Structure of the hard ellipsoid fluid
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Molecular-dynamics calculations are reported on fluids of hard ellipsoids over a range of
densities and for several ellipsoidal aspect ratios. The pair correlation functions obtained from
the simulations are expressed as functions of the minimum surface-to-surface separation, s,
measured along the surface normal, §, and angles measured relative to the surface normal.
Both isotropic and orientational correlations exhibit simpler behavior in the surface-to-surface
than in the more customary center-to-center coordinate representation. For the hard-ellipsoid
fluid, the isotropic part of the pair correlation function, g, (s), behaves much like that of a
hard-sphere fluid. The surface-to-surface coordinates are well suited for studying pressure and
collision rates because these properties depend upon surface contact distributions. They are
also useful for studying the orientational order parameter, g,, because they enable one to
readily identify a long-range part and geometrical excluded volume contribution.

INTRODUCTION

The hard-sphere fluid has proved to be an excellent
model for atomic fluids because fluid structure is determined
largely by short-range repulsive interactions. Long-range in-
teractions can be regarded as perturbations, and various the-
ories based on appropriate hard-sphere reference states have
been developed that allow the systematic inclusion of poten-
tial softness. '

Molecular fluids are much more difficult to treat theo-
retically. Although the same physical principals should ap-
ply (structure being largely determined by repulsive interac-
tions), it is no longer obvious what the hard-core reference
fluid should be. In the interaction site model** the reference
fluid is a system of fused hard spheres (e.g., dumbbells).
Alternatively, one can choose a hard convex body (HCB)
representation of the core of a molecule.® There are a number
of advantages in using the HCB: analytical calculations of
some aspects of the pair distribution function®’(PDF) and
of a few transport properties® are feasible and have been ac-
complished. Until recently,®'° the application and adoption
of the HCB approach has been hindered by the paucity of
simulation data. Existing theory could not be tested fully,
and it was unclear if the HCB model would prove to be as
valuable as the hard-sphere model as a reference fluid for
real fluids with soft potentials.

The present goal is to provide additional simulation data
on the HCB system with particular emphasis on the proper-
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ties of the expansion of the PDF in terms of complete sets of
angular functions. Common expressions of the PDF for a
polyatomic fluid of D_, molecules require the specification
of the center-to-center separation, 7, and three angles.*'"!
The primary purpose of this paper is to explore an alterna-
tive choice of variables based on the surface-to-surface dis-
tance s, and to discuss the PDF and various physical quanti-
ties derivable from the PDF. In particular, we focus on the
hard-ellipsoid fluid.

THEORY
Representation of the pair distribution function (PDF)

The conventional coordinates of a fluid of D_, mole-
cules are the center-to-center vector r and the orientation
vectors €, and &,, of the two molecules. Of these seven co-
ordinates three are superfluous and only four are required to
specify the mutual orientation of two molecules in an iso-
tropic fluid. These four coordinates are usually taken to be
the center-to-center distance, the polar angles arccos (&,-t)
and arccos (&,'f), and ¢, — ¢,, where ¢, and ¢, are the azi-
muthal angles of &, and &, with respect to £. The spherical
harmonic expansion of the PDF based on these variables

isll,12

g(r’él’éZ) =2gll'm (r)clm (él)c‘l.sm (éZ) ’ (1)

where the C,,,’s are modified spherical harmonics. Equation
(1) has become a cornerstone in the analysis of stuctural
properties of polyatomic fluids. The most troublesome prop-
erty of Eq. (1) is that it represents orientational correlations
on spherical surfaces. In the isotropic phase and at large
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intermolecular separations, orientational correlations are
nearly isotropic and the PDF can be expressed succinctly
with a few terms in the expansion. However, for molecules in
close proximity, where steric correlations are strong, the lo-
cal symmetry is not spherical, and as a result Eq. (1) has
poor convergence properties. '

In response to these well-documented shortcomings of
the conventional expansions of the PDF, Kabadi and
Steele'* suggested that for soft nonspherical bodies the vari-
ables in the PDF should be based upon the properties of the
equipotentials. Their chosen angular coordinates where
identical to those used above, but their distance variable was
taken as the center-to-center distance scaled by the angle-
dependent Lennard—Jones diameter. In contrast to calcula-
tions based on Eq. (1), by means of this approach, the ther-
modynamic properties are easily obtained and the spherical
harmonic expansion is rapidly convergent. For systems of
HCB’s we can replace the equipotentials by the hard-core
surface.

For a fluid of HCB’s Kumar, James, and Evans'® pro-
posed an expansion in which the pair correlation function
(PCF) is expressed as a function of the surface-to-surface
distance s and three angles (6,, 6, and @) measured with
respect to the normal § or apse vector specifying the mini-
mum surface-to-surface distance. See Fig. 1. These coordi-
nates are defined by

forn=1,2 2)

with a the angle between the plane defined by (€,,8) and
(€,8). The Jacobian J for this transformation from center-
to-center coordinates to the surface-to-surface coordinates is
a function of s and the new angles (see Appendix A).

In this new language, one could in principal expand the
PCF in a set of functions orthogonal in space with the Jaco-
bian, J(s,&,,&,). She, James and Evans’®’ did this by means
of a separate Gram—Schmidt procedure at each value of s,

cos g, =§¢€,=x,

r(s)

FIG. 1. The apse-vector-based coordinate system for two ellipsoids. The
orientations &, and &, are measured with respect to the minimum surface-to-
surface vector s. Each ellipsoid has a semimajor axis, 4, and semiminor axis,
b.
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but this approach is cumbersome, and to circumvent these
difficulties Kumar, James, and Evans'® followed a proce-
dure proposed by Kabadi and Steele’* in which the product
of g and J are expanded in spherical harmonics. Thus, if

G(s9é19éz) Eg(saé])éz)‘l(s’él,éz)’ (3)
then

G(Ssél’éz) 22 Gll‘m (s)clm (éI)C’Ik'm (é2)9 (4)

where &, and &, are expressed with respect to § rather than f.
The advantage to this approach is that the contact surface is
represented by the s = 0 value. The distribution function
G(s,€,,6,) reflects the anisotropy of the Jacobian J(s,&,,&,)
as well as the anisotropy introduced by actual molecular
order. It is the latter which interests us, and in order to iso-
late these effects we consider an expansion of J(s,&,,6,) simi-
lar to that described for G in Eq. (4),

J(S,él,éz) =2J”'m (S)Clm (él)C’f’m (éz) . (5)

Clearly, the choice of orientation angles and distances for g is
not unique. For example, Ghazi and Rigby'® investigated
the structural properties of hard spherocylinder fluids using
a spherical harmonic expansion of the PCF with an angle-
dependent separation variable. In accord with Kabadi and
Steele, they also find a simple and a weakly structured de-
pendence of the expansion coefficients of g on separation and
they find an isotropic component of g with behavior reminis-
cent of a hard-sphere fluid.

In the following section, we summarize the relationship
of various thermodynamic and structural properties to G,
the apse-vector-based PCF, and try to assess its utility.

ISOTROPIC PROPERTIES
We define the isotropic PDF, g;., (5), as

()80 (5) = f (d&,/47) f (de,/47) G(s,8,,8,), (6)

where 47S(s) is the surface area of the excluded volume
defined by

S(s) =J (dé,/4) f (dé,/4m)J (5,€,,8,). N

8, (5) is an interesting quantity because in many ways it is
analogous to the PDF for spheres in which goy(7) is inte-
grated over r’dr, while g, (s) is integrated over S(s)ds.
Note that for hard spheres of diameter o, the area
S(s) = (o + 5)% for HCB’s S(s) was obtained by Kihara,’
and is given in Appendix A.

It can readily be seen that

8iso (5) = Giopo(8)/5(s), (8)
which relates the isotropic PCF to the expansion coefficient,
Gooo(5). Another method of obtaining the isotropic PDF is
by counting the number of neigbors in shells of diameter s. If

N(s) is the number of neighbors inside the surface-to-sur-
face distance s, then'®

dN(s)
ds

= 4mpGooo(S), 9
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where p is the average number density. This relation can be
used to evaluate Gy(s), and with knowledge of S(s) one
can then use Eq. (8) to obtain g, (s).

CONTACT PROPERTIES

A number of properties depend on the contact (s = 0)
values of the Gy;.,,, (s)’s. For these properties it is convenient

to define the average A(s) corresponding to a quantity
A(s,8,,8,):

_ S (dé,/4m) § (dé,/4m)GA

Gooo(5)

The contact average A(s =0) enters expressions for such
physical quantities as pressure and collision rate, and can be
directly calculated in a molecular-dynamics (MD) simula-
tion by averaging 4 over all molecular contact pairs. The
quantity 47pS(5)g;, (5) A(s)ds is the integral over all mo-
lecular orientations in a shell at a distance s, and
47pS(5)8;., (5)ds is the number of molecules in that shell;

thus A(s) is the average per molecule of 4 taken over mole-
cules in a given shell. As a consequence, averages such as

A(s) can be readily determined in a MD simulation. Note
that the apse-vector representation is much more convenient
for calculating contact properties than the center-to-center
coordinate system where an infinite number of spherical har-
monic coefficients are required.

A(s) (10)

Pressure

Boublik has derived an expression for the pressure of a
monocomponent fluid of HCB’s. In our notation his expres-
sion is®

BP/p =1+ 4m(p/3)S(0)g, (0) h(0), (11)

where A(s) is the average of the support function A (x,) for
the convex body.

The pressure can also be expressed in terms of the G
expansion coefficients. Upon insertion of Egs. (3) and (10)
into Eq. (11), we find that

BP/p=1+(4mpb/3) ¥ 0,G000(0),  (12)
n=0
where
1
a,, =J4n+ 1 f [A(x)/b ] Py, (x)dx. (13)
(4]

P,, (x) is a Legendre polynomial, and b is the semiminor
axis of the HCB. Although no general analytic expression
for the a,, coefficients is known, we give explicit expressions
for the first three in Appendix A, and numerical values in
Table I.

There are two alternative routes to the pressure: from
Eq. (11) since A(0) is directly measurable in MD simula-
tions, and from the virial theorem applied to hard-core parti-
cles. The latter method requires the computation of the aver-
age impulse over collisions:!’

BP/p=1+p

collisions

where I; is the impulse of the collision between ellipsoids i

I;-r;/(3N1), (14)

Talbot et al.: Structure of the hard ellipsoid fluid

TABLE 1. Values of S(s = 0) and the pressure expansion coefficients. See
Eqgs. (14), (A12), (A13), and (AS8).

a/b a, a, a, a, S(0)/12
2 1.380 0.307 —0.027 0.004 1.14
3 1.81 0.614 - 0.080 0.21 1.38
5 2.734 1.215 —0.207 0.069 1.96

and j, the center-to-center separation at collision is 7;,, and ¢

ij*
is the time over which the dynamics are followed.

Collision rate

The collision rate Z for identical particles is also given
by an integral over the excluded volume surface,

z:;pv,fde f (dé,/4m) f (d&,/4m)

X G(s=0,8,,&;,)D(x,,x,)
= 27pv, &, (s = 0)S(s = 0) D, (15)
where D is the average of the momentum transfer function,
D(x,,x,), defined by
D*(xy,x;) =14 (u/D[h"(x)*(1 —x?)

+h'(x,)*(1 —x3)] (16)
where primes denote differentiation with respect to the argu-
ment, [ is the moment of inertia, v, is the relative thermal
speed [ (8k,;T/mu)'/?], and p is the reduced mass m/2 of
the colliding pair. D can be determined directly in the simu-
lation, as can Z; Eq. (15) therefore provides a route to
8iso (s =0). Values of g, (s = 0), which must be equal to
Gooo (s =0)/S(s = 0) [see Eq. (8)] are listed in Table II.

ORIENTATIONAL PROPERTIES

The anisotropic expansion coefficients are angular aver-
ages of the “pair” orientational functions:

Gy (8) = f (dé,/4m) f (dé,/4m)G(5,6,,8,)

X C,,, (8,)C%,, (&,). (17)

TABLE II. MD contact values of G, (5)/S(s) obtained by extrapolation

of the distribution function. Values in parentheses were computed from the
collision frequency Z and the MD value of D(s = 0); p, = 2/1°.

a/b P/po n=0 n=2 n=4
2 0.5 345 ( 3.44) — 1.66 0.754
0.6 4.83 ( 4.81) —2.55 1.18
0.7 7.21 —3.85 1.77
0.8 11.52 (11.47) —6.41 3.00
3 0.1 1.29 —0.75 0.47
0.3 2.14 ( 2.03) —1.34 0.82
0.5 3.60 ( 3.64) —-2.53 1.63
0.6 5.24 ( 5.10) —3.83 2.49
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These angular averages are of considerable interest since, for
example, two often studied classes of orientational polyno-
mials carrying packing information are the “single”-particle
functions C,,, (&,) and the pair functions C,,, (¢,)C%,, (&,),
which are related to G, (s) and G,,,, (), respectively. Re-
member that these orientations are measured with respect to
§, so that averages over C,,, (&,) do not necessarily vanish.

Light scattering g.

An orientational parameter of interest, which is mea-
sured in depolarized light scattering experiments, is'®

g =1 +pjer- (dé,/4m)

x f (dey/Am) P8, 8,08 (110, (18)

where P, is the second-order Legendre polynomial. Equa-
tion (18) is expressed in center-to-center coordinates, but
the radial integral converges rather slowly with increasing 7,
making it somewhat difficult to evaluate and rather difficult
to interpret in terms of the positions and orientations of
neighboring molecules.'® We, therefore, wish to examine g,
in apse-vector coordinates, but it is not straightforward to
convert Eq. (18) to apse-vector coordinates. Difficulties
arise because the triple integral in Eq. (18) is conditionally
convergent. At large » the function g(r,é,,é,) — 1, and the
integrand of Eq. (18) approaches P, (&,-é,), which has finite
contributions at all values of 7, and hence the integral over r
diverges in the thermodynamic limit. The consequence of
this is that one must first integrate over angles, in which case
the integral vanishes for large values of 7, and g, is therefore
finite. Were the order of integration reversed, the integra-
tions would yield an indeterminate quantity.

Since the transformation to apse-vector coordinates
mixesr, €, and &, [i.e.,, s = s(r, €,&,) ], we expect, and find,
a divergent result when g, is reexpressed in the apse-vector
coordinates. We can resolve this dilema by rearranging the
integrand in Eq. (18) so as to make the integral absolutely
convergent. This is done by rewriting gas (g — 1) + 1:

e o ()

xf ( ‘iez) Py(8,°8,) [g(r8,,8,) — 1]

+pfdrf( )f(d%)}y(él-éz). (19)
47

The last term in Eq. (19) is zero, provided the angular inte-
grations are carried out first. We divide the remaining inte-
gral into overlapping (&) and non-overlapping (A4"¢)
parts:

werio ], f(%)
ve 4

xf( Z‘* )Pz(el &) [g(r808,) — 1]

(] (#ren

where we have used the fact that g(#,é,,&,) = 0 in the over-
lap region. We can transform the first integral of Eq. (20) to
apse-vector coordinates because the integrand vanishes at
large r, and this makes the integral absolutely convergent.
The transformation replaces dr with J ds and gJ with G, so
our final result for g, in the apse-vector system is

mrenfaf(2)
41

Xf ( iez) [G(5,8,,&,) —J(5,8,,8,)]

XP,(&,°&) — g, (21

where

g =p f drf(dél/mf(dé2/41r)1>2(é,-é2) (22)
I

is a volume integral over the overlap region. Appendix B
shows how to evaluate g, by converting it to a surface inte-
gral:

g, = 4mp f (dé,/4) f (déy/4m)3h,,
XJ(O,é],éz)P2(él'éz). (23)

with 4, = h(x,) + hA(x,). This completes the formal speci-
fication of g, in the apse-vector system.

SIMULATION

The equilibrium properties were obtained by analyzing
configurations obtained from MD simulations of the hard-
ellipsoid fluid. These simulations were performed in the mi-
crocanonical ensemble in a truncated octahedral cell.° The
advantage of this geometry over the usual cubic cell is that it
allows one to examine the correlations at greater distances
for a given number of particles. This is particularly impor-
tant with our present approach since the use of the surface-
to-surface rather than center-to-center distance reduces the
maximum range from a distance R, to R, — 2a, where R, is
the radius of the inscribing sphere of the simulation cell.

Two system sizes, N =125 and N = 512, were em-
ployed. The unit of length used was /, where /> = 8ab2and a
and b are the ellipsoid semimajor and semiminor axes, re-
spectively. All the results reported here are for prolate ellip-
soids of aspect ratios, a/b = 2 or 3, and for a density range
0.3 <p/py < 0.8, where

po=A2/1I° (24)
is the density of closest packing. The runs were generally for
a total of 108 collisions, and about 2000 configurations were
saved at equal intervals for later analysxs Full detalls of the
simulations are presented elsewhere.?!

The minimum surface-surface distance determination
is a nontrivial operation. Acceptable speed was obtained by
use of a vectorized algorithm employing the curvature prop-
erties of the ellipsoids.??
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RESULTS
Variation g,,,(s) with s

There is considerable interest in finding spherical poten-
tials which can be used to accurately model the properties of
molecular fluids. In this connection we note that the g, (5)’s
for 2:1 and 3:1 ellipsoids shown in Fig. 2 are similar to those
for hard spheres (HS). We ask then if there is a reference HS
fluid that can mimic this distribution function. An obvious
choice is a HS fluid at the same density as the HCB fluid,
where the hard spheres have the same volume as an ellipsoid:
o° = 8ab?, where ois the HS diameter. In Fig. 2 the distribu-
tion function of this HS fluid* is compared with the g, (s)
of the ellipsoid. The HS fluid has a second maximum around
s = o, whereas the second maximum in g, (s) occurs overa
range of s from 2a to 2b. Because there are two length scales

(a)

4.0

{b)

glso(s)

0.0

0.0 2.0 4.0 ~ 6.0 8.0

Talbot et al.: Structure of the hard ellipsoid fluid

present in the HCB fluid, it appears impossible to find a HS
fluid that has exactly the same surface-to-surface distribu-
tion function as the HCB. However, our chosen HS fluid
accurately models the HCB fluid in the contact region (i.e.,
up to the second maximum).

Comparison of the apse-vector representation with
conventional expansions

Figure 3 (a) shows the spatial variation of the center-to-
center isotropic PDF, gy, (7), and its anisotropic expansion
coefficients g, (7). Even at the low density of p/p, = 0.3,
both goyo(7) and g, (r) are highly structured. For com-
parison, in Fig. 3(b) we illustrate the s dependence of the
expansion coefficients Gy, (5)/5(s) for the same thermo-
dynamic system; these ratios are taken as reasonable ana-
logues of the g, (r)’s. A long-range tail is evident in

(c)

12.0

glso(s)

3.0

FIG. 2. Comparison of the spatial variation of the isotropic component of
the pair correlation function, g, (s), for a single-component fluid of ellip-
soids with that of a hard-sphere fluid (shown by the solid line) at the same
density and packing fraction. s is measured in units of the semiminor axis of
the ellipsoid. (a) a/b=2; p/p, = 0.6; (b) a/b=3; p/p, =0.6; (c) a/
b=2;p/p,=08.
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FIG. 3. Expansion coefficients for the hard-ellipsoid fluid with a/b = 2 and
p/po=0.3. (a) Inthecenter-to-center coordinate system: g,.,, () vs#/
b. (b) In the apse-vector system: G-, (s)/S(s) and J,;.,, (5)/S(s) vs s/b,

given by broken and solid lines, respectively. (These simulations were for
N=125.)

Gy (5)/5(s), and this is explained by the orientational cor-
relations contained in the Jacobian. The solid lines in Fig.
3(b) show the relaxing Jacobian, viz., J,.,, (5)/S(s). The
true anisotropy in intermolecular packing is reflected in the
difference between the solid lines and the data points, i.e., in
the quantity [ Gy, () — Jyp-, (5) ]/S(s) which enters as a
component of Eq. (21). [Recall that g,.,(r) starts at
r = 2b, while G,.,, (s) starts at s =0.]

Simple interpretation of the expansion coefficients,
Gim(8)/5(s)

The s dependence of a few G,.,, (s)/S(s) is shown in
Fig. 3(b); these factors should be compared to the g;.,,, (¥)’s
in Fig. 3(a). In contrast to the G, (s)’s themselves,
Gy, (s)/S(s) are short range, decaying from the contact
surface (s = 0), where they are localized and showing only
small-amplitude oscillations which are density dependent.

Based upon the observed signs of the Gy.,, (s) coeffi-
cients alone, one can get some idea of the structured environ-
ment around an ellipsoid. For example, the negative sign of
G,00(5) 1s consistent with (P,(cos 8,)) <0, and for this to be
the case(8,) > 54°, where 0, is defined in Eq. (2). Similarly,
the fact that G, (s) is positive suggests that (8,) > 70°. The
magnitude of the 220 expansion coefficients are similar to
the square root of the 200 terms, which suggests that the
“pair” functions are only weakly correlated. With this infor-
mation and a similar analysis of the 222 function, we are led
to the conclusion that the out-of-plane angle, a, defined be-
low Eq. (2), is in the range 45° <a <90°. The picture that
emerges from this qualitative analysis is that the molecules
are aligned side by side with an out-of-plane angle greater
than 45°. Generally, the 222 terms (which measure a corre-
lations around 45°) are small, and for a/b = 2, at reduced
density between 0.7 and 0.8, the 222 coefficients become
more positive as the average angle between €, and &, dimin-
ishes.

Pressure

The determination of the pressure of a fluid of HCB’s
requires the use of the contact values of the PDF, see Eq.
(12). Only a few of the apse-vector coefficients, G,, 4 (0),
are necessary in the computation of the pressure. To show
this we present the results in Table III, where we show values
of (BP /p) — 1 obtained by various truncations of Eq. (12).
The sum is rapidly convergent because the a,, coefficients
decrease rapidly with n, as do the G,, o, (0): see Tables I
and IL. The values of (BP /p) — 1 calculated with only three

TABLE III. Convergence of the pressure expansion (calculated values of
BP/p—1).

Number of terms®

a/b PP One Two Three Virial®
2 0.5 6.36 5.68 5.65 5.68
0.6 10.70 9.44 9.39 9.47

0.7 18.63 16.41 16.33 16.27

0.8 34.04 29.83 29.65 29.60

3 0.1 0.66 0.53 0.52 0.50
0.3 32 2.59 2.54 2.41

0.5 9.24 7.04 6.85 7.01

0.6 16.15 12.15 11.81 11.63

* The entries in Tables I and I were combined in Table I11 to determine the
pressure by means of  BP/p— 1= (2a/3)2(b/a)"*(p/p,)
S(0)2,a,,[G,,00(0)/5(0)].

® Calculated from MD simulations by means of the virial theorem, Eq.
(15).
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of the a,, coefficients in Eq. (12) are in satisfactory agree-
ment with the values obtained by means of the virial theorem
(see Table III). Note that calculation of the pressure in cen-
ter-to-center dependent coordinates requires the angle-de-
pendent distance of contact, and this method is consequently
much less convenient.

Collision rate

We have used our data to evaluate the collision rate Z as

well as the contact average D(0) specified by Egs. (10) and
(16). These values can be combined with the known value of
S(0) to calculate g;., (0) by means of Eq. (15). In Table II
these values are compared with those obtained by extrapo-
lating Gypo(s) to contact (s = 0).

Single-particle orientations: Comparison with scaled
particle theory

No simple analytical theory of contact orientational
properties currently exists for single-component fluids of
HCB’s. Boublik® determined the pressure of pure fluids of
ellipsoids and fluid mixtures by means of scaled particle the-
ory (SPT); She et al.” calculated the contact PDF for a sin-
gle HCB in a fluid of spheres, and Perera, Kusalik and Pa-
tey'® employed the hypernetted chain and Percus-Yevick
integral equation theories in the calculation of 7-based struc-
tural information for pure fluids of HCB's. Strictly, the anal-
ysis of She et al. is inapplicable here; however, since we have
seen that the G,,,(s)’s are roughly the square of the
G00(5)’s, the pair correlations should be weak. This sug-
gests that G,,,(s) might be similar for a HCB in a fluid of
HCB’s (which corresponds to our MD simulations) and for
a HCB in a fluid of hard spheres (which corresponds to the
SPT of She et al.). The only property for which existing SPT
and simulation results can be compared are the contact val-
ues of the single Legendre functions, G,, 0 (0), or alterna-
tively, averages of the form cos” 6 at contact. Figure 4
shows the SPT predictions for cos’ 8, at contact for a single
ellipsoid in a bath of spheres having the same volume as the
ellipsoids. The SPT values decay more rapidly with density
than do the MD results. Both SPT and MD results agree in
one important regard: as the density increases there is an
increased tendency for the solvent molecules to align on the
flat portions of the convex surface.

The orientational pair correlation factor, g,

For comparative purposes we calculate g, in both cen-
ter-to-center and apse-vector coordinates. In the former,

Py(s); =

§(d&,/4m) § (dé,/4m)[G(s,8,,8,) — J(5,8,,8,) 1P,(8,°8,)
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FIG. 4. Contact orientational averages of cos® 8 = x” from scaled particle
theory (solid line) and simulation (A for a/b =2, @ fortoa/b=3).

&= lim g(r), (25)
=1+ ff(/)dr’, (26)
(1]
f(r) = dmpgoeo(r) Py(r) 7, 27)
where
P = f(dé,/am) § (déz/41r)g(r,él,éz)P2(él-éz),
8ooo(7)
(28)

and gy00(7) is the isotropic PDF and P,(&,-é,) involves the
relative orientations of two particles. This is the notation
used by Impey, Madden, and Tildesley.'® In our apse-vector-
based system we have the analogous expressions

&= lif“ 8(s), (29)
ga(s) =1+ f $(s)ds' — g,, (30)
0
$(s5) = dmpgi, (5) P,(s5),5(s), (31)
where
(32)

Gooo(5)

and g, isgivenin Eq. (23). Wenote that P,(s), differs from
the average P,(s), which is defined in Eq. (10), in that the
effective distribution is G-J rather than G.

It is readily shown by using the spherical harmonic sum

I
rule thal )
Py(&,°8,) = z

m= —2

and so from Eq. (33) we find that

t24

(—D7Cm ()G, _ (&), (33)
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8o (5)S(5) Py(s),

2

= 2

m= —2

(= DG (8) = Tp3,, ()] (34)

P,(s) is a measure of the relative pair orientation per
molecule at separation s, whereas P,(s),; measures correla-
tions above those present in an ideal gas of ellipsoids and
hence is an indicator of density-dependent packing restric-
tions. Though the quantity P,(s) is perhaps of more theo-
retical interest, it is #(s) that directly determines the mea-
sured quantity g,.

Previously, using a center-to-center formalism, Streett
and Tildesley' and Impey, Madden, and Tildesley'® found,
using computer simulation, that at reasonably high density,

P,(r) for a model of CS, was an oscillatory function with a
period of about 7 ~ ¢ and an exponential decay length also of
order ¢. They found that f(r) and g,(7) had about the same
oscillation period but a decay length of about 4. From this
behavior one concludes that the orientational correlation per
molecule, P,(r),is quite short ranged and only mildly oscil-
latory, but when weighted by 47°g;, (r), the number of par-
ticles at a distance r, the apparent correlation length is ex-
tended and the oscillatory nature more pronounced. It is this
weighted average that enters into the expression for the mea-
sured quantity g,. We examine these correlations in the apse-
vector representation to see whether the connection between
orientational correlation and g, can be simplified.

In Figs. 5-7 we examine P,(r), f(r), and g,(r), togeth-
er with the analogous apse-vector quantities, P,(s),, ¢(s),
and g,(s) for a/b =13 ellipsoids at a reduced density of
0.6. P,(s) and P,(s), are very similar, but at large s,
P,(s) decaysas — s~ 2, whereas P,(s), decays to zero rap-
idly from above. This small negative tail is repsonsible for the

05 T T T

0.4 ]

1

6 8 s/b
J

0 r/b

L
2

s
o -
o

FIG. 5. Orientational correlation functions for a fluid of hard ellispoids
with a/b =3, p/p, = 0.6, and N = 512. The dashed line corresponds to
P,(r) and the solid line to P,(s),.
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FIG. 6. Integrand for g, for the same fluid as in Fig. 5. The dashed line
corresponds to f{r)/4mp and the solid line to ¢(s)/4mp.

pathological behavior of the volume integral of P,(s). The
results are not definitive since it is not clear that we have
gone to large enough values of s or r to determine g,. How-
ever, g,(s) has an excluded volume contribution at s = 0 and
rises quickly, whereas g, (r) starts at one for » = 2b and then
rises more slowly towards its asymptotic value. Thus, the
merit of the apse-vector language is that simple excluded
volume contributions are treated easily in g,, while the long-
range orientational order is represented by the G — J terms.
In the g, (r) representation both of these effects are mixed. It
also appears that for a given value of s, g,(s) is considerably
closer to its asymptotic g, value than is g,(r) at the corre-
sponding value of r — ¢.

0.5 .
0 1 1 i
o 2 4 6 8 s/b
| — 1 1 1 -
2 4 6 8 10 r/b

FIG. 7. g,(s) and g,(r) for the same fluid as in Fig. 5.
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SUMMARY

The primary function of the MD results presented here
is to evaluate the possible benefits of a HCB reference system
as a basis for theories of polyatomic fluids. Since all the inter-
molecular forces in the HCB model are transmitted perpen-
dicularly to the surface, the natural coordinates are derived
from the surface normal (or apse vector) and the shortest
surface-to-surface separation. Conventionally, center-to-
center distances (plus orientations) have been employed to
express intermolecular properties of atomic fluids; however,
that coordinate system can at best define the potential sur-
faces parametrically and in a complicated fashion. The dis-
advantage of the apse-vector scheme is its difficulty of imple-
mentation. But given that, then what are its benefits?
Contact properties such as the collision rate and the pressure
are determined much more efficiently in the s language.
Likewise, the isotropic PDF, g, (s), is simpler to interpret
in this language. For example, the fact that the ellipsoids
pack side by side is easily seen from the location of the second
peak in g,(s). In apse-vector coordinates it can be seen that
g,(s) has an appreciable surface contact contribution. See
Eq. (21). We also expect that the ensemble averages of other
distance-dependent functions (which vanish by symmetry at
large r in the center-to-center coordinate system) will also
have appreciable surface contact contributions which can be
readily identified in apse coordinates.

Our work does not indicate a great advantage of the s-
based over the r-based representation. Nonetheless, the re-
sult of the g, analysis is the unambiguous separation of g,
into two pieces: a short-range excluded volume contribu-
tion, and an s-dependent long-range term. This result in itself
might be a useful guide for future theoretical work.
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APPENDIX A

The properties of hard convex bodies (HCB’s) neces-
sary for our analysis are summarized by Kihara® and else-
where.”® We review some of these properties here. One de-
finition of a convex body is that each point on its surface has
a unique surface normal, 8. Figure 1 shows our coordinate
system for a pair of convex bodies separated by a surface-to-
surface distance s measured along §, The mathematical prop-
erties of HCB’s are easily demonstrated by means of a sup-
port function, A(x,), which is defined as the projection

h(x,) =8E,, (AD)

Talbot et al.: Structure of the hard ellipsoid fluid

where &, is the vector extending from the center of the body
to the point on the surface
g, =8h(x,) + (14 88) -&h'(x)). (A2)

x,iscos 0, definedinEq. (2) and 2 '(x,) = dh(x,)/dx,. The
support function for convex surface comprised of two con-
vex bodies separated by surface-to-surface separation dis-
tance s is s'r(s), where

r(8) =s+§,(8) —&(—s). (A3)

Given the radial vector r the accompanying differential ele-
ment of surface area for the combined convex body is ds J,

dr = d6 d¢ ds|§- (3r/36) X (dr/3¢)|

= ds J(5,%1,%X0). (A4)

Here 0 and ¢ are the polar and azimuthal angles of the apse
vector § with respect to the laboratory frame. After some
algebra, one can show that the Jacobian is

J(sx1,%,00) =j(j+ fi + f2) + /i fo5in’ (@), (AS)
with
j=s+h(x)) —xh'(x)) + h(x;) — Xk (x,), (A6a)
fi=h"(x)(1—=x). (A6b)

The properties sketched above pertain to general convex
bodies. For the special case of an ellipsoid with semimajor
axis @ and semiminor axis b, the support function is

h(x) =by1 + ex?
with € = (a/b)% — 1.

The surface function S(s) for HCB’s can be obtained
from Egs. (7) and (A4)-(AT7):

S(s)=8./2m+2R? + 4R s + 5, (A8)

where S. is the surface area of the convex body and R, is its
mean radius of curvature. For a prolate ellipsoid,

(A7)

sin” ¥

1
S, = 27b 2(1 +——) (A9)
WI—¢
and
R, = i(l + _1—_7’210g_1_j-_7’)’ (A10)
2 2y 11—y

where ¥ = (a* — b?)/ad".
We now give analytic expressions for the first three coef-
ficients defined by Eq. (14). Let

I = J: dx xJ1 + ex?, (A11)
then

21, = €, + (Ie)log(Ve + ¢,), (Al2a)

8L, = €,/€ + 2¢, — € > log(Je + €,), (A12b)

161, =§e,/€ — 261 /€ + € log(Je + €,), (Al2c)
with €, = V1 + eand

ay,=1I,, (Al3a)

a, = {5031, — 1), (A13b)

a, = 3(351, — 307, + 31,). (Al3c)
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APPENDIX B
Here we evaluate g, the integral of P,(é,-&,) over the

overlap region defined in Eq. (21) by means of a scaling

argument. Define a family of convex surfaces,

r = Ary(8), (B1)
which are A-scaled versions of the excluded volume surface,
ro(s). If we transform the spherical volume element dr in the

overlapping region to the family of convex surfaces with co-
ordinates A and s, the Jacobian is

dr = |(dr/96) X (3x/3¢) - (Fr/IA)|dO dp dA. (B2)
Application of Eq. (B1) to (B2) results in
dr = |(dry/30) X (Iry/3¢) 'r,|dO do dA, (B3)

and since (dr,/36) X (Jr,/d¢) points alongs, it follows that
dr =A%h,J(s=0,8,8,)ds dA (B4)

with A, = h(x,) + h(x,). Finally, by performing the (zero
to one) integral over the scaling coordinate, we find that Eq.
(23) for g, becomes Eq. (24).

APPENDIX C

In actual light scattering experiments one measures g,
(q) where

g—1=p f dr f (dé,/4m) J (dé,/4m)

XPz(él'éz)g(r,épéz)eiq'r- (C1)

For g = 0, this equation reduced to Eq. (19). Though one is
often interested in very small g, i.e., g — 0, one is always inter-
ested in finite g, i.e., g#0. Equation (C1) can be rewritten as

oo1me faf (%)
47

xf( %) Paer e (807816 — 1167 480

é dé A A
<J (@) () new

The integrand in the first term converges sufficiently rapidly
with increasing 7, that for small g we can set ¢ = 0. In the

(C2)

second term we observe the conditional convergence men-
tioned in the text: if g0, the convergence is absolute, but
if g = 0 the term is indeterminate. So provided we exclude
g =0, which is an actual experimental requirement, we can
neglect the second term in Eq. (C2). (One can envisage L as
the length of the container, and so we require that gL > 1; in
the thermodynamic limit, L - «, and we can let ¢—0, but
subject to the condition gL > 0.) The first term in Eq. (C2)
can be rewritten as in Eq. (20), and therefore one obtains Eq.
(21).
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