1994
Ionization suppression of Rydberg atoms by short laser pulses
Publication
Publication
Phys. Rev. A , Volume 50 p. 4133- 4138
One-photon ionization from the 6s27d3 D1 state in barium is measured with short (0.25-2.7 ps), high-intensity laser pulses. Fermi's golden rule predicts that only the fluence (time-integrated intensity) determines the yield. We observed a decrease in the yield for fixed-fluence pulses shorter than the Kepler orbit time of the Rydberg electron (2.2 ps). This is explained semiclassically: The wave function of a Rydberg electron performs a Kepler-like orbit. Only the wave function near the core can be ionized. Not all of the wave function nears the core during a short pulse, and therefore the wave function far away from the core is stable against ionization. A quantum-mechanical calculation based on Raman transitions over the continuum agrees well with experimental observations and the semiclassical explanation.
Additional Metadata | |
---|---|
Phys. Rev. A | |
Hoogenraad, J. H., Vrijen, R. B., & Noordam, L. D. (1994). Ionization suppression of Rydberg atoms by short laser pulses. Phys. Rev. A, 50, 4133–4138. |