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Chapter 1. Introduction 

1.1 An overview 

When R. A. Bagnold (1896-1990), officer in the British Army Royal Engineers, 
crossed the Libyan Desert in 1930 with only 3 Model A Ford cars, while on leave 
from his post in Egypt, his expedition was probably the first to explore what is one 
of the largest deserts in the world - about the size and shape of the Indian subconti­
nent. He found an alien landscape. Where in more temperate and accessible deserts 
the landscape is effected by moisture, vegetation and the presence of animals and 
men, one finds in the interior of the great deserts only wind and sand. In temperate 
deserts the sand hills are often chaotic and disordered. Instead, in the interior of the 
Libyan Desert, Bagnold found that [1]: 

... the observer never fails to be amazed at a simplicity of form, an 
exactitude of repetition and geometric order unknown in nature on a 
scale larger than that of crystalline structure. In places vast accumula­
tions of sand weighing millions of tons move inexorably, in regular for­
mation, over the surface of the country, growing, retaining their shape, 
even breeding, in a manner which, by its grotesque imitation of life, is 
vaguely disturbing to an imaginative mind. Elsewhere the dunes are cut 
to another pattern - lined up in parallel ranges, peak following peak in 
regular succession like the teeth of a monstrous saw for score, even hun­
dreds of miles, without a break and without a change of direction, over 
a landscape so flat that their formation cannot be influenced by any local 
geographical features . Or again we find smaller forms, rare among the 
coastal sand hills, consisting of rows of coarse-grained ridges even more 
regular than the dunes. Over large areas of accumulated sand the loose, 
dry, uncemented grains are so firmly packed that a loaded lorry driven 
across the surface makes tracks less than an inch in depth. Then, with­
out the slightest visual indication of a change, the substance only a few 
inches ahead is found to be a dry quicksand through which no vehicle 
can force his way. At times, especially on a still evening after a windy 
day, the dunes emit, suddenly, spontaneously, and for many minutes, a 
low-pitched sound so penetrating that normal speech can be heard only 
with difficulty. 

That the regular patterns of dunes described by Bagnold are not restricted to the 
Libyan Desert alone, is shown in Fig. 1.1, where satellite images of dune fields in 
Namibia and even on Mars exhibit similar regular patterns. During his expeditions, 
many of which were undertaken in his free time or on short leaves, Bagnold became 
fascinated by the striking symmetry and geometrical regularity of the desert dunes. 
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1.1. An overview 

Figure 1.1: Satellite images of dune fields. (a) Sand dunes of Sossusvlei in the Namib desert, 

Namibia. The image was obtained by Surrey Satellite Technologies. The width of the figure 
corresponds to around 10 km. (b) Sand dunes at the edge of the Proctor Crate!; Mars. Smaller 

ridges are visible between the dunes as white speckles. The image was obtained by the Mars 
Global Surveyor Orbiter. The width of the figure corresponds to around 5 km. 

When he retired from the army and returned to England in 1935, he did numerous 
experiments to understand dune formation, both in the desert and in the laboratory, 
where he used wind tunnels to understand the interaction between sand and air. The 
regularity of dune fields had convinced him that dune formation was governed by 
simple laws. He postulated that once the basic laws of interaction between air and 
a single grain of sand were understood, application of these laws to wind blowing 
over a vast expanse of sand would be enough to explain the shape of dunes and the 
regular arrays of dune fields, without the need to invoke more complicated geolog­
ical factors. Bagnold remarked that in this sense" ... the subject of sand movement 
lies far more in the realm of physics than of geomorphology." [1] 
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Chapter 1. Introduction 

Bagnold abandoned his research for military service in the Second World War, 
during which he used his experience in desert exploration to found the Long Range 
Desert Group, which was able to penetrate the Libyan Desert and, among other 
things, managed almost single-handedly to prevent the Italian army in North-Africa 
from seizing the Suez canal [2]. After the Second World War, Bagnold returned to 
his research but, for the lack of easily accessible deserts in England, instead turned 
to the transport of grains not by air but by water, studying sediment transportation 
in rivers and beaches. Of dune formation, Bagnold apologizes that" ... the subject is 
very much a borderline one ... " in that it involves " ... a large number of widely dif­
ferent fields of knowledge - geophysics, meteorology, aerodynamics, hydraulics, ge­
ology, geomorphology, &c." [1] It is precisely this area of research- understanding 
the complex collective behavior of granular particles, arising from simple interac­
tions between individual grains, that is nowadays the focus of the study of granular 
materials. 

The science of granular materials studies grains of sand, powders, nuts or metal 
beads that are piled up together, avalanched down slopes, carried by air or water, 
or mixed by shaking them violently. Even though it was pioneered by Bagnold in 
the context of dune formation, research on granular materials is not restricted to 
deserts alone. A variety of geophysical processes, such as avalanches, mud slides 
or quicksand involve large number of macroscopic grains. In the industrial world 
granular materials are stored in silos and are mixed and transported by the flow of 
gas and liquids. As we will see below, in each of these applications the collective 
behavior of the grains can be surprising and often very complicated. 

The physics of dune formation is particularly difficult and is still poorly under­
stood, yet it contains many of the ingredients that has attracted the attention of 
physicists to the area of granular materials . One of the central observations that 
Bagnold made in the context of dune formation is that sand can behave like the 
different phases of molecular matter. This is obvious for everybody who has played 
with sand on the beach. The natural state of sand on a beach is much like a solid: 
a pile of sand will remain stable once erected. On the other hand, it is possible 
to pour sand out of one's hand much like a fluid . Sand can switch from solid to 
the liquid state and back. When, for instance, the slope of a sandpile becomes too 
steep, the top layer of the slope will enter a liquid state and flow down the pile as an 
avalanche. Sand only enters the liquid state when energy is inserted, for instance in 
the case of an avalanche by the force of gravity. One of the key insights of Bagnold 
was that also strong wind can fluidize the top layer of desert sands and that it is 
this fluid-like layer that contributes to the transport of sand and consequently to the 
formation of dunes. 
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1.2. Granular solids 

Physicists have developed a large toolset to describe molecular solids and fluids. 
One of the main themes in research on granular materials is to what extent this 
toolset can be used to describe the behavior of large numbers of macroscopic grains 
in the solid-like and fluid-like states [3] . As I will describe in more detail below, 
many of the most interesting phenomena - where the deviations from the behavior 
of molecular matter are largest- occur when the grains can switch from solid-like 
to liquid-like behavior and back. This is partly why it has remained difficult to 
understand where avalanches will occur or under what precise conditions a rain­
soaked mountain slope will turn into a devastating mud slide. 

Another theme is suggested by the fact that granular materials consist of large 
numbers of approximately identical particles. This invites a description of granular 
materials using tools from statistical physics. This approach is most often used on 
the third phase of granular materials, namely granular gases: dilute granular fluids, 
where the grains interact not through rubbing and sliding as in the case of dense 
granular liquids, but predominantly through two-body collisions. The main potential 
difficulty in describing granular gases using statistical physics is that a granular gas 
consists of macroscopic particles that dissipate energy upon collision, in contrast 
to molecular gases where the collisions are elastic and the system is in thermal 
equilibrium. As a consequence, it is a priori not clear whether the properties of 
granular gases can be described by tools from equilibrium statistical mechanics. This 
is the focus of the research in Chapters 2 and 3. 

Many of the complicated phenomena observed in the solid and the liquid state 
of granular materials have parallels in the granular gases. In fact, granular gases are 
often studied as simple model systems for understanding the properties of granular 
materials in general. Therefore, I will first give a more detailed overview of the 
research done on granular solids, granular fluids and granular gases before briefly 
introducing my research on granular gases at the end of this chapter. 

1.2 Granular solids 

A pile of sand or grains in a silo are examples of what are called granular solids. 
Surprisingly enough, the behavior of a silo full of grains is strikingly different from 
that of a silo full of an equivalent mass of a simple molecular solid, such as plastic. 
This difference is due to two related properties of granular solids: the random pack­
ing of the granular particles that constitute the solid and the way the weight of the 
solid is distributed among them. 

When one fills a container with granular particles like ball bearings, and mea-
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Chapter 1. Introduction 

Figure 1.2: Force chains in granular materials (a) Force chains in three-dimensional collection 

of glass beads. Force is exerted by a piston from the top . Stress in the beads induces birefringence, 

so that beads that carry a load appear bright when imaged through crossed circular polarizers. 

(b) Force chains in a simulation of a two-dimensional layer of beads. The black lines indicate a 

force between particles. The thickness of the lines indicates the magnitude of the force. Grey lines 

indicate particles that do not exert force on each othe1: Force is exerted from the top. (c) Force 

chains in a two-dimensional layer of disks. The beads are isotropically compressed and parts of 

the disks that cany a load appear bright due to stress-induced birefringence. (d) Detail of (c). 

Fig. (a) is taken from Liu et al. [4], (b) is taken from Head et al. [5] and (c) and (d) are taken 

from Majmudar et al. [6]. 

sures the fraction of volume occupied by the ball bearings, one finds a volume frac­
tion of around ¢ ~ 0.6, depending on the procedure of filling. This packing is re­
ferred to as random loose packing. If one shakes the container, the packing fraction 
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1.2. Granular solids 

goes up and the grains will ultimately settle in a denser configuration with volume 
fraction cj; ~ 0.64, called random close packing. This is considerably less dense than 
the most efficient packing, ordered close packing, with a packing fraction cj; = 0.74. 
Ordered close packing corresponds to the way oranges are stacked on the market, 
with the subsequent layer of oranges placed between the oranges of the previous 
layer. In contrast, random packings are disordered and one can find voids between 
the particles almost as large as the particles themselves. 

How granular materials are compacted is studied by preparing the granular solid 
in a random loose packed state and perturbing the system by tapping it. As the 
system is tapped repeatedly, the grains will compact and the volume fraction will 
increase towards the random close packed limit. Similar behavior can be found in 
the kitchen, for instance when filling a jar with rice. When the jar is apparently filled 
to the top, shaking the jar will often compact the rice considerably, often leaving 
centimeters for even more rice. Experiments find that granular materials relax to 
the random close packed state logarithmically slow. Even after thousands of taps, 
a layer of grains might undergo significant compaction before eventually reaching 
a steady state. The reason for this is that most of the voids between particles are 
large, but not quite large enough to fit a particle. As a consequence, many particles 
have to be displaced in order for a particle to fit into one of the voids. The amount 
of particles to be displaced increases rapidly with increasing volume fraction so that 
many more taps are required before such a displacement occurs. These properties 
of granular solids in the random close packed state are reminiscent of the dynamics 
of glasses. 

The disordered packing is directly responsible for the different way that forces 
are distributed in granular solids. For a tall block of a normal solid the pressure at 
the bottom of the block increases with the height of the block. In contrast, when 
a silo is filled with grains the pressure at the bottom will reach a maximum value 
independent of the amount of grain in the silo. This is what makes an hour glass 
filled with sand a better timekeeping device than an hour glass filled with water. 
In the case of granular particles, the friction between the grains and the sidewalls 
of the silo support the extra weight. Furthermore, it is found that the forces on 
the bottom and the walls of a silo are far from uniform. Experiments show that in 
granular solids a small fraction of the particles often carry most of the weight of the 
other particles. 

The force distributions within a granular material can be visualized by using 
beads made out of photo-elastic materials. Photo-elastic materials change the circu­
lar polarization of light depending on the stress in the material. When the system is 
imaged through crossed circular polarizers beads under stress appear bright. Exam­
ples of typical force distributions for both experiments and simulations are shown in 
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Chapter 1. Introduction 

Fig. 1.2. It is clear that forces are not distributed homogeneously, but are organized 
along chains of particles. These so-called force chains, formed by only a fraction of 
the particles in the pile, carry the bulk of the load. Some of the other particles hardly 
carry any weight at all. 

The distribution of forces in the pile can be quantified, for instance by placing 
a piece of carbon paper on the bottom of the pile and measuring the area of the 
marks left by the beads. As it turns out, this distribution of forces f is well described 
by P(J) = C exp( - f / j 0 ). This means that very large forces can occur more fre­
quently than expected for a Gaussian distribution with the same mean force . Such a 
force distribution, including force chains, is predicted by a simple two-dimensional 
model, where each grain distributes its weight randomly over the two grains below 
it [ 4] . The occurrence of force chains in granular materials means that locally the 
force on the walls of the silo can be much larger than anticipated by a conventional 
continuum description of solids. In the past there have been several cases of silo 
collapse during unloading of the silos, that might have been due to the existence of 
force chains. 

1.3 Jamming and granular solid-liquid transitions 

A granular material may flow like a liquid when energy is provided, for instance in 
the form of gravity when grains of sand flow down the slope of a dune. In strik­
ing contrast to ordinary fluids, granular materials exhibit sudden and spontaneous 
transitions between the fluid and the solid state. 

The transition from the solid to the liquid state can be readily observed in a pile 
of sand. A stable pile of sand retains its slope against the force of gravity, just like 
an ordinary solid. Yet, if the pile is tilted or vibrated, the slope will become unstable 
and the upper layer will flow. Such solid-to-liquid transitions in granular materials 
are better known as avalanches. On the other hand, a flowing granular material 
may suddenly and without apparent reason freeze in its current configuration, a 
phenomenon known as jamming. It is a common observation that salt, when poured 
from a saltshaker, sometimes suddenly stops flowing. Only after shaking the salt­
shaker the flow of salt will resume. Similarly, but on a much more dramatic level, 
jamming can occur in the flow of grains from a silo or in the transport of powder 
or grains through a conduit. In such cases, the most sophisticated solution currently 
often consists of pounding the conduits until the jam suddenly disappears. 

The nature of these transitions is closely related to the occurrence of force chains 
within granular materials. In the case of avalanches, the transition is initiated by 
the break-up of force chains due to changes in the configuration of the grains in 
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1.3. Jamming and granular solid-liquid transitions 

(a) • (b) 

-
temperature 
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unjammed 
granular flow 

jammed 
granular solid 

;~--------------------~ 
;;';;;; stress 

1/density 
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Figure 1.3: (a) Arching in granular flow from a hopper. The particles that comprise the arch are 
shaded and carry most of the load of the grains. (b) Jamming in a sheared granular material. 
The stress is carried by the force chains indicated by the shaded particles. (c) A speculative 

jamming phase diagram. Jamming occurs in the shaded area near the origin, for high density 
and low temperature and stress. The transition between the jammed and the unjammed region 

at zero temperature and zero stress occurs at point J. 

the granular solid. In the case of jamming, on the other hand, a stable network of 
force chains develops suddenly in a freely flowing granular fluid. It was only re­
cently appreciated that jamming is a general phenomenon, the importance of which 
might extend far beyond granular materials into the physics of colloids, glasses and 
possibly even traffic jams. 

Flowing grains show dilatancy, meaning that a flowing layer will expand due to 
collisions between individual grains. It is because of this property of sand that when 
walking on the beach the sand around your foot appears dry, whereas everywhere 
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else it is wet. Normally, the sand on the beach is settled enough to form a densely 
packed state that doesn't allow water to penetrate. When you push down with your 
feet into the sand, the movement of the sand beneath your feet causes grains in the 
vicinity to dilate, leaving enough room between the grains for the water to drain 
into. As a result a halo of dry sand appears around your foot. This effect also 
illustrates that, in order to move, flowing grains require a larger volume than grains 
at rest. When grains flow in a confined geometry, like a silo or a pipe, locally the 
density can become so high that flow becomes impossible and the system jams. 

When jamming occurs in granular flow, the system develops force chains that 
carry the load. In uniformly flowing grains, such as the grains of salt from the salt­
shaker, the force chains often take the shape of arches. An example of arching is 
shown in Fig. 1.3(a). Such a configuration carries the load of the rest of the grain 
very effectively, just like its architectural counterpart. For a sheared granular fluid 
the force chains in the jammed state take the shape of linear structures spanning 
from one boundary to the other along the principal stress axis, as is shown schemat­
ically in Fig. 1.3(b). 

Such a linear force chain is very successful in supporting a large load along its 
own axis, but cannot support even a small load along another axis. As a conse­
quence, jammed granular materials are fragile, in the sense that they can support 
the shear stresses in the current jammed state, but are very sensitive to minor dis­
turbances in that state [7]. Even a small difference in the configuration of the grains 
or shear in a slightly different direction cannot be sustained by the force chains and 
will cause the grains to flow and reorganize until it jams again. Consequently, in­
troducing some random motions to the grains in the jammed state, for instance by 
shaking it, can bring the system to the unjammed state. 

It has been speculated that the jamming-unjamming transition can be described 
like a conventional phase transition, such as the transition between the solid and the 
liquid phase [8]. A tentative phase diagram is shown in Fig. 1.3(c) and depends on 
the density, the temperature and the stress. For low density the system will consist 
of loose grains that will only interact by infrequent collisions and no jamming will 
occur. For a critical density the grains will have such difficulty moving past each 
other that force chains develop that span the entire sample and the system will jam. 
When the granular flow is arrested it can either be unjammed by imposing some 
random motions to the grains by shaking them, analogous to thermal fluctuations, 
or by increasing the shear on the system. 

Granular materials consist of macroscopic grains that dissipate energy when they 
collide with or rub against each other and energy must be supplied to keep the sys­
tem flowing. Such systems are far from thermal equilibrium and, consequently, it 
is not at all obvious whether jamming can be described as a phase transition. Sur-
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1.4. Granular liquids 

prisingly, recent simulations suggest that this is indeed the case for the jamming 
transition at zero temperature and zero applied stress [9] . In this study, it is deter­
mined for different densities ¢ if the sample is jammed, by measuring whether it can 
support a load or a shear. They find that all configurations of grains have a transition 
from the jammed to the unjammed state at some critical densities ¢c · In all cases, 
the pressure p and the static shear modulus G vanish at the jamming transition as: 

(1.1) 

but with different exponents a p and ac. Such critical behavior is indicative of a 
second order phase transformation and suggests that the system has a critical point 
at the critical density ¢c· The jamming transition is reminiscent of geometric phase 
transitions such as the percolation transition. There is a surprising connection be­
tween random close packing and the critical point at ¢c · For small systems, every 
initial configuration jams at a different density ¢c · However, when the number of 
particles is increased, the critical density converges towards the value for random 
close packing, ¢c ""' 0.64, even though random close packing itself remains a contro­
versial concept due to the lack of a proper definition. 

It is an open question to what extent the jamming transition for granular mate­
rials in the presence of random motions or shear stress also behaves like a proper 
phase transition. At the same time, it is known that a large variety of systems, such 
as foams, colloidal suspensions and glasses show sudden transitions from a fluid­
like to a solid-like state, just like the jamming transition in granular flow. It has 
been proposed that all these transitions could be described by the phase diagram 
shown in Fig. 1.3 (c) [8]. A recent experiment on a suspension of attractive colloidal 
particles supports this idea [10]. In this case, the axes of the phase diagram become 
1/¢, the inverse particle density, k8 T /U, the temperature normalized by the inter­
particle attractive energy U and u, the applied stress. Remarkably, at the transition 
all relevant parameters show critical behavior of the form in Eq. 1.1 and the system 
is well described by a phase diagram like Fig. 1.3(c) . All these observations point to 
a fundamental link between such diverse phenomena as jamming in granular mate­
rials, the glass transition in molecular fluids and gelation in colloidal suspensions, 
which is particularly interesting as the glass transition itself is poorly understood. 

1.4 Granular liquids 

When enough energy is supplied, for instance in the form of shaking, by gravity or by 
air currents, a pile of grains will lose stability and will start to flow. It is tempting to 
think of such granular liquids as ordinary liquids whose molecules are macroscopic 
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Chapter 1. Introduction 

grains. In particular, one could wonder to what extent a granular liquid can be 
described in a coarse-grained way by a set of hydrodynamical equations, similar 
to the Navier-Stokes equations for incompressible molecular fluids. It seems that 
this is unlikely to work. One reason is that the interactions between macroscopic 
grains are complicated and dominated by friction. As a consequence, granular flow 
is dissipative and energy is not conserved. Another reason is that, in contrast to 
molecular liquids, there is no clear separation in length scales, as the size of the 
particles is often comparable to the scale of the dynamics of the granular fluid. 
These differences can lead to behavior that is very different from ordinary liquids. 
For simple shear flow, for instance, most of the flow is restricted to a layer of 5-10 
grains wide called a shear band [11]. Likewise, in an avalanche only a top layer of 
a few particles thick participates in the flow [3]. It is not clear how such behavior 
could be successfully incorporated in a hydrodynamic theory. 

Does this mean that a granular liquid is not at all like a molecular liquid? Sur­
prisingly, experiments suggest rather the opposite. In many cases, the behavior of 
fluidized grains shows striking similarities to that of normal liquids, even though the 
underlying dynamics are often completely different. Below, I will discuss two typi­
cal examples, namely the granular analogs of Rayleigh-Benard convection and the 
Faraday instability. However, the fluid-like behavior observed in granular liquids is 
usually more complicated than that of normal liquids. Often, granular liquids show 
behavior that has not been observed for molecular fluids. Examples such as size 
segregation due to convection rolls and soliton structures in the case of the Faraday 
instability I will discuss below as well. 

A related question is to what extent the random motion of driven grains is anal­
ogous to thermal fluctuations and can be described by an effective granular tem­
perature. This was done, for instance, for the jamming phase diagram in Fig. 1.3. 
Molecular temperature is only properly defined in thermal equilibrium. Since driven 
granular systems dissipate energy, it is not clear whether granular temperature, de­
fined as the mean kinetic energy per particle, is a useful quantity. Surprisingly, 
Rayleigh-Benard convection in granular fluids shows a dependence on the granular 
temperature that is very similar to that seen in molecular liquids, as I will discuss 
below. The general question whether in driven granular materials the granular tem­
perature is a meaningful analog of molecular temperature is especially important 
when describing granular gases and is one of the main subjects of the research in 
Chapters 2 and 3. 

Convection rolls in granular fluids were first observed in the study of the so­
called Brazil-nut effect [13]. When a container with mixed nuts is shaken, the largest 
nuts in the mix (which, apparently, is often the Brazil nut) tend to rise to the sur­
face. Such size segregation occurs readily when granular materials are shaken. For 
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(a) (b) (c) 

Figure 1.4: Schematic diagram of size segregation by convection rolls. (a) Initial configuration 
before tapping. A large bead is inserted in a container filled with smaller beads. The beads in 
the same layer as the large bead are colored to allow their motion to be followed. (b) After a few 
taps the colored beads at the wall have moved to the bottom. (c) After more taps, the colored 
beads in the center have moved to the swface, together with the large bead. At the same time, 
the color beads at the wall have moved further to the bottom. When at the bottom, the colored 
particles move inwards and start to rise again, tracing the outline of the convection roll. The real 
experiment is pe1jormed in a cylindrical container. The figure is adaptedfrom Ref [12] . 

instance, in the industrial processing of powders, shaking is often used to mix differ­
ent types of powders. It has long been known that, counterintuitively, such shaking 
could actually lead to segregation depending on parameters like particle size and 
weight ratio. Originally, it was proposed that segregation occurs as a vibrated gran­
ular layer expands, allowing the smaller particles to fall under a large particle [14]. 
In a somewhat related way, it is speculated that large boulders can rise up through 
the soil in cold areas due to prolonged freeze-thaw cycles, sometimes leading to 
intricate spatial patterns [15]. 

Experiments, however, showed that this picture is at least incomplete [12]. When 
a cylinder filled with glass beads of a fixed size is subjected to a series of single 
vertical shakes, it was found that the beads in the center of the cylinder rise up, 
while those close to the wall move downwards. Beads reaching the bottom of the 
container move inwards and begin to move up in the central region of the tube. 
Beads that reach the surface move towards the wall and then descend towards the 
bottom. The resulting collective motion of the beads is very much like convection in 
a molecular fluid . 
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How this convective flow leads to size segregation is shown schematically in 
Fig. 1.4. In this figure a large bead is inserted at the bottom in the container and 
the trajectories of the large particle and the smaller beads that are initially in the 
same layer are followed as the system is shaken. Because of the convective motion, 
both the large particle and the smaller beads in its direct vicinity rise up and the 
beads closest to the outer wall move down. Crucially, the downwards movement of 
the beads is found to be restricted to a very narrow layer close to the outer wall, 
as is clear from Fig. 1.4(b). Size segregation now occurs because the large bead, 
once having risen to the surface with the smaller beads, is not able to follow the 
convective flow down the narrow outer region and remains trapped at the surface. 
More complicated behavior is also observed. For instance, in the reverse Brazil-nut 

effect, only large and heavy particles move to the surface, while equally large but 
light particles migrate to the bottom [16]. 

In the above experiments, convection is directly related to friction between the 
beads and the sidewalls, as the downward motions of beads near the boundaries 
is only observed to occur when the walls are rough. An obvious question is then 
whether granular convection is an artifact of friction with the boundary and only 
superficially similar to normal convection or whether the parallels run deeper. In 
molecular liquids, thermal convection occurs when a sufficiently large difference in 
temperature exists between the bottom and the top of the liquid. For small tem­
perature differences, the liquid that is heated at the bottom experiences an upward 
force due to buoyancy: This force is balanced by the viscosity of the liquid, resisting 
upward motion, and by thermal diffusion, leveling the temperature gradient. In this 
case no convection occurs and all heat transport occurs by thermal conduction. Only 
for temperature differences higher than a critical value does convective motion set 
in. For large temperature gradients, the flow eventually becomes turbulent. 

When a container with a granular material is shaken vigorously, particles ac­
quire kinetic energy by collisions with the bottom. As these particles collide with 
other particles, some energy is dissipated due to friction between the particles. As a 
consequence, the average amount of kinetic energy per particle decreases towards 
the top surface. When, in analogy to molecular liquids, the mean kinetic energy 
per particle is seen as a temperature, this means that due to the dissipative colli­
sions, a shaken granular liquid will develop a temperature gradient. This difference 
in granular temperature becomes larger if the amount of dissipation per collision is 
increased. It was shown that such a system indeed has a transition to a convective 
regime as the amount of dissipation is increased beyond a critical value [17]. Here, 
the system was enclosed in a container with elastic walls, so that any effect of fric­
tion with the walls is eliminated. Particles received a random kick when they hit the 
bottom of the box, simulating vibrations of the container. Examples of typical single 
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Figure 1.5: Thermal convection in a granular fluid driven at the bottom. (a) A single convection 

roll. Size and direction of the mean particle velocities are indicated by arrows. (b) A double con­

vection roll. (c) The circulation in the container as a function of the amount of dissipation. For 

small dissipation, no circulation occurs. Above a critical amount of dissipation, convection sets 

in and circulation due to a single convection roll is apparent. For higher dissipation, double con­

vection rolls are observed. The circulation grows as the square root of the amount of dissipation, 

indicated by the dashed lines. Figure adapted from Ref [17]. 

and a double convection rolls are shown in Fig. l.S(a) and (b). 

The transition from the conductive to the convective regime can be quantified 
by measuring the amount of mass circulation around the center of the container. 
It is shown in Fig. l.S(c) that for small dissipation, the system has no circulation 
as convection rolls are absent. Above a critical amount of dissipation, the circu­
lation is either positive, corresponding to a clockwise convection roll, or negative, 
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Figure 1.6: Faraday waves obtained by the author with a primitive setup that shakes a container 
in the vertical direction. (a) Faraday waves in water. The standing waves organize in a square 
pattern. (b) Faraday waves in ordinary sand. Also here a square pattern is visible. For sand, both 

square and hexagonal patterns are seen in the container. In both cases, the waves are viewed from 
the side at an inclined angle and shaking occurs at a frequency of around 100 Hz. Photographs 
by R. Koops. 

corresponding to a counter-clockwise convection roll, depending on the initial con­
ditions. For higher dissipation, it is also possible to find both a clockwise and a 
counter-clockwise convection roll in the container, leading to zero net circulation. 
Similar convection roles also occur with periodic boundaries in the horizontal direc­
tion, eliminating the role of sidewalls altogether. This indicates that there is indeed 
a fundamental link between granular convection and thermal convection in liquids 
and that the granular temperature plays a role similar to the molecular temperature 
in this system. For very large dissipation, however, the system does not become tur­
bulent but separates into a dense layer floating on a dilute gas-like layer. This is a 
granular analog of the Leidenfrost effect, where water droplets float on their own 
vapor if water is poured on a hot surface. 

In 1831, Faraday reported that when a fluid layer is oscillated in the vertical 
direction, in his case by drawing a violin bow down the side of square plate covered 
by various liquids, the liquid surface develops a pattern of standing waves, nowadays 
called Faraday waves [18]. In general, when a liquid is vibrated in an open container 
with a frequency f and amplitude A, the surface will remain flat when the amplitude 
stays below a critical value Ac . If the amplitude is increased beyond this value, 
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the flat surface becomes unstable and a pattern of standing waves will appear. An 
example of such a pattern is shown in Fig. 1.6(a). For simple fluids, the standing 
waves usually show a square pattern. For more viscous fluids or fluids that are 
driven in a more complicated way these patterns can consist of lines, hexagons or 
even quasiperiodic structures. The form of these patterns do not depend on the 
shape of the container. Most often, Faraday waves oscillate with frequency f /2, half 
the frequency of the driving cycle, so that hills in one driving cycle become valleys 
in the next. 

Surprisingly, a vertically shaken layer of small grains shows patterns similar to 
Faraday waves, as can be seen in Fig. 1.6(b) and Fig. 1.7. This similarity is all the 
more remarkable when one realizes that the underlying mechanism is very different 
in the two cases. For molecular liquids, Faraday waves are a surface effect and can 
be described in terms of interacting non-linear waves. The granular system, on the 
other hand, consists of individual grains that can be found quite far above the bulk 
of the layer, making it impossible to define a proper surface. This also means that in 
the granular fluid surface tension is absent, whereas in the molecular liquid it needs 
to be taken into account. Also, for molecular liquids all the dynamics is restricted to 
the surface alone and the liquid layer stays in contact with the container throughout 
the driving cycle. In contrast, in granular fluids the Faraday instability only occurs 
when the entire layer loses contact and later collides with the container, as I will 
explain now. 

As the driving frequency and amplitude are varied, the system shows a rich vari­
ety of different standing wave patterns [19]. Some, such as square patterns, striped 
patterns (shown in Fig. 1.7(a)) or hexagonal patterns (shown in Fig. 1.7(b)) are 
similar to the f /2 patterns observed in molecular liquids. Other patterns are not eas­
ily found in normal liquids, like kinks, where the layer shows no surface pattern but 
one part of the container oscillates at the opposite phase of the other part. For larger 
amplitude there are several patterns that oscillate at a frequency f /4, a quarter of 
the driving frequency, and ultimately the system enters a disordered state (shown in 
Fig. 1.7(c)). 

The occurrence of these patterns can be explained in a quantitative way by a 
wonderfully simple model [19] . In this model, the entire layer is treated as a single 
particle on top of an oscillating plate. Because of the many inelastic collisions within 
the layer, one assumes that collisions between layer and the plate are completely 
inelastic, meaning all kinetic energy of the layer is dissipated at the instant that it 
hits the plate. On the other hand, the layer will lose contact with the plate when the 
plate is above its equilibrium position and moving with an acceleration larger than 
g, the acceleration due to gravity. 

When we keep the driving frequency f fixed, but increase the amplitude A slowly, 
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Figure 1. 7: Faraday waves in a layer of 0.15-0.18 mm bronze spheres. The layer is shaken in 

the vertical direction with a frequency of f = 6 7 Hz. Typical patterns are shown for increasing 

amplitude A. (a) f /2 stripes. (b) f /2 hexagons. (c) disordered pattern. The system is viewed 

from above and illuminated in such a way that particles at the top appear bright while particles 

at the bottom appear dark. (d) For some values off and A oscillons appem; localized excitations 

that behave as independent 'particles'. Here, the system is viewed from the side. Figures are 
adapted from Refs. [19] and [20]. 

initially the layer will never detach from the plate. When the amplitude is increased 
beyond a critical value, the layer will detach from the plate for a part of the driving 
cycle. As the amplitude is increased further, something surprising occurs: the oscil­
lation undergoes period-doubling. The layer is no longer detached for a fixed time 
for each driving cycle, but alternates between a short time and a long time. This 
happens because now the layer not only collides with the plate when it is below the 
equilibrium position and moving up, but also briefly when it is above the equilib­
rium position and moving down. Up to this amplitude, the layer in the experiment 
remains flat and one can recognize whether the system is in the period-doubled state 
by hearing the peculiar rattling of the layer against the plate. 

When the amplitude is increased even further, there is a transition back to a 
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state with only a single period, but now the layer is detached from the plate for 
more than one driving cycle, leading to an oscillation with frequency f /2. When 
this happens, it is in principle possible for parts of the layer to oscillate at a different 
phase with respect to each other. Even though initially the system will oscillate as 
a single layer, parts of the layer will move out of phase due to the random nature 
of the collisions of the grains. When this occurs, the layer organizes in squares 
or lines. If the amplitude is increased more, the layer continues to oscillate with 
a frequency f /2, but undergoes again a period doubling-bifurcation similar to the 
one above. In this case, a hexagonal pattern develops. In comparison, molecular 
fluids develop hexagonal patterns of Faraday waves when forced with two, slightly 
different frequencies. In a similar fashion, the simple one-particle model can also 
quantitatively explain for what frequency and amplitude kinks and f /4 patterns 
occur. 

A spectacular phenomenon observed at the boundary between the flat layer and 
the Faraday waves are oscillons, stable localized excitations that are peaks at one 
driving cycle and craters at the next [20]. Several oscillons are visible as peaks in 
Fig. 1. 7(d). These excitations do not arise spontaneously, but appear when the sur­
face layer is perturbed or as remnants of a standing wave pattern. Oscillons are 
reminiscent of solitons, which are stable localized solutions to non-linear equations 
that retain their shape and size upon interaction with each other. Interestingly, soli­
tons are almost never found in dissipative systems, whereas oscillons are a direct 
consequence of the dissipative collisions between individual grains. Very similar ex­
citations are found in highly dissipative molecular liquids, most notably in colloidal 
suspensions [21]. 

As an amusing aside, soliton-like structures also occur elsewhere in granular 
materials, in a way that Bagnold would certainly have enjoyed. Many dune fields 
consist of Barchan sand dunes: dunes that consist of a gentle rise leading to a steep, 
crescent shaped slope. Barchan sand dunes can be seen in Fig. 1.1 (b). When the 
direction of the wind is constant, these dunes retain their shape and move in the 
downwind direction with speeds between 5-50 meter per year. Small dunes move 
much faster than large dunes. This difference between dunes of different size was 
apparently known to Saharan people [22]. They would use dunes as a storage space 
for valuables, burying the goods at the front side and retrieving them after a while at 
the back end. Depending on the size of the dune, goods could be stored this way for 
any period between 5 months and 25 years, depending on the dune size. Recently, 
model calculations have shown that Barchan dunes might behave like solitons [23]: 
in the model, small fast-moving Barchans can pass through larger slow-moving ones, 
while retaining their shape in the process. Due to the slow movement of dunes it 
is difficult to measure this behavior directly. However, small Barchans are often 
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observed at the downwind side of large ones, suggesting that small Barchans can 
overtake larger ones in one way or another. 

The strong parallels between the behavior of granular liquids and molecular liq­
uids can sometimes be unexpected and quite striking. For instance, when I was 
working in the group of Prof. Harry Swinney on the research presented in Chap­
ter 3, others were testing a setup that consisted of a two-dimensional packing of 
cylinders confined between glass plates. In order to create a very loose packing of 
the cylinders, a strong air current was injected at the bottom of the layer. Such 
fluidized beds are often used in industry for the processing of powders and show im­
mensely complicated behavior. The air doesn't rise up uniformly through the layer 
of cylinders but in large air bubbles, that are much large than the diameter of the 
particles. As a consequence, fluidized beds give the impression of a 'boiling' granular 
liquid. These bubbles arise even though granular fluids have no surface tension. 

Normally, bubbles form irregularly throughout the bottom layer. However, when 
a large cylinder was inserted at the bottom, the bubbles appeared in a very regular 
fashion at the surface of the large cylinder, perhaps because its presence disrupts the 
packing of surrounding small cylinders. Overall, the resulting bubbles look surpris­
ingly similar to those rising up in a glass of beer. There exist many more examples 
of such unexpected similarities between the granular and molecular liquids than I 
have room here to discuss. At the same time, a universal hydrodynamic theory un­
derlying the behavior of granular fluids is still lacking and, consequently, a separate 
explanation has to be formulated for each individual case. This makes the study of 
the fundamental properties of granular liquids very interesting for physicists. 

1.5 Granular gases 

Dilute granular liquids are often called granular gases . Whereas in dense granular 
liquids, grains can rub against or rest on one another, leading to such complicated 
behavior as jamming, for granular gases most interactions occur through collisions 
only. Because of this and because the mean free path of the grains in the gas is much 
longer than in the dense liquid, granular gases are relatively simple. This makes 
granular gases the ideal system to study another fundamental question, namely to 
what extent the behavior of granular materials can be correctly modeled by the 
tools of equilibrium statistical physics that are so successful in describing molecular 
matter. 

For molecular matter in thermal equilibrium the dynamics of a system is com­
pletely determined by its Hamiltonian and its temperature T. Specifically, the prob-
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ability to find the system in a state s is proportional to: 

(1.2) 

where E s is the energy of the system in states [24]. For dilute molecular gases, the 
Hamiltonian is often simple enough to use Eq. 1.2 directly, without many approxi­
mations. A different approach to understand the behavior of molecular gases is by 
kinetic theory [24]. Here, one studies analytically the behavior of large assemblies 
of particles as they interact with each other by collisions. 

An example of a granular gas is shown in Fig. 3.2, where a layer of small metal 
beads is constrained between two vertical plates and shaken in the vertical direction. 
It is tempting to think of the grains in the granular gas as similar to molecules in a 
normal gas. In particular, one could interpret the random spread in velocity of the 
grains as something like a temperature and define, in analogy to molecular gases, a 
granular temperature 0'

2 as: 

(1.3) 

where all particles in the gas have unit mass, v is the velocity of the particles and 
the brackets indicate an ensemble average over all particles. One major difference, 
however, between molecular and granular gases is that the latter are dissipative; be­
cause the grains in the granular gas are macroscopic particles, they dissipate kinetic 
energy upon collision. The importance of this can be easily seen from the following 
example. When a single macroscopic particle, such as a single M&M, is dropped on 
a table it will bounce around several times before finally coming to rest. A bag of 
M&Ms, on the other hand, will not bounce on a table like a single M&M but will in­
stead directly come to rest. This is due to the inelastic collisions between the M&Ms 
in the bag, dissipating all the kinetic energy in a very short time upon collision with 
the table 1 . 

As a consequence of these inelastic collisions, a granular gas will quickly come 
to rest when left alone. In order to keep the grains in motion energy has to be 
supplied to the system by some kind of ext.ernal driving. This means that a granular 
gas is a system that is far from equilibrium and it is not clear in advance whether the 
tools from equilibrium statistical mechanics can be applied in such a case. Far-from­
equilibrium systems in general are poorly understood and by trying to understand 
granular gases we will perhaps learn things that can be applied to the general case. 

1The importance of M&Ms in the science of granular materials should not be underestimated. Apart 
from great demonstration material as described above, research on M&Ms first showed that random close 
packing occurs at a density dramatically higher for ellipsoids than for spheres [25]. In fact, the random 
close packing density¢ = 0.64 obtained for spheres appears to be an lower limit. For M&Ms a density of 
¢ = 0.68 is reported. 
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Below, I will give a brief overview of the research performed in recent years on 
granular gases. First, I will discuss the dynamics of freely cooling gases, where the 
dynamics is governed only by the dissipative collisions. Then, I will discuss driven 
gases, where energy is supplied to keep the gas in steady state. In all cases, large 
deviations from the behavior of molecular gases are found, due to the absence of 
equipartition and the occurrence of spontaneous clustering. Sometimes, however, 
granular gases unexpectedly behave like a gas in thermal equilibrium, for instance 
obeying the fluctuation-dissipation theorem as described below. Finally, I will briefly 
introduce my work on velocity distributions in granular gases. A more thorough 
introduction, however, will be postponed until Chapter 2. 

When grains in a granular gas collide, they dissipate kinetic energy. Inelastic 
collisions are usually modeled by a coefficient of restitution TJ in the following way; if 
two particles i and j with one-dimensional velocities v; and Vj collide, their velocities 
change as : 

I 1 - 'f) 1+7) 
(1.4) V; --v + --v · 

2 " 2 J' 

I 1+7) 1 - 'f) 
(1.5) vj --v + --v . 

2 ' 2 J 

In such a collision, momentum is conserved but energy is not. For 17 = 1, the collision 
is elastic and Eqs. 1.4 and 1.5 reduce to the collision rules for elastic collisions. For 
17 = 0, the collisions are completely inelastic and all relative velocity between the 
particles is dissipated. Steel particles, for instance, have TJ ~ 0.9. 

When a large number of grains is distributed uniformly over a container and 
when they are given some random initial velocity, the particles will lose energy by 
collisions and, consequently, the gas will cool, as quantified by a decreasing granular 
temperature. Such a freely cooling gas does not remain uniform like a molecular gas, 
but instead forms dense clusters of particles [26, 27]. Examples of such clusters are 
shown in Fig. 1.8. The velocity of the particles in the clusters is very small- they 
have almost zero granular temperature. 

Inelastic collisions cause cluster formation in the following way: when in a small 
region of the container the density increases because of random fluctuations, the 
number of collisions increases . As the number of collisions increases, more energy 
is dissipated, leading to a lower local granular temperature. As a consequence, the 
particles in that region will move less than in the surrounding area, meaning that 
effectively the local pressure is lower than the surrounding pressure. This in turn 
will lead to a further influx of particles, increasing the density even more. Cluster 
formation occurs more readily when the collisions between particles become more 
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Figure 1.8: Clusters in freely cooling granular gases. (a) The positions of 40000 particles after 
each particle experienced 500 collisions on average. The particles are organized in string-like 
clusters that have very low granular temperature. The coefficient of restitution is 17 = 0.6. For 
nearly elastic collisions no clusters form. Figure taken from Ref [26]. (b) The positions of 1024 
particles as inelastic collapse occurs. The line of particles indicated in black experience a rapidly 
increasing number of collisions among each other and are in the process of inelastic collapse. 
Figure taken from Ref [27] . 

inelastic. As the resulting string-like clusters show structures that are surprisingly 
similar to those of the distribution of galaxies in the universe, it has even been 
suggested that the evolution of the universe might have parallels to that of a freely 
cooling granular gas [3]. 

Simulations of cluster formation often show inelastic collapse, where small num­
bers of particles collide infinitely often within a finite time, dissipating all their rela­
tive velocity in the process [27]. In Fig. 1.8(b), a line of particles that are about to 
undergo inelastic collapse is indicated. Such singular behavior is similar to that of a 
particle bouncing on a table. Every time the particle collides with the table, it loses a 
fraction of its velocity due to dissipation. As a consequence, it will take less time for 
the particle before it bounces on the table again. This leads to a sequence of faster 
and faster collisions, until after a finite time the particle comes to rest on the surface 
on the table. In this example, the particle is attracted towards the table by gravity, 
but in cooling granular gases inelastic collapse happens solely due to the dynamics 
of the particles. Surprisingly, it has been shown that inelastic collapse does not re­
quire a large cluster of particles to occur. Rather, in two-dimensions a minimum of 
three particles can be sufficient [28]. 

It has been argued that inelastic collapse is an artifact of the assumption that par-
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t = 0 s t = 10 s t = 25 s t = 63 s 

Figure 1.9: Clustering in a gas of 195 steel beads of radius 1.5 mm. At t = 0 the beads are 
uniformly distributed over five compartments. The container is shaken at 21 Hz and with an 

amplitude of 3. 0 mm and the particles quickly collect themselves in one of the five containers. In 
the less dense containers particles on average have more kinetic energy, which can be seen from 
the fact that they jump higher. The pictures are taken from Ref [33]. 

tides are perfect hard spheres. More realistic models of inelastic collisions assume 
that collisions occurring in rapid succession are completely elastic [29] or assume 
that the coefficient of restitution is velocity dependent [30] , approaching ry = 1 for 
very small velocities. In a replication of the experiment described above, it has been 
shown that for a steel ball bouncing on a plate, the coefficient of restitution indeed 
behaves in such a way, but with a very large spread in ry [31]. When using such 
collision models, the process of inelastic collapse ceases to be singular, but neverthe­
less still shows lines of particles colliding very often, dissipating almost all of their 
relative velocity in a short time. 

Clustering also occurs in driven granular gases, where energy dissipation in col­
lisions is compensated by some form of energy injection. For instance, cluster for­
mation was observed in a simulation of a one-dimensional granular gas confined 
between a elastic boundary and driving boundary [32] . When a particle collides 
with the driving boundary, its velocity is replaced with one drawn from a Gaussian 
distribution, compensating for the loss of kinetic energy due to the inelastic colli­
sions within the gas. Instead of evolving towards a spatially homogeneous state, 
the majority of the particles collapse into a dense, slow moving cluster close to the 
elastic wall while a few particles travel between the driving wall and the cluster at 
much higher velocities. This occurs even for nearly elastic particles with ry = 0.95. 

An experiment showing a striking example of cluster formation in a driven gran­
ular gas is shown in Fig. 1.9 [34]. Here, a container is subdivided into smaller com­
partments by walls and metal beads are initially distributed homogeneously over 
the compartments. Surprisingly, as the container is vibrated all the beads will clus­
ter in one of the compartments. Such cluster formation is similar to that in freely 
cooling gases, as described above. If, by a fluctuation, one of the compartments 
has a slightly higher density the mean kinetic energy of the particles will be lower. 
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As a consequence, particles in the dense compartment are much less likely to have 
enough velocity to jump over the wall into another compartment. This results in 
an influx of particles from neighboring compartments, which amplifies the effect 
further. 

Even when evident clustering does not take place in a granular gas, more subtle 
effects might still be observed. For instance, an ideal gas is spatially featureless. 
This can be quantified by measuring the pair correlation function g(r), the density 
of particles at a distance r from a randomly selected particle, which for a ideal gas 
of non-interacting particles is constant. However, in a simulation where inelastic 
particles are heated uniformly by continuously adding a random amount of velocity 
to all of the particles, it is found that g(r) is peaked for r close to the particle radius 
[35]. This means that particles are on average closer to each other than in the 
case of an ideal gas. This happens because the relative velocity between particles 
is reduced in inelastic collisions. Similarly, experiments on particles rolling on an 
inclined surface, show that velocities of particles are highly correlated, with closer 
particles having much more aligned velocities than in an ideal gas [36]. In both 
cases, the correlations occur over distances of many particle diameters. 

The above results might suggest that granular gases are very different from 
molecular gases and that insights gained from equilibrium statistical physics cannot 
be directly applied to granular gases. Unexpectedly, however, a recent experiment 
showed that this seems not the case for the fluctuation-dissipation theorem [37]. 
The fluctuation-dissipation theorem is one of the major results of modern statistical 
physics and relates the spontaneous fluctuations around thermal equilibrium to the 
response of this system when it is perturbed slightly away from equilibrium. 

If, for instance, a torsion oscillator is immersed in a molecular gas at some tem­
perature T, the torsion oscillator will feel a small random torque, due to collisions 
between the molecules in the gas and the torsion oscillator. By measuring the fluc­
tuations in the angular deflection B(t) of the torsion oscillator, one can construct 
the power spectrum S(w) of the fluctuations. At the same time, the torsion os­
cillator can be forced to rotate by applying some kind of oscillatory torque C ( w). 
If the amplitude of the oscillation is small enough, the system will respond in a 
linear way like B(w) = x(w)C(w) . The susceptibility x(w) then depends on some 
kind of friction parameter, in this case the viscosity a: of the surrounding gas. The 
fluctuation-dissipation theorem now relates the fluctuations S(w) to the response 
x(w) as 4k8 Tx"(w) = wS(w), where x"(w) is the loss modulus of the response func­
tion x(w) = x'(w)- ix"(w) . As the only external parameters in this equation are 
the temperature T and the viscosity a:, this result means that macroscopic properties 
such as viscosity are completely determined by microscopic fluctuations, quantified 
only by the temperature T. 
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One can perform a similar experiment in a granular gas of glass beads rather 
than a molecular gas [3 7]. In this case, the particles are driven by shaking the con­
tainer by a white noise with frequencies between 300-900 Hz and with an average 
amplitude A. A torsion oscillator, consisting of a cone with a layer of beads glued to 
its surface, is inserted in the gas and will rotate randomly due to collisions with the 
beads in the gas. An external torque can also be applied to the cone and the response 
of the gas to this rotation can be measured just like in the case of a molecular gas. 
Surprisingly, for large enough amplitude A the power spectrum and the response 
obey the fluctuation-dissipation very well, even though the granular gas is far from 
thermal equilibrium. In contrast, for colloidal suspensions or glasses there is often 
much less agreement. This result suggests that the granular gas has a well-defined 
granular temperature T and viscosity a . The viscosity is found to be inversely pro­
portional to the shaking amplitude A: the granular gas flows more easily when the 
shaking is more vigorous. 

Does this mean that granular temperature as a quantity is as well defined as 
molecular temperature? This is still an open question. On the one hand, simu­
lations have shown that the temperature obtained from the fluctuation-dissipation 
relation agrees with that by measuring the mean kinetic energy in the gas according 
to Eq. 1.3, a first requirement for the granular temperature to be a useful quantity 
[38]. On the other hand, it was shown by experiment that in binary mixtures of 
different types of grains, both species have a different granular temperature [39]. 
Interestingly, it was shown in a simulation that even though the temperatures are 
different, a fluctuation-dissipation relation holds for each species separately [ 40]. 

The work presented in this part of my thesis is related to the above questions. 
We studied both by simulation and experiment the velocity distribution P( v) of the 
particles in a granular gas. For a molecular gas, the velocity distribution of the 
particles is given by the well-known Maxwell-Boltzmann distribution [24]. In con­
trast, in a granular gas the velocity distribution is not a Gaussian but often rather a 
stretched-Gaussian distribution of the form: 

Pa(v ) = A exp( - B I vjO" 1"'), (1.6) 

where A, B and a are fitting parameters and 0" 2 is the granular temperature as 
defined in Eq. 1.3. In molecular gases, the velocity distribution has an exponent 
a = 2. In experiments where monolayers of metal beads are confined between 
vertical walls and shaken in the vertical direction, an universal velocity distribution 
with a= 1.5 was found that was insensitive to the details of the driving mechanism 
[ 41]. However, different experimental setups often find other exponents. A few 
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important questions have remained unanswered. First, is there a universal velocity 
distribution for granular gases? If so, what is its precise functional form? If not, how 
does it change as function of external parameters such as the amount of dissipation 
or the precise way of driving the system? Finally, why is the velocity distribution in 
granular gases non-Gaussian in the first place? 

In Chapter 2, we study these questions by simulation. We find no evidence for a 
universal velocity distribution for granular gases, as was proposed by Ref. [ 41]. In­
stead, we observe a family of distributions as we change parameters such as number 
of particles, density; inelasticity and the mechanism of heating. Surprisingly, we can 
describe all these distributions by just two parameters, the coefficient of restitution 
'rJ and a new parameter q, that indicates how often particles collide and dissipate 
energy in comparison to how often they get heated by the driving mechanism. The 
parameter q depends sensitively on the details of the experimental setup and we pro­
pose that it is the variation in this parameter that can explain the different velocity 
distributions obtained in recent experiments. 

In Chapter 3, I present results on experiments performed on granular gases in the 
Center for Nonlinear Dynamics at the University of Texas in Austin. We measure the 
dynamics of individual beads in an experimental setup often used to characterize 
the velocity distribution in granular gases. Our setup allows us to measure the 
density; the granular temperature and the velocity distribution as a function of the 
position in the box and the phase of the driving cycle. We find no evidence that 
non-Gaussian velocity distributions arise by averaging over regions with different 
density or granular temperature, as was suggested in Ref. [ 42]. Instead, we see that 
the velocity distribution is remarkably insensitive to such variations. Importantly, 
we find that the velocity distribution is not determined by the intrinsic dynamics 
of the gas, but rather by friction between the beads and the sidewalls. This means 
that previous experimental results obtained by several other groups will have to be 
reconsidered. 
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Chapter 2 . Velocity distributions: simulations 

2.1 Introduction 

J.S. van Zon and EC. MacKintosh, 
Phys. Rev. Lett. 93, 038001 (2004) 

J.S. van Zon and EC. MacKintosh 
Phys. Rev. E 72, 051301 (2005) 

Dilute granular systems, or granular gases, have been extensively studied both ex­
perimentally and theoretically, in large part as simple model systems exhibiting non­
equilibrium and dissipative behavior. These systems are intrinsically dissipative and 
out of equilibrium. Since the collisions in such a gas are inelastic, a gas-like state 
is achieved only with a constant drive, or input of energy. Otherwise, all motion 
ceases after only a finite time [32, 43]. If the system is driven, then the gas reaches 
a steady state in which the energy dissipated in the inelastic collisions is balanced 
by the energy injected in to the gas by the driving mechanism. 

In experiments, one usually drives a granular gas by shaking or vibrating the 
walls of the container [36, 41, 44-50]. The most common experimental setups are 
shown schematically in Fig. 2.1. This type of heating is often referred to as bound­
ary heating. Because energy is inserted into the system in a spatially inhomogeneous 
way, granular gas often develop gradients in density and mean kinetic energy. I will 
discuss this below in more detail. Because these gradients complicate the analysis 
of the dynamics of granular gases, it is useful to drive the gas in a spatially homo­
geneous way. Often, this is implemented by subjecting each particle individually 
to a stochastic driving force. This type of heating is referred to as uniform heating 
[35] and is used in simulations [ 42, 51-53] and analytical theory [54, 55]. In this 
case, the dynamics of individual particles in the absence of collisions is given by the 
following stochastic equation of motion: 

(2.1) 

Where the particle has Unit mass, X i is the pOSitiOn Of particle i and ei ( t) is a random 
acceleration due to stochastic forcing. The stochastic forcing is often assumed to be 
white noise forcing and uncorrelated for different particles i and j, so that: 

(~ia (t) ) 

(~i<> ( t )~j {3 ( t')) 

0, 

~5oijOaf3 0(t - t') , 

(2.2) 

(2.3) 

where a and (3 label the different components of the forcing and ~0 is the strength 
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(a) (b) (c) 

D 
Figure 2.1: Different experimental setups f or studying two-dimensional granular gases. (a) 

Particles driven by vertical vibration of a horizontal plate [46-50]. For low shaking amplitude, 
particles cannot hop over one another and the motion is effectively two-dimensional. (b) Particles 
confined to move between two vertical walls and vibrated in the vertical direction [41]. The gap 

between the walls is slightly bigger than a particle diameter, so that the gas is two-dimensional. 
(c) Particles rolling on an inclined slope, tilted by an angle () [36, 44, 45]. Driving occurs through 
a vibrating wall at the bottom (indicated in gray). 

of the forcing. For uniform heating, the system reaches a steady state where the en­
ergy dissipated in inelastic collisions is balanced by energy injected by the stochastic 
forcing. Uniform heating is assumed to give a good description of granular gases far 
away from the driving boundaries and when the gradients are small on the scale of 
the mean free path of the particles. 

One of the most fundamental aspects of molecular gases is the Maxwell-Boltzmann 
velocity distribution [24]. A very general and striking feature of driven dissipative 
gases, however, is the apparently strong deviation from this classical behavior. Of­
ten, in granular gases the velocity distribution is a stretched Gaussian of the form: 

P (v ) = A exp(- B I vjO" 1"'), (2.4) 

where A and B are fitting parameters and 0"
2 = (v2 ) is often called the granular 

temperature, in analogy with equilibrium gases. For classical elastic gases, the veloc­
ity distribution is a Gaussian distribution with exponent a = 2. For granular gases, 
however, a wide variety of distributions is found, from Gaussian with a = 2 [ 49, 50] 
to exponential with a = 1 [ 42, 46, 55]. Often, an intermediate distribution with 
exponent a = 3/2 is found [41, 53, 54, 56]. In some cases, the exponent is found to 
vary between 1 < a < 2 as one changes parameters such as shaking amplitude [ 48] 
or number of particles [57] . In many cases, it is found that the velocity distribution 

33 



Chapter 2. Velocity distributions: simulations 

cannot be described by a single exponent a for all velocities, but instead shows two 
distinct regimes as a function of v, each with a distinct exponent a, for the same 
external parameters, such as TJ, ¢ and N . In such case, a crossover from one expo­
nent a :::::; 2 for small velocities to an exponent 1 < a < 2 for high velocities is often 
observed [36, 45, 47, 51, 52, 58-60]. The nature of these crossovers often depends 
strongly on experimental parameters. 

This multitude of velocity distributions observed for granular gases raises several 
fundamental questions. First, is there a universal velocity distribution for granular 
gases, just like the Maxwell-Boltzmann velocity distribution for molecular gases? 
And if so, what is the exact shape of the distribution? Second, why is such a variety 
of velocity distributions observed, both in experiment and in simulation and ana­
lytical theory? Finally, why do the velocity distributions observed in granular gases 
deviate strongly from Gaussian distributions in the first place? Before formulating 
possible answers to these questions, I will first briefly discuss the recent literature. 

Olafsen and Urbach studied the velocity distributions of a monolayer of steel 
balls on a vertically shaken horizontal plate, indicated schematically in Fig. 2.1 (a) 
[ 46, 48-50]. When the shaking amplitude is small enough, the particles cannot 
jump over one another and the motion is effectively two-dimensional. The energy 
injected into the vertical direction by the plate is converted into horizontal motion 
by collisions with other particles. Also, rotational motion is converted in horizontal 
motion by friction between the particles and the plate. Because the energy injection 
occurs in a spatially homogeneous way, no large scale density gradients occur. How­
ever, in this experiment the energy injection is not stochastic forcing as defined in 
Eq. 2.1. Because all the particles are vibrated by the same plate, the forcing is highly 
correlated between different particle. The motion of the particles in the horizontal 
plane is measured for different shaking amplitudes and shaking frequencies. 

For low shaking amplitude, the velocity distribution P( v) for the two horizontal 
components is found to be exponential with a = 1, insensitive to variation of other 
parameters and the exact mechanism of shaking [ 46]. When the velocities are scaled 
by O", where 0"

2 is the granular temperature, all velocity distributions collapse on the 
same curve. This feature is reminiscent of the behavior of molecular temperature 
in classical gases and is often observed for granular gases. However, as the shaking 
amplitude is increased the velocity distributions become Gaussian with a = 2 [ 48]. 
For such high amplitudes, the particles are able to jump over one another and the gas 
ceases to be two-dimensional. If a lid is placed on top of the gas, so that the motion 
of the particles is forced to remain two-dimensional even for high amplitudes, the 
resulting velocity distribution has an exponent a = 1.5. That the exact mechanism 
of driving is important in determining the shape of the velocity distribution is shown 
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when the experiment is repeated for a rough plate, by glueing particles to its surface 
[ 49]. Now, collisions with the plate inject energy directly in the horizontal direction, 
as the particles collide with the balls glued to the horizontal plate. In this case, the 
velocity distribution is Gaussian for a wide range of shaking amplitudes. Similar 
behavior is also seen when a layer of light particles is placed on top of a horizontal 
monolayer of heavy particles and again shaken in the vertical direction [SO]. In 
this case, the top layer of light particles have a Gaussian velocity distribution even 
though the bottom layer shows non-Gaussian behavior. In a similar experiment 
on a horizontal monolayer of particles, Losert et al. found a horizontal velocity 
distribution with exponent a = 1.5 for high shaking amplitudes, in the absence of a 
lid [47]. 

A related type of experiment was performed by Aranson and Olafsen with elec­
trostatically driven granular gases [56]. Here, large number of very small bronze 
beads is driven by an alternating electrical field between two capacitor plates. If 
the frequency of the alternating field is large enough, the particles form a two­
dimensional horizontal layer suspended between the two plates. Energy is con­
verted from the vertical direction to the horizontal direction by collisions between 
particles. In this case, the velocity distribution has an exponent a = 1.5 for a range 
of frequencies. 

Rouyer and Menon studied the velocity distributions of a vertical monolayer of 
particles, confined to move in the vertical plane and shaken in the vertical direction 
[41]. Their setup is indicated schematically in Fig. 2.1(b). The system is vibrated at 
high frequency and amplitude, so that particles gain energy by collisions with both 
the top and the bottom of the container. As a consequence, the density distribution 
of particles as function of the height is approximately symmetrical with a maximum 
in the middle of the container. Due to the collisions occuring at the driving bound­
aries, the density of the gas varies strongly at the top and bottom of the container, 
both in space and as a function of the phase of the driving cycle. In the center of 
the container, however, the density is stationary and homogeneous in space. The 
dynamics of the granular gas are measured in this region, so that the results are 
not distorted by averaging over dynamics that varies in time and space. In this re­
gion, the velocity distribution P(vz ) of the vertical velocity Vz is asymmetrical due 
to gravity. The horizontal velocity distribution P(vx) is symmetrical and has a uni­
versal exponent a = 1.5 over a wide range of shaking frequencies and amplitudes 
and within the stationary regions is independent of position in the container or the 
phase of the driving cycle. 

A velocity distribution with exponent a = 3/2 is found often in granular gases 
and has a special significance because it is predicted by kinetic theories of granu­
lar gases [54]. This exponent is found for the asymptotic high-velocity tail of the 

35 



Chapter 2. Velocity distributions: simulations 

velocity distribution by solving the Boltzmann equation for the velocity distribution 
function f(v , t): 

a ~5 a 2 
!:1 f(v , t) = I(f , f)+ - ( !'l) f(v , t) . 
ut 2 uv 

(2.5) 

Here, I(f , f) is the collision integral and describes the time evolution due to the 
inelastic collisions. The last term is similar to a diffusion term in the velocity and 
describes the spreading of the velocity due to uniform heating. In steady state, 
Eq. 2.5 predicts a high-velocity tail of the form in Eq. 2.4 but with prefactor 
{3 = (1 - ry2 ) - 112, where Tf is the coefficient of restitution, and a = 3/2. However, 
because of the dependence on the coefficient of restitution, this function cannot de­
scribe the entire velocity distribution but only the asymptotic high-velocity tail. The 
universal distribution of exponent a = 1.5 in the experiment of Rouyer and Menon, 
on the other hand, is observed over the entire range of velocities. In addition, with 
a simplified version of the Boltzmann equation, called the inelastic Maxwell model, 
a different exponent a = 1 was obtained for a uniformly heated gas. 

Blair and Kudrolli studied the velocity distributions of particles rolling on an 
inclined plane, indicated schematically in Fig. 2.1 (c) [36, 45]. The particles are 
driven by an oscillating wall at the lower boundary. When two rolling particles 
collide, they slide a short distance until their rotational motion has adapted to the 
new direction of the translational velocity. As sliding friction is much stronger than 
rolling friction, rolling particles dissipate more energy in collisions. This is reflected 
in the observed coefficient of restitution, which is Tf ~ 0.5 for particles rolling on 
the inclined plane rather than Tf = 0.93 for steel particles in the other setups. This 
makes it possible to study the velocity distribution outside of the range Tf ~ 1. 

It is found that in this case the velocity distribution P(vx) of the velocity per­
pendicular to the motion of the oscillating wall cannot be described by a single 
exponent a for the entire range of velocities [ 45]. Instead, the velocity distribution 
shows a crossover from a Gaussian distribution with a = 2 for low velocities to a 
non-Gaussian distribution with 1 < a < 2, independent of the driving frequency. 
The velocity distribution is most strongly non-Gaussian for a slight tilt angle e = 0.1. 
As the tilt angle is increased to e = 6.7, the crossover disappears and the velocity 
distribution becomes close to a Gaussian over the entire range of velocities. For 
large tilt angles, the particles experience a large acceleration due to gravity and thus 
return to the driving wall more rapidly, effectively increasing the heating rate. The 
shape of the distribution is also observed to depend on the number of particles [36]. 
For a large number of particles N = 1000 the velocity distribution is strongly-non 
Gaussian and shows a crossover in the exponent a . If the number of particles is 
decreased, however, the crossover becomes weaker and eventually disappears in the 
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dilute limit N = 100, where the velocity distribution is well fitted by an exponent 
o: = 1.5 for the entire velocity range. The crossovers in the velocity distribution 
observed here are also seen in simulations, but not necessarily at low coefficient of 
restitution [51, 52, 57, 59, 60]. 

Several suggestions have been put forward to explain the non-Gaussian features 
of the velocity distribution and the variety of velocity distributions observed in ex­
periments, analytical theory and simulations. Puglisi et al. have suggested that 
clustering and density fluctuations could be responsible for non-Gaussian velocity 
distributions [ 42]. Cluster formation is often seen in driven granular gases. Olafsen 
and Urbach observed a clustering transition as the shaking amplitude was decreased. 
In this clustered state, the granular gas separates into dense solid-like clusters sur­
rounded by particles that remain in the gas-like state [ 46]. The clusters exhibit 
a hexagonal close-packed order and the particles remain in constant contact with 
each other and the plate. Similarly, Kudrolli et al. found that particles rolling on an 
inclined plane form large dense clusters for low shaking amplitude [ 44]. These clus­
ters are found far from the moving boundary for low tilt e ~ 0, but are close to the 
oscillating wall for larger inclination. In all these clusters, particles have a very high 
collision rate and very low relative velocities. However, even away from clustering 
transition, where the granular gas on average appears spatially uniform, significant 
density fluctuations occur: small transient clusters are continuously formed and sub­
sequently dissolved by collisions with the surrounding high-velocity particles [ 46]. 
Puglisi et al. showed theoretically that such density fluctuations could lead to non­
Gaussian velocity distributions when small regions with constant local density have 
a Gaussian velocity distribution but with a different granular temperature 0'2 that 
depends on the local density [ 42]. Indeed, averaging Gaussian distributions with 
different widths leads to stretched Gaussians of the form in Eq. 2.4. Furthermore, 
the granular temperature is expected to decrease in regions of high density, because 
of the large collision rate. 

Unfortunately, this idea is not supported by experiment. Olafsen and Urbach 
studied the dependence of the local granular temperature 0'2 on the local density 
[ 48]. They find that the granular temperature does decrease with density in the 
strongly clustering state for low shaking amplitude. However, outside the cluster­
ing state the granular temperature is independent of the local density, even though 
significant density fluctuations still occur. Both Olafsen and Urbach and Rouyer and 
Menon find that for small regions of constant local density the local velocity dis­
tribution is still non-Gaussian. In fact, the local velocity distribution was the same 
velocity distribution as observed for the entire gas, when normalized by the granular 
temperature [ 41, 48]. 

Non-Gaussian velocity distributions could originate in a more subtle way by spa-
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tial correlations. Even in the absence of significant density fluctuations, granular 
gases often show spatial correlations in density [35, 36, 45, 46] and in velocity 
[36, 49]. Density correlations are measured by the radial distribution function g(r), 
measuring the average density of particles at a distance r from a given particle. For 
dilute granular gases, the radial distribution is not constant, as it would be for a 
dilute molecular gas, but is peaked close to particle contact at r = R, where R is 
the radius of the particles [35, 45]. For dense granular gases, the radial distribution 
function g( r) is often oscillatory with a period of a particle diameter [ 45, 46]. This 
is indicative of liquid-like rather than gas-like order. Velocity correlations are often 
measured by the longitudinal velocity correlations au' defined by: 

(2.6) 

where the sum is over the Nr pairs of particles that are separated by a distance 
r. The parallel velocity v11 is the component of the velocity parallel to the vector 
separating the centers of particles i and j and is affected most strongly by the in­
elastic collisions. Blair and Kudrolli find in their setup that the granular gas exhibits 
significant longitudinal velocity correlations that become more long-ranged for in­
creasing density [36]. These correlations probably arise because the velocities are 
parallelized in inelastic collisions. Prevost et al. find that the longitudinal velocities 
are strongly anti-correlated when the gas is driven by a smooth plate and strongly 
correlated when driven by a rough plate [ 49]. In all cases, density and velocity 
correlations have a range of several particle diameters. 

Strong spatial correlations might lead to non-Gaussian velocity distribution as 
they indicate the absence of molecular chaos, which is a crucial approximation for 
finding a Gaussian velocity distribution from the Boltzmann equation. However, the 
influence of spatial density correlations on the shape of the velocity distribution is 
not clear. Experiments that show liquid-like density correlations often have strongly 
non-Gaussian velocity distributions [36, 46]. On the other hand, non-Gaussian ve­
locity distributions are also observed for weak density correlations [ 45] and in the 
complete absence of density correlations apart from excluded volume [56]. Strong 
positive spatial velocity correlations are accompanied by non-Gaussian velocity dis­
tributions in the setup of Blair and Kudrolli [36]. On the horizontal plate, on the 
other hand, non-Gaussian velocity distributions occur for negative velocity correla­
tions, whereas Gaussian distributions are recovered for positive velocity correlations 
[ 49]. As a consequence, the influence of spatial correlations on the shape of the 
velocity distribution remains unclear. 

A possible origin for non-Gaussian velocity distributions might be found in the 

38 



2.2. Numerical simulation 

details of the heating mechanism. Even though velocity distributions are insensitive 
to changes in parameters such as the shaking frequency and amplitude, they seem 
to be sensitive to other parameters . For instance, Prevost et al. observe a more 
Gaussian velocity distribution when the granular gas is driven by a rough plate, 
directly injecting energy into the horizontal degrees of freedom [ 49]. A similar trend 
is seen in the experiment of Baxter and Olafsen, where a top layer of light particles 
is driven indirectly by a bottom layer of vibrated particles. In this case the observed 
velocity distribution is Gaussian [50] . These results cast some doubt on the validity 
of using uniform heating as an approximation of the driving mechanism as is done in 
theoretical calculations [54, 55] and some numerical simulations [51, 52]. If some 
of the characteristics of the driving mechanism are indeed important in determining 
the velocity distribution, it is possible that relevant results can only be obtained 
using a more realistic model of boundary heating. However, non-Gaussian velocity 
distributions have been observed both in simulations using uniform heating [51, 52] 
and boundary heating [57-60]. 

In this Chapter, we study the velocity distributions of two-dimensional granular 
gases by numerical simulation, both for uniform and boundary heating. We show 
that rather than a universal distribution with a= 3/2, a family of distributions with 
apparent exponents covering a wide range of values a < 2 is expected, depending on 
both material and experimental conditions. Furthermore, we show that the velocity 
distribution is governed primarily by the relative importance of collisions to heating, 
i .e. the way in which energy flows through the system of particles . Specifically; we 
introduce a new parameter q = N H / N c, which measures the ratio between numbers 
of heating events and collisions experienced on average by a typical particle. These 
theoretical observations can explain both the observed non-Gaussian behavior, as 
well as the ambiguities in the experimental and theoretical literature on dissipative 
gases to date. We also show that the behavior of the velocity distributions seems to 
be captured quantitatively by a simple model that takes only 'f/ and q into account, 
with no spatial degrees of freedom. We also review the evidence of the role of q in 
recent experiments. 

2.2 Numerical simulation 

We use an event-driven algorithm to simulate N particles of radius a moving in a 
two-dimensional box. In an event-driven algorithm, the systems is propagated from 
collision to collision: for each pair of particles is determined when in the future they 
will collide. The system is propagated until the moment of the first collision. At the 
moment of collision, the velocities of the colliding particles are update according to 
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the collision rule and the procedure is repeated. An event-driven simulation scheme 
is very efficient as in dilute gases particles move by rectilinear motion most of the 
time and experience collisions only infrequently. 

Particles gain energy by heating and lose energy through inelastic collisions. For 
a two-dimensional granular gas, we implement inelastic collisions in the following 
way: we assume that during an inelastic collision of particles i and j only v 11 ,i , the 
component of the velocity vi parallel to the inter-particle vector r ij = r i-rj changes. 
This means that we assume that any tangential friction between the particles is 
absent and the particles always have zero angular momentum. We can decompose 
the velocity v i in normal and tangential components v 11 ,i and v .l ,i as follows: 

v .l ,i 

(vi · f ij )fij, 

Vi- VJI ,i> 

(2.7) 

(2.8) 

where fij is the unit vector in the direction of r i j. At the moment of collision, we 
change the normal component vll. i according to the one-dimensional collision rule 
for inelastic collisions in Eq. 2.11. Then, for the normal component v;l,i of the 
velocity of particle i after collision with particle j, one has: 

1 1-77 1+77 
VII . = --VII + - -VII . ·' 2 ·' 2 ,J ' 

(2.9) 

where 77 is the coefficient of restitution. The new velocity v~ for particle i after the 
collision with particle j is: 

(2.10) 

Inserting Eqs. 2.7 and 2.9 into Eq. 2.10 yields the two-dimensional inelastic collision 
rule for the velocity of particle i after collision with another particle j: 

(2.11) 

where 0 ::::; 77 < 1 is the coefficient of restitution and f ij is the unit vector connecting 
the centers of particles i and j. We prevent inelastic collapse using the TC model of 
Luding and mcNamara, setting the coefficient of restitution to unity if the particle is 
involved in another collision within a very short time of the previous one [29]. 

We perform simulations with both uniform and boundary heating. For uniform 
heating we adapted an one-dimensional algorithm described in Ref. [35]. When 
heating uniformly, each individual particle is heated by adding a random contribu­
tion to the velocity of each particle during a time step !J.t: 
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vi(t + t::..t) = vi+ v'hf5:tf(t) , (2 .12) 

where f(t) is a random vector whose components are uniformly distributed between 
- ~ and ~ and h is proportional to the heating rate. The dependence on the time 
step is chosen so that the energy input does not depend on the size of the time step. 
The kinetic energy of the system after heating is: 

1 1 
K = 2 L Vi . Vi+ v'hf5:tL Vi. f(t) + 2ht::..t L f(t) . f(t) (2.13) 

Because the term linear in f(t) vanishes on average, the average energy input per 
unit time per particle is ~ h(f · f), independent of the size of the time step t::..t. 

After heating the system is transferred to the center-of-mass frame, to prevent 
the build-up of large center-of-mass velocities as a consequence of the inelastic col­
lisions. Particles move in a box with periodic boundary conditions to simulate bulk 
behavior. The time step t::..t is chosen in such a way that on average the number of 
collisions per time step is less than one. 

In boundary heating, particles gain velocity upon collision with the boundary. For 
simplicity, we assume that the collision with the boundary is elastic. In that case, a 
collision occurs by reflecting v _1_, the component of the velocity perpendicular to the 
boundary. Heating occurs by adding a random amount of velocity to v _1_. Then after 
collision with the boundary one has: 

v~ = v - 2v _1_ + Vhf(t). (2.14) 

Particles move in a circular box. A symmetrical container has the advantage that 
it allows us to examine density and granular temperature gradients along a single 
coordinate r, the distance from the center of the box, as in the one-dimensional 
case [32]. This method of heating at the boundary is analogous to the technique 
described in Ref. [58]. 

We start the simulation by distributing the particles uniformly over the box. 
When using boundary heating, we give each particle a small, uniformly distributed 
velocity to enable particles to reach the boundary. Then particles are heated and 
we allow the system to reach a steady state before taking data. For both uniform 
heating and boundary heating, data is collected periodically every time step t::..t. For 
uniform heating, data is taken when the particles are heated, so t::..t equals the time 
between heating events. In our simulations, we vary the coefficient of restitution 
ry, the areal density¢ and the number of particles N. The radius R of the particles 
depends on ¢ and N as ¢ = N 1r R 2 /A, where A is the area of the container. 
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2.3 Clustering 

Dense clusters of particles occur for a wide range of parameters when heating 
through the boundary, but are absent for uniform heating. This occurs as parti­
cles are compressed in the center of the box by the pressure of particles moving 
in from the boundary. As the cluster grows in size, it can no longer be destroyed 
by the impact of high velocity particles and the cluster remains stable. Examples 
for increasing amounts of dissipation are shown in Fig. 2.2. As energy dissipation 
is increased, either by decreasing 'TJ or increasing the number of collisions, the gas 
develops a liquid-like cluster surrounded by a hot gas. For higher dissipation, the 
cluster grows in size and ultimately shows crystalline order, including defects and 
disclinations. The smaller clusters are highly dynamic and assemble and disassem­
ble as they move around the container. The formation of a cluster in time is shown 
in Fig. 2.3. 

For measurements of the velocity distribution, the gas has to be in the homo­
geneous gas state. To avoid values of ¢ and 'TJ corresponding to the formation of 
clusters in our simulation, we constructed a phase diagram. We did this by counting 
for every particle the average number N6R of neighbors with their center within a 
distance smaller than or equal to 6R from its center, where R is the radius of the 
particles. When the gas is in a hexagonal close packed state N6R = 36. We obtained 
the distribution P(N6R) for different values of ¢ and ry. An example for N = 350 
and ¢= 0.1 is shown in Fig. 2.4. 

For 'TJ = 0.9 the distribution corresponds to a state with the particles uniformly 
distributed over the box and the peak of the distribution at the mean value N GR = 
3.6. For 'TJ = 0.7 the distribution becomes bimodal, with a broad peak at high N6R 

corresponding to the densely-packed cluster and a peak at N6R = 1 corresponding 
to the surrounding dilute gas. The distribution shows a continuous variation for 17 

in between, which makes it hard to pinpoint an exact value of 'TJ for which clusters 
first form. Still, by looking at the shape of the distributions, it can be argued that 
the transition occurs somewhere between 'TJ = 0.75 and 'TJ = 0.85. This was repeated 
for different values of ¢, which allowed us to determine a sort of phase or state 
diagram. Specifically, we determined the limit of a pure gas-like phase, and all 
results presented below were obtained in this state. Unfortunately, as the transition 
from the homogeneous gas state to the cluster state is very gradual, we are unable 
to present here an accurate phase diagram. 
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2 .3. Clustering 

Figure 2.2: Snapshots of the clustered state for (a) N = 200, ¢ = 0.06 and 'T} = 0.5, (b) 

N = 400, ¢ = 0.05 and 'T/ = 0.6, (c) N = 600, ¢ = 0.1 and 71 = 0.8 and (d) N = 800, ¢ = 0.2 

and 71 = 0. 7. The circles indicate the current positions of the particles, while the lines show 

the direction and magnitude of the velocity. The smaller clusters show more liquid-like order, 

whereas in the bigger clusters the order is crystalline. In the latter case, the hexagonal ordering 

of the clusters sometimes shows defects. In (d), for instance, the cluster appears to exhibit distinct 

crystal-like domains. 
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t = 0 

t = 100 t = 150 

t = 250 t = 400 

Figure 2.3: Formation of a cluster for N = 350, cjJ = 0.05 and TJ = 0.6. Lines indicate direction 
and magnitude of the velocities of the particles. At t = 0, the system starts with the initial 
conditions described in Section 2 .2 . At t = 100 a cluster has formed. The cluster travels around 

the box and is about to hit the wall at t = 400. 

44 



2.4. Velocity distributions 
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Figure 2.4: Number of neighbors within a distance 6R of a given particle for N = 350, ¢ = 0.1 
and 'T/ = 0.7(o), 0.75(0), 0. 8(o), 0.85(6 ) and 0.9(<1) . On average N6R = 3.6 for ¢ = 0.1. 

2.4 Velocity distributions 

For a velocity distribution of the form in Eq. 2.4, it is more convenient to plot the 
double logarithm of the velocity distribution P( v) against the logarithm of the ve­
locity v . Specifically, we know that: 

- ln[P(v)l P(O)] 

-ln { - ln[P( v) I P(O)]} 

B( VI CY )ex ' 

ln B - o: ln (viCY). 

(2.15) 

(2.16) 

Thus, when we plot the double logarithm of the velocity distribution against the log­
arithm of the velocity as in Eq. 2.16, the local slope yields the local exponent of the 
velocity distribution. In particular, when plotted this way a Gaussian velocity distri­
bution is a straight line with slope -2. In the case of a velocity distribution that has 
two regimes with different exponents o:, in this representation the velocity distribu­
tion will have different slopes for the two regimes. We will use this representation 
throughout this chapter and in Chapter 3 when studying the exponent o:. 

The velocity distributions P(vx) for uniform heating are shown in Figs. 2.5 and 
2.6. The velocity component Vx is scaled by CYx = (v~) ~ and the maximum of the 
distribution P( Vx ICY x ) is scaled to be unity. For a broad range of the parameters ¢ 
and '!] the velocity distributions are very close to Gaussian. For'!] = 0.8 the velocity 
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Figure 2.5: Uniform heating. (a) P(vx/CYx )· (b) -In{ - ln [P(vx/CYx)]} versus In(vx / CYx)· Data 
fo r both figures is taken for N = 350 and for¢= 0.02 and T/ = 0.8(o), 0 .6(0), 0.4(o), 0.2(6), 

0.1 ( <l). A Gaussian is shown as a solid line with slope -2 and the distribution obtained by Rouyer 
and Menon is shown as the dashed line with slope - 1.5. The velocity distributions are shifted by 

a constant amount C for clarity. 
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Figure 2.6: Uniform heating. (a) P(vx/CYx). (b) - In{ - In[P(vx/CYx )]} versus In(vx/CYx)· The 
dashed lines have slope -2 and - 1.5. Data for both figures is taken for N = 350 and forT/= 0.2 
and¢ = O.l(o), 0.05(0), 0.02(o), 0.01(6). 
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distributions can be fitted by a distribution with a = 2.0. This decreases only slightly 
for 17 = 0.1, which can be fitted by a distribution with a = 1.9. Values of a are found 
to be independent of¢. These exponents are constant over the entire observed range 
of velocities and we find no evidence of a velocity distribution with a = 1.5 for the 
range of ¢ and 17 we examined. This agrees with observations made before in Ref. 
[53]. 

For boundary heating the gas develops a gradient in both density and mean 
kinetic energy as shown in Fig. 2.7 and 2.8. Ideally, we want to measure velocity 
distributions in a region where the gradient is small. To this end we divided the 
box in five rings of width 0.2. These rings are indicated in Fig. 2. 7 and 2.8. Only 
for values of ¢ and 17 close to the clustering state, does the density within a ring 
vary by more than 10%. The velocity distributions P(vx) for particles within the 
different rings are shown in Fig. 2.9. Figure 2.9(a) shows P(vx ) with the velocity 
component vx scaled by IJx = (v~)! and the maximum of the distribution scaled to 
be unity. When normalized by IJx the velocity distributions for different rings in the 
container have largely the same shape for smaller velocities, even though density 
and mean kinetic energy vary considerably between these rings. This is a feature 
that is observed for all values of ¢ and 17, even close to the cluster state. Similar 
observations have been made in Ref. [58]. 

Fig. 2.9(b) shows the behavior of the exponent a. This behavior is very different 
from the case of uniform heating. For uniform heating a has the same value over the 
entire observed range of velocities. For boundary heating, on the other hand, a has 
a constant value a 1 over the low-velocity range but crosses over to different value a2 

when above a critical velocity Vc · For all rings the distribution for smaller velocities 
is close to Gaussian with a 1 ~ 1.8. For the inner three rings the distribution for 
velocities higher than vc is well described by a single exponent a 2 < 1.5. For the 
outer rings this behavior is more complicated. 

In Fig. 2.10 we show the effect of a change in ¢ and 17 on the shape of the velocity 
distributions. Here we focus on the velocity distribution as measured in the ring with 
0.4 < r ::; 0.6. This has the advantage of good statistics, but for values of ¢ and 17 

close to a cluster, we might see effects due to the density gradient in the gas. As 
shown in Fig. 2.10(a) the exponent a 1 = 1.8 except for 17 = 0.4, where a 1 = 1.6. 
For 17 = 0.9 there is no crossover in the observed range of velocities. In the other 
distributions one does observe a crossover and the point where it occurs shifts down 
to lower velocities as 17 is decreased. It is clear that the distribution for velocities 
above the crossover cannot be described by a single exponent. For low enough 17, 

the distribution seems to approach a constant exponent for high velocities. This 
exponent decreases from a 2 = 1.3 for 17 = 0.7 to a 2 = 1.0 for 17 = 0.4. Velocity 
distributions with a similar dependence on 17 have been observed before in Refs. 
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Figure 2.7: Boundary heating. (a) The average number density pas a function of distance 7' 

to the center of the box. The container has radius R. Data taken for N = 350, ¢ = 0.02 and 
T/ = 0.9(o), 0.8(0), 0.7 (o), 0.6(6 ), 0.5(<1) and 0.4(1>) . (b) The mean kinetic energy (v2

) per 

particle as a function of r, for the same values of¢ and T/· The dashed lines indicate the concentric 
rings, within which the velocity distributions were separately calculated. 
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Figure 2.8: Boundary heating. (a) The average number density pas a function of distance r 
to the center of the box. Data taken for N = 350, T/ = 0.9 and ¢ = 0.1(o), 0.05(0), 0.02(o) 
and 0.01(6 ). (b) The mean kinetic energy (v2

) per particle as a function of r, for the same 

values of ¢ and T/· Note that even for the dilute case ¢ = 0.01 the mean kinetic energy profile 
is not constant, but drops at the boundary of the box. The profile only becomes constant after a 

certain distance into the containe1; that corresponds to the mean free path of particles leaving the 
boundary. This feature, together with the rise in density we observe close to the boundary, has 
been described also in Ref [60] 
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[52] and [60]. 
In Fig. 2.lO(b) we examine the behavior of the velocity distributions as the area 

density is varied. Again, we find that for smallest velocities the distribution is close 
to Gaussian with o:1 :::::; 1.8 for all ¢ . A crossover in exponent o: is observed for every 
¢ and the velocity at which the crossover occurs hardly shifts as ¢ is varied. The 
distributions approach a constant exponent for high velocities. This exponent goes 
down from o:2 = 1.5 for ¢ = 0.01 to o:2 = 1.0 for¢ = 0.05. In general, the deviations 
from Gaussian become more pronounced as dissipation increases, i.e. as ¢ increases 
or as 17 decreases. When o:2 decreases it is increasingly difficult to describe the 
distribution with an single exponent o:2 for the highest velocities. It may well be 
that this regime, corresponding to the highest velocities in both our simulations and 
the recent experiments, is different from the asymptotic high-velocity tail predicted 
by kinetic theories [54]. 

In Fig. 2.11 we summarize the differences in velocity distributions obtained for 
uniform and boundary heating For uniform heating the velocity distribution is close 
to Gaussian for a large range of ry. In contrast, for boundary heating the distribution 
is only Gaussian in the nearly elastic case 17 = 0.9. As the coefficient of restitution is 
lowered, a crossover develops where the exponent changes from o:1 :::::; 2 to a lower 
value o:2 • The exponent o:2 becomes smaller as dissipation is increased (for smaller 
17 or higher ¢) and we find any value in the range 0.7 ;S o:2 < 2. The crossover in 
exponent is observed in boundary heating for all values of ¢ and N. 

We also find for a certain range of parameters an exponent o:2 = 1.5 for the 
high velocity tail. For their experiments Rouyer and Menon used N particles with 
1J :::::; 0.9, where 100 < N < 500 and 0.05 < ¢ < 0.25 [41]. In Fig. 2.12 we plotted 
the velocity distribution for 17 = 0.9, ¢ = 0.05 and several values of N. We also 
show the fit with o: = 1.52 as made in Ref. [ 41]. This line clearly coincides with 
the velocity distribution found by the present simulation for velocities beyond the 
crossover. This suggests that instead of a universal distribution with o: = 1.5, they 
might have observed a part of a more complex velocity distribution, with more than 
one apparent exponent. 

To test whether the velocity distributions we find here are only observed for this 
specific driving mechanism of heating through a circular boundary, we constructed 
different systems that drive through boundaries in a different way. For instance, we 
constructed a box with periodic boundary conditions that includes a small circular 
region around the center. Within this circular region particles are uniformly driven 
but outside of the region they are not heated at all. For particles within the circular 
region we observe velocity distributions that are Gaussian. On the other hand, for 
particles outside of the circular region we observe the same non-Gaussian velocity 
distributions as seen in the case of a circular boundary. 
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Figure 2.9: Velocity distributions for boundary heating calculated separately within the con­

centric rings shown in Figs. 2.7 and 2.8, i.e., for 0 < r ::; 0.2(o), 0.2 < r ::; 0.4(0), 

0.4 < 1'::; 0.6(o), 0.6 < r ::; 0.8(6) and 0.8 < r ::; 1(<1), where r is distance to the center: Data 

were taken fo r N = 350, rjJ = 0.05 and T/ = 0.8. (a) P(v/ax )· (b) - In{ - ln[P(vx/ax)]} versus 
ln(vx/ax )· The local slope corresponds directly to the local exponent a. 
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Figure 2. 10: Boundary heating. (a) - In{ - ln [P(vx/ax )]} versus ln(vx/ax )for N = 350, rjJ = 

0.02 and T/ = 0.9(o), 0.8(0), 0.7(o), 0.6(6), 0.5(<1) and 0.4(\7). (b) - In{ - ln[P(vx/ax )]} 

versus ln(vx/ax)for N = 350, T/ = 0.7 and rjJ = O.Ol(o), 0.02(0), 0.03(o) and 0.05(6). 
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Figure 2 .11: Velocity distributions for N = 350 and ¢ = 0.02. Shown are both results for 

uniform heating with 17 = 0.8( o), 17 = 0.1(0 ) and results for boundary heating with 17 = 0.9( <:>), 
17 = 0.6(\7) and 17 = 0.4(*). (a) P(vx/ax ) (b) - In{ - ln[P(vx/ax)]} versus ln(vx/ax) . A 
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Figure 2.12: (a) - ln{ - ln[P(vx/ax )]} versus ln(vx/ax) for N = 350, ¢ = 0.05 and 17 = 0.9 
(o), N = 500, ¢ = 0.05 and 17 = 0.9 (D), N = 350, ¢ = 0.05 and 17 = 0.8 (o), N = 350, 
¢ = 0.25 and 17 = 0.9 ( 6 ). The solid lines correspond to the fit as made by Rouyer and Menon 

and has an exponent a = 1.52. The range of the solid lines corresponds to half the range used by 
Rouyer and Menon in their fit, but contains about 80% of their data points. 
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Figure 2.13: Boundary heating. (a) P(vx/ax) for different values of N. (b) 

- In{ - !n[P(vx/ax)]} versus !n(vx/ax)- Data is taken for ¢= 0.05, 7J = 0.8 and N = 50(o), 
100(0), 200(o), 500(L-), 700(<l) and 1000('\l). 

To test whether velocity distributions are sensitive to the precise way of heating 
at the boundary, we changed our heating algorithm so that when a particle hits the 
boundary, the angle of reflection is random and the magnitude of the new velocity is 
drawn from a Gaussian distribution. This has a minor effect on the distribution for 
the highest velocities, but leaves all major differences between uniform and bound­
ary heating intact. 

Finally, we studied the behavior of the velocity distribution for different particle 
numbers N. Figure 2.13(a) shows that, as N increases, the velocity distributions 
become more narrow for smaller velocities, but fall off less rapidly in high velocity 
regime. This is shown more clearly in Fig. 2.13(b). We find that the distribution for 
velocities larger than the crossover velocity is well described by a single exponent 
that decreases from a:2 = 1.7 for N = 50 to a: = 0.7 for N = 1000. The crossover 
shifts to lower velocity and becomes sharper as N is increased. Instead of approach­
ing a limiting velocity distribution as N is increased, we find that the shape of the 
velocity distribution depends not only on TJ and ¢, but also on N for all values of N 
we examined. This indicates that for boundary heating there is no thermodynamic 
limit. For uniform heating, on the other hand, the velocity distribution is largely 
insensitive to changes in N. 

The main difference between uniform and boundary heating is that in the first 
case heating takes place homogeneously throughout the box, whereas in the latter 
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case energy is injected inhomogeneously at the boundaries. This is not the direct 
cause for the difference in velocity distributions. As we will show below, when heat­
ing homogeneously one can go from a Gaussian distribution to one with a crossover 
by increasing the time step 6.t between heatings. In this case the number of particles 
heated per unit time becomes smaller than the average number of collisions, dissi­
pating energy. The reverse is also true. When heating inhomogeneously through a 
boundary, one finds Gaussian distributions in very dilute systems, when the parti­
cles on average collide more often with the boundary than with other particles. This 
suggests that in our system the shape of the velocity distribution is not a function 
of all parameters 'rJ, ¢, N and the details of the energy injection, but only of 'fJ and 
q = N HI N c , the ratio between the average number of heatings N H and the average 
number of collisions Nc . 

This idea can easily be tested in boundary heating. When increasing the number 
of particles N or the area fraction ¢, the average number of collisions increases. One 
can show in a mean field approximation that q"' (N¢)- 112 • The average distance 
a particle travels between collisions is given by lcall "' 1/¢. For a box of area A the 
average distance between boundaries is given by lheat "' A112

"' (N/¢)112
. Finally, 

we knowN HI Nc rv lcall l lheat· Our simulation obeys this approximation very well. 
In Fig. 2.14 we show velocity distributions for 'fJ = 0.8 and different combinations 
of N and ¢ . We measure the heating-dissipation ratio q in the simulation and show 
velocity distributions with the same q on top of each other. For q = 1.3 and q = 0.13 
we find excellent collapse for different N and ¢, even when we scale the system by 
a factor 8. For q = 0.013, where spatial correlations become very strong, we still 
find reasonable collapse. As we increase q we observe the usual pattern, where a 
crossover appears in a distribution that was initially close to a Gaussian. 

To test that whether non-Gaussian velocity distributions can occur when heating 
homogeneously, we use a different heating mechanisms that is spatially homoge­
neous and where the ratio q can be adjusted. With this heating mechanism, de­
scribed in Ref. [51], we can reproduce the entire family of distributions as observed 
for boundary heating. In this case, every time step 6.t, we select at random two 
particles and add to these particles a random but opposite velocity to conserve the 
total momentum. On average heating is spatially homogeneous and in the limit of 
small 6.t this heating mechanism approaches uniform heating. When 6.t is small, 
many heatings occur for every collision whereas for large 6.t, particles collide many 
times before being heated. By increasing 6.t, the parameter q is decreased. 

The effect of changing 6.t is shown in Fig. 2.15. Here, we show the velocity 
distribution for N = 350, ¢ = 0.02 and 'fJ = 0.4. The gas is heated using the two­
point heating algorithm described above, while we vary the time between heatings, 
6.t. For 6.t = 0.01 the distribution has a exponent a = 1.7 that is approximately 
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Figure 2.14: Velocity distributions for different values of the heating-dissipation rate q, heating 

through the boundmy. Distributions with the same q are shown on top of each othe1: (A) q = 1.3 

and we show N = 100 and rjJ = 1 · 10- 3 (o), N = 200 and rjJ = 5 · 10- 4 (0), N = 800 

and rjJ = 1.25. 10- 4 (<)) . (B) q = 0.13 and we showN = 100 and rjJ = 0.08(o), N = 200 

and rjJ = 0.04(0 ), N = 400 and rjJ = 0.02(<)). (C) q = 0.013 and we show N = 100 and 

rjJ = 0.4(o), N = 200 and rjJ = 0.2(0 ), N = 400 and rjJ = 0.1(<)). Inset: Heating-dissipation 

ratio q for N = 800(o), N = 400(0), N = 200(<)) and N = 100(*) for several values of rp. 
The line is a fit of the form (N rjJ )112

. 

constant over the observed range. When 6.t is reduced a clear crossover develops. 
The behavior of the velocity distribution for velocities higher than the crossover 
velocity is more complicated than in boundary heating. There is also a sharp kink 
at the high-velocity end that we have been unable to explain so far. For small 6.t, 
the velocity distribution is Gaussian over the entire range of velocities. For larger 
6.t, the resulting velocity distribution is reminiscent of the distributions seen for 
boundary heating, where a crossover in the exponent occurred for similar values 
of 17. This confirms the idea that uniform heating and boundary heating describe 
different limits of the same granular gas, for q » 1 and q "' 1, respectively. 
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Figure 2.15: Two-point heating. (a) P(vx/O"x) for different values of /::;.t. (b) 

- in{ - in[P(vx/O"x)]} versus in(vx/O"x)· Data is takenfor N = 350, cjJ = 0.02, 'f/ = 0.4 and 
/::;. t = O.Ol(o) , 0.03(0), 0.05(o), 0.10(6 ), 0.30(<1),0. 50(\7) and 1.00(1>). 

2.5 A model without spatial degrees of freedom 

It has been speculated that the non-Gaussian distributions are caused by spatial 
correlations in the gas [ 42] . However, we can qualitatively reproduce the different 
distributions we observe in simulation with a simple model (based on Ref. [61], 
but including dissipation) of a two-dimensional inelastic gas of N particles without 
spatial degrees of freedom. 

In our model, every time step we select at random C pairs of particles i and j 
and let them collide. At the same time we randomly select H particles k and heat 
those by adding a random amount to their velocity. Collisions in our model occur by 
selecting at random particles i and j and an uniformly distributed impact parameter 
- 2a < b < 2a, where a is the radius of the particles. In order to apply the inelastic 
collision rule in Eq. 2.11 we need to know the inter-particle vector r ij as a function 
of the impact parameter. The unit vector r ij is given by: 

A ( cose ) 
r i j = sinB ' (2.17) 

withe = arcsin(b/ 2R) + arccos(v · §jv), where v = (vj - v i)/2 is the velocity in 
the center-of-mass frame and § is a unit vector along a reference axis. Combining 
Eq. 2.17 with the collision rule in Eq. 2.11 yields: 
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Figure 2.16: - In{ - !n[P(vx/ax)]} versus !n(vx/ax). The symbols shown are velocity distri­
butions acquired by simulation for q = 120 (uniform heating, o), 0.08 (boundary heating, D), 
0.012 (homogeneous two-point heating [51], o) . The lines show the velocity distributions found 
in the model for the same values of q (solid, dotted, dashed). 

v' = v . - 1 + 'f) ( cos
2 e 

t t 2 sin e cos e 
sin e cos e ) ( . - . ) 

. 2 e v , vJ , 
Slll 

(2.18) 

where v i and vi are the velocities of particles i and j, 'rJ is the coefficient of restitution 
and () is the angle between the separation vector r i j and a reference axis §. We 
discard values of() corresponding to (vj - v i)· r ij < 0 as these represent unphysical 
collisions. We heat the particles k by adding a random amount of velocity according 
to Eq. 2.12. To prevent the velocities from running away, we subtract the center-of­
mass velocity after heating. In a single time step, N H = H particles are heated and 
N c = 2C particles collide. As a consequence, q = H/(2C). This model is similar to 
the inelastic Maxwell model with white noise forcing [55], but here, in addition we 
can explicitly adjust the heating and collision independently, allowing us to study 
the behavior as a function of q. As such it is based upon the work of Ulam[61], but 
including dissipation. We can measure the heating-dissipation ratio q in simulations 
of uniform and boundary heating and in Fig. 2.16 we compare velocity distributions 
from the model and simulations for different values of q. We find good qualitative 
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Figure 2.17: Velocity distribution for the simple model with N = 500 and rt = 0.4. (a) 

P( vx/ ax)· (b) - In{ - ln[P( vx/ ax)]} versus In( Vx/ ax)· Data is for different values of q = 2~ : 
q =50 (o), q = 5 (D), q = 1 (<>), q = 0.5 (D.), q = 0.05 (<1), q = 5 · 10- 3 ( '11) and q = 5 · 10- 4 

(1>). 

agreement between simulation and model, even though it has no spatial degrees of 
freedom. This implies that spatial correlations play a minor role, if any, in P( v). Even 
though kinetic theories have established that certain specific non-Gaussian velocity 
tail arise in the absence of spatial correlations [54, 55, 62], it has remained an open 
question whether the entire family of non-Gaussian velocity distributions observed 
in experiments can be explained without spatial correlations [ 42]. 

We study the properties of the model in more detail in Fig. 2.17, where we 
plot velocity distributions obtained with the simple model for an inelastic gas with 
7) = 0.4. We varied the number of heatings and the number of collisions in a single 
time step from H = 100 and C = 1 to H = 1 and C = 1000. As q is lowered, 
the velocity distributions develop a crossover and for q « 1 the distributions are 
strongly non-Gaussian, similar to the velocity distributions obtained for 6.t » 1 in 
two-point heating. In Fig. 2.18 we keep q = 0.025 fixed and vary 7) . We see that the 
crossover point shifts to lower velocities as 77 is lowered. 

Not only does the model yield velocity distributions comparable to uniform and 
boundary heating for similar values of q, it also qualitatively reproduces the family 
of distributions observed for the simulations. The transition in Fig. 2.17 as q is 
increased compares well to the same transition in Fig. 2.15, where 6.t is decreased. 
Also, the crossover that develops in Fig. 2.10 as 77 is increased is similar to those 
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Figure 2.18: Velocity distribution for the simple model with N = 500 and q = 0.025. (a) 

P(vx/!7x)· (b) - ln{ - ln[P(vx/!7x )]} versus ln(vx/!7x)· Data is for TJ = 0.9 (a), 0.7 (D), 0.5 
(o), 0.3 (6 ) and 0.1 (<l) . 

seen in Fig. 2.18. This confirms that the velocity distributions are non-Gaussian 
not because of spatial correlations. Rather, it is the flow of energy through the 
system, mediated by the inelastic collisions, that determines the shape of the velocity 
distribution. 

2.6 Relation to experiments 

Unfortunately, experimental results for velocity distributions have remained ambigu­
ous. Different setups and driving mechanisms usually give different velocity distri­
butions. The distribution with a universal exponent of a: = 1.5 was obtained by 
Rouyer and Menon for a setup where particles were confined between two vertical 
plates and driven in the vertical direction. However, for a different setup, where 
particles on a horizontal plate were driven in the vertical direction, Olafsen and Ur­
bach found crossovers from exponential to Gaussian distributions when changing 
the driving of the particles [ 46, 48, 49] . Blair and Kudrolli used a setup where parti­
cles move along an inclined plane [36, 45] . Friction with the plane during collisions 
reduced the coefficient of restitution to TJ ~ 0.5, much lower than the coefficients 
of restitution usually reached in other setups. They found the distribution with ex­
ponent a: = 1.5 only in the very dilute case. Otherwise, the distributions deviated 
strongly from both Gaussian and the distribution obtained by Rouyer and Menon. 
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This different behavior of the velocity distribution from experiment to experiment 
has yet remained unexplained. 

Because of the absence of gravity and friction in our simulations, it is not pos­
sible to do a direct comparison between our simulation and experiments. In the 
experiment of Rouyer and Menon the driving is through the boundary, but there are 
some significant differences between their heating mechanism and the one we use 
in simulations with boundary heating. Due to gravity and the geometry of the setup 
the injection of energy in the experiment of Rouyer and Menon is mainly in the ver­
tical direction. This energy is transferred into the horizontal direction by collisions 
between particles. Another difference is that in the experiment the frequency of 
driving is relatively low. Because of this the dynamics of the gas close to the driving 
boundary is strongly dependent on the phase of the driving cycle. In fact, it has 
been shown in simulation that for a system similar to the experiment by Rouyer and 
Menon, a shockwave propagates up through the gas [63]. At a certain distance from 
the boundary the time dependence has decayed away and the gas enters a steady 
state. It is in this steady state that the velocity distributions are measured. 

It is not yet established how this time dependence and the occurrence of a shock 
wave influences the velocity distributions in the steady state. A priori it is not clear 
if it is possible to compare velocity distributions in systems with a strong time­
dependence, like the experiments, with those that have no time dependence, as 
is the case in our simulations. There are, however, reasons to assume this is possi­
ble. The velocity distributions in the experiment of Rouyer and Menon are measured 
only in the direction orthogonal to the driving direction. Simulations show that the 
effect of the shock in the direction orthogonal to the shock is usually relatively weak 
and decay rapidly in height [63]. In the steady state, influence of the shock is absent 
in the orthogonal direction, even while it still may be apparent in the direction per­
pendicular to the driving direction. So, if we only look at velocity distributions in the 
orthogonal direction and in the steady state, a comparison between the experiment 
and our simulations is be valid. 

It is also not clear how in this experiment the dynamics of the gas shape the 
velocity distribution and whether it is controlled by the parameter q. We speculate 
that in the steady state the system behaves in fact like a one-dimensional inelastic 
gas. Fast upward moving particles inject energy in the orthogonal direction when 
colliding with particles in the steady state, effectively functioning as a heat source. 
In this picture the mean number of collisions between fast upwards moving particles 
and particles in the steady state would be N H, the average number of heatings, and 
collisions between the particles in the steady state mutually would be Nc , the aver­
age number of collisions. One way of changing the shape of the velocity distribution 
would be changing the fraction of particles in the steady state. More particles in 
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the steady state would lower NH and increase Nc leading to more non-Gaussian 
velocity distributions. 

The above considerations not only apply to the experiment of Rouyer and Menon 
but to most of the other experiments as well. In the experiments of Blair and Kudrolli 
and those of Olafsen and Urbach velocity distributions are measured orthogonal to 
the driving direction. In both cases it is not so much the collisions with the bottom 
plate that drive the gas in the orthogonal directions, but mainly off-angle collisions 
between fast upward moving particles with particles that have low velocities in the 
orthogonal directions. It is in these experiments rather than those of Rouyer and 
Menon that we find a similar dependence on TJ and q as we describe in this article. 

In the setup of Olafsen and Urbach velocity distributions go from non-Gaussian 
to Gaussian when a rough plate is used instead of a flat plate [ 48]. On a flat plate, 
energy is injected only in the in-plane directions by off-angle collisions between 
neighboring particles. With a rough plate, energy is injected directly into the direc­
tions parallel to the plate every time a particle collides with the plate, effectively 
increasing the number of heatings over collisions. Baxter and Olafsen observe the 
same behavior in a system where a layer of heavy particles is inserted between the 
other layer of particles and a flat bottom plate [SO]. Particles from the upper layer 
have off-angle collisions with the layer of heavy particles, injecting energy in the 
in-plane directions every cycle. Particles in the upper layer show Gaussian veloc­
ity distributions, whereas particles in the lower layer have non-Gaussian velocity 
distributions. 

The clearest sign of a potential role of q is seen in an experiment by Blair and Ku­
drolli [36, 45]. Here the number of collisions is increased by adding more particles. 
As a result, their velocity distributions develop the same crossover we see both in 
our simulations and model. The reason why these transitions are not visible in the 
experiment by Rouyer and Menon as they increase number of particles, is likely that 
in the first case the effective coefficient of restitution is much lower, TJ >::::: 0.5, due to 
friction with the inclined plane. These observations have recently been reproduced 
in simulation [59]. 

Again, one of the main problems considering the velocity distributions in gran­
ular gases is that different setups and experiments usually find different velocity 
distributions. As we have shown in this section, this variation in velocity distribu­
tions could be accounted for largely by changes in the parameter q among the differ­
ent setups and experimental conditions. In this way, our finding of the controlling 
parameter q could ultimately explain these seemingly inconsistent results . 
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2. 7 Conclusions 

We compared the velocity distributions of a granular gas that was driven by uniform 
heating and by heating through the boundary. Both in theory and simulation studies, 
it is often implicitly assumed that far from the boundary the dynamics of granular 
gases is well described by uniform heating. Here, we find that there are clear qual­
itative differences. When driven through the boundary, for instance, the gas can 
form coexisting "cool" liquid-like clusters surrounded by a "hot" gaseous state for 
certain values of ¢ and ry. Such clusters do not occur in our simulations with uni­
form heating. For increasing dissipation, these cluster grow in size and ultimately 
exhibit crystalline order. 

The difference between uniform heating and boundary heating also extends to 
the velocity distributions. In both cases, we studied the dynamics of the granular 
gases while systematically varying all relevant parameters. For uniform heating, we 
confirmed that the distribution was close to Gaussian for a wide range of the coeffi­
cient of restitution ry, area fraction ¢ and particle number N. When heating through 
the boundary, we found that the granular gas developed spatial gradients in density 
and mean kinetic energy, with density peaking in the center and mean kinetic en­
ergy at the boundary. Surprisingly, the velocity distribution are relatively insensitive 
to the precise position in these gradients. When normalized by the mean kinetic 
energy, the velocity distributions collapse on each other, consistent with previously 
reported results [ 41, 58]. For boundary heating, the velocity distribution is often 
non-Gaussian, with the precise shape depending sensitively on ry, ¢ and N. Only 
for dilute systems of almost elastic particles do we find the Gaussian distribution 
that is always observed for uniform heating. Furthermore, we show that there is no 
evidence for a universal velocity distribution with a constant exponent a = 1.5. In­
stead, for boundary heating, we find that velocity distributions cross over from one 
exponent to another for high velocities. For this regime we observe a wide range of 
exponents and we find a = 1.5 only for specific values of ¢ and ry. These qualita­
tive differences between the velocity distributions for uniform and boundary heating 
demonstrate that the form of the distributions is not simply a function of material 
parameters (e.g., ry) . 

Instead, we show that the distribution of velocities for dissipative gases, while 
not universal in form, seems to depend only on two parameters: the coefficient of 
restitution 'TJ (a material parameter) and q = NH / Nc , the average ratio of hear­
ings and collisions in the gas (a function of experimental conditions). We find that 
velocity distributions range from Gaussian for q » 1, where heating dominates dis­
sipation, to strongly non-Gaussian for q « 1, where the dynamics of the gas is 
dominated by the dissipative collisions between particles. 
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Finally, a simple model of a driven, inelastic gas without spatial degrees of free­
dom reproduces the entire family of velocity distributions we find in simulation, as 
we vary 77 and q. This means that the velocity distributions are non-Gaussian not 
because of spatial correlations. Rather, it is the cascade of energy from a few high­
energy particles to the slow-moving bulk of the gas that is the key determinant of 
the non-Gaussian velocity distributions. These observations should aid in the con­
struction of a kinetic theory of dissipative gases and help explain the sometimes 
confusing results of recent experiments. 
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3.1 Introduction 
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In this chapter, we study how the dynamics of granular gases can be studied experi­
mentally. In Chapter 2, we focused on understanding how the dissipative dynamics 
of inelastic gases leads to non-Gaussian velocity distributions. Here, we study by 
experiment how the velocity distributions are determined by the friction between 
granular particles and the sidewalls of the container. We also investigate the influ­
ence of the complicated dynamics of granular gases both in space and time on the 
shape of the velocity distribution, as obtained experimentally. 

The velocity distributions of granular gases are often studied in confined mono­
layers of grains, including vertical [41], inclined [36, 45] and horizontal layers 
[ 46, 50] . In most experiments the granular gas is driven inhomogeneously by an 
oscillating boundary [36, 41, 45]. As a consequence, properties of granular gases 
like the density or granular temperature often depend on time and on position in 
the container. In the vertically oscillated gas the behavior of the grains varies sig­
nificantly both in time and space as a shock wave travels upwards through the gas 
[63, 64]. Consequently, local properties, like the areal density p and the granular 
temperature T of the gas, vary between different heights in the gas and different 
phases of the driving cycle. 

Velocity distributions are usually obtained by averaging over regions with differ­
ent local properties. Several authors have addressed the influence of this averaging 
process on the velocity distributions [ 41, 45, 46]. For instance, it has been suggested 
that non-Gaussian velocity distributions might arise by averaging over regions of dif­
ferent granular temperature and density that do have a Gaussian velocity distribu­
tion locally [ 42]. However, there is experimental evidence that such averaging is not 
responsible for non-Gaussian velocity distributions in granular gases [ 45, 46]. Fur­
thermore, non-Gaussian velocity distributions are still observed in the steady state 
of the gas, where density no longer fluctuates with the phase of the driving cycle 
[ 41]. Yet, even when the density is constant in time, spatial gradients in density 
and granular temperature might still occur and it is not clear what the effect is of 
averaging the velocity distribution over this region. Exactly how local properties like 
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density and granular temperature vary with height in the container and phase of the 
driving cycle has been studied by simulation [63, 64], but has not been measured 
experimentally in great detail [ 41]. 

In our experiments on a vertically oscillating monolayers of spheres, we are able 
to resolve the dynamics of the areal density p, the horizontal granular temperature 
Tx and the vertical granular temperature Tz and the corresponding velocity distri­
butions P(vx) and P(vz) as a function of the height in the box z and the phase of 
the driving cycle ¢. This allows us to experimentally address these questions re­
garding averaging, as we can monitor the local properties inside and outside of the 
steady state and study the effect of the local fluctuations on the resulting velocity 
distribution. Furthermore, most experiments are carried out in containers that are 
not evacuated. Potentially, the presence of air can influence the behavior of the gas, 
including the velocity distributions, either through increased friction with the air or 
through electrostatic interactions between particles and the wall. In our setup, we 
can evacuate the container to study the effect of air on the dynamics of the granular 
gas. Surprisingly, we find that the velocity distribution depends only weakly on the 
position in the container or on the phase of the driving cycle, even outside of the 
steady state region and close to the bottom of the container. We also find that the 
velocity distribution is not changed upon evacuation of the container. 

Many experiments have been conducted on monolayers of particles because lim­
iting the motion in one dimension allows the use of a video camera to record the 
entire velocity field [36, 41, 44-49] . Since velocities in the suppressed direction can 
never be fully eliminated, these systems are quasi-two-dimensional (2D), not strictly 
2D. In such confined geometries, particles can make as many or more collisions with 
the wall as with other grains during one driving cycle. Collisions with walls may then 
influence the shape of the velocity distribution function. We find that the confining 
sidewalls play a major role in determining the velocity distribution function, which 
we obtain from experiments and simulations on a vertically oscillating monolayer of 
particles whose motion is suppressed in one horizontal direction. 

3.2 Experimental setup and simulations 

Our setup is similar to the one used by Rouyer and Menon [ 41] and consists of 130 
steel or brass beads of diameter d = 1.6 mm, confined between two vertical Plexiglas 
plates. These plates are separated by a gap of 1.15d and we use sidewalls of Plexiglas 
to confine the particles to a region of 48d in the horizontal direction by 32d _in--the 
vertical direction. The container is airtight and can be evacuated. The steel particles 
have a coefficient of restitution TJ ~ 0.9 and the brass particles have TJ ~ 0.8. We 
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Figure 3.1: (a) Schematic setup of the experiment. A monolayer of metal beads confined between 
two vertical sidewalls is shaken in the vertical direction by an electromechanical shaker. A high­

speed digital camera records the motion of the particles. (b) The actual setup. The shaker is 
in a heavy metal base to suppress motions in the horizontal direction. The container is made of 
Plexiglas and airtight. On top of the container the nozzle used to evacuate the container is visible. 

The container is lit from behind by a LED array. 

use an electromechanical shaker (VTS 100, Vibration Test Systems) to shake the 
container sinusoidally in the vertical direction and an airbearing to constrain any 
horizontal motion. A schematic representation of the setup is shown in Fig. 3.1. The 
driving frequency was f = 50Hz and the peak acceleration r = 47r2 hA/ g = 20. 
This corresponds to an amplitude A = 1.25d. The peak acceleration we use is much 
smaller than the values used for r by Rouyer and Menon. As a consequence, our 
gas is only heated by the bottom of the container and the density profile is not 
symmetric around the center of mass. Particle motions are recorded by a high­
speed digital camera (Phantom V4, Vision Research) at a frame rate of 1000 per 
second and 512x512 pixels. We use backlight illumination by an LED-array to light 
the container. As a consequence, the beads appear as black disks against a bright 
background. Images of the granular gas as obtained by the camera are shown in 
Fig. 3.2. 

We compare our experimental observations with simulations of the same exper­
imental setup. For this an event-driven algorithm described in Ref. [65] was used, 
which was conducted for the same r, f, and sidewall separation as the experiment. 
The parameters characterizing ball-ball interactions were the minimum coefficient 
of restitution 1J = 0. 7, the coefficient of sliding friction /Lb = 0.5, and the rotational 
coefficient of restitution j3 = 0.35. The coefficient of restitution varies with relative 
normal velocity (vn) as described in Ref. [65]: the coefficient of restitution is the 
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Figure 3.2: A 27 d by 27 d portion of the box as seen through the camera for different phases of 

the driving cycle. At ¢ = 0, the bottom plate is in the equilibrium position and moving upwards. 
At this peak acceleration, the gas is only heated at the bottom of the container: 

maximum of TJ and 1 - (1 - ry)(vn/ ylgd) 314 . The TC model of Luding and McNamara 
was also used to prevent inelastic collapse by setting the coefficient of restitution 
to unity if a particle was involved in another collision within 3.7 x 10- 4 seconds of 
the previous one [29]. For interactions between balls and the container (both the 
sidewalls and bottom), we used the same values for e and /3, but we varied the coef­
ficient of sliding friction with the wall from f.Lw = 0 (no sidewall or bottom friction) 
to f.Lw = 1. To reproduce the experiment, N = 130 particles were simulated in a box 
of height 200d, width 48d, and plate separation 1.1d. The entire box was oscillated 
vertically so the particles collided with moving sidewalls, in addition to the bottom, 
as in the experiment. 
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3.3 Image analysis 

In order to study the dynamics of the granular gas, we need to extract the trajecto­
ries r i (t) of the particles from the sequence of images obtained by the camera. All 
particle tracking was performed in IDL (Research Systems Inc). To track the particle 
positions in time at sub-pixel accuracy we use techniques originally developed for 
tracking colloidal particles [66]. However, tracking granular particles in our setup 
comes with difficulties that are different from those encountered when tracking col­
loidal particles. Colloidal particles have Gaussian intensity profiles when imaged 
under the microscope, whereas in our setup particles appear as black disks against a 
bright background. Furthermore, whereas for colloidal particles the background is 
simple and changes little during measurements, the background in our images has 
complicated features and oscillates vertically in time, as can be seen in Fig. 3.2. In 
this section I will give a brief overview of the particle tracking algorithm and how 
we adapted it for tracking granular particles. 

The particle tracking algorithm progresses through five separate steps: 

• Individual images are corrected for the background and other imperfections. 

• Candidate particle positions are located in each image at pixel precision. 

• False positives, features on the image that were mistakenly identified as parti­
cles, are discarded. 

• Positions are refined to sub-pixel precision. 

• The time-resolved particle positions are linked into trajectories. 

I will discuss these different steps in more detail below. 

3.3.1 Image restoration 

The particle tracking algorithm we adapted requires particles to be bright objects. 
Therefore, we first invert all images, so that now particles appear as bright disks 
on a dark background. The original algorithm in Ref. [66] was designed to handle 
spatially uniform backgrounds superimposed with long-wavelength modulations in 
background brightness and short-wavelength noise due to digitization noise in the 
CCD camera and other hardware. In our case, however, the background has distinct 
features, such as small scratches and the boundary between the lid and the container. 
These features could be mistaken as particles at a later stage and it is of great benefit 
to filter them out already at an early stage. 
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Figure 3.3: Background subtraction. (a) A single frame of the container for phase ¢ = 1r / 2. 
(b) Reconstructed background. The background is reconstructed by averaging every pixel over all 

frames with the same phase ¢, provided that the current pixel is not occupied by a particle. 

We do this by subtracting the background. Because the background is always 
partly obscured by the particles in the container, we first need to reconstruct the 
background. Because the container oscillates at a frequency of 50 Hz, we need to 
reconstruct 20 background images, one at every phase ¢ we record. We do this 
by averaging every pixel in the background over all frames in a single run with the 
same ¢, provided that in this frames in the pixel is not occupied by a particle. We can 
clearly distinguish between a pixel occupied by a particle and one that is part of the 
background, because the particles are significantly brighter than the background. An 
example of a reconstructed background is shown in Fig. 3.3 together with one of the 
images it is reconstructed from. When the background is subtracted, the particles 
appear as bright discs on a black background. 

In order to correct for short-range noise due to digitization we convolute the 
image A(x, y) with a Gaussian kernel [66]: 

1 w 
A'(x, y) =B . L I<..\ (i , j)A(x + i , y + j) , (3.1) 

t ,J= - w 

with w the range of the convolution, B = I:.: . . I<..\ ( i, j) and the convolution kernel: 
t ,] 

(3.2) 

Digitization noise is often purely random with a correlation length of 1 pixel. 
Such a convolution with An ~ 1 pixel strongly suppresses such noise, without un­
necessarily blurring the image. 

69 



Chapter 3. Velocity distributions: experiments 

3.3.2 Locating candidate particles 

The particle tracking algorithm we adapt assumes that images of particles are strongly 
peaked around the center of the particle, as is the case for the Gaussian intensity pro­
file obtained for colloidal particles by light scattering. Candidate particles are then 
identified by finding the brightest pixel within a certain radius. In our case, however, 
particles are discs of approximately uniform intensity. A convenient approach is to 
convolve the background subtracted image A' ( x, y) with the image of circle of the 
same radius R as the discs in the image: 

w 

A"(x, y) = L KR(i , j)A'(x + i, y+j), (3.3) 
i ,j=-w 

where R is the radius of the particle in pixels and the convolution kernel K R(i , j) is: 

. . { 1 i2 + j 2 < R2 
KR Z, J = .-

( ) 0 otherwise 
(3.4) 

For odd R, for instance, the kernel K R ( i, j) represents the image of a disc of radius 
R centered at i, j = 0. In the continuum case, the convolution of a disc with radius 
R with itself is approximately a cone of radius 2R. This is more easily seen in one 
dimension: in this case a particle of radius R, centered around x = x 0 , is represented 
by the particle profile : 

S(x ) = { 1 xo - R :=::; x :=::; xo + R, 
0 otherwise, 

indicated in Fig. 3.4(a) . The convolution of this function with itself is: 

S'(x ) =I: S (x')S(x + x')dx' 

(3.5) 

(3 .6) 

and is a triangle with radius 2R centered around x0 , as indicated in Fig. 3.4(b) . The 
convolution in Eq. 3.6 measures the area of overlap between the particle profiles 
S(x') and S(x + x') for each x . If x = x0 ± 2R, the two profiles are just touching. For 
x = x 0 the two profiles completely overlap and the convolution has its maximum. 
The same convolution, but now for the discrete case, is also shown in Fig. 3.4(a) and 
(b). In two dimensions, the corresponding convolution in Eq. 3.3 with discs imaged 
by the camera yields a cone with a unique maximum at the pixel in the center of the 
disc, as long as the kernel KR(i , j) has and equal or larger radius R than expected 
for the discs in the experiment. 
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Figure 3.4: Finding the center of a particle in one dimension. (a) The particle profile S(x) (black 
line) for a particle of radius R and centered around x0 = 0.3R/ 7. The profile is also shown in 
the discrete case (gray bars) for pixel size t:.r = R/ 7. Because of the sub-pixel displacement 
x0 = 0.3t:.r, the discrete profile is asymmetric around the origin. (b) The convolution in Eq. 3.6 
of the particle profile S(x) with itself (black line). The convolution is a triangle with radius 2R 
centered around x0 . In the discrete case (gray bars) the convolution yields a similar shape, but 
is asymmetric around the origin. This asymmetry contains all the information on the sub-pixel 
displacement x0 . 

After this convolution, each particle within the frame of view can be identified 
by its local brightness maximum in the convoluted image A" (x, y). Using the convo­
lution with the kernel KR(i,j) in Eq. 3.4 has an additional advantage. The convo­
lution in Eq. 3.3 is effectively a procedure for comparing the brightness distribution 
at each pixel in the image with that expected for a disc of radius R. The brightness 
maximum in the convolved image A"(x,y) reaches its maximum value when the 
surrounding brightness distribution equals that of a disc. If, on the other hand, the 
local brightness distribution is that of a false positive with a different shape than that 
of a disc of radius R, the brightness maximum is significantly smaller. This makes 
it much easier to recognize the false positives in subsequent steps. Finally, the cen­
troid, or the position of the particle at pixel precision, is found by gray scale dilation. 
Gray scale dilation is an elementary morphological operation which sets the value 
at A" (x, y) to the maximum value found within a distance w of the position (x , y). 
A pixel in the original image A" ( x , y) that has the same value in the dilated image 
is then considered a tentative particle with its center at that location. 
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3.3.3 Discarding false positives 

False positives are recognized by studying for each tentative particle the zeroth mo­
ment m 0 and second moment m2 of its brightness distribution, defined as: 

mo L A"(x +i , y+j) , (3.7) 
i>+j2 $ w> 

(3.8) 

where A"(x, y) is the image convolved with a disc of radius Rand (x, y) is the loca­
tion of the particle's centroid. The zeroth moment m 0 is a measure for the amplitude 
of the convolution of the particle, or, indirectly, a measure to what extent the inten­
sity profile of the candidate particle looks like that of a disc with radius R. The 
second moment m2 is a measure for the spatial extension of the candidate particle. 
A candidate particle that is very bright, but is smaller than a disc with radius R can­
not be distinguished from a real particle based on m 0 , but will have a significantly 
different value of m2 . When the distribution of moments of the candidate particles 
is plotted in the (m0 ,m2) plane, all the granular particles cluster together. False 
positives can be discriminated from real particles by their moments m 0 and m2 as 
they fall outside of this cluster in the (m0 , m2 ) plane. By discarding all candidate 
particles that lie outside of this range, false positives can be filtered out in a very 
reliable way. The exact cut-off values for m 0 and m2 are easily determined by hand. 

3.3.4 Determining positions at sub-pixel precision 

So far we have determined the positions of the particles at pixel accuracy. The actual 
positions at sub-pixel accuracy are given by x = (x +Ex, y + Ey ), where the sub-pixel 
offsets Ex and Ey are calculated by the first moments: 

(3.9) 

where m 0 is the zeroth moment in Eq. 3.7 and A"(x, y) is the convolved image. In 
principle, this procedure gives the exact sub-pixel offset. For instance, calculating 
the first moment of the discretized intensity distribution in Fig. 3.4(b) correctly 
reproduces the offset Ex = 0 . 3~r. In practice, the accuracy of determining the sub­
pixel offset is limited by experimental noise. 
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3.3.5 Linking positions into trajectories 

Particle positions are linked into trajectories by assuming that the probability of 
a certain displacement between consecutive frames decreases with the size of the 
displacement. The most likely assignment of particle labels from one frame to the 
other is the one that maximizes the total probability. Because the algorithm was 
developed in the context of colloids, the probability distribution of displacements is 
the Gaussian distribution expected for diffusion. We find that this distribution also 
gives satisfactory results in our case, provided that the displacement between two 
frames is never more than a particle diameter. The algorithm allows for the deletion 
and creation of particle labels as particles move out of the field of view. 

Figure 3.5 shows the application of the particle tracking algorithm on a frame 
from an experimental run. After background subtraction, the particles appear as 
bright disks on a black background and a considerable amount of noise is visible on 
the intensity distribution of the particles. After convolution, isolated particles appear 
as cones with the brightest pixel at the center of the disc. When particles are in close 
proximity, the convolved image is more complicated as the region between the par­
ticles receives contributions from both particles. The particle positions at sub-pixel 
position are shown overlayed over the original inverted image. The velocities of the 
particles are calculated by the displacement between subsequent frames divided by 
the time between frames. 

We tested the algorithm by generating a fake data set from simulation data. From 
the positions of the particles obtained by simulation we generated high-resolution 
images of particles in the container. We then sampled these figures down to a reso­
lution comparable to the resolution of the images obtained experimentally. At this 
resolution particles have a radius of R = 13 pixels. The velocities of the particles 
and time resolution between consecutive frames were comparable to those in the 
experiment. We superimposed different levels of random noise on top of the images 
to probe the sensitivity of the particle tracking algorithm to experimental noise. In 
Fig. 3.6 we compare the velocity distribution measured directly in the simulation 
with those calculated from the particle trajectories obtained by the particle track­
ing algorithm. This figure shows excellent overlap for levels of noise comparable 
to those observed in the experiment, indicating that we should be able to reliably 
generate velocity distributions from images obtained experimentally. 

We estimated the accuracy with which we measure the particle positions by mon­
itoring the horizontal velocity of particles in the granular gas. Because gravity oper­
ates in the vertical direction, the particles undergo rectilinear motion in the horizon­
tal direction. By measuring the variations in velocity obtained for such trajectories, 
we can estimate the positional accuracy. These measurements indicate that we can 
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(a) 

(b) 

(c) 

(d) 

Figure 3.5: Different steps of the particle tracking algorithm. (a) After background subtraction. 
(b) After convolution with the image of a disk of radius R. (c) After finding the brightest pixel and 
discarding false positives. (d) Particle positions at sub-pixel position overlayed over the original 
inverted image. 
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Figure 3.6: Accuracy of particle tracking. Velocity distributions obtained directly from the simu­
lation (black line) and obtained by the particle tracking algorithm without noise (circles), with 

5% noise (squares) and with 10% noise (diamonds) . The velocity distribution without noise has 

peaks superimposed at ±3n/2( v / CJ) with n = 0, 1, .... These peaks are due to an artifact in the 
fake data generation and disappear when noise is present. 
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resolve particle displacements up to an accuracy of 0.004mm (or 0.0025d). 
To analyze the gas, we divide the container into horizontal slices of height d, as 

the system should be invariant in the horizontal direction, and record the density 
and temperature of the gas in these slices. To resolve the dynamics in time, each 
cycle was divided into 20 bins. The aerial density p is defined as the total area of the 
particles in the slice divided by the area of the slice. The granular temperatures are 
defined as T.'" = ((vx - (vx)) 2

) and Tz = ((vz - (vz)) 2 ), where x is the horizontal 
direction, z is the vertical direction and () denotes an average taken over all par­
ticles in the same slice and at the same phase in the cycle. For each run, the peak 
acceleration was ramped up to the desired value in 20 driving cycles, after which 
data was taken for 102 cycles. Statistical properties are obtained by averaging over 
7650 driving cycles. 

3.4 Steady state 

Figure 3.7 shows the dependence of p, T.'" and Tz on the height in the box and phase 
of the driving cycle as the container is shaken with N = 130 steel beads, f = 50Hz 
and r = 20 . At ¢ = 0 the bottom plate is in the equilibrium position and moving 
upwards. It is around this phase in the cycle that the gas collides most strongly 
with bottom of the container and a strong peak in Tz develops here as particles get 
excited in the vertical direction. At ¢ = 1r / 2 the container is at its maximum height. 
A strong peak in p near the bottom plate results as particles are pushed up by the 
plate, along with a second peak higher in the box corresponding to particles still 
falling towards the plate. Through collisions in the gas energy is transferred from 
the vertical to the horizontal direction, causing a peak in Tx. These disturbances 
in density and temperature travel upwards in the box during the rest of the cycle. 
For p and T.'" the amplitude of the disturbance decays rapidly with height and above 
the certain height the gas forms a steady state for these parameters . Tz, on the 
contrary, remains oscillatory up until much higher: a wave of high Tz can still be 
seen traveling through the gas as a new one is being excited at the bottom of the 
container. 

The existence of a steady state for p and T.'" is made more explicit in Fig. 3.8. 
Here we show for every height the relative deviation in time of the aerial density p, 

the granular temperatures Tx and Tz and the kurtosis -y4 of the horizontal velocity 
distribution P(v,;). Here, the relative deviation is defined as the standard deviation 
of the quantity divided by the mean as it varies with the phase of the driving cycle. 
The kurtosis -y4 of the velocity distribution P( Vx) is defined as -y4 = ( v~) / ( v~) 2 

and 
is a measure of the peakedness of the distribution. For a Gaussian distribution 'Y4 = 3 
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Figure 3. 7: Aerial density p (solid thick line) and the granular temperatures Tx and Tz (solid 

thin line and dashed line) shown as a function of the height in the box for N = 130, f = 50Hz 

and f = 20. Consecutive images represent different phases ¢ in the driving cycle. 
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Figure 3.8: The relative deviation in time of the aerial density p (thick solid line), the kurtosis 
/4 (thick dashed line) and the granular temperatures Tx (thin solid line) and Tz (thin dashed 
line) as function of the height in the box. The deviation of the kurtosis was multiplied by a factor 
5 for clarity. Above a certain height p, Tx and 14 become stationary, but the deviation of Tz 
remains large in this region. Higher in the box, all relative deviations are dominated by noise. 

and deviations from this value have been used before to characterize non-Gaussian 
distributions. 

As can be seen in Fig. 3.8 the kurtosis 14 becomes stationary above a height of 
z = 8d. This suggests that above this height the corresponding velocity distribution 
P(vx) is independent of the phase of the driving cycle. A little higher in the box, at 
z = lOd, p and Tx become constant in time. The reason that the relative deviation 
of p in this region is bigger than that of Tx is because the number of particles here 
becomes very small and the deviation is largely dominated by statistical fluctuations. 
Fig. 3.8 also shows than Tz fluctuates much more strongly than T.'" throughout the 
box and is nowhere stationary. In the upper part of the box the relative deviation 
in time of all quantities becomes large because of statistical noise. Measurements 
done at the same f and r but in air or with brass beads instead of steel beads show 
the same dynamics of p, Tx and Tz in time and space and produce a similar steady 
state. Furthermore, the space and time dependence of p, T.'" and Tz seen in Figs. 3. 7 
and 3.8 agrees well with results from previous simulations [64] . 
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3.4.1 Horizontal velocity distributions 

Here, we focus on the dependence of the velocity distributions on the height in the 
container and the phase of the driving cycle. We study the non-Gaussian features of 
the velocity distribution in Section 3.5. In Fig. 3.9 we show the velocity distribution 
P(vx/rYx) obtained for N = 130, f = 50Hz and r = 20 as a function of the height 
z in the container. The distributions are averaged over the driving cycle and nor­
malized by rY~ = ( v;) . The velocity distributions are not exactly symmetric around 
V x = 0 due to a slight tilt in the container as we show in Section 3.5. The amount of 
asymmetry varies with the height in the container. A remarkable feature of the ve­
locity distributions observed here is a sharply peaked maximum, which results from 
friction between the particles and the sidewalls as we will show in Section 3.5. We 
find that the functional form of the velocity distributions is relatively insensitive to 
the position in the container. The largest deviation from the distributions observed 
in the steady state is found close to the bottom of the container, where the fluctu­
ations in density and granular temperature are maximal. In Fig. 3.9, we also show 
that these velocity distributions are clearly different from both Gaussian distribu­
tions and the distribution observed by Rouyer and Menon with a= 1.5[41]. Next, 
we examine the dependence of the velocity distribution on the phase of the driving 
cycle. In Fig. 3.10 we plot P(vx) for ¢= 0, 1r /2, 1r and 3n /2 and for different heights 
in the container, z = 5d and z = 10d. In both cases, the velocity distributions show 
little variation when results for different ¢ are plotted on top of each other, even 
though the gas is in steady state only for z 2': 10d. 

A different representation of the velocity distribution P(vx) is shown in Fig. 3.11. 
Here, we plot the fraction of the particles found in the container at height z and 
with vertical velocity Vz , for successive phases of the driving cycle. Again, at ¢ = 0 
the container is in the equilibrium position and moving upwards. As the gas is 
compressed, the velocity distribution widens considerably close to the bottom of the 
container, corresponding to the peak in Tx observed in Fig. 3.2. This disturbance 
decays away as it travels upwards in the container. It is apparent that at z = 5d 
the velocity distribution still shows a strong phase dependence, even though when 
normalized by rYx this dependence disappears, as shown in Fig. 3.10. 

In Fig. 3.12 we focus on the dependence of the high velocity tails of the dis­
tributions on the location in the container. When velocity distributions taken from 
different heights z are averaged over the driving cycle, we find that in all cases the 
high velocity tail can be fitted with distribution Pa(v) with a~ 1.7. We find a similar 
picture when we examine the high velocity tails for different phases of the driving 
cycle (not shown here). In both cases, we see that the tails are very similar in all 
cases and that deviations only occur for small velocities in a way that depends on 
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Figure 3.9: The horizontal velocity distribution P(vxf ax) for N = 130, f = 50Hz and r = 

20, measured for different heights in the box and averaged over the driving cycle. The velocity 
distributions are shown in (a) linear and (b) logarithmic scales. Also shown is a Gaussian 
distribution (dotted line) with exponent a = 2 and the velocity distribution found by Rouyer and 

Menon (dashed line) with exponent a= 1.5. 
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Figure 3.10: The horizontal velocity distribution P( Vx /ax) for different phases of the driving 
cycle. Velocity distributions are plotted for ¢ = 0, w / 2, 1r and 37r / 2 at heights z = 5d (black 
lines) and z = lOd (gray lines) in (a) linear scale and (b) logarithmic scale. 
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Figure 3.11: The fraction of particles P(vx, z) found for each value of horizontal velocity Vx and 

height in the box z. The gray scale corresponds to the fraction of particles, running from 1 · 10- 6 

(black) to 3 ·10- 4 (white) on a logarithmic scale. Different pictures correspond to different phases 

in the driving cycle. 

position and phase. This suggest that the deviations in the kurtosis shown in Fig. 3.8 
outside of the steady state area are mainly due to time dependence of the velocity 
distribution for small velocities. 

In Fig. 3.13, we show P(vx) both in vacuum and in air and with brass beads 
instead of steel beads. Fig. 3.13 shows that in all cases the high-velocity tails are 
well described by a stretched Gaussian with a: = 1.7. These results show that the 
high velocity tails are insensitive to the presence of air. In the experiment by Rouyer 
and Menon [ 41] used a container that was not evacuated. Also, brass beads have 
a lower coefficient of restitution than steel beads and should dissipate more energy 
upon collision. This means that the velocity distribution is unaffected by an increase 
in dissipation, in contrast to Kudrolli and Henry, who report that their velocity d:·.:>tri­
butions become more non-Gaussian as the dissipation is increased [ 45]. This might 
be due to the fact that for particles rolling on a slope TJ ;:::; 0.5, much lower than 
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Figure 3.13: High velocity tails shown for steel beads in vacuum (circles), steel beads in air 

(diamonds) and brass beads in vacuum (squares). The distributions are averaged over the steady 

state region Bd < z <25d and over the driving cycle. The dashed lines show linear fits through 

the high-velocity tails of the distributions of Pex (v) with a :::::: 1.6. 

81 



Chapter 3. Velocity distributions: experiments 

<1>=0 <j>=rc/2 

-0.5 0 0.5 -0.5 0 0.5 

<j>=n <j>=3n/2 

25 

20 

:s 15 
N 

10 

5 

-0.5 0 0.5 - 0.5 0 0.5 
vz (m/s) vz (m/s) 

Figure 3.14: The ft·action of particles P(v. , z ) found for each value of vertical velocity v. and 

height in the box z . The gray scale corresponds to the ft·action of particles, running from 1 · 10- 6 

(black) to 3· 10- 4 (white) on a logarithmic scale. Different pictures correspond to different phases 

in the driving cycle. For high v z or z, the velocity distribution is organized into discrete bands. 

The letters A, B, C, D and E identify one of these bands as it evolves through a driving cycle. 

TJ = 0.8 for brass particles. 

3.4.2 Vertical velocity distributions and collision statistics 

The vertical velocity distribution P(vz ) has been studied before and is in general an 
irregular distribution and asymmetric around Vz = 0 [ 45]. In our case, it proves 
more insightful to plot P( vz) as in Fig. 3.14. When plotted this way, the velocity dis­
tribution shows a surprising structure. At high Vz and z, the particles are organized 
in discrete bands of the form z = A + Bvz and these bands move through the box 
in time, as is shown in Fig. 3.14 where we indicate the position of one such band 
during one driving cycle. The origin of this structure is easily explained. At ¢= 0 the 
container collides with the gas and excites a wide range of positive vertical velocities 
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at the bottom of the container. At ¢ = 1r / 2 the gas leaves the plate. For simplicity we 
assume that all particles excited by the plate, leave the plate at z = 0 and with some 
positive velocity v. If the gas was sufficiently dilute that collisions can be ignored, 
then each particle would evolve from ( v = v, z = 0) to ( v - gt , vt - gt 2 / 2) after some 
time t. For a band of particles, all excited at t = 0 and z = 0 with a range of vertical 
velocities v2 , this gives rise to relation z = gt2 /2 + vzt between the height in the 
box z and velocity V 2 • So each band observed in Fig. 3.14 corresponds to a collec­
tion of particles that was excited by the plate a time t ago and have been traveling 
through the box without collisions. At least seven of these bands are clearly visible 
in Fig. 3.14, meaning that at any moment one can find in the gas the remnants of 
up to seven cycles ago. 

Next, we focus our attention on the collisions occuring in the gas. We extract 
this data from the particle tracks, by monitoring the relative parallel velocity for 
each pair of particles that are within a distance l.ld of each other. The relative 
parallel velocity is defined as (vi - v 1) · r i1, where i and j label the particles and r iJ 

is the normal vector connecting the particle centers. This velocity is positive when 
the two particles are approaching and negative when they are moving away from 
each other. When the sign of the relative parallel velocity changes from positive to 
negative we assume a collision has happened. For each collision we record at what 
height in the box and at what phase of the driving cycle it occured and average over 
612 cycles. 

In Fig. 3.15 we show the number of collisions per cycle in the gas as a function of 
height z in the box and for different phases in the driving cycle. Between ¢ = 0 and 
¢ = 1r /2, when the collision between the plate and the gas is strongest, the number 
of collisions increases dramatically near the plate. This peak travels upward with 
the shockwave, but decays as the density decreases and the motion of the particles 
become more aligned through the collisions. Above a certain height the number of 
collisions becomes very small and in the steady state region z > 8d the number of 
collisions per particle per cycle becomes as small as 0.1. High in the container we 
find that the density profile decreases as p(z ) ~ exp( - az ). Such exponential decay 
has been seen before in experiment [67]. 

Fig. 3.14 and Fig. 3.15 together explain how in the steady state T.'" is constant, 
while in the same region Tz still varies considerably with the phase of the driving 
cycle. As the gas collides with the plate, then at some height in the steady state re­
gion, the vertical velocity distribution P(vz ) is dominated by particles with negative 
vertical velocities. When the band of particles excited at the plate travels through 
the gas as shown in Fig. 3.14, it will at some point reach this region and the velocity 
distribution will broaden as it now includes many particles with large positive V 2 • 

This is reflected by a sudden increase in Tz and the peak in Tz moves upward in 
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Figure 3.15: The number of collisions C ( z) per cycle as a function of height in the box for 
N = 130 brass beads, f = 50Hz and r = 20. The different figures correspond to different phases 
of the driving cycle. The collisions were recorded over 612 cycles. The gray lines show fits of the 
form p(z) ~ exp( -az) . 

the gas as the bands in Fig. 3.14 do. Above a certain height, as shown in Fig. 3.15, 
these particles collide only rarely and here the behavior of Tz is largely dominated 
by freely moving particles. The only way to transfer energy from the vertical to the 
horizontal is by collisions, so even though Tz still fluctuates, these fluctuations no 
longer can influence Tx and P(vx) above this height. 

3.5 Velocity distributions 

3.5.1 Steady-state distributions 

Collisions of particles with the bottom plate inject energy mainly into vertical mo­
tion. Energy is transferred into the horizontal direction directly through particle­
particle collisions and through collisions of rotating particles with the bottom. Close 
to the bottom plate the areal density p and the probability distributions for the hor­
izontal and vertical components of velocity (vx and Vz) vary considerably during 
each oscillation of the plate. However, far above the plate the density and velocity 
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Figure 3 .16: (a) Linear and (b) logarithmic plots of the velocity distribution P(vxfO'x) mea­
sured in the steady state region for a system with N = 130, f =50Hz and r = 20. Distributions 
are shown for clean particles (•) and particles with a small amount of added graphite (*). 

Also shown is the non-Gaussian result (Eq. 1, dashed line) from the experiment in [41], with 

a = 1.51 and B = 0.8. (c) Comparison between experiment (•) with particles and simulation 
(o) with /-lw = 0.075. (d) Comparison of simulations with ball-ballfriction /-lb = 0.5 and with 
ball-wall friction /-lw = 0.075 ( o) and /-lw = 0 ( 1:r). The experimental distributions are not pre­
cisely symmetric about Vx = 0 due to the container tilting slightly when shaking. To match the 
asymmetry in the experiment, gravity in the simulation was tilted 1. 9 degrees with respect to the 
normal to the top of the containa This does not affect the functional form of the distributions 
when compared to simulations without the tilt. 
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Figure 3.17: Double log plot of the velocity distribution functions. p , ( v) has slope - a; to 

guide the eye, slope a = 3/2 is shown by a dashed line and a = 2 (a Gaussian) by a solid line. 

Experimental results are shown for clean stainless steel (SS) particles ( •) and SS particles with 

graphite added ( *). Simulation results are shown for three different values of ball-wall friction 

Vw with the ball-ball friction held fixed, Vb = 0.5. The data sets have been offset for clarity. 

distributions become time independent, as has been shown by Moon et al. [64]. 
Here we examine distribution functions for lld < z < 12d, which is in the steady 
state region - the density and horizontal velocity distribution functions change by 
less than 5% during each cycle. 

Our measured and simulated distributions are shown in Fig. 3.16. For clean 
particles in the experiment and non-zero wall friction in the simulation, the velocity 
distributions have an unusual characteristic: a sharply peaked maximum, a feature 
that has been observed before [ 45, 46] but has not been fully explored. (For z < lld, 
the shape of the distribution changes slightly with height in the box and phase of the 
driving cycle, but the sharp peak is always present.) We find that the peak disappears 
when we add approximately 0.0002 kg of graphite powder (a lubricant) to the 0.1 
kg of steel spheres [68]. The distributions observed with and without graphite both 
differ from those in Ref. [41] (cf. Fig. 3.16(b)). 

Experiment and simulation are compared in Fig. 3.16(c). For Mw = 0.075, the 
simulation results agree well with the experiment. The peak of the velocity dis­
tribution in the simulation decreases as Mw is decreased, and the peak disappears 
completely for Vw = 0, as Fig. 3.16(d) shows. 

The distributions obtained from experiments on stainless steel particles with 
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graphite and simulations with fJw = 0 are described by a straight line on graphs 
like those in Fig. 3.17. The slope of such a graph yields the magnitude of the ex­
ponent a: in Po: ( v). In simulations without sidewall friction, fJw = 0, the exponent 
obtained is 1.8. An exponent of 1.7 is found for the velocity distribution of stain­
less steel particles with graphite. The peaked distributions are not described by a 
single value of a: , but we can compare estimates of a local value of a: in the range 
1.0 ;S ln(vx /O'x ) ;S 1.6: we obtain 1.8 fo r clean stainless steel particles, while in the 
simulation, a: increases from 1.3 with sidewall friction /Jw = 0.2 to a: = 1.8 with 
/Jw = 0.1. 

3.5.2 Single Particle Dynamics 

We have shown that interactions with sidewalls strongly affect the functional form 
of the velocity distribution. This result is supported by our observations in simula­
tions that in the steady state region, a ball collides with the wall typically three times 
as often as it collides with another ball. To isolate the effects of ball-wall collisions, 
we have conducted experiments and MD simulations on a single particle in an os­
cillating container (Fig. 3.18). Because there are no collisions with other particles, 
the particle's motion is determined only by collisions with the bottom plate and the 
sidewalls. Figure 3.18(a) shows the time evolution of the horizontal velocity vx for 
a particle in a simulation with fJw = 0.4 and e = 0.7. Each time a particle bounces 
on the bottom plate, some of the angular momentum of the particle can be trans­
ferred into linear momentum in the horizontal direction. These collisions would 
produce the only changes in vx if there were no interaction with the sidewalls, but 
Fig. 3.18(a) reveals more frequent smaller changes, which correspond to collisions 
with the sidewall. The staircase-like decrease in velocity (see inset) corresponds to 
a particle's rattling between the sidewalls, losing energy at every collision. Thus the 
effect of the sidewalls is to damp the horizontal velocity. The ultimate fate of a single 
particle, regardless of its initial vx , is to bounce vertically on the bottom plate with 
V x = 0. 

The horizontal velocity vx measured for a single particle in the experiment is 
shown in Fig. 3.18(b). Collisions with the bottom plate, determined to be when the 
vertical component of velocity Vz changes sign, are indicated by the dotted vertical 
lines. If there were no influence of the sidewalls, the horizontal velocity vx would 
remain constant between these lines. The behavior of the particle between collisions 
with the bottom plate is more complicated than in the simulation, but it is still clear 
that the horizontal velocity is damped by collisions with the walls. The damping of 
the horizontal motion of a single particle illustrated by Fig. 3.18 explains why the 
velocity distribution for a gas of particles has a peak at vx = 0 (Fig. 3.16) . The over-
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Figure 3.18: Horizontal velocity of a single ball on a vertically oscillating plate in (a) simulation 

(J.1, w = 0.4 and fJ,b = 0.5) and (b) experiment. The larger, less frequent jumps are the result of 

collisions with the bottom plate; these collisions are indicated by the dotted vertical lines. The 

more frequent smaller changes are the result of collisions with the sidewalls; these changes are 

clearer in the enlarged scale of the insets. The regions depicted in the insets are indicated by 

arrows. 

populated high energy tails arise because for a distribution with a given variance, 
the increase in the central peak must be balanced by an increase for v > !J. 

3.5.3 Single particle model 

Features of the velocity distributions obtained from experiment and simulation are 
well described by a discrete map model with a damped driven single particle. The 
particle's velocity is initially drawn from a Gaussian distribution of variance unity. 
The velocity at iteration n + 1 is given by Vn+l = vne -"~ . For one percent of the iter­
ations, randomly selected, we replace the velocity Vn+l with a velocity drawn from 
a Gaussian distribution with variance unity. The velocity probability distribution is 
constructed from n = 109 iterations. The exponential decay of the particle velocity 
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Figure 3.19: Velocity distribution P( v / 0') for a model of a damped driven particle. The distribu­
tions are shown for increasing damping 1: 0, 0.005, and 0.010. The inset compares the tails of 
the distributions for the model with a Gaussian distribution (solid line, a = 2) and a distribution 
with a= 1.5 (dashed line). The data sets are offset for clarity. 

between iteration steps corresponds to the numerous sidewall collisions that occur 
between excitations by the plate, and the random replacements of the particle's ve­
locity mimic plate collisions that transfer horizontal momentum to the particle. 

This model captures the qualitative behavior of the velocity distributions found in 
both experiment and simulations, as Fig. 3.19 illustrates. For finite damping, 1 > 0, 
the distribution is strongly peaked at v = 0, while in the absence of damping, 1 = 0, 
the distribution is Gaussian. Further, damping affects the tails of the distribution: as 
damping is decreased to zero, double logarithmic plots of the distribution become 
less curved and the slope increases from 1.3 to 2, just as in the MD simulation 
(Fig. 3.17). Similar behavior is seen when the damping 1 remains fixed, but the 
heating rate is increased. 

The single particle model is similar to a model by Puglisi et al. that includes 
damping of the particle velocities [ 42] . Increasing the damping in their model also 
led to non-Gaussian velocity distributions, but a strong peak around v = 0 was not 
reported. This peak might be absent in their model because particles were driven not 
by discrete heating events but by continuous white noise, which for strong damping 
led to Gaussian behavior around v = 0 in their model. 
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3.6 Discussion and conclusions 

We studied the behavior of the density p, the granular temperatures Tx and Tz and 
the velocity distributions P(vx ) and P(vz) in a vertically oscillated granular gas, 
both as function of the height in the box z and phase of the driving cycle ¢ . These 
quantities are oscillatory in time close to the bottom of the container, but above a 
certain height the gas reaches a steady state where p, T.'" and P(vx ) are constant in 
time. In this steady state, both Tz and P( vz) still show strong oscillatory behavior. 
The velocity distribution P(vx ) in the steady state is sharply peaked around vx = 0 
and has high velocity tails of the form P( v) = A exp( -Biv/()1° ) with a = 1.7. We 
find that the high-velocity tails of P(vx) depend only very weakly on the position 
in the container and the phase of the driving cycle, even outside of the steady state 
region and close to the bottom of the container. The same distribution was found 
for steel beads as well as for brass beads and both in vacuum and in air, suggesting 
that it is independent of material properties. Furthermore, we find that the steady 
state of the granular gas consists mainly of particles that suffer no collision in that 
region of the container. This explains why the considerable fluctuations of Tz in the 
steady state have no influence on either T.'" or P(vx )· 

The kinetic theory of granular gases is often studied in experiments on confined 
monolayers of grains because the behavior of all grains for all times can be recorded. 
However, we have found that the ball-wall friction associated with the confinement 
should be included in interpreting experiments on monolayers in quasi-2D geome­
tries, including vertical [ 41], inclined [ 45], and horizontal layers [ 46, SO]. Indeed, 
in an experiment with the last geometry the velocity distribution was peaked for a 
smooth plate [ 46], but the peak disappeared when the smooth plate was replaced 
with a rough plate, which drove horizontal as well as vertical motion [ 49]. In the 
model presented in Section 3.5.3 this would correspond to an increase in the heating 
rate, leading to more Gaussian distributions. Similarly, a recent experiment with a 
layer of light particles on top of a layer of heavy particles yielded a non -Gaussian dis­
tribution for the heavier particles, but Gaussian statistics were found for the lighter 
particles [50]. The interactions between the particles and the container in these 
quasi-2D systems may have been principal determinants of the shape of velocity 
distributions and therefore should be taken into consideration. 
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Chapter 4. Introduction 

4.1 Introduction 

When one watches bacteria, such as the intestinal bacterium Escherichia coli, under 
the microscope, one gets the distinct impression of watching living beings showing 
individual behavior. Examples of E. coli are shown in Fig. 4.1. If food is plenti­
ful, most of the bacteria swim around rapidly, covering several body lengths in a 
second. Yet, all bacteria will swim in different directions and some of them will 
stop swimming every once in a while, tumble around for a bit and then swim off 
in another direction. At the same time, some bacteria stick to the bottom and form 
slowly growing colonies. This variation in behavior occurs even when the bacteria 
are identical twins, having grown from a single initial cell, and when they live in 
exactly the same environment. On the other hand, their behavior is not completely 
random but shows a clear purpose. Bacteria continuously take up nutrients from 
the environment and use them to grow and divide. Even though they swim around 
seemingly erratically, bacteria will swim towards a food source and, less obviously 
to the naked eye, will adapt easily to different environmental conditions. 

Because of this characteristic behavior under the microscope, bacteria were cate­
gorized as living creatures immediately upon their discovery. In a letter to the Royal 
Society on October 9th 1676 containing the first ever observation of bacteria, Antoni 
van Leeuwenhoek describes them as [69]: 

animals .. . unbelievably small, yes so small, to my eye, that I judged, 
that a hundred of these small animals, when placed next to each other, 
would not reach the size of a grain of sand 1 . 

Initially, the discovery of bacteria caused quite a stir [70]. Van Leeuwenhoek, 
a cloth salesman with no formal education in the sciences, would over the years 
receive a steady stream of aristocrats and royalty to peer through his microscope. At 
the same time, he produced an equally steady stream of observations of microscopic 
animals. He found bacteria almost everywhere: in rain water, in the intestines of 
flies, even in his excrement and his dental plaque. Of the latter, for instance, he 
remarks that [71]: 

I have mixed it several times with pure rain water ... and often have 
seen with much amazement that it contained very many extremely small 
living animals, that moved it vigorously ... Importantly, I judged that less 
people live in the united Netherlands, than I carry living animals in my 

1diertgens . .. ongelooflijk ldeijn, ja soo ldeijn, in mijn gesicht, dat ik oordeelde, dat bij aldien 100. 
van dese seer ldeijne diertgens, nevens den anderen lagen gestrekt, dat deselvige de lengte, van een grof 
santie niet soude kunnen bereijken. 
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Figure 4.1: E. coli bacteria under the microscope. (a) A long filamentous cell of E. coli sur­

rounded by normal sized cells . (b) A dense colony of E. coli bacteria at the interface between 

water and air: (c)-(g) Freely swimming bacteria. The cells indicated by the black and the white 

arrow swim in opposite directions. The length of the cells is around 1 f..lm and the time between 

(c) and (g) is 0.5 s. Images were obtained by S. Verbrugge and B. van den Broek. 

mouth today ... I thought I saw more than a thousand living animals in 
a quantity of matter not larger than a hundredth part of a sand grain 2 . 

However, the scientific interest in microorganisms quickly dwindled after Van 
Leeuwenhoek [70]. Scientists generally considered bacteria as a kind of novelty, 
amusing to look at but not worthy of serious study. Already by the early 1690s, 
Robert Hooke complained that the general consensus on the use of the microscope 
was that "the subjects to be enquired into are exhausted, and no more is to be 
done." [72] As a consequence, little research was conducted on microorganisms 
until the nineteenth century when Pasteur and Koch discovered that bacteria do not 
arise spontaneously from inanimate matter, as was often assumed before, and that 
bacteria are the cause of many diseases. 

2ik heb dan het selvige verscheijde malen met suijver regenwater vermengt ... en meest doorgaans 
met groote verwondering gesien, dat in de geseijde materie waren vee! seer kleijne levende dierkens, dier 
haar seer aerdig beweegden . .. wat my belangt ik oordeel van myn selven . . . datten soveel menschen niet 
Ieven in onse vereenigde Nederlanden, als ik heden levende dieren in myn mont draag . .. ik imagineerde 
wellOOO levende dierkens te sien in een quantiteyt materie die niet grater was als een honderdste part 
van een santgroote. 
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One of the reasons why research on bacteria came to a halt for the better part of 
two centuries was that, at the time of their discovery, the idea of very small animals, 
even though initially surprising, was not considered very profound. Few would have 
been amazed if better microscopes had shown that even smaller animals existed. 
Not before the late nineteenth and early twentieth century, when it became clear 
that all matter is build from atoms, did one have a true measure of the smallness 
of bacteria. Now we know that bacteria are actually extremely small. A typical 
bacterium has dimensions of around 1 f.Lm. If one takes the distance between an 
oxygen atom and a hydrogen atom in a water molecule as a measure of the 'size' of 
an atom, then only around ten thousand atoms fit along the length of a bacterium. 

In fact, it turns out that bacteria set the lower limit to the size of living organ­
isms. Currently, the smallest known organism to show independent reproduction 
is the parasitic bacterium Mycoplasma genitalium, having a diameter between 0.2-
0.3 f.Lm. Viruses are often smaller, but they need larger organisms, like bacteria, to 
reproduce. The smallness of bacteria has raised the hope that it might be possible 
to understand how bacteria, and life in general, function on the level of atoms and 
molecules. A vocal advocate of this view was Erwin Schrodinger, who in his book 
What is Life? speculated that life could be understood by physical laws, in particular 
based on statistical physics and quantum mechanics [73]. Among other things, he 
proposed that hereditary information was stored in the chromosomes in the form 
of an 'aperiodic crystal', little less than ten years before the structure of DNA was 
finally elucidated by Watson and Crick in 1953. 

Since then, biology has made a large leap in this direction. Already in the late 
1950s the first structure of a protein, in this case myoglobin, was determined at 
atomic resolution by X-ray crystallography. Only slightly later was it worked out how 
the information stored in the DNA is translated into proteins and how the production 
of proteins can be regulated in response to external cues. In 1977, the first complete 
sequence of the 5375 base pairs that made up the DNA of the virus ¢-X174 was 
determined. Many genome sequences have since followed. For instance, the 4.6 
million base pairs that form the genome of E. coli were sequenced in 1997 and the 3 
billion base pair genome of Homo sapiens in 2000. Moreover, the structure of many 
proteins is now known and their functioning can be understood in atomic detail. 
All this knowledge makes it possible nowadays to manipulate DNA on a molecular 
scale, for instance by inserting genes from one organism into the genome of another. 
As an example, insulin for diabetics is no longer obtained from slaughtered pigs, but 
instead produced by bacteria that have the gene for human insulin inserted into 
their DNA. 

Even though molecular biology has been tremendously successful in describing 
the fundamental processes in the cell in molecular detail, it has been much less effec-
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tive in explaining how the interactions between all the molecules in the cell give rise 
to the complicated, purposeful behavior we associate with living organisms. This is 
partly because, traditionally, molecular biology has taken a reductionist approach, 
trying to explain biological functions by the behavior of single molecules. Some­
times one will indeed find cases where a specific function is performed by a single 
protein. Oxygen transport in the bloodstream, as an example, is done by individual 
myoglobin and hemoglobin proteins. However, most biological functions arise from 
the interactions between many different proteins. The signal transduction system 
that allows E. coli to swim towards a food source, for instance, consists of a dozen 
different proteins that are all equally important for proper food location. The desire 
to study the properties of living cells on the level of an entire system of interacting 
proteins, rather than on the level of individual proteins is relatively new and this 
field is often referred to as systems biology. 

Does this mean that the functioning of living organisms can only be under­
stood by considering all the interactions between the thousands of different types 
of molecules present in the cell? Fortunately, it seems that life is simpler than that. 
Many proteins are found to be organized in modules, networks of interacting pro­
teins that function relatively autonomously from the rest of the cell [7 4]. Evidence 
of the existence of such modules is that processes such as protein synthesis or DNA 
replication can be reconstituted outside the cell, in a test tube. Moreover, it is found 
that small networks of interacting proteins can behave like feedback loops, ampli­
fiers, filters or switches. These networks get their input from other proteins that 
function as sensors, for instance measuring the concentration of a specific molecule 
within the environment. It is tempting to draw parallels between these biochemical 
networks and electrical circuits. 

Most of the early work on elucidating the biochemistry of bacteria consisted of 
bulk measurements performed in test tubes containing very large numbers of bacte­
ria. In this way, only the average response of bacteria could be measured. Due to 
recent advances in microscopy it has become possible to study the behavior of these 
biochemical networks in single cells. This has opened a completely new window in 
studying bacteria, making it possible to study the dynamics of biochemical networks 
in much more detail. One of the most important findings is that these networks are 
often influenced and sometimes dominated by stochastic fluctuations on the molec­
ular level [75]. Experiments find that biochemical networks indeed function like 
analog electrical circuits, but like circuits operating with just a handful of electrons 
rather than the 1023 found in macroscopic wires. This is because the components 
in biochemical networks are molecules that often occur in a small number of copies 
within the cell, sometimes as few as 10-1000 per cell. Below I will show that this 
leads to stochastic behavior that is never observed in conventional electrical circuits. 
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It is a natural question to ask how cells can still perform reliably in the presence 
of random fluctuations in the dynamics of its proteins. For instance, if a cell switches 
its internal state when the concentration of a signaling molecule increases above a 
critical concentration, it might switch at the wrong moment if the concentration 
of the signaling molecules shows large random fluctuations. Nevertheless, cells in 
the human embryo switch to different cell types in response to external molecular 
signals in an extremely reliable way over and over again. In general, it is clear that 
biochemical networks have been adapted over the course of evolution to become 
relatively insensitive to the presence of these fluctuations. A clear sign of this is that 
synthetic networks, constructed by cutting and pasting DNA together from different 
organisms to perform a specific function, often perform much less reliably than their 
naturally occuring counterparts. 

Perhaps surprisingly, the tools for understanding the properties of biochemical 
networks have come partly from physics. Even simple biochemical networks are 
often so complicated that for proper understanding mathematical modeling or sim­
ulations are necessary. For instance, physicists use techniques from non-linear dy­
namics to explain the collective properties of networks of interacting proteins. The 
effects of the random fluctuations that affect the behavior of the cell are often de­
scribed by statistical mechanics. However, biological systems are usually much more 
complicated than the systems physicists are used to. They consist of a much more 
diverse set of building blocks and are shaped in an often haphazard way by evolu­
tion. Because of this, the description of biochemical networks still remains a great 
challenge. The involvement of physicists is not restricted to the theoretical side only. 
Amusingly, many of the current experiments on biochemical networks are not per­
formed by molecular biologists, but by researchers with a background in physics. 

In the rest of this Chapter I will proceed as follows: first, I will give a brief 
overview of the molecular biology involved in this part of my thesis. Then I will 
continue to explain how cells can make decisions based upon molecular signals by 
describing two canonical examples of biochemical networks: the Lac operon and the 
,\ switch. Then I will explain the origin of stochastic fluctuations and how they affect 
the functioning of biochemical networks. I will discuss how cells use these fluctua­
tions as a source of variation and how cells protect themselves against fluctuations, 
mainly in the context of genetic switches. Finally, I will turn to the role of spatial 
fluctuations due to diffusion of molecules. I will also briefly introduce the research 
presented in Chapters 5 and 6. 
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Figure 4.2: Schematic representation of the relation between DNA, RNA and proteins. DNA 
directs its own replication. At the same time, DNA is being transcribed into mRNA by RNA 

polymerase (RNAp). In turn, mRNA is translated into proteins by ribosomes. Several proteins 
are translated from a single mRNA. For the proteins to become enzymatically active, the random 

coil of amino acids first has to fold into its proper configuration. 

4.2 Molecular biology of the bacterium 

Most research on biochemical networks is performed on bacteria because they are 
simple. All living organisms can be divided in prokaryotes, lacking a proper nucleus, 
and eukaryotes. Bacteria are an example of the first category, whereas all higher 
organisms belong to the latter. In both classes, genetic information is stored in the 
form of deoxyribonucleic acid (DNA). In eukaryotes, all the DNA is contained within 
the nucleus, a separate compartment within the cell. Such a separation does not oc­
cur in prokaryotes, where proteins and DNA are all contained within the same rigid 
cell wall. In general, eukaryotic cells are much more complicated than prokaryotic 
cells. Because of this, much of the knowledge in this and the following two sec­
tions was originally gained from bacteria and viruses and only later confirmed to be 
similar in eukaryotes. 

All genetic information is stored within the DNA in the form of a sequence of the 
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nucleotide bases adenine (A), thymine (T), guanine (G) and cytosine (C). DNA is 
found in the cell in the form of the famous double helix, where each base forms a 
pair with its complementary base, A with T and G with C. The relation between DNA, 
ribonucleic acid (RNA) and proteins was elucidated in the 1950s and 1960s and is 
often summarized in what is called the central dogma of molecular biology [76], indi­
cated schematically in Fig. 4.2. DNA directs it own replication, using its two strands 
as templates for the two new copies. Parts of the DNA are also transcribed into short 
strands of messenger RNA (mRNA), by a protein called RNA polymerase (RNAp). In 
turn, mRNA is translated into proteins by ribosomes. Proteins are linear strings of 
amino acids and ribosomes translate RNA into proteins by incorporating one out of 
twenty possible amino acids for each codon on the DNA. Codons are sequences of 
three base pairs and each amino acid is coded for by one or more specific codons. In 
most cases, the string of amino acids has to fold into the proper three dimensional 
configuration before the protein becomes active. Although cellular enzymes usually 
consist only of protein, RNA can also sometimes catalyze reactions. Ribosomes, for 
example, partly consist of RNA. 

Not all parts of the DNA are transcribed equally. For instance, prokaryotes can 
respond to environmental changes by inducing the production of the appropriate 
proteins. Such gene regulation often occurs by the binding of specific proteins, called 
transcription factors, to the DNA, thereby inhibiting the production of mRNA. I will 
now describe in some detail two examples of transcriptional regulation: the lac 
operon and the .A switch. 

4.2.1 The lac operon 

The bacterium E. coli is able to digest lactose, but prefers to feed upon glucose, a 
more efficient energy source. As a consequence, the proteins responsible for lactose 
digestion are only produced when E. coli has completely exhausted its supply of 
glucose and when lactose is present in the environment. How the bacterium makes 
this decision is understood in great detail and is an instructive example of how cells 
can regulate gene expression [77]. 

The genes responsible for breaking down lactose are organized in the so-called 
lac operon, shown schematically in Fig. 4.3(a). The lac operon consists of genes 
for three proteins: lacZ3 , coding for an enzyme responsible for cleaving the lactose 
into a form that can be digested by the bacterium, lacY, coding for a permease that 
transports lactose into the cell and lacA, coding for an enzyme that helps to break 
down other lactose-like sugars. 

3By convention, names of genes are written in italic, with initial letter lowercase. Names of proteins 
are written non-italic, with first letter uppercase. 

100 



() ) 

CAP 
site 

Promotor 

(b) 

Lacl 
site 

4.2. Molecular biology of the bacterium 

(a) 

/acZ lacY /acA 

(c) (d) 

"O .. 1.--__ .....:~"""La_c~l 111 1~ ~ 
No binding weak binding strong binding 

Figure 4.3: The lac operon. (a) Overview of the lac operon. The genes coding for LacZ, LacY and 

LacA are indicated in dark gray and are transcribed as a single strand of mRNA. The black arrow 

indicates the start and direction of transcription. The binding sites for CAP and the lac repressor 

(Lac!) are indicated in white and are around 20 bp each. The RNAp binds to the promoter region. 

The binding site for the lac repressor lies within the promoter and the CAP site lies just upstream 

of the promoter. (b) In the absence of lactose in the cell, the lac repressor binds to its binding 

site and prevents the RNAp from binding to the promoter. (c) In the presence of lactose the lac 

repressor is inactivated and the RNAp binds weakly. The lac genes are transcribed at a low, basal 

level. (d) In the presence of lactose and the absence of glucose, the CAP protein binds to the 

DNA and stabilizes binding of the RNAp to the promoter. The expression of the lac genes is fully 

induced. In reality, the lac operon is more complicated, as there are two additional binding sites 

for the lac repressor that help in repressing the lac genes. 

The region in front of the three genes does not code for proteins, but forms a 
regulatory region, called the promoter region. It has a binding site for the RNA 
polymerase. If the RNA polymerase binds here, it can start the transcription of the 
lac genes . There are also binding sites for two different proteins. One protein, the 
lac repressor, only binds to its site in the absence of lactose. The other protein, called 
CAP, only binds to its site in the absence of glucose. 

If lactose is absent in the cell, the lac repressor has a high affinity to its binding 
site on the DNA. The binding site of the lac repressor overlaps with that of the 
RNA polymerase, so that a bound lac repressor physically prevents RNA polymerase 
from binding and consequently prevents the expression of the lac genes. On the 
other hand, when lactose is present it binds to the lac repressor. In response to 
the binding of lactose, the conformation of the lac repressor changes and the lac 
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repressor loses its affinity for the binding site on the DNA. This is an example of 
an allosteric interaction, where the binding of a molecule to one part of a protein 
changes the properties of the protein at a different site. 

When the lac repressor is inactivated by the presence of lactose, the lac genes are 
expressed at a low level. The reason for this is that the RNA polymerase binds to 
the promoter site only weakly, often dissociating before transcription can start. This 
changes when CAP is bound. The binding site for CAP is just before the promoter re­
gion. CAP interacts with RNA polymerase and in this way helps the RNA polymerase 
to bind to the promoter site. This, in turn, increases the likelihood that transcription 
of the lac genes will be initiated, increasing the expression levels by a factor of 40. 
Hence, CAP functions as an activator. However, CAP only activates gene expression 
when it is bound by another small molecule, cyclic AMP. This molecule, in turn, is 
only produced when glucose is absent. Thus, the lac genes are only expressed when 
lactose is present and glucose is absent, as is summarized in Fig. 4.3(b), (c) and (d). 

This example shows how interactions between proteins and DNA can function in 
detecting and processing signals, such as the concentration of glucose and lactose 
within the cell. For proper functioning it is essential that the interaction between 
the binding sites on the DNA and the transcription factors CAP and the lac repressor 
is very specific. Actually, which genes are regulated by a specific transcription factor 
is largely determined by the binding site alone : for instance, many genes can be 
brought under the control of the lac repressor if the binding site for the lac repressor 
is inserted in the promoter regions. 

4.2.2 The A switch 

When the A phage, a small virus, invades its host bacterium E. coli, it usually in­
tegrates its DNA into the chromosome of the bacterium and remains there in a 
dormant state. In this so-called lysogenic state, the viral DNA is duplicated along 
with that of the bacterium. However, if the bacterium is irradiated with UV light, 
causing substantial damage to the DNA of the bacterium, the virus wakes up from 
the dormant state and enters the lytic state : the A DNA is extensively replicated and 
virus particles are synthesized. After less than an hour the bacterium is destroyed 
and around a hundred progeny phages are released. In this way, the phage is able to 
escape when its host dies as a result of UV damage. A similar response happens with 
the more familiar human Herpes simplex virus, that resides in a similar dormant state 
in neurons around the mouth. When one experiences either physical and emotional 
stress or too much UV radiation, the virus enters a similar lytic state and abandons 
the sinking ship in the form of the highly contagious cold sores [78, 79]. 

The decision of whether to remain lysogenic or become lytic is an example of 
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Figure 4.4: The.\ switch. (a) Overview of the ci and cro genes. The regions of the DNA coding 

for CI and Cro are indicated in dark gray. The arrows indicate the starting point and direction 

of gene transcription. The ci and cro genes are transcribed in opposing directions. The promoter 

region for both genes is in between the two genes. The binding sites OR1, OR2 and OR3 for CI and 

Cro are indicated in white and are within the promoter region. (b) At intermediate concentration, 

CI is bound cooperatively to OR1 and OR2. The cooperative interaction is indicated by the grey 

lines. CI bound to OR2 helps the binding of RNAp to the CI promoter; stimulating production 

of CI. (c) At high concentration, CI also binds to OR3, switching off CI production. (d) In the 

absence of CI, Cro binds to OR3, switching off the production of CI. As OR1 is free of CI, the era 

gene is transcribed. At high concentrations, Cro also binds to OR1 and OR2. 

a genetic switch [77, 80]. The switch is formed by two proteins, Cro and CI, that 
reside next to each other on the A chromosome, as is indicated schematically in 
Fig. 4.4. The genes coding for Cro and CI are transcribed in opposing directions and 
in between the two genes lies the promoter where RNA polymerase binds. In the 
promoter region there are three binding sites, called OR1, OR2 and OR3, that bind 
Cro and CI. 

The CI proteins can bind to all three binding sites, but with different affinities. 
CI has the highest affinity for binding to OR1 and a much lower affinity for the other 
two binding sites. As a consequence, for low concentrations of CI only OR1 will 
bind CI. However, the binding of CI to OR1 and OR2 is cooperative, meaning that CI 
can bind much more easily to OR2 when another CI is already bound to OR1 . The 
binding of CI to OR3 is independent from the occupancy of the other two binding 
sites. Cro, on the other hand, binds non-cooperatively and most strongly to OR3 . 

In the lysogenic state CI is the only protein produced by the A chromosome. In 
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the lytic state, instead, only Cro is present. The lysogenic state is actively maintained 
in the following way: when CI is present in the cell it will bind to the binding 
sites OR1 and OR2 • As these binding sites are just upstream of the cro gene, they 
prevent the expression of the Cro protein. On the other hand, the CI protein at 
the OR2 binding site helps RNA polymerase bind to the DNA and hence stimulates 
transcription of the ci gene. This situation is indicated in Fig. 4.4(b). Thus, CI 
functions as a repressor for Cro but as an activator for its own production. 

When the concentration of CI becomes very high, the protein will also bind to 
the third binding site, OR3 . As OR3 is located just upstream of the ci gene, binding 
of the CI here prevents binding of RNA polymerase and switches off CI expression. 
This situation is indicated in Fig. 4.4(c). In this way, the third binding site functions 
like a thermostat: it ensures that more CI is produced when the concentration is too 
low, but that no CI is produced if the concentration is high enough. This keeps the 
concentration at an optimal level, while preventing wastage of the cell's resources. 

In the lytic state, Cro binds to OR3 and blocks the transcription of the ci gene. 
Because CI is absent, the binding sites OR1 and OR2 are unbound. This state is 
depicted in Fig. 4.4(d). RNA polymerase binds strongly to the Cro promoter, so that 
in this state the Cro gene is fully expressed. So, Cro represses the ci gene and thereby 
indirectly stimulates its own production. 

The A switch is bistable, meaning that in steady state the phage could be either in 
the lysogenic or the lytic state, depending on the initial concentrations of CI and Cro. 
These steady states are insensitive to small perturbations in the concentrations of CI 
and Cro. The switch is flipped from the lysogenic to the lytic state by an external 
cue. When the bacterium is irradiated with UV light, it activates the expression 
of a number of genes that help the bacterium survive the resulting damage. This 
response is known as the SOS response. The SOS genes are repressed by a protein 
called LexA. Following UV damage this protein is inactivated by another protein 
called RecA. CI is very similar to LexA and is also broken down by RecA as a result 
of UV damage. When CI is inactivated, Cro is expressed. Cro, in turn, switches off 
CI production and activates the rest of the genes needed for the lytic state. In this 
way, the A chromosome eavesdrops on the internal signals of the bacterium to find 
out when it is necessary to find another host. 

The A switch is an example of a system involving different types of feedback, 
where the output of the system is fed back into the input. The stimulation by CI 
of its own production is a case of positive feedback, which is often used to amplify 
signals. The inhibition by CI of Cro and CI production and the inhibition by Cro of 
CI production are examples of negative feedback. By combining different feedback 
loops, the resulting network can exhibit complicated, non-linear behavior. 
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4.3 Biochemical networks 

Nowadays, high-throughput data-collection techniques have made it possible to col­
lect qualitative data on the interactions between the molecules in the cell on an 
unprecedented level. With microarrays, for instance, one can determine the approx­
imate levels of gene expression for many genes simultaneously. Moreover, technolo­
gies such as protein chips or so-called yeast two-hybrid screens make it possible to 
construct large maps of protein-protein interactions for entire organisms. Currently, 
however, quantitative data such as binding energies or reaction rates cannot be col­
lected on such large scales and have to be obtained by time-consuming manual labor. 
This lack of quantitative data means that it is still very difficult to understand and 
predict the behavior of the large biochemical networks found in the cell. 

This situation is currently dealt with in two different ways. One approach is to 
first try to fully understand the behavior of the simplest biochemical networks found 
in the cell and only move to more complex networks as our knowledge increases. 
The other approach is not to focus on the detailed dynamics of the components of 
the network, but rather to study global organization of biochemical networks. In 
this way, one can make use of the large amounts of high throughput data available. 
It turns out that one can already learn a great deal from such an approach. Bio­
chemical networks show very distinct topological features, largely independent of 
the precise function of their components. I will discuss some of these results below, 
before turning to the study of simple networks in the rest of this Chapter. 

4.3.1 Statistical properties of biochemical networks 

When studying the architectural properties of large biochemical networks [81], the 
networks are often reduced to nodes, representing the molecules, connected to­
gether by links, representing interactions between the molecules. In the case of 
networks of protein-protein interactions the nodes are proteins and they are con­
nected by links if they bind to each other. A lot of quantitative data is available 
for metabolic networks, the networks of chemical reactions that process nutrients 
into fuel and building blocks for the cell. When studying metabolic networks, the 
nodes are food molecules and they are linked if an enzymatic reaction converts 
one molecule into another. Most important for our purposes are transcriptional net­
works, where the nodes are genes and they are linked if the product of one gene is 
a transcription factor for another. The latter two networks are directed: a reaction 
between one node and another is not necessarily accompanied by a reverse reaction. 

The topological properties of networks have been intensively studied as a branch 
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of mathematics. Traditionally, mathematicians have modeled complex networks ei­
ther as regular, such as a square lattice, or as completely random, with every node 
being connected at random to another node. One way to characterize a network is 
to measure the connectivity k, the number of links from a node, for the nodes in the 
network. For a random network, some nodes will have a larger number of nodes 
than others. In fact, the connectivity distribution P(k) for random networks has a 
Poissonian tail [82]: 

(4.1) 

However, most networks within the cell show a strikingly different connectivity dis­
tribution of the form: 

(4.2) 

where usually 2 < 1 < 3. Such power-law distributions are called scale-free distri­
butions, because of the lack of a typical node. The variance of the connectivity, for 
instance, diverges if Eq. 4.2 holds with 1 < 3 for all k. These networks are char­
acterized by having a few nodes with a very high connectivity, called hubs, and a 
majority of nodes with only a few connections. In the cell, for instance, ATP is a hub 
as it helps catalyzing very many reactions. A common feature of scale-free networks 
is that the nodes form a small world [83]: by virtue of the existence of hubs each 
node is connected to any other node by only a few connections. In this way, changes 
in one part of the network can propagate to the rest of the network very quickly. 
Surprisingly, many unrelated networks, such as food webs, networks of neurons or 
the Internet share these scale-free properties. 

The topological features of scale-free networks make them very robust against 
accidental failure, but leaves them vulnerable to a targeted attack. Due to the pres­
ence of hubs, any two nodes in the network remain connected even when up to 
80% of the links are removed at random: the many sparsely connected nodes in the 
network have a minor effect on the networks integrity. In E. coli and the yeast Sac­
charomyces cerevisiae, for instance, less than 20% of the protein deletions is lethal 
[81]. At the same time, removal of a few hubs can separate the network into many 
small, non-communicating islands. This is reflected by the fact that more than 60% 
of the proteins inS. cerevisiae with more than 15 links are lethal when deleted. Such 
well connected proteins also tend to be more evolutionarily conserved [81]. 

Biochemical networks show a large degree of clustering: if node A interacts with 
node B and node B with node C, it is likely that node A also interacts with node C. 

The degree of clustering is described by the clustering coefficient C(k) = 2n/ k(k-1), 
where k is the number of neighbors, n is the average number of links connecting the 
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Figure 4.5: Examples of modules and network motifs. (a) A highly modular network. The 

network can be separated into one module consisting of the leftmost four nodes and one module 

consisting of the rightmost three nodes. Both modules are connected by a single link. (b) Single 

input module. A single transcription factor regulates the expression of a set of output genes. In E. 

coli, the transcription factors controlling single input motifs often regulate their own expression. 

(c) The feedforward loop. A transcription factor X positively regulates a second transcription 

factor Y and both X and Y positively regulate a gene Z. The expression of Y and Z as a function of 

input X is shown in black lines. Only for a sustained activation of X does Y reach the activation 

level for Z (indicated by the dashed line) and expression of Z is activated. 

neighbors and k( k - 1) 12 is the maximum number of links possible between k neigh­
bors. For biochemical networks, C(k) "' k- 1 . This is an indication of a hierarchical 
network: the majority of the nodes are organized into highly interconnected clus­
ters, while a minority of unclustered hubs allows for connection between the clus­
ters. These clusters likely represent modules of proteins that collectively perform a 
certain function. 

It is also possible to quantify the degree of modularity in networks. The degree 
of modularity is obtained by finding a division of the nodes into K modules that 
maximizes the modularity Q, defined as [84, 85]: 

(4.3) 

where L is the total number of links in the network, ls is the number of links between 
the nodes in module s and ds is the total number of out-going links of the nodes in 
modules. A highly modular network, such as depicted in Fig. 4.5(a), has a large 
fraction of the links between nodes in the modules, indicated by lsi L. However, if 
we only try to obtain a division in modules that maximizes the fraction lsi L, the 
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optimal solution is a single module consisting of all nodes in the network. To avoid 
this trivial solution, one subtracts the expected value of within-module links for a 
module with the same distribution of links per node but with random connections 
between the nodes : the fraction of links that are connected to nodes in the module 
s is given by d8 /2 L so that for randomly connected nodes, the fraction of links that 
connect two nodes in module s is given by ( d8 /2 L )2 . Hence, if all nodes divided into 
modules at random or if all nodes are placed into a single module, Q = 0. 

It is useful to define the normalized modularity Qm [85] : 

Q _ Q - Qra nd 

m - Qtnax - Q rand' 
(4.4) 

where Q is the modularity obtained according to Eq. 4.3, Qrand is the average Q ob­
tained for networks with the same distribution of links per node but with randomly 
connected links and Qmax is defined as the maximal value of Q for a network with 
the same distribution of links per node. Biological networks show a high degree of 
modularity [85] . For instance, the transcriptional network of E. coli has Qm = 0.54. 

Another way to study these clusters is by studying network motifs [86, 87]: pat­
terns of connectivity between nodes that occur very often in biochemical networks. 
These motifs can be found by comparing biochemical networks with randomized 
networks, where all nodes are rewired at random, but the connectivity distribution 
is preserved. Counting how often all the possible subnetworks connecting n nodes 
occur 4 , one finds that some of these subnetworks occur much more often in bio­
chemical networks than in random networks. 

A n = 3 motif frequently encountered in the transcriptional regulation network 
of E. coli is the feed forward loop, where gene X regulates gene Y and gene X and 
Y both regulate gene Z [86, 87] . An example of a feed forward loop is shown in 
Fig. 4.5(a) . Such networks have the interesting property that they can filter out 
short pulse-like signals. For instance, if X activates Y and Z is only activated when 
X and Y are present, a high concentration in X will only lead to activation of Z if 
it remains high for a longer time. This is because it takes some time before X fully 
induces the expression of Y. If the concentration of X shows a pulse-like increase, 
then before X has fully induced Y, the concentration of X is already back at the 
original level. If, on the other hand, X remains high for a long time, then Y is fully 
induced and expression of Z will also be induced. 

Another motif frequently encountered in E. coli is the single input module [86] . 
As shown in Fig. 4.5(b), in this type of network motif a single gene controls the 
expression of a large array of output genes. The output genes often code for a 
large protein assembly or a metabolic pathway. An example of such a motif is the 

4 For a directed network, such as transcriptional regulation, there are 13 ways to connect n = 3 nodes. 
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SOS response described in Section 4.2.2, where LexA represses all the SOS response 
genes. 

Even though biochemical networks share many properties with other unrelated 
networks, it seems that this is not the case for motifs [87]. The network motifs 
encountered in food webs, electronic circuits and the Internet often show a different 
topological structure and may reflect the different function of these networks. Feed 
forward loops are not seen in food webs or in the Internet, but do occur often in 
networks of neurons. Both in transcriptional and neuronal networks, information 
coming from the environment is processed to perform the appropriate actions. 

4.3.2 Stochastic fluctuations in simple biochemical networks 

One way to study the dynamics of simple biochemical networks is by studying net­
works that occur naturally in the cell. However, these networks are often relatively 
complicated and well adapted to the environment within the cell. More can be 
learned about what is required for a network to function properly in the cell by 
studying so-called synthetic networks, constructed from components that in the cell 
usually do not interact with each other. One of the first synthetic networks to have 
been studied is the repressilator [88], shown schematically in Fig. 4.6(a). The re­
pressilator consists of three repressors: Lacl, the lac repressor from E. coli, TetR, a 
repressor involved in antibiotic resistance in E. coli and CI, from the lambda phage. 
The network is constructed in such a way that each gene represses another one in a 
cyclic way: Lacl represses production of TetR, which in turn represses Cl. Finally, CI 
represses production of Lacl. Models predict that such a network of three negative 
feedback loops can lead to temporal oscillations in the concentrations of the three 
repressors involved. 

In the experiment, the genes are incorporated into a plasmid, a small circular 
piece of DNA that occurs naturally in bacteria. A second plasmid is also inserted 
that carries a gene coding for the green fluorescent protein (GFP) [89] together 
with a promoter that is repressed by TetR. As a consequence, the amount of GFP in 
the cell is directly related to the concentration of TetR in the cell and can be directly 
visualized by measuring the amount of GFP fluorescence. The time evolution of 
fluorescence is shown in Fig. 4.6(b) and clearly shows oscillatory behavior. Figure 
4.6(c) plots the total amount of fluorescence from a single bacterium. 

A major difference between the oscillations predicted by the models and those 
observed in the experiment is that the latter show a large variation in the period 
and amplitude of oscillation. This variability is most likely due to the stochastic 
fluctuations in the chemical reactions that occur in the cell [88]. One of the main 
consequences of this stochastic behavior is that there is a finite correlation time for 
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Figure 4.6: The repressilatm: (a) Schematic overview of the repressilatm: The genes are indicated 

in gray and the promoters in white. The genes lac!, tetR, ci and their specific binding sites are 

taken from different systems and organisms. Apart from this synthetic network, these genes 

never control each othe1: The black lines indicate which gene represses another by binding to the 

promoter site upstream of the target gene. (b) Time course of fluorescence in individual bacteria. 

The bacteria are visible as rods. The bacterium indicated by the white arrow shows a temporal 

oscillation in the amount of fluorescence . (c) Time plot of total fluorescence from the bacterium 

in (b) . Horizontal bars at the bottom indicate cell divisions. The oscillations are accompanied by 

an overall increase in fluorescence due to the long life time of GFP proteins. Figure adapted from 
Ref [88]. 

the phase of the oscillation: it is seen in the experiments that sibling cells that are 
all descended from a single parent acquire random differences in the phase over 
several generations. Most of the phase difference actually occurs at the moment of 
cell division. This is because at cell division most of the contents of the cell, including 
the transcription factors of the repressilator, are divided randomly between the two 
daughter cells. For the repressilator, the correlation time between offspring is around 
100 min, or two periods. However, this is still longer than the average cell division 
time of 50-70 min. This means that, despite the presence of strong fluctuations, the 
oscillations in the different progeny cells are still correlated after one or two cell 
divisions. 
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The stochastic fluctuations in biochemical networks are often referred to as noise, 
in analogy with noise in signal processing networks. If P(t) is the fluctuating concen­
tration of proteins within the cell, the protein noise 17p(t) is defined as the standard 
deviation of the protein concentration divided by the mean, or 

2 ( ) _ (P(t) 2
)- (P(t) )2 

17P t - (P(t))2 ' (4.5) 

where the brackets denote an ensemble average over different cells. 
Noise in gene expression can be separated into two different contributions. On 

the one hand, biochemical processes such as transcription and translation are inher­
ently noisy, as reactions between molecules in the cell are of a probabilistic nature 
and the molecules themselves move through the cell by diffusion. This source of 
noise is called intrinsic noise. On the other hand, fluctuations in the concentrations 
of the other molecules in the cell can lead indirectly to a contribution to the total 
noise. For instance, the concentrations of molecules involved in transcription and 
translation, such as RNA polymerase and ribosomes, also fluctuate in the cell. This 
source of noise is called extrinsic noise. If the intrinsic noise is considerable, it means 
that there will be strong fluctuations in gene expression, even when the concentra­
tions of such molecules as RNA polymerase and ribosomes are regulated by the cell 
to high precision. 

It is possible to differentiate between intrinsic and extrinsic noise in the cell ex­
perimentally, using the synthetic network shown in Fig. 4. 7(a) [90]. Here, the genes 
for yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) are inte­
grated symmetrically on the same plasmid. On average, both genes are transcribed 
equally by RNA polymerase. If the intrinsic noise is very small, the concentration 
of YFP at any instant of time will be almost equal to the concentration of CFP, but 
the total concentration of CFP and YFP will show fluctuations due to extrinsic noise. 
Thus, in the experiment the total level of fluorescence will fluctuate, but all cells will 
have the same color, i. e. equal levels of CFP and YFP fluorescence. If the intrinsic 
noise cannot be neglected, YFP will sometimes be expressed at a different level than 
CFP, for instance because by chance RNA polymerase binds more often to one pro­
moter than to the other. In the experiment, this will produce cells that show both 
different brightness and different colors. 

In Fig. 4.7(b) it is clearly visible that there is a large difference in YFP and CFP 
expression among different bacteria. This difference changes in time within individ­
ual cells. It is also instructive to look at the distribution of YFP and CFP fluorescence 
intensities, as shown in Fig. 4. 7(c). This distribution takes the form of an ellipse 
with principle axes indicated as A and B. The width of the distribution along the 
axis where the YFP intensity equals the CFP intensity is a measure of the extrinsic 
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Figure 4. 7: Intrinsic and extrinsic noise. (a) The construct used to quantify the different noise 

contributions. The genes for YFP and CFP are indicated in gray. The promoter regions are 

indicated in white. The genes are arranged symmetrically on the plasmid and have the same 

promoter to ensure that both genes are transcribed at the same rate on average. (b) Examples of 

YFP expression (upper panel) and CFP expression (lower panel) in E. coli. Cells show variation 

both in total fluorescence intensity and in the ratio between YFP and CFP fluorescence, leading to 

bacteria of different colors. (c) Distribution of YFP and CFP fluorescence. Because intrinsic and 

extrinsic noise are uncorrelated, the distribution has the shape of an ellipse with principal axes 

A and B. The width of the distribution along axis A is a measure for the intrinsic noise and that 

along axis B is a measure of extrinsic noise. Figure adapted from Ref [90] . 

noise. The width along the other axis is a measure for the intrinsic noise. The extrin­
sic noise is on average twice as large as the intrinsic noise. Nevertheless, intrinsic 
noise forms a substantial contribution to the total noise. 

Gene regulation by transcription factors is also affected by molecular noise. The 
relationship between expression rate f and the repressor concentration R is often 
given by a Hill function of the form j(R) = ,6/ [1 + (R/ Kd)n], where ,6 is the expres­
sion rate in the absence of repressor, Kc~ is the concentration of repressor yielding 
half the maximal expression rate and n is the Hill coefficient. If the repressor binds 
cooperatively, then n > 1 and the rate of gene expression depends very sensitively 
on the concentration of repressor. 

The Hill function can be measured experimentally in single cells by the regulator 
dilution method [91]. Here, a gene coding for YFP is controlled by the CI repressor 
from the .A phage. If the production of CI is switched off by a second repressor, 
the concentration of CI is halved every time the cell divides. By measuring the YFP 
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fluorescence between division, the expression rate of YFP for different repressor 
concentrations can be determined. On average, the expression rate is well described 
by a Hill function, but individual cells can show very large deviations, up to 55% of 
the mean. These fluctuations vary on the scale of the cell cycle time and are mostly 
due to extrinsic noise. 

More complicated behavior is seen in networks of interacting genes. In a linear 
cascade of three genes, where each gene represses the next gene in the cascade, it 
was shown that noise in one gene affects fluctuations in the expression of its down­
stream genes [92]. In these cascades, noise propagates from one gene to another in 
a nonintuitive manner and is sometimes amplified in the process. As a result, genes 
functioning in a cascade can show large fluctuations, even if each individual gene in 
the cascade has very low intrinsic noise. 

4.4 Models of stochastic gene expression 

Because the causes and effects of molecular noise in biochemical networks are often 
complicated and counterintuitive, mathematical models are often used to gain more 
understanding. A rudimentary model of the expression of a protein P is the linear 
birth-and-death process, given by the following reaction: 

(4.6) 

Here, a protein P is produced with rate kp and decays with rate kd. There are 
two different ways to incorporate the effect of fluctuations into the rate of protein 
production and decay. One way is to use a chemical Langevin equation, where 
noise terms are added explicitly. In this case, the time evolution of the protein 
concentration is given by 

(4.7) 

where ~(t) is the noise term. In the absence of fluctuations, when ~(t) = 0, Eq. 4.7 
reduces to the macroscopic rate equation. This approximation is well defined when 
the mean protein concentration is large compared to the noise term. For gene ex­
pression this is not always valid: the number of transcription factors in the cell can 
often be very small, sometimes as low as 10-100 copies per cell, so that the discrete 
nature of the molecules becomes important. In this case, a better approach is to 
write down the chemical master equation, which describes the time evolution of 
the probability p(n, t) of n proteins being present in the cell at timet [93]. For the 
reaction in Eq. 4.6, the master equation is given by: 
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dp(n,t) 
dt = kJp(n - 1, t) + kd(n + 1)p(n + 1, t) - (k1 + kdn)p(n, t) . (4.8) 

In steady state, the mean protein number (n) and the variance (n2 ) can be calcu­
lated explicitly from the steady state distribution p( n) = p( n, t ---> oo) by the use of 
moment generating functions [93]: 

(n) (4.9) 
n n 

(4.10) 
n n 

so that for the reaction in Eq. 4.6, the noise in protein number 'r/P is given by: 

(4.11) 

This shows that the noise is largest for small protein numbers, where the addition 
of a single extra protein constitutes a large fluctuation. The noise vanishes for large 
protein number, as should be expected. Such a dependence of the noise on the mean 
number of proteins is typical for a Poisson process. For more complicated reaction 
networks, it is usually not possible to obtain these results analytically. In that case, 
the master equation can be solved numerically by kinetic Monte Carlo algorithms 
[94, 95]. 

Even though noise in gene expression can be measured directly, the origin of 
these fluctuations is not always clear. Fluctuations could be directly due to the 
small number of proteins, as described in Eq. 4.11. However, it is also possible 
that the concentration of proteins is high, but the proteins are translated from a 
small number of mRNA molecules. Fluctuations in mRNA number then give rise 
indirectly to fluctuations in protein number. Currently, it is hard to measure small 
concentrations of mRNA and protein within single cells reliably. As a consequence, 
these questions are often addressed by modeling. 

To get more insight into the source of noise in gene expression, a more complex 
model of gene expression is needed that takes into account both transcription and 
translation: 
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kM 
0 ;::::2 l\1!, (4.12) 

/ M 

M ----; 

kp 
M+P, (4.13) 

p ----; 0, (4.14) 
/P 

where M and P indicate mRNA and proteins, kM and kp are the mRNA and pro­
tein production rates and "YM and "fP are the mRNA and protein decay rates. The 
reaction in Eq. 4.12 describes the production and decay of mRNA molecules, anal­
ogous to the reaction in Eq. 4.6. The reactions in Eqs. 4.13 and 4.14 describe the 
production of proteins from the mRNA and their subsequent decay. Because protein 
production depends on the presence of mRNA, fluctuations in mRNA number give 
rise to additional fluctuations in protein number. 

It was shown that in steady state the noise TJM in mRNA number and TJP in 
protein number is given by [96]: 

2 
TJM 

1 

(M) ' 
1 1 b 

(P) + 1 + ¢ (P) ' 

(4.15) 

(4.16) 

where ¢ = "fM hP is the ratio of lifetimes of mRNA and protein and b = kphM 

is the average number of proteins translated from one mRNA molecule. As mRNA 
molecules usually have a lifetime of minutes and proteins a lifetime of around an 
hour, ¢ is small. The noise in mRNA number is again Poissonian. The noise in 
protein number is given by two terms: the first term is similar to the noise in mRNA 
number and corresponds to the intrinsic noise due to protein production. The second 
term depends on the mRNA dynamics and represents the extrinsic noise due to 
fluctuations in mRNA copy number. 

The protein noise is mainly determined by b, the mean number of proteins pro­
duced from one mRNA. When b is large, the production of a mRNA is followed by a 
rapid burst of protein production. Because of the long lifetime of proteins, the fluctu­
ations take a long time to decay. In this way the rapid fluctuations in mRNA number 
give rise to long-lived fluctuations in protein number. This type of fluctuations is a 
typical example of burst noise, well-known in electrical engineering. 

A noise addition rule as in Eq. 4.16 can be formulated for a general network 
consisting of two components [97]. In this case the dynamics is described by the 
following reactions: 
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R~ (nl) 
----+ n 1 ± 1, 

Ri (n 1,n2) 
----+ n 2 ± 1, 

(4.17) 

(4.18) 

where n 1 and n2 are the number of copies of the two components. The reaction 
rates R'f depend on n1 and the rates R~ on both n 1 and n 2 in arbitrary ways. In 
this case, the noise in n 2 is given by: 

(4.19) 

where H iJ = 8ln( Ri I Rt) I 8ln( nJ) is the logarithmic gain and Ti is the average 
lifetime of component i . Due to its generality, this expression can explain noise 
levels in proteins observed in a large number of different experiments [97] and also 
in other biochemical networks. 

4.5 Molecular noise as a source of variation 

As shown above, two living organisms that share all their genetic information will 
not behave in exactly the same way due to fluctuations on the molecular level. Ulti­
mately, this is the reason why identical twins have completely different fingerprints 
and why cloned calico cats do not have identical fur patterns. In some cases, how­
ever, molecular noise can be a source of epigenetic variation- variation in the behav­
ior of otherwise identical cells that is not encoded on the DNA but can be inherited 
by offspring. 

For example, it is known that some bacteria exploit molecular noise to adapt to 
different conditions in the environment. These bacteria regulate genes by a mecha­
nism called phase variation [98]. Here, a small fraction of a population of bacteria 
express certain genes that are not expressed in the rest of the population. This is not 
due to mutations in the DNA: when the minority population is isolated and allowed 
to regrow, the resulting population will again be divided into the same two fractions 
showing the same differences in gene expression. 

A particular example of this is flagellar phase variation in Salmonella enterica, a 
bacterium responsible for food poisoning. Bacteria use long filaments called flag­
ella to move and in a population of S. enterica the majority will express one type of 
flagellum whereas a minority expresses the other type. The immune system recog­
nizes disease-causing bacteria by their external parts such as flagella. Presumably, 
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the bacterium switches between different types of flagella because the immune sys­
tem attacks the majority flagellar type, but forgets about the minority expressing 
flagellar type. Similarly, E. coli shows phase variation in the expression of external 
appendages called type 1 fimbriae. These fimbriae are used to invade host tissues in 
the urinary tract and phase variation ensures that only a small fraction of the pop­
ulation invades the host, again evading discovery by the immune system. In most 
cases, the switch is completely stochastic, occuring at a rate of 10- 5 per generation. 
Often, phase variation occurs by the inversion of a large strand of DNA on the chro­
mosome, from one direction in which transcription is possible, to another where 
transcription is inhibited. Although the mechanism of inversion is not understood in 
detail, the stochasticity is likely a consequence of fluctuations in the binding of the 
DNA inversion proteins. 

Phase variation has been studied in single cells in the context of bacterial persis­
tence [99]: when a population of bacteria is subjected to antibiotics, the majority 
of the population will die quickly, but a minority of the population dies much more 
slowly, if at all. Persistence is not due to genetically acquired antibiotic resistance, 
because the population will show the same response to antibiotics when regrown 
only from persister cells. It was observed in experiments that some cells in the pop­
ulation are slow-growing. Upon addition of antibiotics, these bacteria will survive 
whereas all fast-growing bacteria will die quickly. After removal of antibiotics a frac­
tion of the persisters will switch to become fast-growing non-persisters that are again 
sensitive to antibiotics. Although the mechanism is not understood at the molecu­
lar level, the behavior of these bacteria was well described by assuming stochastic 
transitions between persister and non-persister cells. 

In this way, the entire population is well adapted to fluctuations in the concen­
tration of antibiotics in the environment. In the absence of antibiotics most cells will 
grow rapidly, so that the population will expand. At the same time, the bacteria al­
ways keep a small population of very slow growing bacteria as an insurance against 
the sudden appearance of antibiotics. The idea that random variation in behavior 
can be advantageous in the presence of random fluctuations in the environment is 
well known in ecology and economy and is known as bet-hedging. On the other 
hand, rather than randomly switching to different states, the bacterium could also 
just monitor its environment and respond to that directly as described in Section 
4.2.1. Why would bacteria prefer the stochastic approach over the responsive ap­
proach? In the first case, for instance, a certain fraction of the population might be 
in the state that is not advantageous in the current environment. A responsive mech­
anism, on the other hand, must be actively maintained by expressing the relevant 
proteins, at the expense of energy that might be more useful for other purposes. 

It was shown theoretically that the optimal mechanism depends on the cost of 
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responsive sensing and the time scale of the fluctuations in the environment [100]. 
In this model, the environment switches between different states stochastically. Bac­
teria can choose between different types of behavior, of which only one is optimal 
for the current state of the environment. It follows that if the fluctuations in the 
environment are fast, it is best for the survival of the population to use a respon­
sive mechanism even if the costs of maintaining it are very high. On the other 
hand, when the fluctuations in the environment are slow it is more efficient to use 
stochastic switching: it is relatively expensive to maintain the sensory machinery of 
a responsive mechanism if the fluctuations occur very infrequently. Furthermore, 
it can be shown that for stochastic switching, the optimal rates of switching from 
one behavior to the other are the rates at which the environment fluctuates, even 
though the switching of the bacteria is completely uncorrelated to the fluctuations 
in the environment. 

4.6 Noise and robustness in genetic networks 

The proper functioning of biochemical networks in the cell can potentially be af­
fected by molecular noise. An example was already mentioned in Section 4.3.2, 
where the repressilator network showed irregular oscillations mainly because of 
fluctuations induced by cell division. However, networks that occur naturally in 
the cell are often adapted to be insensitive to fluctuations within the cell. 

For instance, the cyanobacterium Synechococcus Elongatus shows a very stable 
circadian rhythm in the expression level of all its genes. Circadian rhythms are os­
cillations with a period of approximately 24 hours that regulate the day-and-night 
cycle in many higher organisms, including humans. For a long time, bacteria were 
considered too simple to exhibit circadian oscillations. Cyanobacteria, however, are 
photosynthetic bacteria which use a circadian clock to switch off gene expression 
during the night. By inserting a bioluminescent protein in the genome, it was shown 
that in single cells of S. elongatus these oscillations are indeed noisy [101]. However, 
the noise is mainly in the amplitude of the oscillations. Even when the amplitude 
varied strongly between daughter cells at the moment of cell division, the period 
and the phase of the oscillation remained virtually unchanged in the offspring. Mea­
surements indicated that the resulting oscillations have a correlation time of several 
months, even though the bacteria divide every 23 hours. This stability is in dramatic 
contrast to the performance of the repressilator. 

A network that is insensitive to molecular noise is said to be robust against fluctu­
ations. In the case of the circadian oscillations in S. elongatus the actual mechanism 
for robustness is still unknown. This is an important question, as it was shown re-
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Figure 4 .8: The genetic toggle switch. (a) Phase portrait and the nullclines dA/ dt = 0 (solid 

line) and dB/ dt = 0 (dashed line) in the bistable state. Steady states occur at the intersections 
of nullclines. There is one unstable steady state (white circle), a stable steady state at low A 
concentration (grey circle) and another stable steady state at low B concentration (black circle). 
(Inset) Schematic representation of the genetic toggle switch. (b) Toggle switch in the presence 

of fluctuations . The number of proteins A (black line) and B (gray line) in time obtained 
by stochastic simulation of the system in (a) . The system flips stochastically between the A 
dominated and the B dominated state. The transitions are similar to those of a particle diffusing 

in a landscape with two potential wells. 

cently that these oscillations can be reconstituted in the test tube by just three S. 

elongatus proteins, called KaiA, KaiB and KaiC, in the presence of ATP [102]. In this 
case, a 22 hour cycle in the binding of phosphate groups to KaiC is observed and 
this phosphorylation cycle is likely connected to the oscillations in gene expression 
observed in the cell. In other cases, however, it is known directly how the design 
of the network is connected to robustness against noise. For instance, it was shown 
experimentally that a gene that represses its own production shows much less noise 
in protein production than a single gene that has no feedback, when both genes are 
expressed at the same level on average [103] . 

The period of the circadian rhythm in S. elongatus is also surprisingly insensitive 
to variations in the temperature of the environment. This is a feature of all circadian 
clocks, known as temperature compensation. This is an example of a different type 
of robustness, namely against variation in parameters. Many biochemical networks 
show such robustness. For instance, it was shown that biochemical models of pattern 
formation in the early fruit fly embryo are remarkably resistant to large variations 
in the rate constants of the underlying chemical reactions, as long as the topology 
of the network remains unchanged [ 104]. In the rest of this section, I will focus on 
robustness against fluctuations in simple genetic switches. 
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A simple genetic switch is the toggle switch, consisting of two genes A and B, 
that mutually repress each other. Like the >- switch described in Section 4.2.2, this 
system has two stable steady states: state I, in which the concentration of A is high 
and B is repressed, and state II in which the situation is reversed. The dynamics 
of the protein concentrations A and B is described by the following dimensionless 
model that can be derived from the biochemical rate equations [105]: 

dA a1 
--- A 

dt 1 +Bn ' 
(4.20) 

dB a2 - B 
dt 1+Am ' 

(4.21) 

where a 1 and a 2 are the expression rates of A and B in the absence of their repressor 
and the terms ( 1 + Bn) - 1 and ( 1 + Am) - 1 describe the fraction of time the operator 
sites are free of A and B, respectively. The degree of cooperativity of repressor 
binding is given by n and m: if A binds to the DNA as a dimer, n = 2. For n , m > 1 
and appropriate values of a 1 and a 2 , these equations become bistable as shown in 
Fig. 4.8(a). Depending on the initial conditions, the system ends up in one of the 
stable states. When a 1 or a 2 change - for instance due to the effect of another 
transcription factor - one of the stable steady states can lose its stability and the 
system can become monostable. 

However, in the presence of molecular noise the stable steady states of the toggle 
switch are not perfectly stable and the system can flip stochastically between state 
I and state II. Such transitions are shown in Fig. 4.8(b). A transition occurs, for 
instance, when, due to a fluctuation, enough of the repressed protein is expressed to 
switch off production of the active gene. Before a successful transition occurs, there 
are often several abortive attempts during which the concentration of the repressed 
gene is relatively high. The situation is similar to that of a particle diffusing in an 
energy landscape with two potential wells. Due to thermal fluctuations, the particle 
can get to the top of the energy barrier and escape from one well to the other, as 
indicated schematically in Fig. 4.8(b). 

Such stochastic transitions in bistable transcriptional networks have also been 
seen in experiments. A synthetic toggle switch with a GFP protein fused to one of 
the two genes showed a bimodal fluorescence distribution in the bistable state [107]. 
The lac utilization network discussed in Section 4.2.1 shows bistable behavior [106]. 
This is because lactose induces expression of LacY, which in turn stimulates further 
lactose uptake. Such positive feedback makes bistability possible. Bistable behavior 
is monitored in single cells by inserting a plasmid with a GFP protein fused to the 
lac promoter, so that GFP is expressed when the lac genes are induced. The Lacl re­
pressor is inactivated by adding thio-methylgalactoside (TMG), a non-metabolizable 
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Figure 4.9: Bistability in the lac operon. (a) In the bistable state at 18 f-LM thio­

methylgalactoside (TMG), single cells of E. coli show bimodal distributions of lac expression as 

measured by GFP fluorescence (dark gray) . (b) Distribution of fluorescence in a population of 

cells. For increasing concentrations of TMG, the system undergoes a bifurcation from a monos­

table to a bistable state and back. The bistable region is indicated in grey. Close to the bifurcation, 

the population shows a bimodal distribution of fluorescence. The system also shows hysteretic be­

havior: when the TMG concentration is reduced (upper panel) the switch occurs at a different 

concentration then when the TMG concentration is increased (lower panel) . Figure adapted from 

[106]. 

lactose analogue. For intermediate concentrations of TMG the lac expression levels 
are found to be bistable. 

Figure 4.9(a) shows that in the bistable region the GFP fluorescence is strongly 
bimodal, indicating that stochastic transitions occur between the two stable states 
at a rate faster than the timescale of the experiment. In Fig. 4.9(b) the distribution 
of GFP fluorescence is shown for cells that are initially uninduced or fully induced. 
From the figure it is clear that stochastic switching only occurs close to the boundary 
between the bistable and the monostable state. The system is also hysteretic: the 
switch between the uninduced state and the fully induced state occurs at a different 
position depending on whether the TMG concentration is increased or decreased. 
Such hysteric behavior is typical for bistable systems. These observations make it 
clear that the behavior of bistable switches is affected by molecular noise in the cell. 

It is not clear yet whether bistability in the lac system has a specific function 
or whether bistability occurs in the natural system, where lactose rather than TMG 
is taken up. However, many genetic switches that are known to be essential are 
extremely stable. For instance, the switches that determine which cell type a cell in 
the developing embryo will develop into are so stable that they never accidentally 
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backtrack on their decision. Another example is the A switch discussed in Section 
4.2.2. The A switch is remarkably reliable: in the absence of the SOS response 
it stays in the lysogenic state almost indefinitely. For bacteria without the RecA 
protein, it is estimated that the spontaneous switching rate is less than w- 7 per cell 
per generation [108]. This rate is lower than the mutation rate of DNA, so that the 
switch flips spontaneously because of mutation rather than fluctuations. What is 
different in the architecture of the A switches that it is so robust against molecular 
noise? 

It was shown recently that the stability of genetic toggle switches increases dra­
matically when the genes for A and B have an overlapping promoter region [109]. 
In such an exclusive switch, A and B are transcribed in diverging directions. The A 
switch is an example of an exclusive switch, as indicated in Fig. 4.4. The crucial dif­
ference in comparison to the general switch described in Eqs. 4.20 and 4.21 is that, 
since A and B share the same operator site, they cannot be bound to the operator 
site at the same time. The reason why such a switch is more stable than the general 
toggle switch is that it requires two rare events rather than one in order to flip: not 
only does the system need to produce a large number of the repressed protein, the 
operator should also be free of the other repressor long enough for the repressed 
protein to bind. Simulations show that as a consequence, the exclusive switch can 
be orders of magnitude more stable than the general toggle switch. This example 
shows how one can construct switches that are robust against fluctuations, but much 
work remains to be done to fully understand the robustness of switches such as the 
A switch. 

4. 7 Spatial fluctuations 

Even though molecular noise has received a lot of attention in the recent literature, 
most effort has gone into understanding temporal fluctuations caused by the ran­
dom chemical kinetics within the cell. Implicitly, these studies assume that the cell 
behaves like a well-stirred reactor, so that all the reaction rates depend only on the 
average concentration within the cell and diffusion is ignored. However, another 
potential source of noise are spatial fluctuations due to the fact that the macro­
molecules in the cell move around by diffusion. In signaling networks, such as the 
chemotaxis system of E. coli, signals are probably transferred from one part of the 
cell to the other by diffusion [110, 111]. As these signaling molecules occur in small 
concentrations -in the order of 102 - 103 per cell- fluctuations due to the random 
nature of diffusion might be important. Spatial fluctuations could also play a role 
in gene expression, because transcription factors and macromolecules such as RNA 
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polymerase find the correct binding site on the DNA by diffusion through the cell. 
Unfortunately, it is not yet possible to observe experimentally the diffusive motion 
of single proteins in the cell. At the same time, there is a lack of appropriate tech­
niques for studying spatial fluctuations by theory or simulation. As a consequence, 
the influence of diffusion on fluctuations in gene expression is largely unknown. 

The diffusion coefficient of proteins in the cytoplasm of the cell has been mea­
sured to be in the order of 1 f-Lm 2 s - 1 [110]. As the volume of bacterial cells is on 
the order of 1 f-Lm3 , this means that a protein diffuses from one end in the cell in 
about 1 s. As transcription and translation occur on the time scales of minutes, this 
might suggest that spatial fluctuations play only a minor role in gene expression. 

However, recent work on pole-to-pole oscillations of different proteins in bacteria 
has shown that spatial fluctuations are potentially important for systems that operate 
on a time scale of minutes or hours . Currently, the best studied are the MinCDE 
oscillations in E. coli [112-114]. The Min system specifies the mid-cell position for 
the division machinery, so that division results in two equally-sized daughter cells. 
The proteins MinC, MinD and MinE are found to oscillate from one pole to the 
other, where they bind to the membrane. MinC bound to the membrane inhibits the 
assembly of the division apparatus, thus ensuring that division occurs away from 
the cell poles. The oscillations occur on a time scale of minutes and the oscillation 
mechanism depends on diffusion to transport the proteins from one pole to the other. 
As the Min proteins occur only in 1000-2000 copies in the cell, spatial fluctuations 
are important. 

Stochastic models of MinCDE oscillations that incorporate the diffusion of indi­
vidual proteins show that this is indeed the case [115] . Surprisingly, spatial fluctu­
ations seem to be beneficial rather than harmful, as for small copy numbers pole­
to-pole oscillations can occur in a part of parameter space where the corresponding 
macroscopic model yields no oscillations. In the macroscopic model, Min oscillations 
are a Turing instability, occuring when a homogeneous distribution of Min proteins 
becomes unstable. Spatial fluctuations serve to further destabilize the homogeneous 
state, leading to oscillations even when for large copy numbers the homogeneous 
state is stable. Similar oscillations have been seen for the SpoOJ/Soj proteins in the 
bacterium Bacillus subtilis, where the Soj protein relocates in an oscillatory fashion 
from one chromosome to the other during cell division. In this case, however, the 
relocation dynamics is highly stochastic due to the spatial fluctuations of the Soj 
protein [116]. 

The importance of spatial fluctuations for noise in gene expression can be es­
timated theoretically in the following way [117, 118]: for a promoter that binds 
a transcription factor, the rate of gene expression depends on the local concentra­
tion c of the transcription factor. It can be shown that if the transcription factors 
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have diffusion constant D and average concentration c, the fluctuations in the local 
concentration are: 

1 
(4.22) 

)DacT ' 
where O" c is the standard deviation, a is the dimension of the binding site on the 
DNA and Tis the time over which the occupancy is averaged by the process of gene 
expression. The term J DacT describes the spatial fluctuations and can be easily 
understood in a qualitative way. The number of transcription factors measured by 
the promoter is of order N"' ca3 with a standard deviation O"N"' v'N. After a time 
TD "' a2 I D the transcription factors around the promoter are replaced by diffusion. 
Thus, if the promoter measures the concentration over a time T, it makes T lTD in­
dependent measurements, decreasing the standard deviation by a factor JT(D;. 
Consequently, the fractional accuracy in measuring the local concentration of tran­
scription factors is O" clc = O" N IN "' 1 I J DacT. 

In bacteria, the concentration of transcription factors can be as low as 10-100 
copies in a volume of 1 11m3 . The averaging time T is given by the lifetime of 
the mRNA transcript and is of the order of 1 min. As promoter sites have a linear 
dimension of a"' 3nm and the diffusion constant is of order D "' 111m2 s - 1

, a lower 
bound for the fluctuations in the promoter occupancy is: 

O"c - = 20 - 60% (4.23) c ' 
Such fluctuations in promoter occupancy give rise to fluctuations in gene expression. 
Even though it is not clear to what extent these results apply to more realistic models 
of gene expression, this indicates that spatial fluctuations could also be important in 
gene expression. 

In this part of my thesis, I study the importance of spatial fluctuations by simula­
tion in realistic models of gene expression. Currently, none of the existing techniques 
for simulating reaction-diffusion systems on the level of single particles is appropri­
ate for studying gene expression: because gene expression takes place on a time 
scale of minutes and hours, conventional Brownian Dynamics techniques are too 
slow. On the other hand, techniques such as those in Refs. [115, 116] that solve 
the reaction-diffusion master equation numerically, have a limited spatial resolu­
tion. We have developed an algorithm, called Green's Function Reaction Dynamics 
(GFRD), that uses Green's functions for the diffusion equation to propagate the sys­
tem efficiently from one reaction to another in an event-driven way. This algorithm 
is particularly efficient for low concentrations of the reactants, as is often the case in 
transcriptional regulatory networks. 
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In Chapter 5, I describe the algorithm and apply it to a simple model of gene 
expression. In Chapter 6, I use GFRD to study the effect of the diffusive motion 
of repressor molecules on the noise in mRNA and protein number in the case of a 
repressed gene, using a realistic model of gene expression. We will show that spatial 
fluctuations drastically enhance the noise in gene expression. For a fixed level of 
repression, the noise due to diffusion can be minimized by increasing the number of 
repressors or by decreasing the rate at which RNA polymerase initiates transcription. 
We also show that the effect of spatial fluctuations can be well described by a two­
step kinetic scheme, where diffusion of the repressor towards the operator site and 
the subsequent association reaction are treated separately. 
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Chapter 5. Green's-function reaction dynamics 

5.1 Introduction 

J.S. van Zon and P.R. ten Wolde, 
Phys. Rev. Lett. 94, 128103 (2005) 

J.S. van Zon and P.R. ten Wolde, 
J. Chem. Phys. 123, 234910 (2005) 

Organisms can be viewed as information processing machines. Even relatively sim­
ple organisms, such as the bacterium Escherichia coli, can perform fairly complex 
computations as was shown in more detail in Chapter 4. Such functions arise from 
the collective properties of molecules that chemically and physically interact with 
one another. For this reason, computer simulations are a natural tool to elucidate 
the design principles that allow organisms to process information. However, the 
conventional numerical techniques are of limited use for this purpose, because they 
either ignore the molecular nature of the reactants or assume that the system is well 
stirred. We have developed a numerical technique, called Green's-function reaction 
dynamics (GFRD), that describes biochemical networks at the particle level and in 
both time and space. GFRD is an event-driven algorithm that uses Green's functions 
to combine in one step the propagation of the particles in space with the reactions 
between them. The event-driven nature of the algorithm makes the scheme par­
ticularly useful for problems in which the events are distributed over a wide range 
of length and time scales. Biochemical networks are an important example: GFRD 
takes small steps when the particles are close to one another, while it takes large 
jumps in time and space when the particles are far apart from one another. In the 
living cell, this is often the case, because the concentrations of the reactants are usu­
ally remarkably low. GFRD is thus highly suited for studying biochemical networks. 
However, the scheme is generic and the scope of GFRD is thus wider than biochem­
ical networks. GFRD can be applied to a wide range of reaction-diffusion problems, 
including those in population dynamics, evolution and condensed-matter physics. 

Table 5.1 gives an overview of the commonly used techniques for analyzing bio­
chemical networks. The conventional approach is to write down the macroscopic 
rate equations and to solve the corresponding differential equations numerically. In 
this method, the evolution of the network is deterministic. It is implicitly assumed 
that the concentrations are large and that fluctuations can be neglected. However, in 
the living cell the concentrations are often very low, i. e. in the nanomolar to micro­
molar range. As a result, biochemical networks can be highly stochastic [88, 119]. 

The effect of fluctuations is often included by adding a noise term to the macro­
scopic rate equations [93]. However, at low concentrations, this approach is bound 
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Description 

Continuum Ordinary differential equations 
Stochastic differential equations 

Reaction diffusion equations 
Master equation Chemical master equation 0-d 

Reaction-diffusion master equation 
particle-based Brownian dynamics 

GFRD 

Accounts for spatial 
extent of network 

No 
No 

Yes 
No 
Yes 
Yes 
Yes 

5.1. Introduction 

Incorporates 
fluctuations 

No 
Only at high 

concentrations 
No 
Yes 
Yes 
Yes 
Yes 

Table 5.1: Overview of the commonly used techniques and the newly developed technique, called 
Green's-function reaction dynamics (GFRD), to simulate biochemical networks. GFRD takes both 

the discrete nature and the spatial distribution of the reactants into account. 

to fail, as demonstrated by Togashi and Kaneko [120] and Shnerb and cowork­
ers [121]. Here, the dynamics of simple reaction networks is shown to be qualita­
tively different from both the macroscopic rate equations and the chemical Langevin 
equations when the reactants are present in 10-100 copies in the reaction container. 
At such low concentrations, the discrete nature of the reactants has to be taken into 
account. In this case, the system is often described by a chemical master equation, 
as was discussed in Section 4.4. Currently, two techniques exist that are consistent 
with the (zero-dimensional) chemical master equation [122, 123]. As was explained 
in more detail in Section 4.4, the chemical master equation relies on the assumption 
that there are many non-reactive collisions to stir the system between the reactive 
collisions. In effect, it is implicitly assumed that at each instant the particles are 
uniformly distributed in space. This is a serious limitation. First of all, fluctuations 
of the components in space can be a major source of noise in biochemical networks 
as we will shown in in Section 5.3.2 and in Chapter 6. Moreover, signals often 
have to be transmitted from one place to the other by the diffusive motion of "mes­
senger" molecules; their concentrations can be non-uniform, and more importantly, 
their low mobility can limit the response time of the network. In addition, many 
biochemical networks, such as those in embryonic development or in the immune 
response, involve a complex spatial (re)organization of the reactants. In all these 
cases, it is of crucial importance to describe the network in time and space. 

A number of techniques have been developed that take into account the spatial 
distribution of the components and the stochastic character of the reactions between 
them [124-127]; these techniques are based upon the reaction-diffusion master 
equation [128, 129]. Two recent publications apply these techniques to biochemical 
networks [126, 127] . The key ingredient of these techniques is to divide the reaction 
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volume into a finite number of subvolumes; particles can react within a subvolume, 
but also diffuse from one subvolume to the next. Importantly, it is assumed that 
within each subvolume the particles are well-mixed. The techniques thus rely on 
the existence of a length and time scale on which the system is spatially uniform. 
In contrast, GFRD describes a biochemical network at the particle level. GFRD thus 
allows for a much better spatial and temporal resolution than techniques based upon 
the reaction-diffusion master equation. 

In order to set up a particle-based algorithm, it would seem natural to develop a 
technique based upon Brownian dynamics. When particles move around by Brown­
ian motion, their displacement after a certain time is given by a Gaussian distribution 
with a width depending on the time and the diffusion constant (See for instance Sec­
tion 5.2.1 and Eq. 5.5). In Brownian dynamics algorithms, particles are propagated 
during a fixed time step by drawing a displacement from this distribution. When 
two particles overlap after the propagation step, the particles are allowed to reacted 
with each other with a probability depending on the reaction rate. If no reaction oc­
curs, new positions are generated. Recently, Andrews and Bray have developed such 
a technique for simulating biochemical networks [130]. However, while Brownian 
Dynamics is correct, it is also inefficient, because at low concentrations particles 
often diffuse over large distances before reacting with other particles. 

GFRD, on the other hand, exploits the exact solution of the Smoluchowski equa­
tion to concatenate the propagation of the particles in space with the reactions be­
tween them. GFRD thus alleviates the need to propagate the particles toward each 
other to let them react: even when the reactants are far apart from one another, 
GFRD can immediately jump to the next chemical reaction event. This event-driven 
nature makes the GFRD algorithm highly powerful, especially when the concentra­
tions of the components are low. 

In the next section, we describe the GFRD technique in detail. In the subsequent 
section, we apply GFRD to a bi-molecular reaction and to a simple model of gene 
expression. We explain why spatial fluctuations of the components can be a major 
source of noise in biochemical networks and show that the importance of spatial 
fluctuations increases for smaller diffusion constants. The calculations also reveal 
that GFRD is highly efficient under biologically relevant conditions. Our findings 
suggest that GFRD brings simulating biochemical networks at the particle level and 
in time and space within reach. 
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5.2 Overview of the algorithm 

Two approaches seem to be potentially useful for simulating biochemical networks 
at the particle level and in time and space. The first is to let the particles undergo a 
random walk on a lattice and to let reaction partners react with a certain probability 
when they happen to meet each other. This technique has a number of limitations, 
the most important of which are that the physical dimensions of the particles and 
the interactions between them cannot conveniently be described. 

Brownian dynamics is a more appealing technique. This is a stochastic dynamics 
scheme, in which the particles are propagated in space according to the overdamped 
limit of the Langevin equation. In Brownian dynamics, the solvent is considered 
implicitly; only the solute particles are considered explicitly. The forces experienced 
by these particles contain two parts: a conservative part, which arises from the 
interactions with the other solute particles, and a random part. The latter is the 
dynamical remnant of the solvent-the solutes are thought to experience random 
forces by collisions with particles from the solvent. Via the fluctuation-dissipation 
theorem and the Einstein relation, the random forces are related to the diffusion 
constant of the particles. To be more explicit, the equations of motion for the solute 
particles are given by: 

r s = D s (F s + 5F s) . 
kBT 

(5.1) 

Here, r s denotes the position of solute particle s, D s is the diffusion constant of 
solute particle s, k 8 T is Boltzmann's constant times temperature, F s is the force 
exerted by the other solute particles, and JF s is the random force that arises from 
the interactions with the solvent. 

Brownian Dynamics has a number of advantages over lattice-based techniques: 
the particles move in continuum space; it naturally allows for particles of different 
sizes and shapes; the interactions between particles-the potential of mean force­
can easily be described; excluded volume effects are taken into account naturally; 
and a different diffusion constant can be assigned to each type of particles. 

In principle, chemical reactions can be implemented into the Brownian Dynamics 
scheme [130]: the particles are propagated according to Eq. 5.1 and when two 
reaction partners happen to meet each other, they can react with a probability that 
is consistent with the rate constant. However, the major drawback of such a scheme 
is that very small time steps are needed in order to resolve the collision events. 
This makes brute-force Brownian Dynamics a very inefficient scheme to simulate 
biochemical networks. 

The main idea of GFRD is to combine in one step the propagation of the particles 
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in space with the reactions between them. To see how this can be accomplished, 
one should realize that Brownian Dynamics is, in effect, a numerical procedure for 
solving the Smoluchowski equation [131] . Moreover, for a pair of particles, that 
not only move diffusively, but also can react according to A+ B ----+ C + D + .. . , 
the Smoluchowski equation can be solved analytically using Green's functions. The 
Green's function for the pair of particles A and B, p(r , tiro , t0 ), yields the probability 
that the inter-particle vector r 0 at time t0 becomes r at a later time t. The essence 
of GFRD is to exploit this exact solution for a pair of particles to set up an event­
driven algorithm. This allows GFRD to make large jumps in time when the particles 
are far apart from each other. In biochemical networks this is often the case as 
the reactant concentrations are usually low. GFRD is therefore ideally suited for 
biochemical networks, although it could clearly be used to study other reaction­
diffusion problems as well. 

We now describe the scheme in more detail. First, we will introduce in Sec­
tion 5.2.1 the Green's functions and related quantities we use in the GFRD algo­
rithm. In Section 5.2.2 We use these functions to set up an algorithm to simulate 
two particles that move by diffusion and react with each other. We will show in 
Section 5.2.3 how one can extend this algorithm to an arbitrary number of particles 
by breaking down theN particle problem in that of single particles and pairs of par­
ticles. Finally, we derive the Green's function needed for the applications presented 
in Section 5.3. 

5.2.1 Green's functions 

First, we consider the propagation of a single particle. We assume that the particle 
is spherical in shape and moves by free diffusion with a diffusion constant D. In 
this case, the diffusive motion of the particle is described by the Einstein diffusion 
equation: 

(5.2) 

Here, p1 (r , tiro , t0 ) is the probability that the particle is at position rat timet, given 
that it was at r 0 at time t0 • This diffusion equation can be solved for the following 
initial condition and boundary condition: 

P1 (r, toiro , to) 

P1 (iri --> oo, tiro , to) 

c5(r - ro) , 

0, 

The solution is given by the well-known expression: 
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1 [ ir - roi
2 

] p 1 (r, tiro, to) = 312 exp - D( ) · 
[47rD(t-t0 )] 4 t-to 

(5 .5) 

The solution p1 (r , tiro, t0 ) subject to the initial condition in Eq. 5.3 is known as a 
Green's function. Provided that it can be found analytically, the Green's function 
is highly useful as it contains all the information of the system described by cor­
responding differential equation and boundary conditions. For instance, it has the 
property that that the time evolution of a system with initial conditions ¢(r0 , t0 ) can 
be completely expressed in the Green's function p1 (r, tiro, t0 ) as: 

¢(r, t) = j dro¢(ro, to)Pl (r, tiro , to) . (5.6) 

It is useful to consider the case in which the particle does not only move by diffusion, 
but also can decays according to the reaction: 

(5.7) 

with a decay rate kd. We assume that, if the reaction occurs, it happens instanta­
neously. This means that the reaction can be decoupled from the diffusive motion of 
the particle. If the reaction is a Poisson process with kddt being the probability that 
a reaction occurs in an infinitesimal time interval dt, then the probability that the 
next reaction occurs between t and t + dt is given by: 

(5 .8) 

In Section 5.2.2, we will use the single particle Green's function p 1(r, tiro , t0 ) and 
the probability distribution qd(tito) to set up an event-driven algorithm. 

The next step is to consider one pair of particles A and B that move around by 
diffusion and can react irreversibly according to: 

k 
A+B~C+D ... (5.9) 

We again assume that the particles A and B are spherical in shape. The diffu­
sion constants for particle A and B are D A and D 8 , respectively. Furthermore, we 
assume that the particles react with an intrinsic rate constant ka when they have 
approached each other within the reaction distance CY = (dA + d8 )j2, where dA and 
d8 are the diameters of particles A and B, respectively. In addition, the particles 
interact with each other via a potential U ( r), where r = r 8 - r A. The force acting 
on particle B is thus given by-V 8 U(r) = F(r), while the force acting on particle A 
is given by - F(r). 
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We aim to derive the pair Green's function p2 (rA, r B, tlrAo, rEo , t0 ), which gives 
the probability that the particles A and B are at positions r A and r 8 at time t, given 
that they were at r Ao and r 80 at time t0 , respectively. This distribution function 
satisfies for lrl ~ O" the following Smoluchowski equation [131]: 

[DA\7~ +DB\7~ 
-DBfJ\7 B · F(r) + D AfJ\7 A· F(r)] 

x P2 ( r A , r B , t I r Ao, r Bo, to) . 

It will be convenient to make the coordinate transformation: 

R 

r 

(5.10) 

(5.11) 

(5.12) 

The differential operators in Eq. 5.10 can be expressed in Rand r by the chain rule: 

VA 

Similarly; 

'VR · (\7 A · R) + V .. · (\7 A· r) 

VDB/DA'VR- 'Vr· 

'V B = VDA/DB'VR + 'Vr . 

For the divergences Vit and Vit one finds: 

DBVit + DA v; - JDADBVR · v .. , 
DAvit+ DBv; + JDAD B'VR · v .. . 

Using Eqs. 5.14, 5.15, 5.16 and 5.17, one can rewrite Eq. 5.10 as: 

(D A+ DB)[Vit + \7 r · (\7 r -{JF(r))] 

x P2(R, r, tiRo, ro, to). 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

It is seen that Eq. 5.18 describes two independent random processes-free dif­
fusion in the coordinate R and diffusion with a drift in the coordinate r. This 
means that the distribution function p2 (rA,rB ,t lrAo,rBo,to) can be factorized as 

134 



5.2. Overview of the algorithm 

p~(R, tiRo, to)P2(r, t iro, t0 ) and that the above equation can be written as one Smolu­
chowski equation for the coordinate Rand one for the coordinate r: 

chp~(R, tiRo, to) 

OtP~(r , tiro , to) 

(DA +DB)'Vit xp~(R,t iRo ,to), (5.19) 

(DA + DB)'Vr · ('Vr- ,8F(r)) x p~(r , t iro ,to) (5.20) 

Equation 5.19 describes the free diffusive motion of the coordinate R. The solution 
of that equation, for the initial condition p~(R, t0 1R0 , t0 ) = 8(R- R 0 ) and boundary 
condition p~(IRI ----> oo, t iRo, to) = 0, is: 

R 1 [ IR - Rol
2 

] p2 (R, tiRo, to) = exp - , 
[47r(D A+ DB)(t- t0)] 3/

2 4(D A+ DB )(t- to) 
(5.21) 

similar to Eq. 5.5 for a single particle, but with a different effective diffusion con­
stant. 

The non-trivial solution is that of the Smoluchowski equation for the inter-particle 
vector r. This solution also has to take into account the reactions between A and 
B. The reaction can be incorporated as a boundary condition on the solution of 
the Smoluchoswki equation. To be more explicit, the initial condition and boundary 
conditions for the coordinate r are given by: 

PHr, tolro, to) 

p~( lrl ----> oo, t iro, to) 

-j(O', tiro, to) 

8(r - ro), (5.22) 

0, (5.23) 

47r0'2 
D ( :r - F(r)) x pHr, tiro, to)llrl =a> 

kaP~(Ir l = 0' , t iro, to), (5.24) 

where 8/Br denotes a derivative with respect to the inter-particle separation r. 
The reaction enters the problem as a third boundary condition at particle contact, 
lrl = 0'. Here j(O', tiro , to) is the outward radial flux of probability P2(r, tiro, to) 
through the "contact" surface of area 47r0'2 . The boundary condition, also known 
as a radiation boundary condition [132, 133], states that this radial flux of prob­
ability equals the intrinsic rate constant times the probability that the particles A 
and B are in contact. In the limit ka ----> oo, the radiation boundary condition re­
duces to an absorbing boundary condition p2( 1rl = 0', t iro, t0 ) = 0, while in the limit 
ka ----> 0 the radiation boundary condition reduces to a reflecting boundary condition 
j(O',tlro,to) = 0. 
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The pair Green's function P2(r, tiro , t0 ) is derived in Section 5.2.5 for the case in 
which F(r) = 0 for lrl > CJ; for cases in which F(r) -1- 0 for lrl > CJ, the Green's func­
tions could be obtained numerically. Here, we will discuss some useful quantities 
that can be derived from the Green's function. The first quantity of interest is the 
probability that a pair of particles, initially separated by r0 , survives and does not 
recombine by time t. This so-called survival probability is given by: 

Sa (tiro , to)= ( drp2(r , tiro, to). 
}lrl >a 

(5.25) 

Clearly, Sa(t0 lr0 , to) = 1 for lro l > CJ. The survival probability decreases in time, due 
to the reaction between particle A and B. Consequently, the rate of change of the 
survival probability at time t is related to the probability that particle A and B will 
have their reaction at time t. Thus, the second quantity of interest one can derive 
from the Green's function is the reaction rate qa(tlr0 , t0 ), which is defined as the 
probability per unit time that a pair, initially separated by r 0 , reacts at time t. It is 
related to the survival probability by: 

( I ) _ 8Sa(tlro, to) 
qa t ro , to = - at . (5.26) 

Since the reactions are assumed to occur only at contact, the reaction rate is also 
given by the flux at contact: 

qa(t lro, to) = -j(CJ, tiro, to). (5.27) 

The above equation can also be obtained from Eq. 5.20 and Eq. 5.25 and by using 
the fact that the flux at lr l ---7 oo vanishes. 

For a pair of particles A and B that react with each other reversibly, the irre­
versible reaction rate qa(tlr0 , t0 ) can be interpreted as the probability that a pair of 
particles, initially separated by r 0 at time t0 , will have a next reaction at timet. This 
is used to set up the GFRD event-driven algorithm, which we will describe in the 
next section. 

5.2.2 Two-particle algorithm 

Using the single particle Green's functions in Eq. 5.5 and the pair Green's function in 
Eqs. 5.19 and5.20 together with the reaction rates in Eqs. 5.8 and 5.26, it is possible 
to set up an event-driven algorithm to simulate two particles that move around by 
diffusion and can react with one another. 

For the two-particle algorithm, we consider a single particle of type A that can 
react with a single particle of type B according to the following scheme: 
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(5.28) 

with association rate ka and dissociation rate kd. We will simulate the system from 
a time t0 = 0 to time T. As a function of time, the system will flip-flop between the 
associated state C and the dissociated state A+ B. The GFRD event -driven algorithm 
to propagate this system consists of iterating the following steps: 

(1) If the system is in the dissociated state A + B, then draw a next association 
timet according to qa(tlr0 , t0 ), where t0 is the current time in the simulation. 
(Eq. 5.26). 

(a) If t 2 T, then the two particles will not react within the simulation time. 
New positions for A and Bat timeT are obtained from pNR, TIRo , to) 
(Eq. 5.21) and pHr , Tiro, t0 ) Eq. 5.34) with Rand r as given by Eqs. 5.11 
and 5.12. 

(b) If t < T, then the next reaction will occur within the simulation time. 
Particles A and B are removed and a new position for particle C at time 
tis obtained from p~(R, tiRo , t0 ) (Eq. 5.21). The time is incremented, so 
that t0 = t . 

(2) If the system is in the associated state C, then draw a next dissociation time 
from qd(t lto) (Eq. 5.8). 

(a) If t 2 T, then particle C will not have decayed within the simulation 
time T. A new position for particle C, rc, at time T is obtained from 
Pl(rc, Tlrc o, to) (Eq. 5.5) 

(b) If t < T, the next reaction will occur within the simulation time. Particle 
C is removed and particles A and B are placed at time t adjacent to each 
other at positions around r c as obtained from p1 (rc, t lrc 0 , t0 ) (Eq. 5.5). 
Specifically, the positions of particles A and B are given by R = r c and 
r = a-( sine cos ¢ , sine sin¢, cos B), with e and ¢ chosen randomly. 

The above algorithm propagates the system in one step from one reaction to 
the other. The time step !J.t between consecutive reactions is obtained from the 
rate equations qa(t lto) and qd(tlt0 ). The simulation time T effectively imposes a 
maximum timestep !J.tmax = T - t0 on the algorithm. 
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Figure 5.1: Determination of the maximum time step, ~tmax · The maximum size of the time 
step is set by the requirement that each particle can interact with at most one other particle during 

that time step; each particle i can thus travel a distance of at most ~Tmax,i during a time step, 
as indicated by the circles. We have used the operational criterion ~Tmax,i = H J6D; ~tmax,i, 
with D; being the diffusion constant of particle i. A value of H = 3 was found to yield a good 
conservation of the correct steady-state distribution. In this example, each particle is assumed 

to have the same diffusion constant; the time step is limited by the constraint that particles i 
and k should not interact as particle i can already interact with particle j . Note that with this 
maximum time step the many-body problem of propagating the N particles is reduced to that of 
propagating single particles and pairs of particles. 

5.2.3 Many-particle algorithm 

The two-particle algorithm in Section 5.2.2 cannot be extended directly to include 
N particles. The reason for this is that it would require the N particle Green's 
function PN( { ri}, tl { r 0 ,i}, t0), which is intractable. However, it is possible to break 
down the N particle problem into single particles and pairs of particles by imposing 
a maximum time step .6.tmax · 

Let us imagine a configuration of reactants as shown in Fig. 5.1. The circles 
indicate the distance the particles can travel in a time step tJ.t. For a particle that 
moves by free diffusion with a diffusion constant D, that distance scales as (l.6.rl 2

) "' 

DtJ.t . In principle, in a finite time particles can travel an arbitrarily large distance 
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by diffusion. In practice, however, the probability of such a large excursion is very 
small. We assume that within a time step t::.t particles cannot diffuse further than 
a distance l::.rmax = H J(6Dt::.t). For H = 3, for instance, 98.6% of the particles 
satisfy this criterion. 

In Fig. 5.1, intersecting circles represent particles that may meet within the time 
step t::.t . Isolated particles and pairs of interacting particles can be propagated an­
alytically using Green's functions, as we was discussed in Section 5.2.1. Clearly, 
the larger the time step, the larger the circles and the greater the probability that 
reaction partners meet and react with each other. However, we cannot make the 
time step arbitrarily large: if a given particle can collide with more than one other 
particle during a time step, then propagating the particles becomes a many-body 
problem that we can not solve analytically. The size of a time step is thus limited 
by the requirement that each particle can interact with at most one other particle 
during that time step. In the representation of Fig. 5.1, this means that a circle can 
overlap with at most one other circle. This constraint sets an upper limit on the 
magnitude of a time step in our algorithm; we will call it l::.tmax · However, provided 
that we consider times t::.t smaller than l::.tmax and limit displacements to l::.7·max, the 
problem can be reduced to that of propagating single particles and pairs of particles. 
For this situation an event-driven GFRD algorithm can be set up analogous to the 
two-particle algorithm in Section 5.2.2. The many particle algorithm then consists 
of the following steps: 

(1) Determine the maximum time step l::.tmax· The maximum time step is determined 
by the condition that only single particles or pairs of particles have to be con­
sidered (see Fig. 5.1). For each particle i, we determine the maximum time 
step l::.tmax,i, such that it can interact with at most one other particle. If all 
particles have the same diffusion constant D, this maximum time step is de­
termined by rsNN,i, the distance to the second-nearest neighbor, as: 

(rsNN,i - 2oY 
f::.tmax,i = GDH2 , (5.29) 

where !J = (dA + d8 )j2 is the reaction distance of the pair of particles. The 
maximum global time step is then given by: 

l::.tmax = min({t::.tmax,i}) . (5.30) 

In order to determine l::.tmax,i for particle i, we assume that during that step 
the particle can travel at most a distance l::.rmax,i = H J6Dit::.t, where Di is 
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the diffusion constant of particle i. We find that H = 3 suffices to preserve the 
correct steady-state distribution. 

(2) Determine the next reaction and next reaction time. We first construct a list of 
possible reactions { Rv}. Single particles can only undergo a dissociation or 
decay reaction. For pairs, both particles can undergo a dissociation or decay 
reaction, but in addition two particles can also associate. With each reac­
tion Rv, we associate a survival probability function Sv(t - t0 ) and a next­
reaction distribution function qv ( t - t0 ); the two are related via qv ( t - t0 ) = 
- 8Sv(t - t0 )/ 8t. For the association reactions, qv(t - t0 ) = qa(t ir0 , t0 ) as 
given by Eq. 5.26 and Sv(t - to) = Sa(tlr0 , t0 ) as given by Eq. 5.25. For dis­
sociation or decay reactions, qv(t - t0 ) = qd(tito) = kd exp( - kd(t - t0 )) and 
Sv(t- t0 ) = exp( - kd(t - t0 )). For each reaction, we draw a tentative time step 
from the next-reaction distribution function qv(t- t0 ) . 

From the list of tentative reactions, we choose as the actual next reaction the 
one that occurs first, provided that this reaction occurs within the maximum 
time step !::,.tmax · Accordingly, the system will be propagated through a time 
!::,. t as given by: 

!::,.t = min( {!::,.t v}, !::,.tmax ) · (5 .31) 

Note that if there is no tentative reaction for which the tentative next reaction 
time !::,.tv < /::,.tmax , then no reaction will occur within the time step. 

(3) Propagate particles. Single particles are propagated according to p1 (r , tlr0 , t0 ) 

in Eq. 5.5; if a particle decays, then the products are placed next to each other 
at positions centered around r. For each pair of particles, the following two 
substeps are executed: 1) a new position for the coordinate R is obtained from 
Eq. 5.21; 2) if the pair has not reacted, a new inter-particle vector r is obtained 
from p~(r , tiro , t0 ) in Eq. 5.34; else, if the pair has reacted, the products are 
placed adjacent to each other at positions around R. If the algorithm generates 
a tentative displacement larger than the maximum displacement /::,.rmax,i , we 
discard the result and draw a new displacement 

(4) Update particles. Update identities of particles according to the executed reac­
tion. Delete or add particles created or destroyed in that reaction. 

In the many-particle algorithm, the particles are propagated from one reaction 
to another, provided that a reaction occurs within the maximum time step /::,.tmax· 

For all single particles and pairs of particles, with the exception of the single particle 
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or the pairs of particles undergoing a reaction, new positions at the end of each time 
step are generated from the Green's functions. 

5.2.4 Boundary conditions 

Boundaries can be naturally implemented in GFRD: as, in general, no analytical so­
lution exists for a pair of particles in the presence of a boundary, we introduce the 
further requirement that during a time step a particle can only interact with either 
the wall of the container or with another particle, but not with both. The first case 
is shown schematically in Fig. 5.2(a) for a reflecting boundary. Here, particle j is 
propagated by free diffusion and particle i according to the Green's function for a 
particle in the presence of a reflecting boundary. In the case shown in Fig. 5.2(b), 
the position of both particles is chosen from the irreversible Green's function and 
because of the limit on the time step no position outside of the container will be 
generated. For the case of a rectangular container with reflecting boundary condi­
tions, a new position is easily obtained, as we will discuss now. First, we treat the 
simple case of a particle near a reflecting plane. 

Figure 5.3(a) shows how to generate a new position x for a particle that is con­
fined to a half-space by a reflecting boundary. First, for a particle initially located 
at x0 , the Green's function Pb(x, tlxo) for a particle in the presence of the reflecting 
boundary in Fig. 5.3(a) is given by: 

Pb(x, tlxo) = Pfree (x, tlxo) + Pfree (x, tlxt) , (5.32) 

where Prree (x, tlxo) and Prree (x, tlxt) are the Green's functions for free diffusion in 
Eq. 5.5, for the particle at x0 and for a mirror particle placed at x 1, on the opposite 
side of the boundary. Because of symmetry, the fluxes of the two particles cancel on 
the boundary between I and II. As a consequence, the Green's function in Eq. 5.32 
obeys the proper reflecting boundary conditions. 

The fact that the Green's function Pb(x , tlxo) can be expressed according to 
Eq.5.32 implies a simple procedure for generating a new position x for a particle 
initially located at x0 and confined to a half-space. We draw a tentative new posi­
tion x' according to Prree (x' , tlx0 ). If x' lies outside of the half-space, in region II, we 
obtain a final position x within region I by reflecting the displacement through the 
boundary, as shown in Fig. 5.3(a). It can be seen from Fig. 5.3(a) that, due to the 
symmetry of the problem, the probability of generating a final position x using this 
reflection procedure is equal to Prree (x, tlx1 ). As a consequence, the resulting proba­
bility distribution Pb(x, tlxo) is given by Eq. 5.32 and obeys the reflecting boundary 
conditions. 
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0 
j 

(a) (b) 

Figure 5.2: Maximum time step in the presence of a reflecting boundary (solid thick line) . Now, 
the maximum time step is chosen such that a single particle i either reacts only with the boundary 
(a) or only with another particle j (b). In the case of (a) both particles are propagated by free 
diffusion or free diffusion in the presence of a reflecting boundary. In the case of (b) the pair 
Green's function is used. 

(a) (b) 
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Figure 5.3: Drawing a new position for a particle that can interact with a reflecting boundary. 
(a) Particle confined to a half-space. A tentative new position x' is drawn from the Green's 
function for free diffusion, Pfree (x,' tlxo). If x' lies outside of region I, a final position x within 
region I is generated by reflection through the boundary. The dashed particle is a mirror particle 
located at x1. (b) Particle confined to a quadrant. If a tentative position x' is drawn in quadrant 
II or W, the procedure in (a) is followed. If a tentative position is drawn in quadrant II, a 
final position x is generated by reflection through both the vertical and the horizontal boundary. 
Mirror particles at x1, x2 and x 3 are shown as dashed particles. 
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This procedure can be extended to a particle confined to a quadrant of the plane, 
as indicated in Fig. 5.3(b). In this case, the Green's function Pb(x , tixo) can be 
expressed as: 

(5.33) 

with mirror particles at x 1, x 2 and x3 as shown in Fig. 5.3(b). The flux due to the 
particles at x 1 and x 2 is balanced by the flux of the particles at x0 and x3 on the 
boundary between quadrant I and II. A similar argument holds for the boundary 
between quadrant I and rv, so that Pb(x, tlx0 ) in Eq. 5.33 obeys the proper reflect­
ing boundary conditions. We can extend the sampling procedure outlined above 
to the case of a particle confined to a quadrant as follows. We again generate a 
tentative new position x' according to Prree (x' , tixo). If this tentative position is gen­
erated in quadrant II or rv, a final position x within the container is generated by 
the procedure outlined in Fig. 5.3(a). When a tentative position x' is generated in 
quadrant III, as shown in Fig. 5.3(b), a final position x within the container is ob­
tained by reflection through both the vertical and the horizontal boundary. When 
x' lies in quadrant III, the probability of obtaining the final position x in quadrant 
I using this procedure is given by Prree(x' , tl x2 ). Similarly, when x' is in quadrant II 
and rv, the probability of generating ax in quadrant I is given by Prree (x' , tlxl) and 
Prree ( x' , tlx3 ), respectively. As a consequence, the resulting probability distribution 
Pb(x, tlx0 ) obtained using this procedure is given by Eq. 5.33 and yields the correct 
reflecting boundary conditions. 

This procedure can be extended to rectangular boxes, by taking into account 
more mirror charges. However, unless the density of reactants is very low the time 
step will be too small for particles to diffuse between parallel boundaries of the con­
tainer. In this case, the problem reduces to that of a particle confined to a quadrant, 
as discussed above. Obtaining a final position within the container by reflections 
is only justified when the Green's function with reflecting boundary conditions can 
be written in terms of mirror particles. As a consequence, it is not directly appli­
cable to more complicated boundaries such as cylinders or spheres. In this case, 
Green's functions can be obtained analytically for particles in the presence of re­
flecting cylindrical or spherical boundaries [132]. Arbitrarily-shaped containers can 
be constructed from planes, spheres, cylinders or other building blocks by restrict­
ing the maximum time step so that a particle can only interact with one of these 
elements at the same time. 
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5.2.5 Green's function for U(r) = 0 

In the absence of a long-range interaction, U(r) = 0, we can analytically obtain the 
Green's function p2(r, tiro , t0 ) for a pair of particles A and B that move by free dif­
fusion, but, upon contact, can react irreversibly with a rate constant ka. In this case, 
the differential equation in Eq. 5.20 reduces to the Einstein diffusion equation and 
one can exploiting the analogy between the diffusion of particles and the conduction 
of heat in solids. The corresponding Green's function for the conduction of heat in 
solids is derived in Ref. [132] and is given by: 

p~(r, e, ¢, t iro) 
1 00 

41fJTTo; [(2n+ l)Pn(cosfJ) (5.34) 

x 100 

e - Du
2

t Fn+l j2(ur )Fn+l/2 (uro)udu] , (5.35) 

where: 

(5.36) 

and: 

Uv(ur) l v( ur )Yv ( UO") - Yv( ur )Jv ( UO") , (5.37) 

Vv(ur) lv( ur )Y~ ( UO") - Yv ( ur )J~ ( UO") , (5.38) 

R1 ,v (20"ka + l)Jv(UO") - 2UO"J~(uO") , (5.39) 

R2,v (20"ka + l)Yv(UO") - 2UO"Y~(uO"). (5.40) 

In the above equations, Pn is the nth Legendre polynomial, I n and Yn are the nth 
Bessel function of the first and the second kind with derivatives 1:1 and Y~. The 
total diffusion constant of the two particles A and B is given by D = D A + D 8 and 
the reaction distance by O" = (dA + d8 )/2, where dA and d8 are the diameters of 
the particles A and B, respectively. Here and below, we take t0 = 0. The Green's 
function can be expressed in a more compact notation by: 

00 

p~(r , e, ¢, ti ro) = L CnPn( cos fJ)Rn(r , ti ro) . (5.41) 
n =O 

The probability f(rlro , t) of finding the particles separated by a distance between r 
and r + dr at time t, when they were at a distance r0 initially, is given by: 
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f(riro , t) (5.42) 

00 

21f L CnQn(7r)r2 Rn(r, tiro), (5.43) 
n=O 

with 

(5.44) 

The conditional probability g(Bi r, r0 , t) that two particles are at an angle between e 
and B + dB with respect to the original direction r 0 = r 8 - r A, given that they are 
separated by a distance rat time t, is: 

00 

g(Bir, ro , t) = 21f L CnQ~(B)r2 Rn(r , t). (5.45) 
n = O 

The survival probability S(tiro) is given by: 

S(tiro) = 100 

f(riro , t)dr. (5.46) 

The above integral is complicated but it follows from the properties of the diffu­
sion equation that it must be identical to the irreversible survival probability for 
the spherically symmetric case that only depends on r. For spherical symmetry, the 
survival probability can be more easily calculated and is given by [134, 135]: 

CJ ka [ (ro - CJ) (ro - CJ ~)] Sirr(tiro) = 1 -- k k erfc ~ - W ~ ,O:irrv t , 
ro "a + "D v 4Dt v4Dt 

(5.47) 

where kD = 47fCJ D, O:irr = (1 + ka/ kD) /I5 / CJ and W( a, b) = exp(2ab + b2 )erfc( a+ b). 
Prior to the simulations, we construct a look-up table for the integrand of qa(tiro) 

and look-up tables for the integrands of f(rir0 ,t) and g(Bir,r0 ,t); essentially, the 
latter look-up tables are one large four-dimensional look-up table for the Green's 
function v2(r, B, ¢, tir0 ). During the simulations, the look-up table for qa(tjTa) allows 
us to efficiently obtain the next reaction time. Similarly, the other look-up tables 
make it possible to efficiently determine a new position for the reaction partners 
(in case they have not reacted): we first draw a r from the distribution f(rir0 , t); 
next we draw e from the distribution g(Bir, r0 , t) and finally we choose ¢ uniformly 
distributed between 0 and 21r. Precisely how we do this, is outlined in Section 5.2.6. 
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When numerically calculating the Green's function, we sum contributions up 
to n = nmax , the number of terms needed for the sum in Eqs. 5.34, 5.41, 5.43, 
and 5.45 to converge. However, for small t the convergence is very slow and many 
terms need to be taken into account. In order to reduce nmax, we exploit the fact 
that for small t, the probability that the two particles will interact with each other, is 
relatively small. In other words, for small t the full solution p~(r , tiro) is dominated 
by free diffusion. We can use this observation to reduce nmax by writing the Green's 
function asp~ (r, tiro) = Pfree (r , tiro)+Peon(r , tiro), where Pfree is the solution forfree 
diffusion and Peon is a correction term that takes into account the reacting boundary 
at r = u. The free diffusion term in Eq. 5.5 is expressed in polar coordinates as: 

1 [ r 2 + r5 - 2rro cos e] 
Pfree(r,B,¢,t iro) = 3/2 exp - 4Dt . 

[47rDt] 

Using the fact that Pfree (r, B, ¢,t iro) can also be written [132] as: 

Prree(r, B, ¢,t iro) 
1 n lnax 

-- L [(2n + 1)Pn(cosB) 
47rVITO n=O 

(5.48) 

x loco e- Du
2

t ln+lj2(ur)Jn+lf2( uro) u du , (5.49) 

we find by comparison with Eq. 5.34 that Peon can be expressed as: 

Peon(r, B, ¢, tiro) 
l ?ln1ax 

- VITO L [(2n+ 1)Pn(cosB) 47r rr0 n=O 

(5 .50) 

where 

R1 (2uka+ l)Jn+l/2 (uu) - 2uuJ~1 ;2 (uu), (5.51) 

R2 (2uka + 1) Y n+l/2 ( uu) - 2uu Y~1 ;2 ( UO"), (5.52) 

F1 Jn+l/2 ( ur )Jn+l /2 ( uro) - Y n+l/2 ( ur )Y n+l/2( uro), (5.53) 

F2 Jn+l/2 ( ur )Y n+l/2 ( uro) + Jn+l/2 ( uro)Y n+l/2 ( ur ). (5.54) 

As the correction term Peon(r, B, ¢,t iro) is usually small for small t, nmax, the number 
of terms that needs to be included in order to accurately compute the functions 
f(r, Ira, t) and g(Bir, r0 , t), is strongly reduced. For both very short times and r0 "'u, 
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Figure 5.4: Drawing a random number according to probability of next reaction qa(tlro) for a 
pair of particles initially separated by r0 (grey line) . The cumulative distribution function is given 
by 1 - S(tlro) (black line), where S(tlro) is the irreversible survival probability in Eq. 5.47. 
A random number ~ is generated, uniformly distributed between 0 < ~ < 1. The corresponding 
next-reaction time !:::.tis given by 1 - S(!:::.tl ro) = ~· Here, r0 = 2CT, D = 1 and ka = 1 · 103

. 

the correction term in Eq. 5.50 still converges very slowly. In this case, a brute-force 
Brownian dynamics scheme could be used. In the applications in Section 5.3 and 
Chapter 6, however, this was not necessary. 

5.2.6 Drawing random numbers from an arbitrary distribution 

In the GFRD algorithm, we frequently have to draw a random number x according 
to a probability distribution p( x). This can be done by constructing the cumulative 
probability distribution [136]: 

P(x ) =lax' p(x')dx'. (5.55) 

We draw a random number~, uniformly distributed in the interval 0 < ~ < 1. The 
value of x is determined such that P(x) = ~, as indicated in Fig. 5.4. A random 
number x is generated between x and x + dx if a random number ~ is generated in 
the interval P(x ) ::::; ~ < P(x + dx) . The probability for drawing~ in this interval is 
given by P(x + dx ) - P(x ) = P'(x )dx = p(x)dx, so that this procedure yields the 
correct distribution p( x). 

In Fig. 5.4, we show as an example the procedure for drawing a next-reaction 
time t::.t from the distribution of next-reaction times q(tlro) for a pair of particles 
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initially separated by a distance r0 . For each association reaction Rv, we gener­
ate a random number ~v, uniformly distributed in the interval 0 < ~v < 1. The 
corresponding next-reaction time 6.t,/ is given by: 

(5 .56) 

where the last step follows from the definition of the reaction rate in Eq. 5.26. In 
general, for association reactions Sv(oo) -1- 0: for two particles, that can diffuse 
and react subject to the boundary condition Eq. 5.23, there is a finite probability 
that they never react; this is related to the well-known fact that in 3D a random 
walker, that starts at the origin, can "escape" and never return to the origin. If 
~v > (1 - Sv(oo)), then the reaction Rv does not occur and it is dropped from the 
list of possible reactions. 

When using look-up tables we use a similar procedure. When drawing a next­
reaction time 6.t, for instance, we first construct the cumulative distribution function 
Q(ti lro) = 1 - S(ti lro) from the look-up table Q(ti lro ,j) by linear interpolation: 

(5.57) 

where ti and raj indicate the entries in the table and j is such that ro ,j ::; ro < ro,J+l · 

We then generate a random number~, uniformly distributed between 0 < ~ < 1 and 
obtain the next-reaction time 6.t after linear interpolation: 

(5.58) 

where i is such that Q(ti lro) ::; ~ < Q(ti+l lr0 ). In a similar fashion, we draw r from 
f( r iro , t) in Eq. 5.43 and B from g(Bi r, r0 , t) in Eq. 5.45. 

5.3 Results 

This section is organized as follows: first we study a simple bimolecular reaction to 
show that GFRD accurately reproduces analytical results. Then we turn our atten­
tion to a very simple model of gene expression as a typical example of a system that 
is well handled by the GFRD technique. We specifically focus on the levels of noise 
in protein concentrations and find dramatic differences between GFRD and results 
from the well-stirred chemical master equation, which ignores spatial fluctuations. 
Finally, we compare the performance of GFRD to a conventional Brownian Dynamics 
algorithm. 
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5.3.1 Bi-molecular reaction 

To test the validity of our approach, we study the reversible bimolecular reaction: 

(5.59) 

As a first test of GFRD, we focus on an isolated pair of particles A and B that are 
in an open system. We use a setup in which particle A, with diameter CJ, is placed 
at the origin and held fixed during the simulation. The second particle B, also with 
diameter CJ, is initially placed at random in a spherical shell of radius To centered 
around particle A. We then propagate particle B for a time tsim· During this time, 
particle B can diffuse freely with a diffusion constant D and it can associate with 
particle A with a rate constant ka and dissociate from it with a rate constant kd. 
Typically, particle B will associate with and dissociate from A a (large) number 
of times during the simulation. We repeat this whole procedure many times. This 
allows us to calculate the reversible distribution function Prev(T, th , t0), which gives 
the probability that the two particles A and B, separated by a distance To at time to, 

are a distance T apart at a later time t. This numerical result can be compared to 
the analytical solution derived by Kim and Shin for the reversible reaction shown in 
Eq. 5.59 [135]. 

If the next reaction time were larger than the simulation time, tsim, then we 
could in principle directly propagate the particles through tsim. However, this would 
not provide a stringent test of our algorithm. At each step, we therefore choose 
a maximum time step .6.tmax at random from the interval [10- 4T, tsimJ, where T = 
CJ

2 / D is the unit of time. This could be interpreted as mimicking the constraint on 
the maximum time step arising from the presence of other particles. 

Figure 5.5 shows excellent agreement for Prev(T, tjTo, t0 ) between theory and sim­
ulation for To = CJ. We find similar agreement between theory and simulation for 
other initial distances To and for other values of the diffusion constant D and re­
action rates ka and kd. It should be realized that because the particles are initially 
placed at contact, many reactions can occur during the time tsim· Moreover, because 
we divide the simulation time into smaller intervals, we must propagate the particles 
many times, using the Green's function for an extensive range of r, (t- t0 ) and r 0 . 

Thus, at least for the case of an isolated pair of particles, this procedure provides a 
thorough test of our algorithm. 

Next, we want to study a more complex system in which a single particle of type 
A is held fixed at the center of a spherical container of radius R and is surrounded 
by N 8 particles of type B. Particle A can again react with a particle B to form the 
product C according to the scheme in Eq. 5.59; particle C, like particle A, does not 
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Figure 5.5: The distribution Prev(r, t!a, to = 0) fort = O.lT, lT, lOT and lOOT. ForT < a, 
the distribution Prev(r, t !a, t 0 ) = 0 due to the hard sphere repulsion between the particles. The 
bars denote the simulation results and the solid lines denote the analytical solutions of Kim and 
Shin [135]. Note that the particles are initially placed at contact (To = a). The forward rate 
constant ka = 1000 molecule- 1a 3

T -
1 and the backward rate constant is kd = lT- 1

. The unit 

of time T = a 2 / D . 

diffuse. Particles B and C do not react, although they are not allowed to overlap 
with each other. The excluded volume interactions between a pair of two B particles 
and between a pair of a B and a C particle is taken into account by using reflecting 
boundary conditions, i.e. by setting ka = 0 in Eq. 5.24. We note that the requirement 
that the B and C particles are not allowed to overlap, may impose a constraint on 
the maximum size of the time step, 6.tmax· 

As the B particles diffuse through the container, they will come into contact with 
the fixed particle A. When in contact, the particles A and B can enter the bound state 
C with forward rate ka. When in the bound state, other B particles approaching the 
fixed C particle cannot react with it. Only after dissociation into the unbound state 
A+ B, occurring at rate kd, can another reaction occur. On average, there will be a 
probability Pbound of finding the A particle bound to the B particle. In steady state, 
we have that: 
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Figure 5.6: The probability Pbound that the A particle is bound to a B particle as a function 
of the total number of B particles for the reaction scheme shown in Eq. 5.59. The symbols 
indicate the simulation results, while the solid line denotes the mean-field prediction (Eq. 5.61 

with gAs(u) = 1). The radius of the container is R = 200u and the equilibrium constant is 
chosen such that it is equal to the interaction volume V. The error bars in the simulation results 
are smaller than the size of the symbols. 

(5 .60) 

where gAB ( r) is the radial distribution function for the pair of particles A and B, 
[B]r = N 8 /V is the total concentration of B molecules and [A]+ [C] = 1/V is the 
total concentration of A molecules. The probability to find a A particle in the bound 
state is V[C], so that Pbouncl is given by: 

KNB 
(5.61) 

Pbound = V + KNB ' 

where V is the volume available for the B particles, N 8 is the total number of B 
particles and 

(5.62) 

is the equilibrium constant. 
The radial distribution function g A 8 ( r) describes the spatial correlations aris­

ing from the interactions between the particles [137]. It is conceivable that in this 
system the excluded volume interactions between the particles induce spatial corre­
lations. These correlations could affect the density of B particles that are in contact 
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with the A particle and thereby the probability that the A particle is bound to a B 
particle. In Eq. 5.62, the distribution function at contact, 9AB(CJ), thus describes 
the effect of the spatial correlations on the equilibrium constant. However, the con­
centrations that we consider here are very low and the spatial correlations are thus 
expected to be small. Indeed, the simulations reveal that 9AB(r) ~ 1 for all distances 
r > CJ . If 9AB(CJ) = 1, then Eqs. 5.61 and 5.62 reduce to the well-known mean-field 
results that can straightforwardly be obtained by solving the macroscopic rate equa­
tions in steady-state. In Fig. 5.6, we compare the simulation results to the mean-field 
prediction for Pbound. We find excellent agreement. 

In conclusion, we have shown that our algorithm provides an accurate way of 
simulating particles that can move by diffusion and react according to monomolec­
ular and bimolecular reactions. As more complicated reactions, such as trimolecular 
reactions, can, in general, be decomposed into these elementary reactions, we are 
now in a position to simulate more complex systems. 

5.3.2 Simple model of gene expression 

In this section we present results for a model of gene expression. It should be 
stressed that the model is highly simplified. The purpose here is to show the power 
of our approach. Nevertheless, we find interesting effects due to the spatial fluctua­
tions of the components that could be of relevance for more realistic systems. 

The reaction network consists of the following reactions: 

k a 
A+B ;::::Z c (5 .63) 

kd 

c --+ P+A + B (5.64) 
kprod 

p --+ 0 (5.65) 
kdec 

In Eqs. 5.63-5.65, A represents a promoter region on the DNA and B a RNA poly­
merase molecule that moves by free diffusion and can bind with a forward rate ka 
to the promoter site to form the RNAp-DNA complex C. This complex can dissociate 
with a rate constant k d . Alternatively, it can produce a protein P at a production 
rate kprod· Proteins degrade with a decay rate kdec · Note that, in this model, when a 
protein is produced the RNAp dissociates from the DNA. 

In the simulations, we fix the promoter site, i.e. the A particle, in the center 
of a spherical container of radius R. The volume of the container is V = 1p.m3 , 

which is comparable to that of the Escherichia coli cell. The promoter site is sur­
rounded by N 8 = 18 RNAp molecules, corresponding to the concentration of free 
RNAp of 30 nM as found in the living cell [138]. The RNAp molecules move with 
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a diffusion constant D = lf1m2s- 1, which is comparable to that of similarly sized 
proteins [110]. We assume that, at contact, the RNAp can associate with the pro­
moter site at a rate as determined by the Maxwell-Boltzmann velocity distribution. 
This leads to ka = 1ro-2 (vA8 ) = 3 · 109 M- 1s- 1, where VAB is the relative velocity of 
the particles A and B. We note that this estimate is equal to the rate of collisions 
between hard spheres in the low density limit [137, 139]. We could arrive at an 
alternative estimate for ka using the diffusion constant and a molecular "jump" dis­
tance A. This would lead to ka = 47ro-2 D j A. Both estimates give similar results for 
the value of ka. The dissociation rate is chosen such that the equilibrium constant 
K = ka/kd equals the one reported in [138] , yielding kd = 21.5s- 1 . We assume that 
the diameters of the promoter site and the RNAp molecules are equal and given by 
a- = 5nm. 

Here, we only simulate the promoter site and the RNAp molecules explicitly in 
space. The proteins are assumed to be uniformly distributed in space. Moreover, 
we reduce both the degradation and the production of protein molecules to single­
step Poisson processes. This a strong simplification-in order to produce a protein, 
DNA is first transcribed into mRNA, and the mRNA is then translated into proteins; 
moreover, both processes consist of a large number of steps [140]. Nevertheless, 
this model allows us to demonstrate the power and the flexibility of our algorithm. 
In particular, the production and decay reactions can simply be added to our list of 
possible reactions, { Rv} (see Section 5.2.3). The next-reaction distribution func­
tion for the production reaction is given by qprod(t) = kprodNcexp( - kprodNc t), 
where Nc = 0 if the RNAp is unbound and Nc = 1 if it is bound to the DNA, 
while the propensity function for the degradation reaction is given by qdecay(t) = 
kdecayNpexp( - kclecay N pt ). In this way, the spatially-resolved GFRD scheme can 
naturally be combined with kinetic Monte Carlo schemes, such as the Gillespie algo­
rithm [122], that are based upon the well-stirred chemical master equation. 

Since we are interested in the importance of spatial fluctuations in gene expres­
sion, it is natural to compare the GFRD results to those obtained using the zero­
dimensional chemical master equation. The latter approach does take into account 
the discrete nature of the reactants and the stochastic character of their interactions, 
but it treats the spatial fluctuations in a mean-field manner: at each instant, it is im­
plicitly assumed that the particles are uniformly distributed in space. This approach 
is justified if there are many non-reactive collisions to stir the system in between 
the reactive collisions. However, the RNAp is present in low copy numbers, and, 
upon contact, it rapidly associates with the promoter site on the DNA. As a conse­
quence, this reaction is diffusion-limited. As we show below, this can have important 
implications for the noise in gene expression. 

We can calculate the noise in protein number from the well-stirred master equa-
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tion using the method of moment generating functions [93]. In what follows, a, c 
and p denote the number of molecules A, C and P, respectively. The master equa­
tion for the time evolution of the distribution function P(c,p, t) is given by: 

8tP(c,p, t) kaNB(2- c)P(c- 1,p, t) + kd(c + 1)P(c + 1,p, t) 

kprod(c + 1)P(c + 1,p - 1, t) + kdec (P + 1)P(c,p + 1, t) 

- [kaN B(1 -c) + (kd + kprod)c + kdecP] P(c, p, t) (5.66) 

where we used that a+ c = 1. We can calculate the mean and standard deviations in 
c and p by expressing the steady-state solution to Eq. 5.66 in terms of the generating 
function F(x , y), given by: 

F(x , y) = "LxcyPP(c,p,t). (5.67) 
c,p 

We can calculate the moments of c from the generating function using the following 
relations: 

OxF(x , y) lx,y=l (c) (5.68) 

a~F(x, y) lx ,y= l (c(c - 1)) (5.69) 

8x8yF(x , y) lx,y=l (cp) (5.70) 

The moments for p can be obtained in similar fashion. In steady state, Eq. 5.66 can 
be expressed in generating functions F(x , y) as follows: 

kaN BUF = [ (kaN B + kd + kprod)u + kaN BU2 
- kprodV ]auF+ kdecVOvF, (5. 71) 

where F = F( u, v) and where we defined u = x - 1 and v = y - 1. To obtain 
Eq. 5.71, we multiplied both sides of Eq. 5.66 with xcyp and summed over c and p. 
Furthermore, we used the relation: 

(5. 72) 
c,p c,p 

and similar relations for the other terms in Eq. 5.66. We can now obtain the mo­
ments by expanding F(x , y) around x = 1 andy = 1 to second order, or: 

(5.73) 
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Using the relations in Eqs. 5.68-5. 70, we can relate the moments with the coef­
ficients of the expansion in Eq. 5.73 as X1 = (c), X2 = (p), Xu = (c(c- 1)), 
X22 = (p(p - 1)) and X 12 = (cp). Inserting Eq. 5.73 into Eq. 5.71 and comparing the 
prefactors of the different powers of u and v up to second order, yields the following 
relations : 

(kaNE+ kd + kprod)XI kaNE (5.74) 

kdec X2 kprodXl (5.75) 

Xu 0 (5.76) 

(kaNE+ kd + kprod + kdec)X12 ktNEX2 (5.77) 

kdecX22 kprodX12 (5.78) 

The average number of C and P molecules can be calculated from Eqs. 5. 74 and 5. 75 
and is given by: 

Kl 
1 +K1' 
!{2!{1 

1 +K1' 

(5. 79) 

(5.80) 

where K1 = kaNE/(kd + kprod) and K2 = kprod/kdec and N E is the total number of 
B molecules. 

In Fig. 5. 7 we show the mean number of proteins N p as a function of the protein 
production rate kprod, while keeping the decay rate fixed at kdecay = 0.04s- 1 . As 
the concentration of RNAp that is not bound to the DNA is low, spatial correlations 
are expected to be negligible and 9AE(r) ~ 1. The simulation results for the aver­
age number of proteins, Np, should therefore follow the mean-field predictions in 
Eqs. 5. 79 and 5.80. Fig. 5. 7 shows that this is indeed the case. However, in contrast 
to the mean-field analysis, the GFRD simulations allow us to quantify the effect of 
the spatial fluctuations of the RNAp molecules on the noise in the protein synthesis. 

We can quantify the magnitude of the noise in protein production by computing 
the following quantity [138]: 

2 NJXi)- NP2 (5.81) 
r]p = -2 

Np 

In the following analysis we have changed the degradation rate such that the av­
erage number of proteins, N p, is constant. This allows us to focus on the effect of 
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Figure 5. 7: The mean protein number N p as a function of the protein production rate kprad as 

obtained from the GFRD simulations for the reaction scheme shown in Eqs. 5.63 - 5.65. The 

solid line denotes the mean-field prediction given by Eq. 5.80. 

spatial fluctuations on the noise in protein production-we thus eliminate the fairly 
trivial changes in the noise due to changes in the average number of proteins. 

We can calculate the noise from the chemical master equation using Eqs. 5.76-
5. 78. It is given by: 

1 
-- 1 
Nc ' 

1 

Np 

(5.82) 

(5.83) 

In the simulations, we change the decay rate to keep the average number of pro­
teins fixed as we vary the production rate. The decay rate is then given by kdec = 
( kprod / N p) K 1/ ( 1 + K 1) and the noise in P as function of kprod is: 

2 1 kprodkaNB 
T/p = =-

Np kproctkaNB + Np(kaNB + kd + kproctF 
(5.84) 

The first term on the right describes the result that would have been obtained if gene 
expression were a simple linear birth-and-death process. The second term reflects 
the fact that in order to produce a protein, it is necessary, albeit not sufficient, for 
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a RNAp molecule to bind to the promoter site. This term, and thus the noise in 
gene expression, goes through a minimum at kprod = kaN B + kd and vanishes for 
both small and large kprod. In these regimes, gene expression reduces to a simple 
linear birth-and-death process. In the limit of small kprod, the production of the 
protein is the rate limiting step. The RNAp molecule will associate to and dissociate 
from the promoter site a large number of times, before it actually induces gene 
expression. The former process is thus in equilibrium on the time scale of gene 
expression. Hence, the birth term is given by kbirth = Pboundkprod, with Pbound being 
the probability that a RNAp molecule is bound to the promoter (see Eq. 5.61); the 
death term is given by kdeath = kdecay· In the limit of large kprod, the binding 
of a RNAp molecule to the promoter site is the rate limiting step: as soon as a 
RNAp molecule is bound to the promoter, a protein will be produced. This means 
that the birth term is given by kbirth = ka ( 1 - Pbound) [ B]; the death term is again 
kdeath = kdecay· For a linear birth-and-death process, the noise is determined by 
the average number of proteins, fJP = 1/ ;=tl; [93]. As we have set the decay rate 
kdecay such that N p is constant, the noise in gene expression must be the same in 
the limiting regimes of small and large kprod, in which gene expression reduces to a 
birth-and-death process. 

Figure 5.8 shows the noise in the protein concentration as a function of the syn­
thesis rate for N p = 1000. The GFRD results are compared to those obtained using 
the chemical master equation. It is seen that for small kprod both approaches yield 
identical results. In this regime, protein synthesis is the rate-limiting step. Indeed, 
on the time scale of gene expression the RNAp molecules have sufficient time to 
become well mixed in the cell. As a result, the effects of diffusion are negligible and 
the noise reduces to the expected value for a linear birth-and-death process. 

However, for kprod :2:; 1s- 1, spatial fluctuations can have a drastic effect on the 
noise in gene expression. In this regime, the noise of the spatially-resolved model 
is larger than that of the "well-stirred reactor" model. In fact, Fig. 5.8 shows that 
it grows fairly rapidly with increasing kprod. The tracks of the number of proteins 
as a function of time in Fig. 5.9 elucidate the origin of the increased noise. For low 
production rate, these fluctuations are small and featureless. For increasing kprod, 

however, protein production increasingly occurs in "bursts", where a short period of 
rapid protein production is followed by a longer period of pure protein decay. These 
bursts lead to large fluctuations in the protein concentration. 

The burst-like behavior is due to a very broad distribution of arrival times of 
RNAp molecules at the promoter, much broader than the corresponding Poisson dis­
tribution for the system without spatial fluctuations. This is illustrated in Fig. 5.10, 
which shows the distribution of rebind times. The rebind time is defined as the time 
between the last dissociation event of a RNAp molecule and the next association 

157 



Chapter 5. Green's-function reaction dynamics 

0.8 

0.6 

0.4 

0.2 

* 

* 

* 

GFRD, 0=0.1 11m2 s-1 

* 

GFRD, D=1J.lm2 s- 1 

"' 

O L-------------L-------------~------------~ 
0.1 10 1000 100000 

Figure 5.8: The noise in protein level7JP as a function of protein production rate kprod for the 
reaction scheme shown in Eqs. 5.63- 5.65. Compared are the results obtained by GFRD with 

a diffusion constant of D = lJ.Lm2 s- 1 ()and D = 0.1J.Lm2 s- 1 (*)and the result using the 
chemical master equation (dashed line). The mean number of proteins was held constant at 

N p = 1000 by changing the degradation rate kctecay of the protein. 
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Figure 5.9: Tracks of protein levels in time for different protein production rates kpro d· Time 
is renormalized such that each separate track consists of the same number of production and 

degradation events. As kpro d becomes larger; the fluctuations in protein number increase. At 
the same time, protein production starts to occur in "bursts", where a brief period of protein 
production is followed by a longer period of protein degradation. These bursts are caused by the 

broad distribution of DNA-rebind times of the RNA polymerase (see also Fig. 5.1 0). 
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Figure 5.10: The distribution of rebind times for the spatially-resolved model and the well­

stirred model. The rebind time is defined as the time between the last dissociation event and 
the subsequent binding of a RNA polymerase to the DNA. The distribution of the spatially­

resolved model (thick solid line) is bimodal, with a strong narrow peak for very short times 
and a broad peak for larger times. Two rebind-time distributions are shown for the well­
stirred model: one given by ka[RNAp] exp( - ka[RNAp] trebind) (thin solid line) and the other 
by kon[RNAp] exp( -kon[RNAp] trebind) (thin dashed line), where kon is given by the diffusion 
limited reaction rate 47ra D. Note that the GFRD results are bracketed by the two distributions 
of the well-stirred model, consistent with the idea that in the spatially-resolved model there are 

many rebinding events at short times due to RNAps that have just dissociated from the DNA and 
thus rebind to the DNA with the intrinsic rate constant ka, but also rebinding events at much 
longer times corresponding to RNAp molecules that have to find the operator from 'scratch' and 

hence bind the DNA at a rate kon, which is limited by diffusion. 

event of any RNAp molecule to the DNA. Interestingly, the rebind-time distribution 
of the spatially-resolved model is bimodal, with a narrow peak for very short times 
and a broader peak for long times. This is in contrast to the rebind-time distribution 
of the well-stirred model, in which the rebind times are distributed exponentially. 
Note that we have plotted two rebind-time distributions for the well-stirred model: 
one assuming that the rebind rate is given by the intrinsic association rate ka and 
one assuming it is given by the diffusion limited rate 47rCJ D, which takes into account 
the time it takes for the RNA polymerase to find the DNA-binding site by diffusion. 

In Fig. 5.10, the first peak of the GFRD results is due to the fact that when the 
RNA polymerase dissociates from the DNA, it is placed at contact with the binding 
site on the DNA. As a consequence, the RNA polymerase can rebind to the DNA 
very quickly. On the other hand, there is a small chance that even when placed at 
contact the RNA polymerase diffuses away and 'escapes' from the operator site. In 
this case, it takes much longer time for this or, more likely, another RNA polymerase 
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to find the binding site on the DNA. This is reflected by the broad peak for larger 
rebind times. Importantly, for large kprod, each of the rapid rebindings of the RNA 
polymerase leads to the creation of a protein, causing the observed burst in protein 
production. After a series of rebindings, the RNA polymerase eventually diffuses 
away from the binding site and protein degradation occurs, until another RNAp 
binds and a new series of protein synthesis reactions starts. Fig. 5.10 also shows that 
the rebind-time distribution of the spatially-resolved model is bracketed between the 
two distributions of the well-stirred model discussed above; this is consistent with 
the idea that in the spatially-resolved model, the rebinding events take place at both 
very short time scales and rather long time scales. In Section 6.5, we will address 
this problem analytically. 

Fig. 5.8 shows that for very large production rates, the noise ultimately reaches 
a plateau value. At these high values of kprod the promoter site becomes an "ab­
sorbing" boundary for the RNAp molecules. Fig. 5.8 also reveals that the height of 
the plateau increases as the diffusion constant D becomes smaller. This is not sur­
prising, because the importance of spatial fluctuations is expected to be larger for 
smaller diffusion constants. However, it does clearly show that in order to determine 
the significance of spatial fluctuations in gene expression, it is of interest to establish 
the value of the diffusion constant of the RNA polymerase experimentally. 

This model of gene expression is obviously highly simplified, as our aim here is 
to present a new particle-based technique to simulate biochemical networks. We as­
sume that the RNAp molecules move by simple diffusion, while it has been suggested 
that proteins find their target sites on the DNA via a combination of free diffusion 
in the cytoplasm, sliding along the DNA, and hopping from one DNA segment to 
the next [141]. As mentioned above, we also ignore the production of mRNA as 
an intermediate step in protein synthesis; the production of mRNA provides an ex­
tra source of noise and, together with translation, makes the noise in the protein 
synthesis step non-Poissonian [140]. More important for the phenomena described 
here, we ignore the fact that it takes time (20-40s) to make the transcript-we thus 
neglect the time delay between the binding of a RNAp molecule to the DNA and its 
release from the DNA; secondly, we do not take into account that, after transcrip­
tion, the RNAp dissociates from the DNA at a certain distance away from it's original 
binding site. The probability of rebinding within a short time decreases rapidly with 
increasing distance from the binding site. However, we find in Chapter 6 that such 
spatial fluctuations are significant in the case of transcription factors. Nevertheless, 
the results presented here show that spatial fluctuations could be a major source of 
noise in gene expression. Lastly, we point out that the increased noise due to the 
serial rebinding of signaling molecules to 'detection' molecules is expected to play a 
role not only in gene regulatory networks, but also in signal transduction networks 
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such as those in bacterial chemotaxis [142] and in the immune response [143]. 

5.3.3 Performance 

The essence of the GFRD scheme is to exploit the analytical solution of the time 
when the particles are far apart from each other. This allows GFRD to make large 
jumps in time when the particle are far apart from each other. This suggests that the 
efficiency of GFRD depends upon the density of the system. Here, we briefly discuss 
the computational efficiency of GFRD. 

The GFRD algorithm can be divided in two parts. In the first part, the maximum 
time step is determined and the particles are divided into single particles and pairs 
of particles. This step is relatively fast and scales with the number of particles N as 
N 2 . This dependence on N can be reduced by the use of a neighbor list or a cell 
list [144]; provided that updating the list is not rate limiting, a neighbor list or cell 
list allows the overall CPU time of the first step of the algorithm to scale linearly 
with N. 

In the second part of the algorithm, the particles are propagated according to the 
Green's functions. Since only single particles or pairs of particles are propagated, the 
CPU time for this step scales linearly with the number of particles. However, this step 
is rather slow due to the relatively complicated procedure for propagating the pairs 
of particles: the CPU time to propagate a pair of particles through one time step is 
about a factor ten higher in GFRD than in brute-force Brownian dynamics; indeed, 
propagating the pairs of particles is the rate limiting step in the GFRD algorithm. 
Importantly, the cost of propagating a pair of particles does not depend upon the 
size of the time step. This means that GFRD becomes more efficient as the average 
maximum time step increases. The size of the maximum time step is determined 
by the average distance to the second-nearest neighbor. This distance scales with 
the density of the system, not with the total number of particles that constitute the 
system. In contrast, for brute-force Brownian dynamics, the size of the timestep is 
determined rather by the diameter of the particles, as overlap between two particles 
has to be accurately resolved. Thus, a good test for the performance of GFRD is the 
dependence of the distribution of propagation times on the density of the system. 

In Figure 5.11 we show the distribution of propagation times 6.t for the bimolec­
ular reaction described in Section 5.3.1 as a function of density. For N8 = 18 
C[B] = 30 nM), the value used in the above model of gene expression, the dis­
tribution has a maximum at 6.t = 1 · 10- 4 8 . As expected, the propagation times 
become smaller if the density increases. For [B] = 1p.M, the peak in the distribution 
shifts to 6.t = 1 . 10- 6 8 . 

In biochemical networks, the concentrations of the components can be very low. 
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Figure 5.11: The distribution of propagation times D.t for a system consisting of a single particle 
A in the center of a spherical box of volume V = lf.lm3

, surrounded by N 3 particles B; the 
particles A and B can react according to a bimolecular reaction scheme (see Eq. 5.59). In the 
GFRD simulations, we use a lower cut-off for the propagation time, 2.5·10- 10s, which corresponds 

to the time step used in a brute-force Brownian Dynamics simulation. 

In gene networks, for example, the concentrations of the gene regulatory proteins 
are often in the nanomolar regime. In signal transduction networks, the concentra­
tions of the components may also be fairly low, i.e. in the micromolar range. The 
analysis presented here suggests that with GFRD it should be possible to reach time 
steps of at least 10- 6 - 10- 48 for such networks. In contrast, in a brute-force Brow­
nian Dynamics simulation, we cannot use a time step larger than 10- 10 - 10- 98 

(lo- 5 - 10- 4a 2 j D) in order to preserve the correct distribution (as, for instance, 
defined by the requirement that the analytical solution for the Green's function 
Prev (r , tiro, to) as shown in Fig. 5.5 can be accurately reproduced). Hence, even 
though the CPU time required to execute one step is a factor ten larger in GFRD than 
in Brownian Dynamics, the overall speed of GFRD is two to five orders of magnitude 
higher than that of conventional particle-based schemes for simulating biochemical 
networks in time and space. 
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5.4 Discussion and conclusions 

The GFRD algorithm is not the first algorithm that uses Green's functions to sim­
ulate chemical reactions. However, GFRD differs in two fundamental ways from 
the algorithms in Refs. [145-14 7]. The latter algorithms were designed to simulate 
only a single reversible reaction [145-147]. In contrast, the main idea of GFRD 
is that by choosing a maximum time step, it is possible to decompose a network 
of events into elementary events that occur independently from each other and for 
which Green's functions can be derived (see Fig. 5 .1). This decomposition is the key 
ingredient of GFRD that makes it possible to simulate a whole network of chemical 
reactions, and not just a single chemical reaction. Secondly, GFRD is event-driven, 
while the schemes of Refs. [145-147] are not. This has two important advantages. 
First of all, even when the reaction partners are far apart from each other, GFRD can 
immediately jump to the next reaction event; this cannot be accomplished by meth­
ods that use a fixed time step and reaction zone for executing the reactions [145-
147]-in these methods, the reaction partners first have to be propagated toward 
each other using increasingly smaller time steps, before they can react within the 
reaction zone [145-147]. Secondly, and more importantly, the event-driven nature 
allows GFRD the simulation of arbitrary complex networks: reactions with multi­
ple products and branching pathways-where a component can undergo a number 
of competing reactions (see for instance Eqs. 5.63 and 5.64)-can be handled, be­
cause only single and binary Green's functions are needed to propagate the system 
till the next event. In contrast, schemes that use a fixed time step for the reac­
tions [145-147] would require intractable many-body Green's functions, involving 
both reactants and products, to simulate these networks. 

In the GFRD algorithm discussed here, we restrict ourselves to U(r) = 0 for 
lrl > O". If, however, U(r) -=1- 0 for lrl > O", then the range of the interaction plays an 
important role in determining the maximum time step. Instead of requiring that no 
more than two particles might collide and react in a single time step, one must now 
require that no more than two particles might come within each other's range of 
interaction during one time step. This means that the range of U(r) takes the place 
of the diameter O" in determining the maximum time step in the algorithm outlined 
in 5.2.3. Nevertheless, it can happen that this requirement cannot be satisfied and 
that a configuration arises in which more than two particles are within the range 
of the interaction potential. In this case, it is (practically) impossible to factorize 
the Green's function and brute-force Brownian Dynamics should be used to propa­
gate these particles. We note, however, that the range of the interaction potential 
is usually quite short as compared to the diameter of the particles. Even potentially 
long-ranged electrostatic interactions, for instance, are typically screened in the liv-
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ing cell. Indeed, the range of protein-protein interactions and protein-DNA interac­
tions is typically less than 20% of the diameter of the particles (see Ref. [148] and 
references therein). This means that in most cases GFRD can be applied straightfor­
wardly. 

We also comment here on our approximation that molecules are spherically sym­
metric objects. In nature, proteins often have complicated non-spherical shapes. 
Moreover, protein-protein interactions can occur through specific patches on the 
surfaces of the proteins. In these cases, the reaction rates do not only depend upon 
the distance (as in our present algorithm), but also on the relative orientation of the 
particles. In principle, this orientation dependence could be incorporated into GFRD 
by solving a diffusion equation that also includes the orientation of the particles. It 
should be noted, however, that due to rotational diffusion the relative orientation 
between particles does not persist on the time scale to diffuse towards a distant 
reaction partner. This means that the relative orientation of the particles can be 
integrated out and that the problem can be reduced to that described by the cur­
rent GFRD algorithm. In this case, the particle diameters correspond to the average 
interaction diameters and the rate constants correspond to effective reaction rates, 
i.e. rates averaged over the different reaction rates corresponding to the different 
relative orientations of the particles. In this context we also point out that the ex­
perimentally measured quantities are usually the average reaction rates. However, 
when experimental data becomes available that shows that the orientations of the 
particles are important, then it is indeed of interest to upgrade the current GFRD 
algorithm by including the particle orientations. 

Finally, we remark that the assumption that particles move by (free) diffusion 
is not essential. An event-driven algorithm of this type could also be set up for 
particles that move by other mechanisms than diffusion, such as active transport. In 
the simplest case, active transport could be modeled as diffusion with a drift term. 
If necessary, the required Green's functions could be obtained numerically. 

In conclusion, we have developed a new technique, called Green's-function re­
action dynamics, to simulate biochemical networks at the particle level and in both 
time and space. The main idea of the technique is to choose a maximum time step 
such that only single particles or pairs of particles have to be considered. For these 
particles, the Smoluchowski equation can be solved analytically using Green's func­
tions. The analytical solution can then be used to set up an event-driven algorithm, 
quite analogous to the kinetic Monte Carlo schemes as originally developed by Bortz, 
Kalos and Lebowitz [94] to simulate Ising spin systems and by Gillespie to numer­
ically solve the chemical master equation [122]. We would like to stress, however, 
that in contrast to the widely used "Gillespie" algorithm, our technique makes it 
possible to simulate biochemical networks at the particle level and in both time and 
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space. 
The analysis presented in Section 5.3.3 shows that GFRD is highly efficient. This 

should make it possible to simulate biochemical networks at much larger length 
and time scales than hitherto possible. In addition, we believe that the scheme has 
the potential to be even more efficient. In the current scheme, we use a global 
maximum time step that pertains to all the particles in the system. It seems natural, 
however, to assign to each particle an individual maximum time step. In such a 
scheme, each particle would have its own individual clock. This approach would 
make it possible to devote most computational effort to those particles that interact 
frequently; the particles that are initially far from other particles are only updated 
once the time has come when they have a reasonable chance to interact. A second 
possible improvement would be to exploit the low concentration of the components 
in another way. In the current scheme, we explicitly take into account excluded 
volume interactions. In fact, this often imposes a limit on the maximum time step. If 
the concentrations are low, however, we would expect the excluded volume effects 
to be negligible for the behavior of the network. In Chapter 6, we will show how 
these observations can be incorporated into the algorithm to even further enhance 
the performance of Green's Function Reaction Dynamics. 
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Chapter 6. Spatial fluctuations of transcription factors 

6.1 Introduction 

J.S. van Zon, M. Morelli and P. R. ten Wolde, 
to be submitted 

As was discussed in more detail in Chapter 4, cells process information from the 
outside and regulate their internal state by means of proteins and DNA. Because 
these molecules often occur in small numbers in living cells, stochastic fluctuations 
in the components must often be taken into account when describing these systems. 
These fluctuations are especially significant in gene expression, where transcription 
factors can often occur in copy numbers as low as tens of molecules per cell and it is 
an important question how the cell can still perform reliably in the presence of such 
fluctuations [75, 88, 90-92]. 

Noise in gene expression results not only from a noisy environment but is also 
due to the inherently stochastic dynamics of the molecules involved in gene ex­
pression [90]. The stochastic dynamics that leads to this intrinsic noise has two 
origins. First, the reactions between molecules are of a probabilistic nature. Sec­
ond, molecules move through the cell by diffusion or, in the case of eukaryotic cells, 
by either diffusion or active transport. Diffusion is a stochastic process and could 
potentially contribute to the noise in gene expression. Because it is difficult to ex­
perimentally probe the spatial dynamics of single molecules in the cell, it is currently 
unknown to what extent noise in gene expression is affected by spatial fluctuations 
of the components. 

Fluctuations in gene expression are often studied analytically or by computer 
simulation, using the zero-dimensional chemical master equation [93, 122]. This 
approach takes into account the stochastic reaction kinetics of the molecules in­
volved, but ignores their diffusive motion. It assumes that the cell is a 'well-stirred 
reactor', where the reactions rates only depend on the global concentrations of the 
reactants involved and does not take into account the spatial positions of the par­
ticles in the cell. In Chapter 5, several simulation techniques have been discussed 
that model the effect of diffusion, but it was shown that they are either too slow to 
accurately model the dynamics on the long timescales relevant to gene expression or 
describe the system in a coarse-grained way, i.e. on the level of local concentrations 
rather than single particles [124-127]. 

In Chapter 5 we introduced a simulation technique, called Green's-function re­
action dynamics (GFRD), that allows us to simulate reaction-diffusion systems on 
long timescales and for individual particles. In this chapter, we use this technique 
to study the effect of the spatial fluctuations due to diffusion on a simple system 
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in gene expression: a single gene under the control of a repressor R. We find that 
for this system the intrinsic noise is dominated by the diffusive motion of the re­
pressor molecules. We also show how a cell could minimize the effect of the spatial 
fluctuations, either by tuning the open complex formation rate or by changing the 
number of repressors and their affinity for the binding site on the DNA. Finally, we 
show that even though spatial fluctuations can dramatically enhance the noise in 
gene expression, its effect can be described by a zero-dimensional chemical master 
equation, provided that the reaction rates for repressor binding and unbinding are 
appropriately renormalized. 

6.2 Model and simulation 

Several publications have discussed the effect of fluctuations in the binding of tran­
scription factors to the operator site [118, 149-153] . Most of these models are 
relatively simple, ignoring, for instance, production of mRNA [150-152]. Moreover 
all these studies, with the exception of Ref. [118], ignore the role of the spatial fluc­
tuations of the transcription factors. Here, we study transcription in a more detailed 
way, taking into account production of both mRNA and proteins, open complex 
formation and operator clearance. Furthermore, we explicitly model the diffusive 
motion of the repressor molecules. 

Most repressors bind to a binding site that (partially) overlaps the RNA poly­
merase (RNAP) binding site, preventing RNAP from binding to the promoter region 
and thereby switching off gene expression. In the absence of a repressor on the op­
erator site, RNAP can initiate transcription and translation, ultimately resulting in 
the production of a protein. We model this by the following reaction network: 

km 
T M (6.5) O+R ;:::::± OR (6.1) ___, 

kbR 
t elon 

kmp 
M ___, 0 (6.6) 

0 ;:::::± ORp (6.2) 
kdm 

kbRp M ___, MT+M (6.7) 
kribo 

ORp ___, ORp* (6.3) MT p (6.8) koc 
___, 

trrans 

ORp* ___, T+O (6.4) p ___, 0 (6.9) 
tclear kdp 

Equations 6.1 and 6.2 describe the competition between the binding of the repressor 
R and the RNAP molecules Rp to the operator site 0 . In our simulation we fix the 
binding site 0 in the center of a container with volume V = lJLm3 , comparable to 
the volume of a single Escherichia coli cell. The operator site 0 is surrounded by N R 
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repressor molecules R, that diffuse with diffusion constant D = 1f.Lm2 s - 1, as has 
been reported for proteins of a similar size [110]. We simulate both the operator 
site and the repressor molecules as spherical particles with diameter a- = 10nm. The 
intrinsic forward rate kfR = 6 · 109 M - 1 s- 1 for the repressor particles R at contact 
is estimated from the Maxwell-Boltzmann distribution, as was done in Chapter 5. 
The backward rate kbR depends on the interaction between the DNA binding site of 
the repressor and the operator site on the DNA and varies greatly between different 
operons, with stronger repressors having a lower kbR· In our simulations, we vary 
kbR between 1 - 0.01 s- 1

. The concentration of RNAp is much higher than that 
of the repressor. Because of this we treat the RNAP as distributed homogeneously 
within the cell and we do not to take diffusion of RNAp into account explicitly. 
Instead, RNAP associates with the operator site 0 with a diffusion-limited rate kfRp = 
47ra-D[Rp]. In our simulations, the concentration of free RNAP is [Rp] = 0.5f.LM 
[154], leading to a forward rate kfRp = 38s- 1

. Finally, the backward rate kbRp = 0.5 
is determined such that K eq = 47ra-D/kbRp = 1.4 · 109 M - 1 [155]. 

Transcription initiation is described by Eqs. 6.3 and 6.4. Before productive syn­
thesis of RNA occurs, first the RNAP in the RNAP-promoter complex ORp unwinds 
approximately one turn of the promoter DNA to form the open complex ORp* . The 
open complex formation rate koc has been measured to be on the order of 0.3- 3s- 1 

[156]. As some experiments find open complex formation to be only weakly re­
versible [156], we approximate this step as an irreversible reaction. After open com­
plex formation, RNAP must first escape the promoter region before another RNAP 
or repressor can bind. Since elongation occurs at a rate of 50 - 100 nucleotides s-1 

and between 30 - 60 nucleotides must be cleared by RNAP before the promoter is 
accessible, a waiting time of tc1ear = 1s is required before another binding can occur. 
Since promoter clearance consists of many individual elongation events that obey 
Poisson statistics individually, we model the step as a fixed time delay tc1ear, not as a 
Poisson process with rate 1/tciear· 

Equations 6.5-6.9 describe the dynamics of mRNA and protein numbers. After 
clearing the promoter region, RNAP starts elongation of the transcript T. As for 
clearance, the elongation step is modeled with a fixed time delay teton = 30s, corre­
sponding to a 1500 Bp gene. When a mRNA M is formed, it can degrade with a rate 
kdm· Here, the mRNA degradation rate is determined by the average mRNA concen­
tration in the unrepressed state and is of the order O.Ols- 1 . Furthermore, a mRNA 
molecule can form a mRNA-ribosome complex Jo.ifT and start translation. We assume 
that b = 5 proteins are produced on average from a single mRNA molecule, so that 
the start of translation occurs at a rate kribo = b kdm· Again, after a fixed time delay 
ttrans = 30s a protein P is produced. The mRNA is available for ribosome binding 
immediately after the start of translation. Due to the delay in protein production, 
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M can be degraded while the mRNA-ribosome complex MT is still present, so that 
M represents the mRNA leader region rather than the entire mRNA molecule. Fi­
nally, the protein P degrades at a rate kctp. which depends on the average protein 
concentration and is of order 1 · 10- 4 s - 1. Most proteins are long-lived and the con­
centration of proteins mainly decreases by dilution due to cell division. The decay 
rate used here corresponds to dilution with a cell cycle time of around 1h. 

We simulate the above reaction network using Green's-function reaction dynam­
ics (GFRD). Only the operator site 0 and the repressor particles Rare simulated in 
space. All other reactions are assumed to occur homogeneously within the cell and 
are simulated according to the well-stirred model [95] or with fixed time delays for 
reaction steps involving elongation. A few modifications with respect to the algo­
rithm described in Chapter 5 are implemented to improve simulation speed. First, 
we neglect excluded volume interactions between repressor particles mutually, as 
the concentration of repressor is very low. This means that the only potential re­
action pairs we consider are operator-repressor pairs. Secondly, we use periodic 
boundary conditions instead of a reflecting boundary, which leads to a larger aver­
age time step. As the operator site 0 is both small compared to the volume of the cell 
and is far removed from the cell boundary, this has no effect on the dynamics of the 
system. Finally, as the repressor backward rate kbR is rather small, the operator site 
can be occupied by a repressor for a time long compared to the average simulation 
time step. If the repressor is bound to the operator site longer than a time L 2 /6D, 
where L is the length of the sides of our container, the other repressor molecules 
diffuse on average from one side of the box to the other. Consequently, when the re­
pressor eventually dissociates from the operator site, the other repressor molecules 
have lost all memory of their positions at the time of repressor binding. Here, when 
a repressor will dissociate after a time longer than L 2 / 6D we do not propagate the 
other repressors with GFRD, but we only update the master equation and fixed de­
lay reactions. We update the positions of the free repressors at the moment that the 
operator site becomes accessible again, by assigning each free repressor molecule a 
random position in the container; the dissociated repressor is put at contact with 
the operator site. We see no noticeable difference between this scheme and results 
obtained by the full GFRD algorithm described in Chapter 5. 

For the reaction network in Eqs. 6.1-6.9, the steady state concentrations are given 
by: 
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K1[0] [ORp], (6.10) 

K2[0][R] [OR], (6.11) 

K3[0Rp] [ORp*], (6.12) 

K4[M] [ORp], (6.13) 

Ks[P] [M], (6.14) 

where K1 = kmp /(kbRp + koc), K2 = km/kbR, K3 = koctclean K4 = koc /kdm and 
K 5 = kribo/kdp are equilibrium constants. Because we consider here a single opera­
tor site surrounded by N R repressors, we have the conservation relations: 

[0] + [ORp] + [ORp*] + [OR] 

[R]+[OR] 

(6.15) 

(6.16) 

where V is the total volume available for the repressors. Using Eqs. 6.10 - 6.12 
together with Eqs. 6.15 and 6.16, we find for NoRp = V[ORp], the average occu­
pancy of the operator site by RNAp, and NoR = V[OR], the average occupancy of 
the operator site by the repressor, that: 

K1 [1 - (1 + K3)NoRp -NoR] - NoRp 
K2 V [1 - (1 + K3)NoRp - NoR]N R- NoR 

0 (6.17) 

0, (6.18) 

Solving Eqs. 6.17 and 6.18 and using Eqs. 6.13 and 6.14, we find that the average 
mRNA number N M and average protein number N p is given by: 

Np 
K2NR + V(1 + K1(1 + K3))' 
K 5 N!vf . 

(6.19) 

(6.20) 

We vary the free parameters in the reaction network described in Eqs. 6.1 -6.9 in 
the following way: first, we choose the concentration of mRNA and protein in the 
absence of repressor molecules. In this case, tuning of the concentrations is most 
straightforward by adjustment of the mRNA and protein decay rates kdm and kdp· 

In our simulation we fix the mRNA and protein numbers in the unrepressed state 
at N M = 50 and N p = 2 · 105 . The mRNA and protein decay rates then follow 
straightforwardly from Eqs. 6.19 and 6.20. 
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Next, we determine by what factor these concentrations should decrease in the 
repressed state. This can be done by changing the number of repressors N R and the 
repressor backward rate kbR· We define the repression level f as the transcription 
initiation rate in the absence of repressors divided by the initiation rate in the re­
pressed state [157]. According to this definition, the concentration of mRNA and 
proteins in the repressed state is a fraction f of the concentration in the unrepressed 
state. This means that: 

(6.21) 

leading to: 

NR 1 - fV(l+KI(l+K3)) 
kbR f km 

(6.22) 

Thus, a fixed repression level f does not specify a unique combination of N R and 
kbR: increasing the number of repressors twofold, while also increasing the repressor 
backward rate by the same factor, gives the same repression level. This means that 
the cell can control mRNA and protein levels in the repressed state either by having 
a large number of repressors that stay on the DNA for a short time or by having a 
small number of repressors, possibly even one, that stay on the DNA for a long time. 
Even though it is conceivable that the latter is preferable for economic reasons, there 
is no difference between the two extremes in terms of the average gene expression. 
In our simulation we vary N R and kbR, but use a fixed repression level f = 0.01. 
Consequently, in the repressed state on average NmRNA = 0.5 and Np = 200. 

6.3 Simulation results: dynamics and noise 

To study the effect of spatial fluctuations on the repression of genes, we simulate 
the reaction network described in Eqs. 6.1-6.9 both by GFRD, thus explicitly taking 
into account the diffusive motion of the repressor particles, and according to the 
well-stirred model, where the repressor particles are assumed to be homogeneously 
distributed in space and the dynamics depends only on the concentration of repres­
sor. In Fig. 6.1 we show the behavior of mRNA and protein numbers for a system 
with open complex formation rate koc = 30s- 1 and with varying numbers of repres­
sors N R · We keep the repression factor fixed at f = 0.01 so that with increasing N R 

the repressor backward rate kbR is also increased, i. e. repressor particles are bound 
to the DNA for a shorter time. 

It is clear from Fig. 6.1 that there is a dramatic difference between the behavior 
of mRNA and protein numbers between the GFRD simulation and the well-stirred 
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Figure 6.1 : Dynamics of mRNA and protein numbers in the repressed state for different number 
of repressors N R · The number of mRNA and protein molecules is shown for simulations with 
GFRD (black line) and according to the master equation (gray line) . In the GFRD simulation, 
diffusion of repressor particles is explicitly included. (a) and (b) NR = 5. (c) and (d) NR = 20. 
(e) and (f) N R = 80. In general, there is a dramatic difference in dynamics due to the spatial 
fluctuations of the repressor molecules. This difference becomes more pronounced as the number 
of repressors decreases. However, we find that in all cases (NM) = 0.5 and (Np) = 200, on 
average. 
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model. When spatial fluctuations of the repressor molecules are included, mRNA 
is no longer produced in a continuous fashion, but instead in sharp, discontinuous 
bursts during which the mRNA level can reach levels comparing to those of the 
unrepressed state. These bursts in mRNA production consequently lead to peaks 
in protein number. As the protein decay rate is much lower than that of mRNA, 
these peaks are followed by periods of exponential decay over the course of hours. 
Due to these fluctuations, protein numbers often reach levels of around 5 - 10% of 
the protein levels in the unrepressed state. In contrast, in the absence of repressor 
diffusion, the fluctuations around the average protein number are much lower. For 
both cases, however, the average behavior is identical: even though the dynamics 
is very different, we always find that on average (Nm~A) = 0.5 and (N p) = 200. 
Also, in all cases the fluctuations in mRNA number are larger than those in protein 
number. This means that the translation step functions as a low-pass filter to the 
repressor signal. 

When we increase the number of repressors N R and change kbR in such a way 
that the repression level f remains constant, we find that both for GFRD and the 
well-stirred model the fluctuations in mRNA and protein number decrease. In the 
absence of spatial fluctuations this effect is minor, but for GFRD this decrease is 
sharp: for large number of repressors, the burst in mRNA become both weaker and 
more frequent. This in turn leads to smaller peaks and shorter periods of exponential 
decay in protein numbers. In fact, as N R is increased both approaches converge 
to the same behavior. At around N R ~ 100, the dynamics of the protein number 
is similar for the well-stirred model and the spatially resolved model. The same 
happens for mRNA number when N R ~ 500. 

In Fig. 6.2, we quantify the noise in mRNA and protein number, defined as in 
Eq. 5.84, while we change the number of repressors N R· As we keep the amount 
of repression fixed at f = 0.01, we simultaneously vary the backward rate kbR 

according to Eq. 6.22. When all parameters are the same, the noise for the GFRD 
simulation, including the diffusive motion of the repressors, is always larger than the 
noise for the well-stirred model, where the diffusive motion is ignored. In both cases, 
the noise decreases when the number of repressors is increased and the repressor 
backward rate becomes larger. This is consistent with the mRNA and protein tracks 
shown in Fig. 6.1. We also investigated the effect of changing the open complex 
formation rate koc. In nature, this rate can be tuned by changing the base pair 
composition of the promoter region on the DNA. When we change koc , we change 
the mRNA decay rate kctm so that the average mRNA and protein concentration 
remain unchanged. We find that when koc is lowered, the fluctuations in mRNA 
and protein levels are sharply reduced. When koc is much larger than the RNAp 
backward rate kbRp = 0.5s- 1, almost every RNAp binding to the promoter DNA will 
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Figure 6.2: Noise in (a) mRNA number and (b) protein number as a function of the number of 

repressors N R and for constant repression factor f = 0.01. Data obtained by GFRD simulation 

is shown for koc = 0.3( o ), 3(0) and 30( * )s - 1
. Noise levels for the well-stirred model are shown 

as grey lines and those for the well-stirred model with reaction rates renormalized according to 

Eqs. 6.35 and 6. 36 are shown as black lines, both for koc = 0.3 (solid lines), 3 (dashed lines) 

and 30 (dotted lines) s - 1
. Only when the reaction rates are properly renormalized does the 

noise agree well with the simulations that include the effect of diffusion. (Insets) Noise levels as a 

function of koc. Symbols indicate results for GFRD and lines are results for the chemical master 

equation with renormalized reaction rates. 

result in transcription of a mRNA. For koc smaller than kbRp, RNAp binding will 
lead to transcription only infrequently. As a consequence, the operator filters out 
part of the fluctuations in RNAp binding due to the diffusive motion of the repressor 
particles, leading to the decrease in noise observed in Fig. 6.2. This shows that the 
open complex formation rate plays a considerable role in controlling noise in gene 
expression. 

6.4 Simulations results: operator binding 

To understand how the diffusive motion of repressor molecules leads to increased 
fluctuations in mRNA and protein numbers, it is useful to look in some detail at 
the dynamics of repressor-DNA binding. In Fig. 6.3(a), we show the OR bias for 
both GFRD and the well-stirred model. The OR bias is a moving time average over 
OR(t) with a 50s time window and should be interpreted as the fraction of time the 
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Figure 6.3: Dynamics of repressor binding for a repression factor off = 0.5 and N R = 5. (a) 
The OR-bias for GFRD (black line) and the well-stirred model (gray line). The OR-bias is defined 
as the fract ion of time a repressor is bound to the operator site in the last 50 seconds. When the 

diffusive motion of repressor molecules is included (black line), the OR-bias switches between 
periods where repressors are continuously bound to or absent from the DNA for long times. (b) 
and (c) Time trace of the occupancy of the operator site by repressor molecules. When OR = 1 

a repressor is bound to the operator site and 0 R = 0 indicates either a free operator site or 
one with RNAP bound. For the GFRD simulations, an initial binding is followed by several rapid 
rebindings, whereas for the well-stirred model binding and rebinding is much more unstructured. 

Note that here, for reasons of clarity, f = 0.5 instead off = 0.01 as used in the text and Figs. 6.1 

and 6.2. 

operator site was bound by repressor particles over the last 50 seconds. The results 
we show here are for N R = 5 repressors and a repression factor f = 0.5. At this 
repression factor, kbR is such that the repressor molecules are bound to the operator 
only fifty percent of the time, making it easier to visualize the operator dynamics 
than in the case off = 0.01 as used above. 

The OR bias for the well-stirred model fluctuates around the average value 
(OR) = 0.5, indicating that on the timescale of 50s several binding and unbind­
ing events occur, in agreement with kbR = 1.26s- 1 for f = 0.5 . On the other hand, 
when including spatial fluctuations, the OR bias switches between periods in which 
repressors are bound to the DNA continuously and periods in which the repressors 
are virtually absent, both on timescales much longer than the 50s time window. How 
is it possible that repressors are bound to the operator site for times much longer 
than the timescale set by the dissociation rate from the DNA? The answer to that 
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question can be found in Figs. 6.3(b) and (c) , where a time trace is shown of the 
operator occupancy by the repressor for both GFRD and the well-stirred model. The 
time trace for the simulation of the well-stirred model in Fig. 6.3(c) shows a fa­
miliar picture: binding and dissociation of the repressor from the operator occurs 
irregularly, the time between events given by Poisson distributions. The time trace 
for GFRD in Fig. 6.3(b) looks rather different. Here, in general a dissociation event 
is followed by a rebinding very rapidly. Only occasionally does a dissociation result 
in the operator being unbound by repressors for a longer time. When this happens, 
repressors stay away from the operator for a time much longer than the typical time 
separating binding events in Fig. 6.3(c). These series of rapid rebindings followed 
by periods of prolonged absence from the operator result in the aberrant 0 R bias 
shown in Fig. 6.3(a). 

The occurrence of rapid rebindings is intimately related to the nature of diffu­
sion. When diffusion and the positions of the reactants are ignored all dynamics is 
based only on the average concentration of the reactants. As a consequence, when 
in this approach a repressor dissociates from the operator site, the probability of 
rebinding depends only on the concentration of repressor in the cell. On the level of 
actual positions of the reactants, this amounts to placing the repressor at a random 
position in the container. The situation is very different for the GFRD approach, 
where the positions of the reactants are taken into account. After a dissociation 
from the operator site, the repressor particle is placed at contact with the operator 
site. Because of the close proximity of the repressor to its binding site, it has a high 
probability of rapidly rebinding to and only a small probability of diffusing away 
from the binding site. At the same time, when the repressor eventually diffuses 
away from the operator site, the probability that the same, or more likely, another 
repressor diffuses to and binds the operator site is much smaller than the probability 
of binding in the well-stirred model, as will be shown quantitatively in Section 6.5. 
This results in the behavior observed in Fig. 6.3(b). 

It can now be understood that the bursts in mRNA production correspond to the 
prolonged absence of repressor from the operator site compared to the well-stirred 
model. Especially for low repressor concentrations, these periods of absence can be 
long enough that the concentration of mRNA reaches values comparable to those 
in the unrepressed state for brief periods of time. When a repressor binds to the 
operator site, due to the rapid rebindings it will remain bound effectively for a time 
much longer than the mRNA lifetime, leading to long periods where mRNA is absent 
in the cell. This shows that for small numbers of repressors spatial fluctuations and 
not stochastic chemical kinetics are the dominant contribution to the noise in mRNA 
and protein numbers in the repressed state. 
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6.5 Two-step kinetic scheme 

In this section we investigate to what extent the effect of diffusion on the repressor 
dynamics can be modeled by the two-step kinetic scheme [158, 159]: 

k + k a 
0 + R ~ 0 · · · R ~ OR. (6.23) 

k _ k d 

The first step in Eq. 6.23 describes the diffusion of repressor to the operator site 
resulting in the encounter complex 0 · · · R, with the rates k+ and k_ depending on 
the diffusion coefficient D and the size of the particles . The next step describes the 
subsequent binding of repressor to the DNA. The rates k+, k_ , ka and kd are related 
to the microscopic rates defined in Eq. 6.1, which can be seen as follows. If we 
assume that the encounter complex is in steady state, we have: 

k+ kd 
[O .. ·R] = k k [O][R] + k k [OR]. 

-+a - + a 
(6.24) 

For the time evolution of [OR] we can now write: 

[OR] ka[O · · · R] - kd[OR] 

k+ka [O][R] + kakd - kc~(k_ + ka) [OR] 
k_ + ka k_ + ka 

kjR[O][R] - k~R[OR] (6.25) 

mapping the two-step kinetic scheme can onto the reaction in Eq. 6.1, but with 
effective rate constants defined by [158]: 

kJR 
k+ka (6.26) 

k_ + ka 

k~R 
k_ kd 

(6.27) 
k_ + ka 

The two-step kinetic scheme should yield the same average concentrations as the 
scheme in Eq. 6.1, so that for the equilibrium constant one has: 

k~R kbR ' 
(6.28) 

where kfR and kbR are the microscopic reaction rates defined in Eq. 6.1. 
It is possible to express the effective rate constants kffi and k~R in terms of the 

microscopic rate constants. For the setup used here, where a single operator 0 
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is surrounded by a homogeneous distribution of repressor R, the rate k+ follows 
from the solution of the steady state diffusion equation with a reactive boundary 
condition with rate k = ka at contact [131, 159] and is given by the diffusion-limited 
reaction rate kD = 47ru D. The rates k_ and ka depend on the exact definition of 
the encounter complex 0 · · · R. It is natural to identify the rate kd with the intrinsic 
dissociation rate kbR, thus kd = kbR· From these expressions fork+ and kd and the 
restriction on the equilibrium constant in Eq. 6.28 one finds : 

ka kJR 
k_ kD 

(6.29) 

Inserting this result into Eqs. 6.26 and 6.27, yields: 

kJR 
kDkJR 

kD + kjR 
(6.30) 

k~R 
kDkbR 

kD + kJR 
(6.31) 

These renormalized rate constants have a clear interpretation. For the effective 
forward rate in Eq. 6.30 it follows, for instance, that: 

1 1 1 
-= -+ ­
kjR kD kJR 

(6.32) 

or that, on average, the time required for repressor binding is given by the time 
needed to diffuse towards the operator plus the time for a reaction to occur when the 
repressor is in contact with the operator site [1 59]. The effective backward rate has 
a similar interpretation. The probability that after dissociation the repressor diffuses 
away from the operator site and never returns is given by Sirr(t --> oo iro = u), where 
Sirr(t, r 0 ) is the irreversible survival probability in Eq. 5.47 and u is the reaction 
distance. It follows from Eq. 5.47, that: 

. kD 
lnn Sirr(tlro = u) = ---­

t->oo kjR+kD 

so that the expression for k~R can be written as: 

(6.33) 

(6.34) 

or that the effective dissociation rate is the microscopic dissociation rate multiplied 
by the probability that after dissociation the repressor escapes from the operator site 
[159]. 

180 



6.5. Two-step kinetic scheme 

For diffusion limited reactions, such as the reaction considered here, we have 
that k f R » kD and Eqs. 6.30 and 6.31 reduce to: 

(6.35) 

(6.36) 

In Fig. 6.2, we compare the noise profiles for the GFRD algorithm with those ob­
tained by a simulation of the master equation, where instead of the microscopic rates 
k f R and k f B we use the renormalized rates from Eqs. 6.35 and 6.36. Surprisingly, 
we find complete agreement. One of the main reasons why this is unexpected, is that 
for the master equation the time between events is Poisson-distributed, whereas af­
ter a dissociation the time to the next rebinding is distributed according to a power­
law distribution when diffusion is taken into account [135]. 

How is it possible that this power-law behavior is not at all of influence on the 
noise profile? This is because the average rebinding time is much smaller than any 
of the other relevant timescales in the network. Specifically, rebinding times are 
so short that the probability that a RNAp will bind before a rebinding is negligible. 
As a consequence, the transcription network is not at all influenced by the brief 
period the operator site is accessible before a rebinding occurs: for the transcription 
machinery the series of consecutive rebindings is perceived as a single event. Power­
law distributions are only expected for rebinding times. When a repressor diffuses in 
from the bulk towards the operator site the distribution of arrival times is expected 
to be Poissonian, because in the bulk the repressors are distributed homogeneously 
at a fixed concentration. 

It is possible to reinterpret the effective rate constants in Eq. 6.35 and 6.36 in 
the language of rapid rebindings. The probability P that a rebind will occur after a 
dissociation from the DNA is given by: 

P = 1 - S;n(t ----) oo!To = 0') , (6.37) 

where again S;,.,.(tlro = 0') is the irreversible survival probability in Eq. 5.47 evalu­
ated at particle contact. The probability that n consecutive rebindings occur before 
the repressor diffuses away from the operator site is then given by: 

(6.38) 

where we defined St = S;rr(t!To = 0') . From this follows that the average number of 
rebindings is given by: 
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n=O 

Using the expression in Eq. 6.33, we find that: 

ktR 
NRB =­

kD 
Combining this with Eqs. 6.35 and 6.36, we get: 

ktR / NRB, 

kbR / NR B· 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

In words; after an initial binding the repressor spends N RB times longer on the 
DNA than expected on the basis of the microscopic backward rate, as it rebinds on 
average N RB times. Because the average occupancy should not change, the forward 
rate should be renormalized in the same way. In conclusion, the effects of diffusion 
are properly included in the chemical master equation of the well-stirred model 
when the reaction rates are renormalized by the average number of rebindings. 

6.6 Discussion 

The large fluctuations due to diffusion of the repressor molecules have a significant 
implication for the functioning of the repressor network. For some applications it 
might be crucial that the protein number is not only low on average, but remains 
low all the time. For instance, if the protein P itself functions as a transcription 
factor, it might by accident induce the expression of another gene when it is present 
in large enough numbers due to a fluctuation. Thus, when diffusion is taken into 
account not all combinations of repressor number N R and repressor backward rate 
kbR that obey Eq. 6.22 are equivalent. If in the repressed state the fluctuations in 
protein number should be small, the cell should increase the number of repressors 
and decrease the binding affinity to the operator site, so that repressors stay bound 
to the DNA only briefly. 

The rapid rebindings observed in our simulations are a general phenomenon. 
Whenever the association of a molecule to a binding site occurs close to the place 
where it dissociates, these rebindings might occur. To what extent can these rebind­
ings always be taken into account by renormalizing the reaction rates according to 
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Eqs. 6.35 and 6.36? In the current problem, this is possible because the time be­
tween dissociation and a subsequent rapid rebinding is very short compared to the 
time it takes RNAp to bind to the operator site on average. For the diffusion con­
stant used here, a rebinding typically occurs on a timescale of 10- 8 - 10- 6 s. As a 
consequence, RNAp virtually never binds to the operator when the repressor is still 
close to the binding site. 

We find that the same holds for more general cases . For instance, we simulated 
a system in which repression occured in a cooperative way. In this case the repres­
sor backward rate is smaller when two repressors are bound to the operator than 
when a single repressor is bound. We found that again the fluctuations were well 
described by a well-stirred model with properly renormalized reaction rates. In this 
case, when one of the repressors dissociates, the time to a subsequent rebinding is 
short enough that the probability for the other repressor to dissociate in the mean 
time is negligible for reasonable values of cooperativity. When we do not consider 
repressors, but instead look at activators, we find that diffusion of the activators 
leads to enhancement of noise in protein level through a similar mechanism. Fi­
nally, the short timescale on which these rebindings occur may make it difficult to 
observe these rebindings experimentally and reaction rates measured biochemically 
will probably already be corrected according to Eqs. 6.35 and 6.36. 

However, similar rebinding dynamics has been observed in the case of restriction 
enzymes, such as EcoRV Restriction enzymes cleave specific sites on the DNA and it 
is thought that restriction enzymes find the correct binding site on the DNA by fa­
cilitated diffusion: a combination of free 3D diffusion and 1D sliding along the DNA 
[160]. Recently, it was shown that restriction enzymes translocate along the DNA 
predominantly through multiple cycles of dissociation-rebinding reactions, where 
the restriction enzyme, after dissociating from its initial site on the DNA, moves 
by 3D diffusion before rebinding to a new site on the same segment of the DNA 
[161, 162]. These dissociation-rebinding cycles are similar to the rebinding reac­
tions observed in our simulations. For EcoRV, it has been estimated that after an 
initial association 10-100 rebindings occur before the restriction enzyme escapes to 
the bulk solution [162], in good agreement with the average number of rebindings 
calculated in Section 6.5. 

In this chapter, we focus on a single operator site surrounded by repressor molecules. 
In this case, we find that the dynamics is well described by a master equation. This 
means that, apart from the renormalization in Eqs. 6.35 and 6.36, the spatial ex­
tension of our system effectively plays no role in determining the noise. We expect 
that this no longer holds when the number of binding sites is increased. In this 
case, the noise between binding sites that are close together in the cell might show 
correlations. This could for instance be important for ligand binding in bacterial 
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chemotaxis, where the receptor are thought to occur in dense clusters [163, 164]. It 
has also been shown recently in bacteria that coregulated genes tend to lie closer to 
each other on the DNA, suggesting that spatial relations might also be important in 
this case [165]. 

6. 7 Conclusion 

We have shown here by simulation that at least in the case of gene repression spa­
tial fluctuations due to diffusion of repressor are an important contribution to the 
intrinsic noise of the system. Here, diffusion contributes to the noise by means of 
rapid rebindings: when the repressor dissociates from the operator site, it is so close 
to the binding site that is has a high probability of binding again after a very short 
time, on the order of 10- 8 - 10- 6 s. As a consequence of these rebindings, we find 
that in the repressed state the production of mRNA can occur in sharp bursts, lead­
ing to fluctuations in the protein number that can be as large as 10% of the protein 
concentration in the unrepressed state. The rapid rebindings due to diffusion are a 
general phenomenon and not restricted to transcription networks alone. 

Our simulation also suggests several ways in which the cell could minimize the 
effect of these fluctuations. We find that for the same level of repression, it is advan­
tageous to have a large number of repressors that stay on the DNA for a short time 
rather than having few repressors that stay on the DNA for a long time. We also find 
that the amount of noise in mRNA and protein number is reduced by decreasing the 
rate of open complex formation by the RNA polymerase. Thus, the latter process 
functions as a 'low-pass filter', filtering out the rapid fluctuations due to repressor 
binding. 

Finally, we find that the effect of spatial fluctuations and rapid rebindings can 
be well described by a two-step kinetic scheme, where formation of an encounter 
complex by diffusion and the subsequent association reaction are treated separately. 
As a consequence, the spatial fluctuations are well approximated by a chemical mas­
ter equation, where the association and dissociation reactions are corrected for the 
average number of rapid rebindings. 
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Samenvatting 

De titel van mijn proefschrift luidt, in het Nederlands: "Stochastische dynamica in 
zand en cellen." Hieronder zal ik proberen uit te leggen wat "stochastische dynami­
ca" precies is en waarom ik het heb bestudeerd in zulke verschillende systemen als 
zand en cellen. 

Stochastische dynamica 

In 2004 was volgens het Centraal Bureau voor de Statistiek de lengte van de ge­
middelde Nederlandse man en vrouw respectievelijk 1 meter 82 en 1 meter 68. 
Echter, iedereen die door een drukke winkelstraat loopt ziet meteen dat mensen 
in het algemeen bijhoorlijk verschillende lichaamslengte hebben. Op het eerste ge­
zicht lijkt het dus of we over lichaamslengte eigenlijk geen voorspellingen kunnen 
doen. Toch blijkt dat als we tellen hoeveel mensen een bepaalde lengte hebben, die 
lengteverdeling een vast patroon laat zien. Als voorbeeld is in Figuur S.1(a) en (b) 
de lengteverdeling te zien van Nederlandse mannen en vrouwen tussen de 20 en 34 
jaar oud. In allebei de gevallen hebben de meeste mensen een lengte in de buurt van 
het gemiddelde. Er is echter ook altijd een klein aantal mensen met een lengte die 
daar veel van afwijkt. De vorm van zulke verdelingen wordt goed beschreven door 
de zogenaamde Gaussische verdeling, zoals ook te zien is in Figuur S.1 (a) en (b). 

Het blijkt dat veel schijnbaar onvoorspelbare processen toch goed met precies 
zo'n Gaussische verdeling kunnen worden beschreven. Als je bijvoorbeeld een munt­
je een groot aantal keer opgooit, volgt het aantal keren dat je kop krijgt ook een 
Gaussische verdeling. De Gaussische verdeling heeft twee belangrijke eigenschap­
pen. Als eerste heb je de plek van de piek van de verdeling, het gemiddelde. De 
andere eigenschap is hoe breed de verdeling is. Hoe breder de verdeling, des te 
groter de afwijking van het gemiddelde die je kan vinden. Het is bijvoorbeeld voor­
stelbaar dat bij andere dieren de spreiding in lichaamslengte groter of kleiner is 
dan bij mensen. Een grootheid zoals lichaamslengte, die willekeurig varieert van 
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Figuur S.l: De Gaussische verdeling. De verdeling van lichaamslengten van (a) 1017 mannen 
en (b) 987 vrouwen tussen de 20 en 34 jaar. De verdeling van lichaamslengten wordt goed 

beschreven met een zogenaamde Gaussische verdeling die als een zwarte lijn in beide figuren is 
weergegeven. Gebaseerd op informatie uit het Statistisch Jaarboek 2004 van het Centraal Bureau 
voor de Statistiek. 

persoon tot persoon, wordt ook wel een stochastische grootheid genoemd, naar het 
griekse werkwoord voor "raden". 

Gaussische verdelingen komen ook in de natuurkunde regelmatig voor, bijvoor­
beeld in de beschrijving van gassen. Een kleine hoeveelheid gas, zoals bijvoorbeeld 
de lucht in een opgeblazen ballon, bestaat al uit ontelbaar veel gasmolekulen die 
allemaal wanordelijk door elkaar heen bewegen en met elkaar botsen. Het is on­
doenlijk voor ieder gasmolekuul uit te rekenen hoe het precies beweegt en dus lijkt 
het onmogelijk om de eigenschappen van het gas in de ballon uit te rekenen uit het 
gedrag van de molekulen waaruit het gas bestaat. Maar eerder bleek dat we iets 
over de lengte van een grote groep mensen kunnen zeggen, terwijl we lengte van 
een enkel persoon niet kunnen voorspellen. Zo kunnen we op dezelfde marrier iets 
zeggen over het gedrag van de ontelbaar veel molekulen in een gas, zelfs als we niet 
precies kunnen voorspellen wat een enkel gasmolekuul precies doet. We kunnen bij­
voorbeeld kijken naar de verschillende snelheden van de molekulen in een gas. Het 
blijkt dat deze snelheidsverdeling precies een Gaussische verdeling volgt: verreweg 
de meeste molekulen bewegen relatief rustig, maar een kleine fractie vliegt met veel 
hogere snelheid rond. Net als bij alle Gaussische verdelingen, wordt ook deze alleen 
bepaald door de gemiddelde snelheid en de spreiding van de verdeling. Als het gas 
als geheel niet stroomt, is de gemiddelde snelheid nul. De spreiding van snelheden 
kunnen we heel makkelijk meten: dat is namelijk wat wij als temperatuur voelen. 
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Figuur S.2: De dronkenmanswandeling. (a) Een voorbeeld van een dronkenmanswandeling van 
20 stappen. Het beginpunt is aangegeven door de gestreepte cirkel. De zwarte punten geven de 
opeenvolgende stappen aan. Het eindpunt is op zeven stappen rechts van het beginpunt. (b) 

De verdeling van eindpunten na 5000 dronkenmanswandelingen van 20 stappen. De meeste 
wandelingen komen vlak bij het beginpunt uit. 

In een koud gas bewegen de molekulen willekeurig maar niet zo snel, in een heet 
gas heel hard. Als een gas koud genoeg is bewegen de molekulen zo langzaam dat 
ze aan elkaar gaan klonteren en een vloeistof, zoals water, kunnen vormen. 

Een ander voorbeeld uit de natuurkunde is dat van de zogenaamde dronken­
manswandeling, zoals afgebeeld in Figuur S.2(a). Wanneer een dronkenlap 's avonds 
vanuit het cafe naar huis loopt, nemen we aan dat hij zo dronken is dat ieder vol­
gende stap even vaak naar links gaat als naar rechts. De route die hij dan loopt is 
volkomen willekeurig en er zijn allerlei interessante vragen over te stellen. Waar kan 
hij bijvoorbeeld allemaal uitkomen na honderd van die willekeurige stappen gezet 
te hebben? En hoeveel stappen moet hij op deze manier zetten om een redelijke 
kans te hebben uit te komen bij zijn huis aan het einde van de straat? De verdeling 
van afgelegde afstand na twintig willekeurige stappen is afgebeeld in Figuur S.2(b). 
Ook in dit geval volgt de afgelegde afstand een Gaussische verdeling. De gemiddel­
de afgelegde afstand is nul. Dit komt doordat een stap naar links even waarschijnlijk 
is als een stap naar rechts. De breedte van de verdeling geeft aan hoe ver van het 
beginpunt je uit kan komen. De spreiding blijkt maar langzaam toe te nemen met 
het aantal afgelegde stappen. Als de afstand van het cafe naar huis te groot wordt, is 
een dronkenmanswandeling dus een uiterst inefficiente manier om thuis te komen. 

Terwijl maar weinig cafegangers er zo aan toe zijn dat ze op de bovenstaan­
de manier naar huis moeten komen, komen dergelijke dronkenmanswandelingen 
vaak voor in de natuurkunde. Een voorbeeld dat ook voor dit proefschrift van groot 
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belang is, is de zogenaamde Brownse beweging. In 1828 observeerde de Britse bota­
nicus Robert Brown onder de microscoop dat in water drijvend stuifmeel eenzelfde 
soort willekeurige dronkenmanswandeling ondergaat. Dacht Brown in eerste in­
stantie te maken te hebben met iets levends, later nam hij dezelfde willekeurige 
beweging waar met stofkorreltjes en (bizar genoeg) met stukjes van de egyptische 
Sfinx. In 1905 verklaarde Einstein deze Brownse beweging door te realiseren dat 
de stuifmeeldeeltjes zo klein zijn, dat zij door willekeurige botsingen met de om­
ringende watermolekulen heen en weer geslingerd worden. Door het gedrag van 
zulke deeltjes in water te bestuderen is het dus mogelijk om iets te leren over het 
gedrag van molekulen, die verder voor ons niet direct zichtbaar zijn. Om die reden 
vormden metingen aan de Brownse beweging in het begin van de vorige eeuw dan 
ook een van de eerste overtuigende bewijzen voor het daadwerkelijk bestaan van 
molekulen en atomen. 

De positie van een stofdeeltje in water varieert dus op een willekeurige wijze 
in de tijd. Dit soort gedrag wordt in het algemeen aangeduid als stochastische dy­
namica. Net als in het geval van lichaamslengte, geldt ook hier dat we misschien 
niet het gedrag van een enkel stofdeeltje in water kunnen voorspellen, maar dat we 
wel iets kunnen zeggen over het gedrag van een groot aantal deeltjes. Op die ma­
rrier vormt de dronkenmanswandeling een verklaring voor diffusie, het verschijnsel 
dat bijvoorbeeld een druppel inkt in water zich langzaam uitspreidt, zelfs als we 
zorgen dat er geen enkele stroming in het water is. Ieder inktdeeltje afzonderlijk 
ondergaat dan een onvoorspelbare dronkenmanswandeling. Maar alle inktdeeltjes 
bij elkaar leveren een kleurprofiel dat we wel goed kunnen voorspellen. De tak van 
de natuurkunde die zich bezig houdt met het beschrijven van het gedrag van gro­
te aantallen deeltjes die zich afzonderlijk willekeurig gedragen wordt de statistische 
Jysica genoemd. De statistische fysica is onmisbaar gebleken om de eigenschappen 
van alledaagse materie, zoals vaste stoffen, vloeistoffen en gassen, uit het gedrag 
van atomen en molekulen te begrijpen. In dit proefschrift hebben we de technieken 
van de statistische fysica toegepast om het gedrag van korrelvormige materialen, 
zoals zand, en dat van levende cellen, zoals bacterien, beter te begrijpen. Waarom 
we dat hebben gedaan en wat we daar van hebben geleerd, zal ik nu proberen uit 
te leggen. 

Stochastische dynamica in zand 

Iedereen die wel eens op het strand met zand gespeeld heeft, weet dat zand zo­
wel de eigenschappen van een vaste stof als van een vloeistof heeft. Als je van 
zand een zandkasteel bouwt, maak je gebruik van de eerste eigenschap. Maar als 
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zand in beweging wordt gebracht, bijvoorbeeld door de zwaartekracht of door het 
te schudden, kan het zich als een vloeistof gedragen. Als je langs de helling van 
een duin loopt, bijvoorbeeld, "stroomt" het zand vaak als een kleine lawine naar 
beneden. Deze eigenschappen zijn niet uniek voor zand, maar gelden in het alge­
meen voor alle korrelvormige of granulaire materialen zoals graan, rijst, poeders 
of sneeuw. De overgang tussen de vaste en de 'vloeibare' toestand van granulaire 
materialen kun je op een handige manier gebruiken, bijvoorbeeld door graan uit 
een silo te laten stromen en het zo naar een andere plek te transporteren. Het kan 
echter ook op een gevaarlijke manier plaatsvinden, bijvoorbeeld in het geval van 
sneeuw- of modderlawines. Vreemd genoeg begrijpen we dit soort schijnbaar alle­
daagse dingen lang niet altijd en kunnen we soms voor rare verrassingen komen te 
staan. Een voorbeeld: in de industriele verwerking van poeders, worden twee poe­
ders vaak met elkaar gemengd door ze door elkaar te schudden. Het blijkt dat als 
de twee poeders bijvoorbeeld te veel verschillen wat korrelgrootte betreft, dit juist 
het tegenovergestelde resultaat levert: de twee poeders ontmengen zich en raken 
op grootte gesorteerd. Het is pas sinds de laatste jaren dat we dit soort gedrag beter 
begrijpen. Meer voorbeelden van verrassend gedrag van zand en andere granulaire 
materialen zijn beschreven in Hoofdstuk 1. 

Een van de uitdagingen die we tegenkomen wanneer we granulaire materialen 
proberen te begrijpen, is dat het aantal korrels vaak zo groot is, dat we niet het 
gedrag van iedere korrel afzonderlijk kunnen volgen. Maar net zoals we in de sta­
tistische fysica niet het gedrag van ieder individueel molekuul hoeven te kennen om 
de eigenschappen van een vloeistof of een gas uit te kunnen rekenen, zo kunnen we 
dezelfde techniek ook op granulaire materialen toepassen. In dat geval kunnen we 
een granulaire 'vloeistof', zoals zand stromend langs een duinhelling, misschien be­
schrijven als een gewone vloeistof, maar dan niet met molekulen maar met korrels 
als bouwstenen. Toch is er een groot verschil tussen stromende granulaire mate­
rialen en vloeistoffen: granulaire materialen zijn dissipatief. Wat betekent dit pre­
des? Als twee korrels in een granulair materiaal met elkaar botsen, raken ze wat 
bewegingsenergie kwijt: de korrels hebben ze na de botsing minder snelheid dan 
daarvoor. De missende bewegingsenergie is tijdens de botsing gedissipeerd, oftewel 
weggelekt in de vorm van wrijvingswarmte. Dat dissipatie in granulaire materialen 
heel belangrijk is, blijkt uit het volgende simpele experiment (waarvan je de experi­
mentele opstelling na afloop kunt opeten). Neem een M&M en laat dat boven een 
tafelblad vallen. De M&M zal een aantal keer stuiteren en uiteindelijk op de tafel 
tot rust komen. Herhaal hetzelfde experiment maar nu met een zakje M&Ms. Het 
zakje M&Ms stuitert nauwelijks en komt vrijwel meteen tot rust. Waar komt dit 
enorme verschil tussen het gedrag van een enkele M&M en een groot aantal M&Ms 
vandaan? Dat is het resultaat van de vele botsingen tussen de M&Ms in het zakje, 
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waarbij alle bewegingsenergie van de M&Ms weglekt. Het is om precies dezelfde 
reden dat in de constructie van bunkers vaak zandzakken worden gebruikt. Zand­
zakken houden kogels en bomscherven heel efficient tegen omdat in de botsingen 
tussen de zandkorrels de bewegingsenergie van de projectielen razendsnel wordt 
gedissipeerd. 

Het resultaat van deze dissipatieve botsingen is dat een granulair materiaal de 
hele tijd in beweging gehouden moet worden om het zich als een vloeistof te laten 
gedragen. Zonder energietoevoer, bijvoorbeeld door te schudden, komen de korrels 
meteen op een hoopje tot rust. Heel anders is het gedrag van gewone vloeistoffen 
en gassen. Als molekulen met elkaar botsen raken zij geen bewegingsenergie kwijt. 
Het gevolg is dat de molekulen in een vloeistof en een gas altijd in beweging blijven 
(zoals we hebben gezien in de discussie over de Brownse beweging). Het feit dat 
voor gewone vloeistoffen energie behouden is maakt het relatief makkelijk om aan 
de willekeurige beweging van de molekulen te rekenen. Voor granulaire materialen 
kunnen wij zulke vereenvoudigingen helaas niet gebruiken. Dat maakt het rekenen 
aan granulaire materialen meteen heel spannend: systemen, zoals granulaire ma­
terialen, waaraan energie toegevoerd moet worden om ze aan de gang te houden, 
staan bekend als niet-evenwicht systemen. In ons dagelijks leven komen we dergelijke 
system en veel tegen. Ons lichaam in het bijzonder en levende cell en in het algemeen 
zijn typische voorbeelden van zulke systemen. De hoop is dat we door het bestude­
ren van relatief eenvoudige granulaire materialen misschien meer te weten komen 
over hoe we zulke niet-evenwichts systemen in het algemeen kunnen beschrijven. 

Wij doen dat door te kijken naar zogenaamde granulaire gassen. Een granulair 
gas is bijvoorbeeld te maken door een aantal kogeltjes in een doos te doen en dan de 
doos hard te schudden. Een voorbeeld van een granulair gas van zulke kogeltjes is 
afgebeeld op pagina 67. Net zoals in een gas de dichtheid van molekulen veellager 
is dan in een vloeistof, zo is een granulair gas een granulaire vloeistof met een hele 
lage dichtheid. Doordat in een granulair gas de korrels niet zo dicht op elkaar zitten 
als in een granulaire vloeistof is het gedrag van een granulair gas veel simpeler 
en dus hopelijk makkelijker te begrijpen. We zijn gelnteresseerd in de verschillen 
tussen een granulair gas en een gewoon gas dat uit molekulen bestaat. Eerder zagen 
we al dat het voor gewone gassen nuttig is om naar de snelheidsverdeling van de 
molekulen te kijken. Het blijkt nu dat de snelheidsverdeling die wordt gemeten voor 
de korrels in een granulair gas niet de Gaussische verdeling volgt, maar een duidelijk 
andere vorm heeft. Omdat de Gaussische verdeling zo algemeen voorkomt en niet 
afhangt van het precieze systeem - het beschrijft immers niet alleen het gedrag van 
gassen, maar ook lichaamslengtes en nog veel meer - is dit een heel fundamenteel 
verschil tussen gewone gassen en dissipatieve granulaire gassen en willen we graag 
snappen waar dat verschil vandaan komt. 
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Helaas leveren de verschillende experimenten, berekeningen en computersimu­
laties geen heldere resulaten op. Het is duidelijk dat Gaussische snelheidsverde­
lingen in granulaire gassen aileen in speciale gevallen voorkomen. Verder vindt 
men veel verschillende snelheidsverdelingen, afhankelijk van de experimentele op­
stelling, van het soort en het aantal korrels en van de dichtheid van de granulaire 
gassen. In Hoofdstuk 2 hebben wij de snelheidsverdeling onderzocht met compu­
tersimulaties. We hebben ontdekt dat we, in ieder geval in onze simulatie, al die 
verschillende snelheidsverdelingen kunnen verklaren met behulp van maar twee pa­
rameters, een die de hoeveelheid dissipatie in botsing tussen de korrels beschrijft en 
een die beschrijft hoe energie aan het systeem wordt toegevoerd. De laatste para­
meter verschilt van experiment tot experiment en we denken dat we hiermee iets 
van de tegenstrijdige resultaten uit de experimentele literatuur kunnen verklaren. 
In Hoofdstuk 3 beschrijf ik de resultaten van experimenten die ik heb gedaan tijdens 
een bezoek aan de University of Texas in Austin. Veel experimenten aan granulaire 
gassen zijn uitgevoerd aan zogenaamde twee-dimensionele gassen. Hierbij wor­
den metalen kogeltjes opgesloten tussen twee doorzichtige zijwanden en op en neer 
geschud. Op deze manier kan de beweging van de kogeltjes met behulp van een 
camera worden gevolgd. Wij hebben ontdekt dat in zo'n soort experiment de snel­
heidsverdeling erg kan worden bei:nvloed door wrijving tussen de kogeltjes en de 
zijwanden. Dit betekent dat de resultaten van eerdere experimenten waarschijnlijk 
niet betrouwbaar zijn. 

Stochastische dynamica in cellen 

De kleinste levende organismen zijn bacterien. De bacterie Escherichia coli, een vas­
te bewoner van ons darmstelsel, is ongeveer 1 J.Lm, ofwel een miljoenste meter, lang. 
Er passen ongeveer een half miljoen van zulke bacterien in de punt aan het eind van 
deze zin. Het is een misvatting te denken dat zulke kleine organismen ook erg sim­
pel zijn. In tegendeel, hoe beter men bacterien bestudeert, des te meer men erachter 
komt dat zij in veel gevallen niet onderdoen voor de grote, ingewikkelde cellen waar 
onder andere de mens uit bestaat. bacterien meten bijvoorbeeld voortdurend de toe­
stand van zichzelf en de omgeving en passen op basis daarvan hun gedrag aan. Zo 
verteert E. coli aileen de suikerachtige stof lactose als zijn favoriete suiker, gluco­
se, niet aanwezig is. De meeste bacterien zwemmen of kruipen in de richting van 
een voedselbron en weg van schadelijke stoffen. Andere bacterien, zoals die van de 
soort Vibrio waar onder andere ook de cholera bacterie onder valt, communiceren 
met hun soortgenoten en besluiten, als ze vinden dat ze met genoeg zijn, met zijn 
allen licht te geven of de cellen van een andere organisme aan te vallen. Door alle 
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ontwikkelingen in de biologie van de afgelopen jaren is het mogelijk te begrijpen 
hoe levende cellen dit soort beslissingen nemen. Het blijkt dat bacterien informatie 
verwerken en beslissingen nemen met behulp van netwerken van molekulen die met 
elkaar reageren, zogenaamde biochemische netwerken. Die netwerken vertonen gro­
te gelijkenis met de elektronische circuits die we bijvoorbeeld in CD-spelers vinden. 
De schakelaars, versterkers en filters die we in CD-spelers vinden, zien we ook terug 
in biochemische netwerken, waarbij de rol van elektrische stroompjes, transistors en 
weerstanden is overgenomen door molekulen zoals DNA en eiwitten. Omdat deze 
netwerken doorgaans uit veel molekulen bestaan die op ingewikkelde manieren met 
elkaar reageren, is het vaak moeilijk het gedrag van zulke netwerken te begrijpen, 
zelfs als men al veel weet van de molekulen waar ze uit bestaan. Om die reden 
onderzoekt men deze netwerken het meest in de realtief simpele bacterien in plaats 
van in ingewikkelder cellen. 

Een van de redenen waarom natuurkundigen gei:nteresseerd zijn in bacterien en 
andere cellen is omdat zij zo klein zijn dat hun wereld volledig wordt gedomineerd 
door de willekeurige fluctuaties die ook verantwoordelijk zijn voor de Brownse be­
weging. De manier waarop bacterien een voedselbron zoeken is bijvoorbeeld vol­
ledig aangepast aan het feit dat zij niet in een rechte lijn kunnen zwemmen omdat 
zij door de Brownse beweging van hun omgeving voortdurend van hun koers gesto­
ten worden. Maar ook het binnenwerk van de bacterie wordt in belangrijke mate 
door deze fluctuaties aangetast. De molekulen die samen een biochemisch netwerk 
vormen reageren met elkaar door middel van botsingen die, net als voor gassen, op 
een willekeurige manier plaatsvinden. Bovendien bewegen deze molekulen in het 
binnenste van de bacterie door middel van de Brownse beweging. Voordat zij met 
elkaar kunnen reageren moeten deze molekulen elkaar dus eerst ontmoeten via de 
willekeurige dronkenmanswandeling die hierboven is beschreven. In experimenten 
aan de bacterie E. coli is inderdaad gemeten dat om deze redenen de productie van 
bepaalde eiwitten in de eel op willekeurige wijze in de tijd varieert. Een belangrijke 
vraag is hoe een bacterie nog steeds betrouwbaar kan werken als zijn mechaniek 
zich voor een deel willekeurig gedraagt. Hoe voorkomt een bacterie bijvoorbeeld 
dat hij door zulke fluctuaties een verkeerde keus maakt? Dit is ook een belang­
rijke vraag in electronische signaalverwerking, waar men ruis in het signaal te lijf 
gaat met filters en andere oplossingen. Ook voor sommige biochemische netwerken 
blijkt dat zij door de evolutie zo zijn ingericht dat ze relatief ongevoelig zijn voor de­
ze fluctuaties, ook wel molekulaire ruis genoemd. Dergelijke molekulaire ruis is ook 
van belang in de ingewikkelder cellen waar mensen uit bestaan. Door molekulai­
re fluctuaties tijdens de ontwikkeling van het menselijk embryo hebben een-eilge 
tweelingen bijvoorbeeld totaal verschillende vingerafdrukken, ondanks het feit dat 
ze precies hetzelfde erfelijk materiaal bezitten. 
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Omdat experimenten aan fluetuaties in levende eellen nog lastig zijn, worden 
ze vaak aangevuld met wiskundige modellen en eomputersimulaties. Een probleem 
daarbij is dat diffusie van molekulen in de eel in berekeningen moeilijk mee is te ne­
men en dat de bestaande simulatieteehnieken voor diffusie of te langzaam zijn voor 
deze biologisehe problemen 6f onnauwkeurig. Daarom nemen de meeste berekenin­
gen en simulaties als versimpeling aan dat de inhoud van een eel "goed gemengd" 
is, zodat het niet nodig is de exaete loeatie van de molekulen in de eel te weten en 
dus diffusie geen rol speelt. Wij zijn hier om twee redenen niet tevreden mee: als 
eerste weten we dat sommige molekulen door middel van de Brownse beweging een 
signaal van een kant van een eel naar de andere doorgeven. Ten tweede kunnen de 
fluetaties ten gevolge van de Brownse beweging die de molekulen ondergaan bijdra­
gen aan de totale fluetuaties in de eel. Beide gevallen kunnen dus met de huidige 
simulatieteehnieken niet goed onderzoeht worden. In Hoofdstuk 5 besehrijven we 
een nieuwe simulatieteehniek waarmee dat wei kan. Het voordeel van deze teehniek 
is, dat door op een slimme manier gebruik te maken van onze kennis over de Brown­
se beweging, we in staat zijn om heel efficient de reaeties en Brownse beweging van 
een groot aantal molekulen te volgen. In een eerste toepassing van onze teehniek, 
proberen we in Hoofdstuk 6 te bepalen in hoeverre de fluetuaties van de Brownse 
beweging bijdragen aan de totale fluetuaties in de eel. Voor een eiwit waarvan de 
produetie wordt geeontroleerd door een ander eiwit, vinden we dat de fluetuaties 
in het aantal geprodueeerde eiwitten in sommige situaties grotendeels het gevolg is 
van de Brownse beweging van het eontrolerend eiwit. Verder hebben we een ele­
gante manier gevonden om die extra fluetuaties zo te besehrijven dat hiervoor ook 
een vee! simpeler teehniek, die een "goed gemengde" eel veronderstelt, kan worden 
gebruikt. 
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Geen onderdeel van het proefschrift zo doorwrocht als het dankwoord! Om het een 
en ander voor mijzelf makkelijker te maken, heb ik voorgenomen mij te beperken 
tot alleen die mensen, die op directe wijze hebben bijgedragen aan het werk dat in 
dit proefschrift verzameld is. Al die mensen die er voor zorgden dat ik de afgelopen 
vier jaar geregeld gedwongen was mijn wetenschappelijke arbeid te onderbreken 
voor het hebben van een leuke tijd zullen dus helaas mijn dank op andere wijze 
tegemoet moeten zien. 

Als eerste wil ik Fred, mijn promotor, bedanken. Ik heb toentertijd mijn af­
studeeronderzoek met een paar maanden uitgesteld in afwachting van jouw komst 
naar de VU en ik kan niet zeggen dat ik daar ooit spijt van heb gehad. Toen jij mij 
in het begin een keer hoorde zeggen dat ik "voor Fred" werkte, corrigeerde jij dat 
het "samen met Fred" moest zijn. Zo heb ik het gedurende de hele verdere periode 
inderdaad ook ervaren. Verder heb ik altijd het gevoel gehad dat voor jou mijn per­
soonlijke ontwikkeling als natuurkundige altijd hoven eventuele andere belangen 
ging en dat je altijd bereid was moeite te doen om je student in de wereld vooruit 
kon helpen. Ik wil je ook bedanken voor de grote vrijheid waarmee je mij eerst in 
jouw groep en later voor een groot deel ook in een andere groep hebt laten werken. 
Jouw stelling, dat theoretische natuurkunde bij uitstek geschikt is om verschillende 
soorten onderzoek naast elkaar te doen, heb ik met veel plezier ter harte genomen. 

Natuurlijk wil ik ook Pieter Rein, mijn copromotor, bedanken. Toen ik nog zoe­
kende was naar een leuke afwisseling voor mijn werk aan granulaire gassen, begon 
jij aan de VU met het onderzoek naar biochemische netwerken waar ik met de jaren 
toch wel een beetje mijn hart aan verloren heb. Toen jij later definitief naar het 
Amolf verhuisde, ben ik je tenminste voor een ochtend in de week gevolgd. Behalve 
de stimulerende discussies tijdens en na de groupmeeting op de woensdag, voor­
zag je me gedurende de rest van de week rijkelijk van steun via telefoon en e-mail. 
Het lijkt me duidelijk dat zonder jouw uitgebreide kennis van simulatietechnieken 
"onze" techniek nooit het stadium van de tekentafel ontstegen was. Als laatste wil 
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ik nog mijn bewondering uitspreken voor je intellectuele uithoudingsvermogen. Ik 
herinner me nog in het bijzonder een bijeenkomst waar wij na uren met van uitput­
ting geknakte lichamen in onze stoelen hingen enjij nog onvermoeibaar onzichtbare 
vergelijkingen op het white board schreef met een pen waar geen druppel inkt meer 
in zat. 

Promotoren en copromotoren komen doorgaans met een groep en in beide ge­
vallen heb ik het daar naar mijn mening bijzonder mee getroffen. Als eerste zijn er 
de twee Complexe Systemen groepen aan de VU. Naast al die tijd tijdens de lunch 
en de thee die ik eigenlijk aan de wetenschap had moeten besteden, waren de vele 
gedeelde zomerscholen, werkbesprekingen en horeca-bezoeken ook altijd erg nuttig 
en leuk. In de experimentele groep ben ik voor een theoreticus die geen espresso lust 
altijd welwillend ontvangen. In het bijzonder wil ik de volgende mensen bedanken: 
David, die in ruil voor een enkele vraag over Nederland altijd bereid was de kieren­
de gaten in mijn kennis van de biologie te dichten en met wie ik ook met plezier aan 
onderzoek gewerkt heb. Bram en Joost, die er in sterke mate aan hebben bijgedra­
gen dat ik nu wei om negen uur op de VU ben. Tot verdriet van onze vriendinnen 
is het niet altijd duidelijk waar bij ons het werk ophoudt en de vriendschap begint. 
Dan is er ook nog de groep aan het Amolf. Ik heb mij altijd verheugd op mijn weke­
lijks uitje naar Watergraafsmeer en heb me daar (ondanks dat de receptionisten mij 
nooit vertrouwden) als relatieve buitenstaander altijd thuisgevoeld. Ik wil hier de 
volgende mensen bij naam noemen: Pim, met wie ik pas het afgelopen half jaar heb 
samengewerkt. Rosalind, met wie het altijd leuk en nuttig was om over wetenschap 
en andere dingen te praten. Ik ben nog steeds jaloers dat jij binnenkort wellicht wei 
in het lab mag staan! Marco, met wie ik onverhoopt veel heb samengewerkt. Liep 
ons onderzoek in eerste instantie parallel aan elkaar, het waren die duivelse tabellen 
die ons uiteindelijk tot een, wat mij betreft, prettige samenwerking brachten. Joost, 
Rosalind en David verdienen nog een extra woord van dank voor het lezen van en 
discussieren over verschillende delen van dit proefschrift. Joost en Rutger tenslotte 
hebben het aangedurfd om als mijn paranimfen te fungeren. 

I would also like to thank Dr. Harry Swinney for his hospitality during my stay in 
his group at the University of Texas at Austin. I had a very enjoyable time in Austin! 
I also want to thank Dan Goldman for his daily advise and Jennifer Kreft for her 
hard work during the writing (and rewriting) of our article. 

Als laatste dien ik natuurlijk Una te bedanken. Op niemand heeft de last van 
de wetenschap zwaarder neergedrukt dan op jou! Met ijzeren geduld knik je altijd 
vriendelijk als ik 's avonds weer vertel over dat ene leuke experiment of die nieuwe 
bijzondere bacterie. De tol van het wetenschappelijk bedrijf op onze relatie is ver­
schrikkelijk geweest: woonden wij vier jaar geleden nog in een en hetzelfde huis, 
daarna achtereenvolgens een straat uit elkaar en aan de andere kant van de stad, 
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nu zullen wij omwille van de wetenschap in verschillende landen moeten wonen. 
Zal mijn tweede post-doc dan op een ander continent zijn en een eventuele vaste 
aanstelling in een laboratorium in een geostationaire baan om de aarde? 
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Jeroen van Zon is geboren op 30 maart 1977 te 
Haarlem. Hij groeide op in Maarssenbroek en 
doorliep het Christelijk Gymnasium in Utrecht. 
In 1995 begon hij de studie natuur- en sterren­
kunde aan de Vrije Universiteit Amsterdam. In 
2002 studeerde hij in de groep Theoretical Soft 
Condensed Matter and Complex Systems van 
prof.dr F. C. MacKintosh cum laude af op een on­
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de jaar startte hij zijn promotieonderzoek op het 
gebied van de statistische mechanica van granu­
laire materialen en van levende cellen, onder be­
geleiding van prof.dr. F. C. MacKintosh en dr. P. R. ten Wolde, de laatste verbonden 
aan het FOM Instituut voor Atoom- en Molekuulfysica in Amsterdam. Dit proef­
schrift, getiteld "Stochastic Dynamics in Sand and Cells", vormt de weerslag van 
vier jaar onderzoek, waarvan delen reeds zijn gepubliceerd in internationale vak­
tijdschriften. Behalve zuiver theoretisch onderzoek is hij ook betrokken geweest bij 
de uitvoering van enkele experimenten. Na zijn promotie zal hij als post-doctoraal 
onderzoeker verbonden zijn aan het Imperial College te Londen. Zijn hobby's zijn: 
wetenschap, lezen en muziek luisteren. 
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