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Abstract: We have studied the dispersion of ultrafast pulses in a photonic
crystal waveguide as a function of optical frequency, in both experiment
and theory. With phase-sensitive and time-resolved near-field microscopy,
the light was probed inside the waveguide in a non-invasive manner. The
effect of dispersion on the shape of the pulses was determined. As the
optical frequency decreased, the group velocity decreased. Simultaneously,
the measured pulses were broadened during propagation, due to an increase
in group velocity dispersion. On top of that, the pulses exhibited a strong
asymmetric distortion as the propagation distance increased. The asymme-
try increased as the group velocity decreased. The asymmetry of the pulses
is caused by a strong increase of higher-order dispersion. As the group
velocity was reduced to 0.116(9) · c, we found group velocity dispersion of
−1.1(3) ·106 ps2/km and third order dispersion of up to 1.1(4) ·10 5 ps3/km.
We have modelled our interferometric measurements and included the full
dispersion of the photonic crystal waveguide. Our mathematical model and
the experimental findings showed a good correspondence. Our findings
show that if the most commonly used slow light regime in photonic crystals
is to be exploited, great care has to be taken about higher-order dispersion.
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1. Introduction

Photonic crystals (PhCs) are promising materials for the miniaturization of integrated optics and
for the enhancement of light-matter interactions [1]. The periodic modulation of the refractive
index in a PhC has a large influence on the optical dispersion relation. Particularly interesting
is the existence of a photonic bandgap: a range of optical frequencies that are forbidden to
propagate in the material. If a waveguide is embedded in a PhC [2, 3], the light cannot escape
the waveguide through the PhC. This phenomenon can be used to create sharp waveguide bends
and high-Q cavities [4, 5]. In this way, a photonic bandgap can be exploited for the fabrication
of integrated optical devices on the micron scale.

Photonic crystal waveguides (PhCWs) also exhibit interesting optical properties, since the
dispersion relation of the light inside the waveguide is still influenced by the periodic nature of
the surrounding crystal [6]. An interesting feature in both bulk PhCs and PhCWs is, that light
will propagate with a very low group velocity at some specific optical frequency [7, 8, 9, 10].
Hence, light-matter interaction is very strong and can be exploited for enhanced non-linear
interactions in PhCWs [11]. Recently, all-optical switching in PhCs has been demonstrated
[12] and PhCW lasing has been reported [13]. Also optical solitons have been proposed [14]
and the nonlinear propagation of ultrafast pulses has been reported [15].

The group velocity is usually strongly dependent on frequency. This effect is quantified by
the group velocity dispersion (GVD). Since every optical pulse has a certain spectral content,
an optical pulse will experience a broadening due to the GVD. In PhCWs, this effect occurs at
much shorter propagation lengths compared to conventional waveguides. Since the dispersive
properties can be tailored by choosing the proper geometry, a tailored GVD can be exploited
for pulse compression [16]. This so-called dispersion control of pulses in PhCWs is one of the
promising applications of photonic crystals.

Recently, a number of studies have investigated the dispersive effect of PhC structures on
pulse propagation [17, 18, 19]. Generally, these studies report on the reduction of the group
velocity. Additionally, Asano et al. [18] also quantified enhanced group velocity dispersion in
a PhCW. Enhanced GVD was also found in bulk 3D photonic crystals [17]. In this work, evi-
dence was found of third order dispersion (TOD) [20], but not quantified. Aspects of third and
higher-order dispersion have been discussed in theory in the context of slow light propagation
in nonlinear photonic crystals [21].

For a detailed analysis of the dispersion of an optical pulse in a waveguide, one would ideally
want to monitor the pulse shape as it propagates through a structure. Only then can the evolution
of the pulse shape be evaluated as it propagates, and pulse distortion due coupling in and out of
the sample therefore be excluded. Since out-of-plane radiation is absent for truly guided light,
i.e. under the light line in a perfect structure, the study of the dispersion effects of a single, long
structure as a function of position, would rely on scattering at defects, which is not desirable.
Alternatively, structures of different length can be used, which has the disadvantage that the
dispersion effects are studied in different waveguides. We circumvent these disadvantages by
using a near-field approach. Near-field microscopy allows the local investigation of propagating
light with a sub-wavelength resolution, while the structure under investigation is not disturbed
[22].

Here we present the near-field probing of optical pulses as they travel through a photonic
crystal waveguide. As we changed the optical frequency and in this way accessed slower prop-
agating light, the dispersion of the pulses increases dramatically. The pulse shapes change from
initially symmetric to broader and more asymmetric pulse envelopes, as the group velocity de-
creases. The measurements are reproduced by calculating the expected pulses shapes from the
dispersion relation. Thus we demonstrate that higher-order dispersive effects play an important
role in the propagation of light in photonic crystal waveguides. These higher-order dispersive
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effects can be detrimental to many slow light applications and should be taken care of by proper
dispersion engineering, by which method the disadvantage can be even turned into an advan-
tage.

2. Experimental aspects and modelling

2.1. Sample and experimental setup

The samples used in the experiments were fabricated in epitaxial hetero-structures grown by
molecular beam epitaxy. A 250-nm-thick GaAs core layer was grown on top of a 2-μm-thick
Al0.6Ga0.4As sacrificial layer on a GaAs substrate. A membrane-type photonic crystal structure
was fabricated using high-resolution electron-beam lithography, dry etching, and selective wet-
etching techniques. The 2D PhC thus consisted of a hexagonal array of air holes etched into a
planar GaAs slab. The sacrificial layer was removed by an HF solution via the air holes. The
lattice constant is 339 nm with air-holes of 204 nm in diameter. By leaving a single row of air-
holes unperforated, a so-called W1 waveguide was created. A section of the resulting structure
is shown in Fig. 1.

The propagation of light in the W1 waveguide is described by the dispersion relation, shown
in Fig. 2(a). The dispersion relation of the W1 waveguide was calculated by 3D plane wave
expansion [23]. In the dispersion relation, we found two waveguide modes within the photonic
crystal bandgap for TE polarization. These modes are denoted odd and even in Fig. 2. The
even mode is largely underneath the light line and is therefore in principle lossless [3]. Near
ω = 0.254 the even mode bends towards kz = π/a, corresponding to a strong reduction of the
group velocity (vg), since the vg is determined by the inverse of the slope of kz(ω). Note that the
2D bandgap only exists for TE polarization. TM polarized light can either propagate through
the crystal, or it can be confined to the waveguide by refractive index contrast [24].

In Fig. 2(b), the group velocity of the even TE-polarized mode is shown as a function of
optical frequency. At high frequencies, vg is found te be 0.23 ·c. As the frequency is reduced, the
group velocity decreases to become zero at ω = 0.253. The group velocity dispersion (GVD) is
defined by the second order derivative of the dispersion relation (β 2 = d2k/dω2). The frequency
dependency of β2 is shown in Fig. 2(c). At high frequencies, the GVD is in the order of −10 4

ps2/km. As the frequency is reduced and the group velocity drops, the GVD increases by several

500 nm

y

x

z

Fig. 1. Scanning electron microscopy image of the photonic crystal structure. The inset
denotes the used cartesian coordinate system used in this paper. The PhCW is oriented in
the z-direction. The x-direction is in the plane of the PhC and is perpendicular to z. The
y-direction is perpendicular to the plane of the membrane.
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Fig. 2. (a) Portion of the dispersion relation of the W1 waveguide calculated by 3D plane
wave expansion. In the 2D bandgap, two waveguide modes are allowed to propagate for TE
polarization. They are denoted “even” and “odd” by their in-plane symmetry with respect
to the waveguide. The light line (ω = ckz) is represented by the dashed line. (b) Group
velocity (vg) as a function of frequency, calculated by taking the derivative of k(ω). (c) The
second order derivative of k(ω) gives the group velocity dispersion (β2 = d2k/dω2). As the
group velocity reduces around ω = 0.254, the GVD increases several orders of magnitude.

orders of magnitude. The GVD is many orders of magnitude larger than in fiber optics. For
comparison, the GVD in an optical fiber is between -28 and +8 ps 2/km [25]. Because, the
GVD is also frequency-dependent, higher-order dispersive effects can also play a role in the
propagation of light through PhCWs.

We monitored the broadening of femtosecond pulses as a function of propagation distance.
Therefore we used laser light, obtained from a Ti:Sapphire-pumped optical parametric oscil-
lator, that provided pulses with a tunable carrier wavelength between 1200 and 1350 nm. The
full width at half maximum (FWHM) of the pulse spectrum was 12 nm, corresponding to a
fourier limited pulse duration of 207 fs (FWHM). These pulses were coupled into the PhCW
by focussing the light onto the membrane facet with a microscope objective with a numerical
aperture of 0.4.

Figure 3(a) shows a focussed ion beam micrograph of a typical near-field fiber probe used
in the experiments. The probe consisted of a tapered optical fiber, coated with an aluminum
layer of approximately 100 nm thickness. The aluminum coating prevented stray light from
entering the probe. At the tip apex, a sub-wavelength aperture was obtained by focussed ion
beam milling. The aperture diameter was 230 nm.

The probe was kept in the evanescent field of the propagating light and in this way, a minute
fraction of the light was coupled into the fiber probe. A shear-force feedback mechanism kept
the fiber probe at a constant (∼10 nm) distance above the membrane. We scanned the fiber probe
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Fig. 3. (a) Focussed ion beam micrograph of the near-field probe, that consisted of a metal-
coated tapered optical fiber. The typical aperture diameter is 200 nm, for measurements in
the infrared. The image was obtained after ion beam milling of the tip apex. View angle:
∼ 45deg. (b) Schematic representation of the experimental setup. Pulsed laser light was
coupled into the PhCW. The fiber probe collected a fraction of the propagating light. This
light was mixed interferometrically with a reference pulse from the same laser. Only the
interference between the two pulses was detected. Two measurement modes were possible:
either scanning the fiber probe over the surface with a fixed optical delay line, or scanning
the delay line for a single probe position.

over the sample surface while using a heterodyne interferometric detection scheme, which
yielded spatially-resolved, phase-sensitive and time-resolved information on the propagation
light [22]. Figure 3(b) shows the heterodyne interferometric setup in a schematic representa-
tion. Before coupling the pulsed light into the PhCW, the light was split into two parts. The
light travelling through the sample and the fiber probe is called the signal branch. The other
branch (reference), contained an optical delay line. Both the signal and reference light was
mixed interferometrically and collected onto a detector. Using pulsed laser light, the interfer-
ence will only be present when the pulses in both branched overlap in space and time at the
mixing junction. In order to obtain temporal overlap, the optical path of the reference branch
could be varied. Thus, our setup allowed two distinct measurement techniques: either scanning
the fiber probe for a fixed delay line position (i.e. a fixed reference time) or scanning the delay
line for a single probe position. Since both measurement schemes were used this investigation,
these are explained in greater detail.

2.2. Local heterodyne detection of pulse propagation

In order to complement our experiments, we will compare the results with a model describ-
ing our measurement. Therefore, we will describe the propagation of light through a PhCW
and model the detection of this light. The propagation of light through a medium with a pe-
riod modulation of the dielectric constant, such as Bragg stacks or a photonic crystal, can be
described with Bloch waves [26]. A Bloch wave can be decomposed into several plane wave
components, each which a different wavevector k m:

Ẽ(z,ω) = ∑
m

Ẽm(ω)exp(ikm(ω)z), (1)
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with km(ω) = k0(ω)+
2π
a

m and m ∈ Z, (2)

where a is the period of the lattice. (For simplicity, a one-dimensional lattice is considered.)
The wavevectors of the plane waves that comprise a single Bloch wave are spaced 2π/a apart
in reciprocal space. The dispersion for all the higher-order Bloch harmonics, i.e. m �= 0, is
identical to that of k0(ω). Calculating the dispersion relation (such as in Fig. 2(a)) in the first
Brillouin zone suffices to represent the dispersive properties of the entire Bloch wave. For the
effect on either the pulse shape in time or in space on length scales larger than a single unit cell
we therefore consider only

Ẽ(z,ω) = Ẽ0(ω)exp(ik0(ω)z), (3)

where Ẽ0 and k0 represent the amplitude of the electric field and the fundamental wavevec-
tor of the Bloch wave, respectively [26, 27]. Generally, k 0(ω) is approximated with a Taylor
expansion:

k0(ω) = β0 + β1(ω −ω0)+
β2

2
(ω −ω0)2 +

β3

6
(ω −ω0)3 + . . . . (4)

In this Taylor expansion, the coefficients β i represent the dispersive constants of a material. The
wavevector equals β0, β1 is the inverse of the group velocity (vg), β2 and β3 represent the GVD
and the third order dispersion (TOD), respectively. The evolution of the optical electric field in
space and time is obtained by Fourier transforming Eq. 3:

E(z,t) = F−1{Ẽ(ω)eik(ω)z}. (5)

A certain frequency bandwidth in Ẽ(ω) is therefore required to describe a short pulse in time.
F−1 denotes the inverse Fourier Transform. For a medium without TOD (β 3 = 0), this is an-
alytically solvable for a Gaussian pulse [28, 29]. In this case, a Gaussian pulse propagates
according to:

E(z,t) =
τpE0√

τ2
p −4izβ2

exp[izβ0 + iω0t − (t − zβ1)2

τ2
p −4izβ2

]. (6)

In this equation, the Fourier-limited pulse duration is denoted τ p. Clearly, when the electric
field is considered at one time t, a low group velocity (i.e. a high β 1) leads to a compression
of the pulse in space. When the E-field at a specific point (z) is evaluated, a β 2 �= 0 yields a
broadened pulse. In addition, since the energy of the pulse is constant, the E-field amplitude is
reduced. By evaluating the pulse broadening as a function of position (z), β 2 can be recovered.

If we consider the spatial envelope of a propagating pulse, we see that the accumulated
dispersion differs. Assuming strong GVD, the trailing part of the pulse will have experienced
less dispersion than the leading section of the pulse. Therefore, the accumulated GVD after
propagating a distance z is zβ2. When the quantity zβ2 is comparable to or larger than τ 2

p , the
envelope of the propagating pulse will be asymmetric in space. Please note that β 2 does not
change the shape of the pulse envelope in time, it only changes its duration.

When third order dispersion is included, the pulse envelope can be approximated using the
Airy function [20]. This implies, that for a specific z, the pulses are deformed asymmetrically
in time. The temporal asymmetry of the pulses can be a measure for the TOD in the photonic
material.

When also higher-order dispersive term are included, Eq. (5) is no longer analytically solv-
able. Then, Eq. (5) needs to be solved numerically. In such a numerical solution, the full dis-
persion relation (k(ω)) is used as input. Hence the calculation is not limited by the accuracy of
the Taylor expansion, since all dispersive orders are included, if present.
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In our experiment, we could investigate the pulse either in the temporal domain at a single
position or measure a “snap-shot” of the pulse propagating in space for a fixed reference time. In
the interferometric setup (see above), the optical frequency of the light in the reference branch
was shifted by 40 kHz. As a result, whenever the light from the two branches interfere, we
observed a 40 kHz modulation in the detector output. The relative phase and amplitude could
readily be measured using a lock-in amplifier (LIA) [30].

Here, we denote the electric field of the light in the reference branch as E re f . Compared
to Ere f , the E-field in the signal branch (Esig) differed in spectrum and amplitude. With this
in mind, we calculated the detection of pulses in our interferometric set-up. The pulses in the
reference branch were assumed to be Fourier-limited, while the pulses in the signal branch
could be distorted by the dispersion in the sample. E re f is therefore not dependent on position
z, in contrast to Esig. The light intensity on the detector can be described as:

Idet(z,t) = |eiΔω(t−τ)Ere f (t − τ)+ Esig(z,t)|2. (7)

Note that the change in optical frequency of the reference branch is given by Δω . The delay
time delay between the reference pulse signal pulse is denoted τ . We can split Eq. (7) into a
constant signal and an interference term:

Idet(z,t) = |Ere f (t − τ)|2 + |Esig(z,t)|2 +2Re[E∗
re f (t − τ)Esig(z,t)ei(Δωt−ωτ−Δωτ)]. (8)

The first two |E|2 terms are the constant detector signals, and the third term describes the inter-
ference. The real part of a function is denoted as “Re”. With our Lock-In Amplifier (LIA), we
detected only the interference term as only this term varied with 40 kHz, given by Δω . This sig-
nal was obtained in a characteristic time Δt. This characteristic time is given by the bandwidth
of the detection system, and is therefore always much longer than the pulse duration (Δt � τ p),
the repetition rate and is also kept much longer than 1 divided by the 40 kHz modulation. With
this in mind, the output voltage of one of our LIA channels was proportional to:

VLIA(z,τ) ∝
∫

Δt
2Re[E∗

re f (t − τ)Esig(z,t)]dt. (9)

Note that the LIA output was only dependent on the delay time τ between reference and signal
pulse and was not dependent on the time t. We can rewrite the above cross-correlation as a
function multiplication in the spectral domain:

VLIA(z,τ) ∝ 2Re{F−1[E∗
re f (ω)Esig(z,ω)]}. (10)

And if we assume propagating waves waves for Esig, as in Eq. 2:

VLIA(z,τ) ∝ 2Re[F−1{Ere f (ω)Esig(ω)eikz}]. (11)

We assume that the spectrum of the light in the signal branch was not necessarily equal to
the spectrum of the light in the reference branch, due frequency-dependent group velocity in
the waveguide. Therefore, not all frequencies would couple to the PhCW equally efficient and
we assume that the coupling of the light to the waveguide obeyed Fresnel’s law[31].

In the experiments, either z or τ in Eq. (11) was fixed, while the other variable was varied. In
this way, two measurement approaches were possible: a time-resolved measurement of the in-
terference or a space-resolved measurement, experimentally corresponding to scanning either
probe or delay time. In the first measurement scheme, the fiber probe was scanned over the
sample. This resulted in the distribution of the interference as a function of position. We will
refer to this measurement mode as the spatial interference distribution (SID) measurement and
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Fig. 4. Near-field optical measurement obtained by scanning the surface of the PhC sample.
The false-color images represent the amplitude of optical interference. Measurements at
normalized optical frequencies 0.2664, 0.2635 and 0.2603 are shown in (a), (b) and (c)
respectively. Images size: 106μm x 4μm. The crosses “A” up to “F”represent the positions
were additional experiments were conducted.

it contains a combination of dispersion and pulse shape information. With this technique, spa-
tial properties can be derived on the propagation of light, for example wavevectors and mode
profiles [32].

In the second scheme, the probe was kept at a fixed position on the waveguide and the optical
path length of the reference branch was varied. Now, a pulse cross-correlate (PXC) between the
light in the two branches was obtained in time. With a PXC measurement, temporal information
can be recovered, like optical frequency and pulse dispersion [17]. Obviously, overlapping con-
clusions can be drawn from either measurement (SID and PXC), like pulse dispersion. Never-
theless, the two methods complement each other. Only, by using both measurement approaches,
the full picture can be obtained.

3. Results

3.1. Near-field experiments

Figure 4 shows the result of a SID measurement of the pulses in the W1 PhCW. At each scan po-
sition, the interference between the reference and signal (including sample) pulses is measured.
Measurements are presented at the optical frequencies 0.2664, 0.2635 and 0.2603 in normal-
ized units. The optical delay in the reference branch was chosen such that the maximum of
the measured optical signal was found at approximately the same position. Because the group
delay increased in these measurements with decreasing frequency, the delay τ was increased
going from Fig. 4a to Fig. 4c. The pulses are found to be well confined to the waveguide in the
lateral direction. At each frequency, the spatial distribution along the propagation direction is
different. At the highest frequency (ω=0.2664), the pulse in the structure was least distorted by
the dispersion and we find a smooth and short envelope of 25(2) μm (FWHM) in width. As
the frequency was reduced, the measured pattern was elongated along the propagation direc-
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Fig. 5. (a-c) Cross-correlation functions of the pulses in reference and signal branch of the
interferometric setup. At the optical frequencies 0.2664, 0.2635 and 0.2603, the interfero-
grams are measured at 6 equidistantly spaced points on the waveguide between 10 μm and
116 μm from the membrane facet. These measurement points are highlighted with crosses
in Fig. 4. The measurement points “A”-“F” correspond to the points in Fig. 4, i.e. the inter-
ferogram “A” is measured at location “A”. The interference amplitudes are normalized with
respect to their maximum. In the first curve in (c), our detector saturates because this close
to the incoupling point, light from the coupling objective is picked up directly. (d-f) Details
of the measurement at position “A” at ω = 0.2635, showing the interference amplitude (d)
and the underlaying interference fringes (e and f).

tion. At ω=0.2635 the elongation was still moderate, but the measurement at ω=0.2603 shows
significantly broader pulses (48(3) μm FWHM) than at higher optical frequencies. A clear
beating pattern is visible in the measurement at ω=0.2635. Most probably, an unwanted TM
polarized mode was generated while coupling light to the structure, which “quasi-interfers”
with the TE mode, resulting in the modulated amplitude pattern. Note that due to the mixing
of polarizations in the near-field probe, quasi-interference can occur between orthogonally po-
larized modes [30, 24]. We see that the pulses are broadened, as we approached the slow-light
region of the dispersion relation. From the SID measurements, the temporal shape of the pulse
can not be recovered. Therefore we conducted additional experiments, to determine the pulse
dispersion in a more direct fashion.

We measured the cross-correlation function of the pulses in the reference and signal branch in
a PXC measurement. These interferograms are measured at six positions along the waveguide.
The positions are equally spaced along the propagation direction and the first and last positions
(“A” and “F”) are at 10 μm and 116 μm distance from the waveguide input facet, respectively.
The position of the fiber probe at each of these locations is highlighted with crosses in Fig. 4.
The interferograms resulting from the PXC measurements are shown in Fig. 5(a-c). For clarity
only the amplitude of the interferograms is presented, while all the underlaying fringes are also
measured. The underlaying fringes of the measurement at position “F” in Fig. 5(a) are shown
in Figs. 5(e) and 5(f). The interference fringes are well resolved. By Fourier transformation,
the optical carrier frequency is recovered. We find frequencies of ω =0.2664(19), 0.2635(12)
and 0.2603(8). The error in these values is given by the FWHM of the corresponding Fourier
transforms.

Six interferograms at ω =0.2664 are shown in Fig. 5(a). The interferograms are found at
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different delay times, corresponding to the travelling time of the pulse. We analyzed both the
center of mass (CoM) and the maxima of the interferograms as a function of probe position.
We found a linear dependence of the found delay time τ as a function of probe position z. The
slope represents the group velocity. Due to the asymmetric pulse dispersion (especially at low
ω), the found velocity is slightly different, depending on with method was used. We found that,
the CoM-approach results in a too low vg, whereas analyzing the maxima results in a too high
group velocity. Therefore, we used both approaches to determine the group velocity, were the
results represent the upper and lower error margin. In this way, we find a group velocity of
c ·0.188(5) for ω = 0.2664. Similarly, the group velocities of the other measurements are also
calculated. The group velocities for the measurements at ω=0.2635 and 0.2603 are c ·0.151(5)
and c ·0.116(9), respectively.

In addition to a difference in group velocity, we observe a broadening of the interferograms.
At ω =0.2664, the interferogram retains its initial shape, but as the pulses travel further in
the PhCW, the interferogram is broadened up to 0.57(5) ps at position “F”. This broadening is
still moderate at this high frequency, but as the frequency is reduced to ω=0.2603 the pulses
experience a much stronger broadening. At the same spatial position (“F”), we measured a
FWHM of the interferogram of 2.2(2) ps. Interestingly, as the pulse has propagated through 106
μm, the shape of the pulse has become asymmetric for all frequencies. The largest asymmetry
is found in the measurements at ω=0.2603.

Also other modes can be recognized in Fig. 5. Both air-guided light and a TM-polarized
mode is detected at ω=0.2664. These modes are visible as smaller side-lobes on the main pulse.
We could discriminate these modes by their group velocities found in Fig. 5 and their spatial
profile in the measurements of Fig. 4. Particularly at the measurement position at 10 μm from
the facet, the air-guided light is very strong. This is not surprising, since we couple light into
the structure via an objective, that focusses light onto the facet. Since a diffraction limited spot
at these wavelength is larger in diameter (3 μm) than the membrane thickness, such coupling
results in some light skimming over the surface of the PhCW.

At ω=0.2635, a TM-polarized mode is very strong and causes a quasi-interference with the
dominant TE-polarized mode. Specifically, a TM-polarized crystal mode travels at roughly the
same group velocity as the TE defect mode. This causes the irregular pulse shapes in the inter-
ferograms in the measurement at ω=0.2635. The TM-crystal mode is particularly strong in the
measurements at this frequency. In the other measurements, it’s influence is negligible. From a
Fourier transform of the complex fields in Fig. 4, we know that multiple k-vectors are present
in the measurement [24]. These correspond to the even TE-mode, a TM waveguide mode and
a TM crystal mode, each having a different group velocity. The spatial overlap of the orthogo-
nally polarized pulses is confirmed by selective Fourier filtering of the individual wavevectors
corresponding to a single mode [32].

In Fig. 6, we have summarized our experimental findings, and compared these to the values
derived from the calculated dispersion relation. In this figure, two additional experiments were
added. The wavevectors are determined by means of a Fourier Transform of the SID measure-
ments [19, 24]. With ω and kz known, a portion of the dispersion relation can be drawn. In
Fig. 6(a), the measured dispersion relation is slightly offset (0.5% of ω) with respect to the
theoretical dispersion relation. This can be attributed to a slight offset of the theoretical disper-
sion relation of Δω ≈ 0.006, compared tot the found results in the measurements. This small
difference can easily be explained by assuming that the actual geometric and optical properties
of the sample are slightly different from the parameters used in the simulations.

The group velocities are shown in Fig. 6(b) as a function of frequency. We find group ve-
locities ranging from 0.188(5) · c down to 0.108(9) · c. The qualitative agreement between ex-
perimental data and the theoretic dispersion relation is clear. Again, the measured points are
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Fig. 6. Summary of the found experimental results. The carrier frequency of the pulses
is found by Fourier Transformation of the interferograms. In both figures, the theoretical
values are depicted by a straight line. (a) The theoretical dispersion curve and the experi-
mentally found dispersion relation of the TE mode. The values of kz are found by Fourier
Transformation of the data from the SID measurements in Fig. 4. (b) Group velocity of the
pulses, found by evaluating the center-of-mass of the interferograms in Fig. 5.

offset in frequency with respect to the theoretic curve. The discrepancy in Fig. 6(b) (2% of
ω) is larger than in Fig. 6(a). This suggests that the actual dispersion relation differs from the
simulated curve in two aspects. First, the actual curve is offset in frequency as is observed in
Fig. 6(a). Second, the actual curve runs steeper than the simulated curve, due to the difference
in group velocity.

3.2. The effect of higher-order dispersion

In order to demonstrate the effect of higher-order dispersion on pulse propagation, we will
compare our theoretical findings with the results obtained from simulations. We have solved
Eq. (11) numerically using the full dispersion relation in Fig. 2(a). The numerical result de-
scribes the interferogram at a specific point on the waveguide. In this way, we can compare the
results in Fig. 5(a-c) directly with what is expected from the dispersion relation. Since the found
experimental dispersion relation, is not an exact match to the calculated dispersion relation, we
matched the group velocities of experiment and simulation. We found that the calculated re-
sults at frequencies ω=0.2620, 0.2585 and 0.2565 correspond to the experimental frequencies
ω=0.2664, 0.2535 and 0.2503. We have calculated six interferograms at positions from 10 μm
up to 116 μm and the results are shown in Fig. 7. Again, only the amplitude of the interfero-
grams are shown for clarity.

In Fig. 7, the interferogram envelope hardly changes at frequency ω=0.2620. At this fre-
quency, only a slight symmetric broadening is visible after 116 μm of propagation. This in
contrast to the results at ω=0.2585. Here, the interferograms are clearly broadened when prop-
agating through the waveguide. This effect is present much stronger when calculating the en-
velopes at ω=0.2565. Now, the dispersion is very strong and after 116 μm, the pulse are ap-
proximately 3 times longer (FWHM) than initially. At this frequency, the asymmetry of the
interferogram becomes clear. Since the spectrum of the pulses is symmetric along the carrier
wavelength, the asymmetry in temporal pulse shape (and also in the interferogram) can only be
caused by the enhanced higher-order dispersion in the waveguide. By comparing Figs. 5 and 7,
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Fig. 7. Calculated amplitude of the interferograms at frequencies 0.2620, 0.2585 and
0.2565, using the dispersion relation from the simulations (Fig. 3(a)). For each frequency,
the interferogram is calculated for 6 waveguide lengths, equidistantly spaced between 10
and 116 μm.

we can conclude that the overall interference envelope change is similar in the measurements
and the calculation.

From the theoretical interferograms corresponding to the measurements at ω = 0.2603, we
calculated the magnitude of the dispersive terms. We found the following GVD: β 2 =−1.1(3) ·
106 ps2/km. For TOD we find β3 = 1.1(4) ·105 ps3/km and for the fourth order dispersion we
found β4 = −8(4) ·103 ps4/km.

Next we will demonstrate the influence of the higher-order dispersive terms, if the dispersion
is approximated by the Taylor-expansion in Eq. (4). We recalculated the interferogram of Fig.
7(c) (position “F”), since this interferogram shows the strongest effect of higher-order disper-
sion. First, the dispersion free propagation of light was considered, in other words β >2 = 0 in
Eq. (4) and using this dispersion, the interferogram was recalculated. In steps, the higher-order
dispersive terms were added to the calculation. First only GVD and then TOD was added to
the calculation. The results are shown in Fig. 8, where they are compared to the calculation us-
ing the full dispersion relation, with all dispersive orders included. Clearly, if we compare the
dispersion-free propagating pulse with the full calculation, it is clear that the pulse broadens
significantly and we obtain only 25% overlap between the two curves. This broadening is also
visible if the GVD is included in the calculation. Now the overlap increased to 64%. However,
the shape of the interferogram is still symmetric. We obtain an asymmetric interferogram if
TOD is considered. This approximates the actual interferogram quite well with 88% overlap. If
also the fourth order dispersion is included (not shown), a slightly better overlap is found up to
89%. Note however, that the group velocity in this calculation is still quite high (v g = 0.116 ·c).
If the group velocity is further decreased, higher-order dispersive effect play an increasingly
important role and then, using a Taylor expansion as in Eq. (4) is an inaccurate approximation
to the dispersion relation if only lower order dispersive terms are considered.
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Fig. 8. The effect of higher-order dispersion on the propagation of a slow pulse. The pulse
shape is calculated after 116 μm of propagation at ω = 0.2565. The blue curve represents
the interferogram of dispersion-free propagating pulses. In the green curve, the effect of
GVD is included. The third order dispersion is included in the red curve. In the dashed
black curve, the full dispersion relation is included.

4. Conclusion

We have studied the dispersion of ultrafast pulses in a photonic crystal waveguide in both exper-
iment and theory. We locally probed the light in the waveguide with an near-field technique and
monitored the pulse shapes with an interferometer. At several waveguide positions, the shape of
the obtained interferogram in time was analyzed. For ultrafast pulses, we find that as the prop-
agation length increases, the envelope of the measured interferogram becomes asymmetrically.
We have modelled the interferometric measurements for comparison between experiment and
theory. Our model shows that the shape of the interferogram is a direct measure for the shape of
the pulse envelope in the photonic crystal waveguide, and therefore the pulses in the waveguide
must also be asymmetric in time. We find that the increased higher-order dispersion has a large
effect on the pulse asymmetry, even at relatively high group velocities. Depending on the inci-
dent optical frequency, the group velocity varied between 0.188(5) ·c and 0.108(9) ·c. Though
these group velocities are moderately low, the found values for GVD and TOD are already sub-
stantial. We have quantified the GVD from our measurements, and found anomalous dispersion
up to β2 = −1.1(3) · 106 ps2/km. Similarly, the TOD is found to be very large: values up to
β3 = 1.1(4) · 105 ps3/km are found. These parameters are sufficient to simulate the dispersive
effects of a femtosecond pulse travelling through our photonic crystal waveguide at a moderate
speed of 0.116 · c. As the group velocity reduces further, even higher-order dispersive terms
will start to play a role. Especially at these lower optical frequencies the common approach, to
approximate the dispersive properties by a Taylor expansion, is only valid if many orders of the
expansion are included. We have found that the effect of higher-order dispersion in a typical
photonic crystal (waveguide) strongly increases when the group velocity decreases.

Slow light devices could find their application in optical data processing. Delay times in the
picosecond or nanosecond regime would be useful. In any slow-light application a trade-off
between bandwidth and device size has to be found: device sizes can be reduced by exploiting
slower light, but usually at the expense of large dispersion and hence a reduction of the useful
bandwidth. If the studied W1 waveguide were to be used for the delaying of a 1 ps pulse by
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1 ns with respect to air, the pulse would be elongated (mainly by GVD) to 0.16 ns, if a rel-
atively high group velocity would be chosen (c/10). However, if one exploits a lower group
velocity, for example c/50 to achieve the same delay, the elongation would be up to 4 times
larger (approximately 0.5 ns) and the pulse shape would become asymmetric, due to the in-
creased higher-order dispersion. In this respect, the large higher-order dispersion in the studied
waveguide makes the simple W1 geometry an unlikely candidate for slow-light applications.
However, in photonic crystals, one has the freedom to selectively alter the dispersive properties
by changing the geometry of the lattice, or even by using combinations of lattices. This freedom
will need to be used to create large-bandwidth slow-light applications that do not suffer from
higher-order dispersion.
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