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We analyse the efficiency of several simulation methods which we have recently proposed for
calculating rate constants for rare events in stochastic dynamical systems, in or out of equilibrium.
We derive analytical expressions for the computational cost of using these methods, and for the
statistical error in the final estimate of the rate constant, for a given computational cost. These
expressions can be used to determine which method to use for a given problem, to optimize the choice
of parameters, and to evaluate the significance of the results obtained. We apply the expressions
to the two-dimensional non-equilibrium rare event problem proposed by Maier and Stein. For this
problem, our analysis gives accurate quantitative predictions for the computational efficiency of the
three methods.

I. INTRODUCTION

Rare events are processes which happen rapidly, yet in-
frequently. Specialized techniques are required in order
to study these events using computer simulation. This
is because, in “brute force” simulations, the vast ma-
jority of the computational effort is used in simulating
the uninteresting waiting periods between events, so that
observing enough events for reliable statistical analysis
is generally impossible. The quantities of interest from
the simulation point of view are generally the rate con-
stant for the rare transitions between the initial and final
states and the properties of the Transition Path Ensemble
(TPE) - the (correctly weighted) collection of transition
trajectories. When computing these quantities, it is very
important to know the statistical error in the calculated
value, and the likely cost of the computation. In this pa-
per, we derive approximate expressions for these quan-
tities, for three rare event simulation methods which we
proposed in a recent publication [1]. These expressions
turn out to be surprisingly accurate for simulations of a
model rare event problem. Our results allow us to quan-
tify the computational efficiency of the three methods.

The three “FFS-type” simulation methods allow the
computation of both the rate constant and the transition
paths for rare events in equilibrium or non-equilibrium
steady-state systems with stochastic dynamics. In all
three methods, a series of interfaces are defined between
the initial and final states. The rate constant is given by
the flux of trajectories crossing the first interface, mul-
tiplied by the probability that these trajectories subse-
quently reach B. The latter probability is computed by
carrying out a series of “trial” runs between successive in-
terfaces; this procedure also generates transition paths,
which are chains of connected successful trial runs. The
methods differ in the way the trial runs are fired and the
transition paths are generated. In the “forward flux sam-
pling” (FFS) method, a collection of points is generated
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at the first interface and trial runs are used to propagate
this collection of points to subsequent interfaces - thus
generating many transition paths simultaneously. In the
branched growth (BG) method, a single point is gener-
ated at the first interface and is used as the starting point
for multiple trial runs to the next interface. Each suc-
cessful trial generates a starting point for multiple trials
to the following interface, so that a “branching tree” of
transition paths is generated. In the Rosenbluth (RB)
method, a single starting point is chosen at the first in-
terface, multiple trial runs are carried out, but only one
successful trial is used to propagate the path to the next
interface - thus unbranched transition paths are gener-
ated. In this method, a re-weighting step is needed to
ensure correctly weighted transition paths.

A range of simulation techniques for rare events in
soft condensed matter systems are currently available.
In Bennett-Chandler-type methods, the rate constant is
obtained via a computation of a free energy barrier [2].
In Transition Path Sampling (TPS) [3], transition tra-
jectories (paths) are generated by shooting forwards and
backwards in time from already existing paths, and are
then sampled using a Monte Carlo procedure. The rate
constant is obtained via the computation of a time cor-
relation function. Bennett-Chandler-type methods and
TPS are suitable for systems with stochastic or determin-
istic dynamics, but they require knowledge of the steady
state phase space density, which means that the system
must be in equilibrium. While the FFS-type methods are
only suitable for systems with stochastic dynamics, they
do not require the phase space density to be known and
can therefore be used for non-equilibrium steady states
not satisfying detailed balance. To our knowledge, the
only other path sampling method that is suitable for non-
equilibrium systems is that proposed recently by Crooks
and Chandler [4], which adopts a “TPS”-type methodol-
ogy, generating new stochastic paths from old paths by
changing the random number history.

The origin of the efficiency of the FFS-type methods
is that they use a series of interfaces in phase space be-
tween the initial and final states to divide up the tran-
sition paths into a series of connected “partial paths”.
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These partial paths are generated in a ratchet-like man-
ner - i.e. once a particular interface has been reached,
the system configuration is stored and is used to initi-
ate trial runs to the next interface. Many other rare
event techniques also use a series of interfaces in phase
space. In Transition Interface Sampling (TIS) [5] and
Partial Path Transition Interface Sampling (PPTIS) [6],
interfaces are used to facilitate the generation of transi-
tion paths by a TPS-like procedure. In Milestoning [7],
trajectories are generated between interfaces assuming a
steady-state distribution at each interface, while string
methods [8, 9] use a series of planes in phase space to al-
low a trajectory connecting the initial and final states to
relax to the minimum free energy path. The advantages
of the FFS-type methods over other transition path and
rate constant calculation methods are that no assump-
tions are made about “loss of memory” during the transi-
tion, no a priori knowledge is required of the steady state
phase space density, and the rate constant is obtained in
a simple and straightforward way. We have recently be-
come aware that the BG method bears resemblance to
the RESTART method, used for simulating telecommu-
nications networks [10, 11, 12] (this approach was orig-
inally introduced by Bayes [13]). The efficiency of that
method has also been analysed [11]. A related method,
known as Weighted Ensemble Brownian Dynamics, has
been applied to protein association reactions [14].

The key aim of a rare event simulation technique is
to calculate the rate constant, or in some cases, obtain
the TPE, with enhanced efficiency, compared to brute
force simulations. However, quantifying the efficiency of
a particular simulation method is often difficult. Our aim
in this paper is to derive simple but accurate expressions
for the computational cost and statistical accuracy of the
three FFS-type methods. We define the “efficiency” of
the methods to be the inverse of the product of the cost
and the variance in the calculated rate constant; our re-
sults then allow us to analyse the efficiency of the meth-
ods in a systematic way. From a practical point of view,
we expect the expressions derived here to be of use to
those carrying out simulations in two ways. Firstly, when
faced with a rare event problem, one often has a limited
amount of computer time available, and specific require-
ments as to the desired accuracy of the calculated rate
constant. Analytical expressions for the cost and statis-
tical accuracy would allow one to estimate, before begin-
ning the calculation, whether the desired accuracy can be
obtained within the available time, and thus to make an
informed decision as to which, if any, method to use. Sec-
ondly, after completing a rate constant calculation, one
needs to obtain error bars on the resulting value - this is
especially important for rare events, where both experi-
mental and simulation results can be highly inaccurate.
In general, error estimation requires the calculation to
be repeated several times, which is computationally ex-
pensive. However, if analytical expressions were available
for the statistical accuracy, in terms of quantities which
were already measured during the rate constant calcu-

lation, one could obtain the error bars on the predicted
rate constant, to within reasonable accuracy, without the
need for lengthy additional calculations. In this paper,
we derive such analytical expressions.

Approximate expressions are derived for the cost, in
simulation steps, and for the variance in the calculated
rate constant, for the three FFS-type methods. We ini-
tially treat the simple case where all trials fired from one
interface have equal probability of succeeding. We then
move on to the more realistic case where the probabil-
ity of reaching the next interface depends on the identity
of the starting point. To this end, we include in our
calculations the “landscape variance” - the variance in
the probability of reaching the next interface, due to the
characteristic “landscape” for this particular rare event
problem. Our expressions are functions of user-defined
parameters, such as the number of trial runs per point at
a particular interface, as well as parameters characteriz-
ing the rare event problem itself, such as the probability
that a trial run succeeds in reaching the next interface.

We analyse the efficiency of the three methods as a
function of the parameters, for a “generalized” model
system. We find that the optimum efficiency is similar
for all three methods, but that the effects of changing the
parameter values are very different for the three methods.
In particular, the BG method performs well only within
a narrow range of parameter values, while the FFS and
RB methods are more robust to changes in the param-
eters. The RB method has consistently lower efficiency,
due to its requirement for an acceptance/rejection step -
however, RB may be more suitable for applications where
analysis of transition paths as well as rates is needed, or
where storage of configurations is very expensive.

To test the accuracy of our predictions in the con-
text of a real simulation problem, we then apply the
three FFS-type methods to the two-dimensional non-
equilibrium rare event problem proposed by Maier and
Stein [15, 16, 17]. We measure the computational cost
of the methods and the variance in the final value of the
rate constant, and we compare these to the cost and vari-
ance predicted by the expressions derived earlier. We
find that the expressions give remarkably good predic-
tions, both for the cost and the variance. This suggests
that the expressions can, indeed, be used to give accurate
and easy-to-calculate error estimates for real simulation
problems.

In Section II, we briefly describe the three FFS-type
methods. Expressions for the computational cost and for
the statistical error in the calculated rate constant are
derived in Section III. In Section IV, these expressions
are shown to be accurate for the two-dimensional non-
equilibrium rare event problem proposed by Maier and
Stein. Finally, we discuss our conclusions in Section V.
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II. BACKGROUND: FFS-TYPE METHODS

The FFS-type methods use the “effective positive flux”
expression for the rate constant, which was rigorously
derived by Van Erp et al [5, 6, 18, 19, 20]. The rare
event consists of a transition between two regions of phase
space A(x) and B(x), where x denotes the coordinates of
the phase space. The transition occurs much faster than
the average waiting time in the A state. We assume that
a parameter λ(x) can be defined, such that λ < λA in
A and λ > λB in B. A series of values of λ, λ0 . . . λn,
are chosen such that λ0 ≡ λA, λn ≡ λB and λi < λi−1.
These must constitute a series of non-intersecting sur-
faces in phase space, such that any transition path lead-
ing from A to B passes through each surface in turn.
This is illustrated in Figure 1.

λλλλ 1 2

BA

0 3

FIG. 1: Schematic illustration of the definition of regions A
and B and the interfaces λ0 . . . λn (Here, n = 3). Three
transition paths are shown.

The rate constant kAB can be expressed as [20]

kAB =
ΦA,n

hA
=

ΦA,0

hA
P (λn|λ0). (1)

In Eq. (1), hA is a history-dependent function describ-
ing whether the system was more recently in A or B:
hA = 1 if the system was more recently in A than in B,
and hA = 0 otherwise [5, 18, 20]. The over-bar denotes a
time average. ΦA,j is the flux of trajectories with hA = 1
that cross λj for the first time - i.e. those trajectories
that cross λj , having been in A more recently than any
previous crossings of λj . P (λj |λi) is the probability that
a trajectory that comes from A and crosses λi for the
first time will subsequently reach λj before returning to
A: thus P (λn|λ0) is the probability that a trajectory that
leaves A and crosses λ0 will subsequently reach B before
returning to A. Eq.(1) states that the flux of trajecto-
ries from A to B can be expressed as the flux leaving A
and crossing λ0, multiplied by the probability that one
of these trajectories will subsequently arrive at B rather
that returning to A. P (λn|λ0) can be expressed as the
product of the probabilities of reaching each successive
interface from the previous one, without returning to A:

P (λn|λ0) =

n−1
∏

i=0

P (λi+1|λi) (2)

For simplicity of notation, in what follows, we define
PB ≡ P (λn|λ0), pi ≡ P (λi+1|λi), qi ≡ 1 − pi and
Φ ≡ ΦA,0/hA. We also use the superscript “e” to in-
dicate an estimated value of a particular quantity.

Previously, we described in detail three different ap-
proaches - the “forward flux sampling” (FFS), “branched
growth” (BG) and “Rosenbluth” (RB) methods - to cal-
culating kAB , based on expressions (1) and (2) [1, 21].
For completeness, we briefly repeat the description here.

A. Forward flux sampling

In FFS, the flux Φ is measured using a free simulation
in the basin of attraction of region A. When the system
leaves A and crosses λ0 for the first time (since leaving
A), its phase space coordinates are stored and the run is
continued. In this way, a collection of N0 points at λ0 is
generated, after which the simulation run is terminated.

The probabilities pi are then estimated using a trial
run procedure. Beginning with the collection of points at
λ0, a large number M0 of trials are carried out. For each
trial, a point is selected at random from the collection
at λ0. This point is used to initiate a simulation run,
which is continued until the system either crosses the
next interface λ1, or re-enters A. If λ1 is reached, the
final point of the run is stored in a new collection. After

M0 trials, p0 is given by N
(0)
s /M0, where N

(0)
s is the

number of trials which reached λ1. The probability p1

is then estimated in the same way: the new collection of
points at λ1 is used to initiate M1 trial runs to λ2 (or
back to A), generating a new collection of points at λ2,
and so on. Finally, the rate constant is obtained using
Eqs (1) and (2).

FFS generates transition paths according to their cor-
rect weights in the TPE [1, 21]. In order to analyse these
transition paths, one begins with the collection of trial
runs which arrive at λB from λn−1 and traces back the
sequence of connected partial paths which link them to
region A. The resulting transition paths are branched
- i.e. a single point at λ0 can be the starting point of
multiple transition paths.

B. The branched growth method

In the BG method, which was inspired by techniques
for polymer sampling [2, 22, 23], branched transition
paths are generated one by one, rather than simultane-
ously, as in FFS. The generation of each path begins with
a single point at λ0, obtained using a simulation in the
basin of attraction of A, as in the FFS method. This
point is used to initiate k0 trial runs, which are contin-
ued until they either reach λ1, or return to A. Each of

the N
(0)
s end points at λ1 becomes a starting point for k1

trial runs to λ2 or back to A. Each of the N
(1)
s successful

trial runs to λ2 initiates k2 trials to λ3, and so on until λn
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is reached. An estimate P e
B of PB is obtained as the total

number of branches that eventually reach λn, divided by

the total possible number: P e
B = N

(n−1)
s /

∏n−1
i=0 ki. If, at

any interface, no trials were successful, P e
B = 0. To gen-

erate the next branching path, we obtain a new starting
point at λ0 from the simulation in the basin of attraction
of A. After many branching paths have been generated,
an average is taken over the P e

B values of all the paths.
The flux Φ is meanwhile obtained from the simulation
run in region A. The branched transition paths that
are generated in the BG method are correctly weighted
members of the TPE [1]. We note that the BG method
bears resemblance to methods developed for telecommu-
nication networks [10, 11, 12] and to a method used for
protein association [14].

C. The Rosenbluth method

The RB path sampling method is related to the
Rosenbluth scheme for sampling polymer configurations
[2, 24, 25]. The RB method generates unbranched tran-
sition paths, one at a time. An initial point at λ0 is
obtained using a simulation in the A basin, which is con-
tinued until the trajectory crosses λ0 for the first time,
as in the FFS and BG methods. This point is used to
initiate k0 trials, which are continued until they either

reach λ1 or return to A. If N
(0)
s > 0 of these trials reach

λ1, one successful trial is selected at random and its end
point at λ1 is used to initiate k1 trials to λ2 or back to
A. Once again a successful trial is chosen at random and
the process is repeated until either no trials are success-
ful or λn is reached. The generation of the next path
then begins with a new point at λ0, obtained using the
simulation run in the A basin.

The Rosenbluth method as outlined above does not,
however, generate paths according to their correct
weights in the TPE: for correct sampling, paths must be
re-weighted by a “Rosenbluth factor”. The Rosenbluth
factor for a partial path up to interface i is given by:

Wi =
i−1
∏

j=0

N (j)
s (3)

Note that the re-weighting factor Wi depends on the
number of successful trials obtained at all the previous
interfaces, while generating the path up to λi. The cor-
rect re-weighting can be achieved using a Metropolis-type
acceptance/rejection scheme [2], in which a newly gener-
ated path is either accepted or rejected based on a com-
parison of its Rosenbluth factor with that of a previously
generated path. Ensemble averages of any quantity of
interest are then taken over all accepted paths. Here, the
quantity which we wish to calculate is the probability pi

that a trial run fired from λi will reach λi+1, for each
interface i. When we fire ki trial runs from λi, we obtain

an estimate for pi: pe
i ≡ N

(i)
s /ki. We require the cor-

rectly weighted ensemble average for pe
i at each interface

i; we note, however, that the same procedure could also
be used to calculate the ensemble average of any other
property of the ensemble of paths from λ0 to λi.

From a practical point of view, each interface has as-
sociated with it two values of Wi and pe

i . The first set

of values: W
(n)
i and p

e(n)
i , are associated with the tran-

sition path that is currently being generated (the “new”

path). W
(n)
i depends on the number of successful trials

generated in creating this transition path as far as λi,

and p
e(n)
i ≡ N

(i)
s /ki depends on the number of successful

trials fired from the point at λi to λi+1. The other set of

values, W
(o)
i and p

e(o)
i , are the “old” values for this inter-

face. These values correspond to the last “acceptance”
event at this interface.

The recipe for obtaining kAB within the RB method is
as follows. Transition paths are generated as described
above. When the path generation procedure reaches λi,

we calculate the Rosenbluth factor W
(n)
i (using Eq.(3))

and we fire ki trial runs to obtain p
e(n)
i ≡ N

(i)
s /ki. We

then calculate the ratio W
(n)
i /W

(o)
i and draw a random

number 0 < s < 1. If s < W
(n)
i /W

(o)
i , an acceptance

event takes place. In this case, the previous values of

W
(o)
i and p

e(o)
i are replaced by the newly obtained values

W
(n)
i and p

e(n)
i . If, however, s > W

(n)
i /W

(o)
i , a rejec-

tion occurs and W
(o)
i and p

e(o)
i remain unchanged for

this interface. Regardless of the outcome of the accep-
tance/rejection step, the accumulator for the probability

pe
i is incremented by the current value of p

e(o)
i - this may

be either a newly generated value (if an acceptance just
occurred) or an old value that may have been already
added to the accumulator several times (if several rejec-
tions have happened in a row). To proceed to the next
interface, a successful trial run is chosen out of those that
have been newly generated, and its end point at λi+1 is
used as the starting point for ki+1 trial runs to λi+2.
A corresponding acceptance/rejection step is then car-

ried out at λi+1. We note that the “old” values W
(o)
i

and p
e(o)
i for different interfaces need not correspond to

the same transition path. After many complete tran-
sition paths have been generated, kAB is obtained using
Eq.(1), where an estimate of the flux Φ is calculated from
the simulation run in region A. A “pseudo-code” corre-
sponding to the above procedure is given in our previous
publication [1], together with a description of an alter-
native, “Waste Recycling” [26] re-weighting scheme. In
this paper, however, we shall consider only the Metropo-
lis acceptance/rejection approach.

III. COMPUTATIONAL EFFICIENCY

In this section, we derive approximate expressions for
the computational efficiency of the three methods. Fol-
lowing Mooij and Frenkel [27], we use the following defi-
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nition for the efficiency, E :

E =
1

CV (4)

In Eq. (4), C represents the computational cost, which
we define to be the average number of simulation steps,
per initial point at λ0. The statistical error in the esti-
mated value ke

AB of the rate constant is represented by
V . Denoting the mean (expectation value) of variable u
by E[u] and its variance by V [u], we define V to be the
variance V [ke

AB ], per initial point at λ0, divided by the
square of the expectation value E[ke

AB]:

V =
N0V [ke

AB]

(E[ke
AB ])2

= N0
V [ke

AB]

k2
AB

(5)

where N0 is the number of starting points at λ0 used in
obtaining the estimate ke

AB. The expectation value of
ke

AB is, of course, the true rate constant: E[ke
AB] = kAB.

The error bar for ke
AB is given by kAB

√

V/N0.

A. Computational Cost

We define the computational cost C of a particular
method to be the average number of simulation steps
required by that method, per starting point at λ0. In
making this definition, we ignore any other contributions
to the CPU time, such as memory storage. To estimate
the value of C, we consider a generic system that makes
a rare transition between states A and B. A parameter
λ and interfaces λ0 . . . λn are chosen as in Section II.

There are two contributions to the cost C. The first
is the average cost R, in simulation steps, of generating
one starting point at λ0. This is related to the flux Φ
from the A region to λ0 by R = 1/(Φdt), where dt is the
simulation timestep.

The second contribution to C is the cost of the trial
run procedure. We first consider the cost Ci of firing one
trial run from interface λi. The run is continued until it
reaches either the next interface λi+1 (with probability
pi), or the boundary λA of region A (with probability
qi). We make the assumption that the average length
(in simulation steps) of a trajectory from interface λi to
another interface λj is linearly proportional to |λj − λi|,
with proportionality constant S. Ci is then given by:

Ci = S [pi(λi+1 − λi) + qi(λi − λA)] (6)

The basis for the assumption of linearity in Eq.(6) is that
we suppose that the system undergoes one-dimensional
diffusion along the λ coordinate in the presence of a “drift
force” of fixed magnitude. For an equilibrium system,
the origin of the drift force is the free energy barrier.
Farkas and Fülöp have presented analytical solutions [28]
for the mean time to capture for a particle undergoing
one-dimensional diffusion with constant drift force, in the
presence of two absorbing boundaries. In Appendix A,

we show how these results lead to Eq.(6). Eq.(6) is shown
to be valid for the two-dimensional Maier-Stein problem
in Section IVA (Figure 7).

Expressions for the cost

Given Eq.(6), we can compute the average cost C per
starting point at λ0 of the three methods.

In FFS, we make Mi trial runs from interface i and,
providing at least one of these is successful, we proceed
to the next interface i+1. In practice, Mi is expected to
be large enough that at least one trial run reaches λi+1.
In this case, the expected cost per starting point at λ0

is:

Cffs = R +
1

N0

n−1
∑

i=0

MiCi (7)

Defining ki such that ki = Mi/N0, Eq.(7) can be rewrit-
ten as:

Cffs = R +

n−1
∑

i=0

kiCi (8)

If, however, Mi is small, we must take account of the
possibility that none of the trial runs from λi reach λi+1.
In this case, the FFS procedure is terminated at interface
i and the cost is accordingly reduced. Since the proba-

bility of reaching interface i > 0 is
∏i−1

j=0

(

1 − q
Mj

j

)

(this

is the probability that at least one trial is successful at
all interfaces j < i), Eq.(8) is replaced by:

Cffs = R + k0C0 +

n−1
∑

i=1



kiCi

i−1
∏

j=0

(

1 − q
N0kj

j

)



 (9)

Although the cost is reduced by failing to reach later in-
terfaces, this of course results in a less accurate prediction
of the rate constant, since the terminated FFS calcula-
tion makes no contribution to the estimate of pi for later
interfaces. This will be reflected in our expression for the
statistical error in Section III B.

We now turn to the BG method. Here, we generate
a “branching tree” of paths, with Ni points at interface
i originating from a single point at λ0. We fire ki trial
runs for each of these Ni points. The average value of Ni

is:

Ni =

i−1
∏

j=0

pjkj (i > 0) (10)

Of course N0 = 1. The average cost per starting point
at λ0 is therefore:

Cbg = R +
n−1
∑

i=0

kiCiNi (11)

= R + k0C0 +

n−1
∑

i=1



kiCi

i−1
∏

j=0

pjkj
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Finally, we come to the RB method. In this algorithm,
we generate unbranched paths by firing ki trials from in-
terface i, choosing one successful trial at random and pro-
ceeding to interface i + 1. If no trial runs are successful,
we start again with a new point at λ0. The probability

of reaching interface i > 0 is
∏i−1

j=0

(

1 − q
kj

j

)

. The cost

of the RB method, per starting point at λ0, is therefore:

Crb = R + k0C0 +

n−1
∑

i=1



kiCi

i−1
∏

j=0

(

1 − q
kj

j

)



 (12)

Once again, the “price” of failing to reach later interfaces
will be paid in the form of an increased variance in the
calculated rate constant. The effect of the Metropolis
acceptance/rejection step in the RB method appears only
in the variance in ke

AB (Section III B), and not in the cost.

Illustration

(a)
0 20 40 60 80 100

k
1

10

100

1000

FFS
BG
RB

C
/
R

(b)
0 2 4 6 8 10

n
1

10

100

1000

FFS
BG
RB

C
/
R

FIG. 2: Cost C/R, for evenly spaced interfaces, pi = p,
ki = k, R = S, N0 = 1000 and PB = 10−8. (a): C/R as a
function of k, for n = 5. (b): C/R as a function of n, for
k = 25.

For the purposes of illustration, let us consider a hypo-
thetical rare event problem for which λ0 = λA = 0 and
λn = λB = 1. We suppose that the interfaces are evenly
spaced in λ, have equal values of pi, and that the firing
parameter ki is the same at each interface: i.e. λi = i/n,

pi = P
1/n
B (from Eq.(2)) and ki = k. We also suppose

that R = S and N0 = 1000. The resulting values of the
cost C, obtained from Eqs (9), (11) and (12), are plotted
in Figure 2a and b as functions of k and n. In the regime
of small k or small n (implying small p), the BG and RB
methods converge, while the cost of the FFS method is
higher. This is because, for BG and RB, the probability
of reaching later interfaces is low and the cost is domi-
nated by the trial runs fired from early interfaces. The
FFS procedure is less likely to be terminated at early in-
terfaces (note the factor of 1−qN0ki

i in Eq.(9) as opposed

to 1 − qki

i in Eq. (12)), and is therefore more expensive,
per initial point at λ0. In the regime of large k or large
n (implying large p), a different scenario emerges. Here,
the BG method becomes by far the most expensive, with

a cost that increases dramatically with increasing k or
n. This effect is due to the rapidly increasing number of
branches per starting point at λ0. In this regime, the FFS
and RB methods converge to the same cost, since Eqs (9)
and (12) become equivalent when 1− qk ≈ 1− qN0k ≈ 1.

B. Statistical Error

We now turn to the relative variance V in the estimated
value ke

AB of the rate constant, per starting point at λ0.
ke

AB is the product of the estimated flux through λ0,
multiplied by the estimated probability of subsequently
reaching B: ke

AB = ΦeP e
B (Eq.(1)).

In this paper, we shall ignore the error in Φe. Φe is
obtained by carrying out a simulation run in the basin
of attraction of A and measuring the average number of
simulation steps between successive crossings of λ0 (com-
ing directly from A). As long as λ0 is positioned close
enough to the A region, the simulation run in A can
be made long enough to estimate Φ with high accuracy,
with a computational cost that is minimal compared to
the cost of estimating PB. We therefore obtain:

V ≡ N0
V [ke

AB]

(E[ke
AB])2

≈ N0
Φ2V [P e

B]

(ΦE[P e
B])2

= N0
V [P e

B ]

P 2
B

(13)

In Eq.(13), we have used the general relation [29]

V [ax] = a2V [x] (14)

where a is a constant.
In what follows, we shall make the important assump-

tion that the numbers N
(i)
s of successful trial runs at dif-

ferent interfaces i are uncorrelated - i.e. that if, during
the generation of a transition path, one is particularly
successful or unsuccessful at interface i, this will have no
effect on the chances of success at interface i + 1. In
reality, of course, there will be correlation between inter-
faces, especially if the interfaces are closely spaced or the
system dynamics have a large degree of “memory”. We
expect this assumption to be the major limiting factor in
the applicability of our results to real systems; however,
as we shall see in Section IV, the results are surprisingly
accurate for the two-dimensional Maier-Stein problem.
We expect that the expressions derived here could be
modified to include the effects of correlations between
interfaces; for highly correlated systems this may prove
necessary.

Expressions for the variance

The basis of our analysis is the fact that on firing ki

trial runs from interface i, the number of successful trials

N
(i)
s is binomially distributed [29], with mean

E[N (i)
s ] = kipi (15)
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and variance

V [N (i)
s ] = kipiqi (16)

For now, we assume that all trial runs fired from interface
λi have equal probability pi of reaching λi+1. This as-
sumption will later be relaxed. We shall need to express
the variance in P e

B in terms of the variance V [pe
i ] in the

estimated values of pi at each interface. To do this, we
recall that P e

B =
∏n−1

i=0 pe
i (Eq.(2)), and we make use of

the following relation [29]:

V [f(x, y, . . . )] =

(

∂f

∂x

)2

V [x] +

(

∂f

∂y

)2

V [y] + . . . (17)

where f(x, y, . . . ) is a function of multiple uncorrelated
variables x, y, . . . and the partial derivatives are evalu-
ated with all variables at their mean values. By “uncorre-
lated variables” we mean that the covariance Cov[u, v] =
0 for all pairs of variables u and v. Identifying x, y . . .
with pe

i , p
e
i+1 . . . and taking f(pe

0 . . . pe
n−1) =

∏n−1
i=0 pe

i , we

find that ∂f/∂pe
i = [

∏n−1
j=0 pe

j ]/pi = P e
B/pe

i , so that

V [P e
B ] =

n−1
∑

i=0

E

[

P e
B

pe
i

]2

V [pe
i ] ≈ P 2

B

n
∑

i=1

V [pe
i ]

p2
i

(18)

We now use the above results to calculate V for the
FFS method. In this method, we begin with a collection
of N0 points at λ0. For each interface, pe

i is obtained

by firing Mi ≡ N0ki trial runs: pe
i = N

(i)
s /Mi, where

N
(i)
s is the number of trials which reach λi+1. Using

Eq.(14), V [pe
i ] = V [N

(i)
s ]/M2

i . Using Eq.(16), we find

that V [N
(i)
s ] = Mipiqi. Noting also that E[pe

i ] = pi and
using Eq.(18), we obtain

V ffs[P e
B] = P 2

B

n−1
∑

i=0

qi

piMi
=

P 2
B

N0

n−1
∑

i=0

qi

piki
(19)

and from Eq.(13)

Vffs =

n−1
∑

i=0

qi

piki
(20)

As for the cost calculation, we have assumed that Mi

is large enough that there is always at least one trial
run which reaches the next interface. If this is not the
case, we must also take account of the possibility that
interfaces i > 0 may not be reached. The probability of

reaching interface i > 0 is
∏i−1

j=0

(

1 − q
Mj

j

)

, so that

V [pe
i ] =

piqi

(

1 − qMi

i

)

Mi

∏i
j=0

(

1 − q
Mj

j

) (21)

Eq.(21) is written in this form so that for i = 0, we
recover V [pe

0] = piqi/Mi. Eqs (19) and (20) must then

be replaced by:

V ffs[P e
B] = P 2

B





n−1
∑

i=0

qi

(

1 − qMi

i

)

piMi

∏i
j=0

(

1 − q
Mj

j

)



 (22)

and

Vffs =

n−1
∑

i=0

qi

piki





1 − qN0ki

i
∏i

j=0

(

1 − q
N0kj

j

)



 (23)

We now turn to the BG method. Here, we begin with
a single point at λ0. From this point, we generate a
branching “tree” of paths connecting A to B. The value
of PB is estimated by

P e
B =

N
(n−1)
s

∏n−1
i=0 ki

(24)

where N
(n−1)
s is the total number of trials reaching

λn ≡ λB . We denote the number of points in the
branching tree at interface i by Ni. For a given num-
ber Nn−1 of points at λn−1, the total number of tri-

als fired is Nn−1kn−1 and the variance in N
(n−1)
s is

V [N
(n−1)
s |Nn−1] = Nn−1kn−1pn−1qn−1 (using Eq.(16)).

However, the situation is complicated by the fact that
Nn−1 itself varies; in fact, Nn−1 is simply the number
of successful trial runs reaching λn−1 from λn−2, and in
general:

Ni = N (i−1)
s [i > 0] (25)

At this point, we need to calculate the variance in a
quantity Y which is conditional upon the value of another
quantity X . Here, and several times in the rest of the
paper, we will use the general relation

V [Y ] = E [V [Y |X ]] + V [E[Y |X ]] (26)

where the mean and variance on the r.h.s. of Eq.(26)
are taken over the distribution of values of X . Since
E[N

(n−1)
s |Nn−1] = Nn−1kn−1pn−1,

V
[

E
[

N (n−1)
s |Nn−1

]]

= k2
n−1p

2
n−1V [Nn−1] (27)

= k2
n−1p

2
n−1V

[

N (n−2)
s

]

(using Eqs (14) and (25)). We also know that

E
[

V
[

N (n−1)
s |Nn−1

]]

= kn−1pn−1qn−1E [Nn−1](28)

= kn−1pn−1qn−1

n−2
∏

i=0

kipi

so that

V [N (n−1)
s ] = qn−1

n−1
∏

i=0

kipi + k2
n−1p

2
n−1V

[

N (n−2)
s

]

(29)
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Using the same arguments, we can generalize Eq.(29) to

V [N (i)
s ] = qi

∏i
j=0 kjpj + k2

i p2
i V [N

(i−1)
s ] [i > 0](30)

qikipi [i = 0]

Using Eq.(30), we can solve Eq.(29) recursively, to obtain

V [N
(n−1)
s ]. Using Eqs.(24) and (14), we then arrive at

the variance in the estimated value of PB:

V bg[P e
B ] =

P 2
B

N0

n−1
∑

i=0

qi
∏i

j=0 pjkj

(31)

where we have divided by N0 to account for the fact that
P e

B is calculated by averaging results over N0 starting
points at λ0. We then obtain from Eq.(13):

Vbg =

n−1
∑

i=0

qi
∏i

j=0 pjkj

(32)

Finally, let us derive the equivalent expression for the
RB method. Here, we again use Eq.(18). If we ignore for
the moment the effect of the acceptance rejection step,
we can use Eqs.(16) and (14) to obtain an expression for
the variance in pe

i :

V rb[pe
i ] =

piqi

N0ki

(

1 − qki

i

)

∏i
j=0

(

1 − q
kj

j

) (33)

where we have taken account of the fact that the proba-

bility of reaching interface i > 0 is
∏i−1

j=0

(

1 − q
kj

j

)

, and

that the pe
i value is averaged over N0 separate path gener-

ations. Eq.(33) is very similar to the FFS result, Eq.(21).
The Metropolis acceptance/rejection step (described

in Section II) increases the variance in pe
i . On reach-

ing interface i, we fire ki trials and obtain an estimate

p
e,(n)
i = N

(i)
s /ki. We either accept or reject this esti-

mate. If we reject, p
e,(n)
i makes no contribution to the

average value of pe
i - instead, the previously accepted

estimate, p
e,(o)
i , is added to the average, even though

pe,o
i was already added to the average in the previous ac-

ceptance/rejection step. If, instead, we accept p
e,(n)
i , it

makes a contribution to pe
i , and, if the subsequent esti-

mates happen to be rejected, it may repeat this contribu-
tion multiple times. The final estimate, pe

i , is therefore

an average over all the values of N
(i)
s /ki that were gen-

erated, weighted by the number of times Q that each of
these values contributed to pe

i :

pe
i =

∑Ng

l=1 Ql

[

N
(i)
s /ki

]

l

N
(i)
g

(34)

where the sum is over all generated N
(i)
s /ki values and

N
(i)
g is the total number of these. In fact,

N (i)
g = N0

∏i
j=0

(

1 − q
kj

j

)

(

1 − qki

i

) (35)

since the number of times we fire trials from λi is simply
the number of times we begin a path generation from λ0

and succeed in reaching λi. Using Eq.(14), the variance
pe

i is then

V [pe
i ] =

∑N(i)
g

l=1 Q2
l V

[

N
(i)
s /ki

]

l

(N
(i)
g )2

=
V

[

N
(i)
s

]

k2
i (N

(i)
g )2

N(i)
g

∑

l=1

Q2
l

(36)
(assuming that the distributions of the stochastic vari-

ables Ql and [N
(i)
s ]l are uncorrelated). Eq.(36) is equiv-

alent to:

V [pe
i ] =

V
[

N
(i)
s

]

k2
i N

(i)
g

∞
∑

Q=0

Q2P (Q) =
piqi

kiN
(i)
g

∞
∑

Q=0

Q2P (Q)

(37)
In order to find the distribution P (Q), we define a new
variable θi. θi is the probability that we accept a newly

generated estimate p
e,(n)
i = N

(i)
s /ki. P (Q) is then:

P (Q) = (1 − θi) Q = 0 (38)

P (Q) = θ2
i (1 − θi)

Q−1 Q > 0

Eq.(38) can be understood as follows: Q = 0 corresponds

to a p
e,(n)
i value that is generated but is immediately re-

jected and therefore contributes zero times to the aver-
age. This occurs with probability 1 − θi. Q > 0 corre-

sponds to a p
e,(n)
i value that is generated and accepted

(with probability θi) - the next Q−1 values that are gen-
erated are rejected (with probability (1 − θi)

Q−1), then
finally a new value is generated which is accepted (with
probability θi), so that the original value ceases to con-
tribute to the average. The distribution (38) has the
property that [30]

∞
∑

Q=0

Q2P (Q) =
2 − θi

θi
(39)

so that Eq.(37) for the variance in pe
i per point at λi

becomes

V [pe
i ] =

piqi

kiN
(i)
g

[

2 − θi

θi

]

(40)

Using Eq.(35), we obtain:

V rb[pe
i ] =

piqi

N0ki

[

(2 − θi)

θi

]

(

1 − qki

i

)

∏i
j=0

(

1 − q
kj

j

) (41)

Comparing to Eq.(33), we see that the effect of the ac-
ceptance/rejection step is to multiply V [pe

i ] by a factor
(2− θi)/θi. Using Eq.(18), the relative variance in P e

B is:

V rb[P e
B ]

P 2
B

=
1

N0

n−1
∑

i=0

qi

piki

(2 − θi)

θi

(

1 − qki

i

)

∏i
j=0

(

1 − q
kj

j

) (42)
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so that using Eq.(13),

Vrb =

n−1
∑

i=0

qi

piki

(2 − θi)

θi

(

1 − qki

i

)

∏i
j=0

(

1 − q
kj

j

) (43)

We show in Appendix B that the acceptance probability
θi for i > 0 [note that θ0 = 1] can be approximated as:

θi =
1

2
−

√
π

4

[

2Erf
(σi

2

)

− 1
]

(i > 0) (44)

where Erf(x) is the error function: Erf(x) =

(2/
√

π)
∫ x

0
e−t2dt, and σi is given by:

σ2
i =

i−1
∑

j=0

[

(1 − q
kj

j )qj

kjpj
− q

kj

j

]

(45)

Eqs (44) and (45) can be substituted into Eq.(43) to give
a complete expression for the relative variance in the es-
timated rate constant for the RB method.

Illustration
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FIG. 3: Relative variance V, for pi = p, ki = k and PB =
10−8. The circles show the function

∑n−1
i=0 qi/(piki). (a): V

as a function of k, for n = 5. (b): V as a function of n, for
k = 25.

Returning to the hypothetical rare event problem
with evenly spaced interfaces introduced above, Figure
3 shows V as a function of k (for n = 5) and of n

(for k = 25), for pi = p = P
1/n
B , ki = k, N0 = 1000

and PB = 10−8. The circles show the limiting form
∑n−1

i=0 qi/(piki), which is in good agreement with the FFS
results, since 1− qN0k ≈ 1. For small k or small n (small
p), the RB and BG results tend to converge, since the
probability of reaching later interfaces is small and the
results are dominated by the early interfaces. In this
regime, the FFS method gives the smallest variance, since
the chance of terminating the trial run procedure at early
interfaces is lower than for the other methods.

It is interesting to compare expressions (23), (32) and
(43). All three expressions are of the form

V =

n−1
∑

i=0

qi

pikiXi
(46)

However, Xi takes different forms for the three methods:

Xffs
i =

∏i
j=0(1 − q

N0kj

j )

(1 − qN0ki

i )
(47)

Xbg
i =

i
∏

j=0

pjkj (48)

and

Xrb
i =

θi

(2 − θi)

∏i−1
j=0(1 − q

kj

j )

(1 − qki

i )
(49)

We note that Xffs
i > Xrb

i , so that Vffs is always less
than Vrb, even for θi = 1. Both Xffs

i and Xrb
i are al-

ways less than unity: Vffs approaches the limiting form
∑n−1

i=0 qi/(piki) from above as ki increases (in fact in
Fig. 3a it takes this form for all k) and Vrb approaches
∑n−1

i=0 (2 − θi)qi/(pikiθi). For the BG method, however,

Xbg
i can increase indefinitely as ki increases, so that this

method produces the smallest variance for large ki, as
in Figure 3a. However, comparing with Figure 2, we see
that this is also the regime in which the BG method be-
comes very expensive.

Landscape Variance

So far in our analysis, we have assumed that all the
points at interface λi have to same pi value - i.e. that on
firing a trial run to λi+1 we have the same probability of
success, no matter which point at λi we start from. In
reality, this is not the case; we expect there to be a distri-
bution of pi values among the points at each interface λi.
We call the variance of this distribution the “landscape
variance” Ui at interface i, and we expect it to make a
contribution to the variance in P e

B . We now extend our
analysis to include the potentially important effect of the
landscape variance.

Let us suppose that each point j at λi has an associated

probability p
(j)
i that a trial run fired from that point will

reach λi+1. The distribution of p
(j)
i values encountered

during the rate constant calculation has mean E[p
(j)
i ] =

pi and variance V [p
(j)
i ] ≡ Ui. Of course, the values of Ui

depend on the number and placement of the interfaces.
In Appendix C, we re-derive expressions for the rela-

tive variance in the estimated rate constant, taking into
account the landscape variance. The final results are:

Vffs =

n−1
∑

i=0

{

[

qi

piki
+

UiN0

p2
i Ni

(

1 − 1

N0ki

)]

×

(

1 − qN0ki

i

)

∏i
j=0

(

1 − q
N0kj

j

)

}

(50)
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where Ni = N0ki−1pi−1 for i > 0 and Ni = N0 for i = 0.

Vbg =

n−1
∑

i=0

[

kiqipi + Ui

(

k2
i − ki

)

kipi

∏i
j=0 pjkj

]

(51)

and

Vrb =

n−1
∑

i=0

{

[

qi

piki
+

Ui

p2
i

(

1 − 1

ki

)]

(52)

×
[

(2 − θi)

θi

]

(

1 − qki

i

)

∏i
j=0

(

1 − q
kj

j

)

}

Comparing Eqs (50), (51) and (52) to their equivalent
forms without landscape variance, (23), (32) and (43),
we see that for each interface the “binomial” terms of the
form piqi/ki are now supplemented by additional terms
describing the landscape variance. In the limit of very
large ki, the relative variance no longer tends to zero. In-
stead, as ki → ∞ (for all i), the FFS and BG expressions
(50) and (51) tend to the constant value U0/p2

0, while

the RB expression (52) tends to
∑n−1

i=0 Ui/p2
i . While the

“binomial” contribution to the variance can be reduced
by firing many trial runs per point, the “landscape” con-
tribution can only be reduced by sampling many points.
In the FFS and BG methods, branching paths are gener-
ated. For very large ki, each point at λ0 generates many
points at subsequent interfaces, so that only U0 remains
in Eqs (50) and (51) as ki → ∞. In the RB method,
however, paths are not branched, so that each point at
λ0 corresponds to one (or less than one) point at each
subsequent interface. In this case, as ki → ∞, all the Ui

values continue to contribute to V .
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FIG. 4: Relative variance V in ke
AB , as predicted by Eqs (50),

(51) and (52), for the model problem of Figs 2 and 3, with
PB = 10−8 and Ui = U . The upper curves in each group
correspond to U = 5p2/n, the middle curves to U = p2/n and
the lower curves to U = 0. (a): V as a function of k, keeping
n = 5. (b): V as a function of n, keeping k = 25.

In Figure 4, we revisit the simple model problem of
Figs 2 and 3, adding in the effects of landscape variance.
We take Ui to be the same for all interfaces: Ui = U . We
choose, somewhat arbitrarily, U = p2/n or U = 5p2/n.
These turn out to be quite realistic values for the Maier-
Stein system discussed in Section IV. Figure 4 shows

the relative variance V (as in Figure 3), calculated with
U = 5p2/n (upper curves), U = p2/n (middle curves) and
U = 0 (lower curves). Although the landscape variance
does not change the general trend that V decreases as k or
N increases, it does have the qualitative effect that V no
longer tends to zero (as discussed above). Depending on
the value of U , the quantitative effects of the landscape
contribution can be very significant, especially as k or N
becomes large.

C. Efficiency
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(b)
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FIG. 5: Efficiency E , calculated using Eq.(4), for the simple
model of Figs 2, 3 and 4. For each method, results are plotted
with U = p2/n (lower curves) and U = 0 (upper curves). (a):
E as a function of k for n = 5. (b): E as a function of n for
k = 25.

Having calculated the computational cost and the sta-
tistical accuracy of the three methods, we are now in a
position to assess their overall computational efficiency,
as defined by Eq.(4). Figure 5 shows the efficiency of the
three methods as a function of k (Fig. 5a) and of n (Fig.
5b), for the simple model case of Figs 2, 3 and 4. Note
the altered scale on the n axis in comparison to Figures
2 and 3. For each method, the upper curve shows the
results without the landscape contribution to the vari-
ance (U = 0) and the lower curve includes a landscape
contribution of U = p2/n.

Firstly, we note that the optimum values of E are of
the same order of magnitude for all three methods, al-
though E is consistently lower for RB, due to the ac-
ceptance/rejection step. However, the dependence of the
efficiency on the parameter values k and n is very differ-
ent for the three methods. For the BG method, the effi-
ciency shows a pronounced peak, both as a function of k
and of n. Although for an optimum choice of parameters,
this method can be the most efficient, its performance is
highly sensitive to the choice of parameters, decreasing
sharply for non-optimal values of k or n. The FFS and
RB methods are much less parameter-sensitive - in fact,
as long as k or n is not too small, the choice of parame-
ters appears not to be at all critical for these methods. In
general, Fig.5 seems to indicate that the method of choice
is FFS, since this method is highly robust to changes in
the parameters, is the most efficient method at small k or
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n, and remains efficient as k and n become large. How-
ever, this interpretation must be treated with care, since
several important factors are not included in the analysis
leading to Fig.5. Firstly, our analysis does not include
the effects of correlations between interfaces. This has
the effect that neither the FFS or RB methods shows a
maximum in efficiency as a function of n in Fig.5b. In our
simple model, one can always gain more information by
sampling at more closely spaced interfaces - however, in
reality, correlations between interfaces are likely to make
very closely spaced interfaces computationally inefficient.
Another important factor to be considered is the fact
that both the FFS and BG methods generate branched
transition paths. In FFS, in fact, an effect analogous
to “genetic drift” means that if the number of points in
the collections at the interfaces is small enough to be of
the order of the number of interfaces, then all the paths
that finally reach B can be expected to originate from a
small number of initial points at λ0. If there is “memory
loss” - i.e. no correlations between interfaces, this may
be unimportant. However, if the history of the paths
is important, then the RB method may be the method
of choice, since this generates independent, unbranched
paths. Furthermore, the RB method requires much less
storage of system configurations than FFS (for which a
whole collection of points must be stored in memory at
each interface) - for some systems, this may be a signifi-
cant factor in the computational cost.

Figure 5 also shows the effects of landscape variance
on the efficiency of the three methods. Including land-
scape variance always decreases the efficiency, but pro-
duces rather few qualitative effects for this simple model
problem. It is interesting to note, however, that in Figure
5a both the FFS and RB methods show a maximum in
efficiency as a function of k only when the landscape con-
tribution is included. When the landscape contribution
is not considered, the equations predict that arbitrarily
high accuracy can be obtained by firing an infinitely large
number of trials from a single point. In this example, we
took the landscape variance to be the same for all in-
terfaces: Ui = U . However, one can easily imagine that
for some systems, there is much greater variation among
transition paths when they are close to the A basin, while
for others, paths tend to diverge as they approach B. In
the former case, we can expect the RB and BG methods
to have an advantage relative to FFS, because in these
methods, relatively more points are sampled at early in-
terfaces (since the probability of failing to complete a
transition path is higher). Conversely, if the landscape
variance is very large close to the B basin, the BG method
may be advantageous, since it samples many points at
later interfaces due to its branching tree of paths.

IV. THE MAIER-STEIN SYSTEM

In this section, we test the expressions derived in Sec-
tion III for a real rare event simulation problem. As

our test case, we simulate the two-dimensional non-
equilibrium rare event problem proposed by Maier and
Stein [15, 16, 17]. This system has been extensively stud-
ied both theoretically and experimentally [15, 16, 17, 31,
32] and was also used by Crooks and Chandler [4] as
a test case for their non-equilibrium rare event method.
We hope that the conclusions obtained for this system
will also prove to be applicable to more computationally
intensive rare event problems.
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FIG. 6: Typical trajectory for a brute-force simulation of the
Maier-Stein system, with α = 6.67, µ = 2 and ǫ = 0.1.

The Maier-Stein system consists of a single particle
moving with over-damped Langevin dynamics in a two-
dimensional force field. The position vector (x1, x2) of
the particle satisfies the stochastic differential equation:

ẋi = fi(x) + ξi(t) (53)

where the force field f = (f1, f2) is given by:

f =
(

x1 − x3
1 − αx1x

2
2 , −µx2(1 + x2

1)
)

(54)

and the stochastic force ξ = (ξ1, ξ2) satisfies:

〈ξi(t)〉 = 0 ; 〈ξi(t + τ)ξj(t)〉 = ǫ δ(t − τ)δij (55)

This system is bistable, with stable points at (±1, 0) and
a saddle point at (0, 0). If α 6= µ, the force field f can-
not be expressed as the gradient of a potential. In this
case, the system is intrinsically out of equilibrium and
does not satisfy detailed balance. The parameter ǫ con-
trols the magnitude of the stochastic force acting on the
particle. For ǫ > 0, the system makes stochastic tran-
sitions between the two stable states, at a rate which
decreases as ǫ decreases. Figure 6 shows a typical trajec-
tory generated by a brute-force simulation. Here, and in
the rest of this Section, we use α = 6.67, µ = 2.0 (fol-
lowing Crooks and Chandler [4]) and ǫ = 0.1. Eq.(53) is
integrated numerically with timestep δt = 0.02 [33]. For
our calculations using the FFS-type methods, we define
λ(x) = x1, λA ≡ λ0 = −0.7 and λB ≡ λn = 0.7.

A. Measuring the parameters

In order to test the expressions of Section III, we must
measure the cost parameters R and S, the probability
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PB of reaching B and, for a given set of n interfaces,
the probabilities {pi} and the landscape variance values
{Ui}. For most of our calculations, we used n = 7, and
the interfaces were positioned as listed in Table I. For
the results of Figs 8b, 9b and 11b, where n was varied,
we kept the interfaces evenly spaced between λ0 = −0.7
and λn = 0.7. R, the cost of generating an initial point
at λ0, was measured using a simulation in region A to
be R = 590 ± 50 steps. In these calculations, points at
λ0 were collected upon every 10th crossing of λ0 from A.
To measure S (the proportionality constant in Eq.(6)),
we carried out an FFS run, measuring the average length
(in simulation steps) of successful and unsuccessful trials
from each interface. The results are shown in Figure 7.
Here, the filled circles show the average length, in simu-
lation steps, of successful trials from interface λi (plotted
on the x axis) to λi+1 = λi + 0.2. Since |λi − λj | = 0.2
for all these trials, Eq.(6) predicts that all the filled cir-
cles should have show the same average trial length. The
open circles show the average length of unsuccessful tri-
als, which begin at λi and end at λA = −0.7, so that
|λi − λj | = λi + 0.7: Eq.(6) predicts that all the open
circles should lie on a straight line. Combining all the
data, we obtain an average value of S = 131 steps. This
value is used to plot the solid lines in Figure 7. The very
good agreement that is observed between the solid lines
and the circles implies that the drift-diffusion approxi-
mation, Eq.(6), is reasonable for this problem. The most
significant deviation occurs for the successful trial runs
between λ = −0.7 and λ = −0.5; these are unexpectedly
short, perhaps because the “drift force” is weaker in this
region.

Interface λi pi Ui

0 -0.7 0.1144 ± 0.0001 0.00350 ± 0.00003
1 -0.5 0.2651 ± 0.0002 0.00368 ± 0.00008
2 -0.3 0.3834 ± 0.0002 0.0031 ± 0.0003
3 -0.1 0.5633 ± 0.0003 0.0021 ± 0.0002
4 0.1 0.7702 ± 0.0003 0.0008 ± 0.0001
5 0.3 0.9152 ± 0.0002 0.0003 ± 0.0001
6 0.5 0.9747 ± 0.0002 0.00005 ± 0.00002

TABLE I: Positions of the interfaces and measured values of
{pi} and {Ui} for the Maier-Stein problem.

Using FFS, we obtained PB = [4.501 ± 0.007]× 10−3.
The values of {pi} were also measured (using FFS) and
are given in Table I. The landscape variance {Ui} was
measured using the procedure described in Appendix D:
after generating a correctly weighted collection of points
at interface λi (for example using FFS), one fires ki trials
from each point j and records the number of successes,

N
(i)
s |j. One then calculates the variance among points

V [N
(i)
s ]. The intrinsic variance is given by

Ui =
V [N

(i)
s ]/ki − piqi

ki − 1
(56)

Table I shows that for this problem Ui/p2
i is rather small
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FIG. 7: Costs of trial runs between interfaces, for the Maier-
Stein system. The average length, in simulation steps, of
“successful” trials (to λi+1) are shown as filled circles. For
these trials, λj = λi + 0.2 and |λi − λj | = 0.2. The average
length of “unsuccessful” trials (to λA = −0.7) are shown as
open circles. For these trials, |λi − λj | = λi + 0.7. The solid
lines show the linear approximation, Eq.(6), with S = 131.

(a maximum of 0.27 for interface 0), indicating that the
landscape variance is unlikely to have important effects
in this case. However, this may not be the case for more
complex systems in higher dimensions.

B. Testing the expressions

We now measure directly the cost, in simulation steps,
the error in the calculated rate constant, and thus the effi-
ciency of the three methods, for the Maier-Stein problem,
and compare our simulation results to the predictions of
Section III. For each method, simulations were carried
out in a series of blocks. For FFS, a block consists of a
complete FFS calculation with N0 starting points. For
the RB and BG methods, a block consists of N0 starting
points at λ0. Each block produces a result P e

B for the
probability of reaching B. To find V [P e

B ], we calculate
the variance between blocks:

V [P e
B] = (P e

B)2 − (P e
B)2 (57)

where the over-line denotes an average over the blocks.
The cost C per starting point at λ0 is the average number
of simulation steps per block, divided by N0.

Figure 8 shows a comparison between the simulation
values of C and the theoretical predictions (Eqs (9), (11)
and (12)), for the three methods, as a functions of k
(Fig.8a) and of n (Fig.8b). In these calculations, the
same value of k was used for all interfaces: ki = k for
all i. To obtain the data in Fig.8b, we used interfaces
which were evenly spaced in λ and a fixed value k =
3. We observe remarkably good agreement between the
predicted and observed values for the cost, verifying that
at least for this problem, Eqs (9), (11) and (12) are very
accurate.

The predicted and measured values of V are shown in
Figure 9, for all three methods. Agreement is again ex-
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FIG. 8: Predicted and measured values of C, for the Maier-
Stein problem as described in Section IV. The lines show
the theoretical predictions for the FFS (solid line), BG (dot-
ted line) and RB (dashed line) methods. The symbols
show the simulation results. Circles: FFS method, squares:
BG method, triangles: RB method (with Metropolis accep-
tance/rejection). Simulation results were obtained with 400
blocks of N0 = 1000 starting points for FFS and 2000 starting
points per block for BG and RB. (a): C as a function of k, for
n = 7. (b): C as a function of n, for k = 3, for evenly spaced
interfaces.
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FIG. 9: Predicted and measured values of V, for the Maier-
Stein problem. The lines show the theoretical predictions for
the FFS (solid line), BG (dotted line) and RB (dashed line)
methods. The symbols show the simulation results. Circles:
FFS method, squares: BG method, triangles: RB method
(with Metropolis acceptance/rejection). Simulation results
were obtained with 400 blocks of N0 = 1000 starting points
for FFS and 2000 starting points per block for BG and RB.
Interfaces were evenly spaced between λA = −0.7 and λB =
0.7 (a): V as a function of k, for n = 7. (b): V as a function
of n, for k = 3. In (b), the landscape contribution is not
included in the theoretical calculation.

cellent, showing that the approximations of Section III B
are justified, at least for this problem. The landscape
contribution to V is included in Figure 9 for panel (a)
but not for (b). In Figure 10, we show the effect of ne-
glecting this contribution (note the altered scales on both
axes). Although the landscape contribution is small for
this problem, it becomes significant for large k as the
“binomial” contribution decreases.

The efficiency E is plotted in Figure 11. Excellent
agreement is obtained between simulation and theory. It
is also interesting to note that the trends in E as a func-
tion of k are qualitatively very similar to those obtained
for the model problem of Fig. 5. The BG method shows
high efficiency only within a relatively narrow range of
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FIG. 10: Predicted and measured values of V, for the Maier-
Stein problem, for the FFS method. Solid line: Eq.(50) (with
landscape variance), dotted line: Eq.(23) (no landscape vari-
ance), circles: simulation results.
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FIG. 11: Predicted and measured efficiency E , for the Maier-
Stein system. The lines show the theoretical predictions for
the FFS (solid line), BG (dotted line) and RB (dashed line)
methods. The symbols show the simulation results. Circles:
FFS method, squares: BG method, triangles: RB method
(with Metropolis acceptance/rejection). Simulation results
were obtained with 400 blocks. For FFS, each block had N0 =
1000 starting points and for BG and RB each blocks had 2000
starting points. Interfaces were evenly spaced. (a): E vs k for
n = 7. (b): E vs n for k = 3.

parameter values, while the FFS and RB methods are
much more robust to changes in the parameters. The RB
method is consistently less efficient than FFS, due to the
acceptance/rejection step. As the number of interfaces n
becomes large, we would expect the correlations between
interfaces (which are not included in our analysis) to have
a greater effect, and the theoretical predictions to become
less accurate. This effect is observed to a certain extent:
the efficiency of FFS, for example, decreases relative to
the predicted value as n increases. However, this is not a
dramatic effect, and in fact, even on increasing n further,
as far as 100 interfaces, we find a decrease of only a few
percent in the efficiency of FFS. It seems therefore, that
for FFS at least, one can use any number n of interfaces,
as long as n is not too small or so very large that memory
requirements become the limiting factor.

The remarkable agreement between the theoretical pre-
dictions and the simulation results shown in Figures 8, 9
and 11 perhaps reflects the simplicity of the Maier-Stein
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problem. The main assumption for the calculation of V
- that the sampling of pi at different interfaces is un-
correlated - seems to be well justified in this case. We
would expect our theoretical predictions to be less ac-
curate for more complex problems, perhaps with strong
correlations between interfaces. In fact, on investigating
the two examples presented in our previous paper [1] -
the flipping of a genetic switch and the translocation of
a polymer through a pore - we find that the quantitative
estimates of both the cost and variance can differ by a
factor of about 10 from the theoretical predictions. Even
with this caveat, however, we believe that the expressions
of Section III will prove to be of practical use for a wide
range of rare event simulation problems.

V. DISCUSSION

In this paper, we have derived simple analytical expres-
sions for the computational cost of the three FFS-type
rare event simulation methods and the statistical accu-
racy of the resulting estimate of the rate constant. The
expressions were found to be in remarkably good agree-
ment with simulation results for the two-dimensional
non-equilibrium rare event problem proposed by Maier
and Stein [15, 16, 17].

Our analysis allows us to draw some general conclu-
sions about the relative merits of the three FFS-type
methods. Firstly, the optimum efficiencies of the meth-
ods are all of the same order of magnitude, at least for
the simple test problem studied here. However, the meth-
ods show very different sensitivities to the choice of pa-
rameters. The Branched Growth method in particular is
highly sensitive, performing well only for a narrow range
of parameter values. Within this range, however, it per-
forms well in comparison to the other methods. The FFS
method is the most robust to changes in the parameters,
performing consistently well, even for parameter values
where the other methods are very inefficient. The Rosen-
bluth method is lower in efficiency than the others, as a
consequence of the Metropolis acceptance/rejection step
which is required in order to obtain paths with the cor-
rect weights in the Transition Path Ensemble.

These observations provide a very useful guide for
choosing a rate constant calculation method. In gen-
eral, unless one has a very good idea of the optimum
parameters, the BG method carries a risk of being low
in efficiency. Of course, strategies could be envisaged to
overcome this problem - for example, one could imagine
terminating a certain percentage of the branches to avoid
the high cost of sampling later interfaces. The analysis
used here could easily be extended to predict the likely
success of such approaches. The RB method appears
from this analysis to be of relatively low efficiency. How-
ever, that is not to say that one should not use the Rosen-
bluth method. On the contrary, this is the only method
which generates unbranched paths, making it highly suit-
able for situations where one wishes to analyse the paths,

in order to study the transition mechanism. The RB and
BG methods also require much less storage of system con-
figurations than FFS (for which all Ni points at interface
i must be stored in memory), making them potentially
suitable for large systems. As a general conclusion, how-
ever, the results of this paper show that the FFS method
is highly robust to parameter changes and is probably
the method of choice for calculations of the rate constant
where effects such as the storage of many configurations
in memory are not important.

These results could also suggest possible strategies for
choosing the parameters for the three methods. One ap-
proach would be to use the analytical expressions derived
here in an optimization scheme for finding {ki}, {λi} and
n. This is likely to be useful for the BG method, but may
be less essential for the FFS and RB methods, where the
choice of parameters is much less critical.

We expect that the predictions of the cost and statisti-
cal error derived here will be useful not only for parame-
ter optimization, but also for assessing, before beginning
a calculation, which method to use and, indeed, whether
to proceed at all. Some preliminary calculation would
be needed in order to obtain rough estimates for R,S,
PB, {pi} and (if required) {Ui}. These preliminary cal-
culations are expected to be much cheaper than a full
simulation. While the expressions for the cost and vari-
ance will be less accurate if only rough estimates for the
parameters are available, we expect the results to be nev-
ertheless accurate enough to be of use.

Furthermore, the expressions for V can be used, after a
rate constant calculation has been completed, to obtain
error bars on the calculated value of kAB. In this case,
the values of PB and {pi} are known. The intrinsic vari-
ances {Ui} can also be easily obtained during the rate
constant calculation, as explained in Appendix D. These
values can be substituted into the expressions to obtain
a reliable estimate of the statistical error in the resulting
rate constant.

In this work, we provide a way to compare the effi-
ciency of the three FFS-type methods. It would also be
very useful to compare their efficiency to that of other
methods, such as the method of Crooks and Chandler [4]
for non-equilibrium rare event problems, or TPS [3] or
Transition Interface Sampling (TIS) [5, 20] for equilib-
rium problems. We have carried out preliminary calcula-
tions using the Crooks-Chandler method for the Maier-
Stein system. We find that the value of the rate con-
stant is in agreement with that of the FFS-type methods,
but that the FFS-type methods are much more efficient.
However, a thorough comparison would require a detailed
investigation, optimizing the parameter choices of all the
methods. We therefore leave this to a future study.

In conclusion, we have presented expressions for the
computational cost and statistical accuracy of three re-
cently introduced rare event simulation methods. We
believe that the expressions presented here will be valu-
able in using these methods to compute rate constants
and in evaluating the results of such computations.
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APPENDIX A: COST OF TRIAL RUNS

In order to estimate the cost of a trial run, we as-
sume that the system undergoes one-dimensional diffu-
sion along the λ coordinate, with a constant drift velocity
(the origin of which is a force due to the “free energy bar-
rier”). The problem is then equivalent to that of a parti-
cle which undergoes diffusion with drift along the x axis,
after being released between two absorbing boundaries.
We are interested in the mean time τ← or τ→ that the
particle takes to be captured at the left or right bound-
ary, given that it is eventually captured at that particular
boundary. Farkas and Fülöp have studied the problem of
one dimensional diffusion with drift [28]. They give ana-
lytical expressions for the probabilities n← and n→ that
the particle is absorbed at the left and right boundaries,
respectively, and the rates of absorption, j← and j→ at
the left and right boundaries. The mean first passage
time τ is the average time before the particle is absorbed
at one of the boundaries:

τ =

∫ ∞

0

t [j← + j→] dt (A1)

To compute τ← and τ→, we require integrals similar to
Eq.(A1), but including only events where the particle
reaches the desired boundary. The integrals must also be
normalized by the probability of reaching that boundary:

τ← =

∫∞

0 tj←dt

n←
; τ→ =

∫∞

0 tj→dt

n→
(A2)

Carrying out the integrals (A2) using the expressions of
Farkas and Fülöp for j←, j→, n← and n→ (Eqs (3-5) of
their paper [28]), we arrive at:

τ← =
L

v

[

coth

(

Lv

2D

)

− (1 − α) coth

(

(1 − α)Lv

2D

)]

τ→ =
L

v

[

coth

(

Lv

2D

)

− α coth

(

αLv

2D

)]

(A3)

where v is the drift velocity, D is the diffusion constant,
the absorbing boundaries are at x = 0 and x = L and
the particle is released at x = αL at time t. In the limit
that the drift velocity is large, cosh [Lv/(2D)] → 1 and
τ← and τ→ reduce to:

τ← =
αL

v
; τ→ =

(1 − α)L

v
(A4)

In this case, the average time for a particle to be cap-
tured at a specified boundary is linearly proportional to
the distance between the starting point of the particle
and that boundary, and the proportionality constant is
the same for particles moving against or with the drift
velocity. It is therefore appropriate to approximate the
cost of a trial run between λi and λj by S|λj − λi|, as in
Eq.(6).

APPENDIX B: ACCEPTANCE PROBABILITY

FOR THE RB METHOD

This section is concerned with the Metropolis accep-
tance/rejection step in the Rosenbluth method. We de-
rive the approximate expression (44) for the probability

θi that a newly generated estimate p
e(n)
i = N

(i)
s /ki for

the probability pi is accepted. Upon reaching interface

i, we calculate the Rosenbluth factor W
(n)
i =

∏i−1
j=0 N

(j)
s

corresponding to the newly generated path leading to
interface i. We compare this to the Rosenbluth factor

W
(o)
i corresponding to the previous path to have been

accepted at interface i. Acceptance occurs if the ra-

tio Zi ≡ W
(n)
i /W

(o)
i is greater than a random number

0 < s < 1. If we know the distribution function P (Zi),
the acceptance probability is given by:

θi =

∫ 1

0

ds

∫ ∞

s

dZi P (Zi) (B1)

We would therefore like to calculate P (Zi) ≡
P (W

(n)
i /W

(o)
i ). To obtain this, we require the distribu-

tion functions for both W
(n)
i and W

(o)
i . We begin with

W
(n)
i , which we can write as

log [W
(n)
i ] =

i−1
∑

j=0

log [N (j)
s ] (B2)

We assume that the log [N
(j)
s ] for each interface j are in-

dependent variables (i.e. that the sampling at different
interfaces is uncorrelated). Since we are adding many
independent variables, we apply the Central Limit The-
orem [29] to Eq.(B2). In the limit of a large number of

interfaces, the distribution of y
(n)
i = log [W

(n)
i ], is:

p(y
(n)
i ) =

1

σi

√
2π

exp

[

− (y
(n)
i − µi)

2

2σ2
i

]

(B3)

where

µi =
i−1
∑

j=0

E[log N (j)
s ] (B4)

and

σ2
i =

i−1
∑

j=0

V [log N (j)
s ] (B5)
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The expectation value E[log N
(j)
s ] can be found approx-

imately by performing a Taylor expansion of log N
(j)
s

about E[N
(j)
s ], to give:

log N (j)
s ≈ log E[N (j)

s ] +

(

N
(j)
s − E[N

(j)
s ]

)

E[N
(j)
s ]

(B6)

−1

2

(

N
(j)
s − E[N

(j)
s ]

)2

E[N
(j)
s ]2

taking the expectation value of Eq.(B6), we obtain:

E[log N (j)
s ] ≈ log E[N (j)

s ] − V [N
(j)
s ]

2E[N
(j)
s ]2

(B7)

Using the variance relation (17), we find that

V [log N (j)
s ] ≈ 1

E[N
(j)
s ]2

V [N (j)
s ] (B8)

We now need to know E[N
(j)
s ] and V [N

(j)
s ]. On firing

ki trials from interface i, we know that the number of
successes follows a binomial distribution. However, the

variable N
(j)
s in Eqs (B13) and (B14) refers to the number

of successes at interface j, given that we know the path
subsequently reached interface i > j. We therefore know

that N
(j)
s > 0, so that

p(N (j)
s ) =

1

(1 − q
kj

j )

kj !

(kj − N
(j)
s )!(N

(j)
s )!

p
N(j)

s

j q
kj−N(j)

s

j

(B9)
so that

E(N (j)
s ) =

kjpj

(1 − q
kj

j )
(B10)

E(N (j)
s

2
) =

[

kjpjqj + k2
j p2

j

]

(1 − q
kj

j )
(B11)

and

V [N (j)
s ] =

[

(1 − q
kj

j )kjpjqj − k2
j p2

jq
kj

j

]

(1 − q
kj

j )2
(B12)

Substituting (B10) and (B12) into (B7) and (B8), we
obtain:

E[log N (j)
s ] ≈ log

[

kjpj

1 − q
kj

j

]

− 1

2

[

(1 − q
kj

j )qj

kjpj
− qj

k
j

]

(B13)

and

V [log N (j)
s ] ≈

qj(1 − q
kj

j )

kjpj
− q

kj

j (B14)

Substituting (B13) and (B14) in turn into (B4) and (B5)
leads to

µi =

i−1
∑

j=0

log

[

kjpj

(1 − q
kj

j )

]

− 1

2

[

(1 − q
kj

j )qj

kjpj
− q

kj

j

]

(B15)

and

σ2
i =

i−1
∑

j=0

qj(1 − q
kj

j )

kjpj
− q

kj

j (B16)

Finally, the distribution function f(Wi) for the Rosen-
bluth factor of the newly generated path can be found

by making the change of variables Wi = exp [y
(n)
i ] in

Eq.(B3), to give:

f(Wi) =
1

σi

√
2π

[

1

Wi

]

exp

[

− (log [Wi] − µi)
2

2σ2
i

]

(B17)

We now turn to the distribution function g(Wi) for the

Rosenbluth factor W
(o)
i of the previous path to have been

accepted at interface i. W
(o)
i does not follow the same

distribution as W
(n)
i , because the “previous” path has

survived at least one round of acceptance/rejection. We
know that the acceptance/rejection procedure re-weights
paths by a factor proportional to the Rosenbluth factor

(see Section II C), so if we assume that W
(o)
i has been

“fully” re-weighted (note that this is an approximation),
we can say that

g(Wi) ≈
Wif(Wi

∫∞

0
W ′f(W ′)dW ′

(B18)

The denominator of Eq.(B18) ensures that g(Wi) is prop-
erly normalized. Substituting (B18) into (B17), we find
that:

g(Wi) =
1

I

1√
2πσi

exp

[

− (log [Wi] − µi)
2

2σ2
i

]

(B19)

where

I =

∫ ∞

0

Wif(Wi)dWi = exp

[

µi +
σ2

i

2

]

(B20)

Armed with Eqs (B17) and (B19), we can now find
the distribution function P (Zi) for the ratio Zi ≡
W

(n)
i /W

(o)
i . This is given by:

P (Zi) =

∫ ∞

0

∫ ∞

0

dWidW ′
i g(Wi) f(W ′

i ) δ

(

W ′
i

Wi
− Zi

)

(B21)
Changing the variable of the second integral to Z ′i =
W ′

i/Wi, we obtain

P (Zi) =

∫ ∞

0

∫ ∞

0

dWidZ
′
i Wig(Wi) f(Z ′iWi) δ (Z ′i − Zi)

=

∫ ∞

0

dWi Wi g(Wi) f(ZiWi) (B22)



17

Substituting (B17) and (B19) into (B22), we obtain:

P (Zi) =
1

2πσ2
i IZi

× (B23)

∫ ∞

0

dWi exp

[

− (log [Wi] − µi)
2 + (log [ZiWi] − µi)

2

2σ2
i

]

This integral can be carried out analytically [30], to give:

P (Zi) =
exp

[

−σ2
i

4

]

2σiZi
√

π
exp

[

− (log Zi)
2

4σ2
i

− log Zi

2

]

(B24)

We are now finally in a position to calculate the ac-
ceptance probability θi, using Eq.(B1). Substituting
Eq.(B24) into (B1) and integrating over Zi, we obtain
[34]:

θi =
1

2

∫ 1

0

ds

[

1 −
√

π

2
Erf

[

σi

2
+

log s

2σi

]]

(B25)

=
1

2
−

√
π

4

[

2Erf
(σi

2

)

− 1
]

where Erf(x) is the error function: Erf(x) =

(2/
√

π)
∫ x

0 e−t2dt.
Although Eq.(B25) is a simple and convenient expres-

sion for the acceptance probability θi, its derivation re-
quired several approximations. We have therefore tested
the validity of Eq.(B25). We first carried out a “simu-
lated simulation”, in which we defined a series of N = 15
interfaces, each with the same value of pi = p = 10−6/15,
and “simulated” the Rosenbluth calculation, each time
drawing a random number to determine the outcome of a
given “trial run”, for a given number of trial runs ki = k,
taken to be the same for all interfaces. We measured the
acceptance probabilities at each interface after 2 × 106

Rosenbluth “path generations”, and compared these to
Eq.(B25). The results are shown in Figure 12a, for k = 2,
k = 5 and k = 8. The agreement with the “simulation”
is very reasonable. To compare with real simulation re-
sults, we also measured the acceptance probabilities θi for
the RB simulations of the Maier-Stein system described
in Section IV. The results are compared with the pre-
dictions of Eq.(B25) in Figure 12b. Again, quite good
agreement is obtained.

APPENDIX C: THE EFFECTS OF LANDSCAPE

VARIANCE

In this section, we include the effects of the “landscape
variance” in our expressions for the relative variance V
of P e

B. The result will be that expressions (23), (32)
and (43) are transformed into (50), (51) and (52). As
described in Section III, we suppose that point j at in-

terface λi has probability p
(j)
i that a trial run fired from

it will reach λi+1, rather than λA. The variance in the

p
(j)
i values for points at λi (sampled according to their

(a)
0 2 4 6 8 10 12 14

Interface

0.2

0.4

0.6

0.8

1
k=2
k=5
k=8

θ i

(b)
0 1 2 3 4 5 6

Interface

0.5

0.6

0.7

0.8

0.9

1 k=2
k=5
k=8

θ i

FIG. 12: (a): “Simulated” and predicted acceptance proba-
bilities θi for interfaces 0 ≤ i ≤ 14, for the “simulated simula-
tion” described in the text, for k = 2, 5, 8. (b): Simulated and
predicted values of θi for 0 ≤ i ≤ 6 for the Maier-Stein prob-
lem of Section IV, for k = 2, 5, 8. In both plots, solid lines
represent predicted values for k = 2, dotted lines, k = 5 and
dashed lines, k = 8. Symbols represent simulation results:
circles: k = 2, squares: k = 5 and triangles: k = 8.

expected occurrence in the trial run firing procedure) is
the “landscape variance”, Ui.

If we choose a particular point j, fire ki trial runs

and measure the number of successes N
(i)
s , we expect

to obtain a mean value E[N
(i)
s |j] = kip

(j)
i , and a vari-

ance V [N
(i)
s |j] = kip

(j)
i q

(j)
i (in analogy with Eqs (15) and

(16)). We now average over many points j at interface
λi, using the general variance relation (26):

V [N (i)
s ] = E

[

V
[

N (i)
s |j

]]

+ V
[

E
[

N (i)
s |j

]]

(C1)

= E
[

kip
(j)
i q

(j)
i

]

+ V
[

kip
(j)
i

]

where the mean and the variance are taken over the
distribution of points j. Since E[p

(j)
i q

(j)
i ] = E[p

(j)
i −

(p
(j)
i )2] = E[p

(j)
i ] − E[(p

(j)
i )2] and Ui = E[(p

(j)
i )2] −

(E[p
(j)
i ])2, we can deduce that E

[

kip
(j)
i q

(j)
i

]

= ki(pi −
p2

i − Ui) = ki(piqi − Ui). Using Eq.(14), we have

V [kip
(j)
i ] = k2

i V [p
(j)
i ] = k2

i Ui, so that

V [N (i)
s ] = kipiqi + Uik

2
i

[

1 − 1

ki

]

(C2)

This first term on the r.h.s. of Eq.(C2) corresponds to
Eq.(16): the binomial contribution arising from the lim-
ited number of trial runs per point. The second term is
an extra contribution, due to the landscape variance.

We now repeat the derivations of Section III B, simply
replacing Eq.(16) by Eq.(C2). We begin with the RB
method, for which Eq.(41) becomes

V rb[pe
i ] =

[

1

N0

] [

piqi

ki
+ Ui

(

1 − 1

ki

)]

(C3)

×
[

(2 − θi)

θi

]

(

1 − qki

i

)

∏i
j=0

(

1 − q
kj

j

)
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and Eq.(43) is replaced by Eq.(52):

Vrb =

n−1
∑

i=0

{

[

qi

piki
+

Ui

p2
i

(

1 − 1

ki

)]

×
[

(2 − θi)

θi

]

(

1 − qki

i

)

∏i
j=0

(

1 − q
kj

j

)

}

For the BG method, Eq.(30) is replaced by:

V [N (i)
s ] =

[

kipiqi + Ui

(

k2
i − ki

)]
∏i−1

j=0 kjpj (C4)

+k2
i p

2
i V [N

(i−1)
s ] (i > 0)

= kipiqi + Ui

(

k2
i − ki

)

(i = 0)

and Eq.(32) becomes Eq.(51):

Vbg =
n−1
∑

i=0

[

kiqipi + Ui

(

k2
i − ki

)

kipi

∏i
j=0 pjkj

]

For the FFS method, the situation is slightly more
complicated, because the number of trials fired from
point j at interface i is not fixed. We make Mi trials
from the Ni points at λi, each time selecting a start-
ing point at random (so that the probability a particular
point is chosen is 1/Ni). Since we no longer assume that
all points at interface i are identical, we must now take
account of the distribution of the number of times mj

that point j is selected. This is in fact a multinomial
distribution [29, 35], which has average E[mj ] = Mi/Ni

and variance V [mj ] = Mi [1/Ni(1 − 1/Ni)]. Let us now
do a “thought experiment” in which we first decide how
many trial will be fired from each point - i.e. we fix the
set of values {mj} (of course,

∑

j mj = Mi). We then

fire these trials and measure the total number N tot
s which

reach λi+1. The expectation value for N tot
s is

E[N tot
s |{mj}] =

∑

j

mjp
j
i = Mipi (C5)

and the variance is found using Eq.(C2), with ki replaced
by mj , multiplying by m2

j and summing over all j:

V [N tot
s |{mj}] =

∑

j

[

mjpiqi + Ui

[

m2
j − mj

]]

(C6)

We now imagine that we average the results over many
sets of values {mj}. Using the general relation (26), we
obtain:

V [N tot
s ] = V

[

E[N tot
s |{mj}]

]

+ E
[

V [N tot
s |{mj}]

]

(C7)

= V [Mipi] + E



Mipiqi + Ui

∑

j

m2
j − UiMi





= Mipiqi + Ui

[

NiE[m2
j ] − Mi

]

Here, the variance and expectation are with respect to
the distribution of {mj} values. The last line follows

from the fact that V [Mipi] = 0 as both Mi and pi

are constants with respect to changes in {mj}. Since
V [mj ] = Mi [1/Ni(1 − 1/Ni)] = E[m2

j ]−E[mj]
2, we find

that E[m2
j ] = (Mi/Ni)(1−1/Ni)+M2

i /N2
i . Substituting

this into Eq.(C7), we obtain:

V [N tot
s ] = Mipiqi +

Ui

Ni

[

M2
i − Mi]

]

(C8)

Since pe
i = N tot

s /Mi, we must divide Eq.(C8) by M2
i to

obtain V [pe
i ]

ffs:

V [pe
i ]

ffs =
piqi

Mi
+

Ui

Ni

(

1 − 1

Mi

)

(C9)

This leads to:

Vffs = N0

n−1
∑

i=0

{

[

qi

piMi
+

Ui

p2
i Ni

(

1 − 1

Mi

)]

×

(

1 − qMi

i

)

∏i
j=0

(

1 − q
Mj

j

)

}

(C10)

where Ni = Mi−1pi−1 for i > 0 and Ni = N0 for i = 0.
Rewriting in terms of ki ≡ Mi/N0, we obtain Eq.(50):

Vffs =

n−1
∑

i=0

{

[

qi

piki
+

UiN0

p2
i Ni

(

1 − 1

N0ki

)]

×

(

1 − qN0ki

i

)

∏i
j=0

(

1 − q
N0kj

j

)

}

APPENDIX D: MEASURING THE INTRINSIC

VARIANCE

0 100 200 300 400 500
k

0

0.01

0.02

FIG. 13: V [N
(0)
s ]/k2 (solid line) and (1/(k −

1))
[

V [N
(0)
s ]/k − p0q0

]

(dashed line), as functions of

k = M0/N0, calculated using FFS as described in Section D,
for the Maier-Stein problem of Section IV with 10000 points
at the first interface λ0 = −0.7.
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In this section, we describe a simple and computation-
ally cheap procedure for measuring the landscape vari-
ance parameters Ui. Given a correctly weighted collec-
tion of Ni points at interface λi (obtained, for example,
using FFS), we could fire an extremely large number k
of trial runs from each point and measure the variance

among points in the values of N
(i,j)
s - where N

(i,j)
s de-

notes the number of successful trials from point j:

Ui = V [pi] =
V [N

(i)
s ]

k2
=

1

k2











Ni
∑

j=1

N
(i,j)
s

2

Ni
−





Ni
∑

j=1

N
(i,j)
s

Ni





2










(k → ∞)

(D1)
This is likely to be an expensive procedure. Fortunately,
however, it is not necessary to fire a very large number
of trial runs from each point. Instead, we make use of
expression (C2), which can be written as

Ui =
kV [pe

i ] − piqi

k − 1
=

1

(k − 1)

[

V [N
(i)
s ]

k
− piqi

]

(D2)

where the expression now holds for any value of k. In
the limit that k → ∞, Eq.(D2) reduces to (D1). As a
practical procedure, therefore, we generate a collection
of Ni points at interface i (using, for example, FFS),
and fire k trials from each point - k does not have to be
a large number. For each point j, we record the num-

ber of successful trials N
(i,j)
s . The variance V [N

(i)
s ] of

these values is inserted into Eq.(D2) to give a value for
Ui. Figure 13 shows the results of this procedure for the
Maier-Stein problem of Section IV. For the first interface
(λ0 = −0.7), Ui was calculated using Eq.(D2), using k
trials for each of 10000 points collected at λ0. The solid

line is the measured value of V [N
(i)
s ]/k2, while the dashed

line is the value of Ui obtained from Eq.(D2). The two
lines converge, of course, for large values of k. Figure 13
shows that accurate results for Ui can be obtained us-
ing Eq.(D2), using only a small number of trial runs per
point.
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