, in any 
ase, preliminary results indi
ate that

the observed qualitative behaviour is not dependent on

the size of the largest 
luster [53℄. We are en
ouraged by

re
ent two dimensional Brownian Dynami
s simulations

of 
harge stabilised and attra
tive 
olloids, in whi
h simi-

lar nonmonotoni
 behaviour of the 
rystal nu
leation rate

was observed [9℄, although the underlying physi
al me
h-

anisms were postulated to be somewhat di�erent. Future

work will investigate the role of transport pro
esses for

nu
leation under shear in simple model systems and ex-

tend our work to more 
omplex models.
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Appendix A: THE SHEAR ALGORITHM

Here, we des
ribe the algorithm used to apply shear

to the Ising system. The algorithm is similar to that of

Cirillo et al [47℄ but rows are shifted by only one latti
e

site. The algorithm required the parameters Ms (number

of attempted row shifts per row per MC 
y
le) and Ps

(probability of a row shift happening in ea
h attempt)

to be assigned, for a given shear rate γ̇. This is done as
follows: if γ̇ ≤ 1, Ms = 1 and Ps = γ̇. If γ̇ > 1, then Ms

and Ps are allo
ated su
h that Ms is the smallest integer

value su
h that MsPs = γ̇ and 0 ≤ Ps ≤ 1. Although this
is the strategy used to assign Ms and Ps in this paper,

we have veri�ed that our results do not depend on the


hoi
e of Ms and Ps for a given γ̇.

We then simulate the system using the usual Metropo-

lis Monte Carlo algorithm, ex
ept that after ea
h MC


y
le, we 
arry out Ms ×L attempts to shear the system

by one latti
e site. Ea
h attempt 
onsists of:

(1) 
hoose a random number 0 ≤ r ≤ 1
(2) If r ≤ Ps, go on to (3)

(3) 
hoose a row jc at random (using a se
ond random

number)

(4) for all spins with y 
o-ordinate j > jc, 
arry out the

x 
o-ordinate transformation i → i + 1 - taking proper

a

ount of periodi
 boundary 
onditions

(5) update the stored information on y-dire
tion periodi


boundary 
onditions, as detailed below

A B C D E F

A B C D E F

A B C D E F

A B C D E F

A B C D E F

A B C D E F

A B C D E F

A B C D E F

F A B C D E

F A B C D E

F A B C D E

F A B C D E

A B C D E F

A B C D E F

A B C D E F

A B C D E F

Figure 13: S
hemati
 illustration of a row shift in the shear-

ing algorithm. Columns are labelled by letters. The square

simulation box is shown �anked by the bottom and top rows

of the neighbouring boxes in the up and down dire
tion in the

periodi
 array (shown in grey). The small arrows indi
ate the

neighbours of ea
h latti
e site in the top and bottom rows of

the box in the up and down dire
tions. A shear step results

in a shift of all rows in the top half of the box by one latti
e

site. This results in a 
hange of identity of the neighbours

of the top and bottom rows of the latti
e, as shown by the

slanting arrows.

In the absen
e of shear, we apply periodi
 boundary


onditions (PBC) in the x and y dire
tions. In the pres-

en
e of shear, PBC apply in exa
tly the same way in

the x dire
tion, but 
are is required in the y dire
tion.

As illustrated in Figure 13, a shear step results in a

displa
ement of the identity of the �up� neighbours of

the top row and the �down� neighbours of the bottom

row. Therefore, in addition to storing the spin vari-

ables σ at ea
h latti
e site, for every 
on�guration, we

also store two integers, gup and gdown. The identity of

the �up� neighbour of the spin at position [i; L] (where
rows are numbered 1 → L) is [i + gup − nL; 1], while
the identity of the �down� neighbour of the spin at po-

sition [i; 1] is [i + gdown − mL; L]. The integers n and

m are 
hosen to ensure that 1 ≤ i + gup − nL ≤ L and

1 ≤ i + gdown − mL ≤ L. Ea
h time a shear step is 
ar-

ried out, gup and gdown are updated by gup → gup − 1
and gdown → gdown + 1. It is essential when 
arrying out

the FFS simulations and when re
onstru
ting the tran-

sition paths from the FFS sampling that gup and gdown

are stored for ea
h 
on�guration.

Appendix B: SAMPLING THE TRANSITION

STATE ENSEMBLE

To obtain 
on�gurations from the transition path en-

semble with PB = 0.5 (TSE 
on�gurations), we �rst re-

generate the transition paths from the FFS simulation, as

des
ribed in se
tion II. Having regenerated a transition

path, we then �re 16 trial runs from every 10th 
on�gu-

ration along this path, and monitor the number of trials
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N
(1)
s that rea
h B before A. If 7 ≤ N

(1)
s ≤ 9, we then

�re a further 100 trial runs from this 
on�guration, and

monitor the number trials N
(2)
s that rea
h B rather than

A. If 40 ≤ N
(2)
s ≤ 50, we 
onsider this 
on�guration a

member of the PB = 0.5 ensemble. This pro
edure pro-

du
es a 
olle
tion of 
on�gurations with a range of PB

values around the desired value of 0.5. The parameters

of the method 
an be adjusted to balan
e 
omputational

expense with a

ura
y. This approa
h is slightly di�er-

ent from that of Pan and Chandler [33℄, who in
lude both

N
(1)
s and N

(2)
s in the �nal 
omputed value of PB .
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