
Scattering lasers
an exploration of the smallest lasers possible





Scattering lasers
an exploration of the smallest lasers possible

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. mr. P. F. van der Heijden
ten overstaan van een door het college voor promoties
ingestelde commissie, in het openbaar te verdedigen

in de Aula der Universiteit
op woensdag 14 februari 2007, te 14.00 uur

door

Tom Savels

geboren te Blankenberge, België
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CHAPTER1
Introduction: optical gain in atomic systems

1.1 Optical gain and laser oscillation

In a laser, light is generated by a combination of light amplification by stimu-
lated emission and optical feedback [54, 79, 111]. The practical implementation
of both functional laser parts — optical gain and optical feedback — comes in
many varieties. For example, laser oscillation has been shown to be possible using
solid-state gain media [78] or gaseous media [117], while implementations of laser
cavities include, among many others, ring-type cavities [102], chaotic cavities [89]
and photonic-crystal cavities [70, 116].

In its simplest form, optical feedback in a laser is implemented through a Fabry-
Pérot resonator, as shown in Figure 1.1. External pumping of a gain medium in the
resonator leads to amplification of the intracavity laser light. One of the resonator
mirrors transmits part of the light, thereby allowing for the emission of an output
laser beam with (typically) a high degree of spatial and spectral coherence.

Remarkably, despite the abundance of excellent textbooks on laser dynamics,
it is rather challenging to find an actual definition of the word “laser” [128]. Quite
obviously, the expansion of the acronym — light amplification by stimulated emis-
sion of radiation — is not defining in itself, since it fails to express in what sense the
characteristics of laser light differ from those of other light sources. For example,
the stimulated emission rate may exceed the spontaneous emission rate even below
the laser threshold, yet the term “laser” is often reserved to denote operation above
threshold.

In this thesis, we will present a study of the fundamental building blocks of
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Introduction: optical gain in atomic systems

Figure 1.1: A conventional laser consists of a gain medium (G) inside a Fabry-Pérot
cavity. The gain medium is pumped by an external pumping mechanism (P). The cavity
is made up of two mirrors (M) which confine the light and provide feedback. One of the
cavity modes is shown; light in this mode resonates in the cavity and is amplified through
stimulated emission.

laser systems. In this respect, we are facing the question of presenting a workable
definition of a laser. Defining a laser is no easy feat, given that different scientific
communities focus on laser operation in different systems and regimes. Neverthe-
less, we believe it is rewarding to start from a workable laser definition since this
clarifies semantic issues right from the beginning and allows us to focus on the
physics of the systems we present. In this thesis, we adopt the following definition:

A single-mode laser is a system which combines gain and feedback, such
that one field mode (the laser mode) is characterized by a gain-induced
increase of its spectral weight at the cost of all other system modes.
The amplitude of all system modes decays to an external bath and is
replenished by the gain source. The implementation of the source of
gain which feeds the system is arbitrary but different from the laser mode
itself.

Some general remarks are at order with respect to the above definition. First, gain-
induced competition between different system modes is a well-known laser dynamic
behavior [112]; in that sense, our definition follows naturally from standard laser
descriptions. Secondly, we excluded the notion of stimulated emission from our
definition, because we aim at a definition in terms of experimentally observable
quantities: in general, stimulated emission and spontaneous emission appear as in-
distinguishable components of the light emitted by a laser, rendering a definition
in terms of stimulated emission rather impractical. (We acknowledge that in many
standard laser descriptions the difference between both emission types is indeed
very clear, but this distinction vanishes in more complicated systems such as the
ones described in this thesis). Thirdly, no reference is made to the concept of a
laser threshold, because the threshold concept is well-defined only in the thermody-
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1.2. Microscopic building blocks of a laser

(a) (b)

Figure 1.2: (a) A one-atom (single-ion) laser consists of single atom (ion) inside a cavity.
The atom (ion) is pumped while the cavity provides feedback. (b) A random laser consists
of a gain medium containing random scatterers. The gain medium is pumped by an exter-
nal pumping mechanism (P), while the optical feedback is provided by multiple scattering
of light.

namic limit [99] and therefore of limited use in the microscopic systems of interest.
In other words, while the spectral width and power of the emitted light may vary
nonlinearly (as they do in conventional lasers) and a threshold might be associated
with their behavior “by eye”, no fundamental quantitative criterion for the exis-
tence of a laser threshold exists in microscopic systems. Finally, we excluded any
notion on second-order coherence in the above definition. As is well-known from,
e.g., bad-cavity lasers [29, 49, 130], the second-order correlations of laser light may
behave drastically differently from the correlations in conventional lasers (especially
in the low photon number limit); defining a laser based on second-order correlations
therefore seems impractical, if not meaningless. Our definition of a single-mode laser
is, though debatable, a workable definition in terms of experimentally observable
quantities; we will henceforth disregard laser-related semantic issues and focus on
the physics of the systems at hand.

1.2 Microscopic building blocks of a laser

In order to study the basic physics of the processes involved in laser oscillation,
there has been an intensive search for laser operation in fundamental systems [67].
The resulting drive toward miniaturization has led to, among others, the realization
of vertical-cavity semiconductor lasers [28], dye-microsphere lasers [119], microring
and microdisc semiconductor lasers [84], microsphere lasers [46, 123] and photonic-
bandgap lasers [58]. As laser systems are made smaller, a purely macroscopic de-
scription becomes inadequate and microscopic considerations should be taken into
account [130]. An interesting example of lasers which require a (partially) micro-
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scopic treatment is the class of one-atom lasers, schematically depicted in Figure
1.2 (a). In one-atom (or single-ion) lasers [9, 80], the gain medium is reduced to a
fundamental level, while macroscopic mirrors provide feedback. Another, contrast-
ing example is the class of random lasers [21, 68, 73, 122], shown in Figure 1.2 (b).
In random lasers, the optical feedback is provided by scattering from microscopic
particles, while the gain medium remains macroscopic. Obviously, neither the feed-
back mechanism nor the gain medium can be reduced to less than one atom.

In this thesis, we explore the most fundamental system displaying both gain and
feedback: a single pumped atom, surrounded by one or more passive atoms provid-
ing optical feedback by scattering. The atoms are positioned in free space in the
absence of a cavity. The absence of a macroscopic cavity and its modes differenti-
ates our model from models in which atoms interact via a single field mode such as,
e.g., atoms in a single-atom maser [83]. Our few-atom system can be described fully
microscopically, without introducing any phenomenological parameters or paraxial
approximations. Hence, the presented results are based solely on the scattering
properties of the atomic building blocks and their description. We show that this
system, though very simple, shows surprisingly strong spectral gain narrowing and
mode redistribution, indicating an approach to laser oscillation. In addition, the
observed gain-induced phenomena are more pronounced as the number of atoms
increases, in correspondence with the intuitive N →∞ limit. Due to their remark-
able behavior, we will refer to few-atom systems with gain as “scattering lasers”.

The dynamics of the scattering lasers we consider are governed by the collective
behavior of the passive atoms acting as a cavity and the pumped atom providing
gain. The interplay of gain and feedback distinguishes the cooperativity in our
systems from the type of collective atomic behavior found in literature. For exam-
ple, descriptions of the decay of atomic ensembles with an initial dipole moment
(referred to as superradiant systems [1, 5, 33, 35, 50, 98]) or without an initial
dipole moment (referred to as superfluorescent systems [16, 32, 51, 52, 115]) are
inherently transient, in contrast to the steady-state behavior we will focus on. In
addition, the spectral width of a superradiant pulse broadens quadratically with the
number of atoms, as opposed to the spectral narrowing we will present. We stress
that atomic ensembles with laser-like behavior have been reported in literature, but
these systems are either ensembles in the very large atom-number limit [34], systems
describing amplified spontaneous emission [6–8, 25, 77, 93, 94] or atomic systems
in a (macroscopic) cavity [53]. In relation to the aforementioned studies of atomic
ensembles we will show that, remarkably, pronounced mode competition is possible
in few-atom systems even in the absence of a cavity.

1.3 Overview of this thesis

We start in chapter 2 by describing the optical scattering properties of a single
pumped atom. A master equation approach will lead to a description of an atom
with gain in terms of its polarizability. The influence of the pump field can be
characterized by a single dimensionless parameter, expressing both a broadening of
the atomic transition and a decrease of the atom’s polarizability. In addition, we
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will show that the presence of gain not only causes the atom to scatter partially
inelastically, but also changes the atom’s dispersion and dissipation [104].

In chapter 3 we use the results of chapter 2 to describe N atoms with gain in the
framework of multiple scattering of light. Remarkably, the presence of gain allows
for the existence of a threshold for atom numbers as low as N = 2. In other words,
we demonstrate that a two-atom system with gain exhibits discontinuous threshold
behavior within a semiclassical multiple-scattering formalism.

Although the threshold prediction of chapter 3 is quite surprising, the ap-
plied multiple-scattering approach is approximative since multiple scattering of off-
resonant light is disregarded. In chapter 4 we calculate a first-order estimation of
the atomic saturation induced by off-resonant light. We will demonstrate such sat-
uration to be significant and to suppress the manifestation of a threshold.

In chapter 5, we proceed beyond the above first-order approximation and present
a quantum-mechanical study of N -atom systems with gain, including off-resonant
interactions in all scattering orders. A Master equation approach will reveal that
few-atoms with gain exhibit pronounced mode competition, providing the atoms
are in each other’s near-field.

Finally, we will argue that the physical properties of an N -atom system in the
presence of gain are determined by the system’s photon storage capacity. Since the
storage capacity in an N -atom system is limited by the number of atoms, few-atom
systems are computationally challenging. In chapter 6, we circumvent this compu-
tational restriction by eliminating the saturation of the passive atoms, thus leading
to even more pronounced mode competition effects. In relation to the threshold
prediction of chapter 3, we show that as the applied pump intensity increases, the
microscopic systems under consideration exhibit a smooth crossover from a regime
dominated by spontaneous emission to a regime where pronounced laser effects are
apparent.
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CHAPTER2
A quantum optical approach to multiple scattering of light

We present an extension of the T-matrix approach to scattering of light by three- and
four-level systems, using a description based on a Master equation. The presented
formalism allows us to determine the light-scattering properties of an atomic point
scatterer based on its internal energy-level structure. More particularly, we calculate
the T-matrix of an optically pumped atom, providing an exact and analytical expression
describing the influence of a pump field on the light-scattering properties of an atomic
system. Finally, we demonstrate the generality of the presented formalism by considering
a few practical atomic systems with their associated T-matrix.

2.1 Introduction

In the description of the interaction of atomic ensembles with light, the atoms are of-
ten treated in the electric-dipole approximation, and are therefore effectively consid-
ered to be point dipoles. The advantages of the point-dipole formalism are twofold.
First, the delta-function potential associated with point scatterers allows for signif-
icant mathematical simplifications compared to finite-size scatterers [31]. Secondly,
the point-scatterer formalism allows for a transparent description of many multiple-
scattering phenomena, mimicking most of the associated relevant physics [66]. The
light-scattering properties of point dipoles can be expressed by means of their T-
matrix

←→
T , which is related to their dynamic (dipole-dipole) polarizability ←→α . If

one describes the internal structure of the atoms as an effective two-level system [4]
or a damped harmonic oscillator, one finds the well-known Lorentzian expression for
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A quantum optical approach to multiple scattering of light

the linear dynamic polarizability [75] for frequencies near the resonance frequency,
valid for intensities well below saturation.

In this chapter, we present an extension of the point-dipole T-matrix formalism
to three- and four-level atoms. In practice, the “atoms” could be implemented as
any type of sub-wavelength quantum objects, for example: trapped atoms, quan-
tum dots [45, 47], trapped ions [18, 39, 72] or dye molecules. Few-level atoms have
been subject to a lot of theoretical research in the past, especially in the context
of lasing without inversion [55, 82, 96, 106, 124]. However, in this chapter we focus
on a rather different route: our aim is to develop a connection between the internal
resonance structure of a sub-wavelength quantum object — such as an atom — and
its light-scattering properties in terms of a classical T-matrix. This approach allows
us to present a transparent formulation of a point dipole with gain, based on clear
physical grounds. The introduction of a pump in the point-dipole model is highly
attractive because it allows, within the framework of the T-matrix formalism, for a
description of optically amplifying atomic systems [9, 48, 80, 83].

We demonstrate how to derive the T-matrix of an atomic scatterer by consid-
ering the example of an optically pumped three-level system. In section 2.2, we
derive and solve the system’s Master equation. The evolution of all atomic popu-
lations and internal coherences can then be deduced. In particular, we will focus
on the system’s steady-state regime. In section 2.3, we will connect the reduced
density matrix of the system with its dynamic polarizability, which will lead to the
T-matrix of a point dipole with gain, based on a three-level pumping scheme. We
show in section 2.4 that the optical properties of such an optically pumped dipole
can be straightforwardly deduced from its T-matrix; we elaborate on the effect of
gain on the atom’s dispersion and dissipation behavior in more detail. Finally, we
demonstrate the general applicability of the presented formalism by considering a
few standard quantum optical systems and their corresponding T-matrix in section
2.5. More particularly, we derive the T-matrix of an atomic “V ” system and a “Λ”
system as opposed to a standard two-level system. Furthermore, we derive the T-
matrix of a point dipole with gain based on a four-level pumping scheme as opposed
to a three-level scheme; we point out that the choice of pumping implementation
has important implications on the resulting light-scattering properties.

2.2 Master equation of a three-level atom with
gain

We start by considering a three-level atom abc, shown in Figure 2.1. The atom has
three relevant energy levels: the ground state a, a highly excited state b and the
upper state of the relevant c → a transition c. Decay between the energy levels
levels a, b and c occurs according to the decay rates Γbc and Γca. The b→ c tran-
sition either has a non-radiative nature, or its transition frequency is far detuned
compared to the other relevant frequencies in the system. We are interested in the
simplest possible scheme that allows for incoherent pumping. Therefore, we will
make the following simplifying assumptions. We assume that spontaneous emission
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2.2. Master equation of a three-level atom with gain

Figure 2.1: The three-level system abc. Decay from b to c and from c to a occurs at a rate
Γbc and Γca, respectively. Decay from b to a is neglected. The left dashed arrows express
the interaction with the pump. The right dashed arrows depict the interaction with the
external probe field.

from level b to level a can be neglected compared to other decay processes, hence
Γba ≈ 0. Furthermore, the life time Γ−1

bc of level b is chosen to be small compared
to the life time Γ−1

ca . Both previous restrictions on the decay rates do not affect our
final results in any qualitative way, and are only introduced for mathematical sim-
plicity. Two incident electromagnetic fields Ee and Ep interact with abc. The field
Ep serves as a pump to establish population inversion in the two-level system ac.
The external probe field Ee allows for the calculation of the dynamic polarizability
of the ac system in a one-way response theory approach.

We are interested in the steady-state behavior of the system abc. We will now
derive the Master equation of the system, using the standard procedure presented
in [30]. The total Hamiltonian of the system abc, the electromagnetic fields and
interactions can be written in the electric-dipole approximation as

Ĥ ≡ ĤA + ĤP + ĤR + V̂AR + V̂AE + V̂AP . (2.1)

The atomic Hamiltonian ĤA is given by Ĥab + Ĥc, with

Ĥab ≡ ~ωbaŜ
+
abŜ

−
ab, Ĥc ≡ ~ωcaŜ

+
acŜ

−
ac, (2.2)

with Ŝ+
ij , Ŝ

−
ij the ij dipole raising and lowering operators respectively, defined as

Ŝ+
ij ≡ |j〉〈i|, Ŝ−ij ≡ |i〉〈j|, i, j = a, b, c. (2.3)

The Hamiltonian of the pump field is given by

ĤP ≡ ~ωp

(
â†pâp + 1

2

)
, (2.4)

where the operators âp and â†p respectively annihilate and create a pump photon
with frequency ωp. The system abc is coupled via the interaction V̂AR
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V̂AR ≡ −d̂ ·
∑
kλ

εkλ

(~ωkλ

2ε0V

)1/2(
âkλ + â†kλ

)
, (2.5)

to the three-dimensional multimode electromagnetic field with Hamiltonian

ĤR ≡
∑
kλ

~ωkλ

(
â†kλâkλ + 1

2

)
, (2.6)

where the subscripts k and λ respectively denote the wave vector and polarization
state of each field mode. The dipole operator is defined as

d̂(t) ≡ dac

(
Ŝ+

ac(t) + Ŝ−ac(t)
)
, (2.7)

with dac the ac transition dipole moment. The operators âkλ and â†kλ respectively
annihilate and create a photon with polarization εkλ in the multimode field, and
V = L3 is the quantization volume. The external field Ee has a frequency ω, and
interacts with the system abc by

V̂AE ≡ 1
2

~Ωe

(
Ŝ+

ace
−iωt + Ŝ−ace

iωt
)
, (2.8)

where the interaction strength is given by the Rabi frequency Ωe ≡ −dac ·Ee/~.
The interaction Hamiltonian V̂AP , finally, denotes the coupling of the atom to

the pump:

V̂AP ≡ g
(
Ŝ+

ab + Ŝ−ab

)(
âp + â†p

)
, (2.9)

with g expressing the coupling strength between the pump field and the system [30].
The pump field shifts the energies of the levels a and b. This shift, which can be
significant for large pump intensities, can be taken into account (see, e.g., [23]) by
considering the dressed states or eigenstates of the Hamiltonian ĤD ≡ Ĥab + ĤP +
V̂AP , given by:

|1(N)〉 ≡ sin(θ)|a,N + 1〉+ cos(θ)|b,N〉, (2.10a)
|2(N)〉 ≡ cos(θ)|a,N + 1〉 − sin(θ)|b,N〉, (2.10b)

graphically represented in Figure 2.2. Since the energy of level c is unaffected by
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2.2. Master equation of a three-level atom with gain

(a) The three-level system abc. (b) The dressed states |1(N)〉 and |2(N)〉.

Figure 2.2: In Figure (a), levels |a, N〉, |b, N〉 and |c, N〉 are shown for different number of
pump photons N . The energy differences between energy levels are also indicated. The
dashed box denotes the abc system with N pump photons. In Figure (b), the dressed
states |1(N)〉 and |2(N)〉 are schematically shown. The energy difference between both
states is given by ~Ω, with ~2Ω2 = ~2(δ2

p + Ω2
p).

the pump, we use the notation |c(N)〉 ≡ |c,N〉. The number of pump photons is
then given by N , and

tan 2θ ≡ −Ωp

δp
, 0 ≤ 2θ < π, (2.11)

where we used

~Ωp ≡ −dab ·Ep, δp ≡ ωp − ωba, (2.12)

with dab the ab transition dipole moment. We assume for now that the distribu-
tion of pump photons is relatively narrow around a large average value (〈N〉 �
∆ N � 1), for which 2g

√
〈N〉 = ~Ωp holds (see, e.g., [30]); this assumption is

well justified if, e.g., the pump field is in a coherent state with large average photon
number.

The dynamics of the system can be expressed in terms of the Master equation
for the reduced density matrix σ̂. As we will show in chapter 5, the Master equa-
tion is in the Born-Markov approximation, written in the Lindblad form, given by
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[74, 97, 107]

d

dt
σ̂ = L̂σ̂

≡ L̂ndσ̂ + L̂dσ̂. (2.13)

The non-dissipative part of the Lindblad operator can be written as

L̂ndσ̂ ≡ −
i

~
[ĤD + Ĥc + V̂AE , σ̂], (2.14)

while the dissipative part is given by

L̂dσ̂ ≡−
Γca

2

(
Ŝ+

acŜ
−
acσ̂ + σ̂Ŝ+

acŜ
−
ac

)
+ ΓcaŜ

−
acσ̂Ŝ

+
ac

− Γbc

2

(
Ŝ+

bcŜ
−
bcσ̂ + σ̂Ŝ+

bcŜ
−
bc

)
+ ΓbcŜ

−
bcσ̂Ŝ

+
bc. (2.15)

We will elaborate in more detail in chapter 5 on the assumptions that lead to the
above Master equation. The explicit evolution equations for all reduced density ma-
trix elements are found by expanding equation (2.13) in the basis {|1(N)〉, |2(N ′)〉,
|c,N ′′〉}, where N , N ′ and N ′′ are not necessarily equal. However, we will show in
the next section that only an expansion in the basis {|1(N)〉, |2(N)〉, |c,N + 1〉} is
required to determine the system’s T-matrix, and we will therefore restrict ourselves
to this particular basis. If we introduce the following notations for typographical
simplicity

σN,M
i,j ≡ 〈i(N)|σ̂|j(M)〉, (2.16a)

EN
i ≡ 〈i(N)|ĤD + Ĥc|i(N)〉, i, j ∈ {1, 2, c}, (2.16b)

we can focus on the evolution equations obtained by an expansion of (2.13). First,
the evolution of the population of the dressed state |1(N)〉 is given by

.
σ

N,N
1,1 = −iΩe

2
sin(θ)

(
eiωtσN+1,N

c,1 − e−iωtσN,N+1
1,c

)
+ Γca sin2(θ)σN+1,N+1

c,c

− Γbc cos2(θ)σN,N
1,1 +

Γbc

2
sin(θ) cos(θ)

(
σN,N

1,2 + σN,N
2,1

)
, (2.17)

with similar expressions for the populations σN,N
2,2 and σN,N

c,c . Secondly, coherences
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such as σN,N
1,2 evolve as

.
σ

N,N
1,2 = −iΩe

2

(
eiωt sin(θ)σN+1,N

c,2 − e−iωt cos(θ)σN,N+1
1,c

)
+ Γca sin(θ) cos(θ)σN+1,N+1

c,c − i

~

(
EN

1 − EN
2

)
σN,N

1,2

− Γbc

2

(
σN,N

1,2 − sin(θ) cos(θ)σN,N
2,2 − sin(θ) cos(θ)σN,N

1,1

)
, (2.18)

with analogous expressions for all other coherences, derived in Appendix A. Ex-
panding the Master equation allows us to describe the dynamics of our system, and
in particular to look at its steady-state behavior. If we examine the Master equation
more closely, then two types of evolutions can be distinguished. First, the coherences
are driven by the external probe field; therefore their evolution can be separated
in a quickly oscillating component (evolving typically at the probe frequency) and
a slowly decaying envelope (evolving typically at Γ−1

ca ). Hence, a time-independent
regime or steady-state for σ̂(t) can only be obtained for the envelope of the co-
herences (this separation of time scales is often referred to as the Rotating Wave
Approximation [107]). Secondly, the other matrix elements (the populations), do
not exhibit such quick oscillatory behavior and decay to their steady-state value
without any persistent oscillations. The steady-state value of the level populations
πi, i ∈ {a, b, c}, for example, is given in the small external probe field limit by

πst
c ≡

∑
N

σN,N
c,c =

Γbc

Γca
πst

b =
W

1 +W (1 + 2Γca

Γbc
)

= 1− πst
b − πst

a , (2.19)

where we defined the dimensionless pumping intensity

W ≡
Ω2

p

ΓbcΓca
, 0 ≤W < +∞, (2.20)

such that population inversion occurs in the ac system for W ≥ 1. Now we can
describe the dynamics of the system, we focus on the connection between the steady-
state solution of the Master equation and the scattering properties of the system
for incident light near the c→ a resonance.

2.3 Derivation of the T-matrix of a dipole with
gain

The Master equation allows us to express expectation values of atomic operators in
terms of reduced density matrix elements [79]. We will elaborate in more detail on
expectation values of atomic operators in chapter 5; at this point, we focus on the
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expectation value of the operator d̂ associated with the ac dipole transition

〈
d̂
〉
≡
〈
d̂−

〉
+
〈
d̂+

〉
= dac

(
Tr(σ̂Ŝ−ac) + Tr(σ̂Ŝ+

ac)
)
, (2.21)

with

Tr(σ̂Ŝ−ac) ≡
∑
N

∑
i=1,2,c

〈i(N)|σ̂Ŝ−ac|i(N)〉

=
∑
N

(
σN,N−1

c,1 sin(θ) + σN,N−1
c,2 cos(θ)

)
, (2.22)

from which we can see that indeed only the reduced density matrix elements given
by an expansion of (2.13) in the basis {|1(N)〉, |2(N)〉, |c,N + 1〉} appear in the
expression for the average dipole moment. Furthermore, if we assume the pump
frequency to be on resonance of the ab transition, we can deduce that in steady-
state (defining ωca − ω ≡ δ):

〈
d̂−

〉
= −dace

−iωt 1−W
1 +W

Ωe

2δ − iΓca(1 +W ) + 2Ω2
e

2δ+iΓca(1+W )

. (2.23)

The (time-)averaged atomic ac dipole operator is related to the dynamic polar-
izability ←→α of the ac system by (see, e.g., [75])

〈
d̂
〉
≡ ε0Re

[←→α (ω) ·Eee
−iωt

]
. (2.24)

Both equivalent expressions (2.21) and (2.24) allow us to connect the polarizability
←→α with the reduced density matrix, yielding

←→α (ω) ·Ee = − 1
~ε0

dac(dac ·Ee)
1−W
1 +W

1

−δ + iΓca

2 (1 +W )− Ω2
e

2δ+iΓca(1+W )

, (2.25)

which yields for small external probe fields

←→α (ω) = −←→α0
1−W
1 +W

1
2

ωca

ω − ωca + iΓca

2 (1 +W )
. (2.26)

The static polarizability is given by

←→α0 ≡ α0µac ⊗ µac, α0 ≡
2|dac|2

ωca~ε0
, (2.27)
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where “⊗” denotes the tensor product of two vectors, and µac is the unit vector
parallel to dac.

(A small comment is at order here: although we currently focus on the deriva-
tion of the polarizability ←→α , only the combination ←→α · Ee appears in a multiple-
scattering formalism, as we will show in chapter 3; the separation of the polarization
←→α ·Ee in ←→α and Ee is at this point only introduced for notational simplicity.)

It is important to note that the same expression (2.25) is obtained if the dress-
ing of the levels a and b is omitted (and the optical Bloch equations, discussed
in chapter 4, are used instead of the Master equation). The incoherent pumping
mechanism only appears in the polarizability as a parameter W , without causing
any detuning effects.

The scattering properties of a point dipole — or, more generally, any scattering
object — can be expressed by its T-matrix. As mentioned in the introduction, the
T-matrix of a scatterer is closely connected to its dynamic polarizability. For a
point dipole located at r = 0, both scattering quantities are related by

〈r|
←̂→
T (ω)|r′〉 = −

(ωca

c

)2←→α (ω)δ(r)δ(r − r′)

= t(ω)µac ⊗ µacδ(r)δ(r − r′), (2.28)

with as matrix element t(ω):

t(ω) ≡α0

(ωca

c

)2 1−W
1 +W

1
2

ωca

ω − ωca + iΓca

2 (1 +W )− Ω2
e

2ωca−2ω+iΓca(1+W )

, (2.29)

which is nonlinear in the in the pump intensity (through W ) and the incident
probe field (through Ωe). Both delta functions appearing in (2.28) express the lo-
cal character of the scatterer; the anisotropy of the T-matrix is clearly due to the
preferential orientation induced by the transition dipole moment. In the absence
of pumping (W = 0) and for small external probe fields, we recover the expression
for the linear dynamic polarizability of a two-level atom, which satisfies the optical
theorem [66, 87] expressing energy conservation:

−Im
[ t(ω)
ωca/c

]∣∣∣∣∣
W=0
Ωe→0

=
|t(ω)|2

6π

∣∣∣∣∣
W=0
Ωe→0

. (2.30)

For the optical theorem to hold, the static polarizability must satisfy

α0 =
6π

(ωca/c)3
Γca

ωca
, (2.31)
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which, if substituted in (2.29), yields the final expression for the T-matrix element
of a point dipole with gain for arbitrary pump and external probe field intensity.
In the limit for small external probe fields, (2.29) then reduces to

t(ω) =
3π
ωca/c

1−W
1 +W

Γca(
ω − ωca + iΓca

2 (1 +W )
) . (2.32)

Expressions (2.28) and (2.32) (or more generally, (2.29)) are the key results of this
section. In the next section, we will elaborate on their properties and physical
consequences.

2.4 Properties of the T-matrix of a dipole with
gain

The T-matrix (2.28) fully expresses the scattering properties of a point dipole with
gain and satisfies the Kramers-Kronig relations [10], as is shown in Appendix B.

The pump field influences the T-matrix in a clear physical way. The most obvious
effect of the pump is to induce changes of the (time-)averaged populations of the
levels a and c, which leads to the multiplication of the dynamic polarizability with
a factor (1−W )/(1 +W ). Remarkably, the multiplication factor becomes negative
if population inversion is present in the ac system (W > 1), expressing the fact
that not only the imaginary, but also the real part of the dynamic polarizability is
drastically changed by pumping. In other words, not only does absorption change
into gain, but the dispersion relation also changes, as is shown in Figure 2.3. Besides
changing the sign of the dynamic polarizability, the gain also effectively broadens
the a level by a factor (1 +W ), which is equivalent with a decrease of the Q factor
Q ≡ ωca/Γca of the c→ a resonance. The latter effect is often referred to as power
broadening.

It is intuitively clear that the optical theorem does not hold any longer as a
nonzero pump field is applied. We will now show that this is indeed the case. If
an external probe field with polarization vector ε is incident on the point dipole
we consider here, then the dipole scattering cross-section σsca(ω) and extinction
cross-section σext(ω) are given by

σsca(ω) = +
(µac · ε)2

6π
|t(ω)|2, (2.33a)

σext(ω) = − (µac · ε)2

ω/c
Im
[
t(ω)

]
. (2.33b)

Both cross-sections depend (through t(ω)) on the applied pumping intensity. The
albedo a (not to be confused with the energy level a) of the ac system is defined
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(a) W = 0 (b) W = 3

Figure 2.3: Comparison of the absorption (solid line) and the dispersion (dashed line) of
the two-level ac system described in this chapter. The absorption is given by the imaginary
part of the T-matrix and the dispersion by the real part of the T-matrix. Both quantities
are shown as a function of the detuning ω − ωca (in units of Γca) (a) without a pump
(W = 0) (b) for a pumping intensity in the population inversion regime (W = 3). The
graphs are scaled such that −Im[t(ωca)] = 6πc/ωca in Figure (a).

as the ratio of the elastic scattering cross-section and the extinction cross-section,
which can be written for small incident probe fields as

a ≡ σsca(ω)
σext(ω)

=
1−W

(1 +W )2
, (2.34)

where (1 − a) is the fraction of the incident probe field which is taken away from
the incident beam but not transformed into scattered light. If the optical theorem
is satisfied, the albedo is one, as can be seen from expressions (2.30), (2.33) and
(2.34). Therefore, if the optical theorem does not hold any longer, we expect a
to be smaller than unity. (One might intuitively expect the presence of gain to
result in an albedo larger than one, but expression (2.34) proves this intuition to
be incorrect). To show that indeed |a| ≤ 1, we plot the albedo (2.34) in Figure 2.4
as a function of the reduced pumping parameter W . As soon as the dipole has
internal population inversion (W > 1), the albedo becomes negative, which indicates
that the point dipole then has a negative extinction cross-section, as we expect.
Obviously, the scattering cross-section is — by definition — always positive and
the effect of the pump field is manifested purely as a decreasing of the scattered
field for increasing pump. Furthermore, the extinction cross-section is, in absolute
value, always larger than the scattering cross-section for nonzero pump. In other
words, some of the incident probe field is taken away from the incident beam, but
not scattered elastically. The presence of inelastic scattering is no surprise, since
the total intensity emitted by the dipole is proportional to the population of the
upper state c, whereas the coherent intensity emitted by the dipole is proportional
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Figure 2.4: The albedo a of the ac system. A value of a = 1 denotes that the atom scatters
elastically at the a → c transition while a < 1 reveals the scattering to be partially inelastic.
The albedo is shown as a function of the pumping parameter W .

to the amount of coherence between a and c (see, e.g., [30]). Both intensities are
only equal (all scattering is then elastic) in the absence of a pump field and in the
small external probe field limit. As soon as a pump field is applied, or for larger
external probe fields [27, 85], some of the light is scattered inelastically.

Finally, we see from expressions (2.33) that the optical theorem is also satisfied
for the nontrivial values W = 1 and W → +∞. The latter two pumping values
correspond to pumping intensities for which the T-matrix vanishes (therefore the
optical theorem holds), but the reason why is clearly different for both cases: for
W = 1, populations are, on average, equally distributed among levels a and c,
preventing the building up of an average scattered field; for W → +∞, on the other
hand, the line width broadening of the c→ a transition induced by the pump field
inhibits scattering. We stress that the absence of light scattering for W = 1 has
to be interpreted in a statistical sense: the T-matrix is deduced from a (statistical)
density matrix, denoting that for W = 1, the field scattered by the atom vanishes
on average. In addition, the above transparency is caused by a fully incoherent
pumping scheme, contrary to, e.g., electromagnetically induced transparency [56].

2.5 Extensions

In the previous sections, we have used a three-level atomic system as an example
to demonstrate how to derive the light-scattering properties of an atom, based on
its internal energy-level structure. The quantity which connects the atom’s (clas-
sical) T-matrix and its (quantum mechanical) resonance structure is the system’s
transition dipole moment (2.21). The foregoing derivation of the T-matrix is very
general and can be applied to a multitude of atomic systems. To demonstrate this
general applicability, we focus in this section on the T-matrix derivation of three
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Figure 2.5: A three-level system V -type system adc. An electric field is incident on the
system. This field induces transitions between a and c through the Rabi frequency Ωac,
and transitions between a and d through the Rabi frequency Ωad.

standard quantum optical systems.

2.5.1 The T-matrix of a V system

An extensively studied nontrivial quantum optical system is a V -type system, as
shown in Figure 2.5. A ground state a can be excited to two possible excited states
c and d. Transitions between the ground state and the excited states are dipole-
allowed with transition dipole moments dac ≡ |dac|µac and dad ≡ |dad|µad. For
simplicity, we assume both excited states to have equal energy (~ωd = ~ωc) and
life time (Γ−1

ca = Γ−1
da ). The transition dipole moments of the a → c and a → d

transitions are taken to be perpendicular: µac ·µad = 0. A physical implementation
leading to such orthogonal transitions is, e.g., an atomic |s〉 → |px〉 and |s〉 → |py〉
transition (the |s〉 → |pz〉 transition is assumed to be irrelevant in this particular
example). Direct transitions between d and c are considered forbidden. An incident
field Ee with frequency ω interacts with the system; the interaction is quantified
by the Rabi frequencies Ωac ≡ −dac ·Ee/~ and Ωad ≡ −dad ·Ee/~.

The V system adc can be described by a density matrix σ̂, of which the evo-
lution is governed by a Master equation of the Lindblad type, similarly to (2.13).
The derivation of the resulting Master equation is analogous to the derivation shown
above; the resulting T-matrix is

←̂→
TV (ω) = −

(ωca

c

)2

δ(r)1̂1⊗←→αV (ω)

≡ tV (ω)δ(r)1̂1⊗
(
µac ⊗ µac + µad ⊗ µad

)
, (2.35)

with

tV (ω) ≡ 3π
ωca/c

Γca(
ω − ωca + iΓca

2 + Ω2
ac+Ω2

ad

2(ω−ωca)−iΓca

) , (2.36)

where 1̂1 is a unit operator with matrix elements 〈r|1̂1|r′〉 = δ(r − r′). The delta
function in (2.35) expresses that the atom is positioned at r = 0. The physical
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Figure 2.6: A three-level system Λ-type system adc. An electric field is incident on the
system. This field induces transitions between a and c through the Rabi frequency Ωac.

meaning of expressions (2.35) and (2.36) can be intuitively understood: exciting the
V system can occur via two transitions with orthogonal associated transition dipole
moments. The existence of two excitation channels is translated into the saturation
behavior and tensor character of the system’s T-matrix. The saturation behavior of
the V system is quantified by (Ω2

ac + Ω2
ad), indicating that the excitations induced

by the external field Ee are evenly distributed over both excitation channels. The
special tensor character of the T-matrix (2.35) indicates that in a V system a dipole
moment can be excited in two available spatial directions µac and µad. In contrast,
inducing a dipole moment in a (two-level) point dipole can only occur in one spatial
direction, leading to the uniaxial tensor character of (2.28). The observation that
the nature and number of available transitions affects the tensor character of the
atom’s T-matrix leads to the interesting consequence that the simplest atomic level
diagram leading to an isotropic scatterer consists of four levels: one ground level
and three excitation channels with mutually orthogonal transition dipole moments,
as is the case for, e.g., a spinless hydrogen atom [76].

2.5.2 The T-matrix of a Λ system

The second level scheme we consider is a three-level Λ system as shown in Fig-
ure 2.6. Two dipole transitions a → c and d → c share a common excited level c.
The associated transition dipole moments are dac ≡ |dac|µac and ddc ≡ |ddc|µdc.
Transitions between a and d are considered forbidden. We assume the frequency of
the d→ c transition to be far detuned from the a→ c transition. An incident field
Ee with frequency ω interacts with the system. The frequency ω is near-resonant
with the a → c resonance. The interaction of the incident field with the Λ system
is quantified by the Rabi frequency Ωac ≡ −dac ·Ee/~.

In a similar fashion as was described in the previous V -type example, we can as-
sociate a density matrix and corresponding Master equation with the Λ system adc.
The derivation of the Master equation is analogous to the derivation shown above,
leading to the system’s T-matrix. Surprisingly, the resulting T-matrix is always zero

←̂→
TΛ(ω) =

←→
0 , (2.37)
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Figure 2.7: A four-level system acdb. An electric field Ee is incident on the system, near
the a → c resonance. A pump field Ep interacts with the system through the b → d
transition. The life times of levels d, c and a is given by Γ−1

dc , Γ−1
ca and Γ−1

ab respectively.
Decay from d to b is assumed to be slow compared to other processes, hence Γdb ≈ 0. The
left dashed arrows express the interaction with the pump. The right dashed arrows depict
the interaction with the external probe field.

indicating that the Λ system adc does not lead to an average scattered field for in-
cident fields at the a→ c transition. The vanishing of an average scattered field is
due to the fact that in steady-state, all population is trapped in the d level, thereby
inhibiting any population transfer between levels a and c. In literature, the non-
trivial dynamics of the above Λ system have been studied extensively; for example,
irradiation of a Λ system with two external fields has led to a demonstration of laser
oscillation without inversion [55, 82, 96, 106, 124].

2.5.3 The T-matrix of a four-level system

As a third and final example of a derivation of a T-matrix based on microscopic
considerations, we consider a four-level system acdb with gain, as shown in Fig-
ure 2.7. The transition involved in the scattering process of an incident probe field
is the c → a transition with associated transition dipole moment dac ≡ |dac|µac.
An incident field Ee interacts through the Rabi frequency Ωac ≡ −dac ·Ee/~ with
the ac system. Gain is incorporated in the system by indirectly pumping popula-
tion from a to c via two other levels b and d. This pumping is implemented by a
pump field Ep, resonant with the b → d transition. The interaction of the pump
field and the atom is quantified by the Rabi frequency Ωbd = −dbd ·Ep/~, with dbd

the b→ d transition dipole moment. The essential difference between the four-level
pumping scheme acdb shown here and the three-level scheme considered above (in
Figure 2.1) is that in the latter, the scattering transition and the pumping tran-
sition share a common (ground) level. In that case, power broadening affects the
scattering properties of a pumped three-level system, as discussed in section 2.4.
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The four-level scheme of Figure 2.7 eliminates power broadening by separating the
pump transition b→ d and the scattering transition c→ a.

A description of the four-level system acdb in terms of its density matrix σ̂ leads
to the T-matrix of the a→ c scattering transition, yielding

←̂→
T4l(ω) = −

(ωca

c

)2

δ(r)1̂1⊗←→α4l(ω)

≡ t4l(ω)δ(r)1̂1⊗
(
µac ⊗ µac

)
, (2.38)

in the linear regime, with

t4l(ω) ≡ α0

(ωca

c

)2 1
2
Φ(Ωbd)

ωca(
ω − ωca + iΓca+Γab

2

) , (2.39)

with the static polarizability α0 given by (2.27). The pump field enters the expres-
sion for the T-matrix through the dimensionless intensity

Φ(Ωbd) ≡
(Γca − Γab) Ω2

bd

Ω2
bd

(
Γab + Γca + 2ΓabΓcaΓ−1

dc

)
+ ΓabΓcaΓdc

. (2.40)

Interesting differences are apparent between T-matrices (2.38) and (2.28), re-
flecting that the choice of pumping scheme influences the resulting scattering prop-
erties. First, we observe that the last factor of (2.39) is independent of the pump.
As mentioned above, the nature of this term indicates that the four-level pumping
scheme does not exhibit power broadening, in contrast to a three-level pumping
scheme. Secondly, the Q factor of the a → c scattering transition is given by
Q ≡ ωca/(Γca + Γab) which differs from the “bare” value ωca/Γca due to leakage
from the a level to the lower-lying b-level. Thirdly, in the absence of a pump field,
no scattering occurs at the a → c transition, since limΩbd→0 t4l(ω) = 0. This pos-
sibility of transparency of the four-level system acdb for scattering at the a → c
transition is intuitively trivial, since in the the absence of a pumping field, all pop-
ulation remains trapped in the b state, unaffected by any field with frequency near
the c→ a transition. Finally, and perhaps most strikingly, the sign of the T-matrix
is determined only by the decay rates Γca and Γab. In other words, whether the
population in the ac subsystem is inverted or not is independent of the applied
pump field intensity. This observation can be qualitatively expressed in terms of
level populations, by calculating the population difference between levels a and c,
yielding:

〈a|σ̂|a〉 − 〈c|σ̂|c〉 = Φ(Ωbd), (2.41)
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confirming that the presence of population inversion in the ac system is fully deter-
mined by the sign of (Γca − Γab). Physically, this indicates that if population leaks
away from the a level less quickly than it flows towards that level, the population
of the a level will build up and exceed the population of the c level in steady-state,
regardless of the applied pump field intensity [111].

2.6 Summary

The aim of this chapter was to express the light-scattering properties of an atomic
system in terms of its internal energy level structure. As an important application,
we determined the T-matrix of a pumped point dipole, modelled as a three-level
system. The resulting T-matrix (2.32) (or more generally, (2.29)) is surprisingly
intuitive. The influence of the pump field can be characterized by a single dimen-
sionless parameter W , expressing both a decrease of the Q factor and a decrease of
the T-matrix. Physically, the presence of gain not only causes the dipole to scatter
partially inelastically, but also induces important changes in its dispersion and dis-
sipation.

To stress the generality of the above derivation, we derived the T-matrix of a
passive atomic V system and a passive atomic Λ system, and showed that their
scattering properties can be straightforwardly determined. Finally, we deduced the
T-matrix of a pumped point dipole with the gain implemented through a four-level
scheme. We pointed out that the choice of pumping scheme has major implications
on the resulting scattering properties. Particularly striking is that the sign of the
extinction cross-section (hence the presence of gain) is independent of the applied
pump field intensity in a four-level scheme.

In conclusion, the general scattering properties of an atomic system depend
strongly on the atomic level structure and, in the case of gain, the applied pump
field intensity. This dependence could lead to interesting experimental work on,
e.g., coherent backscattering [64, 121, 127]. For example, the width of the coherent
backscattering cone is closely related to the albedo of the scatterers in the multiple
scattering medium considered. We have shown in this chapter that the albedo is
strongly correlated with the microscopic structure and applied pump field intensity.
The possibility of incorporating these effects in a classical T-matrix is promising for
future theoretical and experimental research on coherent backscattering in systems
with a nontrivial microscopic structure.
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CHAPTER3
Few-atom systems with gain: a classical light-scattering

approach

We study the light-scattering properties of a system of N atoms in free space using a
single-frequency multiple light-scattering formalism. More particularly, we investigate
the possibility of threshold behavior in the system if one of the atoms is optically
pumped. The system of N atoms with gain is studied in two phases. First, we consider
the passive N -atom system and define its quality factor Q. We show that the Q factor
in general depends on the polarization and propagation direction of the incident field
which probes the system. Secondly, we show that optically pumping one of the atoms
allows for the appearance of a well-defined threshold within the presented formalism.
Remarkably, a threshold exists for atom numbers as small as N = 2. Finally, we discuss
the influence of the approximative nature of the applied formalism on the physical reality
of the presented results.

3.1 Introduction

In chapter 1, we introduced N -atom systems with gain as the simplest microscopic
systems which incorporate both optical gain and optical feedback. The attraction
of these atomic systems lies in the absence of any phenomenological parameters or
paraxial approximations in their description. The microscopic character of these
N -atom systems ensures that the system characteristics depend solely on the scat-
tering properties of the atomic building blocks and their specific description. In
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this chapter, we describe the atoms within the framework of single-frequency mul-
tiple scattering of light. The advantage of this approach lies within the formalism’s
transparency and simplicity when applied to the system under consideration here.
Furthermore, the computational scaling with the number of atoms of this method is
favorable compared to the quantum mechanical density matrix method which will
be discussed in chapter 5.

We start our description in section 3.2 with a general introduction to multiple
scattering of light by an N -atom system. The T-matrix concept introduced in the
previous chapter will be shown to be the essential building block in the description
of multiple scattering; the T-matrices we derived can be straightforwardly used to
describe the atomic system we consider here. The atoms are studied in two phases.
We first focus in section 3.3 on the passive atomic system. In the absence of gain,
we can quantify the ability of a collection of N atoms to act as a cavity for light.
The quality of such an N -atom cavity is expressed by its quality factor Q. We
show that the Q factor is a property not only of the cavity, but also of the inci-
dent field by which it is probed. We then proceed by optically pumping one of the
atoms. The concept of gain is introduced by considering the proper T-matrices,
as proposed in the previous chapter. In section 3.4 we show that the implementa-
tion of gain within the framework of a single-frequency multiple-scattering theory
allows for the appearance of a threshold of an N -atom system. We show that,
surprisingly, a threshold exists within the current framework for numbers of atoms
down to N = 2. Finally, in section 3.5 we comment on the approximative nature
of a single-frequency formalism describing pumped atomic systems; we elaborate in
more detail on the physical reality of the obtained results.

3.2 Multiple scattering of light by N atoms

3.2.1 General introduction

The physical problem we focus on is the description of the scattering of an incident
electric field Ee(ω, r) by a collection of N atoms. The interference of the incident
field and the field scattered by the atoms gives rise to the buildup of a total field
E(ω, r). The problem at hand is the determination of this total field E(ω, r) in
terms of the incident field and atomic parameters.

In the absence of any atoms (or, more generally, scatterers), the total field is
identical to the incident field, and obeys the Helmholtz wave equation for electro-
magnetic fields in vacuum, given by

[(ω
c

)2←→
I −∇×∇×

]
Ee(ω, r) = 0, (3.1)

where
←→
I is the 3× 3 unit tensor in polarization space. Here and in the following,

the frequency ω is understood to contain an infinitesimally small positive imaginary
part, ensuring causality.
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3.2. Multiple scattering of light by N atoms

It will be convenient to regard equation (3.1) as the real-space representation of
an abstract tensor operator acting on the vector field |Ee(ω)〉. In abstract notation,
equation (3.1) becomes

←̂→
L (ω)|Ee(ω)〉 = 0. (3.2)

(We note that the abstract tensor operator
←̂→
L is not to be confused with the Lind-

blad operator of chapter 2.) The main advantage of using abstracted equations lies
within the simplicity of the resulting identities obtained and their independence of
a specific representation. The above abstraction reveals the similarity between the
current system and wave equations in quantum mechanics: the vector field |Ee(ω)〉
is analogous to a quantum mechanical state |ψ0〉, whereas the real-space represen-
tation Ee(ω, r) ≡ 〈r|Ee(ω)〉 corresponds to a wave function ψ0(r). (We stress,
however, that in this chapter all electromagnetic fields are considered to be classical
quantities; the presented abstract notation is therefore not to be confused with the
“bra-ket” notation used in second quantization.)

We can associate a Green function [118] with wave equation (3.1); the resulting
free-space dyadic Green function

←→
G 0 obeys

[(ω
c

)2←→
I −∇×∇×

]
←→
G 0(ω, r, r′) = δ3(r − r′)

←→
I . (3.3)

In abstract notation, (3.3) becomes

←̂→
L (ω)

←̂→
G 0(ω) =

←̂→
11 , (3.4)

where
←̂→
11 is the identity operator with matrix elements 〈r|←̂→11 |r′〉 = δ3(r − r′)

←→
I .

In the presence of scatterers, the wave equation (3.1) needs to be modified. If the
scatterers are characterized by a dimensionless permittivity ←→ε (ω, r), the resulting
wave equation for the field E(ω, r) becomes

[(ω
c

)2←→
I −∇×∇×

]
E(ω, r) = −

[(←→ε (ω, r)−
←→
I
)(ω

c

)2
]

E(ω, r). (3.5)

We can associate a light potential
←→
V (ω, r) with the scattering system by defining

←→
V (ω, r) ≡ −

(←→ε (ω, r)−
←→
I
)(ω

c

)2

, (3.6)
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which allows us to rewrite (3.5) as

←̂→
L (ω)|E(ω)〉 =

←̂→
V (ω)|E(ω)〉. (3.7)

Equations (3.2), (3.4) and (3.7) show that the incident field |Ee(ω)〉 and the total
field |E(ω)〉 are related by the Lippmann-Schwinger equation

|E(ω)〉 = |Ee(ω)〉+
←̂→
G 0(ω)

←̂→
V (ω)|E(ω)〉. (3.8)

The Lipmann-Schwinger equation (3.8) allows for the total field to be written as a
series

|E(ω)〉 = |Ee(ω)〉+
←̂→
G 0(ω)

←̂→
V (ω)|Ee(ω)〉

+
←̂→
G 0(ω)

←̂→
V (ω)

←̂→
G 0(ω)

←̂→
V (ω)|Ee(ω)〉+ . . . (3.9)

in terms of the optical potential. If only the first term in the expansion (3.9) is
retained, we find the well-known Born approximation for the total field. If, on the
other hand, all terms in the expansion are taken into account, the above summation
(3.9) leads to

|E(ω)〉 = |Ee(ω)〉+
←̂→
G 0(ω)

←̂→
T (ω)|Ee(ω)〉, (3.10)

where the T-matrix
←̂→
T (ω) is formally defined as

←̂→
T (ω) ≡

←̂→
V (ω)

[
←̂→
11 −

←̂→
G 0(ω)

←̂→
V (ω)

]−1

. (3.11)

The presence of the scatterers changes the wave equation (3.2) into equation
(3.7). Consequently, the presence of scatterers changes the associated Green func-
tion as well. The Green function associated with the wave equation (3.7) obeys

[
←̂→
L (ω)−

←̂→
V (ω)

]
←̂→
G (ω) =

←̂→
11 , (3.12)

with as formal solution

←̂→
G (ω) =

←̂→
G 0(ω) +

←̂→
G 0(ω)

←̂→
V (ω)

←̂→
G (ω), (3.13)
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or, equivalently,

←̂→
G (ω) =

←̂→
G 0(ω) +

←̂→
G 0(ω)

←̂→
T (ω)

←̂→
G 0(ω). (3.14)

Expressions (3.13) and (3.14) can be readily deduced from (3.4), (3.11) and (3.12).
In terms of light propagation, equation (3.14) describes how light emitted by a
(point) source propagates, in contrast to the propagation of an incident field as de-
scribed by (3.10). Expression (3.14) shows that the Green function of the system in
the presence of scatterers can be written in terms of the free-space Green function
and a T-matrix describing all scattering events. In other words, once the system’s
T-matrix is known, the scattering problem can be solved explicitly.

3.2.2 Derivation of the N-atom T-matrix

All expressions derived sofar are independent of the number of scatterers and the
(non)local character of each scatterer. We now focus on the current case of interest,
and proceed to derive the T-matrix of an N -atom system. This T-matrix will allow
us, through equation (3.10), to derive an expression for the total field E(ω, r) in
terms of the incident field and atomic parameters only.

The total potential of N atoms can be written as the sum of single-atom poten-
tials

←̂→
V (ω) =

N∑
i=1

←̂→
V i(ω). (3.15)

The formal definition (3.11) then allows us to express the total N -atom T-matrix
in terms of single-atom potentials as

←̂→
T (ω) =

N∑
i=1

←̂→
V i(ω) +

N∑
i,j=1

←̂→
V i(ω)

←̂→
G 0(ω)

←̂→
V j(ω) + . . . . (3.16)

The total T-matrix can also be expanded in terms of single-atom T-matrices. If we
formally denote the T-matrix of atom i as

←̂→
T i(ω) ≡

←̂→
V i(ω)

[
←̂→
11 −

←̂→
G 0(ω)

←̂→
V i(ω)

]−1

, (3.17)

we can rewrite (3.16) as
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←̂→
T (ω) =

N∑
i=1

←̂→
T i(ω) +

N∑
i=1

N∑
j=1,j 6=i

←̂→
T i(ω)

←̂→
G 0(ω)

←̂→
T j(ω) + . . . . (3.18)

The above expansion can be straightforwardly checked by inserting the expansion
of the single-atom T-matrices (3.17) in terms of single-atom potentials in (3.18),
yielding (3.16). The T-matrix (3.18) is expressed in terms of single-atom T-matrices
only. As shown in chapter 2, the explicit expression for T-matrix of a single atom
depends on the atom’s internal structure. In what follows, we consider atoms of
the three-level type abc, as shown in Figure 2.1. Correspondingly, expression (2.28)
shows that the resulting single-atom T-matrix can be written as

←̂→
T i(ω) = ti(ω)µ(i)

ac ⊗ µ(i)
ac δ(r − ri)1̂1, (3.19)

with ri the position vector of atom i and µ
(i)
ac its transition dipole moment. We can

retrieve the potential associated with a single atom by inserting (3.19) in (3.17),
yielding

←̂→
V i(ω) = − (ω/c)2 αB

i µ(i)
ac ⊗ µ(i)

ac δ(r − ri)1̂1, (3.20)

where αB
i is the bare polarizability [31] of atom i, given by

αB
i = − ti(ω)

(ω/c)2
1

1 + ti(ω)µ(i)
ac ·
←→
G 0(ω, ri, ri) · µ(i)

ac

. (3.21)

The bare polarizability is a measure for the strength of the coupling between the
atom and the electromagnetic field in single-scattering events, as can be seen from
expression (3.16). Additionally, the bare polarizability can be interpreted in terms
of the atomic transition dipole moment: the dipole moment d

(i)
ac induced in atom i

by an external field Ee is, according to (2.24), given by

d(i)
ac = ε0 (ω/c)−2

µ(i)
ac Re

[
t(ω)µ(i)

ac ·Ee

]
, (3.22)

which can be equivalently written in terms of the bare polarizability as

d(i)
ac = ε0µ

(i)
ac Re

[
αB

i µ(i)
ac ·E

]
, (3.23)
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where E is the electric field including depolarization effects.
Using expressions (3.19), we can expand the total T-matrix (3.18) as

〈r|
←̂→
T (ω)|r′〉 =

N∑
i=1

ti(ω)µ(i)
ac ⊗ µ(i)

ac δ(r − ri)δ(r′ − ri)

+
N∑

i,j=1
i 6=j

ti(ω)tj(ω)µ(i)
ac ⊗ µ(j)

ac

[
µ(i)

ac ·
←→
G 0(ω, ri, rj) · µ(j)

ac

]
×

δ(r − ri)δ(r′ − rj)
+ . . . . (3.24)

We now proceed to rewrite (3.24) such that we can perform the infinite summation
explicitly. We introduce the N ×N matrices D(ω, {r}) and M(ω) as

Dij(ω, {r}) ≡ Dij(ω, r1, . . . , rN ) ≡ (1− δij)
[
µ(i)

ac ·
←→
G 0(ω, ri, rj) · µ(j)

ac

]
, (3.25a)

Mij(ω) ≡ δijti(ω), (3.25b)

where δij is the Kronecker delta. Definitions (3.25) allow us to rewrite (3.24) as

〈r|
←̂→
T (ω)|r′〉 =

N∑
i,j=1

µ(i)
ac ⊗ µ(j)

ac δ(r − ri)δ(r′ − rj)ti(ω)×(
δij + [M(ω)D(ω, {r})]ij +

[
(M(ω)D(ω, {r}))2

]
ij
. . .

)
. (3.26)

We see that consecutive terms in the expansion (3.26) contain consecutive powers
of the matrix product M(ω)D(ω, {r}). This matrix structure enables us to sum the
series expansion exactly, resulting in

〈r|
←̂→
T (ω)|r′〉 =

N∑
i,j=1

µ(i)
ac ⊗ µ(j)

ac δ(r − ri)δ(r′ − rj)ti(ω)Λij(ω), (3.27)

where the N ×N matrix Λ(ω) is given by

Λ(ω) ≡
(
I(N) −M(ω)D(ω, {r})

)−1

, (3.28)
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with I(N) the N × N unit matrix. The problem of finding the system’s total T-
matrix has been reduced to the much simpler problem of inverting the N×N matrix
Λ(ω)−1. Expression (3.27) is the key result of this section: the exact total T-matrix
of an N -atom system is expressed as a function of the free-space Green function
and atomic parameters only. Using equation (3.10), we can now straightforwardly
describe how an incident field Ee(ω, r) is scattered by the N -atom system. In the
next section, we show how this knowledge enables us to quantify the quality of the
N atoms to act as a cavity for light.

3.3 The Q factor of an N-atom system

3.3.1 Definition of the Q factor

The aim of this chapter is to describe the interaction of a pumped atom with
surrounding passive atoms using the scattering formalism described above. If the
optical feedback provided by the passive atoms is significant, the light emitted by
the gain atom will be sufficiently confined in order for stimulated emission to be
possible. The parameter which quantifies the ability of a collection of passive atoms
to temporally confine light is their collective Q factor. We now proceed to define
an expression for Q.

In the case of a single isolated passive two-level atom, the scattering cross-
section on resonance for an incident field Ee(ω, r) = εke

ik·r with |k| = ω/c is given
by (2.33):

σsca(ωca,1k, εk) =
3
2
λ2

ca

π
(µac · εk)2, (3.29)

with λca = 2πc/ωca. We explicitly included the wave vector and polarization of the
incident field in (3.29) to stress that, in general, the scattering cross section depends
on both incident field properties. The optical cross-section (3.29) is, for the optical
frequencies of interest and µac ‖ εk, very large compared to the atom’s geometri-
cal cross-section which is of the order πa2

0, with the atom’s Bohr radius given by [75]

a0 ≡ 4πε0~2/mee
2 ≈ 5.10−11m, (3.30)

where me is the electron’s mass and e its charge. The large optical cross-section
(3.29) on resonance of a single atom hints at the feasibility of using N atoms as a
cavity.

If an incident field is scattered by a system of N atoms, the incident light will
experience retardation effects [88]. In other words, it takes a certain time to accu-
mulate and discharge energy in the atoms. The time associated with this delay is
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the system’s dwell time τd, defined as [66]

τd(ω,1k, εk, S) ≡ w(ω,1k, εk, S)
σsca(ω,1k, εk)c

, (3.31)

with w(ω,1k, εk, S) the increase in electromagnetic energy inside the volume S due
to the presence of scatterers

w(ω,1k, εk, S) ≡
∫

S

dr
[
E∗

1k,εk
(ω, r) · ←→ε (ω, r) ·E1k,εk

(ω, r)− 1
]
, (3.32)

where E1k,εk
(ω, r) is the electric field resulting from the scattering of the afore-

mentioned incident field with wave vector ω/c1k and polarization εk. The units in
(3.31) are chosen such that the energy density of a plane wave in vacuum is nor-
malized to unity (εk · εk = 1); in the absence of any scatterers, w(ω,1k, εk, S) then
reduces to 0. The cross-section σsca(ω,1k, εk) is in general defined as

σsca(ω,1k, εk) ≡ − 1
ω/c

Im
[
〈k, εk|

←̂→
T (ω)|k, εk〉

]
, (3.33)

which can be rewritten, using (3.27), as

σsca(ω,1k, εk) =− 1
ω/c

N∑
i,j=1

(
εk · µ(i)

ac

)(
εk · µ(j)

ac

)
Im
[
ti(ω)Λij(ω)eik·(ri−rj)

]
,

(3.34)

for N -atom systems. Similar to the cross section (3.33), the dwell time (3.31) gen-
erally depends on the frequency ω, the wave vector k ≡ |k|1k and polarization εk

of the incident field. From a physical point a view, definition (3.31) shows that the
delay due to scattering experienced by an incident probe is given by the ratio of the
energy stored in the system and the current that carries energy away. The dwell
time has the dimensions of a time; we can define a dimensionless dwell time or Q
factor as

Q(ω,1k, εk, S) ≡ ωτd(ω,1k, εk, S), (3.35)

which, through τd, also depends on the incident field and the volume S surrounding
the cavity. The explicit dependence of Q on the incident field is usually omitted in
literature, often because the system has a well-defined symmetry axis along which
it is assumed the incident field propagates. However, since we aim at a general de-
scription of N -atom systems, we explicitly retain the dependence of Q on the wave
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vector of the incident field in (3.35). In addition, we note that the dependence of
Q on the incident field and frequency illustrates the general character of definition
(3.35) compared to the concept of a quality factor as introduced in standard re-
sponse theory (where Q is defined as the ratio of the spectral width of a resonance
and its center frequency).

The Q factor (3.35) is a dimensionless measure for the quality of an N -atom
system to act as a cavity for light. As an illustrative example, we determine Q
for a single atom positioned at r = 0. Expression (3.35) depends on the bounding
volume S; a natural choice for S in the case of a single atom is a sphere with center
r = 0 with an infinitesimally small radius. We then obtain, using (3.10), (3.21),
(3.29) and (3.31)-(3.35):

lim
S→0

Q(ω,1k, εk, S) =
6π
αB

c3

ω3
, (3.36)

where αB is the atom’s bare polarizability (3.21). Remarkably, the Q factor of
a single two-level atom does not depend on the wave vector or polarization of
the incident field: while the energy stored in the atom and the rate at which the
atom radiates may vary with the incident field, the ratio of both quantities remains
constant and is given by (3.36).

3.3.2 Connection between Q and the local density of states

The Q factor (3.35) defined above is a measure for the time light spends in the scat-
tering system of interest. We focus on scattering systems consisting of a collection
of atoms, but the above definition is applicable to a wide range of cavities. In the
definition of Q, we considered the cavity to be probed by an incident field. In many
experimental situations, however, one is interested in the interaction of the cavity
and a localized emitter. For example, as an experimental realization of such system
we consider an excited quantum dot positioned in a photonic crystal cavity [116].
The interaction of an emitter with the surrounding cavity is quantified by the local
density of states [36] at the emitter’s position. We now proceed to show that the
local density of states in a cavity is intimately connected to the cavity’s Q factor
defined above.

The local density of states ρ(ω, r) can be written as the angle-averaged energy
density at position r [66]:

ρ(ω, r) ≡ ω2

π2c3
〈
E∗

1k,εk
(ω, r) · ←→ε (ω, r) ·E1k,εk

(ω, r)
〉
4π
, (3.37)

or, explicitly,

ρ(ω, r) =
ω2

π2c3
1
4π

∑
εk

∫
4π

dΩkE∗
1k,εk

(ω, r) · ←→ε (ω, r) ·E1k,εk
(ω, r), (3.38)
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where we used the standard notation dk = k2dkdΩk. In the absence of any scat-
terers, we obtain the free-space value

ρ0(ω, r) =
ω2

π2c3
≡ ρ0(ω). (3.39)

Combining expressions (3.31), (3.35) and (3.38) yields the interesting result

∫
S

dr

[
ρ(ω, r)
ρ0(ω)

− 1
]

=
1
ω/c
〈Q(ω,1k, εk, S)σsca(ω,1k, εk)〉4π , (3.40)

expressing that the increase in local density of states with respect to its free-space
value, averaged over the volume of the cavity, equals the angle-averaged Q factor
providing the latter is weighed with the cross-section. A direct consequence of
expression (3.40) is that altering the Q factor of a cavity for a set of incident-field
directions has nontrivial implications on the local density of states in the cavity.
Experimentally, this implies that the coupling of an emitter and the cavity by
which it is surrounded can in general not be optimized by a simple optimization of
the cavity’s Q factor for one (or a few) incident-field directions.

3.3.3 Practical applicability of Q in N-atom systems

The Q factor (3.35) is a useful dimensionless quantity which can predict the quality
of many practical types of cavities in terms of their ability to trap light. Unfortu-
nately, the usefulness of the Q factor in the description of N -atom systems in the
presence of gain is rather limited if the dimensions of the atomic system are of the
order of the wavelength λca. The reasons behind this limitation are twofold. First,
the presence of an extra (gain) atom in the vicinity of an N -atom system with an
associated Q factor Q(N) generally distorts the N -atom system (especially if the
atoms are identical, which is the case we focus on). The dipole-dipole coupling be-
tween the atoms causes the system of (N+1) atoms to behave drastically differently
from the N atoms that originally made up the cavity. Consequently, the Q factor of
the N atoms Q(N) contains little to no information about the (N+1)-atom system.
In other words, if we follow the definitions of [111] and define the “cold cavity” as
“the cavity in the absence of gain material” and the “hot cavity” as “the cavity in
the presence of gain material”, we find that no straightforward relation exists be-
tween the properties of the cold (N -atom) cavity and the hot ((N+1)-atom) cavity,
even in the absence of gain. Obviously, the distortion of Q(N) due to the addition
of an extra atom decreases as N increases but for the small values of N of interest
the distortion is significant. The second cause which limits the value of definition
(3.35) in the description of N -atom systems with gain, is the effect of saturation
and mode mixing induced by the gain atom. If one considers the cavity to consist
of (N+1) atoms — N passive atoms and an extra gain atom — the aforementioned
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dipole-dipole induced distortion of the Q factor vanishes and a well-defined Q factor
is associated with the system. However, even then the usefulness of such Q factor
associated with the (N + 1)-atom system is restricted: as we will show in chapter
5, the introduction of gain alters the eigenmodes of the system, analogous to, e.g.,
the occurrence of frequency-pulling in macroscopic lasers. However, the informa-
tion contained in the passive-cavity Q sheds little light on the system behavior in
the presence of gain, since the gain-induced changes in an N -atom system can in
general not be treated perturbatively.

We can summarize this section by concluding that we defined a general expres-
sion for the Q factor of a scattering system. The Q factor is a measure for the
time an incident probe beam spends inside the system, and is intimately related to
the local density of states through expression (3.40). In the N -atom systems we
focus on, the concept of a quality factor has limited use in the presence of gain;
we therefore focus back on the general concepts of light scattering and proceed to
describe gain within the single-frequency multiple-scattering formalism of section
3.2.

3.4 Gain and the emergence of a threshold

We retake the situation considered in section 3.2 and consider a system of N atoms,
irradiated by an incident probe field Ee(ω, r). In particular, we focus on the case
N = 2 since this is the smallest value of N which allows for optical feedback (note
that the case N = 1 has been extensively elaborated on in the previous chapter).
The question we wish to address here is whether the presence of gain allows for the
existence of bound modes; in other words, we look for the conditions under which
gain causes the buildup of a nonzero electric field in the limit of a vanishing incident
probe field.

The total field E(ω, r) in the absence of an incident field is given by the
Lippmann-Schwinger relation (3.8)

|E(ω)〉 =
←̂→
G 0(ω)

←̂→
V (ω)|E(ω)〉, (3.41)

which can be rewritten, using definition (3.11), as

←̂→
V (ω)

←̂→
T
−1

(ω)|E(ω)〉 = 0. (3.42)

The potential
←̂→
V (ω) has no zeros associated with it, as can be deduced from (3.15)

and (3.20). Equation (3.42) therefore implies that the bound modes of the system
correspond to the poles of the T-matrix. From the T-matrix definition (3.27), we
then observe that a bound mode exist if the threshold condition

det
[
Λ(ω)−1

]
= 0 (3.43)
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is fulfilled. The set of equations (3.42) and (3.43) allows for the determination of the
nonzero total field E(ω, r) in the limit of vanishing incident field. The requirements
for the threshold condition (3.43) to be satisfied are in general nontrivial; we now
focus on the conditions under which (3.43) is fulfilled for N = 2. Written explicitly,
we can rewrite (3.43) as

t1(ω)t2(ω)
[
µ(1)

ac ·
←→
G 0(ω, r1, r2) · µ(2)

ac

]2
= 1 (3.44)

The Green function in coordinate space can be written as [31]

←→
G 0(ω, r, r′) = −

(
←→
I +

1
k2

∇⊗∇
)

eik|r−r′|

4π |r − r′|
≡
←→
G 0(ω, r − r′), (3.45)

with the standard notations k = ω/c and ∇⊗∇ ≡∇2←→I + ∇×∇×. By perform-
ing the partial derivatives in (3.44) explicitly, we can further evaluate the Green
function as

←→
G 0(ω, r) = −e

ikr

4πr

[
P (ikr)

←→
I +

1
r2
Q(ikr)r ⊗ r

]
+
δ(r)
3k2

←→
I , (3.46)

with r ≡ |r| and

P (z) ≡ (1− 1
z

+
1
z2

), Q(z) ≡
(
−1 +

3
z
− 3
z2

)
. (3.47)

Condition (3.44) can be written in terms of {ti(ω), ri,µ
(i)
ac |i = 1, 2} and hence de-

pends on the specific choice of the T-matrix elements t1(ω) and t2(ω). As mentioned
above, we focus on atoms of the three-level type abc, shown in Figure 2.1. The cor-
responding T-matrix elements are given by expression (2.29). Since we chose the
atoms to have an identical internal structure, they can only differ by the orientation
of their transition dipole moment and the rate at which they are pumped.

If none of the atoms is pumped, condition (3.44) can never be fulfilled. The
physical motivation for this mathematical impossibility lies within the need for en-
ergy conservation: if no external probe field is present and no pump field is applied,
no total field can build up.

If only one of the atoms is pumped, the T-matrix of the pumped atom changes
sign, as was demonstrated in the previous chapter. This effect of the pump field
on the T-matrix of the gain atom has the remarkable consequence that condi-
tion (3.44) can be satisfied. In other words, if one atom is pumped in the two-
atom system under consideration, equation (3.44) represents a real-valued curve
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(a) (b)

Figure 3.1: A graphical representation of condition (3.44) for µ
(1)
ac ‖ µ

(2)
ac . The resulting

curve connects the detuning ω − ωca (in units of Γca/2), the separation x ≡ r12ωca/c
between the atoms and the pump field intensity G ≡ (1 − W )/(1 + W ). The curve is
projected onto the (a) (x, G) plane and the (b) (x, ω − ωca) plane. The white dashed

curve represents the case µ
(1)
ac , µ

(2)
ac ⊥ r1 − r2. The black dashed curve represents the

case µ
(1)
ac , µ

(2)
ac ‖ r1 − r2. The letters “A” and “B” each denote points in the projected

planes which correspond to one set of parameters on the curve. The shaded areas represent
the regime where the T-matrix formalism predicts the buildup of an electric field in the
absence of an incident field.

in the (ω,W, r12,µ
(1)
ac ,µ

(2)
ac ) parameter space, where W is the dimensionless pump

intensity defined in (2.20) and where we used the standard shorthand notation
r12 ≡ |r12| ≡ |r1 − r2|. As an illustrative example, Figure 3.1 shows a graphical
representation of the above curve for the case of parallel dipole moments µ

(1)
ac ‖ µ

(2)
ac .

This curve connects the detuning (ω − ωca), the atomic separation x ≡ r12ωca/c
and the pump parameter

G ≡ (1−W )/(1 +W ), −1 < G ≤ 1. (3.48)

Figure 3.1 illustrates that, quite extraordinarily, the single-frequency multiple light-
scattering formalism presented above allows for the existence of a threshold in a two-
atom system with gain. The threshold condition defines a critical atomic separation
and a critical pumping intensity. The existence of these critical values confirms the
physical intuition that a threshold can only exist if the feedback is large enough
(imposing a maximum value on the atomic separation) and the gain is sufficient
(imposing a minimum value on the applied pump intensity). Figure 3.1 further
illustrates that condition (3.44) cannot be satisfied for arbitrarily large values of
the applied pump power; this behavior at large values of W is a direct consequence
of the power broadening effect discussed in section 2.4.

Finally, we conclude this discussion by considering a system of two equally
pumped atoms. In that case, the pump will change the sign of the T-matrix el-
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ements of both atoms. Consequently, the threshold condition (3.44) can no longer
be fulfilled. In other words, a two-atom system with gain does not allow for a
threshold if both atoms are equally pumped. The physical motivation behind this
observation lies within the role of the passive atom (which is absent in this par-
ticular case). In the two-atom system under consideration (or, in general, in any
N -atom system with gain), the passive subsystem acts as a cavity for the light emit-
ted by the gain atom. The passive atom is able to store and re-emit the excitations
produced by the gain atom which in turn can generate stimulated emission; this
storage process is not possible if both atoms are pumped. We will elaborate in more
detail on the role of the passive atoms in terms of excitation storage in chapters 5
and 6.

The above discussion can be easily extended to the case N > 2 by evaluating
the threshold condition (3.44). The details of the resulting threshold depend on N ,
but we find as a general trend an increase of N leads to an increase of the critical
average interatomic distance; this behavior can be attributed to the larger optical
feedback in systems with larger atom numbers.

As a closing comment, we briefly elaborate on the physical reality of the above
results. The formalism used sofar is based on single-frequency multiple scattering
of light. The existence of a threshold within the presented framework for atom
numbers as small as N = 2 is a nice illustration of the highly nontrivial behavior
of atomic systems with gain. However, the threshold predictions presented above
are approximative due to the single-frequency character of the applied scattering
formalism. In the next section, we elaborate on the approximative nature of the
above framework and discuss the validity of the presented results.

3.5 The effect of incoherent radiation

We reconsider the two-atom system with gain discussed above, consisting of two
identical atoms of which one is pumped. If the passive atom were absent, the dipole
radiation emitted by the system would correspond to a Lorentz spectrum with spec-
tral width Γca(1 +W ), as discussed in section 2.4. In other words, the gain atom
emits radiation not only at its resonance frequency ωca, but in a broad frequency
range around ωca. If a passive atom is positioned in the vicinity of the gain atom,
the radiation emitted by the latter will interact with the first. The interaction of the
passive atom with off-resonant light can be quantified by the atom’s cross-section
(2.33) and obeys a Lorentzian distribution with a spectral width Γca. Hence, while
the emission spectrum of a single gain atom is Lorentzian with a width Γca(1+W ),
the absorption spectrum of a single passive atom is Lorentzian with a width Γca.
The spectral overlap of both Lorentzians is, except for very large values of W , sig-
nificant; therefore, one intuitively expects the contribution of off-resonant light in
the interaction of both atoms to be important and quantitatively alter the results
presented above. In the next chapter, we will prove this intuition to be correct, and
show that the interaction of both atoms can be quantified by the overlap integral
of both aforementioned spectra.
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3.6 Summary

The aim of this chapter was to study the light-scattering properties of a system of
N atoms in free space with gain. The atoms are described within the framework of
a single-frequency multiple light-scattering formalism.

In the absence of an external pump mechanism, we can associate a well-defined
Q factor with the system; the Q factor is a measure for the quality of the atomic
system to act as a cavity for light. Interestingly, we demonstrated the Q factor to
be closely connected to the local density of states.

If one of the atoms is pumped, the system exhibits threshold behavior for atom
numbers as small as N = 2. We can associate a critical average atomic separation
and a critical pumping intensity with the system; the presence of these critical val-
ues can be interpreted in terms of optical feedback. Furthermore, we showed that
power broadening imposes a restriction on the maximum value of the applied pump
intensity if the system exhibits a threshold. In addition, we demonstrated that the
threshold behavior vanishes if both atoms are pumped, which we interpreted in
terms of the system’s storage capacity.

Finally, we commented on the approximative nature of the single-frequency char-
acter of the applied formalism which leads to the possibility of a threshold. In the
next chapters, we proceed beyond the limitations of this single-frequency formalism
and include off-resonant interactions. We will show that the N -atom systems under
consideration never exhibit a discontinuous threshold; however, a detailed study
will reveal that the conclusions drawn above are indicative of the system’s cross-
over from a regime governed by spontaneous emission to a regime where stimulated
emission is essential. The qualitative validity of the predictions of the T-matrix for-
malism is a nice illustration of the formalism’s value and ability to provide intuitive
physical insight at a moderate mathematical cost.
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CHAPTER4
Multiple scattering of incoherent light

We provide a fully analytical description of a two-level atom interacting with a broadband
light field. The problem we present is a typical example of a physical situation which
occurs very commonly in practice, but is not straightforwardly solvable. However, we
show in this chapter that, remarkably, only a limited number of elementary calculations
are required to treat the problem. The presented results are not only highly intuitive, but
also allow us to study the nontrivial nonlinear response of a two-level atom to incident
spontaneous emission. In addition, our results allow for a first-order estimation of the
saturation of a passive two-level atom in the vicinity of an incoherently pumped atom,
extending the formalism presented in chapter 3.

4.1 Introduction

The interaction of a two-level atom and a monochromatic field has always been
a very popular topic in quantum physics. The attraction of this system is owe to
the relatively modest mathematical tools needed to describe the problem, combined
with a rich physical behavior, able to accurately predict many interesting phenom-
ena such as superradiance [1, 5, 33, 35, 50, 98] or the Mollow triplet [85].

The effect of an incident field on an atom’s dynamics is classically described by
the optical Bloch equations [12, 107]. This set of equations allows one to obtain
expressions for the average atomic level populations and coherences in the pres-
ence of an incident field. If the incident light is monochromatic, the optical Bloch
equations are easily dealt with. For non-monochromatic (henceforth referred to as
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broadband) incident light, however, solving the optical Bloch equations is in general
a far from trivial but physically very relevant matter due to the common appearance
of broadband fields in practical situations [2, 14, 26, 38, 41, 43, 61, 91, 131–133].

In this chapter, we show how to transparently describe the interaction of a
two-level atom and a broadband incident wave. Our presentation is based on a
multiple-scattering approach, in contrast to relevant work on, e.g., chaotic fields
[134]. An everyday (and practically important) example of a broadband field is the
field of spontaneous fluorescent photons emitted by an atom. The spectrum corre-
sponding to fluorescence has a Lorentzian frequency distribution, and is therefore
broadband. Obviously, we intuitively expect that if the spectrum of the incident
field is far detuned from to the resonance frequency of the atom, or very broad com-
pared to the atom’s natural line width, no significant interaction will take place.
Likewise, if the incident field has a very narrow frequency distribution, we expect
that the interaction will resemble the one induced by a monochromatic incident
wave. In this chapter, we show that only a few elementary calculations are required
to quantify the interaction of such a broadband field and a two-level atom. We find
that not just the incident spectrum itself, but in addition the overlap of the incident
spectrum and the natural Lorentzian emission line of the atom itself determines the
interaction strength.

In order to simplify the calculations, we will impose a very general restriction on
the incident field. More precisely, we consider in this chapter the class of statistically
stationary incident fields. The mathematical simplifications these fields allow for,
and the fact that many fields encountered in practice are statistically stationary, is
the reason why they are treated in so many textbooks on, e.g., quantum optics or
magnetic resonance. An important property of statistically stationary fields is that
two-time averages 〈E(t)E(t′)〉 of the field E(t) only depend on the time difference
t− t′, which implies that field components at different frequencies are uncorrelated
[65].

In addition, we will apply a standard approximation to the evolution of the
atom itself: we will average out the contribution of rapidly oscillating non-resonant
terms. For a monochromatic incident wave, for example, this approximation simply
implies that all components oscillating at twice the incident wave frequency are
neglected. For a monochromatic incident wave, this approximation is referred to
in the literature as the Rotating Wave Approximation (RWA) and was applied as
such in chapter 2. Since we deal in this chapter with fields which are in general
broadband, we will extend the standard approximation found in textbooks, and
refer to the extension as the Generalized Rotating Wave Approximation (GRWA).

In the following, we will start in section 4.2 by formulating the optical Bloch
equations for a two-level atom interacting with a general broadband field. A Fourier
transform will lead to a better understanding of the behavior of the system in fre-
quency space. Application of the GRWA will return steady-state solutions for the
optical Bloch equations. In section 4.3 we demonstrate that our results can be
applied to describe spontaneous emission. Moreover, we show our general solution
reduces to the well-known monochromatic limit found in literature if the spectral
width of the broadband field decreases to zero. We then show in section 4.4 that
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our results can be straightforwardly used to determine the T-matrix of an atom
irradiated by a broadband field. As an important application of the above results,
we present in section 4.5 a first-order estimation of the saturation of a passive two-
level atom in the vicinity of an incoherently pumped atom, thereby extending the
formalism presented in chapter 3.

4.2 The optical Bloch equations

We consider a two-level atom ac with lower level a and upper level c, separated by
an energy difference ~ωca; the corresponding atomic Hamiltonian is given by

Ĥc ≡ ~ωcaŜ
+
acŜ

−
ac, (4.1)

where the operators Ŝ+
ac and Ŝ−ac respectively raise and lower the atomic state. The

atom in its excited state can decay radiatively to its lower level at a rate Γca.
In connection with the atomic systems used in previous chapters, we can regard
the atom as the three-level atom abc introduced in section 2.2 in the absence of a
pump: it is clear from Figure 2.1 and the Master equation (2.13) that the highest
lying level b does not participate in the atomic dynamics if the pump intensity is
zero, and the atom reduces to a two-level ac system. The atom interacts with an
incident time-dependent real-valued field Ee(t) through the interaction Hamiltonian

ˆ̃
V AE(t) ≡ ~Ωe(t)(Ŝ+

ac + Ŝ−ac). (4.2)

The Rabi frequency Ωe(t) ≡ − 1
~dac · Ee(t) quantifies the interaction strength be-

tween the atom and the incident field, with dac the ac transition dipole moment.
Similar to the general description of chapter 2, the system dynamics can be de-
scribed in terms of a density matrix σ̂(t) which evolves according to the Master
equation

d

dt
σ̂ = L̂σ̂

≡ L̂ndσ̂ + L̂dσ̂. (4.3)

The non-dissipative part of the Lindblad operator can now be written as

L̂ndσ̂ ≡ −
i

~
[Ĥc + ˆ̃

V AE , σ̂], (4.4)

and the dissipative part as
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L̂dσ̂ ≡−
Γca

2

(
Ŝ+

acŜ
−
acσ̂ + σ̂Ŝ+

acŜ
−
ac

)
+ ΓcaŜ

−
acσ̂Ŝ

+
ac. (4.5)

Using (4.4) and (4.5), we can expand the Master equation (4.3) in terms of density
matrix elements σij ≡ 〈i| σ̂ |j〉 as

.
σcc = +iΩe(t) (σca − σac)− Γcaσcc, (4.6a)
.
σaa = −iΩe(t) (σca − σac) + Γcaσcc, (4.6b)
.
σac = −iΩe(t) (σcc − σaa) + iωcaσac −

Γca

2
σac, (4.6c)

.
σca = +iΩe(t) (σcc − σaa)− iωcaσca −

Γca

2
σca. (4.6d)

Equations (4.6) can be found in many elementary books on quantum optics [30], and
are often referred to as the optical Bloch equations. The matrix elements σaa(t) and
σcc(t) are the ensemble-averaged populations of the lower and upper atomic level,
respectively. They are related by σaa(t) + σcc(t) = 1, expressing conservation of
population. The off-diagonal elements are related to the dipole moment induced by
the incident field; we will elaborate more on the atom’s transition dipole moment
in section 4.4. The Rabi frequency Ωe(t) is real-valued and time dependent; in the
conventional case of a monochromatic incident wave Ee(t) ≡ E0 cosω0t which is
often found in the literature, the definition Ωe ≡ − 1

~dac ·E0 is mostly used, explic-
itly removing the oscillatory time dependence of the field from the Rabi frequency
(obviously, the optical Bloch equations then contain extra factors e±iω0t and the
interaction Hamiltonian (4.2) reduces to (2.8)). However, we will see that for a
more general time dependence, as the one we deal with here, it is beneficial to
use our definition and consider an explicit time-dependent atom-field coupling (and
continue henceforth to denote the coupling by the term Rabi frequency).

Our aim in this section is to derive steady-state solutions for equations (4.6).
The statistical properties of the field are especially advantageous in the frequency
domain, since if the two-time average 〈Ωe(t)Ωe(t+ τ)〉 of the real-valued field Ωe(t)
only depends on τ , one can deduce (see, e.g., [65, 79]) that in the frequency domain

〈Ωe(ω)Ωe(ω′)〉 = Je(ω)δ(ω + ω′), (4.7)

where the Fourier transform of Ωe(t) is defined as

Ωe(ω) ≡ 1
2π

∫ +∞

−∞
Ωe(t)e−iωtdt, (4.8a)

Ωe(t) =
∫ +∞

−∞
Ωe(ω)eiωtdω, (4.8b)
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and Je(ω) is the spectral density function of the incident radiation. We will see that
the appearance of a delta function in (4.7) will highly facilitate the calculations fur-
ther on. In what follows, we will Fourier transform the optical Bloch equations. We
therefore define the population difference ∆π(t) and its Fourier transform ∆π(ω)
as

∆π(t) ≡ σcc(t)− σaa(t) ≡
∫ +∞

−∞
∆π(ω)e−iωtdt. (4.9)

In the spirit of the Rotating Wave Approximation, the coherences

σac(t) ≡
∫ +∞

−∞
σac(ω)eiωtdω, (4.10a)

σca(t) ≡
∫ +∞

−∞
σca(ω)eiωtdω, (4.10b)

can be approximated by

σac(t) ≈
∫ +∞

0

σac(ω)eiωtdω, (4.11a)

σca(t) ≈
∫ 0

−∞
σca(ω)eiωtdω, (4.11b)

where the contribution of the non-resonating part of the coherences has been omit-
ted. The restriction of the integration interval in expressions (4.11) has the simple
meaning that quickly oscillating terms are not taken into account, as mentioned
in the introduction of this chapter. This approximation is a straightforward gen-
eralization of the Rotating Wave Approximation as applied in chapter 2 (in which
case σca(t) = σ∗ac(t) = σca(0)e−iω0t with ω0 the frequency of the incident field).
We refer to the extension (4.11) as the Generalized Rotating Wave Approximation.
This approximation is justified if Je(ω) is only appreciably different from zero near
the atomic resonance.

If we now split the Fourier transform Ωe(ω) of the Rabi frequency Ωe(t) into a
positive- and a negative-frequency part

Ωe(t) =
∫ +∞

0

Ωe(ω)eiωtdω +
∫ 0

−∞
Ωe(ω)eiωtdω

≡ Ω+
e (t) + Ω−

e (t), (4.12)

we see that neglecting all highly non-resonant terms in (4.6) results in slightly
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altered optical Bloch equations:

.
σcc = +iΩ+

e (t)σca − iΩ−
e (t)σac − Γcaσcc, (4.13a)

.
σaa = −iΩ+

e (t)σca + iΩ−
e (t)σac + Γcaσcc, (4.13b)

.
σac = −iΩ+

e (t) (σcc − σaa) + iωcaσac −
Γca

2
σac, (4.13c)

.
σca = +iΩ−

e (t) (σcc − σaa)− iωcaσca −
Γca

2
σca. (4.13d)

The proper combination of rotating and counter-rotating terms ensure that equa-
tions (4.13) are far simpler to deal with than the original Bloch equations (4.6), as
we will show now. Fourier transforming equation (4.13a) and (4.13b) gives

(Γca + iω)∆π(ω) = +2i
∫ +∞

0

Ωe(ω′)σca(ω − ω′)dω′

− 2i
∫ 0

−∞
Ωe(ω′)σac(ω − ω′)dω′ − Γcaδ(ω). (4.14)

Fourier transforming (4.13c) and (4.13d), on the other hand, gives

(iω − iωca +
Γca

2
)σac(ω) = −i

∫ +∞

0

Ωe(ω′′)∆π(ω − ω′′)dω′′, (4.15a)

(iω + iωca +
Γca

2
)σca(ω) = +i

∫ 0

−∞
Ωe(ω′′)∆π(ω − ω′′)dω′′. (4.15b)

If we now substitute the previous expressions in (4.14), we find

(Γca + iω)∆π(ω) + Γcaδ(ω) =

= −2
∫ +∞

0

dω′
∫ 0

−∞
dω′′Ωe(ω′)Ωe(ω′′)∆π(ω − ω′ − ω′′)×(

1
iω − iω′ + iωca + Γca

2

+
1

iω − iω′′ − iωca + Γca

2

)
, (4.16)

which is a self-consistent equation in the population difference. In steady-state, we
can write

∆π(ω) = ∆π(ω = 0)δ(ω), (4.17)
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which is appropriate since we are interested in the regime for which the populations
are time-independent. Substitution of (4.17) in (4.16) and phase-averaging yields

Γca∆π(ω = 0) + Γca = −2∆π(ω = 0)
∫ +∞

0

dω′Je(ω′)
Γca

(ω′ − ωca)2 + (Γca

2 )2
, (4.18)

and therefore

∆π(ω) = − 1

1 + 2
∫ +∞
0

dω′Je(ω′) 1
(ω′−ωca)2+(Γca

2 )2

δ(ω). (4.19)

We can conclude that in steady-state, we find the desired solution

σst
cc ≡ 1− σst

aa =
1
2

S

S + 1
, (4.20a)

σst
ca ≡ (σst

ac)
∗ =

1
S + 1

∫ 0

−∞

iΩe(ω)
−iωca − iω − Γca

2

eiωtdω, (4.20b)

with

S ≡ 2
∫ +∞

0

dωJe(ω)
1

(ωca − ω)2 + (Γca

2 )2
. (4.21)

Expressions (4.20) are the key result of this section. The influence of the spectral
properties of the incident field enters the dynamics of the density matrix through
a single interaction parameter S. The expression (4.21) for S is surprisingly simple
and appealing: it is the overlap integral of the spectral density of the incident field,
and the natural Lorentzian emission line of the two-level system itself. The structure
of the interaction parameter confirms what we intuitively expect: resonant fields
with a narrow distribution interact strongly with the atom, while the interaction
with broad, far off-resonance fields is far less pronounced [134]. As examples, we will
in the next section focus on two specific and interesting values for the saturation.

4.3 Examples

4.3.1 The coherent limit

As a first demonstration of equations (4.20), we will verify that the well-known
expressions for an incident monochromatic field can be retrieved from our results.
We consider a real-valued monochromatic incident field Ee(t) ≡ E0 cos(ω0t) with
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ω0 > 0. The corresponding Rabi frequency is

Ωe(ω) ≡ Ω0

2
(δ(ω − ω0) + δ(ω + ω0)) , (4.22)

therefore

Ωe(ω)Ωe(−ω′) =

Ω2
0

4

(
δ(ω − ω′)δ(ω − ω0) + δ(ω − ω′)δ(ω + ω0)

+ δ(ω + ω′)δ(ω − ω0) + δ(ω + ω′)δ(ω + ω0)
)
. (4.23)

Of the 4 terms appearing in (4.23), only the first remains in the (G)RWA, yielding

Je(ω) =
Ω2

0

4
δ(ω − ω0), (4.24)

which transforms expressions (4.20) into

σst
cc = (

Ω0

2
)2

1

(ω0 − ωca)2 + (Γca

2 )2 + Ω2
0

2

, (4.25a)

σst
ca =

Ω0

2
e−iω0t 1

(ω0 − ωca) + iΓca

2 + 1
2

Ω2
0

(ω0−ωca)−i Γca
2

, (4.25b)

which corresponds exactly to the solutions for incident monochromatic fields found
in the literature [30], justifying our method. In connection with previous chapters,
we note that equations (4.25) can also be readily deduced from the set of differential
equations (2.17), (2.18) and the expressions presented in Appendix A in the absence
of a pumping field.

4.3.2 Spontaneous emission

As a second demonstration of equations (4.20), we consider the nontrivial case of
an atom interacting with incident fluorescence emission centered around ω0 � Γca.
The incident field then has a Lorentzian spectrum with a width Γca(1 + κ):

Je(ω) ≡ Jtot

π

Γca

2 (1 + κ)
(ω − ω0)2 + (Γca

2 (1 + κ))2
, (4.26)
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where the factor

Jtot ≡
∫ ∞

−∞
Je(ω)dω =

〈
Ωe(t)2

〉
(4.27)

is proportional to the total incident field energy. We find as an explicit solution for
(4.21):

S = 2
∫ +∞

0

dωJe(ω)
1

(ω − ωca)2 + (Γca

2 )2

≈ 2
∫ +∞

−∞
dω

1
(ω − ω0)2 + (Γca

2 (1 + κ))2
1

(ω − ωca)2 + (Γca

2 )2
×

Jtot

π

Γca

2
(1 + κ)

= 2Jtot
(2 + κ)

(ω0 − ωca)2 + (Γca

2 )2(2 + κ)2
, (4.28)

where the extension of the integral in (4.28) from 0 to −∞ is justified by ω0 � Γca.
Equation (4.28) clearly shows that the atom-field interaction is weak for spectrally
broad or far-detuned fields, as mentioned earlier. As a practical application of the
above results, we will in the next section use the result (4.20) with (4.25) and (4.28)
obtained here to determine the nonlinear response of an atom to incident broadband
light.

4.4 Derivation of T-matrix of a dipole irradiated
by broadband light

As was extensively elaborated on in chapters 2 and 3, the key property which quan-
tifies the interaction strength between an atom and an incident light field is the
atom’s T-matrix, or equivalently, its dynamic polarizability. In the limit of low-
intensity incident fields, the atomic response is linear and the induced polarization
is proportional to the incident field. However, at higher incident intensities, the
response is no longer linear since the atom will exhibit saturation effects, as illus-
trated by the nonlinear polarizability (2.25). By applying the general procedure
presented in section 2.3, we now show how the general results presented above
can be straightforwardly used to determine the T-matrix of an atom irradiated by
broadband incident light.

We take the general case of an incident field Ee(t) consisting of a monochromatic
cosine component with amplitude E0 and frequency ω0, and a non-monochromatic
component EL(t), with a Lorentzian frequency distribution. The fields Ee(t) thus
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obtained define a very general class, containing the special cases of incident monochro-
matic light, as well as pure incident spontaneous emission. The Lorentzian com-
ponent of the incident field has a line width Γca(1 + κ), κ ≥ −1, centered around
ω0 � Γca:

Ee(ω) = E0
1
2

(δ(ω + ω0) + δ(ω − ω0)) + EL(ω). (4.29)

The corresponding Rabi frequencies are

−~Ω0 = dac ·E0, (4.30a)
−~ΩL(ω) = dac ·EL(ω), (4.30b)

obeying

〈ΩL(ω)ΩL(ω′)〉 = JL(ω)δ(ω + ω′), (4.31)

with JL(ω) the spectral density of the incident Lorentzian field (4.26) with Jtot ≡〈
Ω2

L(t)
〉
. Equations (4.29)-(4.31) fully describe the incident field. We now focus on

the response of the atom to this incident field. Since the dynamic polarizability and
the density matrix both describe the response of the atom to incident light, both
quantities are related [75]:

ε0
←→α (ω) ·Ee(ω) ≡ dacσca(−ω), ω > 0. (4.32)

Relation (4.32) is a straightforward extension of expressions (2.23)-(2.25). The gen-
eral result (4.20) allows for the dynamic polarizability to be written as

←→α (ω) = −←→α0
1
2

ωca

ω − ωca + iΓca

2 + 2S̃(ω)

ω−ωca−i Γca
2

, (4.33)

with the static polarizability ←→α0 defined in (2.27). The corresponding T-matrix of
the atom is given by (2.28). The saturation appears in a surprisingly simple way as

S̃(ω) ≡ Ω2
0

4
+
∫ +∞

0

dω′JL(ω′)
(ω − ωca)2 + (Γca

2 )2

(ω′ − ωca)2 + (Γca

2 )2
. (4.34)

Expressions (4.33) and (4.34) fully describe the response of a two-level atom to an
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4.5. Saturation of a passive atom in the vicinity of a pumped atom

incident field of the general class (4.29). Two limits for the incident field are in
particular interesting. First, for JL(ω) → 0, the expression for the dynamic polar-
izability of a two-level atom irradiated by a monochromatic field is recovered, as
given by expression (2.25) in the absence of a pump. Secondly, for Ω0 → 0, we find
the dynamic polarization of an atom irradiated by spontaneous emission only:

←→α (ω) = −←→α0
1

2(S + 1)
ωca

ω − ωca + iΓca

2

, (4.35)

with S given by

S = 2
(2 + κ)

(ω0 − ωca)2 + (Γca

2 )2(2 + κ)2

∫ ∞

−∞
dωJL[ω], (4.36)

The saturation of an atom irradiated by spontaneous emission exhibits itself as a
decrease of the amplitude of the atom’s polarizability. Because of the induced sat-
uration, the atom scatters incident probe light partially inelastically; the atom’s
albedo is defined as (2.34) and is given by

a =
1

1 + S
≤ 1, (4.37)

expressing the inelastic character of light scattering by the atom. In the next section,
we focus on an important application of expression (4.35): we present a first-order
estimation of the saturation of a two-level atom due to the fluorescence emission of
a pumped atom in its vicinity.

4.5 Saturation of a passive atom in the vicinity of
a pumped atom

In chapter 3, we described the interaction of N passive atoms interacting with a
pumped atom in the framework of single-frequency multiple scattering of light. We
elaborated on the broadband character of the light emitted by the pumped atom
and the limitations of a single-frequency approach in the description of N -atom
systems with gain. We now proceed to extend the formalism of chapter 3 and
present a first-order estimation of the saturation of a passive atom induced by an
incoherently pumped atom in its vicinity; more specifically, we determine how the
T-matrix of the first is affected by the presence of the latter.

4.5.1 Estimation of the saturation induced by the pumped
atom

In what follows, we focus on the simplest nontrivial case N = 2; the system under
consideration then consists of two identical atoms in free space. As mentioned ear-
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lier in this chapter, we focus on atoms of the abc-type, as graphically depicted in
Figure 2.1. Following the notation introduced in chapters 2, the transition dipole
moments associated with the atoms are denoted d

(j)
ac = dacµ

(j)
ac with µ

(j)
ac the unit

vector parallel to d
(j)
ac . One of the atoms is incoherently pumped with associated

pumping parameter W . The passive atom is positioned at r2, while the position of
the pumped atom defines the origin r1 = 0 of the system’s coordinate space.

Our aim is to derive an expression for the T-matrix of the passive atom, taking
into account the saturation induced by the pumped atom. As we discussed in chap-
ter 2, the light emitted by the pumped atom has a Lorentzian spectral distribution
with spectral width Γca(1 + W ), W being the pump parameter defined as (2.20).
The T-matrix of the passive atom can, according to (4.35) and (2.28), be written
as

←̂→
T (ω) = t(ω)δ(r − r2)1̂1⊗

(
µ(2)

ac ⊗ µ(2)
ac

)
, (4.38)

with

t(ω) =
1

(S + 1)
3π
ωca/c

Γca(
ω − ωca + iΓca

2

) , (4.39)

where “⊗” denotes the direct product of vectors, and where 1̂1 is a unit operator
with matrix elements 〈r|1̂1|r′〉 = δ(r − r′). The central emission frequency of the
gain atom ω0 is equal to its resonance frequency ωca. Hence, we can deduce from
(4.28) that the saturation in (4.39) induced by the gain atom is quantified by

S = 2
〈
Ω1(t)2

〉 1
(2 +W )

1
(Γca/2)2

, (4.40)

where the Rabi frequency Ω1(t) is defined as

〈
Ω1(t)2

〉
=

1
~2

〈∣∣∣d(2)
ac ·E1(t, r2)

∣∣∣2〉 , (4.41)

with E1(t, r) the field generated by the pumped atom. Expanding the field in its
Fourier components yields

〈
Ω1(t)2

〉
=
d2

ac

~2

〈∣∣∣∣∫ +∞

−∞
µ(2)

ac ·E1(ω, r2)eiωtdω

∣∣∣∣2
〉
. (4.42)

We now make the following approximation: we assume that the light scattered by
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the passive atom does not influence the photon emission rate of the pumped atom.
In other words, we only take scattering events into account which correspond to scat-
tering by the passive atom of a photon emitted by the pumped atom; no subsequent
interaction of scattered photons with the gain atom is taken into account. Under
the above approximation, the pumped atom acts as a source S1(ω) = S1(ω)µ(1)

ac

and the field it generates is given by

E1(ω, r) =
←→
G 0(ω, r) · S1(ω), (4.43)

where the Green function
←→
G 0(ω, r) is introduced in the previous chapter and is de-

fined as (3.45). The statistical character of the spontaneous emission of the pumped
atom translates into

〈S1(ω)S∗1 (ω′)〉 ≡ J̃1

π

Γca

2 (1 +W )

(ω − ωca)2 +
(

Γca

2

)2
(1 +W )2

δ(ω − ω′), (4.44)

where the first factor stems from the Lorentzian distribution of the spectrum and
the delta function originates from the extension of (4.7) to complex-valued fields.
The previous relation allows us to rewrite (4.42) as

〈
Ω1(t)2

〉
=
d2

ac

~2

∫ +∞

−∞
dω
J̃1

π

Γca

2
(1 +W )

∣∣∣µ(1)
ac ·
←→
G 0(ω, r1 − r2) · µ(2)

ac

∣∣∣2
(ω − ωca)2 +

(
Γca

2

)2
(1 +W )2

. (4.45)

The norm J̃1 quantifies the intensity of the pumped atom’s emitted radiation; once
J̃1 is known and the above integral is evaluated, the T-matrix of the passive atom
can be deduced from expressions (4.39), (4.40) and (4.45). We now proceed to de-
termine J̃1 and evaluate (4.45).

The total time-averaged power emitted by the pumped atom is given by the
angle-integrated radial energy flow

〈p(t)〉 ≡
〈∫

4π

P (t, r) · 1rr
2dΩ

〉
(4.46)

where 1r ≡ r/r is the unit vector in the radial direction. The time-averaged Poynt-
ing vector P (t, r) is defined in Appendix C as

〈P (t, r)〉 ≡ 1
2
〈Re [E1(t, r)×H∗

1 (t, r)]〉 , (4.47)
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with the magnetic field given by

H1(ω, r) =
1

iωµ0
∇×E1(ω, r). (4.48)

The Poynting vector allows us to reformulate (4.46) as

〈p(t)〉 =
1
2
Re
[〈∫

4π

(E1(t, r)×H∗
1 (t, r)) · 1rr

2dΩ
〉]

. (4.49)

Insertion of (4.48) in (4.49) and straightforward manipulation yields, using (4.43)
and (4.44),

〈p(t)〉 =
1
3
J̃1
cε0
4π

. (4.50)

Since the system under consideration has no energy loss channels (except for the
Stokes shift ωba−ωca which we neglect for clarity), the total time-averaged photon
absorption rate equals the system’s time-averaged photon emission rate. In chapter
5, we will show that the absorbed power is equal to

〈p(t)〉 ≡ ~ωcaWΓca

(
1

1 +W

)
, (4.51)

which is intuitively obvious, since the number of absorbed pump photons is propor-
tional to the applied pump power WΓca~ωca and the time-averaged population of
the gain atom’s lower level 1/(1 + W ), the latter expression being a direct conse-
quence of expression (2.19).

Combining both expressions for the time-averaged emitted power (4.50) and
(4.51) allows us to express the saturation term (4.45) as

〈
Ω1(t)2

〉
= Γ2

caW~ωca
d2

ac

~2

6
cε0

∫ +∞

−∞
dω

∣∣∣µ(1)
ac ·
←→
G 0(ω, r1 − r2) · µ(2)

ac

∣∣∣2
(ω − ωca)2 +

(
Γca

2

)2
(1 +W )2

. (4.52)

The integral in (4.53) diverges for ω → 0 due to the implicitly assumed frequency-
independence of the decay rate Γca; in a more rigorous treatment, a frequency-
dependent decay rate should be introduced (see, e.g., [79]). We can circumvent the
above unphysical divergence by considering only the pole at ω = ωca + iΓca

2 (1+W )
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and neglecting the artificial pole in ω = 0, resulting in

〈
Ω1(t)2

〉
≈ 36π2 W

1 +W

Γ2
ca

(ωca/c)2

∣∣∣µ(1)
ac ·
←→
G 0(ωca, r1 − r2) · µ(2)

ac

∣∣∣2 . (4.53)

In order to derive (4.53), we used the standard high-Q assumption ωca � Γca and
applied the well-known relation [30]

Γca =
1

3πε0
ω3

ca

~c3
d2

ac (4.54)

between the dipole moment, the resonance frequency and the decay rate for fre-
quencies near the resonance frequency. We can conclude from (4.40) and (4.53)
that the T-matrix element (4.39) is characterized by a saturation

S = 2
(

12π
ωca/c

)2
W

(1 +W )(2 +W )

∣∣∣µ(1)
ac ·
←→
G 0(ωca, r1 − r2) · µ(2)

ac

∣∣∣2 . (4.55)

Expression (4.39) with (4.55) is a first-order estimation of the saturation of a passive
atom due to the spontaneous emission of a pumped atom in its vicinity. We now
focus on the implications of this saturation on the threshold predictions of chapter 3.

4.5.2 Implications of the saturation induced by the pumped
atom

In chapter 3, we showed that the presence of gain in an N -atom system allows for
the presence of a threshold within the framework of single-frequency multiple scat-
tering of light. We elaborated on the approximative nature of a single-frequency
approach, and hinted at the importance of off-resonant interactions. The T-matrix
element (4.39) shows that a first-order correction of the T-matrix of a passive atom
in the vicinity of a pumped atom establishes itself as a decrease of the amplitude
of the T-matrix by a factor (S + 1)−1. We now proceed to determine the effect of
the above correction on the threshold predictions of chapter 3.

The condition which needs to be fulfilled in a two-atom system in order for the
system to exhibit a threshold, is given by (3.44), including the extra saturation
factor (S + 1)−1:

S/2
(S + 1)

(1−W )(2 +W )
16W

Γca(
ω − ωca + iΓca

2

) Γca(
ω − ωca + iΓca

2 (1 +W )
) = 1. (4.56)

Importantly, equation (4.56) does not have any solutions for real W and ω. This
observation stands in sharp contrast to the situation depicted in chapter 3, the latter
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leading to a clear threshold as demonstrated by Figure 3.1. In other words, the
saturation-induced first-order correction to the T-matrix of a passive atom derived
above inhibits the manifestation of a threshold in a two-atom system with gain.
This effect demonstrates the importance of the contribution of off-resonant light
when describing N -atom systems with gain. The derivation presented above is
approximative; we note that extending the above formalism beyond the presented
first-order approximation is far from trivial within a T-matrix approach. Therefore,
in the next chapter we will reconsider an N -atom system with gain and describe
the system using the N -atom Master equation. We will show that, while being
computationally much more involved, the Master equation incorporates off-resonant
interactions to all scattering orders and, in that sense, provides a non-approximative
description of an N -atom system with gain.

4.6 Summary

In this chapter, we have solved the optical Bloch equations for a two-level system
interacting with a statistically stationary broadband field using the generalized ro-
tating wave approximation. The resulting steady-state density matrix is similar
to the situation one obtains with an incident monochromatic field; the difference
between both results can be intuitively understood. We have applied the derived
results to calculate the response of a two-level atom to a broadband field; the satu-
ration of the response is characterized by the overlap integral of the spectral density
of the incident field and the natural Lorentzian emission line of the atom itself. We
then used the expression for the atomic T-matrix to determine the effect of off-
resonant interactions in the description of few-atom systems with gain. We showed
that the contribution of these interactions is significant in a first-order scattering ap-
proximation and leads to a vanishing of the threshold predicted in chapter 3. In the
next chapter, we proceed beyond the above first-order approximation and present
a quantum-mechanical study of N -atom systems with gain, including off-resonant
interactions in all scattering orders.
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CHAPTER5
Few-atom systems with gain: a quantum optical approach

Using a density matrix approach, we study the simplest microscopic systems that exhibit
both gain and feedback: clusters of 2 to 5 atoms, one of which is pumped. The other
atoms supply feedback through multiple scattering of light. We show that, if the atoms
are in each other’s near-field, the system exhibits large gain narrowing and spectral
mode redistribution. The observed phenomena are more pronounced if the feedback is
enhanced. The presented few-atom system is the simplest exactly solvable microscopic
system which shows the approach to laser oscillation.

5.1 Introduction

In chapter 3, we introduced a few-atom system with gain as the simplest micro-
scopic system displaying both gain and optical feedback. Using the T-matrix of
a pumped atom derived in chapter 2, we described clusters of N atoms with gain
within the framework of single-frequency multiple scattering of light. We elaborated
on the nontrivial implications of the introduction of gain in a multiple-scattering
formalism, and showed in chapter 4 that saturation due to off-resonant light is of
crucial importance.

In this chapter, we proceed beyond the limitations of the multiple-scattering for-
malism presented in the previous chapters, and present a study of N -atom systems
with gain within a quantum mechanical framework. More precisely, we will derive
the Master equation of N atoms in free space, one of which interacts with an exter-
nal pump field. The advantages of a Master-equation approach are twofold. First,
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by considering the system’s full Master equation, we ensure that all off-resonant
contributions to the saturation of the atoms are taken into account in all scattering
orders. Secondly, the Master equation allows for a transparent description of the
spectral and statistical properties of the light emitted by the system, in contrast to
a multiple-scattering approach.

We start in section 5.2 by deriving the N -atom Master equation. The derivation
will be presented in two phases. First, we consider the passive N -atom system and
show how its evolution can be described in terms of a density matrix. In a second
step, we include the interaction of one of the atoms with an external pump field;
we demonstrate how the details of the atomic pumping scheme affect the resulting
Master equation. In section 5.3, we elaborate on the procedure of solving the Master
equation. We show that introducing the quantum regression theorem and express-
ing the Master equation in terms of atomic operators leads to a dramatic increase
of computational efficiency. In section 5.4 we use the above solving procedure to
discuss the properties of N atoms with gain. Remarkably, this few-atom system,
though very simple, shows surprisingly strong spectral gain narrowing and mode
redistribution, indicating an approach to laser oscillation. In addition, we demon-
strate that the observed phenomena become more pronounced as the number of
atoms increases, in correspondence with the intuitive N → ∞ limit. In addition,
we elaborate on the nontrivial character of the system’s second-order photon corre-
lations. Finally, in section 5.5, we connect the few-atom systems considered here to
macroscopic laser systems. In particular, we relate standard laser concepts such as
threshold behavior and mode redistribution to the characteristics of the presented
N -atom systems.

5.2 The Master equation of N atoms with gain

5.2.1 The Master equation of N passive atoms

In the spirit of the presentation in [71], we start by considering a collection of N
identical passive atoms coupled to a three-dimensional multimode electromagnetic
field. Each of the atoms has two relevant energy levels a and c, separated by an en-
ergy difference ~ωca. In relation to the previous chapters, we can regard the atoms
to be of the three-level type abc introduced in section 2.2 in the absence of a pump.
As we discussed in section 4.2, the upper level b does not participate in the atomic
dynamics if no external pump field is present; the atoms can then be regarded as
two-level ac systems. The total Hamiltonian of the atoms and the electromagnetic
field can be written as

Ĥ(t) =
N∑

j=1

Ĥ(j)
c (t) +

N∑
j=1

V̂
(j)
AR(t) + ĤR(t). (5.1)

The atomic Hamiltonian is given by
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N∑
j=1

Ĥ(j)
c (t) = ~ωca

N∑
j=1

Ŝ(j)+
ac (t)Ŝ(j)−

ac (t), (5.2)

where Ŝ(j)+
ac (t) and Ŝ(j)−

ac (t) respectively raise and lower the state of atom j at time
t. The atoms are coupled to the field through the interaction Hamiltonian

N∑
j=1

V̂
(j)
AR(t) = −

N∑
j=1

d̂(j)(t) · Ê(t, rj), (5.3)

where rj is the position vector of atom j,

d̂(j)(t) ≡ d(j)
ac

(
Ŝ(j)+

ac (t) + Ŝ(j)−
ac (t)

)
(5.4)

is the dipole operator of atom j with d
(j)
ac the atom’s transition dipole moment, and

Ê(t, r) ≡
∑
kλ

εkλ

(~ωkλ

2ε0V

)1/2 (
âkλ(t)eik·r + â†kλ(t)e−ik·r

)
(5.5)

is the electric-field operator, where V is the quantization volume. The operators
âkλ(t) and â†kλ(t) respectively annihilate and create a photon with polarization εkλ

and frequency ωkλ at time t; they obey the standard commutation relations

[
âkλ(t), â†k′λ′(t)

]
= δλλ′δ(k − k′). (5.6)

Finally, the multimode electric field is described by the Hamiltonian

ĤR(t) ≡
∑
kλ

~ωkλâ
†
kλ(t)âkλ(t). (5.7)

The total Hamiltonian (5.1) fully describes the N -atom system under considera-
tion and its coupling to the electromagnetic field. Our aim is to derive the N -atom
Master equation, thereby describing the system in terms of atomic operators only.

If Q̂(t) is an arbitrary combination of atomic operators, then Q̂(t) evolves as

d

dt
Q̂(t) =

i

~

[
Ĥ(t), Q̂(t)

]
, (5.8)
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which can be expanded, using (5.1), as

d

dt
Q̂(t) =iωca

N∑
j=1

[
Ŝ(j)+

ac (t)Ŝ(j)−
ac (t), Q̂(t)

]

− i

~

N∑
j=1

∑
kλ

K
(j)
kλ

(
eik·rj

[
Ŝ(j)+

ac (t) + Ŝ(j)−
ac (t), Q̂(t)

]
âkλ(t)

)

− i

~

N∑
j=1

∑
kλ

K
(j)
kλ

(
e−ik·rj â†kλ(t)

[
Ŝ(j)+

ac (t) + Ŝ(j)−
ac (t), Q̂(t)

])
, (5.9)

were we used the shorthand notation

K
(j)
kλ ≡

(~ωkλ

2ε0V

)1/2

d(j)
ac · εkλ. (5.10)

We now proceed to eliminate the field operators from equation (5.9). The field
operators âkλ(t) satisfy

d

dt
âkλ(t) =

i

~

[
Ĥ(t), âkλ(t)

]
=− iωkλâkλ(t) +

i

~

N∑
j=1

K
(j)
kλ

(
Ŝ(j)+

ac (t) + Ŝ(j)−
ac (t)

)
e−ik·rj , (5.11)

from which we can deduce that

âkλ(t) =âkλ(0)e−iωkλt

+
i

~

N∑
j=1

K
(j)
kλ

∫ t

0

dt′
(
Ŝ(j)+

ac (t′) + Ŝ(j)−
ac (t′)

)
e−ik·rj+iωkλ(t′−t). (5.12)

Using the explicit time-dependent field operators (5.12), we can simplify the evolu-
tion (5.9) of the atomic operator Q̂(t). The second term of (5.9) can be rewritten
as

− i

~

N∑
j=1

Ê+
0 (t, rj) · d(j)

ac

[
Ŝ(j)+

ac (t) + Ŝ(j)−
ac (t), Q̂(t)

]
+

N∑
j,j′=1

∑
kλ

K
(j)
kλK

(j′)
kλ e−ik·rjj′×

1
~2

∫ t

0

dt′eiωkλ(t′−t)
[
Ŝ(j)+

ac (t) + Ŝ(j)−
ac (t), Q̂(t)

] (
Ŝ(j′)+

ac (t′) + Ŝ(j′)−
ac (t′)

)
, (5.13)
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with

Ê+
0 (t, r) ≡

∑
kλ

(~ωkλ

2ε0V

)1/2

εkλe
ik·r−iωkλtâkλ(0) (5.14)

the positive-frequency part of the quantum vacuum field operator. Following the
convention of the previous chapters, the vector rjj′ is defined as rjj′ ≡ rj − rj′ .
Expression (5.9) with (5.13) and the complex conjugate of the latter is an integro-
differential equation for Q̂(t) in which the only field operators are free-field opera-
tors; the electromagnetic field has therefore effectively been eliminated.

We now proceed to further simplify the evolution equation for Q̂(t). The sum
over the electromagnetic field modes in (5.13) can be replaced in the continuum
limit by

∑
kλ

→ V

(2π)3

∫
dk
∑
ε⊥k

=
V

(2π)3

∫ +∞

0

k2dk

∫
4π

dΩk

∑
ε⊥k

, (5.15)

where the sum is over the two states of polarization orthogonal to k. The atomic
operators, which oscillate close to the atomic frequency ωca, can be rewritten in
terms of more slowly varying dynamical variables

Ŝ(j)+
ac (t) = e+iωcat ˆ̃S(j)+

ac (t), (5.16a)

Ŝ(j)−
ac (t) = e−iωcat ˆ̃S(j)−

ac (t), (5.16b)

similar to the substitutions introduced in the Rotating Wave Approximation [30]
discussed in chapter 2 and 4. We stress, however, that the presented derivation
of the N -atom Master equation is at this stage not approximative but still exact.
Using expressions (5.15) and (5.16), we can rewrite (5.13) as

− i

~

N∑
j=1

Ê+
0 (t, rj) · d(j)

ac

[
Ŝ(j)+

ac (t) + Ŝ(j)−
ac (t), Q̂(t)

]

+
1

2ε0~

N∑
j,j′=1

∫
dk

ω

8π3
e−ik·rjj′d(j′)

ac ·
(

1− 1
k2

k ⊗ k

)
· d(j)

ac

∫ t

0

dt′eiω(t′−t)×

[
Ŝ(j)+

ac (t) + Ŝ(j)−
ac (t), Q̂(t)

] (
e+iωcat′ ˆ̃S(j′)+

ac (t′) + e−iωcat′ ˆ̃S(j′)−
ac (t′)

)
, (5.17)

where we let ωkλ → ω and used the notation k ≡ |k| = ω/c. In the derivation of
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(5.17), the sum over polarizations is simplified as

∑
ε⊥k

εkλ ⊗ εkλ = 1− 1
k2

k ⊗ k. (5.18)

We now proceed by introducing an approximation in order to simplify the calcu-
lations. We replace the slowly varying operators (5.16) at time t′ by their most
recent values, thereby reducing the integro-differential equation for Q̂(t) to an or-
dinary differential equation. This approximation is often referred to as the short
memory or Markov approximation [20, 79]. In the Markov approximation, we can
simplify expression (5.17) as

− i

~

N∑
j=1

Ê+
0 (t, rj) · d(j)

ac

[
Ŝ(j)+

ac (t) + Ŝ(j)−
ac (t), Q̂(t)

]
+

1
2ε0~

N∑
j,j′=1

∫
dk

ω

8π3
×

e−ik·rjj′d(j′)
ac ·

(
1− 1

k2
k ⊗ k

)
· d(j)

ac

[
Ŝ(j)+

ac (t) + Ŝ(j)−
ac (t), Q̂(t)

]
×(

Ŝ(j′)+
ac (t)

∫ t

0

dt′ei(ωca+ω)(t′−t) + Ŝ(j′)−
ac (t)

∫ t

0

dt′e+i(ω−ωca)(t′−t)

)
. (5.19)

The physical motivation of the Markov approximation can be explained in terms
of the different time scales involved in the system’s evolution. The most important
values for t′ in the evolution of the slowly varying atomic operators (5.16) are of the
order t−|rjj′/c|; in addition, we assume that the time required for a light signal to
travel from one atom to another (which is of the order |rjj′ |/c ) is small compared
to the time required for secular changes in the atomic levels (which is of the order
1/Γca). Under the above conditions, the slowly varying atomic operators at t′ can
be replaced by their value at time t. (As a side remark, we note that the Markov
approximation is well-known and implicitly assumed in many quantum optical de-
scriptions, where it leads to, e.g., the single-exponential decay of a single isolated
two-level atom in free space.)

We now continue to further simplify expression (5.19). The typical times we
consider are large compared to a single optical cycle (t � 1/ωca); the integration
interval in the time integration of (5.19) can therefore in good approximation be
extended to [0,+∞[. We can then use

lim
t→∞

∫ t

0

dt′ei(ω±ωca)(t′−t) = lim
t→∞

∫ t

0

dτe−i(ω±ωca)τ

= −iP 1
ω ± ωca

+ πδ(ω ± ωca), (5.20)

where P denotes the (Cauchy) Principal Value; discarding terms which oscillate at
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high frequencies such as Ŝ(j)+
ac (t)Ŝ(j′)+

ac (t) then transforms (5.19) into

− i

~

N∑
j=1

Ê+
0 (t, rj) · d(j)

ac

[
Ŝ(j)+

ac (t), Q̂(t)
]

+ i
N∑

j,j′=1

δ(jj′)+
[
Ŝ(j)−

ac (t), Q̂(t)
]
Ŝ(j′)+

ac (t)

+
N∑

j,j′=1

(iδ(jj′)− +
1
2
Γ(jj′))

[
Ŝ(j)+

ac (t), Q̂(t)
]
Ŝ(j′)−

ac (t). (5.21)

The coupling constants δ(jj′)± and Γ(jj′) are defined as

δ(jj′)± ≡ − 1
2π
P
∫ +∞

0

ω3

ω3
ca

dω
1

ω ± ωca
F (jj′)(ω), (5.22a)

Γ(jj′) ≡ F (jj′)(ωca), (5.22b)

with

F (jj′)(ω) ≡3
2
Γca

(
[µ(j)

ac · µ(j′)
ac − (µ(j)

ac · rjj′)(µ(j′)
ac · rjj′)]

sin(ω|rjj′ |/c)
ω|rjj′ |/c

+ [µ(j)
ac · µ(j′)

ac − 3(µ(j)
ac · rjj′)(µ(j′)

ac · rjj′)][
cos(ω|rjj′ |/c)
(ω|rjj′ |/c)2

− sin(ω|rjj′ |/c)
(ω|rjj′ |/c)3

]
)
,

(5.23)

where we used relation (4.54) which relates Γca to dca, and defined µ
(j)
ac ≡ d

(j)
ac /|d(j)

ac |,
in accordance with the notation introduced in previous chapters. Combining expres-
sion (5.9) with (5.21) and its complex conjugate finally yields the passive N -atom
Master equation

d

dt

〈
Q̂
〉

0
=iωca

N∑
j=1

〈[
Ŝ(j)+

ac Ŝ(j)−
ac , Q̂

]〉
0

+
N∑

j,j′=1
j 6=j′

iδ(jj′)
〈[
Ŝ(j)+

ac Ŝ(j′)−
ac , Q̂

]〉
0

− 1
2

N∑
j,j′=1

Γ(jj′)
〈
Ŝ(j)+

ac Ŝ(j′)−
ac Q̂+ Q̂Ŝ(j)+

ac Ŝ(j′)−
ac − 2Ŝ(j)+

ac Q̂Ŝ(j′)−
ac

〉
0

(5.24)

where we defined δ(jj′) as δ(jj′) ≡ δ(jj′)+ + δ(jj′)−. In the transition from expres-
sion (5.21) to the Master equation (5.24), we absorbed all frequency shifts into the
atomic frequency ωca since these shifts are identical for all atoms and do not con-
tribute to the phenomena of interest here. In addition, we considered the radiation
field to be initially in vacuum as denoted by the brackets 〈.〉0, thereby removing
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the quantum vacuum field operators. The Master equation (5.24) is the key result
of this derivation; it describes the time evolution of any atomic operator Q̂(t) in
terms of atomic operators and atomic properties only. The atoms interact through
the field with one another; due to the above elimination of the field, the atom-atom
interaction is expressed in terms of an effective atom-atom coupling (5.22).

In relation to the scattering formalism of chapter 3, the coupling term (5.22a)
can be simplified by standard contour integration as

δ(jj′) =
3
4
Γca

(
−[µ(j)

ac · µ(j′)
ac − (µ(j)

ac · rjj′)(µ(j′)
ac · rjj′)](

cos(ωca|rjj′ |)
ωca|rjj′ |

)

+ [µ(j)
ac · µ(j′)

ac − 3(µ(j)
ac · rjj′)(µ(j′)

ac · rjj′)][
sin(ωca|rjj′ |)
(ωca|rjj′ |)2

+
cos(ωca|rjj′ |)
(ωca|rjj′ |)3

]
)
.

(5.25)

Comparing the coupling terms (5.22b) and (5.25) to the classical free-space Green
function (3.46) shows that

2δ(jj′) − iΓ(jj′) = 6π
Γcac

ωca
µ(j)

ac ·
←→
G 0(ωca, rjj′) · µ(j′)

ac . (5.26)

Relation (5.26) illustrates the intimate connection between the above Master equa-
tion and the scattering formalism of chapter 3: integrating the atom-atom coupling
over the quantum vacuum results in the classical retarded free-space Green func-
tion.

The coupling constants (5.22b) and (5.25) are expressed in terms of the natural
decay rate Γca of one atom, the orientation of the atomic transition dipole moments
and the separation xjj′ ≡ ωca|rjj′ |/c between different atoms. To illustrate the
dependence of the atom-atom coupling on the atomic separation, Figure 5.1 shows
both couplings for the case of parallel dipole moments and rjj′ ⊥ µ

(j)
ac ,µ

(j′)
ac . For

large separations (xjj′ � 1), both couplings δ(jj′) and Γ(jj′) vanish. For atomic
separations much smaller than the optical wavelength Γ(jj′) and δ(jj′) exhibit a
different behavior: while δ(jj′) diverges for small separations, Γ(jj′) reduces to the
single-atom decay rate Γca. Because the coupling δ(jj′) appears as a frequency shift
and the coupling Γ(jj′) as a damping term, δ(jj′) is often referred to as the coherent
atom-atom coupling while Γ(jj′) is referred to as the incoherent atom-atom coupling
[3].

We conclude the above derivation of the passive N -atom Master equation by
connecting equation (5.24) to the density-matrix formalism introduced in chapter
2. The system of N atoms and the radiation field can be characterized by a total
density matrix ρ̂(t), which evolves as

d

dt
ρ̂(t) = − i

~

[
Ĥ(t), ρ̂(t)

]
. (5.27)
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(a) The coherent coupling δ(jj′). (b) The incoherent coupling Γ(jj′).

Figure 5.1: The (a) coherent atom-atom coupling δ(jj′) and the (b) incoherent atom-atom

coupling Γ(jj′). Both couplings vary with the atomic separation xjj′ ≡ ωca|rjj′ |/c, and

are shown for the case of parallel dipole moments µ
(j)
ac ‖ µ

(j′)
ac and rjj′ ⊥ µ

(j)
ac , µ

(j′)
ac .

The time average of an arbitrary operator ˆ̃Q(t) is related to the density matrix ρ̂(t)
by

〈
ˆ̃Q(t)

〉
≡ Tr{A},R

[
ρ̂(t) ˆ̃Q(0)

]
= Tr{A},R

[
ρ̂(0) ˆ̃Q(t)

]
, (5.28)

where the trace stands for an integration over the atoms {A} = A1, . . . , AN and the

electromagnetic field R. If the operator ˆ̃Q(t) is an arbitrary combination of atomic

operators only, we replace the general operator ˆ̃Q(t) by the atomic operator Q̂(t)
and simplify (5.28) as

〈
Q̂(t)

〉
= Tr{A},R

[
ρ̂(t)Q̂(0)

]
= Tr{A}

[
TrR [ρ̂(t)] Q̂(0)

]
= Tr{A}

[
σ̂(t)Q̂(0)

]
. (5.29)

in terms of the atomic density matrix σ̂(t). Note that in order to write (5.29),
we assumed that the total density matrix ρ̂(t) of the atoms and the field can be
factorized into an atomic density matrix σ̂(t) and a field contribution ρ̂R

ρ̂(t) ≡ σ̂(t)⊗ ρ̂R, (5.30)
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thereby implying that correlations between the atoms and the field decay quickly
enough in order not to affect the secular evolution of the atoms [24, 30]. The
factorization (5.30) is often referred to as the Born approximation. In the Born
approximation, atom-field interactions of second order in the atom-field coupling
V̂

(j)
AR are neglected. (As a side remark, we note that the above Born approximation

is fully consistent with the Master equation (5.24), though this may not seem ap-
parent at first sight. We can demonstrate their compatibility by a Taylor expansion
of the slowly varying atomic operators

ˆ̃S(j)±
ac (t′) = ˆ̃S(j)±

ac (t) + (t′ − t) d
dt

ˆ̃S(j)±
ac (t) + . . . . (5.31)

Since equation (5.9) reveals that the second term of (5.31) is of order d
(j)
ac or higher,

retaining only the first term of (5.31) corresponds to approximating (5.17) up to
second order in the atom-field interaction, in agreement with the Born approxima-
tion.)

If we combine both expressions (5.24) and (5.29) for the time average of Q̂(t)
above, and consider the radiation field to be in a vacuum state (ρ̂R ≡ |0〉〈0|), we
find the Master equation for the atomic density matrix in the Born-Markov approx-
imation

d

dt
σ̂ =− iωca

N∑
j=1

[
Ŝ(j)+

ac Ŝ(j)−
ac , σ̂

]
−

N∑
j,j′=1
j 6=j′

iδ(jj′)
[
Ŝ(j)+

ac Ŝ(j′)−
ac , σ̂

]

− 1
2

N∑
j,j′=1

Γ(jj′)
(
Ŝ(j)+

ac Ŝ(j′)−
ac σ̂ + σ̂Ŝ(j)+

ac Ŝ(j′)−
ac − 2Ŝ(j)−

ac σ̂Ŝ(j′)+
ac

)
, (5.32)

where we dropped the subscript denoting the vacuum state of the field for notational
simplicity. Comparing (5.24) and (5.32) reveals a strong resemblance between both
equations; however, we note that both evolution equations differ in a subtle way
through the different ordering of the atomic raising and lowering operators and the
sign of the commutator terms.

5.2.2 Gain and the N-atom Master equation

The Master equation (5.32), or equivalently, equation (5.24), fully describes the
dynamics of a passive N -atom system in terms of atomic operators and properties
only. We now proceed to incorporate gain in the system by including the interaction
of one of the atoms with an external pump field.

In chapter 2 we discussed two different schemes allowing for the implementation
of gain in an atomic system. The three-level scheme abc depicted in Figure 2.1 is
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the simplest level scheme in terms of the number of levels required for its descrip-
tion, but the scheme’s gain is inherently nonlinear due to the power broadening
discussed in section 2.4. On the other hand, the four-level system abcd depicted in
Figure 2.7 does not exhibit similar broadening, but has several major drawbacks in
the light of our current interests. First, the four-level scheme abcd does not scatter
light in the absence of an external pump. Since we are describing a system of N
identical atoms and we obviously do not desire the passive atoms to be transparent,
we must necessarily pump all N atoms. Secondly, the presence of gain provided
by the scheme abcd is independent of the applied pump intensity as discussed in
section 2.5.3; modeling N identical atoms as four-level systems abcd and exciting
all of them with an external pump field therefore implies all the atoms to be in
gain (or conversely, none of them). Thirdly, and perhaps practically most impor-
tantly, a four-level system abcd cannot be reduced to an effective two-level system,
in contrast to a three-level system abc. The reduction of a multilevel system to
an effective two-level system is of practical importance because of the resulting
computational benefit, as we will illustrate further on. The difference between the
four-level scheme abcd and the three-level scheme abc in terms of their ability to be
reduced to an effective two-level system can be understood in terms of the feedback
loop in both schemes in the presence of an incident probe. If the levels b and d
involved in the pump transition are eliminated from the four-level scheme, the re-
maining levels a and c do not interact directly with the pump field. Consequently,
the finite rate at which the pump provides feedback is removed; in other words, in
the presence of an incident probe the equilibrium between the finite pump rate and
the stimulated (and spontaneous) emission rate is distorted when eliminating levels
b and d. A similar argument does not hold for the three-level scheme, because in
the abc scheme the lower level a is shared between the a → c scattering transition
of interest and the a → b pump transition. Considering the above arguments, we
restrict ourselves henceforth to implementations of gain through schemes of the abc
type.

The Master equation of one atom of the type abc, interacting with an external
pump field at the a→ b transition is given by

d

dt
σ̂ ≡− i[ 1

~
V̂AE + ωcaŜ

+
acŜ

−
ac, σ̂]− Γca

2

(
Ŝ+

acŜ
−
acσ̂ + σ̂Ŝ+

acŜ
−
ac

)
+ ΓcaŜ

−
acσ̂Ŝ

+
ac −W

Γca

2

(
Ŝ−acŜ

+
acσ̂ + σ̂Ŝ−acŜ

+
ac

)
+WΓcaŜ

+
acσ̂Ŝ

−
ac, (5.33)

in terms of the atom’s density matrix σ̂. The parameter W is defined as (2.20)
and quantifies the pump intensity. The Hamiltonian V̂AE is defined as (2.8) and
expresses the interaction of the atom with an incident probe field. The above Master
equation is equivalent to the Master equation (2.13) presented in chapter 2 in the
limit of Γbc →∞ and finite W , as can be straightforwardly checked. The interaction
of the pump and the atom appears in (5.33) as a damping term; one can intuitively
explain the physical processes involved in the pump process by explicitly calculating
the evolution of the density matrix elements σij ≡ 〈i|σ̂|j〉 in the absence of a probe
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field

d

dt
σcc = −Γcaσcc +WΓcaσaa, (5.34a)

d

dt
σaa = +Γcaσcc −WΓcaσaa, (5.34b)

d

dt
σca =

d

dt
σ∗ac = −(1 +W )

Γca

2
σca, (5.34c)

revealing that the rate at which population is transferred from the lower level a to
the excited level c is given by WΓcaσaa, as we expect. In addition, the steady-state
population distribution corresponding to equations (5.34) is given by

σst
cc =

W

1 +W
= 1− σst

aa, (5.35)

in accordance with expression (2.19).
The Master equation (5.33) reveals how gain can be implemented in the above

Master equation formalism using a description in terms of effective two-level systems
only. Combining expression (5.33) with the passive N -atom Master equation (5.32)
yields the N -atom Master equation of N atoms with a single atom in gain [100, 114]

d

dt
σ̂ =− iωca

N∑
j=1

[
Ŝ(j)+

ac Ŝ(j)−
ac , σ̂

]
−

N∑
j,j′=1
j 6=j′

iδ(jj′)
[
Ŝ(j)+

ac Ŝ(j′)−
ac , σ̂

]

− 1
2

N∑
j,j′=1

Γ(jj′)
(
Ŝ(j)+

ac Ŝ(j′)−
ac σ̂ + σ̂Ŝ(j)+

ac Ŝ(j′)−
ac − 2Ŝ(j)−

ac σ̂Ŝ(j′)+
ac

)
−W Γca

2

(
Ŝ(1)−

ac Ŝ(1)+
ac σ̂ + σ̂Ŝ(1)−

ac Ŝ(1)+
ac

)
+WΓcaŜ

(1)+
ac σ̂Ŝ(1)−

ac , (5.36)

in terms of the atomic density matrix, or equivalently,

d

dt

〈
Q̂
〉

0
=iωca

N∑
j=1

〈[
Ŝ(j)+

ac Ŝ(j)−
ac , Q̂

]〉
0

+
N∑

j,j′=1
j 6=j′

iδ(jj′)
〈[
Ŝ(j)+

ac Ŝ(j′)−
ac , Q̂

]〉
0

− 1
2

N∑
j,j′=1

Γ(jj′)
〈(
Ŝ(j)+

ac Ŝ(j′)−
ac Q̂+ Q̂Ŝ(j)+

ac Ŝ(j′)−
ac − 2Ŝ(j)+

ac Q̂Ŝ(j′)−
ac

)〉
0

−W Γca

2

〈
Ŝ(1)−

ac Ŝ(1)+
ac Q̂+ Q̂Ŝ(1)−

ac Ŝ(1)+
ac

〉
0

+WΓca

〈
Ŝ(1)−

ac Q̂Ŝ(1)+
ac

〉
0
,

(5.37)
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in terms of an arbitrary atomic operator Q̂(t). The atom which interacts with
the external pump field is labeled “1”. Expressions (5.36) and (5.37) are the key
result of this section: they describe the interaction of N (effective) two-level atoms,
one of which interacts with an external pump field, taking into account atom-
atom interactions through off-resonant light in all scattering orders. The Master
equations (5.36) and (5.37) are written in a compact form and are as such not
straightforwardly numerically solvable; in the next section, we focus on a practical
approach to the solution of the above equations.

5.3 Solving the N-atom Master equation with gain

5.3.1 Physical quantities of interest

The Master equation (5.37) fully describes a system of N atoms with one atom
in gain within the Born-Markov approximation. Our current aim is to provide a
general description of N -atom systems in terms of (ideally) experimentally observ-
able quantities. In what follows, we present an overview of the characteristics of an
atomic system using the correlation functions of the emitted light.

The first type of correlation function we will focus on is the time-averaged field-
field correlation or spectrum, defined in the statistically stationary regime as

〈I(ω, r)〉 ≡ lim
t→∞

ε0
1
2π

∫ ∞

−∞
dτe−iωτ

〈
Ê−(t+ τ, r) · Ê+(t, r)

〉
, (5.38)

with Ê+(t, r) and Ê−(t, r) respectively the positive- and negative-frequency part
of the electric-field operator (5.5), given by

Ê−(t, r) =
(
Ê+(t, r)

)†
=
∑
kλ

εkλ

(~ωkλ

2ε0V

)1/2

â†kλ(t)e−ik·r. (5.39)

The spectrum (5.38) is expressed in units of Js/m3. The integration over all fre-
quencies of the spectrum and application of the delta-function representation

δ(t) ≡ 1
2π

∫ +∞

−∞
dωe−iωt, (5.40)

yields the steady-state intensity

〈I(r)〉 ≡ lim
t→∞

〈I(t, r)〉

≡ lim
t→∞

∫ ∞

−∞
dωeiωt 〈I(ω, r)〉 = lim

t→∞
ε0

〈
Ê−(t, r) · Ê+(t, r)

〉
, (5.41)
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emitted by the system.
The second type of correlation function of interest is the time-averaged intensity-

intensity correlation, defined in the statistically stationary regime as

〈
G(2)(r, r′)

〉
≡ lim

t→∞
ε20

〈
: Î(t, r)Î(t, r′) :

〉
, (5.42)

where the colons denote normal ordering for the operators, and where the intensity
operator is defined as

Î(t, r) ≡ Ê−(t, r) · Ê+(t, r). (5.43)

Expressions (5.38) and (5.42) are expressed in terms of electric-field operators;
since we aim at a description using the Master equation (5.37), we need to express
both correlation functions in terms of atomic operators only. Combining (5.5),
(5.12), (5.15) and (5.18) shows that the positive-frequency part of Ê(t, r) can be
written as

Ê+(t, r) =Ê+
0 (t, r) + i

1
16ε0π3

∫
ωdk(1− 1

k2
k ⊗ k) · d(j)

ac ×

N∑
j=1

eik·Rj

∫ t

0

dt′
(
Ŝ(j)+

ac (t′) + Ŝ(j)−
ac (t′)

)
eiω(t′−t), (5.44)

where we defined Rj ≡ r − rj . Using similar arguments as the ones used in the
derivation of the Master equation, we can deduce that [108]

Ê+(t, r) =Ê+
0 (t, r)

+
1

4πε0
ω2

ca

c2

N∑
j=1

1
|Rj |

(
d(j)

ac −
1
|Rj |2

Rj(Rj · d(j)
ac )
)
Ŝ(j)−

ac (t− |Rj |/c),

(5.45)

in the far-field (|Rj |ωca/c � 1,∀j). Expression (5.45) denotes that the positive-
frequency part of the electric field is proportional to the sum of atomic lowering
operators at a retarded time. In other words, the detection of a photon in the
far-field at time t requires the decay of (or photon scattering off) an atom j at an
earlier time t− |Rj |ωca/c.

Combining expression (5.45) with expressions (5.38), (5.41) and (5.42) reveals
that we need to calculate two different types of atomic-operator combinations in or-
der to evaluate the above correlation functions of interest. On one hand, expanding
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the intensity-intensity correlation (5.38) or the intensity (5.41) in terms of atomic
operators requires the steady-state value of atomic operators of the type

〈
Ŝ(j)+

ac (t)Ŝ(i)−
ac (t)

〉
. (5.46)

On the other hand, the spectrum (5.38) can be written in terms of operator combi-
nations of the type

〈
Ŝ(j)+

ac (t)Ŝ(i)−
ac (0)

〉
. (5.47)

We now proceed to show how both types of operator combinations (5.46) and (5.47)
can be evaluated using the Master equation (5.37).

5.3.2 Categorization of operator expectation values

The Master equation (5.37) expresses the evolution in time of an arbitrary atomic
operator Q̂(t). A close observation of equation (5.37) reveals that each of its terms
adds zero net excitation to the system. In other words, the Master equation con-
sists only of contributions for which every atomic raising operator is compensated
for by a lowering operator (and vice versa). A direct consequence of this particular
property is that the evolution equations of the atomic operators with a given net
excitation form a closed set [114]. For example, for the case N = 2, the evolution
equations of the operators

Ŝ(1)+
ac Ŝ(1)−

ac , Ŝ(2)+
ac Ŝ(2)−

ac , Ŝ(1)+
ac Ŝ(2)−

ac ,

Ŝ(2)+
ac Ŝ(1)−

ac , Ŝ(1)+
ac Ŝ(1)−

ac Ŝ(2)+
ac Ŝ(2)−

ac , (5.48)

form a closed set, thereby coupling operators with zero net excitation only to other
operator combinations with zero net excitation. The set (5.48) is a nontrivial irre-
ducible set of operator combinations; other zero-excitation operators are related to
operators (5.48) through completeness relations

Ŝ(j)+
ac Ŝ(j)−

ac + Ŝ(j)−
ac Ŝ(j)+

ac ≡ 1̂, ∀j, (5.49)

with 1̂ the unity operator. The above procedure shows that in a two-atom sys-
tem, the evolution of all zero-excitation operators is governed by a 5 × 5 matrix.
Compared to the dimensions of the evolution matrix corresponding to the Mas-
ter equation in terms of the density matrix (5.36), the dimensionality involved in
determining the steady-state value of operators (5.46) is much smaller. Hence, in
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N # equations using (5.36) # equations using (5.37)
2 16 5
3 64 19
4 256 56
5 1024 251
... ... ...
n 22n 2n!

(n!)2 − 1

Table 5.1: The total number of differential equations required in a density matrix de-
scription versus the number of equations required to evaluate the intensity and intensity-
intensity correlations in an N -atom system.

the evaluation of the intensity-intensity correlation function (5.42) or the intensity
(5.41), proper use of the Master equation (5.37) versus (5.36) reduces the dimen-
sionality of the problem and the associated computational effort. To illustrate the
computational benefit of the above reduction procedure, Table 5.1 compares the
number of equations required in a description in terms of the system’s density
matrix to the number of equations required to evaluate zero-excitation operators
(5.46). We observe that computational benefit associated with the above reduction
is considerable and increases as the number of atoms N increases.

Using the above procedure, correlation functions of the type (5.46) can be
straightforwardly efficiently evaluated. We now focus on the evolution of two-time
operators of the type (5.47). The quantum regression theorem [22] states that if a
set of operators

Q̂(t) ≡
(
Q̂1, Q̂2, . . . , Q̂n

)
(t) (5.50)

evolves as

d

dt

〈
Q̂(t)

〉
=M

〈
Q̂(t)

〉
, (5.51)

with M the matrix describing the evolution, then two-time operator expectation
values obey

d

dt

〈
Q̂(t)Q̂i(0)

〉
=M

〈
Q̂(t)Q̂i(0)

〉
, 1 ≤ i ≤ n. (5.52)

Application of the quantum regression theorem to the operators of the type (5.47)
shows that their evolution can be derived from the evolution of single-time operators
such as Ŝ(j)+

ac (t). For the case N = 2, for example, evaluation of two-time averages
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N # equations using (5.36) # equations using (5.37)
2 16 4
3 64 15
4 256 56
5 1024 210
... ... ...
n 22n (2n)!

(n+1)!(n−1)!

Table 5.2: The total number of differential equations required in a density matrix de-
scription versus the number of equations required to evaluate the spectrum in an N -atom
system.

(5.47) requires the evolution matrix of the closed set of evolution equations of the
single-excitation operators

Ŝ(1)+
ac , Ŝ(2)+

ac , Ŝ(1)+
ac Ŝ(1)−

ac Ŝ(2)+
ac , Ŝ(1)+

ac Ŝ(2)+
ac Ŝ(2)−

ac . (5.53)

The dimensionality of the above list implies that the evolution of all two-time aver-
ages of the type (5.47) is, for N = 2, governed by a 4×4 matrix. Table 5.2 compares
the dimensions of the evolution matrix using the quantum regression theorem to
the dimensionality involved using the full Master equation (5.36). Similarly to the
evaluation of expectation values (5.46), we observe that using the Master equation
(5.37) versus (5.36) results in a considerable reduction of the computational effort.

We conclude this discussion by summarizing that a proper categorization of the
atomic operators based on their net excitation, combined with the quantum regres-
sion theorem, allows for a straightforward determination of expectation values of
the type (5.46) and (5.47). (As a side remark, we note that this categorization is
only possible in the absence of an external probe field, since the Hamiltonian (2.8)
corresponding to the interaction of an atom and an external probe field does not
preserve the number of excitations.) Using the above reduction tools, we now pro-
ceed to simplify the expressions for the spectrum (5.38), the intensity (5.41) and
the intensity-intensity correlation function (5.42) in terms of atomic operators; such
simplification will allow us to characterize the system in terms of experimentally
observable quantities.

5.3.3 Evaluation of correlation functions

The far-field spectrum (5.38) can be expressed in terms of atomic operators by
means of substitutions (5.16) and (5.45) as
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〈I(ω, r)〉 = ε0
d2

ac

(4πε0)2
1

2πr2
(ωca

c

)4 N∑
i,j=1

eiωcaτij ui(r) · uj(r)×

lim
t→∞

∫ +∞

−∞
dτe−i(ω−ωca)τ

〈
ˆ̃S(i)+
ac (t+ τ) ˆ̃S(j)−

ac (t)
〉
, (5.54)

with r ≡ r/|r| and where τij defined as τij ≡ |Rj |/c− |Ri|/c. The vector

ui(r) ≡ µ(i)
ac − (r − ri)

(r − ri) · µ(i)
ac

| (r − ri) |2
(5.55)

is characteristic for the single-atom dipole radiation. According to the quantum
regression theorem, we can write the two-time correlation functions in (5.54) as a
sum of exponential functions, each with a weight β(ij)

m to be determined from (5.52):

〈
ˆ̃S(i)+
ac (τ) ˆ̃S(j)−

ac (0)
〉

=
κ(N)∑
m=1

β(ij)
m e(iωm−γm)τ , (5.56)

with

κ(N) ≡ (2N)!
(N − 1)!(N + 1)!

(5.57)

the number of eigenvalues of the evolution matrix of the atomic operators with
one net excitation, as shown in Table 5.2. Expression (5.56) allows us to write the
spectrum as

〈I(ω, r)〉 = ε0
d2

ac

(4πε0)2
1
πr2

(ωca

c

)4

×

N∑
i,j=1

κ(N)∑
m=1

Re

[
β

(ij)
m eiωcaτij

i(ω − ωca − ωm) + γm

]
ui(r) · uj(r), (5.58)

denoting that the spectrum of the light emitted by N atoms is a superposition of
κ(N) Lorentzian contributions, each of which is characterized by a central frequency
ωca+ωm and spectral width γm. Integrating the spectrum over all frequencies yields
the intensity

〈I(r)〉 = lim
t→∞

ε0
d2

ac

(4πε0)2
1
r2

(ωca

c

)4 N∑
i,j=1

eiωcaτij ui(r) · uj(r)
〈

ˆ̃S(i)+
ac (t) ˆ̃S(j)−

ac (t)
〉
.

(5.59)

90



5.4. Characteristics of an N -atom system with gain

Finally, in a similar way as the spectrum and the intensity, the far-field intensity-
intensity correlation function (5.42) can be rewritten in terms of atomic operators as

〈
G(2)(r, r′)

〉
= ε20

d4
ac

(4πε0)4
(ωca

c

)8 1
r4

N∑
i,j,n,m=1

eiωcaτimeiωcaτ ′
jn×

(ui(r) · um(r)) (uj(r′) · un(r′))×

lim
t→∞

〈
ˆ̃S(i)+
ac (t) ˆ̃S(j)+

ac (t) ˆ̃S(n)−
ac (t) ˆ̃S(m)−

ac (t)
〉
.

(5.60)

with τ ′jn ≡ |r′ − rn|/c − |r′ − rj |/c. Expressions (5.58), (5.59) and (5.60) are
the key results of this section: they express experimentally observable physical
quantities in terms of expectation values of atomic operators only. Using the above
mathematical framework, we now focus on the physical properties of the system
under consideration and proceed in the next section to present an overview of the
characteristics of an N -atom system with gain.

5.4 Characteristics of an N-atom system with gain

The correlation functions derived above allow us to characterize systems of N atoms
with gain in terms of the properties of the emitted light. Besides depending on the
atomic properties, the system characteristics vary with the atoms’ spatial configura-
tion and the orientation of the transition dipole moments. We focus henceforth on
configurations of atoms with interatomic distances of the order c/ωca and smaller,
since for much larger distances the feedback provided by the passive atoms is limited
and only a very small fraction of the photons emitted by the pumped atom will be
scattered.

We now proceed to focus on the spectrum and intensity of the emitted light and
second-order photon correlations.

5.4.1 The spectrum

The flux 〈Φ(ω, r)〉 dω of photons detected in the frequency range [ω, ω + dω] per
unit area at a position r in the far-field is given by

〈Φ(ω, r)〉 dω = 2
c

~ωca
〈I(ω, r)〉 dω. (5.61)

The flux is expressed in units s−1m−2. Expression (5.61) shows that, in general,
the spectral information of the detected photons varies with the position r of the
detector. To illustrate this dependence, Figure 5.2 depicts the far-field flux (5.61)
emitted by a two-atom system with one of the atoms pumped. The flux is shown
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Figure 5.2: The angular flux function 〈Φ(ω, r)〉 (in units of |r|−2) versus frequency (in units
of Γca). The system under consideration consists of two atoms, one of which is pumped.

The atomic transition dipole moments are chosen parallel to each other (µ
(1)
ac ‖ µ

(2)
ac )

and orthogonal to the axis connecting both atoms (r12 ⊥ µ
(1)
ac , µ

(2)
ac ). The position of the

detector is taken in the far-field along the r12 axis (dashed line) and along the µ
(1)
ac ×r12 axis

(solid line). The pump parameter is W = 0.5. The interatomic separation is |r12| = c/ωca.

for two different positions of the detector. We observe that both the overall shape
and the height of the flux depend on the detector’s position. In addition, Figure 5.2
demonstrates that the spectrum is in general asymmetric in correspondence with
the general structure of expression (5.58).

In what follows, we wish to disregard the role of the detector by considering
the far-field angle-integrated flux

〈φ(ω)〉 dω ≡
∫

4π

r2dΩ 〈Φ(ω, r)〉 dω

=
3Γca

(4π)2
dω

N∑
i,j=1

∫
4π

dΩeiωcaτij ui(r) · uj(r)×

lim
t→∞

∫ +∞

−∞
dτe−i(ω−ωca)τ

〈
ˆ̃S(i)+
ac (t+ τ) ˆ̃S(j)−

ac (t)
〉
. (5.62)

The angle-integrated flux is expressed in units s−1. The integration over a 4π solid
angle in (5.62) can in the far-field be straightforwardly evaluated and yields

∫
4π

dΩeiωcaτij ui(r) · uj(r) =
8π

3Γca

(
δijΓca + (1− δij)Γ(ij)

)
, (5.63)

with δij the Kronecker delta and Γ(ij) given by (5.22b). Using (5.63), we can sim-
plify expression (5.62) as
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〈φ(ω)〉 dω =
1
2π
dω

N∑
i,j=1

lim
t→∞

∫ +∞

−∞
dτe−i(ω−ωca)τ

〈
ˆ̃S(i)+
ac (t+ τ) ˆ̃S(j)−

ac (t)
〉
×(

δijΓca + (1− δij)Γ(ij)
)
. (5.64)

For each atomic geometric configuration, the (angle-averaged) spectral proper-
ties of the emitted light vary with the applied pump intensity. If we increase the
pump intensity, different modes in the system will be subject to different gain and,
consequently, modes will compete for the available population inversion in the sys-
tem. To indicate the effect of the pump intensity on the spectrum of the emitted
light, Figure 5.3 shows the far-field angle-integrated flux for a four-atom configu-
ration. The flux is shown for a typical low (W = 1.77) and a high (W = 10.10)
pump intensity. At low pump intensity, the emission spectrum is broad, while at
higher pump intensities we observe a significant spectral narrowing. Figure 5.3 fur-
ther illustrates that the asymmetry of the spectrum typically reduces as the pump
intensity increases, indicating the dominance of a single mode at high values of W .

The remarkable observed spectral narrowing is related to the collective behav-
ior of the passive atoms acting as a cavity and the pumped atom providing gain.
However, the cooperativity presented here is drastically different from the type of
collective behavior found in superradiance [1, 5, 33, 35, 50, 98] or superfluorescence
[16, 32, 51, 52, 115]: while we describe a stationary effect, superradiance and su-
perfluorescence effects are essentially transient. Furthermore, the spectral width of
a superradiant pulse broadens with the number of atoms, in sharp contrast to the
spectral narrowing presented here. As a side remark, we note that atomic systems
which do exhibit a narrowing in literature are either atomic ensembles in the very
large atom-number limit [34] or atomic systems in a (macroscopic) cavity [53]; in
relation to the latter type of work, Figure 5.3 clearly shows that, remarkably, gain
narrowing is possible in the few-atom case even in the absence of a cavity.

The degree of gain narrowing which an atomic system exhibits depends to
a large extent on the atomic configuration. If we wish to compare different con-
figurations of atoms, we need to visualize the degree of observed gain narrowing.
We proceed along the path originally considered by Shawlow and Townes [105] and
compare the line width of the emitted light to the photon emission rate. Therefore,
we determine the full width at half maximum ∆ω of the far-field angle-integrated
flux (5.64) and evaluate the spectral weight

J (∆ω) ≡
∫

∆ω

dω 〈φ(ω)〉 , (5.65)

within the range ∆ω. The spectral weight (5.65) corresponds to the total photon
emission rate nΓca emitted by the N -atom system in the range ∆ω. Intuitively, the
number n can be interpreted as the number of excitations in a cavity with decay
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Figure 5.3: The normalized angle-integrated flux in the far-field versus frequency (in units
of Γca). The inset shows the configuration for which the spectrum is evaluated. The
passive atoms (black) are positioned in an equilateral triangle, with the pumped atom
(grey) in the center. All transition dipole moments are perpendicular to the plane of the
atoms. The distance L in the inset is 0.7c/ωca. The spectrum is shown for a low pump
intensity W = 1.77 (solid line) and a high pump intensity W = 10.10 (dashed line). The
flux is normalized to its maximum to emphasize the spectral narrowing.

rate Γca, as illustrated by Figure 5.4. If we take the limit ∆ω → +∞, we find

lim
∆ω→+∞

J (∆ω) =
∫ +∞

−∞
dω 〈φ(ω)〉

=
N∑

i,j=1

lim
t→∞

〈
ˆ̃S(i)+
ac (t) ˆ̃S(j)−

ac (t)
〉(

δijΓca + (1− δij)Γ(ij)
)
. (5.66)

Insertion of expression (5.66) in the Master equation (5.37) shows that expression
(5.66) can be further simplified as

lim
∆ω→+∞

J (∆ω) = WΓca lim
t→∞

〈
ˆ̃S(1)−
ac (t) ˆ̃S(1)+

ac (t)
〉
, (5.67)

confirming that the total energy that flows into the system is entirely reradiated
out of the system.

The photon number n is a measure for the power emitted by the N -atom system
in the spectral range ∆ω. Since each of the passive atoms can on average store one
excitation, the average photon emission rate nΓca cannot exceed NΓca. In addition,
the system’s photon emission rate is limited by the rate (5.67) at which photons
are absorbed by the system. The variation of 1/n with ∆ω is represented in Figure
5.5. The photon emission rate and spectral width are shown for the same parame-
ters as in Figure 5.3 for increasing pump intensity. We observe a large decrease of
∆ω, accompanied by an increase in the emission rate. The above restrictions on n
imply that n cannot increase indefinitely; hence, there is a critical pump intensity
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(a) (b)

Figure 5.4: The photon emission rate J (∆ω) of a pumped N -atom system (the pumped
atom is grey, the passive atoms black) (a) in the spectral range ∆ω equals the emission
rate of a cavity (b) with decay rate Γca and n steady-state intracavity photons.

at which saturation of the passive atoms sets in, as shown in the inset of Figure
5.5. The maximum value of n is relatively low compared to N due to the weak
coupling between the atoms. Around the saturation point, the spectrum broadens
while n remains locally constant. If the pump intensity increases beyond the sat-
uration point of the passive atoms, the emission rate decreases. This effect can be
attributed to power broadening of the three-level pumping scheme, as discussed in
sections 2.4 and 5.2.2.

The observed relation between 1/n and ∆ω below saturation is similar to the
behavior found in many macroscopic lasers. As was shown by Shawlow and Townes
and generalized by many others [63, 129], the quantum-limited laser line width ∆ωL

due to diffusion is inversely proportional to the number nL of photons in the laser
mode:

∆ωL =
1
nL

Γcaγc

Γca + γc
, (5.68)

with γc the decay rate of the intracavity laser intensity. The Schawlow-Townes
relation (5.68) is valid far below the laser threshold (far above the threshold, (5.68)
still holds if multiplied with a factor 0.5 at the right-hand side); in the bad-cavity
limit (γc � Γca), the above relation reduces to

∆ωL =
1
nL

Γca, (5.69)

which depends on the atomic decay rate only. Although the N -atom systems under
consideration do not strictly obey condition (5.69), it is striking that our simple mi-
croscopic system exhibits a similar behavior considering the small number of atoms
involved.

If the number of atoms increases, the system’s storage capacity grows. Hence,

95



Few-atom systems with gain: a quantum optical approach

Figure 5.5: The photon emission rate (relative to Γca) in the range ∆ω versus ∆ω (in units
of Γca). The pump intensity W ranges from 1.76 to 13.43, while the inset focusses on the
behavior around the saturation point. The arrow denotes an increase of the pump. The
same configuration as in Figure 5.3 is used, with L = 0.7c/ωca. The dashed lines in the
inset denote the position of ∆ωmin and n−1

max.

the maximum value nmax which n can attain increases with N . For each given
number of atoms, there is an infinite number of possible configurations in which the
atoms can be positioned. Since the dipole-dipole coupling depends on the config-
uration, both nmax and the corresponding width ∆ωmin will, for a given N , vary
with the geometry.

In order to compare different configurations of atoms, we determine how many
excitations can be stored with a given coherence time ∆ω−1

min. For each number of
atoms N , we consider those configurations which attain their saturation point at
a given value of ∆ωmin. We then determine the corresponding number of excita-
tions nmax. Figure 5.6 shows the calculated nmax for three different values of the
coherence time. For every number of atoms, different configurations exist which
yield the same saturation value ∆ωmin. In general, such configurations each have a
different nmax associated with them, as represented by the identically colored sym-
bols. We see that the effect of an increase in N is twofold. First, we observe that,
for a fixed coherence time, the maximum number of excitations increases with N .
This trend indicates that, as the storage capacity of the system grows, more pho-
tons with a given coherence time ∆ω−1

min can be emitted by the system. Secondly,
when comparing different values of ∆ωmin in Figure 5.6, we see that, if the required
coherence time increases, a larger capacity is needed to attain a given number of
excitations nmax. This relation between the number of excitations and the storage
capacity is in accordance with the intuitive limiting case N →∞, 1/nmax → 0 and
∆ωmin → 0.

We conclude the discussion on the spectral properties of the emitted light by
considering the efficiency η with which incident pump photons are converted into
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Figure 5.6: The relation between the maximum excitations number nmax and N . Multiple
symbols for a fixed N represent different configurations. Fixed symbol shapes represent
fixed coherence times. The triangles are for a coherence time 0.47Γ−1

ca . The diamonds are
for a coherence time 0.43Γ−1

ca . The circles are for a coherence time 0.29Γ−1
ca .

photons in the range ∆ωmin. The efficiency η is defined as the ratio of the output
rate and the input rate

η ≡ nmax

W
〈
Ŝ

(1)−
ac Ŝ

(1)+
ac

〉 . (5.70)

The numerical value of the efficiency depends on the number of atoms and the con-
figuration, but we find as a general trend that the efficiency increases with N . For
∆ω−1

min = 0.43Γ−1
ca considered in Figure 5.6, for example, the efficiency increases

from η = 20% for N = 2 to η = 24% for N = 5. This increase indicates that adding
more atoms leads to a better photon confinement, as we expect.

5.4.2 Second-order photon correlations

We now proceed to discuss angular correlations between simultaneously emitted
photons. The intensity-intensity correlation function (5.60) can be normalized as

g(2)(r, r′) ≡
〈
G(2)(r, r′)

〉
〈I(r)〉 〈I(r′)〉

. (5.71)

If the angular distribution of the emitted light is purely random, the normalized
second-order correlation function (5.71) is equal to 1. A value of g(2)(r, r′) > 1
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Figure 5.7: A polar plot of the normalized steady-state second-order correlation function

g(2)(r, r′) for a three-atom system. The inset shows the atomic configuration considered.
The atoms are positioned in an axial configuration, with the pumped atom (grey) in the
middle of the passive atoms (black). The distance L is 0.7c/ωca. All transition dipole
moments are perpendicular to the atomic axis and to the plane of the polar plot. The
position r is taken along the atomic axis in the far-field. The pump parameter is taken
W = 1.5 (solid line) and W = 10 (dash-dotted lined).

indicates a larger correlation between a photon emitted in the r direction and a
photon simultaneously emitted in the direction of r′ as compared to the random
case. Conversely, a g(2)(r, r′) < 1 indicates a reduced angular correlation with
respect to the random situation. Figure 5.7 shows the normalized second-order
correlation function (5.71) for a three-atom system. The atoms are positioned in
an axial configuration; the middle atom interacts with an external pumping field.
One of the detection directions r is fixed along the atomic axis while the other
detection direction r′ is varied. We observe that the angular correlation between
two simultaneously emitted photons is highest for photons emitted in the same di-
rection (r = r′), while the correlation is lowest for emission in opposite directions
(r = −r′).

Similar to the spectral properties described above, the second-order correla-
tion depends on the atomic configuration considered. To illustrate this geometric
effect, Figure 5.8 shows the second-order correlation function (5.71) for the four-
atom system of Figure 5.3; this configuration has a threefold rotational symmetry.
Comparing Figure 5.8 to 5.7 shows that the photons’ angular correlations tend to
exhibit a high symmetry if the underlying rotational symmetry of the atomic ge-
ometry is high.

We conclude this discussion on second-order photon correlations by consider-
ing the correlation function (5.71) for photons emitted simultaneously in the same
direction. A g(2)(r, r) value of 1 denotes that the photons are emitted at random
and the corresponding emission statistics is described by a Poissonian distribution.
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Figure 5.8: A polar plot of the normalized steady-state second-order correlation function

g(2)(r, r′) for a four-atom system. The inset shows the atomic configuration considered.
The passive atoms (black) are positioned in an equilateral triangle with the pumped atom
(grey) in the middle. All transition dipole moments are perpendicular to the atomic plane
and to the plane of the polar plot. The position r is taken in the far-field along the axis
connecting the pumped atom with one of the passive ones. The pump parameter is taken
W = 1.5 (solid line) and W = 10 (dash-dotted line).

If g(2)(r, r) < 1 the emitted photons are antibunched and the distribution is sub-
Poissonian. For a single pumped atom, for example, the second-order correlation
function reduces to zero, since a single atom cannot emit two photons at the same
time. Values of g(2)(r, r) > 1 denote a bunching of the emitted photons; the as-
sociated statistics are then super-Poissonian. For single-mode chaotic light, for
example, the correlation function g(2)(r, r) attains the value 2. To illustrate the
effect of the pump on the normalized second-order correlation function, Figure 5.9
shows g(2)(r, r) for the detection direction and atomic configurations considered in
Figures 5.7 and 5.8. We observe that at low pump intensities the emitted photons
are strongly bunched while the bunching is less pronounced at high pump inten-
sities. In addition, while the quantitative behavior of the second-order correlation
for N = 3 differs from N = 4, both cases exhibit the same qualitative trend, i.e.,
the correlation decreases with the absorbed power. The graphs in Figure 5.9 are
shown up to the saturation point; at higher pump intensities (not shown in the
graphs) the photon absorption rate decreases and the correlation drops and attains
its limiting value g(2)(r, r) = 0 in the limit W →∞, indicating a decoupling of the
pumped atom and the passive atoms in correspondence with the power broadening
mechanism mentioned above.
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Figure 5.9: The normalized steady-state second-order correlation function g(2)(r, r) for
an N -atom system versus the rate at which the system absorbs pump photons. The
correlation function is shown for the three-atom configuration of Figure 5.7 (dashed line)
and the four-atom configuration of Figure 5.8 (solid line). The direction of r is identical to
the direction of r in Figures 5.7 and 5.8: along the atomic axis for the three-atom system
and along a mid-perpendicular of the equilateral triangle for the four-atom system. The
correlation functions are shown up to the point at which saturation sets in.

5.5 Comparison to macroscopic lasers

The physical properties of the N -atom systems under consideration result from the
interplay between two key processes: the optical gain provided by the pumped atom,
and the optical feedback provided by the passive atoms. Since the combination of
gain and feedback is the core concept governing many laser-related phenomena, it
is interesting to briefly elaborate on the above physical properties in terms of their
counterparts in standard laser systems.

5.5.1 Mode competition

In section 5.4.1 we showed that the light emitted by an N -atom system can exhibit
pronounced spectral narrowing as the applied pump intensity increases. In addi-
tion, we observed that the spectrum tends to symmetrize at high pump intensities,
denoting the dominance of a single Lorentzian contribution to the spectrum. The
spectral symmetrization can be interpreted in terms of mode competition, a well-
known laser dynamic behavior [112]. As the far-field spectrum symmetrizes, the
weights of the modes in which the N -atom system emits light are redistributed. To
illustrate this mode redistribution, the far-field angle-integrated flux (5.64) can be
written, using (5.56), as

〈φ(ω)〉 dω =
κ(N)∑
m=1

Re
[

1/π
i(ω − ωca − ωm) + γm

β̃m

]
dω, (5.72)

with as weight coefficients
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β̃m ≡
N∑

i,j=1

β(ij)
m

(
δijΓca + (1− δijΓ(ij))

)
. (5.73)

We note that one must exert caution in the interpretation of the above mode weight
coefficients. First, the contributions to the spectrum are not to be considered as
modes in the strict sense due to the irreversible decay rate γm associated with each
term; we will henceforth refer to the contributions to the spectrum as pseudo modes.
Secondly, the weight coefficients (5.73) do not add up to 1 but obey, according to
(5.66) and (5.67)

κ(N)∑
m=1

Re
[
β̃m

]
=
∫ ∞

−∞
〈φ(ω)〉 dω = WΓca lim

t→∞

〈
ˆ̃S(1)−
ac (t) ˆ̃S(1)+

ac (t)
〉
, (5.74)

expressing energy conservation. Finally, the weight coefficients (5.73) are in general
complex-valued and their real part is not strictly positive. Taking into account the
above considerations, we can consider the weight coefficients β̃m to denote to what
extent each pseudo mode dominates the spectrum. To illustrate the system’s mode
redistribution as the pump intensity varies, Figure 5.10 shows the distribution of
weight coefficients corresponding to the spectra of Figure 5.3. Since four atoms are
involved, the number of pseudo modes is κ(4) = 56 according to Table 5.2. We
observe that at low pump intensity the spectrum consists of two Lorentzian contri-
butions while at high pump intensity a single pseudo mode dominates the spectrum.
In addition, Figure 5.10 shows that the real part of the weight coefficients is larger
at higher pump intensities; this enlargement indicates that the redistribution of
weights occurs not only relative to the weights of other pseudo modes, but in ab-
solute terms as well. In other words, one pseudo mode carries away most of the
available gain in the system, analogous to the mode competition process in standard
lasers.

5.5.2 Threshold behavior

One of the hallmarks of many laser systems is the manifestation of a threshold in the
emitted power with varying pump intensity. As is elaborated on in [130], the details
of the laser threshold depend strongly on the specific characteristics of the system.
In addition, the concept of a laser threshold is, strictly speaking, well-defined only in
the thermodynamic limit [99]. However, for reasons of comparison, we can consider
the dependence of the emitted power in an N -atom system on the applied pump
intensity. Figure 5.10(a) shows the dependence of the photon emission rate J (∆ω̃)

J (∆ω̃) ≡
∫ ωca−Γca/4

ωca−Γca/4

dω 〈φ(ω)〉 , (5.75)
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(a) (b)

Figure 5.10: The real part of the spectral weights β̃m (in units of Γca) which make up the
far-field angle-integrated flux for the two cases considered in Figure 5.3. The index m is
the mode number of each of the Lorentzian contributions to the flux. The total number
of modes is 56. The weights are shown (a) for low pump (W = 1.77) intensity and (b) for
high pump intensity (W = 10.10).

on the photon absorption rate. The atomic system under consideration is the axial
three-atom system of Figure 5.7. The photon emission rate is shown for the range of
pump intensities below the power broadening regime. The emission rate (5.75) is the
rate at which photons are detected by a narrow band detector spectrally centered
around the resonance frequency of a single atom. Figure 5.10(a) shows that the
emitted power increases almost linearly with applied pump intensity; no features
suggestive of a threshold are apparent. However, the spectrum of the emitted light
is a superposition of κ(N) Lorentzian contributions, each representing a different
pseudo mode. Figure 5.10(b) focusses on the weight of the dominant pseudo mode
which makes up the spectrum of Figure 5.10(a). Remarkably, the weight coefficient
of the dominant pseudo mode does rise nonlinearly with increasing pump intensity;
the weights of the other pseudo modes (not shown in the graph) are much smaller
and do not exhibit similar behavior. The threshold-like increase of the weight
coefficient of the dominant pseudo mode is, though reminiscent of the threshold
prediction of chapter 3, not apparent in the full spectrum because of the large
spectral overlap between different modes. The characteristics of a single mode will
affect the full spectrum only if the system’s gain narrowing is sufficiently pronounced
(and the bandwidth of the detector sufficiently narrow). As we discussed in 5.4.1, a
high degree of spectral narrowing in an N -atom system requires a high number of
atoms. Therefore, the N -atom systems considered can exhibit threshold behavior
in the emitted power only for high atom numbers.
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(a) (b)

Figure 5.11: (a) The far-field angle-integrated photon emission rate J (∆ω̃) (in units of
Γca) in the range ∆ω̃ ≡ [ωca − Γca/4, ωca + Γca/4]. The atomic system considered is the
axial three-atom configuration of Figure 5.7. (b) The real part of the spectral weight β̃m∗

(in units of Γca) of the mode labeled m∗ versus the absorbed power. The mode m∗ of
which the weight is shown is the mode that dominates the far-field angle-integrated flux
at high pump values. The atomic system considered is the same as in (a).

5.5.3 Photon statistics

The interpretation of the second-order correlation in the N -atom systems under
consideration is in general less intuitive than the interpretation of the correspond-
ing first-order correlations. This observation is well-known in many types of lasers.
Class-B lasers, for example, are characterized by a high cavity damping rate com-
pared to the population inversion rate in the gain medium. The corresponding
photon statistics of a class-B laser can remain thermal until far above threshold
[130], in sharp contrast to common Poissonian behavior. Various other types of
lasers, such as single-quantum dot microsphere lasers [13, 90, 92], exhibit similar
behavior. On the other hand, single atoms in a cavity [17, 80, 86] exhibit pro-
nounced photon antibunching with corresponding sub-Poissonian photon statistics.
The above examples illustrate that the photon statistics of a laser depend strongly
on the type of system under consideration; in addition, the intrinsic quantum na-
ture of the presented analysis as opposed to classical laser theory further adds to
the nontrivial character of the presented statistics.

5.6 Summary

In this chapter, we described the simplest microscopic systems which shows both
gain and feedback. More precisely, we presented systems of only a few atoms in
each other’s near-field using an N -atom Master equation. We demonstrated that
systems of N atoms with gain may show large gain narrowing and mode redistribu-
tion. Surprisingly, the presented systems exhibit behavior qualitatively similar to
many macroscopic lasers. Adding more atoms to an N -atom system enhances the
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observed spectral phenomena and allows more photons to propagate with a given
coherence time. In addition, we discussed the nontrivial character of the statistics
of the emitted photons. Finally, we elaborated on the connection between the phys-
ical properties of the presented N -atom systems and their counterparts in standard
laser systems.

As mentioned above, the physical properties of an N -atom system in the pres-
ence of gain are determined by the system’s photon storage capacity. Since the
storage capacity in an N -atom system is limited by the number of atoms, we are
computationally limited to systems which can store only a few photons. In the next
chapter, we circumvent this computational restriction by altering the saturation of
the passive atoms; this procedure will allow us to describe systems with storage
capacities which are an order of magnitude larger than the ones presented sofar,
leading to much more pronounced feedback-induced effects.
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CHAPTER6
One-atom laser oscillation with a single optical scatterer

We present an extension of the system presented in chapter 5 and consider a single
atom interacting with one insaturable optical scattering object. The atom is pumped,
providing gain to the system. The scatterer provides optical feedback through multiple
scattering of light. We determine the dynamics of the atom-scatterer system by calcu-
lating the system’s Master equation. We show that, if the atom and scatterer are in
each other’s near-field, the system exhibits large gain narrowing and threshold behavior
in the emitted photon flux. To place the presented system in a broader perspective, we
compare our results with a standard Jaynes-Cummings model and point out interesting
deviations between both approaches. Finally, we relate the description of the atom and
scatterer to the T-matrix formalism introduced in chapter 3.

6.1 Introduction

Microresonators have been a subject of considerable theoretical and experimental
study over the last several years [120]. They show large potential in applications
such as biological and chemical sensors [126], novel laser sources and dynamic fil-
ters in telecommunication [81, 103]. Additionally, microresonators are regarded as
promising building blocks in the emerging field of quantum technology.

Systems in which microresonators are coupled to single atoms allow for a high
control of light-matter interaction [40, 62, 101], which has led to significant progress
in cavity QED and the ongoing drive towards quantum computing [11, 57, 95, 125].
In the interaction of a microresonator with a single atom, the introduction of gain
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through optical pumping of the atom may lead to the realization of ultra small
lasers such as single-quantum dot microsphere lasers [13, 90, 92]. Such systems are
indicative of the current drive towards smaller laser systems, fueled by the desire
for fast, low-power optical devices in highly integrated structures.

From a fundamental point of view, the drive towards miniaturization is contin-
uously allowing for a better understanding of the microscopic processes governing
laser oscillation: as laser systems are made smaller, a purely macroscopic description
becomes inadequate and microscopic considerations should be taken into account,
providing access to a wealth of interesting physical phenomena. In this chapter, we
continue along this miniaturization trend and demonstrate its ultimate limit: the
simplest microscopic system which shows pronounced many-photon laser behavior
consists of a single two-level atom interacting with one insaturable optical scattering
object. The atom is optically pumped, providing gain to the system. The scatterer
supplies optical feedback through multiple scattering of light. The scatterer is char-
acterized only by its polarizability, ensuring the validity of our model for a broad
range of scatterers, such as plasmon resonances in a gold particle. We show that,
depending on the applied pump intensity and the atom-scatterer coupling, the light
emitted by the system can be highly coherent.

We start in section 6.2 by deriving the Master equation of an atom interact-
ing with an insaturable scatterer. The presented derivation closely resembles the
derivation of the N -atom Master equation as described in chapter 5 (we stress,
though, that prior knowledge of chapter 5 is not required to appreciate the results
presented in this chapter). The resulting atom-scatterer Master equation reveals
the similarities between the description of an atom interacting with an optical scat-
terer and standard atom-field interaction. Section 6.3 focusses on the method of
solving the Master equation in practice. In particular, we show to what extent this
practical procedure deviates from solving the standard atom-field Master equation.
Section 6.4 elaborates on the steady-state properties of the emitted light. We show
that the system exhibits large gain narrowing and threshold behavior for increasing
pump intensity. In addition, we determine the statistics of the emitted photons and
show the nontrivial dependence of the second-order coherence of the emitted light
on the optical feedback. Finally, in section 6.5 we elaborate in more detail on a few
interesting features and consequences of the presented results. First, we compare
our results with those obtained from a Jaynes-Cummings model and point out in-
teresting deviations between both approaches. Secondly, we connect the presented
results to the T-matrix formalism introduced in chapter 3.

6.2 The Master equation of an atom and an insat-
urable scatterer

We start by considering the system shown in Figure 6.1. An atom A interacts with
an optical scatter S. The atom has two relevant energy levels a and c, separated
by a frequency difference ωca ≡ ωc − ωa. In relation to the previous chapters, we
can regard the atom to be of the three-level type abc introduced in section 2.2. The
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Figure 6.1: An atom A interacts with an optical scatterer S. The atom is incoherently
pumped at a rate WΓca. The scatterer has N +1 relevant excitations levels, each of which
decays spontaneously to the adjacent lower-lying level.

atom is incoherently pumped with an external optical pump field; the correspond-
ing pump rate is given by WΓca with W defined in (2.20). The scatterer S is fully
characterized by the resonance behavior of its polarizability. We focus on frequen-
cies near a resonance of S; the scatterer’s energy diagram then corresponds to a
damped harmonic oscillator with resonance frequency and decay rate determined by
the resonance considered. Figure 6.1 shows the scatterer’s N + 1 lowest excitation
levels with energy ~ωj . We consider scatterer resonances near the atomic transition
frequency ωca and take ωj ≡ jωca. Each of the scatterer’s energy levels decays at a
rate κj ≡ jκ to the adjacent lower-lying energy level. The transitions from level j to
levels j ± 1 are dipole-allowed, while all other transitions are considered forbidden.
Extensions to multipole transitions are straightforward but lie outside the scope of
this chapter [42].

We proceed with a general description of the atom-scatterer interaction. The
total Hamiltonian Ĥ(t) describing the energies of the atom and scatterer, the elec-
tromagnetic field, and interactions is, in the standard electric dipole approximation,
given by

Ĥ(t) ≡ Ĥc(t) + ĤS(t) + ĤR(t) + ĤAR(t) + ĤSR(t), (6.1)

in the absence of a pump field (for didactic reasons, the pump will be included at
a later stage of this presentation). The atomic Hamiltonian is given by
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Ĥc(t) ≡ ~ωcaŜ
+
ac(t)Ŝ

−
ac(t), (6.2)

where Ŝ+
ac(t) and Ŝ−ac(t) respectively create and annihilate an atomic excitation.

The scatterer’s Hamiltonian is given by

ĤS(t) ≡
N∑

j=1

~ωjŜ
+
j (t)Ŝ−j (t), (6.3)

where Ŝ+
j (t) =

(
Ŝ−j (t)

)†
raises the scatterer’s state from level j − 1 to level j. The

atom and scatterer are coupled to the three-dimensional multimode electromagnetic
field (5.7) with Hamiltonian

ĤR(t) ≡
∑
kλ

~ωkλâ
†
kλ(t)âkλ(t), (6.4)

where the operators â†kλ(t) and âkλ(t) respectively create and annihilate a photon
in the field mode (k, λ) at time t. The atom couples to the electromagnetic field
through the Hamiltonian

V̂AR(t) = −d̂(A)(t) · Ê(t, rA), (6.5)

where rA is the atom’s position vector, the electric-field operator Ê(t, r) is given
by (5.5) and the atomic dipole operator is defined as

d̂(A)(t) ≡ d(A)
ac

(
Ŝ+

ac(t) + Ŝ−ac(t)
)
, (6.6)

with d
(A)
ac the atom’s transition dipole moment. The coupling of the scatterer to

the electromagnetic field is expressed by the Hamiltonian

V̂SR(t) = −d̂(S)(t) · Ê(t, rS), (6.7)

where rS is the scatterer’s position vector and where the dipole operator of the
scatterer is defined as

d̂(S)(t) ≡
N∑

j=1

d
(S)
j

(
Ŝ+

j (t) + Ŝ−j (t)
)
, (6.8)
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with d
(S)
j the transition dipole moment of the (j − 1) → j transition. The decay

rate κj and the transition dipole moment d
(S)
j are related according to expression

(4.54) by

κj = jκ =
1

3πε0
ω3

ca

~c3
(
d
(S)
j

)2

. (6.9)

The above relation reveals that d(S)
j =

√
jd

(A)
ac , which suggests the introduction of

the operators [19]

b̂†N (t) ≡
(
b̂N (t)

)†
≡

N∑
j=1

√
jŜ+

j (t). (6.10)

The operators b̂†N (t) and b̂N (t) respectively create and annihilate a scatterer exci-
tation; the average number of excitations in the scatterer is given by

〈
N∑

j=1

jŜ+
j (t)Ŝ−j (t)

〉
=
〈
b̂†N (t)b̂N (t)

〉
, (6.11)

where the averaging is to be interpreted in a statistical sense, similar to chapter 5.
In addition, the operators (6.10) obey the commutation relation

[
b̂N (t), b̂†N (t)

]
= 1̂−NŜ+

N (t)Ŝ−N (t), (6.12)

from which we deduce that b̂†N (t) and b̂N (t) behave as standard boson creation and
annihilation operations in the limit N →∞.

The dynamics of the atom-scatterer system can be expressed in terms of a Mas-
ter equation [23, 30, 71, 107]. The Master equation describes the behavior of the
density matrix of the atom-scatterer system. Alternatively, the Master equation
allows us to determine the temporal evolution of the expectation value of any op-
erator Q̂(t) acting on the atom and scatterer. The derivation of the atom-scatterer
Master equation closely follows the derivation presented chapter 5; the resulting
evolution of Q̂(t) is, in the Born-Markov approximation, given by

d

dt

〈
Q̂
〉

0
=
〈
L̂ndQ̂

〉
0

+
〈
L̂dQ̂

〉
0
. (6.13)

We consider the radiation field to be in vacuum, as denoted by the subscript 〈.〉0.
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The non-dissipative part of the Master equation can be written as

〈
L̂ndQ̂

〉
0
≡ i

~

〈
[Ĥc + ĤS + ĤAS , Q̂]

〉
0
, (6.14)

with coupling Hamiltonian

ĤAS ≡ ~δ(AS)Ŝ+
acb̂N + H.c., (6.15)

while the dissipative part of the Master equation is given by

〈
L̂dQ̂

〉
0
≡− Γca

2

〈
Ŝ+

acŜ
−
acQ̂− Ŝ+

acQ̂Ŝ
−
ac

〉
0
− κ

2

〈
b̂†N b̂N Q̂− b̂

†
N Q̂b̂N

〉
0

− Γ(AS)

2

〈
Ŝ+

acb̂N Q̂+ Q̂Ŝ+
acb̂N − 2b̂†N Q̂Ŝ

−
ac

〉
0

−W Γca

2

〈
Ŝ−acŜ

+
acQ̂− Ŝ−acQ̂Ŝ

+
ac

〉
0

+ H.c.. (6.16)

The coupling between the atom and the scatterer is quantified by the parameter

2δ(AS) − iΓ(AS) =
6π
ωca/c

(Γcaκ)
1/2

µ(A)
ac ·
←→
G 0(ωca, rA − rS) · µ(S), (6.17)

with
←→
G 0 the classical free-space Green function (3.46) and µ

(A)
ac and µ(S) the nor-

malized transition dipole moments of the atom and scatterer respectively. Similar
to the derivation presented in chapter 5, the Master equation (6.13) is derived by
integrating over the multimode electromagnetic field to which the atom and scat-
terer couple; this integration results in the appearance of the Green function (6.17)
as an effective coupling term.

The resemblance of the atom-scatterer Master equation (6.13) and the N -atom
Master equation (5.37) hints at the similar character of both systems: the vacuum-
induced atom-scatterer coupling is identical to the coupling between two atoms (and
hence, the coupling between two scatterers of the type currently considered). In
other words, microscopic atomic and scatterer building blocks differ in a Master
equation description only through their saturation character. The degree of satu-
ration can be straightforwardly tweaked by replacing atomic raising and lowering
operators by the corresponding scatterer operators (6.10); the number of levels taken
into account then determines the resulting saturation character of the microscopic
building blocks.
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6.3 Solving the atom-scatterer Master equation

6.3.1 Physical quantities of interest

The Master equation (6.13) describes the interactions in an atom-scatterer system
with gain within the Born-Markov approximation. Following the same presentation
as in chapter 5, we aim at a description of the atom-scatterer system in terms of
correlation functions of the emitted light. In what follows, we focus on the spectrum
(5.38)

〈I(ω, r)〉 ≡ ε0
1
2π

∫ ∞

−∞
dτe−iωτ

〈
Ê−(t+ τ, r) · Ê+(t, r)

〉
, (6.18)

and the intensity-intensity correlation (5.42)

〈
G(2)(r, r′)

〉
≡ lim

t→∞
ε20

〈
: Î(t, r)Î(t, r′) :

〉
, (6.19)

of the emitted light, where the colons denote normal ordering for the operators, and
where the intensity operator is defined in (5.43) as

Î(t, r) ≡ Ê−(t, r) · Ê+(t, r). (6.20)

In analogy with expression (5.45), the positive-frequency part of the electric-field
operator is given in the far-field by

Ê+(t, r) = Ê+
0 (t, r) +

1
4πε0r

ω2
ca

c2

(
|d(A)|uA(r)Ŝ−ac(t− |RA|/c)

+ |d(S)|uS(r)b̂N (t− |RS |/c)
)
, (6.21)

with Ê+
0 (t, r) the positive-frequency part of the quantum vacuum electric field oper-

ator (5.14) and where we defined Ri ≡ r−ri with i = A,S and used notation (5.55)

ui(r) ≡ µ(i)
ac −Ri

Ri · µ(i)
ac

|Ri|2
, i = A,S (6.22)

characteristic for the dipole radiation of the atom and scatterer.
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6.3.2 Categorization of operator expectation values

The correlation functions (6.18) and (6.19) are expressed through (6.21) in terms of
operators acting on the atom and scatterer only. The absence of any field operators
in both correlation functions ensures that both expressions can be expanded using
the Master equation (6.13). In the limit N →∞, the operators b̂†N and b̂N obey the
standard boson commutation relations, as mentioned above. The Master equation
(6.13) in the limit N → ∞ strongly resembles the Master equation governing the
interaction of an atom and a single electromagnetic field mode; we will elaborate
in more detail on this similarity further on. Based on the similarity between both
aforementioned Master equations, one might at first attempt to solve both equa-
tions in a similar way. However, standard atom-field interaction theory relies on
an adiabatic elimination of the system’s coherences. Since such elimination is not
justified in the present atom-scatterer system, we proceed along a different path,
discussed in Appendix D: we consider only the N + 1 lowest levels of the scatterer,
with N depending on the system parameters (such as the atom-scatterer separation
and the pump intensity). If the average number of scatterer excitations

〈
b̂†N b̂N

〉
is

then much smaller than N/2, our predictions coincide with the N →∞ situation.
The description of the atom-scatterer system thus effectively reduces to a de-

scription of the interaction of a two-level and an (N + 1)-level system. Similar
to the procedure described in section 5.3.2, we can simplify the expansion of the
correlation functions (6.18) and (6.19) by a proper categorization of the operators
acting on the atom and scatterer. The state space of the atom-scatterer system has
2(N + 1) dimensions; the corresponding operator space has 4(N + 1)2 dimensions.
The latter may be spanned by products of operators Ŝ±j acting on either the atom
(j = ac) or the scatterer (j ∈ {1, ..., N}). These product operators form a basis;
each of these basis operators changes the number of excitations in the system by an
integer number ∆m with −(N + 1) ≤ ∆m ≤ N + 1. As discussed in chapter 5, the
quantum regression theorem ensures that only basis operators with the same ∆m
are coupled through their evolution equation; if only a few ∆m subspaces are of
interest, the increase in computational efficiency due to this categorization is con-
siderable. Since we aim at the determination of the field-field and intensity-intensity
correlations of the emitted light, we only need to focus on the subspaces ∆m = 1
and ∆m = 0. The dimensionality ν(N,∆m) of these subspaces is

ν(N, 1) = 4N, ν(N, 0) = 4N + 1, (6.23)

in sharp contrast to the 4(N + 1)2 dimensionality of the entire atom-scatterer op-
erator space. Expressions (6.23) show that the dimensions of the matrix which
describes an atom-scatterer system increase linearly with the system’s storage ca-
pacity N ; this scaling behavior is much more favorable than the corresponding
scaling of N -atom systems shown in Tables 5.1 and 5.2. This difference in compu-
tational effort implies that, in practice, the storage capacities we can deal with in
atom-scatterer systems are easily an order of magnitude larger than the capacities
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in few-atom systems .
The above categorization of basis operators allows for an efficient description

of atom-scatterer systems. The symbolic evolution matrices associated with the
∆m = 0 and ∆m = 1 subspaces are computer-generated for each N . In the next
sections, we use the numerical inversion and diagonalization of these matrices to
study the field-field and intensity-intensity correlations of the light emitted by the
atom-scatterer system.

6.4 Characteristics of the atom-scatterer system

The spectral distribution of the light emitted by the atom-scatterer system depends
on the pump intensity and the atom-scatterer coupling. The latter is determined
by the separation |rA − rS | through expression (6.17). If the separation between
the atom and the scatterer is much larger than the wavelength 2πc/ωca, the optical
feedback in the system is insufficient for any observable feedback-related phenomena
to occur. We therefore focus on atom-scatterer separations of the order of the
wavelength and smaller.

6.4.1 The spectrum

We demonstrated in section 5.3.3 that, as a general result of the Master equation,
the spectrum of the emitted light can be expressed as a sum of Lorentzian con-
tributions. The total number of contributions is given by ν(N, 1); each of these
Lorentzians is characterized by a central frequency, a spectral width and a spectral
weight. Similar to the description of N -atom systems, the weight of each Lorentzian
expresses to what extent each contribution dominates the total spectrum; varying
the pump intensity induces mode competition in the system.

To study the effect of a varying pump intensity on the spectrum of the emitted
light, we determine the angle-integrated far-field photon flux

〈φ(ω)〉 dω =
c

~ωca

∫
4π

r2dΩ 〈I(ω, r)〉 dω, (6.24)

expressed in s−1. The flux (6.24) measures the total number of photons detected
in the far-field in the frequency range [ω, ω + dω]. Figure 6.2 visualizes the effect
of the pump intensity on the photon flux. The flux is shown for a typical low
(W = 3) and a high (W = 30) pump intensity. At low pump intensity, the emission
spectrum is broad, while at higher pump intensities the spectrum is much narrower
than the natural line width Γca. In addition, we observe that an increase of the
pump intensity reduces the asymmetry of the spectrum, which denotes that a single
mode dominates the spectrum at high pump intensities. The symmetrization of the
spectrum for increasing pump is similar to the corresponding behavior of an N -atom
system discussed in chapter 5.

Comparing Figure 6.2 to the spectrum of a four-atom system shown in Figure
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Figure 6.2: The normalized far-field angle-integrated photon flux versus frequency (in units
of Γca) of an atom-scatterer system. The decay rates of the atom and scatterer are chosen
equal (Γ = κ). The atom-scatterer distance is |rA − rS | = 0.52c/ωca. The inset shows the
orientation of the transition dipole moments of the atom and scatterer. The spectrum is
shown for a low pump intensity W = 3 (solid line) and a high pump intensity W = 30
(dashed line). At high pump intensity we observe pronounced gain narrowing.

5.3 reveals that the manifestation of gain narrowing in an atom-scatterer system is
much more pronounced than the narrowing in a few-atom system; this observation
is intimately related to the Schawlow-Townes effect described in section 5.4.1 and
the large storage capacity of the scatterer compared to the capacity of a few-atom
system.

To visualize the spectral properties of the emitted light for a broad range
of pump intensities, we determine the spectral full width at half maximum ∆ω
and the maximum photon flux of the far-field angle-integrated flux for the same
atom-scatterer configuration as in Figure 6.2. We vary the number of scatterer
levels N until a further increase of N no longer affects the spectrum; the system
dynamics then correspond to the N → ∞ situation. Figure 6.3 show how ∆ω and
max[〈φ(ω)〉] vary with the rateWΓca

〈
Ŝ−acŜ

+
ac

〉
at which pump photons are absorbed

by the system. We observe that the spectral width ∆ω decreases while the peak
spectral photon flux increases with the pump photon absorption rate. Both ∆ω
and max[〈φ(ω)〉] exhibit saturation behavior at high pump intensities and small N .
We observe that at higher N , saturation sets in at higher pump photon absorption
rates, indicating that the observed saturation is caused by the finiteness of N .
Additionally, we observe that the pump photon absorption rate has a maximum in
the limit N →∞. This limitation is a natural consequence of the power broadening
inherent to the three-level pumping scheme, as discussed in section 2.4 and 5.2.2:
the ground level of the gain atom broadens as the pump intensity increases, causing
the atom and scatterer to effectively decouple at higher pump intensities, which
imposes an intrinsic limit on the rate at which pump photons are absorbed. In
relation to the threshold prediction of chapter 3, Figure 6.3 shows that the atom-
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(a) (b)

Figure 6.3: (a) The full width at half maximum ∆ω (in units of Γca) and (b) the maximum
flux function max[〈φ(ω)〉] of the angle-averaged far-field spectrum of an atom-scatterer
system versus the pump photon absorption rate (in units of Γca). The atom-scatterer
configuration is the identical to the configuration of Figure 6.2. The number of resonator
levels is N = 8 (grey dash-dotted line), N = 12 (black dash-dotted line), N = 16 (grey
solid line), N = 20 (black solid line). These graphs are shown up to the regime at which
saturation. The black dashed line represents N = 32, which practically coincides with the
N →∞ limit.

scatterer system under consideration exhibits a smooth crossover from a spectrally
broad regime dominated by spontaneous emission at low pump intensities (W < 1)
to a regime with high spectral density at high pump intensities (W � 1), indicative
of laser oscillation in the system.

The spectral properties not only vary with the applied pump intensity, but also
with the optical feedback in the system. The system’s feedback is determined by the
atom-scatterer separation through the coupling (6.17). To illustrate the effect of a
change in separation, Figure 6.4 shows the far-field angle-integrated spectrum for a
fixed pump intensity W = 40 and different atom-scatterer separations. We observe
a dramatic increase of the system’s photon emission rate and degree of spectral
narrowing as the atom-scatterer separation is reduced. This effect indicates that
a larger feedback causes the pump photons to be more efficiently converted into
photons with energy near ~ωca, accompanied by an enhancement of their coherence
time ∆ω−1.

The spectral properties of the atom-scatterer system can be attributed to the
interplay of the system’s two key ingredients: optical gain and optical feedback.
The atom-scatterer is a laser system in which the optical feedback is provided by
multiple scattering of light and the optical gain is incorporated by a single pumped
atom. The spectral narrowing and threshold behavior shown in Figure 6.3 are
indicative of the laser behavior in the system.

The coherence properties of the atom-scatterer laser system described sofar are
associated with correlation functions of the electric field. In the next section, we
focus on correlations of the field intensity to describe the statistical properties of
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Figure 6.4: The flux function 〈φ(ω)〉 of an atom-scatterer system versus frequency (in units
of Γca). The decay rates of the atom and scatterer are chosen equal: Γ = κ. The spectrum
is shown for W = 40. The atom-scatterer configuration is identical to the configuration of
Figure 6.2 with |rA − rS | equal to 0.62c/ωca (black solid line), 0.52c/ωca (grey solid line)
and 0.42c/ωca (black dashed line). The spectra shown illustrate that the spectral width
strongly depends on the atom-scatterer separation.

the emitted photons.

6.4.2 Second-order photon correlations

We proceed by considering the normalized intensity-intensity correlation function
(5.71)

g(2)(r, r′) ≡
〈
G(2)(r, r′)

〉
〈I(r)〉 〈I(r′)〉

, (6.25)

using definitions (6.19) and (5.41). As we discussed in chapter 5, a random angular
distribution of the emitted photons corresponds to g(2)(r, r′) = 1; a normalized
second-order correlation function larger than unity denotes an increased angular
correlation with respect to the random one, while a value lower than unity reveals
a reduced correlation.

In general, the second-order correlation function (6.25) depends on the pump
intensity, the atom-scatterer coupling and the positions r and r′ at which pho-
tons are detected. To illustrate the effect of an increased pump intensity on the
second-order coherence, we determine g(2)(r, r) for the same parameters as in Fig-
ure 6.3. In analogy with the calculation of the system’s spectral properties, we
increase N until the statistics no longer vary with N ; the resulting correlation func-
tion then corresponds to the N →∞ limit. Figure 6.5 shows the resulting variation
of g(2)(r, r) with the rate at which pump photons are absorbed. We observe that
g(2)(r, r) � 1 at small pump rates; as the photon absorption rate increases, the
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Figure 6.5: The normalized intensity-intensity correlation function g(2)(r, r) versus the
rate at which the system absorbs pump photons (in units of Γca). The detection position
r is in the far-field, along the atom-scatterer axis (r/|r| = (rS − rA)/|rS − rA|). The
atom-scatterer configuration is identical to the configuration of Figure 6.2. The number
of resonator levels is N = 8 (grey dash-dotted line), N = 12 (black dash-dotted line),
N = 16 (grey solid line). These graphs are shown up to the regime at which saturation
of the scatterer or power broadening of the atom sets in. The black solid curve represents
N = 20, which coincides with the N →∞ limit for the correlation function shown.

correlation decreases and approaches the coherent limit g(2)(r, r) = 1. Similarly
to the spectral properties mentioned above, the second-order correlation exhibits
saturation behavior at small N . It is interesting to note that g(2)(r, r) attains a
limiting value at much lower values of N compared to the absorption rate. For
the configuration shown in Figure 6.5, for example, the limiting value of g(2)(r, r)
varies only marginally above N = 12, while the photon absorption rate saturates
only around N = 20. This contrast indicates that, for N large enough, a further
increase of N leads to a higher photon output rate without increasing the photons’
second-order coherence.

Similar to the description of angular correlations in chapter 5, we can evalu-
ate the normalized intensity-intensity correlation function (6.25) for simultaneously
emitted photons detected at different positions r and r′. Figure 6.6(a) shows the
resulting correlation functions for two different pump intensities. In correspondence
with Figure 6.5 we observe that the second-order correlations decrease as the pump
increases. In addition, the geometrical symmetry of g(2)(r, r′) increases with in-
creasing pump intensity. In other words, the atom-scatterer system tends to exhibit
random angular correlations at high pump intensity, in contrast to, e.g., the three-
atom system of Figure 5.7. The different symmetry of the angular correlations of
the three-atom system and the atom-scatterer system are, besides being due to the
obvious configurational difference, related to the different number of stored excita-
tions in these systems. The number of photons which contribute to the correlation
functions of interest is typically much higher in an atom-scatterer system than in
a few-atom system due to the aforementioned difference in storage capacity. Since
the statistics are derived from the emitted photons, the correlations in a few-atom
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(a) (b)

Figure 6.6: A polar plot of the normalized second-order correlation function g(2)(r, r′).
One detection position r is in the far-field, along the atom-scatterer axis (r/|r| = (rS −
rA)/|rS − rA|). The other detection point r′ is varied in the plane perpendicular to the
transition dipole moments of the atom and scatterer. The atom-scatterer configuration
is identical to the configuration of Figure 6.2. Figure (a) shows g(2)(r, r′) for N = 24
scatterer levels. The pump parameter is W = 1.5 (grey solid line) and W = 30 (black
dash-dotted line). Figure (b) shows g(2)(r, r′) for a pump parameter W = 10. The number
of scatterer levels is N = 2 (grey solid line) and N = 24 (black dash-dotted line).

system typically differ from those in an atom-scatterer system. Figure 6.6(b) illus-
trates the influence of the system’s storage capacity on the second-order correlation
function for the same configuration as in Figure 6.6(a). The angular correlation is
shown for N = 24 (which coincides with the N → ∞ limit) and N = 2 (in which
case the system reduces to a two-atom system). We observe that, as mentioned
above, the different saturation character of the N = 24 case as compared to the
N = 2 case clearly affects the resulting second-order correlations.

6.4.3 Comparison to few-atom systems

The above discussion on the photons’ second-order correlations demonstrates the
challenging nature of interpreting higher-order photon correlations in the systems
with gain of interest, as we pointed out in chapter 5. Comparing Figures 6.3 and 6.6
illustrates the well-known fact that a drastic change in first-order correlations is not
necessarily accompanied by a large change in second-order correlations. The non-
trivial statistics discussed above denote that the atom-scatterer system presented
here is a laser in the bad-cavity limit [29, 49, 130]. The mode redistribution asso-
ciated with the laser character of the atom-scatterer system is illustrated in Figure
6.7. Following the discussion on mode competition of section 5.5.1, we plot the
weight coefficients β̃m of each of the Lorentzian contributions that make up the
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Figure 6.7: The real part of the spectral weights β̃m (in units of Γca) which make up the
far-field angle-integrated flux for the two cases considered in Figure 6.2. The index m is
the mode number of each of the Lorentzian contributions to the flux. The total number
of modes is ν(23, 1) = 92. The weights are shown at low pump intensity W = 3 (black)
intensity and at high pump intensity W = 30 (grey).

spectrum

〈φ(ω)〉 dω =
ν(N,1)∑
m=1

Re
[

1/π
i(ω − ωca − ωm) + γm

β̃m

]
dω. (6.26)

The expansion (6.26) is the atom-scatterer analogy of the N -atom expression (5.72).
As an illustration, Figure 6.7 shows the weight distribution for the far-field angle-
integrated spectra of Figure 6.2. We observe pronounced mode-competition effects
with increasing pump intensity. In addition, comparing Figure 6.7 to the mode
distribution as shown in Figure 5.10 for a four-atom system reveals that the large
storage capacity of atom-scatterer systems ensures that gain-induced mode compe-
tition is much more pronounced in atom-scatterer systems compared to few-atom
systems, as we expect.

6.5 The atom-scatterer system in a broader per-
spective

6.5.1 Comparison with a Jaynes-Cummings approach

The Master equation (6.13) describes the interaction of an atom and a harmonic
scatterer in the Born-Markov approximation. Interestingly, the equation (6.13)
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strongly resembles the Master equation describing the interaction of an atom with
gain and a single field mode, given by

d

dt

〈
Q̂
〉

0
=
i

~

〈
[ĤA + ĤS + ˆ̃

HAS , Q̂]
〉

0
− Γca

2

〈
Ŝ+

acŜ
−
acQ̂+ Q̂Ŝ+

acŜ
−
ac − 2Ŝ+

acQ̂Ŝ
−
ac

〉
0

− κ

2

〈
b̂†N b̂N Q̂+ Q̂b̂†N b̂N − 2b̂†N Q̂b̂N

〉
0

−W Γca

2

〈
Ŝ−acŜ

+
acQ̂+ Q̂Ŝ−acŜ

+
ac − 2Ŝ−acQ̂Ŝ

+
ac

〉
0
, (6.27)

with as interaction Hamiltonian

ˆ̃
HAS ≡ ~gŜ+

acb̂N + H.c., (6.28)

in the limit N →∞. In the above equation, the operators b̂†N and b̂N are interpreted
as operators which respectively create and annihilate a field excitation in the mode
of interest. The coupling g in the atom-field Hamiltonian (6.28) is real-valued and
quantifies the atom-field interaction strength; the interaction Hamiltonian (6.28) is
often referred to as an interaction of the Jaynes-Cummings type [60, 110]. Com-
paring equations (6.13) and (6.27) reveals that the only mathematical difference
between the atom-scatterer Master equation and the Master equation of an atom
and a single field mode is the absence of an incoherent coupling term Γ(AS) in the
latter. This mathematical distinction originates from a contrast in the underlying
physical approach leading to the above descriptions: while the atom-field coupling
(6.28) is established irrespective of the presence of a reservoir, the atom-scatterer
coupling results from an integration over the reservoir. Figure 6.8 further illus-
trates this conceptual difference. In a Jaynes-Cummings description of atom-field
interaction, the atom and field are modeled assuming both systems interact with
separate (but identical) reservoirs. Integrating the system over both reservoirs re-
sults in spontaneous decay of the atom and field mode; the atom-field coupling is
unaffected by this integration. Conversely, in an atom-scatterer system, the atom
and scatterer interact with a single reservoir. Integrating the system over the reser-
voir results in spontaneous decay of the atom and field mode and the emergence of
an effective coupling; this coupling is quantified by the free-space Green function
(6.17).

We now focus on the condition under which an atom-scatterer system is well-
described by a Jaynes-Cummings model. The coupling (6.17) induces two effects on
the atom and scatterer, corresponding to the real and imaginary part of the Green
function. First, the energy levels of the atom and scatterer are shifted; this shift is
proportional to ~δ(AS). Secondly, the atom-scatterer coupling changes the life times
of the energy levels; the spontaneous decay rate of the coupled system therefore dif-
fers from the decay rates of the individual subsystems. This life-time effect can be
attributed to the imaginary part Γ(AS) of the Green function (6.17). Consequently,
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(a)

(b)

Figure 6.8: An illustration of the conceptual difference between atom-field coupling of the
Jaynes-Cummings type and atom-scatterer coupling as described in this chapter. (a) An
atom (grey dot) interacts with a single field mode (black dot). The atom and field interact
with separate (but identical) reservoirs (dashed arrows). Integrating the system over both
reservoirs (solid black arrow) results in spontaneous decay of the atom and field mode
(curly arrows). The atom-field coupling g remains unaffected by the integration. (b) An
atom (grey dot) interacts with a scatterer (black dot). The atom and scatterer interact
with a single reservoir (dashed arrows). Integrating the system over the reservoir (solid
black arrow) results in spontaneous decay of the atom and scatterer (curly arrows) and
the emergence of an effective coupling.

a Jaynes-Cummings description can be in good approximation applied to describe
an atom-scatterer system if the coupling induces only small changes in the decay
rates of the atom and scatterer. Since the incoherent atom-scatterer coupling is
proportional to

√
Γcaκ, we expect the induced change in decay rate to be negligible

in the limiting cases Γca � κ and Γca � κ. To illustrate the analogy between an
atom-scatterer coupling and a coupling of the Jaynes-Cummings type, Figure 6.9
shows the far-field angle-integrated spectrum for different decay rates of the atom
and scatterer. We compare the spectrum as obtained from the Master equation
(6.13) with the spectrum obtained by taking Γ(AS) = 0 while retaining δ(AS). Fig-
ure 6.9(a) depicts the spectrum at low pump intensity (W = 3) for an atom and
scatterer with equal decay rates Γca = κ. A clear distinction between the Γ(AS) = 0
and Γ(AS) 6= 0 calculation is apparent which we expect given the equal decay rates
of the atom and scatterer. Conversely, Figure 6.9(b) shows the spectrum obtained

121



One-atom laser oscillation with a single optical scatterer

(a) (b)

Figure 6.9: The far-field angle-integrated spectrum versus frequency (in units of Γca). The
atom-scatterer configuration is identical to the configuration of Figure 6.2. The spectrum
is shown with (Jaynes-Cummings coupling, black dashed line) and without (coupling in
this thesis, grey solid line) the Γ(AS) = 0 approximation. The system parameters are (a)
W = 3 and Γca = κ (b) W = 3 and 1000Γca = κ.

for an atom and scatterer with 1000Γca = κ; we observe that the large difference
in decay rate of the atom and scatterer indeed leads to a better agreement between
the above calculations.

6.5.2 Comparison with T-matrix formalism

We conclude this chapter by connecting the present atom-scatterer systems to the
atomic systems and their description presented in chapters 2 to 5. In chapter 2, we
demonstrated how the Master equation of a scattering systems allows for the deter-
mination of the system’s T-matrix. Following a similar derivation, we can deduce
that the T-matrix of the scatterer presented in Figure 6.1 is given by

←̂→
TS(ω) = tS(ω)δ(r − rS)1̂1⊗ µ(S) ⊗ µ(S), (6.29)

with

ts(ω) ≡ 3π
ωca/c

κ(
ω − ωca + iκ

2

) , (6.30)

where 1̂1 is a unit operator with matrix elements 〈r|1̂1|r′〉 = δ(r− r′), introduced in
chapter 2. Comparing (6.29) with the T-matrix of a two-level atom (2.28) confirms
the intuitive notion that the T-matrix of a harmonic oscillator is identical to the
T-matrix of a two-level atom, apart from the presence of a saturation term in the
latter.
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chapter saturation of gain atom saturation of passive scatterer(s)
3 none at threshold none at threshold
4 - broadband (first-order)
5 broadband broadband
6 broadband none

Table 6.1: A comparison of the saturation character of different scattering building blocks,
depending on their description.

The T-matrix (6.29) allows us to compare the atom-scatterer systems presented
here to the atomic systems of previous chapters. In the description of few-atom
systems with gain in chapter 3, we limited ourselves to atomic saturation caused by
an incident external probe field and neglected all off-resonant interactions. In section
3.4, we investigated the properties of a two-atom in the absence of an external probe.
We defined a “threshold” characterizing the conditions under which a nonzero field
can build up; at the threshold, the atoms are considered to be unsaturated. In
chapter 4 we calculated a first-order estimation of the saturation of a passive atom
due to incident broadband light. In chapter 5 we generalized this type of saturation
and included atomic saturation due to off-resonant light in all scattering orders. The
insaturable character of the scatterers presented above position the atom-scatterer
systems between the insaturable atoms at threshold of chapter 3 and the saturable
atoms of chapter 5. To illustrate this position of the atom-scatterer systems, Table
6.1 shows a comparison of the saturation character of the scattering building blocks
presented in previous chapters.

6.6 Summary

The aim of this chapter was to present the simplest exactly solvable microscopic sys-
tem which shows many-photon laser behavior. We have shown that a single pumped
atom interacting with one optical scatterer exhibits pronounced gain narrowing and
threshold behavior of the peak emission fluence. Both effects are more pronounced
as the optical feedback increases. Conversely, the system’s photon statistics exhibit
nontrivial behavior; the system we presented is a laser in the bad-cavity limit. In
order to position the atom-scatterer in a broader perspective, we compared our
model to a standard Jaynes-Cummings model and elaborated on deviations be-
tween both approaches. Finally, we connected the atom-scatterer description to the
atomic systems of the previous chapters. In relation to the threshold prediction
presented in chapter 3, we showed that an increase of the applied pump intensity
in atom-scatterer systems leads to a smooth crossover from a regime dominated by
spontaneous emission to a regime where pronounced laser effects are apparent.
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Afterword

In this thesis we have presented a study of the optical properties of few-atom sys-
tems with gain. The interest of these systems lies in their combination of both
optical gain and optical feedback on a microscopic scale. When considering our
results in the broad framework of current research on microscopic laser phenomena,
we believe the conclusions of this thesis are relevant for a wide range of experimental
realizations. As an outlook onto future related research, we now proceed to briefly
discuss a few experimental considerations and implications of our work.

In chapter 2, we described the effect of gain on the optical properties of a sin-
gle atom. We showed the atom’s albedo depends strongly on the applied pumping
intensity. This observation could lead to interesting experimental work on, e.g., co-
herent backscattering [64, 121], since the width of the coherent backscattering cone
is closely related to the albedo of the scatterers in the multiple scattering medium
considered. Similarly, coherent backscattering experiments are expected to reveal
interesting atomic saturation effects as described in chapter 3 and 4 [109].

In chapter 5, we demonstrated that a system of only a few atoms positioned in
each other’s near-field shows large gain narrowing and mode redistribution. From
an experimental point of view, we are convinced that our model applies to a broad
spectrum of experiments, such as laser cooled ions [37, 39]. Selective excitation
of the ions can be achieved by tuning the polarization of the pump field and the
positioning of the ions. Another possible experimental path would be to implement
the atoms as quantum dots [47] which form, if bound to DNA, bioconjugated su-
perstructures [44, 69]. While the energy transfer in those structures is somewhat
different from the one presented in this thesis, we anticipate gain narrowing to
remain conceptually valid. As a third experimental realization, we expect our re-
sults to stimulate experimental work on cold atoms [113] interacting with pumping
fields. Compared to our current system, the number of atoms in a cold-atom cloud
is very high; we therefore trust the phenomena described above to be much more
pronounced.
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One-atom laser oscillation with a single optical scatterer

Finally, the atom-resonator system introduced in chapter 6 allows for an intu-
itive and simple description of the effect of saturation on the interaction of an atom
and a harmonic oscillator. In this context, we believe our results are ideally suited
to describe the interaction of a single emitter and a microcavity [62]. In such exper-
iment, multipole interactions [42] will induce quantitative differences with respect
to the results presented here, but qualitatively our predictions remain unaltered.

126



APPENDIXA

Expansion of the Master equation in the dressed-state basis

The aim of this Appendix is to show the expansion of the Master equation (2.13) in
the basis {|1(N)〉, |2(N)〉, |c,N + 1〉} defined in 2.10. The reduced density matrix
elements which are diagonal in the atomic states evolve as
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2
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while the elements which are off-diagonal in the atomic states evolve as
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APPENDIXB
The Kramers-Kronig relations for a point dipole with gain

The goal of this Appendix is generalize the Kramers-Kronig relations to the case of a
point dipole with gain. The Kramers-Kronig relations relate the real and imaginary
part of a response function α as [10]

Re [α(ω)] =
1
π
P
∫ +∞

−∞

Im[α](x)
x− ω

dx, (B.1a)

Im [α(ω)] = − 1
π
P
∫ +∞

−∞

Re[α](x)
x− ω

dx, (B.1b)

where ω denotes frequency, and P denotes the integral’s (Cauchy) Principal Value.
We will check relations (B.1) for the polarizability (2.26):

←→α (ω) = −←→α0
1−W
1 +W

1
2

ω0

ω − ω0 + iΓ2 (1 +W )
. (B.2)

with W the pump parameter (0 ≤ W ≤ +∞). For this particular polarizability,
the right-hand side of expression (B.1a) can be written as:
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where we omitted trivial prefactors. Elementary complex integration shows that
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The ε-integral instantly yields
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The Residue Theorem states that
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Combining (B.4), (B.5) and (B.6) proves relation (B.1a). The proof of relation
(B.1b) is similar to the calculation sketched above.
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APPENDIXC
The Poynting vector

The instantaneous Poynting vector is defined as [15, 59, 79]

P (t, r) = Re
[
E(t, r)

]
× Re

[
H(t, r)

]
, (C.1)

expressed in units of W/m2 ( stands for Watt, not to be mistaken with the pump
parameter W used throughout this thesis). This above definition holds, whether the
fields are complex-valued or not. Since the following holds for any (complex-valued
or real) quantities A and B,

Re(A)× Re(B) =
1
2
Re(A×B∗ + A×B), (C.2)

we find for the Poynting vector:
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The Poynting vector

Time-averaging the Poynting vector yields

〈P (t, r)〉 = lim
T→+∞
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If we consider complex-valued electromagnetic fields, only positive frequencies need
to be taken into account; the second term of (C.4) can be then discarded and we
obtain from (C.3)

〈P (t, r)〉 =
1
2

〈
Re
[
E(t, r)×H∗(t, r)

]〉
. (C.5)

which is the expression used in (4.49). The Poynting vector is related to the elec-
tromagnetic energy density. This relation can be easily deduced from the Maxwell
equations; in free space, we have

−∇ · (E(t, r)×H∗(t, r)) + H.c.

= 2
∂

∂t
(ε0E∗(t, r) ·E(t, r) + µ0H

∗(t, r) ·H(t, r)) , (C.6)

where H.c. stands for “Hermitian conjugate”. Expression (C.6) can be rewritten in
terms of the Poynting vector as

−∇ · P (t, r) =
∂

∂t
(ε0E∗(t, r) ·E(t, r) + µ0H

∗(t, r) ·H(t, r)) . (C.7)

Since the electromagnetic energy density u(t, r) is given by

u(t, r) = ε0E
∗(t, r) ·E(t, r) + µ0H

∗(t, r) ·H(t, r). (C.8)

we find that the Poynting vector and the electromagnetic energy density are related
by

∇ · P (t, r) +
∂

∂t
u(t, r) = 0. (C.9)
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APPENDIXD
Computational convergence of an atom-oscillator system

The goal of this Appendix is to elaborate on the computational convergence of
the atom-oscillator systems considered in chapter 6. The spectral properties and
statistics of the photons emitted by an atom-oscillator system vary with the num-
ber of oscillator levels. Since we are interested in the unsaturated N → ∞ limit,
in a typical calculation we computationally increase N until the property of in-
terest (such as the spectrum) converges to a limiting value. The computational
effort needed to attain convergence depends on the system parameters. For ex-
ample, the excitation level of the oscillator, and hence the minimum value of N
required to be unsaturated, depends on the atom-oscillator separation. Since for
a given pump intensity the oscillator is more excited at smaller separations we ex-
pect convergence to be slower in that case. To illustrate how the separation affects
the computational convergence, we determine the far-field angle-integrated spec-
trum 〈φ(ω)〉 for different atom-oscillator separations. The system’s spectral width
∆ω and maximum photon flux max[〈φ(ω)〉] then vary with the pump intensity and
the number of oscillator levels. By altering the pump intensity, we determine the
system’s minimal spectral width ∆ω∗ ≡ min{W} [∆ω] and maximum photon flux
〈φ∗(ω)〉 ≡ max{W} [max[〈φ(ω)〉]]; both vary with the resonator capacity N . Figure
D.1 shows how both spectral properties change with N for different atom-oscillator
separations. We observe that at |rA − rS | = 0.62c/ωca the spectrum attains its
asymptotic limit around N = 12; at smaller separations a much larger N is re-
quired to attain convergence, illustrating that convergence is slower as the system’s
feedback increases.

As a closing comment, we note that the minimum number of oscillator levels
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(a) (b)

Figure D.1: (a) The minimum spectral width ∆ω∗ (in units of Γ) and (b) the maximum
photon flux 〈φ∗(ω)〉 of the angle-averaged far-field spectrum versus the resonator capacity
N . The same configuration as in Figure 6.2 is considered, with as atom-oscillator separa-
tion |rA−rS | equal to 0.62c/ωca (black circles), 0.52c/ωca (grey diamonds) and 0.42c/ωca

(black squares).

required to eliminate saturation effects by far exceeds the average number of ex-
citations

〈
b̂†N b̂N

〉
, as illustrated by expression (6.12). For example, if the average

excitation number of the oscillator is of the order 1, considering only a few oscillator
levels will cause significant saturation. This observation may seem physically coun-
terintuitive, but can be easily understood by taking into account the distribution
of the oscillator excitations: while the average excitation number of the oscillator
may be small compared to N , the oscillator excitations are distributed over all
the oscillator’s levels, including the highest level (if the number of levels if finite).
Hence, saturation effects are negligible only if the excitation number of the highest
oscillator level is negligible.
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Summary

What is a laser?

What is a laser? Quite extraordinarily, despite the abundance of excellent textbooks
on laser dynamics, it is rather challenging to find an actual definition of the word
“laser”. Defining a laser is no easy feat, given that different scientific communities
focus on laser operation in different systems and regimes. Strictly speaking, the
extension of the laser acronym is the only aspect of lasers which everyone agrees on:
“laser” stands for Light Amplification by Stimulated Emission of Radiation. The
problem which arises when considering this extension is that it is not defining in
itself: it is, after all, not possible to determine whether the light emitted by a given
light source is produced through stimulated emission or through some other process.
Consequently, light sources without transparent internal dynamics are difficult to
classify as lasers, if a laser definition is based solely on the above acronym.

In practice, semantic issues are not dwelled upon too extensively and one focusses
(as is done in most textbooks) on a description of lasers as ideal systems. Such an
ideal laser typically consists of a gain medium in between two mirrors, as illustrated
by Figure E-I. Laser oscillation occurs when a spontaneous emission event leads to
light oscillating between the laser mirrors; leakage of light (due to the finite temporal
storage capacity of the cavity) is compensated for by amplification through the gain
medium.

Lasers: sorts and tastes

Despite the lack of a generally accepted laser definition, a wide range of amplifying
systems which are generally accepted as lasers exists. As we described above, a
laser typically consists of two essential ingredients: optical amplification and opti-
cal feedback. In the laser type depicted in Figure E-I, for example, amplification
is incorporated through the pumping mechanism while the mirrors provide optical
feedback. In practice, both the gain medium and the feedback come in many vari-
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Figure E-I: A standard laser consists of a gain medium (G) between two mirrors (M). The
gain medium is pumped by an external pump (P). The mirrors confine the intracavity
light, which is amplified by interaction with the gain medium. One of the cavity mirrors
(the right mirror in the figure) is partially reflecting, thereby allowing for the emission of
laser light.

eties: the gain medium can be a solid state (as is the case in compact disc players,
for example) or a gas (such as CO2, used in medical applications); the feedback
can be implemented in a Fabry-Pérot fashion (as in Figure E-I), as a ring cavity
or chaotic cavity or through photonic crystals. The optical properties of the emit-
ted laser light depend strongly on the implementation of gain and feedback, which
sometimes leads to the question as to whether a given amplifying system can be
considered to be a laser or not.

In this thesis, we present a study of the fundamental building blocks of laser
systems. In this respect, we face the question of presenting a workable definition of
a laser. It is rewarding to formulate such a definition since this clarifies semantic
issues right from the beginning and allows us to focus on the physics of the systems
we present. In this thesis, we adopt the following definition:

A single-mode laser is a system which combines gain and feedback, such
that one field mode (the laser mode) is characterized by a gain-induced
increase of its spectral weight at the cost of all other system modes. The
amplitudes of all system modes decay in time to an external bath and
are replenished by the gain source.

Our definition of a single-mode laser is, although debatable, a workable definition
in terms of experimentally observable quantities; its usage allows us to disregard
laser-related semantic issues and concentrate on the physics of the systems at hand.
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(a) (b)

Figure E-II: (a) A one-atom (single-ion) laser consists of single atom (ion) inside a cav-
ity. The atom (ion) is pumped while the cavity provides feedback. (b) A random laser
consists of a gain medium containing random scatterers. The gain medium is pumped by
an external pumping mechanism (P), while the optical feedback is provided by multiple
scattering of light.

Lasers: from macro to micro

We now focus on the content of this thesis and the recent scientific discoveries which
led to the questions we address. This thesis describes laser processes on a micro-
scopic scale. In order to study the basic physics of the processes involved in laser
oscillation, there has been an intensive search for laser operation in fundamental
systems. The resulting drive toward miniaturization has led to, among others, the
realization of vertical-cavity semiconductor lasers, dye-microsphere lasers, micro-
ring and microdisc semiconductor lasers, microsphere lasers and photonic-bandgap
lasers. As laser systems are made smaller, a purely macroscopic description be-
comes inadequate and microscopic considerations should be taken into account. An
interesting example of lasers which require a (partially) microscopic treatment is
the class of one-atom lasers, schematically depicted in Figure E-II (a). In one-atom
(or single-ion) lasers, the gain medium is reduced to a fundamental level, while
macroscopic mirrors provide feedback. Another, contrasting example is the class of
random lasers, shown in Figure E-II (b). In random lasers, the optical feedback is
provided by scattering from microscopic particles, while the gain medium remains
macroscopic. Obviously, neither the feedback mechanism nor the gain medium can
be reduced to the dimensions smaller than those of one atom.

About this thesis

In this thesis, we explore the most fundamental system displaying both gain and
feedback: a single pumped atom, surrounded by one or more passive atoms provid-
ing optical feedback by scattering. The atoms are positioned in free space in the
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Figure E-III: The “scattering lasers” introduced and studied in this thesis, consisting of
a small number of atoms (three in the figure) in free space. One of the atoms (grey)
is pumped, while the others (black) are not. The dashed arrows depict light which is
scattered back and forth between the atoms. A large fraction of the light in the system is
emitted omnidirectionally and detected (solid black arrows). If the atoms are positioned
closely enough, this few-atom system exhibits pronounced laser-like behavior.

absence of a cavity. The absence of a cavity ensures that the presented results are
based solely on the scattering properties of the atomic building blocks and their
description. We show that these systems, although very simple, show surprisingly
strong spectral gain narrowing and mode redistribution. In addition, the observed
gain-induced phenomena are more pronounced as the number of atoms increases,
in correspondence with the intuitive macroscopic limit. Due to their remarkable
behavior, we refer to few-atom systems with gain as “scattering lasers”.

Overview of this thesis

To conclude this summary, we provide a technical overview of the contents of this
thesis. The atomic systems we present are studied in several distinct phases. The
first chapter serves an introductory purpose and provides the same overview as this
summary. We start in chapter 2 with a description of the optical scattering prop-
erties of a single pumped atom. We show how to characterize the influence of the
pump field through a single dimensionless parameter, expressing both a broadening
of the atomic transition and a decrease of the atom’s polarizability. In addition,
the presence of gain causes the atom to scatter partially inelastically and changes
its dispersion and dissipation. In chapter 3 we describe N atoms with gain in
the framework of multiple scattering of light. We demonstrate that, remarkably,
a two-atom system with gain exhibits threshold behavior within a semiclassical
multiple-scattering formalism. In chapter 4 we calculate a first-order estimation of
the atomic saturation induced by off-resonant light. We demonstrate such satura-
tion to be significant and to suppress the manifestation of a threshold as predicted
in a semiclassical formalism. In chapter 5, we proceed beyond the above first-order
approximation and present a quantum-mechanical study of N -atom systems with
gain. We show that few-atoms with gain exhibit pronounced gain narrowing, pro-
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viding the atoms are in each other’s near-field. Finally, in chapter 6 we demonstrate
that eliminating the saturation of the passive atoms leads to even more pronounced
mode competition effects. As the applied pump intensity increases, the microscopic
systems under consideration exhibit a smooth crossover from a regime governed by
spontaneous emission to a regime where pronounced laser effects dominate.
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Samenvatting

Wat is een laser?

Wat is een laser? Merkwaardig genoeg is er in de wetenschappelijke wereld geen
consensus over het antwoord op deze vraag. Dat is op zich niet zo erg: verschillende
wetenschappelijke disciplines stellen immers een ander eisenpakket voorop bij het
definiëren van het “laser”-concept, met als gevolg dat verschillende definities van
een “laser” de ronde doen. In strikte zin is het enige aspect van lasers waar iedereen
het over eens is, dat “laser” staat voor Light Amplification by Stimulated Emission
of Radiaton, ofwel lichtversterking door gestimuleerde emissie. Het probleem dat
deze betekenis met zich meebrengt, is dat ze niet definiërend is: het is immers niet
mogelijk om van een willekeurige lichtbron te bepalen of het licht al dan niet via
gestimuleerde emissie wordt uitgezonden. Dit heeft als gevolg dat lichtbronnen zon-
der transparante interne dynamica moeilijk te classificeren zijn als wel of geen laser.

In de praktijk maakt men zich echter zelden zorgen om semantische kwest-
ies, en kiest men (zoals in veel tekstboeken) voor een beschrijving van lasers als
gëıdealiseerde systemen. Een dergelijke ideale laser bestaat in essentie uit een ver-
sterkend medium dat zich bevindt tussen een aantal (meestal twee) spiegels, zoals
aangegeven in Figuur N-I. Vanuit een conceptueel standpunt is de werking van een
laser heel eenvoudig. Om een laser vanuit zijn “uit” toestand “aan” te kunnen
zetten, moet op een willekeurige plaats tussen de spiegels spontaan een “kiem” van
licht ontstaan. Deze lichtkiem plant zich voort en kaatst heen en weer tussen de
laserspiegels; door het pompen wordt het licht bij elke doorgang door het versterk-
ende medium intenser (uiteraard is het zo dat een deel van het licht helemaal niet
heen en weer kaatst maar gewoon weglekt door de eindige afmetingen van de spiegels
— dit lekkende deel van het licht draagt niet bij tot de laserwerking maar is verlies,
inherent aan het laserproces). Omdat men gëınteresseerd is in laserlicht dat uit de
laser komt zorgt men ervoor dat één van de spiegels in het systeem niet al het licht
reflecteert maar een kleine fractie doorlaat; het licht dat zo ontsnapt is laserlicht.
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Figuur N-I: Een standaard laser bestaat uit een versterkend medium (V) tussen twee
spiegels (S). Het versterkend medium wordt aangedreven door een pomp (P). De spiegels
sluiten het licht grotendeels in; doordat het licht vele malen tussen de spiegels heen en
weer kaatst en daarbij door het versterkend medium reist wordt het gëıntensifieerd. Eén
van de spiegels (de rechter spiegel in de figuur) laat een fractie van het licht door; het
laserlicht kan zo het systeem verlaten.

Lasers: soorten en smaken

Niettegenstaande het gebrek aan een algemeen aanvaarde definitie van een laser,
bestaat er een groot scala aan systemen die door de wetenschappelijke wereld
als lasers worden beschouwd. Zoals hierboven beschreven, bevat een laser twee
essentiële ingrediënten: optische versterking en optische feedback. In het type
laser dat bijvoorbeeld in Figuur N-I wordt getoond, gebeurt de versterking via
het pompmechanisme en zorgen de spiegels voor de feedback. In de praktijk is
het zo dat zowel het versterkende medium als de feedback op veel verschillende
manieren gëımplementeerd kunnen worden. Het medium kan bijvoorbeeld een vaste
stof zijn (zoals in een cd-speler, waar het medium een halfgeleider is) of een gas
(zoals in medische toepassingen waar gasvormig CO2 wordt gebruikt als versterk-
end medium); de feedback kan worden gëımplementeerd via planparallelle spiegels
(zoals de spiegels in Figuur N-I), aan de hand van ringvormige of chaotische tril-
holtes of aan de hand van (fotonische) kristallen, om maar enkele voorbeelden te
noemen. Al naargelang de gekozen implementatie van versterking en feedback kun-
nen de eigenschappen van lasers drastisch verschillen; de mogelijkheid bestaat dat
discussie ontstaat over de vraag of een versterkend systeem als laser kan worden
beschouwd of niet.

In dit proefschrift worden bijzondere versterkende systemen bestudeerd, waar
we later in detail op ingaan. Om onze systemen te classificeren tussen andere ver-
sterkende systemen — zowel lasers al niet-lasers — is het noodzakelijk om een ge-
fundeerde eenduidige definitie van een laser te formuleren. We stellen daarbij twee
eisen voorop: onze definitie moet experimenteel toetsbaar zijn, en alle systemen
die algemeen erkend worden als lasers, moeten onder onze laser definitie vallen (en
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Figuur N-II: Een illustratie van het concept golflengte. De golflengte in de figuur is
gedefinieerd als de afstand tussen twee opeenvolgende golfpieken.

omgekeerd, uiteraard, mogen alle systemen die duidelijk geen lasers zijn, niet onder
onze definitie vallen). We zijn op zoek gegaan naar een unificerende eigenschap
van een breed scala lasers en kwamen tot de vaststelling dat lasers één eigenschap
gemeen hebben: naarmate de pompintensiteit toeneemt, stijgt de intensiteit van
het laserlicht terwijl het bereik van golflengtes waarin de laser licht uitzendt kleiner
wordt (om in het ideale geval licht te emitteren op één enkele golflengte). Deze
eigenschap zal de basis zijn van onze laserdefinitie. Om deze bijzondere eigenschap
nader toe te lichten, maken we een korte zijsprong om wat dieper in te gaan op het
concept golflengte.

De golflengte van licht

Licht kan zich gedragen als een golf, net zoals geluid, seismische trillingen of golven
op zee. Met een golf kan men een golflengte associëren. Om het golflengteconcept
te visualiseren beschouwen we even het voorbeeld van zeegolven aan het zeeop-
pervlak. Als een waarnemer zich op een vaste plaats bevindt en een zeegolf ziet
langskomen, dan observeert hij/zij een alternerend stijgende en dalende beweging,
zoals gëıllustreerd in Figuur N-II; de golflengte van de golf is gedefinieerd als de
afstand tussen twee opeenvolgende golfpieken.

In het geval van zichtbare lichtgolven is het zo dat de golflengte bepaalt welke
kleur we associëren met dat licht; rood licht heeft dus een andere golflengte dan
blauw licht. Om de grote reikwijdte van lichtgolflengtes in de natuur te illustreren,
tonen we in Figuur N-III een aantal algemeen bekende (elektromagnetische) golven
en de ermee geassocieerde golflengte.

Naast een variatie qua golflengte, kan ook het aantal golflengtes in een lichtbron
variëren. Zo bevatten zowel rood als blauw licht maar één golflengte, maar bevat wit
licht juist heel veel golflengtes (namelijk alle kleuren van het zichtbare spectrum).

Lasers en golflengteselectiviteit

Zoals eerder vermeld hebben lasers de opmerkelijke eigenschap dat, naarmate de
pompintensiteit toeneemt, het aantal golflengtes waarin ze emitteren vermindert
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Figuur N-III: Selectie uit het elektromagnetische spectrum. Van links naar rechts op de
figuur neemt de golflengte van het licht toe; van rechts naar links neemt de energie van de
golven toe (energie en golflengte zijn omgekeerd evenredig met elkaar).

terwijl de intensiteit van het uitgezonden licht toeneemt. Met andere woorden:
terwijl een laser bij lage pompintensiteit in veel golflengtes uitzendt, wordt het
laserlicht bij hoge pompintensiteit intenser en gedomineerd door één kleur. De
zuiverheid qua kleur bij hoge pompintensiteit is wat laserlicht zo bijzonder maakt
en geschikt voor een breed scala aan toepassingen.

Zowel de golflengte(s) als de hoeveelheid licht die een systeem uitzendt zijn
experimenteel vast te stellen; in dit proefschrift maken we daar handig gebruik van
en definiëren een laser als volgt:

Een (monomodale) laser is een systeem waarin optische versterking en
feedback worden gecombineerd, zodanig dat als de versterking intensi-
fieert, de reikwijdte van golflengtes waarin de laser emitteert afneemt
terwijl de intensiteit van het laserlicht toeneemt.

Niettegenstaande het feit dat de bovenstaande definitie aanvechtbaar is, biedt ze een
eenvoudig te verifiëren criterium in termen van experimenteel meetbare grootheden;
het gebruik van deze definitie als toetssteen laat ons toe ons te distantiëren van
semantische discussies en ons te richten op de onderliggende natuurkunde.

Lasers: van macro naar micro

Nu we het laserconcept gëıntroduceerd hebben, kunnen we ons richten we op de in-
houd van dit proefschrift en de recente historische ontwikkelingen die tot de vraag-
stelling in dit proefschrift hebben geleid. Dit proefschrift beschrijft laserprocessen
op microscopische schaal. Om de microscopische processen te begrijpen die de
laserdynamica beheersen, is men al enige tijd op zoek naar laserwerking op fun-
damenteel niveau. Het creëren van steeds kleinere lasers gebeurt in de praktijk
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(a) (b)

Figuur N-IV: (a) Een één-atoom laser bestaat uit één atoom dat gevangen wordt tussen
twee spiegels. Het atoom wordt gepompt; het licht dat het atoom zo uitzendt wordt
gevangen door de spiegels. Eén van de spiegels (de rechter spiegel in de figuur) laat een
fractie van het licht door; het laserlicht kan zo het systeem verlaten. (b) Een random
laser bestaat uit een versterkend medium (grijze achtergrond) dat verstrooiende deeltjes
bevat (zwarte cirkels). Het versterkend medium wordt aangedreven door een externe pomp
(P). Licht wordt verstrooid aan de verstrooiende deeltjes en tegelijk gëıntensifieerd door
het aanwezige versterkend medium. Het zo ontstane laserlicht wordt omnidirectioneel
uitgezonden.

door ofwel de feedback, ofwel het versterkend medium te verkleinen (of allebei, uit-
eraard). Een recent voorbeeld van een laser waarin het versterkend medium tot
de ultieme limiet is verkleind is een “één-atoom laser”, gëıllustreerd in Figuur N-
IV(a). Een één-atoom laser bestaat uit twee spiegels met ertussen één enkel atoom
dat gepompt wordt. In een één-atoom laser is de versterking dus gereduceerd tot een
fundamenteel (atomair) niveau, terwijl de feedback macroscopisch is gebleven. Een
ander — contrasterend — voorbeeld van een gedeeltelijk microscopische laser is een
“random laser”, gëıllustreerd in Figuur N-IV(b). Een random laser bestaat uit een
versterkend medium waarin microscopische verstrooiers zijn ingebed. Wanneer in
een random laser een kiem van licht spontaan ontstaat, zorgen de verstrooiers ervoor
dat het licht zich voortplant langs een onregelmatig pad terwijl het gëıntensifieerd
wordt door het versterkende medium. Het laserlicht dat een random laser emitteert
is omnidirectioneel, dit in tegenstelling tot de directionele emissie van de lasers in
Figuur N-I en N-IV(a). Uiteraard kunnen noch het versterkend medium noch de
feedback worden verkleind tot dimensies kleiner dan die van één atoom.

Over dit proefschrift

In dit proefschrift beschrijven we de meest fundamentele systemen die optische
versterking en feedback combineren: één gepompt atoom, omgeven door een klein
aantal passieve atomen die samen voor de feedback zorgen, zoals gëıllustreerd in
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Figuur N-V: De “scattering lasers” die in dit proefschrift worden bestudeerd bestaan uit
een klein aantal atomen (drie in de figuur) in de vrije ruimte. Eén van de atomen (grijs)
wordt gepompt, de anderen (zwart) niet. De dubbele stippellijn illustreert licht dat door
verstrooiing heen en weer kaatst tussen de atomen. Een deel van het licht wordt naar buiten
uitgezonden en gedetecteerd (enkele zwarte pijlen). Indien de atomen dicht genoeg bij
elkaar zijn gepositioneerd, vertoont dit systeem gedrag dat analoog is aan macroscopische
lasers.

Figuur N-V. De atomen zijn gepositioneerd in de vrije ruimte. De optische ver-
sterking in onze systemen wordt verzorgd door het gepompte atoom; het licht dat
dit atoom uitzendt wordt verstrooid door de passieve atomen die zo voor feed-
back zorgen. Omdat we kunnen aantonen dat deze systemen duidelijk laserkarakter
vertonen, refereren we naar onze atomaire systemen als “scattering lasers”1. Het
fundamenteel karakter van scattering lasers uit zich in het feit dat ze volledig kun-
nen worden gekarakteriseerd in termen van de atomen waaruit ze bestaan; in die
zin zijn scattering lasers de enige lasers die op atomair niveau exact kunnen worden
beschreven. Het verband met de lasers uit Figuur N-IV is intüıtief duidelijk: scat-
tering lasers kunnen worden beschouwd als een één-atoom laser waarbij de spiegels
worden vervangen door slechts enkele passieve atomen, of als een random laser waar-
bij het versterkend medium is verkleind tot één enkel gepompt atoom.

Overzicht van dit proefschrift

Ter afronding van deze samenvatting geven we in wat volgt een technisch overzicht
van de verschillende hoofdstukken van dit proefschrift. De atomaire systemen die we
bestudeerd hebben worden in een aantal opeenvolgende fasen beschreven. Het eerste
hoofdstuk heeft een inleidende functie en geeft hetzelfde overzicht als deze samen-
vatting. Het tweede hoofdstuk beschrijft de eigenschappen van één enkel gepompt
atoom. De lichtverstrooiing van een atoom wordt beschreven door de polariseer-
baarheid van dat atoom; we tonen in hoofdstuk 2 aan dat de aanwezigheid van een
pomp zich vertaalt in een afname van de polariseerbaarheid en een verandering van

1“To scatter” betekent “verstrooien”. De feedback in onze atomaire systemen wordt verzorgt
door de passieve atomen die het licht verstrooien — vandaar de naam “scattering lasers”.
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het teken ervan (een negatieve polariseerbaarheid impliceert dat licht niet uitdooft
maar wordt versterkt, wat te verwachten is in de aanwezigheid van een pomp). We
tonen verder aan dat de keuze van pompimplementatie belangrijke gevolgen heeft
voor de verstrooiingseigenschappen van het atoom. Het derde hoofdstuk beschouwt
systemen met meerdere atomen en beschrijft ze op een semi-klassieke manier. We
tonen aan dat een dergelijke aanpak leidt tot duidelijk lasergedrag en het verschijnen
van een laserdrempel, zelfs indien slechts twee atomen worden beschouwd. In hoofd-
stuk 4 gaan we verder in op de benaderingen die inherent zijn aan een semi-klassieke
theorie en behandelen een eerste-orde correctie op deze beschrijving; deze correctie
leidt tot het verdwijnen van bovenstaande laserdrempel. Omdat het gestructureerd
uitbreiden van een semi-klassieke theorie naar hogere-orde correcties moeilijk bli-
jkt, gaan we in hoofdstuk 5 over op een volledig kwantummechanische beschrijving
van scattering lasers; het blijkt dat deze systemen ook in een kwantumbeschrijving
duidelijk lasergedrag vertonen, wat hun naam rechtvaardigt. Verder tonen we aan
dat de mate waarmee het lasergedrag zich in deze systemen manifesteert toeneemt
met het aantal atomen. Meer precies is het zo dat lasergedrag meer prominent
aanwezig is naarmate meer licht kan worden opgesloten in het systeem; de aan-
wezigheid van meer atomen leidt tot een grotere capaciteit voor het opvangen van
licht en dus tot een duidelijker lasergedrag. Omdat we computationeel beperkt zijn
tot het uitrekenen van systemen met slechts enkele atomen, gaan we in hoofdstuk 6
over op systemen waar veel meer licht in kan opgesloten worden: één enkel gepompt
atoom dat gekoppeld wordt aan een microtrilholte. Daar deze laatste systemen een
veel grotere capaciteit hebben wat lichtopslag betreft, vertonen ze meer uitgespro-
ken lasergedrag.
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Fabry-Pérot resonator, see cavity
field-field correlation, see spectrum
four-level atom

level diagram, 37
scattering properties, see T-matrix

Fourier transform
definition, 60

gain
and absorption of a pumped atom,

32
implementation of, 25, 37, 82
narrowing, 93

Generalized Rotating Wave Approxima-
tion, see Rotating Wave Ap-
proximation

Green function
coordinate representation, 53
free-space, 43, 80, 110
of N atoms, 44

Hamiltonian
atomic, 25, 74, 107
of a harmonic oscillator, 108
of a pump field, 25
of the electromagnetic field, 26, 75,

108
harmonic oscillator, 107

incoherent light, see broadband light
intensity

definition, 85
of N atoms, 90
operator, 86

intensity-intensity correlation
definition, 86, 111

in a laser, see laser
of N atoms, 91, 97
of an atom and an oscillator, 116

ion
trapped, 24, 125

Jaynes-Cummings description, 120
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optical Bloch equations, 31, 60
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photon flux
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practical applicability, 51
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spectrum
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threshold, 19
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