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Chapter 1
Introduction

1.1 Photonic crystals

1.1.1 Intro

There is a fast growing interest in photonic crystals to control the propagation
and emission of light. Photonic crystals are composite materials whose refractive
index varies periodically on length scales that match the wavelength of light [1].
The optical properties of photonic materials are determined by the spatially varying
refractive index, analogous to the periodic potential for an electron in a crystal [2, 3].
Large spatially periodic variations of the refractive index cause a strong interaction
between light and the composite structure. The periodicity causes Bragg diffraction
of the scattered light along a specific direction. Bragg diffraction causes stop
gaps; frequency ranges for which light is not allowed to propagate along a certain
direction [4, 5]. A major goal of the field is the realization of three-dimensional
structures that possess a photonic band gap; a frequency range in which a stop gap
appears for all directions simultaneously [6, 7].

At frequencies inside the band gap, the optical density of states vanishes. This
should completely inhibit spontaneous emission of sources inside the photonic
crystal [6]. Strong modifications of the spontaneous emission lifetime have recently
been demonstrated in photonic crystals [8–11]. In the presence of weak controlled
disorder, Anderson localization of light is also predicted [7]. In this case, a photon
may be trapped at a point defect which serves as a cavity with a high quality
factor [12].
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1.1.2 Bragg diffraction in photonic crystals

Scattering of electromagnetic waves from a periodic scattering potential causes the
waves to diffract. For wavelengths of the order of the lattice spacing, constructive
interference can give rise to Bragg diffraction of the scattered waves. Fig. 1.1 shows
a schematic picture of Bragg diffraction of incoming waves on an atomic lattice. The
constructive interference condition is met if the path difference between reflections
from successive planes equals an integer times the wavelength λc of the incoming
wave:

mλc = 2d cosθ, (1.1)

where m is an integer number that indicates the order of the diffraction, d is the
lattice spacing and θ the angle of the incident beam with respect to the lattice plane
(see Fig. 1.1). Bragg diffraction was first studied in X-ray diffraction experiments
bulk materials [13].

d

θ

d cosθ

λ

Figure 1.1: Schematic representation of Bragg diffraction. Waves are diffracted from lattice planes
with distances d and interfere constructively if λc, d and θ satisfy the Bragg law, equation 1.1

.

In photonic crystals, the lattice parameter is commensurate with optical fre-
quencies, causing strong Bragg diffraction to occur in this frequency range. Bragg
reflection of optical waves has been studied extensively for multilayer structures
such as Bragg mirrors [4]. The dispersion relation of light that travels normal to a
set of lattice planes in a photonic crystal is shown schematically as a solid curve in

14



1.1. Photonic crystals

Fig. 1.2. As the wave vector k= 2π/λ approaches mπ/a, the Bragg condition condi-
tion is met. At frequencies near the Bragg condition, the solutions of the dispersion
relation split into two branches. In between the branches no solutions for propa-
gating modes exist and therefore a stop gap appears. The center frequency of the
stop gapωc = 2πc/λ is predicted by Bragg’s law adjusted for photonic crystals [14]:

ωc =
π

ne f f d cosθ
, (1.2)

where ne f f is the average refractive index of the crystal, which is obtained through
e.g. the volume averaged dielectric constant ne f f =

√
ε̄. For comparison, the

dashed line depicts the dispersion relation ωck/ne f f for a homogeneous medium
with refractive index ne f f .

At the Bragg condition, there are two counterpropagating waves in the crys-
tal: the incident wave with wavevector π/a and the Bragg reflected wave with
wavevector -π/a respectively. The waves form a standing wave in the crystal. Let
us consider the two extreme cases of these standing waves. The first one is con-
centrated in the high index material, and the second one is concentrated in the low
index material. Since both standing waves experience a different refractive index,
they have a different optical frequency ω = ck/ne f f (see Fig. 1.2). The standing
wave that is predominantly located in the high index material occurs at ωlow, at the
lower edge of the stop gap. The standing wave that is mostly located in the low
index material corresponds to a higher optical frequency ωhigh. As the refractive
index contrast increases, the width of the stop gap ∆ω/ωc also increases.

1.1.3 Photonic strength

An important parameter that gauges how strongly light interacts with any photonic
nanostructure is the ”photonic strength” S. The photonic strength is defined as the
ratio of the polarizability of each structural unit cell to the physical volume. The
photonic strength is a general parameter that allows to gauge and compare many
different structures, including completely disordered ones or structures containing
sharp atomic resonances. Experimentally, the photonic strength is gauged by the
measured relative bandwidth of the first order stop band in absence of disorder
broadening [15]. The stop band width increases with the refractive index contrast
in the structure.

Mathematically, the photonic strength in a dielectric photonic crystal can be
identified with the normalized first Fourier component of the dielectric function of
the crystal: [16]
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k
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Figure 1.2: Sketch of the dispersion relation between wave vector and frequency (in units of
ωdne f f /2πc) for light propagating perpendicular to a set of lattice planes with lattice spacing d.
A stop gap appears for frequencies ωlow < ω < ωhigh. The dashed line is the dispersion of light
propagating in a homogeneous medium with refractive index ne f f .

S =
∆ω
ωc
≈
|∆ε|
ε̄
|gGhkl| =

|n2
h − n2

l |

f n2
h + (1 − f )n2

l

|gGhkl|, (1.3)

whereωc is the center frequency of the stop band, ε̄ is the volume averaged dielectric
function, f is the volume fraction of the high index material, and∆ε is the difference
between the dielectric function of the high (ε2 = n2

h) and low (ε1 = n2
l ) index

materials. The Fourier coefficient gGhkl is specific for the spatial distribution of high
and low index material over the unit cell, but independent of the values εh and εl.
The photonic strength is inversely proportional to the Bragg length LB which is the
1/e decay length of light at the center frequency of the stop band,

LB =
2d
π



1.1. Photonic crystals

1.1.4 3D photonic band gaps

In 3D photonic crystals with a sufficiently large photonic strength (S & 0.15 to
0.2), stop gaps from different sets of lattice planes in the crystal are present in all
directions simultaneously, causing a 3D photonic band gap to appear. The first
proposed photonic band gap structure was a face centered cubic (fcc) lattice of
dielectric cubes [6]. Experimentally, the first photonic band gap materials were
fabricated in the microwave range. The first structures consisted of fcc lattices of
air spheres in a dielectric background [18]. However, at the high symmetry U and
W points in the Brillouin zone, a degeneracy appears, leading to a pseudo gap
rather than a band gap [19, 20]. An important result of this degeneracy is that
in fcc structures, a band gap can only occur in the range of second order Bragg
diffraction [21]. The minimum refractive index contrast required for a band gap to
open up is 2.8 [21].

Much more relaxed conditions apply to crystals with a diamond symmetry,
such as the ”woodpile” photonic crystals that were proposed by Ho et al. [22]. the
reason is that in diamond structures, the band gap appears in the range of first
order Bragg diffraction. Moreover, the gap is less sensitive to disorder [17]. The
minimum index contrast required for a band gap is reduced to 2.0.

1.1.5 Photonic band gap crystals

Soon after the proposal of Ho et al. [22], research was focused on woodpile photonic
crystals with a diamond symmetry. Woodpile crystals are made using a layer-
by-layer approach. The structures were first demonstrated for microwaves and
have subsequently been downscaled to near-infrared wavelengths [23–26]. The
maximum thickness of structures that are fabricated by the layer-by-layer technique
is limited by the lateral alignment precision of the rod layers with respect to each
other, and is typically less than 8 layers or 2 unit cells.

Much larger crystals can be obtained through self assembly of colloids. Colloids
have the natural ability to spontaneously form three dimensional face-centered cu-
bic (fcc) crystals [27], and are therefore suitable for the production of thick three
dimensional photonic crystals. While the photonic strength of self-assembled col-
loidal crystals is rather low, the colloids can be made to form opals [28] that serve
as a template for high-strength inverse opals, see Fig. 1.3A [29–31]

While the refractive index contrast in titania inverse opals (2.7±0.4) marginally
fulfills the requirement for band gap formation, the crystals were observed to
show omnidirectional reflectivity features [32]. Titania inverse opals, operating at
visible wavelengths were used in the first demonstration of control of spontaneous
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emission lifetimes of light sources by photonic crystals [8]. Meanwhile, much more
has been done on the infiltration of high refractive index semiconductors such as
Si into thin film opaline crystals [33, 34]. Indeed, Si inverse opals demonstrate
high reflectivity peaks whose frequency overlaps along several high-symmetry
directions [34, 35]. Note that the use of semiconductors limits the range in which
a photonic band gap can be obtained to frequencies below the absorption edge of
the semiconductor (ω < 9345 cm−1 for Si), which is outside the visible range.

An important issue in the vertical controlled drying method [36], which is used
to fabricate the opaline templates is the lack of control over the crystal symmetry
[37]. Recent results have demonstrated that some control over the lattice symmetry
and orientation can be obtained through the use of patterned templates [38–41],
see Fig. 1.3B. A suitable technique to fabricate the required large ordered templates
is laser interference lithography [42, 43], see Fig. 1.3C. Multiple beam holography
can also be used to fabricate 3D structures in photoresist without recourse to col-
loids [44–46]. For a band gap to appear in such crystals, the photoresist should
be replaced by a semiconductor through a double inversion process which has
recently been demonstrated [47].

Recently, new techniques for producing photonic crystals with diamond sym-
metry have been demonstrated. Direct laser writing in photoresist [48, 49] or in
high refractive index chalcogenide glasses [50] allows for the fabrication of defects
inside three dimensional photonic crystals. Furthermore, three dimensional pho-
tonic crystals were fabricated by a two-step etching process [51, 52] or by focused
ion beam milling [53], which allows the fabrication of crystals with a diamond
symmetry single crystalline wafers, see Fig. 1.3D.

1.2 Switching photonic crystals

1.2.1 Density of states switching

In the majority of photonic crystal studies, the photonic crystals themselves are
stationary. To explore active functionalities for photonic crystals, it is vital to
investigate whether ultrafast switching of photonic stop bands and even of band
gaps is feasible. Changing the refractive index of the structure offers ultrafast
control over the photonic strength.

Switching 3D photonic crystals is particularly interesting, as it provides dy-
namic control over the optical density of states inside the crystal [54]. Ultrafast
control of the density of states has exciting prospects: First of all it would allow
dynamic control over spontaneous emission of light sources; sources whose fre-
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1.2. Switching photonic crystals

A B

C D

Figure 1.3: SEM images of various photonic crystals. A {111} plane of air holes in a titania inverse
opal. (B) {111} plane of a fcc close packed crystal of polystyrene spheres, created by vertical controlled
drying method on a patterned substrate [40]. (C) hexagonal array of holes in photoresist, fabricated
by laser interference lithography and used to control the deposition of colloidal spheres [40]. (D)
focussed ion beam etching in gallium phosphide. Scalebars represent 2 µm. Images courtesy of Lydia
Bechger (A) and Willem Tjerkstra (D).

quency is in a range where the DOS is strongly reduced, could suddenly experience
an increased DOS, resulting in an accelerated spontaneous decay. Vice versa, if the
DOS is quickly switched from high to low, a light source will suddenly be shut off.
To the best of our knowledge these remarkable properties are unique for light in
photonic crystals, since no analogy exists for electrons in semiconductors.

Spontaneous emission of light sources that are embedded into a cavity, is en-
hanced by the Purcell effect [55]. Under certain conditions, light sources can become
strongly coupled to a single cavity mode. Strong coupling of quantum dot light
sources to narrow cavity modes was recently demonstrated in photonic nanocav-
ities [56–58]. In such coupled systems, switching the cavity resonance frequency
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would allow dynamic control over the coupling strength between cavity and a
single emitter.

1.2.2 Propagation switching

The directional propagation of light inside photonic crystals strongly deviates from
bulk dielectric materials. Near the stop band edges, the angle of propagation
strongly depends on frequency, leading to so-called superprism effects [59]. Also
the propagation of diffusive light inside photonic crystals is strongly influenced
by stop bands, resulting in non-Lambertian behavior [60]. Switching of photonic
crystals could dynamically control the direction in which light is diffracted, offering
a new mechanism for all optical beam steering.

In photonic crystal waveguides, light can be confined to a single mode. The
group velocity of pulses propagating in such waveguide is characterized by the
slope of the dispersion relation δω/δk. Recently, very low group velocities have
been observed in photonic crystal waveguides near flat parts of the dispersion
relation [61, 62]. We propose that ultrafast switching switching mechanisms can
be used to shift the dispersion curve up or down on a ps timescale. Consequently,
a pulse with frequency ω could suddenly experience a different group velocity.
Switching could in this way serve as a mechanism to slow-down or accelerate light
pulses. An interesting prospect is that if the crystal is adjusted in an adiabatic way,
it will drastically enhance the coupling efficiency of light pulses into very slow
waveguides modes. Similar dynamic control over the coupling efficiency into a
cavity, allows for adiabatic and reversible compression of a pulse into a single
narrow cavity mode, as was demonstrated in the proof-of-principle experiment
of Ref. [63]. A scheme involving multiple coupled cavities to slow down light
coherently was proposed by Ref. [64].

In absence of photonic crystals, ultrafast switching of bulk semiconductors finds
applications in high speed optical modulators [65] and multilayer stacks [66, 67].
Last but not least, ultrafast control of photonic crystals is important for controlling
the propagation of light, such as in switched macroporous silicon [68], or 2D crystal
slabs [69].

1.2.3 Relevant timescales

The analysis of the changes in the density of states in switched photonic crystals
by Ref. [54] has been quasi static. The photonic crystal is assumed to adjust
to the new situation adiabatically. The adiabatic theorem states that a physical
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1.2. Switching photonic crystals

system remains in its instantaneous eigenstate if a given perturbation is acting
on it slowly enough and if there is a gap between the eigenvalue and the rest
of the Hamiltonian’s spectrum [70]. In the case of a switched photonic crystal,
the eigenstates are the Bloch modes of the crystal. During the switching, the
Bloch modes are changed by a time dependent refractive index, which changes the
scattering potential, and can thus be considered the perturbation. It is interesting
to investigate what the timescale of the switching should be for the change to
become non-adiabatic. Ref [54] proposed that switching on time scales faster than
the inverse width of the band gap (1/∆ f ) would result in non-adiabatic effects. In
their analysis this would correspond to a switching time of 160 fs.

It is also interesting to consider photons in a Bloch mode whose frequency is
located at the upper edge of the band gap of the unswitched crystal. During the
switching, which shifts the band gap up in frequency, these photons will forced to
change their color. In this case the inverse distance from the Bloch mode to the edge
of the gap has been suggested as a relevant time scale [71]. The energy required for
the frequency conversion can be gained from the pump field. The same situation
applies when we consider the switching of a single mode cavity, whose resonance
frequency is shifted.

An analogy of transitions between transitions between Bloch states and elec-
tronic interband transitions has been made by Ref. [72]. Their analysis shows that
photons can indeed transfer into from a Bloch mode at frequency ω1 into a mode
at frequency ω2 if the refractive index is periodically modulated. The modulation
frequency, however, must of the order of the frequency difference ω2-ω1 of the
modes modes. A χ(2) nonlinearity in GaAs is proposed to induce such fast peri-
odic oscillations [72]. Transition times of the order of 100 ps are predicted in an
experiment where ω2 ≈ 2ω1.

Even though several interesting switching experiments on photonic crystals
have been demonstrated, there are still many open elementary questions. In par-
ticular, how the optical properties of a photonic crystal behave at frequencies in the
vicinity of a photonic band gap that is switched on ultrafast time scales. As a first
step we will study in this Thesis the ultrafast reflectivity changes of such crystals.
Our results will provide useful insights which can be used in severely challenging
experiments in which ultrafast changes of the density of states are observed.
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Chapter 2
Experimental considerations

2.1 Experimental requirements

In optical switching experiments, four important requirements have to be met [54].
First of all, the magnitude of the induced change in the real part of the refractive
index n′ must be large enough to obtain the desired effect. A relative change in
n′ of 5% is required to switch a Si inverse opal by its band gap width, resulting
in a major change in the density of states. Such large changes can be induced by
free-carrier generation [73] but are not achievable with Kerr switching.

The second requirement is the minimum time scale∆t over which the switching
process is turned on. In experiments where light pulses are trapped inside photonic
crystals, or where a non-adiabatic response is studied, a switching time scale on
the order of a few hundred femtoseconds is necessary. The time scale for switching
off is of less fundamental interest but more so for potential applications, since this
timescale determined how fast a phenomenon could be repeated.

The third requirement is that the absorption of probe light, gauged by n′′, should
be small in the switched sample. Induced absorption becomes particularly impor-
tant inside photonic crystal resonators where absorption-induced cavity losses can
limit the Q-factor. The fourth requirement concerns the spatial homogeneity of
the change ∆n′ in a sample. Homogeneity is particularly important in switching
the density of states in 3D photonic crystals. A large gradient in ∆n′ in the crystal
results in a highly chirped switched sample, which can no longer be considered a
photonic crystal.

All of these requirements also pertain to other applications of switched semi-
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conductors, such as in waveguiding [65, 74] albeit much relaxed. Therefore, we
expect the results from the present study also to be relevant for applications outside
photonic crystals.

2.2 Switching mechanisms

2.2.1 Introduction

Dynamical control over the optical properties of photonic crystal can be obtained
by controlling either the refractive index n′ + in′′ of the backbone material, or the
lattice spacing as a function of time.

Control over the lattice spacing has been demonstrated in weakly photonic
crystals by heating of a colloidal crystal that was embedded in a polymer gel [75]
and by mechanical compression of polymer photonic crystals [76]. While large
changes in directional Bragg diffraction have been demonstrated, the refractive
index contrast in elastic photonic materials is too small for a band gap to appears. In
high refractive index semiconductor photonic crystals, compressive sound waves
may be utilized to induce small changes in the lattice constant. The maximum
speed of such variations, however, is limited to the GHz range due to ultrasound
absorption.

An elegant method to tune the resonance frequency of photonic crystal cavities
that was proposed by Ref. [77] is to introduce small dielectric perturbations in
the near field of a photonic crystal cavity. Experimental demonstrations of such
nano-mechanical tuning were recently given by Refs. [78, 79].

Photonic crystals can also be tuned by liquid crystal infiltration, as was proposed
theoretically by [80, 81]. The ordering and alignment of birefringent materials such
as liquid crystals can be controlled by temperature [82, 83] or electric fields [84–
86]. With liquid crystals, large refractive index variations up to 10% are feasible.
Unfortunately, the tuning process is inherently slow; typical time scales in the
millisecond to microsecond range.

Large refractive index changes of the backbone can also be attained by heat
induced phase transitions in opal VO2 composites [87]. Ultrafast changes in the
Bragg peak of such structures with switching times of 350 fs have recently been
demonstrated [88]. The recovery to the unswitched phase is typically slower, of
the order of 100 µs [89]. Furthermore, since the switching process yields metallic
states, absorption in the switched structure is also an important issue.

Non-linear optical techniques incorporating the optical Kerr effect can produce
instantaneous changes in the index of refraction as well as ultrafast recovery at time
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2.2. Switching mechanisms

scales governed by the duration of the pump pulse. We estimate, however, that
the induced Kerr changes are typically an order of magnitude smaller than that
achieved via free-carrier absorption. Nevertheless, optical Kerr switching proves
to be complementary to free-carrier excitation for ultrafast switching studies.

2.2.2 Free carrier excitation

Several interesting switching experiments have recently been carried out in which
a free-carrier plasma was excites in the backbone of photonic structures. A first
switching experiment on a thin Bragg mirror of 5 pairs of layers was carried out
by Ref. [66]. Unfortunately, the switched transmission was measured at one probe
frequency only, leaving little room for physical interpretation. Pioneering switching
experiments were carried out by Leonard et al. in 2D Si photonic crystals [68]. The
carrier density generated in their experiment was sufficient to induce a clear shift
of the blue edge of the Bragg stop gap on ultrafast time scales. The experiments
revealed an important limitation: the linear absorption of the pump beam leads
to a spatial inhomogeneity in the degree of switching. Leonard et al. deduced
that only a layer of three unit cells near the sample surface was switched [68].
Switching experiments on a thick GaAs-AlAs Bragg mirror were carried out by
Ref. [67]. Unfortunately, the pump frequency was chosen in the linear absorption
regime of GaAs, limiting the switching homogeneity length `hom to only 1.1 pairs.
The measured absolute change in the transmission ∆T was less than 6.3×10−3%.
Similar inhomogeneity may also have played a role in interesting studies of silicon
infiltrated opaline crystals, where reflectivity changes were observed near a Bragg
peak at frequencies above the Si-band gap [90].

Switching 3D crystals such as inverse opals potentially offers the largest effect on
the density of states, especially near the band gap in the range of the second order
stop bands [54]. Experiments in the first order stop gap region were carried out by
Refs. [90] and [91], and switching experiments in the second order stop band region
by Ref. [92]. Unfortunately, the analysis of reflectivity and transmission spectra is
quite complicated in the second order region, where multiple Bragg wave coupling
must be taken into account to interpret the propagation of light through such
structures [32]. Simple two band models such as proposed by Refs [90] and [91]
neglect multiple Bragg wave coupling, and are thus not quite appropriate for 3D
photonic band gap crystals. Switching experiments on woodpile photonic band
gap crystals with where the band gap is expected in the range of first order Bragg
diffraction were recently demonstrated by us [93].
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2.2.3 Optimal conditions

In our switching experiments, an ultrashort laser pulse optically generates a free-
carrier plasma with a density Neh. The dielectric response of semiconductors in
which free carriers are excited is well described by the Drude model [3, 94]. Under
the assumptions given in Appendix A, the complex refractive index of semicon-
ductors in which a free-carrier plasma is generated is approximated by:

n = n′ + in′′ =
√
ε(ω) '

√
εBG(ω) −

(ωp

ω

)2(
1 −

i
ωτD

)
, (2.1)

where ω is the frequency of the probe light, εBG the dielectric constant of the bulk
material, τD the momentum relaxation time of the carriers, and ωp the plasma
frequency. The plasma frequency is proportional to the generated carrier density,
and is defined as ωp ≡ Nehe2/ε0m∗opt , where m∗opt is the optical effective mass of the
carriers.
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Figure 2.1: Real part of the refractive index n′, normalized to n′BG (top) and attenuation index n′′/n′

(bottom) of a semiconductor after excitation of a free-carrier plasma. Data is plotted as a function
of normalized plasma frequency ωp/ωn′BG. The curves correspond to damping parameters 1/ωτD= 1
(solid) 1/ωτD= 0.1 (dashed), and 1/ωτD= 0.01 (dotted). The vertical dashed line indicates optimum
pumping condition for poly-Si.

Fig. 2.1 shows the Drude response of a semiconductor in which free carriers
have been generated. The upper panel shows the real part of the refractive index,
normalized to the real part of the bulk refractive index nBG=

√
εBG, as a function of
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2.2. Switching mechanisms

the scaled plasma frequencyωp/
√
εBGω. The lower panel shows the corresponding

imaginary part of the refractive index, relative to the real part n′′/n′. Curves are
plotted for three different damping parameters.

At the critical carrier density ω∗p ≡ nBGω, we observe that all curves tend to the
abscissa. At the critical density, ε is purely imaginary, and thus the imaginary part
of the refractive index is equal to the real part (see lower panel), irrespective of the
damping parameter. Experimentally, this corresponds to a situation where probe
light is absorbed within a single optical cycle.

The induced absorption can be strongly reduced by choosing a plasma fre-
quency below the ω∗p. Here we choose a probe wavelength λ= 1.5 µm. We take a
damping parameter 1/ωτD= 0.1, using a relaxation time τD= 10 fs, which is typi-
cal for the poly-Si backbone material of photonic crystals discussed in Chapter 6
and 7. Optimum switching conditions are found at a plasma frequency that is
about ωp= 0.3ω∗p, indicated by the vertical dashed line in Fig. 2.1. The change
in real part of the refractive index at this frequency is about -5% (n′/n′BG ≈ 0.95),
while the induced absorption remains limited to n′′/n′= 0.005. In single crystalline
materials, the damping parameter is typically ten times smaller: 1/ωτD= 0.01 [73],
and plasma frequencies up to ωp= 0.7ω∗p are feasible. The corresponding refractive
index change would increase to -30% (n′/n′BG ≈ 0.70), while the induced absorption
remains unchanged (n′′/n′= 0.005).

In summary, we find good experimental conditions for free-carrier plasma fre-
quencies aroundωp= 0.3nBGω. Large changes in refractive index are feasible, while
the induced absorption remains limited.
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Chapter 3
Spatial homogeneity of switched
photonic crystals and of bulk
semiconductors

We investigate the spatial homogeneity of optically generated free-carrier plasmas in semi-
conductors. We discuss a nonlinear absorption model that takes into account both linear
and two-photon absorption processes. From this model, we define a homogeneity length
scale to quantify homogeneous switching conditions and we derive optimum pumping con-
ditions for Si and GaAs. In particular, we trace constant homogeneity lengths in a general
parameter-diagram that pertains to any switchable material, including all semiconductors.
We discuss the role of disorder-induced diffusion of the pump beam in photonic crystals.

3.1 Introduction

In homogeneous optical switching experiments, several important length scales
should be taken into account. We consider the homogeneity of the pump light by
introducing homogeneity length `hom that gauges the size of the homogeneously
changed volume inside the sample. The following criterium in the stop band holds
for any switching experiment:

`hom > `probe. (3.1)

In photonic crystals, at probe frequencies in the stop band, the penetration dept of
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Spatial homogeneity of switched photonic crystals and of bulk semiconductors

probe light is limited by the Bragg length (`probe = LB). The homogeneity length
should therefore exceed the Bragg length:

`hom > LB, (3.2)

to avoid chirped switched samples whose reflectivity properties are difficult to
interpret [68]. An optimum effect of switching on the photonic properties of a
crystal is therefore only obtained if the homogeneity length exceeds the Bragg
length `hom > LB.

Here, we discuss the homogeneity of optically switched semiconductors and
switched photonic crystals. In our analysis, we concentrate on silicon and GaAs.
Examples are given for light in the telecom band atωtele/c= 6450 cm−1 (λ= 1550 nm),
but can easily be generalized to other frequencies. We set a minimum volume of 5
unit cells cubed in which the change ∆n′ must remain within 10% of its maximum
value (see Chapter 2 ). This homogeneity requirement holds for both the lateral
directions x and y, as well as for the z-direction defined in Fig. 3.1. Even in such a
small crystal volume, the local density of states already shows a significant decrease
for frequencies that lie in the band gap [95]. The typical unit cell size of silicon
inverse opal photonic crystals with a band gap near ωtele is a= 1.2 µm, therefore the
homogeneously switched area must extend at least 6 µm in all three dimensions.

Y

Y

.

Z

X

Figure 3.1: Schematic image of a sample: The z-axis is defined to be pointing into the sample, the x-
and y-directions are the lateral directions. In the figure, the front face of the sample displays a SEM
image of a dry etched Si 2D photonic crystal with a slightly paralellogrammic latice (lattice angle 85
deg). The lattice parameter a is equal to 750 nm. SEM courtesy of L.Woldering.
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3.2. Optical properties of silicon

3.2 Optical properties of silicon

To analyze the switching homogeneity in the z-direction, we briefly consider how
pump light is absorbed in semiconductors. At low pump irradiances I, the absorp-
tion of light in semiconductors is proportional to the irradiance: αI. The absorption
coefficient α tends to zero for photon energies ~ωpump below the electronic band gap
energy Egap, see Fig. 3.2 for silicon. With increasing pumping irradiance, nonlinear
two-photon absorption starts to play an important role. For two-photon absorption,
the absorption is proportional to βI2 where β is the two-photon absorption coeffi-
cient. This coefficient is expected to vanish for ~ωpump > Egap/2. Fig. 3.2 displays
the frequency dependence of the linear and two-photon absorption coefficients of
silicon. The data were obtained from Refs. [96–99]. We have performed z-scan
measurements [100] to obtain the two-photon absorption coefficient β at two addi-
tional wavelengths (see Appendix C). For bulk silicon at ωpump= 5000 cm−1, β was
measured to be 0.20±0.05 cmGW−1. At ωpump= 6250 cm−1, we obtained β= 0.80±0.1
cmGW−1, in good agreement with the value β= 0.88±0.13 cmGW−1 at ωpump= 6494
cm−1 from Ref. [97]. Our measurements confirm that β tends to zero for photon en-
ergies approaching Egap/2. Both the linear and the nonlinear absorption coefficient
can thus be controlled by varying the pump frequency.

3.3 Homogeneity of switched semiconductors

3.3.1 Theoretical model

We now present a model for the carrier density depth profile Neh(z) caused by
absorption of pump light. The absorbed irradiance is described by the nonlinear
differential equation

dI(z)
dz
= −[αI(z) + βI2(z)], (3.3)

which we have solved by implicit integration [101]. The resulting expression
describing the irradiance depth profile is

I(z) =
I0e−αz

1 + (βI0/α)(1 − e−αz)
, (3.4)

where I0 is the irradiance at the interface. The resulting carrier density profile
Neh(z) is related to the irradiance depth profile I(z) as

Neh(z) =
I(z)τpump

~ωpump

[
α +

1
2
βI(z)

]
, (3.5)

31



Spatial homogeneity of switched photonic crystals and of bulk semiconductors

5000 10000 15000
0

1000

2000

0

5

2000 1000

α
(c
m
-1
)

β
(c
m
G
W

-1
)

λ

α
β

Figure 3.2: Absorption coefficients α and β of Si versus pump frequency. The dashed vertical
lines correspond to photon energies of Egap/2 and Egap. The open squares indicate linear absorption
coefficients taken from Ref. [96] (right-hand scale). The solid triangles indicate the two-photon
absorption coefficients that we have determined by z-scan measurements (left-hand scale). The left-
filled triangles indicate the values from Ref. [97], the right-filled triangles are data from Ref. [98], and
the open triangle data from Ref. [99]

where, for practical purposes, we have assumed a square intensity envelope1 of the
pump pulse with width τpump and ~ωpump is the energy of the pump photons. The
factor 1/2 for two-photon absorption indicates that two photons must be absorbed
to generate one electron-hole pair. Substitution of Eq. 3.4 into Eq. 3.5 allows us to
calculate the carrier density profile for any given combination of α, β and I0.

We now consider the situation where a carrier density Neh(0)= N0 is excited at
the sample interface. To investigate the relation between the absorption coefficients
and pumping homogeneity of the carrier density profile, we solve Eq. 3.4, and find
the required pump irradiance to generate a carrier density N0 to be

I0 = −
τpumpα −

√
τ2

pumpα2 + 2τpumpβN0~ωpump

τpumpβ
. (3.6)

Since the maximum gradient in carrier profile appears at the interface, we consider
1The maximum homogeneity length for a Gaussian intensity envelope was found to be within 7%

of the result for square pulses shown here.
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the z-derivative of the carrier density profile in Eq. 3.5, and use Eq. 3.3 to obtain

1
N0

(
dNeh

dz

)
z=0

=
(α + βI0)(−αI0 − βI2

0)

αI0 +
1
2βI

2
0

. (3.7)

We insert the irradiance found in Eq. 3.6 into Eq. 3.7 and find for the slope of the
carrier profile:

1
N0

(
dNeh

dz

)
z=0

= −
2(τpumpα2 + 2βN0~ωpump)

τpumpα +
√
τpump(τpumpα2 + 2βN0~ωpump)

. (3.8)

In order to quantify the homogeneity of a switched sample, we define the ho-
mogeneity length `hom within which the carrier density remains within 10% of its
surface value:

`hom ≡ −0.1 ×
[

1
N0

(
dNeh(z)

dz

)
z=0

]−1

= 0.1 ×
τpumpα +

√
τpump(τpumpα2 + 2βN0~ωpump)

2(τpumpα2 + 2βN0~ωpump)
.

(3.9)
Because the homogeneity length is directly related to the maximum gradient in

the carrier depth profile, it is a helpful parameter in quantifying the homogeneity of
switched semiconductors. Since for most applications the switching homogeneity
is important, the homogeneity length should be much larger than the size of the
switched sample `hom > L. To illustrate the homogeneity length, three carrier
density depth profiles are shown in Fig. 3.3 for which β is chosen to be 2 cmGW−1,
and α is varied from zero (dotted curve) to 400 cm−1 (dashed curve) to 800 cm−1

(solid curve). For each case, I0 is chosen such that the carrier density reaches
0.9×1020 cm−3 at the sample interface, corresponding to a 5% change in n′ at ωtele

in silicon. On the right y-axis the corresponding real part of the refractive index n′

for silicon at ωtele is shown. The pump frequency was assumed to be 5000 cm−1.
A closer look at the three depth profiles in Fig. 3.3 shows that for α= 0 cm−1,
the homogeneity length is 1.0 µm. As α increases to 400 cm−1, the homogeneity
length increases to 1.2 µm. As α increase further to 800 cm−1, the homogeneity
length decreases again to 1.0 µm. The surprising occurrence of a maximum in the
homogeneity length can be explained with the aid of Eq. 3.5. For small α (α � I0β),
the absorption is dominated by two-photon absorption. If α increases, the pump
irradiance I0 needed to obtain the surface carrier density decreases, reducing the
slope of the irradiance profile at the interface, determined by the exponent−(α+I0β).
This leads to an increase in `hom. If α increases further to the regime where the
absorption is dominated by linear absorption (α � I0β), any further increase in
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Spatial homogeneity of switched photonic crystals and of bulk semiconductors

α will result in a decrease of the homogeneity length. In the region between the
two extremes, the homogeneity length thus attains a maximum value. This means
that simply choosing two-photon (or perhaps even higher-photon) absorption over
linear absorption is not always sufficient to ensure an optimal homogeneity.
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Figure 3.3: Calculated carrier density depth profile Neh(z) for constant β= 2 cmGW−1 and three
different linear absorption coefficients: α= 0 (solid curve), α= 400 cm−1 (dashed curve) and α= 800
cm−1 (dotted curve). With Neh at the interface kept constant at 0.9×1020 cm−3, the necessary pump
irradiance I0 is calculated, assuming that τpump= 120 fs and rpump= 75 µm. The corresponding carrier
density depth profile was obtained with Eq. 3.4. The homogeneity length `hom is shown for α= 0. The
right-hand scale shows the resulting refractive index n′ for ω= 6450 cm−1 light in Si.

3.3.2 Homogeneity plot

We propose a homogeneity plot, which is a general parameter diagram in (α,β)-
space, to obtain further insight in the homogeneity. First we choose a fixed electron
density at the interface, for instance N0= 0.9×1020 cm−3. The corresponding constant
homogeneity length contours are then deduced from our absorption model, and
visualized in a plane spanned by linear and two-photon absorption coefficients,
see Fig. 3.4. The three depth profiles shown in Fig. 3.3 correspond to positions a, b,
and c in Fig. 3.4. It is seen that point b lies furthest below the `hom= 1 µm contour, as
expected from since this condition has the largest homogeneity length. To obtain a
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3.3. Homogeneity of switched semiconductors

certain minimum homogeneity, the absorption coefficients must remain below the
curve corresponding to the required homogeneity length. An analytical expression
for the curves was obtained by solving Eq. 3.9 for a fixed value of `hom:

β(α) =
1 + 4`homα − 8`2homα

2 + τpump
√

1 + 8`homα

16`2hom~ωpumpN0
. (3.10)

From Fig. 3.4, we also obtain the homogeneity length that can be obtained for a
semiconductor at a certain pump frequency. The absorption coefficients for silicon
at various frequencies taken from Fig. 3.2 are plotted in the plane in Fig. 3.4.
The homogeneity plot therefore demonstrates how pumping homogeneity can
be maximized by choosing the appropriate pump frequency. Generally, smaller
absorption coefficients lead to an increased homogeneity. This increase comes at the
price of a higher necessary pump irradiance I0. From Fig. 3.4 we conclude that the
most homogeneous switch for silicon can be achieved for ωpump= 5000 cm−1 where
the Si-data intersects the abscissa. For this pump frequency, the homogeneity length
is 3.0µm. For comparison: ifωpump is equal to 12500 cm−1 orλ= 800 nm, the standard
wavelength of Titanium Sapphire lasers that are frequently used [67, 68, 90], the
homogeneity length is only 0.6 µm. The necessary pump irradiance remains below
the maximum available pump energy of our laser system Imax. Our generalized
homogeneity plot is valid for all materials and allows us to find optimum switching
conditions.

We have also constructed a homogeneity plot for GaAs, see Figs. 3.5A and B.
The optical effective mass of free carriers in GaAs m∗opt= 0.058 is 2.6 times smaller
than for Si [102, 103]. Therefore, the carrier density required for a 5% change
in the refractive index in GaAs is 2.6 times lower than in silicon: N0= 3.5×1019

cm−3. From the resulting plots in Fig. 3.5A and B we find that the homogeneity
requirement on the two-photon absorption coefficient β in GaAs is somewhat re-
laxed; homogeneous switching can be achieved at larger values for β than in Si.
However, the two-photon absorption coefficients for GaAs are much larger than
in Si, limiting the range of pump frequencies that can be used. In Fig. 3.5, the
filled triangles are absorption coefficients for GaAs from Refs [97, 102]. The three
lowermost data points were obtained by us through z-scan experiments at λ= 1.63
µm (open squares) and λ= 1.72 µm (filled square) respectively (see Appendix C).
At pump frequencies above the electronic band gap at ωpump= 12500 cm−1, both
α and β strongly increase, limiting the homogeneity length to less than 0.2 µm
(see Fig. 3.5B). Surprisingly, pumping at λ= 1.06 µm in GaAs, as was proposed by
Ref. [54] to optimize homogeneity, yields a short homogeneity length `hom= 0.41
µm. This immediately shows, that GaAs at this pump frequency cannot be used
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Figure 3.4: Homogeneity plot for Si. Contours of constant `hom are plotted in the (α, β) plane,
defining regions in which homogeneous switching can be achieved. The generated carrier density
is kept constant at Neh(0)= 0.9×1020 cm−3, enough for a 5% change in n′ in Si. The solid curve
corresponds to `hom= 3.0 µm, the dashed curve to `hom= 1.0 µm and the dotted curve to `hom= 0.63 µm
for bulk silicon. The open squares connected by the gray arrow are linear and two-photon coefficients
for Si obtained from Fig. 3.2. The open circles a, b and c correspond to the depth profiles Neh(z) plotted
in Fig. 3.3. Calculation parameters: τpump= 140 fs and ωpump= 5000 cm−1.

in homogeneous switching experiments. From this analysis we learn that in GaAs
the pumping frequencies must be reduced to half the band gap energy, where the
two-photon absorption coefficient attains the lowest value.

We now want to derive the maximum homogeneous change in refractive index
that can be obtained in Si. We therefore plot several equi-carrier density curves
(described by Eq. 3.10) that correspond to a particular fixed homogeneity length.
We choose a homogeneity length of 1.5 µm, since inside a typical photonic crystal
with 25% filling fraction, the homogeneity length will be four times larger (6 µm),
thus fulfilling our homogeneity requirement. Fig. 3.6 displays contours for two
different carrier densities N0= 1×1020 cm−3 and 2.4×1020 cm−3.

In addition to the homogeneity contours, the two lowest curves in Fig. 3.6 indicate
the minimum absorption coefficients for which a sufficiently large carrier density
can be generated given the maximum available irradiance Imax= 1 TWcm−2 (see
Chapter 4). These curves are described by:
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Figure 3.5: Homogeneity plot for GaAs in the two-photon absorption regime (A). A logarithmic
ordinate was used in (B) to visualize the homogeneity at pump frequencies in both the linear as well
as the two-photon absorption regime of GaAs in a single plot. Contours of constant `hom are plotted
in the (α, β) plane, defining regions in which homogeneous switching can be achieved. The generated
carrier density is kept constant at Neh(0)= 0.35×1020 cm−3, enough for a 5% change in n′ in GaAs.
The solid curve correspond to `hom= 1.7 µm, the dashed curve to `hom= 0.61 µm, the dotted curves to
`hom= 0.41 µm, and the dash-dotted curve to `hom= 0.18 µm for bulk GaAs. Calculation parameters:
τpump= 140 fs and ωpump= 5814 cm−1. The symbols are linear and two-photon coefficients for GaAs
for pump wavelengths λ= 0.8 µm (closed circle),λ= 1.06 µm, λ= 1.27 µm, and λ= 1.54 µm (filled
triangles) obtained from Refs. [97, 102, 104]. The three lowest data points were obtained by us
through z-scan experiments at λ= 1.63 µm (open squares) and λ= 1.72 µm (filled square).
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Figure 3.6: Carrier density contours for a particular bulk homogeneity chosen as `hom= 1.5 µm. The
contours correspond to two different values for N0: the dashed lines to N0= 1.0×1020 cm−3, and the
solid lines to N0= 2.4×1020 cm−3. The upper one of each pair of curves corresponds to `hom= 1.5 µm.
The lower curve of each pair indicates the minimum absorption coefficients for which the given Neh(0)
can be obtained without exceeding the maximum irradiance Imax= 1 TWcm−2. The closed squares
connected by the dotted curve are the α and β coefficients for Si obtained from Fig. 3.2. Pumping
parameters: τpump= 140 fs, rpump= 75 µm and ωpump= 5000 cm−1.

β =
2(~ωpumpN0 − τpumpImaxα)

τpumpI2
max

, (3.11)

which was obtained by solving Eq. 3.5 for a fixed carrier density N0. For feasible
switching experiments, the absorption coefficients must be in the shaded area to
the right of the intersection of the two curves. As the carrier density and thus
the refractive index change increases, the constant `hom line moves towards lower
absorption coefficients, while the Imax line moves towards higher values. As an
example: for a carrier density of 2.4×1020 cm−3, homogeneous switching can only
be achieved for absorption coefficients within the shaded area in Fig. 3.6. It is seen
that this area does not overlap with the trajectory of silicon parameters. Therefore,
this carrier density is not achievable in Si for `hom= 1.5 µm. With decreasing carrier
density, the range between the curves will overlap the silicon parameter trajectory
at some point. Such an intersection determines the upper limit to the carrier density
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(given `hom= 1.5 µm) as well as the pump frequency that pertains to the relevant
(α,β)-point. For bulk silicon, this intersection is calculated to occur at Neh= 2.3×1020

cm−3. The corresponding maximum homogeneous change in refractive index at
ωtele is as large as 13%. We note that while such large refractive index changes can
be achieved in bulk Si [73], the poly-crystalline samples discussed in Chapter 6
and refinvopals, the maximum achievable carrier density, is limited by the damage
threshold to ≈5×1019 cm−3.

The condition of a maximum irradiance Imax can be relaxed by choosing a
smaller pump spot radius rpump. The assumed pump radius of 75 µm provides a
lateral homogeneity which is large compared to the homogeneity requirement (see
Section 4.3), therefore we can choose a smaller rpump while maintaining sufficient
lateral homogeneity. A higher pump irradiance would allow homogeneous switch-
ing experiments at even lower absorption coefficients, allowing larger changes of
the refractive index. However, we must keep in mind that the probe absorption
length `probe is inversely proportional to the induced carrier density, see Eq. A.9.
For a refractive index change of 13%, we predict the probe absorption length inside
a photonic crystal to drop to `probe= 30 µm, which may be sufficient to meet our
third requirement for switching experiments in photonic crystals. At higher carrier
densities however, the carrier absorption length will become too small to meet this
requirement.

3.4 Switching homogeneity in real photonic crystals

The analysis in the previous section was done for bulk semiconductor materials.
To obtain the homogeneity length in photonic crystals, the bulk absorption length
is divided by the semiconductor filling fraction Φ. In case of a 5% switch of the
refractive index in a silicon photonic crystal with Φ= 25% at ωpump= 5000 cm−1,
the homogeneity length thus increases from 3.0 µm to 12 µm, which is twice the
homogeneity requirement of 6 µm. For a higher pump frequency of 12500 cm−1,
we find a homogeneity length of 2.3 µm, which is too low. This illustrates that
the homogeneity required for switching of the density of states in silicon photonic
crystals can only be achieved with nonlinear absorption processes.

In the analysis so far, the extinction of pump light due to random scattering
inside the photonic crystals was neglected. We now discuss how to incorporate
inevitable scattering in photonic samples. Scattering is quantified by the mean free
path `m f p: the characteristic length over which a coherent beam becomes diffuse.
The homogeneity length of light inside a photonic crystal is related to `m f p and `abs
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as

`hom = 0.1 ×
[ 1
`abs
+

1
`m f p

]−1

. (3.12)

In the limit of weak scattering, where `m f p � `abs, discussed before in Eq. 3.12
reduces to `hom= 0.1×`abs (see Eq. 3.9). In the limit of strong scattering, where
`m f p � `abs, the homogeneity length becomes `hom= 0.1×`m f p. As opposed to the
adverse effect of scattering on the homogeneity in the z-direction, scattering will
generally be favorable for lateral homogeneity, as pump light which is removed
from the coherent pump beam is be scattered laterally.

Recently, our group has developed a quantitative model of scattering inside
photonic crystals [17]. One of the main consequences of the model to switching is
that the mean free path for pump light decreases with pump frequency squared
ω−2

pump. The absolute value of the mean free path depends not only on frequency,
but also on many properties of the crystal such as the unit cell size, the amount
of disorder and the refractive index contrast. As an example, we apply the model
to a silicon inverse opal photonic crystal with a lattice parameter of a= 1240 nm,
corresponding to a band gap frequency near ωtele. We assume combined size poly
dispersity and lattice displacements of 2% (which is beyond the current state of
the art). From the model of Ref. [17], we obtain a mean free path of 5.3 unit cells
for pump light at ωpump= 12500 cm−1. The corresponding homogeneity length,
dominated by `m f p, would thus be 0.5 unit cells, well below our homogeneity
requirement of 5 unit cells. For a 2.5 times lower pump frequency of 5000 cm−1, the
model predicts a (2.5)2 times larger mean free path of `m f p= 33.3 unit cells inside the
crystal. In Eq. 3.12, we combine `m f p with the earlier obtained absorption length
`abs= 116 µm (= 93 unit cells), and we obtain a homogeneity length of 0.1×[1/93 +
1/33]−1= 2.4 unit cells. This result points out that even at pump frequencies near
the two-photon absorption edge of silicon, the homogeneity requirement of 5 unit
cells can not be met in silicon inverse opals with a lattice parameter of a= 1240 nm.

The scattering model predicts that decreasing the unit cell size will result in
higher homogeneity, as this will reduce the relative pump frequency aωpump. There-
fore, we consider silicon inverse opals with a reduced lattice parameter of a= 900
nm, corresponding to a band gap near 8900 cm−1, just below the absorption edge of
silicon. The scattering model predicts a larger mean free path for pump light with
a frequency of 5000 cm−1 of `m f p= 63 unit cells. Using the absorption length of 116
µm (= 129 unit cells), we obtain homogeneity length of: `hom= 0.1×[1/129+1/63]−1=

4.2 unit cells, close to our homogeneity requirement of 5 unit cells. For smaller re-
fractive index changes of ≈1-2 %, relevant to our experiments in the thin film opals
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in Chapter 7, we estimate that our sample only marginally fulfills our homogene-
ity criterium. Since the homogeneity length is larger than the sample thickness,
however (`hom > L), we still expect homogeneous changes.

Major improvements in switching homogeneity can be made by studying
diamond-like structures [25, 51, 105], as the lattice parameter can be as low as
600 nm for a band gap near ωtele in such crystals. In such structures, the scattering
mean free path remains unchanged, apart from a constant prefactor of order unity
that depends on the shape of the unit cell. We predict that reduced lattice parame-
ters will decrease the mean free path sufficiently to allow homogeneous photonic
density of states switching experiments. Homogeneous switching experiments on
woodpile photonic band gap crystals are presented in Chapter 6.

3.5 Conclusions

We have discussed a nonlinear absorption model to describe the spatial homo-
geneity of optically generated electron-hole plasmas in semiconductors. We have
introduced a general homogeneity diagram, which directly relates linear and two-
photon absorption coefficients to the maximum homogeneity that can be achieved
for any semiconductor. From such a diagram, we conclude that for density of
states switching in silicon photonic crystals, the optimum carrier density is about
1020 cm−3. To obtain the required homogeneity, the absorption coefficients must
be minimized, by a judicious choice of pump frequency. Due to peak irradiance
limitations the lowest pump frequency that can be chosen for Si is around 5000
cm−1. For GaAs, the pump frequency must be chosen around 5814 cm−1.

We have discussed the effect of scattering in photonic crystals on the pumping
homogeneity. The homogeneity of switched photonic crystals turns out to be
limited by scattering. We conclude that the homogeneity condition can barely be
met in silicon inverse opals. We predict that in diamond structures the relative
pump frequency will be sufficiently small to allow homogeneous switching, even
of the density of states.
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Chapter 4
Instrumentation

We describe our time resolved spectroscopy setup which can be tuned over broad frequency
ranges. We demonstrate a new data acquisition method that allows for sensitive pump
probe measurements, even while the laser output fluctuates. We show switched reflectivity
data of a bulk silicon test sample.

4.1 Pump probe setup

The time-resolved optical measurements on photonic crystals were done with a
pump-probe method [106] using a dedicated two-color pump-probe setup. Our
laser system provides high power pulses at two independently tunable frequencies,
allowing us to adjust the pump frequency to optimize the spatial homogeneity and
the probe frequency to scan across broad photonic gaps. The setup is based on a
regeneratively amplified Titanium Sapphire laser that emits short 120 fs pulses at
λ= 800 nm with a pulse energy of 1 mJ at a repetition rate of 1 kHz (Spectra Physics
Hurricane). This laser drives two optical parametric amplifiers (OPA, Topas 800-
fs) shown schematically in Fig. 4.1, that serve as pump and probe. The output
frequencies of the OPAs are computer controlled, and can be continuously tuned
between 3850 and 21050 cm−1. The delay between pump- and probe pulse was set
by a 40 cm long optical delay line with a time resolution of ∆t= 10 fs. Since the
delay time is also computer controlled, we can scan the reflectivity spectrum as a
function of frequency at a chosen time delay after the pump pulse.

The excitation of carriers at pump frequencies near the two-photon absorption
edge of semiconductors requires a high pump irradiance in the range of 10-300
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Figure 4.1: Schematic drawing of the setup. Pulses (τ= 120 fs, ω= 12500 cm−1, E= 1 mJ) from a
regeneratively amplified Ti:Saph amplifier (not shown) drive two OPAs. The output frequency of both
OPAs is computer controlled, and tunable from 3850 to 21050 cm−1. The pump pulse passes through
an optical delay line with minimum time step of 10 fs. Both pump and probe beam pass through a
chopper wheel that is synchronized to the laser output (see Fig. 4.3). Both pump and probe beam are
focussed on the same spot on the sample. Two InGaAs photodiodes are used to monitor the output
variation of the OPAs as well as the reflected signal. The reflectivity from the sample is measured
by a third InGaAs photodiode. Three boxcar averagers are used to hold the short output pulses of
each detector for 1 ms, allowing simultaneous acquisition of separate pulse events of all three detector
channels.

GWcm−2, depending on the material and the pump frequency chosen. Since both
OPAs have a conversion efficiency that exceeds 30%, a pulse energy Epulse of at least
20 µJ is available over the whole frequency range. The output of our OPAs consists
of τp= 140±10 fs (measured at ω= 7690 cm−1) pulses with a spectral shape of the
output spectrum that was measured to be Gaussian with a frequency independent
linewidth ∆ν/ν= 1.44±0.05%. We deduce the time-bandwidth product to be τp∆ν=

0.47±0.05, in good agreement with the Fourier limit for Gaussian pulses (τp∆ν=

0.44 [107]). We take a Gaussian intensity envelope of the pulse:
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P(t) = Pmaxe−2
(

t
τp

)2

, (4.1)

where Pmax = (Epulse/τp)(
√

2/π) is the peak power. Experimentally, we obtain the
Pmax inside the sample by subtracting the pump reflectivity at the sample interface:

Pmax = Pext(1 − R), (4.2)

where Pext it the external pump power, and R is the measured reflectivity of the
pump beam at the sample interface at ωpump. Both pump and probe beams were
focused onto the sample at a small numerical aperture NA= 0.02. The pump beam
profile was characterized by a knife edge scan shown in Fig 4.2. The resulting curve
corresponds well to the analytical result for a Gaussian beam profile with a width
wpump= 113±5 µm. We therefore describe the spatial irradiance distribution in the
focus with a Gaussian:

I(x, y) = I0e
−2 x2+y2

w2
pump , (4.3)

where I0 = (Pmax/w2
pump)(2/π) is the peak irradiance in the center of the focus. Even

with a large pump focus of wpump= 113±5 µm, the maximum peak irradiance Imax

that can be obtained in our setup still exceeds exceeds 1 TWcm−2. This large excess
irradiance indicates that it is feasible to switch an even larger part of a sample, or
to use less powerful lasers, which is important to allow for possible applications.

The probe beam was focussed to a Gaussian spot of typically wprobe= 20±5µm.
Since the probe focus is much smaller than the pump focus we provide a good
lateral homogeneity. In all experiments, we explicitly ensured that only the central
flat part of the pump focus is probed by testing with a Si wafer.

4.2 Data acquisition method

There are several important issues that limit the speed and accuracy of our pump
probe setup. First of all, since our experiments intrinsically depend in the mag-
nitude of the irradiance, we are sensitive to pulse-to-pulse variations of our laser.
Our OPAs show typical variations of 7% in the worst case near the degeneracy
point near λ= 1600 nm, and are stable to 2% near λ= 1300 nm. To improve the
signal-to-noise to better than the laser stability, it is thus important to probe indi-
vidual pulse events so that pulse selection can be performed. Secondly, since our
laser runs at a low repetition rate of 1 kHz, long integration times are required to
sufficiently reduce the error in probe reflectivity signals. Thirdly, scattered light
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Figure 4.2: Spatial characterization of the pump beam at ωpump= 6450 cm−1 by a knife-edge
measurement at the focus of a f= 150 mm achromatic lens. A razor blade was scanned through
the focus. The corresponding transmission was measured with a powermeter, and normalized to
the maximum transmission (symbols). The data is in good agreement with the analytical result
T(x)=(1-er f (x/b))/2 for a Gaussian beam profile, where er f represents the error function. The width
parameter b= 80 µm yields a Gaussian width wpump=

√
2b= 113 µm.

from the intense pump pulses contributes to the background signal of our probe
detector. Often, the background level was found to be larger than the reflectivity
changes of the samples under study. To resolve these issues, we have developed
a versatile measurement scheme to subtract the pump background from the probe
reflectance signal, and to compensate for pulse-to-pulse variations in the output of
our laser.

The irradiance of each pump and probe pulse is monitored by two InGaAs
photodiodes and the reflectivity signal is measured by a third InGaAs photodiode,
shown as black squares in Fig. 4.1. Three boxcar averagers are used to hold the
short output pulses of each detector for 1 ms, allowing simultaneous acquisition
of separate pulse events of all three detector channels by a data acquisition card.
Both pump and probe beam pass through a chopper whose frequency is synchro-
nized to the repetition rate f= 1 kHz of the laser. The alignment of the two beams
on the chopper blade is such that each millisecond, pump and probe beam are
blocked or unblocked in a different permutation, see Fig. 4.3. In one sequence of
four consecutive laser pulses, both pumped reflectivity (a), linear reflectivity (d),
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a

c d

b
pump probe

Figure 4.3: Schematic drawing illustrating the alignment of the pump- en probe beams onto the
chopper blade. The rotation of the chopper wheel is synchronized to the laser output. One full
revolution of the chopper blade takes 8 ms, such that that for each pulse event, pump and probe
beam are blocked or unblocked in a different permutation. In one sequence of four consecutive
laser pulses, both excited reflectivity (a), linear reflectivity (d), and two background measurements
(b,c) are collected. In this flexible measurement scheme, detector signals for each pulse event are
collected, allowing various data processing routines such as automatic background substraction and
the selection of pulses within a certain pump energy range after the experiment.

and two background measurements (b,c) are collected. The detector signals for
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Figure 4.4: Time traces of the boxcar output signals for probe monitor, pump monitor, and probe
reflectance. The sample was a GaAs/AlAs distributed Bragg reflector, the experimental conditions
were the same as in the experiment in Fig. 5.3A. The pump irradiance was ≈100 GWcm−2 the probe
frequency was ω= 6700 cm−1. The switched reflectivity is roughly 10% lower than the unswitched
reflectivity. Each datapoint in the plot corresponds to a single pulse event. The letters a, b, c, and d
correspond to the chopper position during each event (see Fig. 4.3).

At each setting of the delay stage and both OPAs, all detector signals from 4x250
pulse events were collected and stored. The probe reflectance signal for 4x250 pulse
events of a typical experiment is plotted versus probe monitor signal in Figure 4.5.
Both signals show a variation as a result of the pulse-to-pulse variations of the laser.
The datapoints constitute two separate lines whose slopes correspond to the un-
pumped and pumped reflectance of the sample. To exemplify the noise reduction
of our method, we have chosen a data set during which the alignment of the pump
laser was not optimized and pulse-to-pulse variations of the probe signal were
larger than normal, amounting to a relative standard deviation σSD,probe= 13%. The
corresponding standard error in the mean detector signal is δR/R=σSD,probe/

√
N=

13%/
√

250= 0.8%, which is relatively large compared to the effects that we wish to
study. We therefore use an automated data processing routine to process the probe
reflectance and probe monitor data to increase the signal-to-noise ratio. From the
entire data set, the averages of the background levels (b) and (c) were determined,
and subtracted from the pumped (a) and unpumped (d) reflectance data respec-
tively. The resulting background-subtracted reflectance signal was divided by the
corresponding monitor signal to compensate for intensity variations in the output
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of the laser. Through this procedure, the RMS variation in the unpumped reflec-
tivity that was found from the data in Fig. 4.5 was strongly reduced to σSD,probe=

1.1%. The resulting standard error in the probe reflectivity was improved tenfold
to δR/R= 0.07%, even if the laser is not running optimally. Our scheme allows a
sensitive measurement of the reflectivity and of small reflectivity changes, while
maintaining an acceptable measurement time of about 1 second per frequency-
delay setting. We attribute the remaining noise to uncorrelated electronic noise in
the detection system.

0,0 0,1 0,2 0,3
0,0

0,1

0,2

0,3

Figure 4.5: Reflectance signal versus monitor date for 1000 pulse events of the data set shown in
Fig. 4.4 displayed as a scatter plot. The 250 unpumped reflectivity datapoints (d) constitute a line,
indicating that that variations in monitor and reflectance signal are strongly correlated. The slope of
the line is proportional to the reflectivity of the sample. The pumped datapoints (a) form a line with
a reduced slope, due to the reflectivity decrease of about δR/R= 10% in the switched sample. Both
background data sets (b) and (c) tend to the origin of the plot as it should in absence of offsets. Note
that the small offset in the signals is automatically removed in the data processing routine.

Pulse to pulse variations in the pump energy are a more subtle issue, since
such fluctuations will often propagate in a nonlinear, and sometimes unpredictable
way in the reflectivity change ∆R/R of the sample. The open circles in Fig. 4.5
correspond to the switched reflectance data. The slope of the line that is formed
by these data points is reduced by about 10% compared to the unswitched data
(closed squares). The corresponding to a reflectivity decrease is equal to ∆R/R=
10%. We also observe that the line is about twice as broad as the line corresponding
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to the unpumped data. We attribute the broadening to pulse to pulse variations of
the pump.

In the example in Fig. 4.5 the standard deviation of the pump pulse energy
σSD,pump= 12%, from which we deduce a standard error in the pump irradiance
δI0/I0=

σSD,pump
√

N
= 0.8%. The error in the reflectivity change ∆R/R due to the pulse-to-

pulse irradiance fluctuations is equal to δ(∆R/R)= 2δI0/I0)(∆R/R), where the factor
2 is due to the quadratic dependence of ∆R/R on I0 for a two-photon process.
Using the reflectivity change in the data in Fig. 4.5 (∆R/R= 10%) we obtain the
pump contribution to the standard error in ∆R/R to be δ(∆R/R)= 0.16%. The error
in reflectivity changes ∆R/R also contains a contribution of the fluctuations in the
probe pulse that were discussed before. The error due to the probe variation is equal
to
√

2(δR/R)= 0.1%, since the two independent error in the pumped- and unpumped
datasets are added. We calculate the total error by adding the contributions of both
probe and pump variations. We obtain a standard error:

δ
(∆R

R

)
=
√

2
σSD,probe
√

N
+
∆R
R
σSD,pump
√

N
= 0.26%, (4.4)

which is sufficiently sensitive for our switching experiments. In summary, our data
acquisition method allows a sensitive measurement of reflectivity changes, at short
integration times of about 1 s, even if the laser is not running optimally.

In some applications, an even higher sensitivity is required. Fortunately, pump-
monitor detector signals for each individual pulse event are stored. It is thus
possible to reduce the pump term in Eq. 4.4 by selecting pump pulses within a
certain narrow energy range after the experiment, at the price of longer integration
times. This procedure was applied in z-scan measurements (see Appendix C),
where pump stability is essential for the correct interpretation of the experimental
data.

4.3 Ultrafast switching of a bulk Si wafer

4.3.1 Temporal behavior

An example of a carrier induced change of refractive index in bulk silicon is given
in Fig. 4.6 (upper panel). In this experiment, a powerful ultrashort pump pulse
was focussed to a spot with radius wpump=70±10 µm, resulting in a peak irradiance
at the sample interface of I0= 115±40 GWcm−2. The reflectivity of a weaker probe
pulse with a smaller spot radius of wprobe= 20±5 µm was measured in the center
of the pumped spot at different time delays with respect to the pump pulse. The
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scan in Fig. 4.6 (upper panel) shows that the reflectivity of the sample changes from
32% to 28%. The 10% − 90% rise time is 230 fs, clearly an ultrafast change in n′.
From Fresnel’s formula we find the refractive index change to be more than 10%.
Eq. A.7 was used to estimate the corresponding generated carrier density at the
interface to be high: Neh= 1.6×1020 cm−3 . The lower panel shows the intensity
autocorrelation function (ACF) of the pump pulses. The full width half maximum
(FWHM) of 200 fs, we therefore conclude that the free carriers have been generated
almost instantaneously.
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Figure 4.6: Time resolved reflectivity measurement on bulk Si, pumped atωpump= 12500 cm−1, pulse
energy Epump= 2.0±0.1 µJ, pulse duration τpump= 120±10 fs, wpump= 70±10 µm and peak irradiance
115±40 GWcm−2 (upper panel). The reflectivity of a probe with ωprobe= 7692 cm−1, wprobe= 20±10
µm and τprobe= 120±10 fs decreases from 32% to 28%, corresponding to a calculated carrier density
Neh= 1.6×1020 cm−3 at the surface of the sample (see right-hand scale). The time difference between
10% and 90% of the total change is 230±40 fs. The lower panel shows the irradiance autocorrelation
function (ACF) of the pump pulses. The full width half maximum (FWHM) of 200 fs corresponds to
a Gaussian pulse width of τp= 120±10 fs.

Fig. 4.7 shows reflectivity from an extended probe delay range of -12 to +5 ps.
Quite remarkably, at a negative probe delay of 8.6 ps, we observe an additional
large step in the reflectivity from 38% to 32%. We can identify three distinct
probe delay regimes A, B, and C, which are separated by two large steps in the
reflectivity. The time difference between the first and second step is 8.6±0.5 ps, this
value corresponds well to twice the optical thickness of the wafer (2Lnsi/c= 8.3±0.1
ps) and is much longer than the pulse duration.

To visualize the observer unusual time dependence, we show in Fig. 4.8 snap-
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Figure 4.7: Time resolved reflectivity of a switched double side polished Si wafer. Unswitched
reflectivity (open squares) and switched reflectivity (closed squares) are plotted over en extended
range of probe delays compared to Fig. 4.6. Surprisingly, at a negative probe delay of 8.6 ps, a large
step in the reflectivity from 38% to 32% appears. At zero probe delay the reflectivity decreases further
from 32% to 28%. The time difference between the first and second step i n reflectivity (indicated
by dotted lines) is 8.6±0.5 ps, which roughly corresponds to twice the optical thickness of the wafer
(8.3±0.1 ps). We identify three different probe delay regimes A, B, and C, that are explained in the
schematic plot in Fig. 4.8.

shots of the reflected irradiance, taken at the moment that the pump pulse switched
the front face of the wafer. The reflectivity of the wafer is built up from mul-
tiply reflected pulses from front and back surface of the wafer, which are indi-
cated by R0, R1, and R2. The magnitude of each successive reflection is given by
Rm = (1 − R0)2R2m−1

0 . We neglect any further reflections in our analysis. It is im-
portant to note that each subsequent reflection Rm is delayed with respect to R0 by
∆tm=m2LnSi/c, where nSi= 3.5 is the refractive index of Si at λ= 1300 nm [96], and
L= 356±5 µm is the thickness of the wafer.

The pump conditions in the experiment in Fig. 4.6, result in an inhomogeneous,
dense carrier plasma near the front face of the wafer. From our homogeneity plot for
silicon, see Fig. 3.4, we estimate a short homogeneity length of less than `hom <0.5
µm. Free-carrier absorption and diffraction from the dense plasma results in a
strongly attenuated transmission. The plasma thus acts as an ultrafast shutter that
blocks internally reflected pulses Rm that arrive at the front face after the switching.
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sured the relative change in probe reflectivity from a bulk silicon sample pumped
in the two-photon absorption regime at ωpump= 6250 cm−1. The probe frequency
ωprobe is 7692 cm−1, with a focus size of wprobe= 25±5 µm. The probe delay is fixed at
10 ps to avoid transient effects. The pump focus position is varied with respect to
the probe focus by adjusting the pump mirror with a micrometer drive see Fig. 4.9.
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Figure 4.9: Relative probe reflectivity measurement on a bulk Si sample for different lateral positions
of the probe focus with respect to the probe focus. The probe delay is fixed at 10 ps. Pumping
parameters: τpump= 120 fs, ωpump= 6250cm−1, Epump= 10.8 µJ, wpump= 68 µm, τpump= 120 fs, the
pump irradiance is I0= 485±150 GWcm−2. At this frequency, β= 0.8±0.1 cmGW−1 and α= 0 (see
Appendix C). By combining Eq. 3.7 and Eq. 3.9, using α=0, we obtain the corresponding homogeneity
length `hom= 0.1/βI0= 2.5±+2.0

−0.8) µm. Probe parameters: ωprobe= 7692 cm−1, wprobe= 25±5 µm. The
squares are the measured datapoints, fitted with a Gaussian curve width of 68±10 µm (solid curve).
The horizontal dotted line indicates the level where the change in reflectivity has decreased by 10%.
From the vertical dotted lines, which indicate the intersections of the 90% line with the Gaussian
fit of the data, we obtain a lateral homogeneity length of 32 µm, illustrating the excellent lateral
homogeneity. The dashed curve indicates the measured width of the pump focus.

The measured relative reflectivity shows a minimum at the center of the pump
distribution, and decreases away from the center. The reflectivity data was fitted
by a Gaussian curve (solid curve). For comparison, the dashed line in the graph
is drawn to indicate the width of the pump irradiance distribution. The radius
of this measured reflectivity minimum is 34±5 µm, which is considerably smaller
than the wpump. To obtain the lateral homogeneity length, we have determined the
maximum lateral distance from the pump focus center for which ∆R/R remains

54



4.4. Conclusions

within 10% of its maximum value (dotted lines). This distance turns out to be
16±2 µm in both directions, corresponding to a lateral homogeneity length of 32±4
µm, which is much greater than the 6 µm which we required for switching of the
density of states. Therefore we conclude that the high output power of our OPAs
allows for the use of large pump foci, resulting in excellent lateral homogeneity.

4.4 Conclusions

We have built a two-color pump-probe setup that provides high energy, ultrashort
laser pulses at optical frequencies in the range between 3850 and 21050 cm−1.
A versatile measurement scheme was developed to automatically subtract the
pump background from the probe signal, and to compensate for possible pulse-
to-pulse variations in the output of our laser. We deduce a tenfold improvement
of the precision of the setup, allowing a measurement accuracy of ∆R= 0.07%
in 1 s measurement time. As an example, we have demonstrated a large and
ultrafast change of the reflectivity of a bulk Si wafer, in which free carriers are
homogeneously excited.
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Chapter 5
Ultrafast switching of the
photonic strength of III-V
semiconductor Bragg reflectors

We have used optical free-carrier generation by ultrashort laser pulses to switch the photonic
strength of of 25-pair thick GaAs-AlAs photonic structures. We selectively and spatially
homogeneously excite free carriers in the GaAs layers. We observe both a narrowing of the
stop gap, which is caused by the reduced photonic strength of the structure, as well as a blue
shift in the center position of the band, which is related to a reduced average refractive index.
The resulting absolute reflectivity changes in the stop band were studied as a function of
both probe frequency and delay time. We have observed large and ultrafast reflectivity
decreases of up to ∆R>40% on the red edge of the stop band, as well as large increases of
up to ∆R>8% on the blue edge of the stop band. The measured spectra compared well to
transfer matrix theory that takes into account the nonlinear absorption of pump light, the
bandwidth of our laser system. The refractive index of the excited GaAs layers is described
by a Drude model.

5.1 Introduction

Switching experiments in photonic crystal are very exciting, but at the same time
intrinsically difficult as they involve nonlinear optical measurements. Furthermore,
the interpretation of experiments on complex nano-structures is more difficult
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than experiments on homogeneous media, since in practice, realized structures
deviate from the ideal structure. Therefore, it is well worth to perform switching
experiments on one-dimensional structures that are simple enough to allow an
as exact as possible theoretical description, while still possessing characteristic
photonic properties. Therefore we study in this Chapter switching experiments on
semiconductor dielectric mirrors, also known as distributed Bragg reflectors.

There are three important reasons why Bragg reflectors are highly suitable study
materials to investigate switching of photonic crystals.

Firstly, an important similarity to photonic crystals is that the interaction strength
of Bragg reflectors with incoming light is also gauged by the photonic strength S
(see Section 1.1), which is defined as the ratio of the polarizability of each structural
unit cell to the physical volume [14, 15]. In any Bragg reflector, S depends on
the thickness of the high index dh and the low index d` layers, as well as on their
refractive indices nh and n`. We can rewrite Eq. 1.3 as:

S = |nh − n`|
( 1

n`
+

1
nh

) 1
π

sin
(
πd`

d` + dh

)
. (5.1)

In the special case of a distributed Bragg reflector (DBR), each layer has a con-
stant optical thickness dh,` = λc/4nh,` which is optimized for photonic strength.
Consequently, Eq. 5.1 can be approximated by

S ≈
4
π

∣∣∣∣∣nGaAs − nAlAs

nGaAs + nAlAs

∣∣∣∣∣ . (5.2)

Thus the photonic strength is proportional to the refractive index contrast between
the layers [4] which we will switch on ultrafast time scales.

Secondly, the Bragg reflectors under study exhibit strong Bragg diffraction and
stop bands, similar to 2D and 3D photonic crystals. An important difference,
however, is that a stop band occurs for one propagation direction only, and therefore
the structures do not possess a true gap in the LDOS. Nevertheless, even in one-
dimensional structures, sizable variations of the LDOS with position have been
predicted for specific dipole orientations [108].

Thirdly, the layers in the structure are grown by molecular beam epitaxy (MBE),
yielding well defined atomic lattices [109]. Consequently, the linear optical proper-
ties of the materials used in the Bragg reflectors are comparable to their well-known
bulk values [96]. Furthermore, a simple Drude description can be used to model
the nonlinear optical response of the materials, greatly facilitating the interpreta-
tion of our results. In contrast, the 3D photonic crystals discussed in Chapter 6
and 7 consist of poly-crystalline materials whose optical and electronic properties
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∆ω(ω) =
1

2N(dGaAsn′GaAs(ω) + dAlAsn′AlAs(ω))
, (5.3)

where ∆ω(ω) is the fringe spacing, and N is the number of pairs of layers in the
structure. An exact transfer matrix model that includes the dispersion of GaAs [96]
is shown as a curve in Fig. 5.1. From our model we deduce a Fabry-Pérot spacing
of ∆ω= 267±4 cm−1, in excellent agreement with our experimental data.
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Figure 5.1: Linear FT-IR reflectivity measurements at perpendicular incidence of a 25 pair thick
GaAs-AlAs DBR sample with center frequency ωc= 7737 cm−1 (symbols). The measured maximum
reflectivity R= 104±5% slightly exceeds 100 %, probably due to a fixed scaling error in the gold
reference. The width of the stop band is ∆ω/ω= 11.3%. The curve indicates an exact transfer matrix
calculation that includes the dispersion of GaAs [96]

5.2.3 Photonic strength

The width of the stop band of the λc=1300 nm sample in Fig. 5.1 ∆ω/ω= 11.2±0.2%
FWHM is directly related to the photonic interaction strength S, see Section 1.1.3.
For our DBR samples, consisting of GaAs and AlAs layers, Eq. 5.2 predicts the
photonic strength of the λc=1300 nm sample to be S= 9.7%, which is 1.4 % smaller
than the measured value. Note that dispersion was not taken into account in
Eq. 5.2. The calculated reflectivity curve in Fig. 5.1, which does include dispersion,
demonstrated a larger width of 10.9±0.2 % FWHM, in excellent agreement with
our experimental data.
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5.2.4 Switching experiment

Following our conclusions in Chapter 3, we optimize the homogeneity of the
switched structures, by choosing a pump frequency ωpump= 5814 cm−1, just above
the two-photon absorption edge of GaAs (ωgap= 5747 cm−1 [96]). At this pump
frequency ωpump= 5814 cm−1, the two-photon absorption coefficient β= 1.5±0.5
cmGW−1 was measured from an open aperture z-scan measurement [114] on a bulk
GaAs wafer (see Appendix C). Since the pump frequency is well below the photonic
stop gap of our structures, the pump light is not affected by Bragg diffraction.

In all switching experiments presented in this Chapter, pump and probe were
cross polarized, and focussed collinearly onto the sample surface by a f= 100
mm lens. The resulting probe focus was wprobe= 24±5 µm FWHM, the larger
probe focus was wpump= 42±5 µm FWHM, ensuring lateral homogeneity. The
excitation irradiance I0 in our experiments was varied from 0 to 500 GWcm−2,
remaining below the damage threshold of our samples Idamage ≈ 600±70 GWcm−2.
For pump irradiance above the damage threshold irreversible changes appear in
the reflectivity spectra, indicating structural damage.

5.3 Ultrafast switching of the photonic strength

5.3.1 Differential reflectivity spectra

The surface plot in Fig. 5.2 illustrates the evolution of the differential reflectivity
in the stop band of the λc=1400 nm sample, for delay times between -2 ps and +4
ps after excitation. Near τ= 0, large, ultrafast changes in the reflectivity take place
within 500 fs. At τ= 2 ps, the differential reflectivity reached its maximum value,
and starts a slow decays at timescales of tens of ps. At τ= 4 ps, increases of up to
∆R/R= 3.7% at the blue edge of the stop band, as well as strong decreases of up to
∆R/R= -30% on the red edge of the stop band are observed. At frequencies above
the stop band, strong dispersive shapes appear.

5.3.2 Switched reflectivity spectra

The shape of the stop band of the λc=1400 nm sample and the λc=1300 nm sample
were probed at a fixed probe delay τ= 4 ps, after the initial ultrafast transient effects.
Fig. 5.3 shows switched and unswitched reflectivity spectra of the first order stop
bands. The absolute scaling error in the resulting reflectivity spectra turned out to
be ∆R= 6%. The data in the reflectivity spectra shown in Fig. 5.3 was scaled by a
factor of 1.06, such that the peak reflectivity coincides with a peak reflectivity of
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Figure 5.2: Differential reflectivity as a function of both probe frequency and probe delay τ for the
λc=1400 nm sample. The pump peak irradiance was I0= 310±1 GWcm−2. τ was varied in steps of
∆τ= 500 fs. The probe wavelength was tuned from 1255 to 1600 nm in ∆λ= 5 nm steps. Reflectivity
increases of up to ∆R/R= 3.7% at the blue edge of the stop band, as well as strong decreases of up to
∆R/R= -30% on the red edge of the stop band are observed. At 2 ps after excitation, the induced effect
is stable.

100±2%, obtained from separate linear reflectivity measurements. The unswitched
spectra show broad stop bands ∆ω/ωc= 11%. The bandwidth (∆ω/ω)= 1.44±0.05%
of our OPAs causes the unswitched spectra to appear rounded compared to the
FT-IR spectrum in Fig. 5.1. The convolution with the OPA linewidth causes the
stop band to appear somewhat broader than the actual stop gap. At frequencies
below the stop band, we observe the Fabry-Pérot fringes, whose shift caused the
strong dispersive shaped in the differential reflectivity in Fig. 5.2. Note that the
suppression of the modulation of the Fabry-Pérot fringes compared to the FTS
spectrum in Fig. 5.1 is also caused by averaging over the OPA linewidth.

In the switched spectra in Fig. 5.3, the pump irradiance is varied from 0 to
330±30 GWcm−2. The absolute reflectivity measurements on the λc=1400 nm sam-
ple (Fig. 5.3A, symbols) at a typical pump irradiance I0= 190±20 GWcm−2, show
both a large absolute reflectivity decrease from 93% to 63% on the red edge of the
stop band atωred= 6755 cm−1, as well as a large increase from 65% to 74% on the blue
edge of the stop band at ωblue= 7405 cm−1. The peak reflectivity is not affected by
the switching, indicating that the induced absorption remains low. The switched
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Figure 5.3: Ultrafast switching of the first order stop band reflectivity of large GaAs-AlAs multilayer
structures (25 pairs). A λc=1400 nm sample. The pump irradiance is varied from 0 to 330±30
GWcm−2. B λc=1300 nm sample. The pump irradiance is varied from 105±10 to 290±30 GWcm−2.
The absolute reflectivity measurements (symbols) shows both large absolute reflectivity decreases up
to ∆R >40% on the red edge of the stop band as well as large increases of up to ∆R>8% on the blue
edge of the stop band. Switched spectra were measured at a fixed probe delay τ= 4 ps. The curves
are transfer matrix calculations that take into account both the nonlinear absorption of pump light,
as well as the Drude model for the GaAs layers (see Section 5.4.1).
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reflectivity measurements reproduce well on the λc=1300 nm sample (Fig. 5.3B,
symbols) at the same pump irradiance I0= 190±20 GWcm−2. Fig. 5.3B also displays
a large decrease from 95% to 70% on the red edge of the stop band at ωred= 7435
cm−1, as well as a large increase from 69% to 76% up on the blue edge of the stop
band atωblue= 8165 cm−1. Here, the maximum reflectivity also remains unchanged.

In both Fig. 5.3A and B, Fabry-Pérot fringes remain visible, even at a high
pump irradiance I0= 330±30 GWcm−2, albeit with a reduced modulation depth.
This indicates that large reflectivity changes can be achieved in the samples while
keeping the induced absorption low, and thus keeping the switched structure
transparent. The decrease of the maximum reflectivity with increasing pump
irradiance is displayed in Fig. 5.4. We observe that even for a pump irradiance up to
I0= 300±30 GWcm−2, the peak reflectivity remains larger than 90%. For even larger
pump irradiance, the peak reflectivity rapidly decreases with I0, indicating that the
probe absorption length in the structure becomes smaller than LB, disturbing the
build-up of the Bragg reflection peak.

In both samples, strong dispersive shapes in ∆R/R appear for frequencies out-
side the stop band. We attribute these periodic variations to the shift of the Fabry-
Pérot fringes. The blue shift in the fringes is in good agreement with the reduced
effective refractive index ne f f , and hence the decreased optical thickness of the
photonic structure.
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Figure 5.4: Peak reflectivity of the λc=1300 nm sample with a center stop band frequency ωc=

7751 cm−1 (λc= 1290 nm) versus pump irradiance. The pump irradiance is varied from 0 to 290±30
GWcm−2. The maximum reflectivity remains larger than Rmax= 95% for pump irradiance I0= 300±30
GWcm−2, indicating the induced absorption remains small. The curves are peak reflectivities obtained
from transfer matrix calculations (see Section 5.4).
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5.3.3 Irradiance scaling of the photonic strength

To quantify the observed changes in the photonic strength of the structures, the
relative stop band widths ∆ω/ωc at full width of half maximum (FWHM) were
measured at various pump irradiance. In Fig. 5.5A and B, the stop band widths
are plotted versus pump irradiance (symbols). We observe a large decrease of the
stop band width from 10.9±0.2 % to 9.5±0.2% for the λc=1400 nm sample (A), and
from 11.0±0.2% to 9.5±0.2% for the λc=1300 nm sample (B) for pump irradiance
of about 300 GWcm−2. This indicates a strongly reduced photonic strength S of
the structures, caused by the reduced refractive index contrast. The curves are
TM model calculations that are in good agreement with the experimental data (see
Section 5.4). The observations are consistent with a reduced dielectric contrast ∆ε,
which reduces the photonic strength S, causing the stop band to become narrower.
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Figure 5.5: The stop band width (left hand ordinate) and the corresponding photonic strength S
(right hand ordinate) for the λc=1400 nm sample (A) and the λc=1300 nm sample (B) as a function
of pump irradiance. The data were obtained from both the measured spectra (symbols) as well as from
the modeled spectra (curves) and are plotted versus pump irradiance. The observed large decrease of
the stop band width with increasing pump irradiance, indicates a strongly reduced photonic strength
S of the structure, caused by the reduced refractive index contrast. We find good agreement for pump
irradiance up to 300±30 GWcm−2.

We have also measured the change in the center position ωc of the stop band
in both samples. Figures 5.6A and B, show ωc as a function of pump irradiance
(symbols). We observe that in the λc=1400 nm sample (A), for pump irradiance
I0= 330±30 GWcm−2, ωc increases by as much as ∆ωc= 150±15 cm−1, or ∆ωc/ωc=

2.1±0.2%. The center frequency of the λc=1300 nm sample (B), for pump irradiance
I0= 300±30 GWcm−2 shifts by ∆ωc= 115±10 cm−1, or ∆ωc/ωc= 1.5±0.2%. The
large shift of the center position towards higher frequency with increasing pump
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5.3. Ultrafast switching of the photonic strength

5.3.5 Temporal evolution of the reflectivity

High resolution time resolved reflectivity was measured on theλc=1400 nm sample
to investigate the dynamics of the induced change in photonic strength. The
dispersion in the probe path (200 fs) in zero delay position for each probe frequency
was manually adjusted. The absolute reflectivity change ∆R at salient frequencies
is plotted versus probe delay in Fig. 5.7. The pump conditions are the same as in
Fig. 5.3, the pump irradiance is I0= 180±20 GWcm−2.

At the red edge of the gap : ωprobe= 6711 cm−1 (λ= 1.5 µm), the absolute re-
flectivity decreases by as much as -53±1% (filled squares). The switching time is
taken as the time in which the reflectivity change increases from 10% to 90% of
the maximum change. On the red edge this corresponds to a reflectivity change
of -7% and -47% respectively. From Fig. 5.7 we obtain a switching time ∆tred=

200±20 fs, of the order of the pump autocorrelation FWHM, see Fig. 4.6 (lower
panel). This observation confirms that change in the reflectivity happens almost
instantaneously.

At the blue edge of the gap: ωprobe= 7407 cm−1 ,∆Rblue first decreases to -5.4±0.2%
within ∆t= 290±30 fs, and then increases to attain a positive value of +2.2±0.2%
within ∆tblue= 360±30 fs. The initial decrease in reflectivity at the blue edge is
attributed to a Kerr nonlinearity in the AlAs layers, as it is only observed on the
high frequency edge of the stop band. Similar non monotonic effects were observed
on the blue edge of the stop band of Si woodpile photonic crystals discussed in
Chapter 6.

On both samples, the transient behavior of the absolute reflectivity change at
longer delay times was studied for probe frequencies on the red edge of the stop
band (see Fig. 5.8). In the λc=1400 nm sample (A), the maximum decrease at the
red edge at ωred= 6711 cm−1 is ∆R= -57±2 %. The transient reflectivity at longer
times after excitation is well fitted by a double exponential decay:

∆R(τ) = A1e−τ/t1 + A2e−τ/t2 , (5.4)

where optimum parameters for the λc=1400 nm sample were found to be A1= 30%,
t1= 36 ps A2= 34% t2= 896 ps, resulting in a fit with χ2= 0.74. For the λc=1300
nm sample (B), we find A1= 33%, t1= 26 ps A2= 27% t2= 703 ps, resulting in a
fit with χ2= 0.90. In both samples we observe an initial fast recovery at 30-40 ps
timescales, followed by a slow decay in ∼1 ns. Our observations suggest that there
is an initial carrier cooling processes due to interaction of the electrons with the
lattice-phonons, followed by a much slower recombination of the carriers. The
resulting combined (1/e) decay time τ(1/e)= 0.8 ns, suggests that large absolute
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Figure 5.7: High resolution time resolved reflectivity changes at salient frequencies of the λc=1400
nm sample. The pump irradiance is 180±20 GWcm−2. At ωred= 6711 cm−1 (red edge of the stop
band), the reflectivity decreases by as much as 53±1% while at ωblue= 7407 cm−1 (blue edge of the
stop band), the reflectivity first decreases by -5.4±0.2%, and then increases again to +2.2±0.2%. We
deduce a switching time of 200±20 fs, confirming a large and ultrafast reflectivity change.

reflectivity changes of ∆R= -53±2% are feasible at switching bandwidths of up to 1
GHz, which is relevant for potential future applications.
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Figure 5.8: Time resolved reflectivity changes at the low frequency edge of the λc=1400 nm sample
(A) and the λc=1300 nm sample (B)). Pump conditions are the same as in Fig. 5.3, the pump
irradiance is 180±20 GWcm−2. The curves are fitted double exponential fits to the data. We find
decay times t1= 36±3 ps and t2= 0.9±0.1 ns for the λc=1400 nm sample, and t1= 26±3 ps and t2=

0.7±0.1 ns for the λc=1300 nm sample.
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5.4 Theoretical model of switched DBR samples

5.4.1 Transfer matrix theory

A quantitative analysis of the measured spectra was based on a 2x2 transfer matrix
model (see for instance Ref. [115], p.70). This model was expanded by including
several important parameters. First of all, the refractive index dispersion for both
GaAs and AlAs were taken from Ref. [116] and included in the model. Secondly,
the spatial homogeneity of the switched samples was taken into account. We
have used Eq. 3.4 to obtain the nonlinear pump irradiance in the structure [117].
The two-photon absorption coefficient β is one of the three free parameters in our
model. The generated carrier density Neh(z) for each GaAs layer located at depth z
is obtained from the distribution of pump light I(z) via Eq. 3.5.

The induced refractive index change in the switched GaAs layers was obtained
from the Drude model (see Appendix A). The induced absorption is related to
the momentum scattering time. We have corrected the momentum scattering time
for electron-electron and electron-hole scattering which dominate the momentum
relaxation at the relatively high carrier densities in our experiments≈1019 cm−3 (see
Eq. A.3) [118]. We obtain a momentum scattering time of order of 20 fs. We have
also taken into account the effect of interband absorption [119], where the interband
absorption cross-section σintra is used as the second free parameter in our model,
since it is unknown at the carrier densities in our experiments (see Eq. A.11).

To compensate for the fact that our experimental data are averaged over the
linewidth of our OPAs, a convolution with a modeled Gaussian peak with a width
(∆ω/ω)= 1.44±0.05% was carried out for each frequency point of the calculated
spectra. Including all above features in our model, allows a direct comparison
between the modeled spectra and the spectra measured with our setup.

5.4.2 Optimization procedure

To demonstrate the optimization procedure that was followed, we consider the
switching experiment shown in Fig. 5.3A at a pump irradiance I0= 330±30 GWcm−2.
We first set σinterband to zero to exclude the effect of induced absorption.

The first free parameter of the model; ωc is deduced by comparing calculated
spectra to unswitched FTS spectra (see Fig. 5.1). We find ωc= 7042 cm−1 for the
λc=1400 nm sample and ωc= 7737 cm−1 for the λc=1300 nm sample.

The second free parameter; β is adjusted until the calculated Fabry-Pérot fringes
above and below the stop band best fit the measured fringes at the various pump
irradiance, for both samples. We find good agreement for a value of β= 0.89±0.05
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cmGW−1, which is slightly smaller than the value β= 1.5±0.5 cmGW−1 obtained for
bulk GaAs (see Appendix C). From the deduced β, we derive an induced carrier
density of Neh = 2.9×1019 cm−3 in the first layer, corresponding to a refractive index
change in the GaAs layers of ∆n′GaAs(ω)/n′GaAs(ω) = 2.9%. The large refractive index
change only decreases to a value of 2.6% in the 25th layer, demonstrating excellent
spatial homogeneity.

The third free parameter; σinterband is adjusted until both the calculated decrease
in peak reflectivity and the reduction in modulation depth of the Fabry-Pérot fringes
fit the measured data in the whole range of pump irradiance for both samples. We
find best agreement for an interband absorption crossection σinterband= 2.2×10−20 m2,
which is about 40 times larger than the cross-section σinterband= 5.6×10−22 m2 found
by Ref. [119] at about 10 times lower carrier densities.

5.4.3 Spectral comparison between measurement and theory

After finding the optimal values for β and σinter, we compare the calculated reflectiv-
ity spectra for a range of pump irradiance from 0 to 330 GWcm−2 to our measured
spectra. The modeled reflectivity spectra at various pump irradiance are shown as
curves in Fig. 5.3A and B, and compare well to the measured data for both samples.
The good agreement between modeled and calculated spectra in Fig. 5.3A and B
is striking, since our model contains only three experimentally constraint fitting
parameters: ωc, β and σinter.

5.4.4 Induced absorption

The good agreement with the measured data is further emphasized by the similarity
between the maximum reflectivity of the model and the measurements at different
pump irradiance, shown in Fig. 5.4. Our model predicts the maximum reflectivity
within 5% for pump irradiance up to I0= 450±50 GWcm−2. Even at a large pump ir-
radiance of 190±20 GWcm−2 (dotted curve in Fig. 5.3A), the corresponding induced
absorption in the GaAs layers at ωc= 7042 cm−1 remains limited to only n′′GaAs(ωc)=
0.026. The corresponding probe absorption length is `abs= λ/4πn′′GaAs(ωc)= 4.3 µm
or 41 GaAs layers, leading to the important conclusion that the structure remains
transparent even after switching with a dense carrier plasma.

5.4.5 Changes in photonic strength and center frequency

Finally, we used our model to study two characteristic photonic properties of our
samples. Firstly, the photonic strength S of the structures is plotted as a function
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of pump irradiance I0 in Fig. 5.5A and B. The photonic strengths deduced from the
corresponding modeled spectra were plotted as dashed curves in the same Figure.
For both samples, our model predicts the photonic strength within 0.5% for pump
irradiance up to 300±30 GWcm−2. Only at very high irradiance, the FWHM of the
calculated spectra deviates from the measured value, particularly in the λc=1300
nm sample (see Fig. 5.5B).

Secondly, we also study the shift of the center frequency ωc in both samples
as a function of pump irradiance. Both experimental results (symbols) and data
obtained from our model (curves), are shown as in Fig. 5.6A and B. Our model
is found to give a good prediction of the center frequency of the stop band for
pump irradiance up to 300±30 GWcm−2. In the λc=1300 nm sample, at very
high irradiance, exceeding I0= 300±30 GWcm−2, the model for deviates from the
measured data.

We propose two possible explanations for the differences at very high pump
irradiance. First of all, additional nonlinear effects in the AlAs layers should also
be taken into account. In our model, any changes to the AlAs layers have been
left out. Three photon absorption processes in the AlAs layers may no longer be
negligible at pump irradiance above. Secondly, the assumption that the interband
absorption crossection σinter is constant with carrier density may not be correct at
our large carrier densities.

5.5 Conclusions and outlook

5.5.1 Conclusions

We have used optical free-carrier generation by ultrashort laser pulses to switch
the photonic strength of of 25-pair thick GaAs-AlAs photonic structures. The
penetration depth of pump light was maximized by choosing two-photon process
to excite free carriers in the GaAs layers. The resulting absolute reflectivity changes
in the stop band were studied as a function of both probe frequency and delay time.
We have observed large and ultrafast reflectivity decreases of up to∆R>40% on the
red edge of the stop band, as well as large increases of up to ∆R>8% on the blue
edge of the stop band. High resolution time resolved measurements demonstrated
ultrafast switching timescales of typically 200 fs. On ultrafast timescales below
300 fs, we observe non-monotonic behavior of the reflectivity at the high frequency
edge of the stop band: a rapid decrease within 300 fs due to a Kerr effect, is followed
by an increase in the reflectivity due to free carriers.

Essential photonic properties of the stop band were studied as a function of
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pump irradiance. Stop band widths and center positions were plotted versus
pump irradiance. We observe both a narrowing of the stop gap, which is caused by
the reduced photonic strength of the structure, as well as a blue shift in the center
position of the band, which is related to a reduced average refractive index.

The measured spectra were compared to transfer matrix theory. Our model
takes into account the nonlinear absorption of pump light, the bandwidth of our
laser system. The refractive index of the excited GaAs layers is described by a
Drude model that includes electron-electron as well as electron-phonon momentum
relaxation processes. We also include the effect of interband absorption. Our model
uses three experimentally constraint fitting parameters which are found to be: β=
0.89 cmGW−1, σinter=2.2×10−20 m2 and peak position ωc= 7040 cm−1 (λc=1400 nm
sample) or ωc= 7750 cm−1 (the λc=1300 nm sample).

From the comparison of the data to our model, we conclude that the change in
refractive index of the GaAs layers is large and homogeneous throughout the sam-
ple, while the switched structure remains transparent. We deduce a large change
in the refractive index of up to ∆n′GaAs(ω)/n′GaAs(ω)= 2.9% while maintaining a large
(1/e) pump absorption length of 30 GaAs layers, indicating excellent spatial homo-
geneity. The (1/e) absorption length for probe light remains more than 11 unit cells.
Since the induced absorption scales with carrier density, it can be further reduced
by reducing the pump irradiance, at the cost of a smaller effect in ∆n′GaAs(ω). We
find good agreement between model and measurement for the maximum reflec-
tivity, the photonic strength, and the center position of the stop band up to a pump
irradiance of I0= 300±30 GWcm−2.

5.5.2 Outlook

The results and interpretation presented here demonstrate how two-photon ab-
sorption can be utilize to homogeneously excite freecarriers in a semiconductor
photonic structure. We have interpreted the resulting ultrafast changes in pho-
tonic properties of the structure, namely, the photonic strength and the position
of the stop band. Consequently, our results are important for the interpretation
of switching experiments in three-dimensional photonic crystal that can posses a
photonic band gap, such as Si woodpile photonic crystals described in Chapter 6 or
Si inverse opals in the second order stop band region (see Chapter 7). Such crystals
have a sufficiently large photonic strength for stop bands to appear in all directions
simultaneously, which would result in a photonic band gap. By switching the
photonic strength in these structures, large variations in the DOS are expected to
take place.

72



Chapter 6
Ultrafast switching of Si
woodpile photonic band gap
crystals

We present the first ultrafast all-optical switching measurements of photonic band gap
crystals. The Si woodpile crystals are homogeneously excited, and probed by measuring
reflectivity over an octave in frequency (including the telecom range) as a function of time.
At short delay times <200 fs, we observe that the photonic gap becomes unexpectedly
narrower than in the unswitched case. After 1 ps, the complete gap has shifted to higher
frequencies. This intricate behavior is the result of competing refractive index changes due
to an electronic Kerr nonlinearity and to optically excited free carriers. The frequency shift
of the band gap as a function of pump irradiance agrees well with exact modal method
calculations. We briefly discuss possible applications.

6.1 Introduction

Exciting prospects will arise if photonic band gap crystals are switched on ultrafast
timescales. In the first place, switching a photonic band gap crystal provides
dynamic control over the density of states that would allow the switching-on or
-off of light sources [54]. Secondly, switching would allow the controlled capture
or release of photons from photonic band gap cavities [54], which is relevant to
solid-state slow-light schemes [64]. Thirdly, switching the directional properties of

73



Ultrafast switching of Si woodpile photonic band gap crystals

photonic crystals leads to fast changes in the reflectivity, where interesting changes
have been reported for Bragg stacks [66, 67], 2D photonic crystals [68, 69], and
first-order stop bands of 3D opaline crystals [90, 91]. Finally, ultrafast control of the
propagation of light is essential to future applications in active photonic integrated
circuits [120].

It is well-known that semiconductors have favorable properties for optical
switching , hence they are excellent constituents for switchable photonic materi-
als [121, 122]. Moreover, their elevated refractive indices are highly advantageous
to photonic crystals per se [22, 25, 33, 34, 105, 123]. Therefore, we present in this
Chapter ultrafast all-optical switching experiments on Si woodpile photonic band
gap crystals.

6.2 Si woodpile photonic band gap crystals

The Si woodpile photonic crystals are made using a layer-by-layer approach that
allows convenient tuning of the operating wavelengths; here the crystals are de-
signed to have a photonic band gap around the telecommunication wavelength
of 1.55 µm [22, 25]. We had to our disposition two Si woodpile crystals made by
Dr. Jim Fleming from Sandia and characterized by the Polman group at AMOLF
[124]. The samples, called WP1 and WP2, had dimensions of about 14×8mm2. The
crystals consist of five layers of stacked polycrystalline Si nanorods that have a
refractive index of 3.45 at 1.55 µm [96]. Both samples are subdivided in squares of
2 × 2 mm2, as shown in Fig. 6.1. On inspection by eye, the samples demonstrate
strong grating behavior for visible light, since the color changes with viewing an-
gle. Optically, the samples are almost free of surface defects. Only a small <1%
part of the crystal’s surface optically shows damage, notably small scratches that
have occurred after the fabrication of the sample.

From each individual square on the samples, scanning electron micrograph
(SEM) images were made at a range of magnifications. We investigate both the
surface quality of the sample as well as the lateral alignment of the layers in the
structure with respect to each other (see Fig. 6.2). Low magnification SEM images
were used to verify that the crystal’s lattice parameter is constant within each
square. The crystal is subdivided in square domains of 2×2 mm2 that are large
compares to domains in opal-type photonic crystals that typically ≈20-30 µm in
size (see Chapter 7). The lateral alignment of the layers in the crystals varies
systematically from square to square, see Fig. 6.2. The variation ensures that in at
least 1 of 2 squares on the sample the layers are properly aligned. Our experiments
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Figure 6.1: (color) Composite top view of sample WP1 from images taken with an optical microscope.
The five-layer thick woodpile crystals are fabricated on the right-hand part of the sample, and is
subdivided in 16 ≈ 2 × 2 mm2 squares. Crystal boundaries are marked by a black curve, small
deviations from a straight line are caused by the image stitching process. Only a small <1% part of
the crystal’s surface shows optical damage. In particular square C3, which was used in most of our
measurements, is almost free of surface defects.

have focused on the well-aligned squares C3 and D4 of sample WP1. The surface
quality in both samples WP1 and WP2 turns out to be excellent; no fabrication
defects or point defects were observed in the SEM images.

SEM images such as the ones shown in Fig. 6.2 for sample WP1, were used to
measure the dimensions of both samples, such as the rod dimensions, as well as
the random variations in the structure. Figure 6.3 summarizes the structural data
obtained. Since all switching measurements presented in this Chapter were done
on either square C3 or square D4 of sample WP1, the remainder of this Section will
focus on sample WP1. In sample WP1 the rod width is 175±5 nm, and the rod
spacing in each layer alternates between 600 and 700±10 nm. This superstructure
results in a doubled unit cell size of 1300 nm. While each second rod in the
crystal is slightly displaced by 50 nm, this periodic perturbation and the resulting
superstructure do not affect the photonic band gap region [124]. From side view
images, such as the inset in Fig. 6.4, the average rod height of sample WP1 was
measured to be c̄= 155 nm. The values for the rod thickness c̄ and the period b̄
show that strictly speaking the unit cell of sample WP1 is orthorhombic instead of
face centered cubic. The in-plane lattice parameter of the crystal is

√
2 · 650 nm

= 919 nm, while the thickness of one unit cell (four layers) is 620 nm. In sample
WP2 the rod width is a= 175 ± 5 nm, unit cell dimensions are

√
2 · 600 nm = 849

nm in the lateral directions.
Random scattering from structural variations is an important cause of extinc-
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A4 B4 C4 D4

A3 B3 C3 D3

A2 B2 C2 D2

A1 B1 C1 D1

Figure 6.2: Top view SEM images taken from the 16 squares in the WP1 crystal. The coordinates of
the squares refer to the positions shown in Fig. 6.1. The contrast is adjusted such that all five layers
of the crystal are visible. The systematic variation in the lateral position of each layer ensures that in
at least 1 of 2 squares on the sample the layers are aligned properly. Our experiments have focused
on the well-aligned squares C3 and D4.

tion of light inside photonic crystals [17]. Extinction has an adverse effect on the
photonic properties of a crystal, which we will discuss in more detail in Section
6.15. Therefore, we have quantified the roughness of our crystals from high res-
olution scanning electron micrographs, see Fig. 6.4. From the top view image of
square C3 of sample WP1, the random variation in rod width ∆a/a was determined
to be 5%. The side view SEM image in the inset in Fig. 6.4 reveals thin sheetlike
features that appear in between the layers of rods. The features are remainders of
the SiN layers used in the production process and give rise to additional random
scattering that is hard to quantify. Nevertheless, it appears that WP1 is a strongly
reflecting sample that is well suited for switching experiments.
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b1 b2

b1 b2

b1

b2

2b

a c1

c5

5c

a

a b1 b2 b̄ c1

WP1 175 ± 5 600 ± 5 700 ± 5 650 ± 5 190 ± 15
WP2 175 ± 5 550 ± 5 650 ± 5 600 ± 5 -

c2 c3 c4 c5 c̄
WP1 126 ± 15 138 ± 15 174 ± 15 152 ± 15 155 ± 5
WP2 - - - - 200±10

Figure 6.3: Schematic drawing of top and side view of the woodpile crystal. The slight difference
between b1 and b2 results in the superstructure of the crystal The table shows the dimensions of both
crystal WP1 and WP2 that were obtained from SEM images. The value of c̄ for sample WP2 was
deduced from reflectivity spectra. All dimensions are in nm.a

aRef. [124] has also reported experiments on either sample WP1 or WP2. Surprisingly, the reported
sample dimensions b1= 600 nm, b2= 700 nm, and c̄= 200 nm, seem to be inconsistent with the dimensions
measured by us.

6.3 Linear reflectivity spectra

6.3.1 Stop band at normal incidence

Linear unpolarized reflectivity measurements at normal incidence along the {001}
direction of the woodpile lattice were done with a FT-IR reflectivity setup similar
to the one described by Ref. [113]. The reflectivity signal was referenced to that
of a gold mirror to obtain an absolute reflectivity calibration. Reflectivity spectra
were measured on various squares on each sample. Surprisingly, the considerable
difference in lateral alignment of the rods (see Fig. 6.2), affects the shape of the
stop band by less than ∆R< 5% only. Likely this is because the {001} stop band is
predominantly related to the periodicity in the z direction, which is not affected by
lateral misalignment.

Broadband reflectivity spectra of well-aligned squares of both samples are
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Figure 6.4: High resolution scanning electron micrographs of a {001} surface of a Si woodpile crystal.
The average lateral distance between two consecutive rods is 650±10 nm. The arrows indicate the
crystal’s {010} and {100} direction. Inset: side view of the crystal. The width and thickness of each
rod is 175 ± 10 nm and 155±10 nm respectively.

Figure 6.5: (symbols) Linear FT-IR reflectivity measurements for unpolarized light on well-aligned
squares on sample WP1 (A) and WP2 (B).(dashed curves) Calculated spectra, assuming a well
aligned woodpile structure without superstructure and without dispersion. (A) Sample WP1, using
rod height c̄= 155 nm (obtained from SEM). Both the peak position and width in the measurement
agree well with the calculation. (B) Sample WP2, a rod height c̄= 200 nm was found by comparing
the position of the peak in experiment and calculation.

shown in Fig. 6.5A (crystal WP1), and in Fig. 6.5B (crystal WP2). Even though
the crystals are relatively thin, the strong photonic interaction strength and the
excellent crystal quality result in a high reflectivity of up to 95%, higher than in
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bulk Si and than in Si inverse opal photonic structures (see Chapter 7). The broad
stop bands shown in Fig. 6.5 were measured in the {001} direction of the woodpile
lattice, and correspond to the Γ-X stop gap in the band structure, which is part of
the 3D photonic band gap of Si woodpile photonic crystals [22, 125]. We determine
the full width at half maximum of the stop bands after subtraction of the ≈ 10%
background reflectivity. Crystal WP1 exhibits a broad stop band for frequencies
from 5570 cm−1 to 8700 cm−1 (ωcenter= 7135 cm−1, ∆ω/ω= 44% FWHM). The stop
band in the second crystal WP2 is considerably red-shifted to ωcenter= 6300 cm−1,
and lies between 4900 cm−1 and 7700 cm−1. The resulting width of the stop band
of sample WP2 ∆ω/ω= 44% FWHM is comparable to that in sample WP1. From a
comparison of the red-shifted WP2 spectrum to theory (see Section 6.4), we deduce
a larger rod height in crystal WP2 c̄= 200 nm (see Fig. 6.3). In both crystals we
observe small peaks at frequencies above the stop band, which we attribute to the
super structure in the crystal.

The high reflectivity and large relative widths of the stop bands of both crystals
show that the crystals interact strongly with the light, in agreement with band
gap behavior. The relative width of the stop band of our samples, ∆ω/ω= 44% is
considerably larger than the stop gap width of 30% that was obtained from band
structure calculations on woodpile structures [22]. We note that our crystals do not
have a cubic symmetry, but are orthorhombic. Band structure calculations based
on the orthorhombic sample of Ref. [124], resulted in an increased calculated width
of the stop gap along Γ-X direction ∆ω/ω= 40%. It is likely that a similar effect
takes place in our samples, resulting in a larger width than expected for cubic
crystals. A maximum change in the reflectivity is expected near steep slopes in
the reflectivity spectrum of the crystal. On such steep edges, even a small shift
of the stop band, results in large reflectivity changes. Sample WP1 has a higher
reflectivity and sharper band edges of the stop band in the {001}direction compared
to sample WP2 (see Fig. 6.5). Therefore, we selected sample WP1 for our switching
measurements.

The reflectivity experiments on sample WP1 were repeated for both polariza-
tions using the polarized output of our OPAs. For light polarized parallel to the
upper rod layer pronounced dips in the high-reflectivity range in the middle of the
stop band were observed that are probably due to the superstructure in the crys-
tal [126]. To avoid such features in the switching measurements, the polarization
was chosen such that the E-field was aligned perpendicular to the rods in the top
layer. The OPA spectra were found to agree with the unpolarized spectra shown
in Fig. 6.5, if the average of the two polarizations is taken, and both polarizations
contribute equally.
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6.3.2 Discussion of the nature of the observed stop band

To understand the nature of the observed stop band in crystal WP1, we try to relate
it to a specific set of lattice planes in the crystal by comparing its center position
to Bragg’s law adapted for photonic crystal (see Ref. [14]). Naively, one would
expect that the peak is a direct result of the Bragg reflection from lattice planes
normal to the incident beam. The Si filling fraction for sample WP1 is ΦSi= a/b̄=
27% resulting in an effective refractive index nav=

√
ε̄= 1.96. By inserting nav, and

the ωcenter= 7135 cm−1 into Eq. 1.2, we deduce a lattice spacing of d= 358 nm. The
lattice planes whose spacing is closest to 358 nm, are the {002} planes that are
spaced by twice the rod thicknesses 2×c̄= 310 nm. From diffraction theory [3],
however, it is well known that the {002} reflection of a monatomic diamond crystal
is forbidden, since the corresponding structure factor is zero. We can exclude the
role of both the non-spherical ”atoms” in our woodpile crystal as well as of the
orthorhombic distortion, since neither of them breaks the symmetry that causes
the structure factor for the {002} planes to be zero. Our measured reflection peak
is much broader and also occurs at a different frequency than predicted by Bragg’s
law. Hence, we suppose that the observed stop band must be a combination of
stop bands in other lattice directions. This hypothesis is supported by previous
angle resolved transmission measurements on woodpile crystals by Ref. [26], where
a red-shift is apparently combined with a splitting of the stop band for angles of
incidence moving away from the {001} direction towards the {110} direction. A stop
band that is a result of a reflection from the {002} planes only, would demonstrate
a blue-shift without splitting, according to Bragg’s law. We therefore conclude that
Si woodpile structures are truly 3D photonic crystals.

6.4 Comparison to exact modal method theory

This Section briefly describes the exact modal method calculations that were used
to calculate reflectivity spectra of our woodpile photonic crystals. Because each
individual layer in a woodpile crystal is a grating that is effectively infinite in the
lateral directions, such crystals can be described as a stack of gratings. Conse-
quently, we can use the so-called ’Exact Modal Method’ (EMM) to solve Maxwell’s
equations for the woodpile crystal [125]. The programme used to calculate reflec-
tivity spectra is called WPC (’woodpile crystal’), and is described in more detail
in Appendix B. The algorithm was developed by Ref. [125], and is designed and
optimized to obtain reflectivity spectra of stacked gratings and therefore also of
woodpile crystals. Input parameters to the programme are: rod dimensions, the
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lateral alignment of the layers of rods, and the complex refractive index of Si in
the crystal. The number of layers in the crystal is finite, and the thickness of each
layer can be specified separately. The EMM method assumes that the crystal is
infinite in the lateral dimensions, but finite in the direction normal to the sample
interface. We have tested the numerical stability of the WPC model by comparing
the obtained reflectivity spectrum to analytical results on a 1D Bragg stack (see
Appendix B). We find that our WPC model reproduces the exact TM model results
for a simple 1D Bragg stack within ∆R= 0.2% for frequencies up to 9000 cm−1 (see
Fig. B.1).

There are four important reasons why we have used this programme to model
our switched woodpile photonic crystals: first of all, due to the limited number of
layers in the crystal, we can couple the equations for the internal and the external
fields, and thus obtain a reflectivity spectrum. The calculated spectra allow a direct
comparison between theoretical and experimental reflectivity data. Note that such
a comparison is much harder for opaline structures, whose structure is much more
difficult to model, certainly with a stacked grating model [127]. Secondly, the
simple 1D Bragg description breaks down in our 3D crystals [14], since it cannot
correctly predict the width nor the center frequency of the stop band in our crystals
(see Section 6.3). Thirdly, our model permits complex refractive indices as well
as dispersion n′Si(ω) + in′′Si(ω) to be taken into account, which is important in the
interpretation of our switched crystals, since the induced refractive index changes
are both highly dispersive and complex. Finally, the reflectivity spectra cannot be
interpreted by comparison to band structure calculations, since such calculations
are based on infinitely large samples, while our sample is finite.

We compare the calculated spectra to the linear reflectivity measurements on
sample WP1 and WP2 shown in Fig. 6.5. We use structural information from Fig. 6.3
to model the crystal: the rod width in both crystals was taken to be a= 180 nm,
while the rod height in sample WP1 was taken to be c̄= 155 nm. In our calculations,
we make three assumptions: firstly, we neglect the superstructure in our crystal;
consequently the lateral spacing between the rods is b̄=b1=b2= 650 nm. Secondly,
we assume a refractive index Si nSi= 3.45 that does not depend on frequency.
Finally, we assume that the lateral alignment of the rods in each layer of the crystal
is perfect. Since we compare our calculations to unpolarized experimental data,
the spectra were obtained by taking the average of two polarizations.

The calculated reflectivity spectrum in the {001} direction for crystal WP1 is
shown as a dashed curve in Fig. 6.5A. The shape of the calculated stop band
compares well to unpolarized FT-IR reflectivity data; the calculation predicts the
low frequency edge of the stop band within 100 cm−1, and the high frequency edge
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within 300 cm−1. The calculated peak reflectivity is within 1% of the measured
value. Note that the dispersion of the refractive index of Si is neglected in our
calculation. It is therefore remarkable that our simplified calculation gives a good
prediction of the reflectivity stop band of our unswitched crystal.

The same method was used to interpret the reflectivity spectrum for sample
WP2, shown as the dashed curve in Fig. 6.5B. The lateral spacing of the rods
in sample WP2 is reduced to b̄=b1=b2= 600 nm. We find reasonable agreement
between the calculated and the experimental FT-IR spectra by choosing a rod
height of c̄= 200 nm (which was not measured by SEM). The calculation predicts
the low frequency edge of the stop band within 100 cm−1, and the high frequency
edge within 300 cm−1. The calculated peak reflectivity of sample WP2 is 10% higher
than than the measured data. Despite the simplifications in our model, the overall
shape of the calculated stop band agrees reasonably with the experiment.

To get a better agreement between model and experiments, we make four
important improvements to the calculations: First of all, the superstructure that
was observed in SEM images was included in the description of each layer of rods.
Secondly, we also include the slight misalignment of the layers with respect to
each other (exemplified by Fig. 6.2) in the model. Thirdly. the resulting calculated
reflectivity spectra were convoluted with the measured FWHM of the Topas OPA
of ∆ω/ω= 1.44% to allow direct comparison to the experimental data. Finally, we
including the dispersion in the Si backbone of the crystal. n′Si(ω) + in′′Si(ω). The
dispersion, and the intrinsic absorption of the unswitched Si were obtained from
Ref. [96]. The resulting calculated reflectivity spectrum is compared to the OPA
reflectivity data in Fig. 6.6. The calculation predicts the low frequency edge of the
stop band within 100 cm−1, and the high frequency edge within 250 cm−1. The
calculated peak reflectivity is within 1% of the measured data. It is gratifying that
the position and width of the stop band in our measurements and the theory agree
well, since no parameters were freely adjusted.

Since we also want to calculate switched reflectivity spectra, we have also mod-
eled the nonlinear dispersion in the crystal. It appears that the optical properties
of excited Si are highly dispersive, and well described by the Drude model (see
Appendix A). The Drude model allows us to obtain a complex refractive index
n′Si(ω,Neh) + in′′Si(ω,Neh) at a given probe frequency ω, and a carrier density Neh.
In the Drude description, the induced absorption is related to the Neh through the
Drude scattering time τD (see Appendix A). A value of τD= 10 fs was found to
provide a best fit to the data on our polycrystalline Si crystals. We also include the
two-photon excitation of free carriers (see Chapter 3). The resulting model for the
reflectivity of switched woodpile photonic crystals contains only two experimen-
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tally constrained parameters: β and τD.

6.5 Experimental results

6.5.1 Stop band shift

The free-carrier induced blue-shift of the stop band is visualized clearly in Figure
6.6, which shows OPA data of the pumped and unpumped reflectivity of a wood-
pile crystal WP1, square C3 at normal incidence. The probe light was polarized
perpendicular to the rods in the top layer of the crystal. Three different scanning
ranges (idler, signal, and second harmonic of idler) of the probe OPA were used to
allow an octave-broad measurement of the complete stop band. The OPA experi-
ment could not be done in one run, since a realignment of the setup was needed
for each scanning range. This realignment results in slight discontinuities in the
ranges indicated by the gray ovals, caused by a systematic error (∆R= ±5%) in the
reference spectra. The unpumped, polarized reflectivity spectrum shows a broad
stop band with a width of 50% FWHM, which is larger than the width ∆ω/ω=
44% that was found in unpolarized FT-IR experiments in Section 6.3. We have no
conclusive explaination for the mismatch in stop band width. Possibly, the mixing
of both polarizations in the FT-IR measurements plays a role. Also, the spectrum
in Fig. 6.6 may be slightly broadened by the 1.44% linewidth of our OPA.

The dashed curve in Fig. 6.6 represents a reflectivity spectrum calculated by
the WPC algorithm, that includes all structural data of sample WP1 C3, as well
as the dispersion of Si [96]. The resulting calculated reflectivity spectra were
convoluted with the measured FWHM of the Topas OPA of ∆ω/ω= 1.44% to allow
direct comparison to the experimental data. The calculation shown in Fig.6.6
demonstrates the good agreement between calculation and experimental data for
the position; the prediction of the position of both edges is accurate within 150 cm−1

and the calculated peak reflectivity is accurate within 1%. A remaining difference
is the calculated trough in the reflectivity near 7000 cm−1, which is not observed in
any of our measurements. The origin of this trough is discussed in Section 6.6.

In the same run, the crystal was pumped at pump frequency ωpump= 5000 cm−1,
below the stop band, ensuring a homogeneous distribution of pump light. Pumped
reflectivity spectra at 1 ps after excitation are shown as closed circles in Fig. 6.6.
The switched stop band is blue-shifted with respect to the unswitched band. Since
the whole stop band is so broad, the large switching effect is subtle to discern in
this representation. An any rate, the shift causes a large decrease in reflectivity at
the red edge of ∆R= -10% and an increase on the blue edge of ∆R= +5%, shown
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Figure 6.6: Unswitched (open squares) and switched (closed circles) reflectivity spectra of crystal
WP1, square C3 at normal incidence. The gray ovals indicate the edges of the scanning ranges of
the OPA. The dashed curve represents the reflectivity as calculated by the WPC algorithm, taking all
structural imperfections of the crystal into account and convoluted with the OPA line width, showing
good agreement with the unswitched spectrum. The pump irradiance for the switched spectrum was
I0= 17±1 GWcm−2 on the red side, I0= 16±1 GWcm−2 on the central part, and I0= 16±1 GWcm−2

on the blue side of the stop band. The arrow indicates the pump frequency ωpump= 5000 cm−1. The
switched spectra were measured after the initial Kerr effect, at a pump-probe time delay of 1 ps on the
red part, 300 fs on the central part and 1.5 ps on the blue part of the spectrum.

in Fig. 6.7B. We observe two important effects. Firstly, the measured shift of the
red edge of the gap is 5.6 times larger than the shift of the blue edge. At the
low frequency edge, ω= 5500 cm−1, the shift is found to be 130 ± 5 cm−1 or 2.4%,
while at the high frequency edge, ω= 9000 cm−1 it is ∆ω= 38 ± 8 cm−1 or 0.42%.
Section 6.6.4 will elaborate on the origin of this large difference. Secondly, the peak
reflectivity of the switched structure remains high: at central frequencies near 7000
cm−1, the peak reflectivity of the stop band decreases by less than ∆R/R= -1%. Our
observations confirm that large changes in the stop band position can be achieved
while the induced absorption remains small.

6.5.2 Differential reflectivity versus probe delay and wavelength

The induced stop band shift is large, but small compared to the band width of the
entire stop band. Therefore we also plot the reflectivity changes in the range of the
stop band.
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Figure 6.7: (A) (color online) Differential reflectivity versus both probe frequency and probe delay.
The pump peak irradiance was I0= 17±1 GWcm−2 on the red part, 16±1 GWcm−2 on the central
part, and 16±1 GWcm−2 on the blue part of the spectrum. The probe delay was varied in steps of ∆t=
50 fs. The probe wavelength was tuned in ∆λ= 10 nm steps in the low, and central range, and in 5
nm steps in the high-frequency range. In the central part of the stop band, ∆R/R(ω) was measured
at both negative delays and a positive delay of 300 fs. The red curves indicate fixed frequency curves
along which extensive delay traces were measured. (B) Differential reflectivity changes versus probe
frequency, calculated from exact modal method theory that includes the Drude model, and obtained
by ratioing to the unswitched calculated spectrum shown in Fig. 6.6. The relative changes at the stop
band edges agree quantitatively with the measured data in (A).

Fig. 6.7A shows the differential reflectivity∆R/R(τ, ω) of sample WP1 square C3 as a
function of probe delay τ over an octave-broad probe frequency rangeω. A data set
of 1000 pulse events was used for each ∆R/R(τ, ω) point on the plot surface shown
in Fig. 6.7A. The differential reflectivity was obtained by ratioing the switched and
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unswitched data that were measured in a single run for each ∆R/R(τ, ω) point. The
differential spectra were reproduced on other positions on the crystal surface of
square C3. We observe strong decreases as well as increases in the reflectivity,
especially at the stop band edges that are indicated by the red curves in Fig. 6.7.

At 1 ps after excitation, we observe large and highly dispersive reflectivity
changes. The reflectivity at the low frequency edge of the stop band (6000 cm−1)
displays a large and ultrafast decrease ∆R/R= -8%. This decrease is indicative of a
shift of the stop band edge to higher frequencies. We attribute this effect to excited
free carriers that reduce the refractive index of the Si. At intermediate frequencies
near 7000 cm−1, at the flat central part of the stop band, we observe a small decrease
in the peak reflectivity by less than ∆R/R= -1%. We ascribe this effect to a small
amount of induced absorption in the crystal. At probe frequencies above the gap,
near 9400 cm−1, strong variations in ∆R/R with frequency occur that are related
to the shift of the superstructure feature (see Fig. 6.5(A)). At the blue edge of the
gap at 9170 cm−1, we observe a large increase in reflectivity up to ∆R/R= 25%,
which indicates that the blue edge of the gap also shifts to higher frequencies. We
conclude that the entire stop band is shifted towards higher frequencies at 1 ps
after excitation.

Unexpectedly, we observe a sharp decrease in reflectivity on both edges of the
stop band near zero delay at τ ≈200 fs. Since the width of the trough is comparable
to the pump pulse width, we attribute the effect to an electronic Kerr nonlinearity.
Since the Kerr effect only occurs at temporal overlap of pump and probe, the sharp
minimum could also be used to correct our temporal calibration for dispersion
in the probe path. Near both stop band edges, we observe that at short time
delays, the measured decrease ∆R/R at the peak is smaller than the corresponding
decreases at the edge. We therefore conclude that, the edges move towards each
other, resulting in a narrowing of the gap. The observation can not be explained by
induced absorption, since absorption would lead to an equal reflectivity decrease
∆R/R both at the edge of the stop band as well as on top of the peak (see Fig. 6.15).
Fig. 6.8 summarizes our observations: the unswitched stop band (top panel) is
narrowed at time delays below 200 fs (middle panel) subsequently, the entire stop
band is shifted towards higher frequencies (lower panel). These non-monotonic
effects were not expected by Ref. [54], and lead to the striking conclusion that a
single pump pulse suffices to switch the LDOS inside our crystals up and down.
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Figure 6.8: Cartoon depicting the temporal behavior of the stop band with increasing probe delay as
deduced form the measurements shown in Fig. 6.7. The upper panel shows the unswitched stop band
for negative delays. For ∆t ≈ 0, the stop band narrows (middle panel) while for larger ∆t the stop
band shows a blue-shift (lower panel).

6.5.3 Time-resolved measurements

To study the intricate ultrafast behavior in more detail, we have measured the
transient absolute reflectivity changes ∆R at two characteristic frequencies. Fig. 6.9
shows delay traces over an extended time range that were measured at probe
frequencies at the red and blue edge of the stop band, indicated by the red traces
in Fig. 6.7B. At the blue edge, a rapid decrease to ∆R= -1.7% appears within 190
fs, followed at 270 fs by an increase to ∆R= 5% within 500 fs. The decrease is due
to an electronic Kerr effect and the increase is attributed to optically generated free
carriers. The free-carrier effect subsequently decays exponentially with a decay
time of 18 ± 1 ps. The reflectivity at the red edge decreases by ∆R= -12% within
1 ps due to a Kerr nonlinearity, followed by a free-carrier effect. At 2.5 ps after
the excitation, the effect on the red edge decays exponentially to ∆R= -1% with
a decay time of 16±2 ps. The decay times of about 18 ps are much shorter than
carrier relaxation times in bulk Si, likely since our photonic crystals are made of
polycrystalline silicon, whose lattice defects and grain boundaries act as efficient
carrier recombination traps [110]. On the other hand, the decay time is longer than
that of amorphous Si, in which recombination times as short as a few picoseconds
have been observed [128]. The relatively fast decay time implies that switching
could potentially be repeated at a rate above 25 GHz, which is relevant to possible
future switching and modulation applications and will be discussed in Section 6.6.
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Figure 6.9: (color online) Absolute reflectivity changes versus probe delay at frequency ωblue= 9174
cm−1 at the blue edge of the gap (upper panel) and ωred= 5882 cm−1 at the red edge (lower panel) of
the gap. The pump irradiance was I0= 16±1 GWcm−2. The dashed curves are exponential fits with a
decay time of 18 ps (upper panel) and 16 ps (lower panel).

6.5.4 Free-carrier effects

To verify that the effects after 1 ps are induced by free carriers excited by two-
photon absorption, we plot the frequency shift of the blue edge of the stop band
versus peak pump power squared I0

2 in Fig. 6.10. In the same graph we have also
plotted the shift of the reflectivity feature at 9750 cm−1. Both features shift linearly
with the peak pump power squared, which confirms that a two-photon process (i.e.
a χ(5) nonlinear process) is indeed the dominant excitation mechanism. Since the
reflectivity changes remain after the pump pulse and decay with times in between
bulk and amorphous silicon carrier recombination, it is safe to conclude that indeed
free carriers are excited.

To allow a Drude description of our samples, we wish to estimate the carrier
density Neh. Therefore, we first deduce the magnitude of refractive index change
∆n′Si/n

′

Si from the observed stop band shift in our crystals. We use the WPC model
to calculate reflectivity spectra at various refractive indices n′Si, and investigate the
relation between the stop band shift∆ω/ω and the refractive index change∆n′Si/n

′

Si.
Fig. 6.11A shows the resulting reflectivity spectra for a perfectly aligned woodpile
crystal at two typical refractive indices nSi= 3.45 (solid curve) and nSi= 3.35 (dashed
curve). We observe that the stop band shifts towards higher frequency as nSi is
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Figure 6.10: (color online) Squares: measured shift ∆ω/ω, at ω= 9100 cm−1 on the blue edge of the
stop band at 1 ps after excitation versus I0

2. Diamonds: ∆ω/ω measured at ω= 9750 cm−1. The
maximum observed shift is ∆ω/ω= 0.54%. The dashed curve serves to guide the eye.

reduced, as expected from Bragg’s law. In this calculation, which does not take
into account dispersion both the low and the high frequency edges of the stop
band shift by the same amount, which is inconsistent with the highly dispersive
switching effects that we observed in Fig. 6.6.

From each calculated spectrum, the center position of the stop band was ob-
tained, and its blue-shift was calculated by comparison to the unswitched spec-
trum. Fig. 6.11B shows the shift in center position ∆ωcenter/ωcenter for both polar-
izations, plotted versus ∆nav/nav. Remarkably, the results coincide with the line
∆ωcenter/ωcenter = ∆nav/nav (dashed line). Thus, in absence of absorption, the in-
duced shift in our woodpile crystals is in good agreement with Bragg’s law up to
large refractive index changes ∆nav/nav= 5%. To allow a comparison of our exper-
iments to theory, we have also calculated how the stop band shifts with refractive
index change if bulk dispersion and the exact structure of our crystals are taken
into account. We deduce that the refractive index change in the Si backbone is
roughly equal to the induced relative shift of the peak ∆ω/ω= 0.95 × ∆nSi/nSi.

From measured switched reflectivity spectra at 1 ps (see Fig. 6.6), we have
deduced a large maximum shift of ∆ωred/ωred= 2.4% of the red edge, while the blue
edge shifts by a much smaller amount: ∆ωblue/ωblue= 0.54%. The highly dispersive
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A

B

Figure 6.11: (A) Calculated reflectivity spectra of a perfect five-layer thick Si woodpile crystal with
dimensions as specified in the text. The incident light is polarized parallel to the rods in the upper
layer. The refractive index is changed from nSi= 3.45 (solid curve) to nSi= 3.35 (dashed curve). The
stop band clearly shifts to higher frequency with decreasing refractive index change ∆nSi, as expected
from Bragg’s law. (B) Shift of the stop band center versus change in average refractive index for
both polarizations. The refractive index nSi was varied from 3.45 to 3.25. The relative shift ∆ω/ω is
proportional to the change −∆nav/nav in agreement with Bragg’s law.

refractive index change is consistent with a dispersive Drude description of free
carriers (see Appendix A).

A Drude description was used to estimate the carrier density Neh. The shift at the
blue edge of the gap atω= 9425 cm−1 amounts to∆ω/ω= 0.54% (see Fig. 6.10). Using
the proportionality factor discussed above, we deduce a change in refractive index
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∆nSi/nSi= 0.54/0.95= 0.57%. Next, we use a Drude model with parameters m∗opt=

0.15 [103], and τD= 10 fs [91] to calculate the dispersion for excited polycrystalline
Si at two different carrier densities (see Fig. 6.12) to estimate the carrier density
in our experiment. In Fig. 6.12, the horizontal dotted line at ∆nSi/nSi= 0.57% line
and the vertical ω= 9425 cm−1, intersect just below the Si dispersion curve for Neh=

2 × 1019 cm−3. Therefore we estimate that the carrier density in the excited sample
is: Neh= 2.1×1019 cm−3. At this carrier density, the Drude model expects a refractive
index change∆nSi/nSi= 1.8% at the red edge of the stop band, which is smaller than
the change∆nSi/nSi= 2.5% that we have deduced from the measured shift of the red
edge of the stop band in Fig. 6.6. The carrier density in the experiment at the low
frequency edge may therefore have been even higher. We conclude that a Drude
description with a carrier density Neh= 2.1×10−19 cm−3 provides quite a reasonable
description of the dispersion in our switched crystals.

The obtained carrier density Neh= 2.1×10−19 cm−3 was used to interpret the
observed changes in Fig. 6.7A. Fig. 6.7B shows calculated differential reflectivity
∆R/R(ω) obtained by ratioing a calculated reflectivity spectrum that includes Drude
dispersion, to that of an unswitched crystal. At the low frequency edge of the stop
band the reflectivity decreases by up to ∆R/R= 30%, while at the high frequency
edge, a strong reflectivity increase of ∆R/R= 37% is observed. The measured
changes in Fig. 6.7 occur at the same frequency positions, but are ≈ 1.5 times
smaller. The feature near 7000 cm−1 in the calculated spectrum is caused by a shift
of the trough at that frequency which was not observed in our measurements. In
conclusion, by including the free-carrier dispersion in our WPC model via a Drude
description, we find quantitative agreement with the measured highly dispersive
reflectivity changes on both edges of the stop band.

From the deduced carrier density Neh and the pump irradiance I0= 17±1 GWcm−2

at ωpump= 5000 cm−1 used in the experiment, we derive the two-photon absorption
coefficient to be β= 60±15 cmGW−1. The corresponding large pump absorption
length in the Si backbone at is `abs = (I0β)−1= 9.3 µm. The penetration depth of
pump light into the crystal is obtained by dividing by the Si filling fraction: `pump=

`abs/ΦSi= 9.3/0.27= 36.3 µm, or >230 layers of rods, confirming that two-photon
excitation of carriers yields much more homogeneously switched crystals than in
one-photon experiments [88, 90].

6.5.5 Electronic Kerr effect

To verify that the reflectivity changes at zero probe delay are indeed related to a
χ(3) Kerr response, delay traces like those in Fig. 6.9 were measured on a separate
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Figure 6.12: Relative refractive index change in Si versus probe frequency at three different carrier
densities. The vertical dotted lines indicate the stop band edges ω= 5400 cm−1 and ω= 9425 cm−1.
The horizontal dotted line indicates the value ∆nSi/nSi= 0.57% that was obtained from Fig. 6.10.

crystal (WP1, square D4). The magnitude of the Kerr change ∆R/R at τ= 0 at the
blue edge of the stop band was studied as a function of pump irradiance in Fig. 6.13.



6.6. Discussion

6452 cm−1 to be 0.3-0.5± 0.3 ×10−13 cm2W−1 by z-scan measurements. Note that
the data of Ref. [97] were obtained for ωpump = ωprobe, while in our two-color
pump probe experiment, ωpump , ωprobe. Furthermore, Ref. [97] explicitly studies
bound electrons, while our results likely include excite electron effects. Since the
Kerr nonlinearity in our samples is larger than expected, it could potentially be
used as a separate switching mechanism in our future density of states switching
experiment.
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Figure 6.13: (B) Differential reflectivity decrease at τ= 0 on the blue edge of the stop band at ω=
9709 cm−1 versus I0. The reflectivity change scales linearly with I0, consistent with a third-order
Kerr nonlinearity. The dashed line is a least squares fit to the data.

6.6 Discussion

In this Section we discuss several aspects of the optical switching of Si woodpile
photonic crystals in more detail. Firstly, the observed differences between calcu-
lated and measured linear reflectivity spectra are considered. Secondly, we estimate
the amount of induced probe absorption in our switched crystals. Thirdly, we dis-
cuss the ’switching requirements’ mentioned in Chapter 2, and compare them to
our experiments. Finally, we briefly discuss possible applications.
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6.6.1 Comparison of measured and calculated linear reflectivity

In Fig. 6.6, both a measured and a calculated reflectivity spectrum of sample WP1
were shown. There is reasonable agreement for the position, width, and peak
reflectivity of the stop band. Nevertheless, there is also an important difference:
our calculation predicts a trough in the reflectivity at 7050 cm−1, while this feature
is not observed in the experimental data.

A trough in the stop band was also observed in the spectrum in Fig. 6.14,
where the reflectivity for light polarized along the upper layer of rods is shown.
The stop band for this polarization is broad (59% FWHM). A deep and broad
trough appears in the stop band at ω= 7800 cm−1. From the width, we deduce
the quality-factor of this resonance to be Q∼14. The trough at this polarization is
related to a superstructure resonance in the crystal, see Ref. [124]. Nevertheless, the
polarization related trough does not explain the resonance in our calculation since
it occurs at a different frequency. We conclude that interpretation of superstructure
related troughs is more subtle than expected.
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Figure 6.14: Reflectivity spectra for sample WP1, square C3 measured by our OPA. The polarization
of the incident field was aligned parallel to the rods in the upper layer of rods in the crystal. The gray
oval indicates the edge of the scanning range of the OPA. A 59% broad stop band occurs between
frequencies ω= 4760 cm−1 and ω= 8700 cm−1. We observe a deep (∆R∼ 70%) and 564 cm−1 broad
resonance that is centered around ω= 7800 cm−1.
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6.6.2 Induced absorption in the switched crystal

To quantify the induced absorption in our experiments, we compare our data to
exact modal method calculations in which the n′′Si is varied from 0 to 0.1. Fig. 6.15
shows exact modal method calculations for a structurally perfect woodpile crystal.
We have assumed a five-layer woodpile crystals with rod width a= 180 nm, rod
height c̄ = 200 nm, period b̄ = 650 nm and a complex refractive index nSi= 3.45
+ in′′Si. The peak reflectivity of the stop band decreases from 97% (no absorption)
to 73% (n′′Si=0.1). In our experiments (see Fig. 6.6), the maximum decrease in
peak reflectivity of the central flat part of the stop band after switching is ∆R=
4.6% near ω= 6450 cm−1, while at the high frequency side near ω= 8300 cm−1

the decrease is much smaller ∆R= 1.6%. We compare the calculated maximum
reflectivity decrease in Fig. 6.15 to the measured decrease ∆R= 4.6%, and conclude
that the induced absorption in the experiment in Fig. 6.6 remains below n′′Si= 0.015.
Inserting n′′Si= 0.015 into Eq.A.9 yields a carrier absorption length `ca > 27 µm (at
7300 cm−1), which equals >40 unit cells and thus much more than our sample
thickness. Based on this result, we conclude that induced absorption is very small
in our switching experiments.
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Figure 6.15: Calculated stop bands for a perfect five-layer woodpile crystal with increasing absorption.
The real part n′Si of the refractive index is 3.45 for all calculations. With increasing absorption, the
peak reflectivity of the stop band decreases, and the features at frequencies above the stop band become
less pronounced.
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6.6.3 The ’switching requirements’

In Chapter 2, quantitative minimum experimental requirements were stated for
optical density of states switching experiments. Here, we briefly review the re-
quirements for the experiments presented in this Chapter.

First of all, a large enough refractive index change is needed to induce a measurable
change in the LDOS at a fixed frequency. In our experiments, we have observed
frequency shifts of ∆ω/ω= 0.54% at the blue edge of the gap, up to ω/ω= 2.4% at
the red edge of the gap (see Fig. 6.6). We will test if the lower limit of the change
(∆ω= 0.54%) is sufficient to induce large changed in the LDOS at a fixed frequency.
For small frequency shifts < 2%, the effect of changing the refractive index, can
be approximated by a rescaling of the frequency axis in a DOS spectrum [54].
Calculations in Ref. [24] of the DOS inside a perfect and infinitely large woodpile
photonic crystal predict large variations of the DOS with frequency at the edges
of the band gap. From their data we estimate that a frequency scaling by ∆ω/ω=
0.54% would cause an increase in the DOS from 0 to 80% of the vacuum DOS at
frequencies at the low frequency end of the band gap of the unswitched crystal.
At the high frequency edge of the band gap, the DOS is expected to decrease by
a similar amount upon switching. While it is important to note that our crystal is
finite in one direction, and therefore strictly speaking does not possess a true band
gap, a strong reduction of the local density of states (LDOS) has been predicted in
woodpile crystals of several unit cells thick [129]. In absence of a band gap, strong
variations of the LDOS are also expected to appear near cavity resonances. We
conclude that the refractive index change in our experiments is sufficient to induce
large and measurable changes of the LDOS inside woodpile photonic band gap
crystals.

The switching time scale of the Kerr effect in our experiment is governed by
the pulse duration of the pump pulses: 120 fs. The subsequent free-carrier effect,
also takes place within a few hundred femtoseconds. Both processes take place
at timescales well below the switching time of 1 ps required in Chapter 2. The
recombination time of the carriers on the other hand, takes place at a ∼20 ps
timescale.

The pump homogeneity length in our switched crystals was deduced from the
irradiance scaling of the stop band shift in Section 6.5.4. A 1/e absorption length
`pump= `abs= 36.3 µm was derived. This absorption length corresponds to >230
layers of rods, which is >57 unit cells. The homogeneity length of the switched
crystal is therefore `hom > 5.7 unit cells, fulfilling the homogeneity requirement
(`hom >5 unit cells.) for homogeneously switched crystals.
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The probe absorption length `ca was found to be more than 27 µm, or 44 unit cells,
which much larger than the required 10 unit cells (see Section 6.6.2). Our samples
remain transparent after switching. In conclusion, the experiments presented in
this Chapter meet all requirements that were stated in Chapter 2 for density of
states switching.

6.6.4 Asymmetry in the stop band shift

Here we discuss the asymmetry in the shift on low and high frequency edges of the
stop band shown in Fig. 6.6. Relative shifts at the stop band edges ω= 5500 cm−1

and ω= 9000 cm−1 were determined from Fig. 6.6 to be ∆ω/ω= 2.36% and ∆ω/ω=
0.42% respectively, yielding a large shift ratio of 5.6(+1.5

−1 ) between the relative shifts.
We discuss possible causes of this effect.

Figure 6.12 demonstrates how the refractive index change depends on probe
frequency through the Drude model. The observed change of ∆nSi/nSi= -0.57%,
at the blue edge ω= 9425 cm−1 of the stop band corresponds to a larger change
of -1.7% at the red edge of the stop band ω= 5500 cm−1. The shift of the red stop
band edge is thus expected to be 3.0 times as large as the shift of the blue edge. In
the limit of small changes, the induced shift ∆ω/ω of the stop band edges scales
linearly with ∆n′Si (see Fig. 6.11B). The observed asymmetry in stop band shift can
therefore be partly attributed to the effect of Drude dispersion.

An additional effect that artificially influences the shift ratio is induced absorp-
tion in the crystal. On the red edge, induced absorption will appear as an increase
the measured blue-shift of the stop band edge, while on the blue edge, induced
absorption will decrease the amount of measured shift. Since absorption has an
opposite effect on the shift of red- and blue edge, it will result in an elevated shift
ratio, and the ratio in real crystals, will thus be larger than predicted from models
that do not include induced absorption. The combined effect of Drude dispersion
together with the induced absorption are likely the cause of the large difference in
frequency shift on both stop band edges.

6.7 Conclusions and outlook

In this Chapter, we have demonstrated ultrafast switching and recovery of Si
woodpile photonic band gap crystals at telecom wavelengths by all-optical elec-
tronic Kerr- and free-carrier effects. Broadband differential reflectivity spectra in
the range of the band gap were measured as a function of probe delay time. The
observed large reflectivity changes are studied as a function of pump irradiance.
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From our analysis we clearly separate optically excited free-carrier and a Kerr non-
linearity. The free-carrier induced frequency shift of the band gap as a function of
pump irradiance agrees well with exact modal method calculations which include
the Drude model.

In our switching experiments, we find unexpected non-monotonic physics: at
short fs times, the photonic gap narrows, followed at longer ps times by a blue-shift
of the gap. In other words, the blue edge of the gap shifts to lower frequency within
the pulse duration, and subsequently shifts to higher frequency compared to the
unswitched state, while the red edge only shifts to higher frequency. Consequently,
the density of states near the blue edge of the band gap behaves more complex than
predicted [54]. Consequently, we propose that a single pulse suffices to switch the
LDOS on by the Kerr effect, and rigorously off by free carriers on times governed
by the pulse duration. Clearly, such versatile temporal density of states control
will open exciting opportunities for timed QED light sources whose emission is
switched in absence of a cavity. The experiments presented in here are an important
step towards further understanding and dynamic control over the optical density
of states in photonic crystals.
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Chapter 7
Ultrafast switching of Si inverse
opals

We present ultrafast optical switching experiments on Si inverse opals. Switching is
achieved by exciting free carriers by a two-photon process. We demonstrate large and
ultrafast frequency shifts of the stop bands in the frequency range of second order Bragg
diffraction where the photonic band gap is predicted. We compare our results to band
structure calculations and deduce a large refractive index change of ∆n′Si/n

′

Si > 2%. We
estimate the corresponding dynamic change of the optical density of states to be sufficiently
large to allow density of states switching experiments in which the lifetime of internal lights
sources is switched.

7.1 Introduction

There are several reasons why Si inverse opals are interesting photonic crystals for
ultrafast all-optical switching experiments. Firstly, the crystals have a sufficiently
large refractive index contrast for a band gap to open up in the range of second
order Bragg diffraction [21]. In the region of the gap, switching is expected to lead
to ultrafast changes in the density of states [54]. Secondly, their fabrication does not
involve complicated lithographic techniques, which has allowed inverse opals to
be studied extensively, see Section 1.1.5. The abundance of prior static reflectivity
experiments helps us to interpret our new switching data [30, 32–35]. Furthermore,
band structure calculations for inverse opals are at hand [16, 130], facilitating the
interpretation of the observed stop bands in our spectra. Thirdly, experimental
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control of the dynamics of spontaneous emission from quantum dots inside static
photonic crystals was recently demonstrated for the first time with inverse opals [8].
We therefore expect that by controlling the refractive index of Si inverse opals, the
spontaneous emission of light sources inside the crystal can indeed be switched on
and off [54]. Finally, calculations of the density of states [54], and recent calculations
of the local density of states inside inverse opals (see Ref. [131]) allow us to predict
the effect of switching on the emission of light sources inside inverse opals.

A first demonstration of all-optical switching in 3D photonic materials was
given by Ref. [90], who reported reflectivity changes in the first order stop band of
opals that were infiltrated with Si. Their experiment revealed a serious experimen-
tal constraint; due to a short Drude damping time for amorphous Si τDrude= 0.5 fs,
the maximum feasible refractive index change is limited by the amount of induced
absorption. Moreover, since the experiments were performed at probe frequencies
above the electronic band gap of Si, the transparency of the unswitched crystal is
limited by intrinsic absorption. The first switching experiments in Si inverse opals
were reported by Ref. [91], who observed large changes of the transmission in the
range of first order Bragg diffraction. The induced absorption in their crystals was
strongly reduced by annealing the Si-backbone at a high temperature, causing τDrude

to increase drastically from 0.5 fs to 10 fs. In the resulting annealed Si inverse opal,
large changes in refractive index could be induced, while the absorption remains
small.

In this Chapter, we will discuss the first ultrafast switching experiments on
inverse opals in the range of second order Bragg diffraction in the vicinity of the
expected photonic band gap. Ultrafast switching of Si inverse opal photonic crystal
in this frequency range is expected to lead to exciting new physics, in particular to
ultrafast changes in the local density of states [54].

7.2 Sample description

7.2.1 Fabrication method

The Si inverse opal photonic crystal that was used in our experiments was fabricated
by the Norris group at the University of Minnesota and further processed by Jeroen
Kalkman from the FOM Institute AMOLF in Amsterdam. The sample was made
by infiltrating Si in a silica opaline template: the template was grown on a Si
substrate by a vertical controlled drying method [132]. An ethanolic suspension of
pre-shrunk silica spheres with a radius of rsphere= 469 nm was used to ensure that
the resulting inverse opal has a band gap in the IR region [34]. The resulting silica
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template extends over 5×5 mm, and was infiltrated with Si using chemical vapor
deposition at 500 ◦C. Subsequently, the samples were annealed for one hour at 750
◦C in vacuum. During the annealing process, the amorphous Si in the structure
crystallizes into poly-Si, as was confirmed by Raman scattering measurements on
a separately deposited thin layer of polycrystalline Si that served as a reference
sample [111]. The dielectric constant of polycrystalline Si was also measured on
the reference sample and was found to be εSi= 12.75 at λ= 1530 nm by transmission
measurements [111, 133]. Finally, the SiO2 template was etched away by a buffered
hydrofluoric solution in 8 minutes (6.8% HF, 34.6% NH4F, 58.6 % H2O), resulting
in a high-quality air-sphere crystal that is supported by a poly-Si backbone.

Figure 7.1: Top view SEM image of the Si inverse opal. The scale bar equals 20 µm. The lattice
parameter was measured to be a= 1427±20 nm after correcting for tilt [134]. The lattice steps,
indicated by arrows, clearly show that the sample consists of 7 layers of air spheres. The lattice
structure appears to be fcc. Image courtesy of Jeroen Kalkman.

7.2.2 Structural analysis

SEM images of the Si inverse opal crystal, such as the one shown in Fig. 7.1, were
analyzed by us to characterize the sample dimensions and quality. The top surface
of the crystal corresponds to the {111} plane of the fcc-structure. From the SEM
image in Fig. 7.1, we determine the thickness of the sample to be 7 layers or 2 1

3 unit
cells, by counting the monolayer steps, indicated by arrows. The typical distance
between lattice defects in the crystal was found to exceed 30 µm, or ≈20 lattice
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periods, indicative of an excellent crystal quality.
In a light scattering experiment, a HeNe laser beam at normal incidence was

used to illuminate various positions on the crystal. The resulting diffraction pattern
consists of three pairs of diffraction spots in a hexagonal arrangement. The spots
correspond to the three grating modes of the crystal, the diffraction angle of each
of the spots is related to a symmetry in the crystal’s top layer. We made three
important observations: firstly, we found that the three diffraction angles vary by
less than 5% with position. Hence, from the grating mode data, we estimate that
the in-plane lattice parameter is constant within 5% over the sample. Secondly, the
difference in diffraction angle between the three lattice directions was also less than
5%, indicating that the lattice of the top layer is symmetrical. Finally, the lateral
orientation of the lattice was also found to vary by less then 5◦with sample position.
We therefore conclude that the top layer of the crystal is indeed hexagonal, and has
one preferred lattice orientation.

We have obtained the microscopic structure of our crystals from high resolution
scanning electron micrographs, see Fig. 7.2
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Figure 7.2: High resolution SEM image of the Si inverse opal after HF etching. The scale bar is 2
µm. The arrow indicates an almost filled interstice in the structure. From this image we estimate the
radius of the windows that interconnect the air spheres to be rcyl= 0.16±0.05 rsphere. Image courtesy
of Jeroen Kalkman.

are can be identified with fcc stop bands by comparing our reflectivity data to band
structure calculations for fcc crystals.

7.3 Linear reflectivity measurements

7.3.1 FT-IR reflectivity measurements

The photonic properties of the crystal were measured by linear reflectivity exper-
iments with a white light Fourier Transform Infra Red (FT-IR) spectrometry setup
similar to the one used by Ref. [113]. Broadband, unpolarized light of a halogen
lamp was first led through a spectrometer (Biorad). Next, the beam was spatially
filtered by a 200 µm pinhole, allowing it to be focussed in a 150 µm FWHM spot
on the sample by a glass objective with numerical aperture NA= 0.12. The inci-
dent direction was normal to the {111} planes of the fcc lattice of the crystal, that
correspond to the Γ-L direction in the band structure of the crystal. The reflected
light was detected with a thermo-electrically cooled InAs photodiode that has a
broadband spectral response of 2900 cm−1 to 10000 cm−1. All spectra were refer-
enced to that of a gold mirror to obtain an absolute reflectivity calibration. The
detection range of the setup is limited by absorption in the glass components for
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frequencies below 4000 cm−1, allowing measurements in the range of second order
Bragg diffraction only. Typical reflectivity data taken on two different positions on
the sample, are plotted as solid and dashed curves in Fig. 7.3. In all measurements,
we identify two clear peaks around ω= 5200 cm−1 and ω= 6000 cm−1 with a typical
reflectivity of ≈60%. The peak at ω= 5200 cm−1 probably corresponds to the stop
gap between the fifth and the sixth band in the band structure shown in Fig. 7.4(b).
The peak at ω= 6000 cm−1 probably corresponds to the stop gap between the eight
and ninth band, and is part of the band gap of the crystal. Finally, the peak at ω=
6600 cm−1 probably corresponds to the stop gap between the tenth and eleventh
band. At 7200 cm−1, an additional peak appears that resembles the feature ob-
served in reflectivity from the {100} planes of similar Si inverse opals at the same
relative frequency a/λ= 1.05 by Ref. [35]. Possibly, part of our crystal was oriented
in the {100} direction in the measurement.

We observe a variation in peak reflectivity of all peaks with position on the
sample, possibly due to local variations in the density of lattice defects throughout
the crystal or by variations in the Si infiltration. The center frequency of the
two prominent peaks, as well as the center position of the additional features,
however, were found to be independent of position on the sample, which leads to
the important conclusion that the crystal lattice is indeed the same everywhere in
the sample.

7.3.2 Laser reflectivity measurements

The linear reflectivity experiments were reproduced in our pump-probe setup used
in the switching experiments (see Chapter 2) with a smaller ≈28 µm FWHM focus.
The polarized, Gaussian output beam of our optical parametric amplifier (Topas
OPA) was focussed onto the crystal by a 0.05 NA achromatic lens. The OPA spectra
cover the complete stop band in the range of second order Bragg diffraction, since
the output frequency of the OPA was scanned over both the idler- (3850-6250 cm−1)
and signal range (6250-8620 cm−1). The resulting stitched reflectivity spectra are
displayed as symbols in Fig. 7.3. The stitching results in a small discontinuity in
the spectra near ω= 6250 cm−1. The resulting mismatch is indicative of the typical
fixed scaling error in the measured OPA reflectance (∆R≈ 5%). The OPA spectra
were taken within 150 µm of the same positions A and D as the FT-IR spectra.
The OPA reflectivity spectra strongly resemble the FT-IR spectra; all peak positions
agree within ∆ω/ω< 2.5%. The good agreement validates a one-to-one comparison
between our FT-IR and OPA data.

Next, we study the height of the reflectivity peaks in both the FT-IR and OPA
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experiments. The maximum difference in peak reflectivity between the FT-IR
and OPA data is ∆R= 15%, which is in agreement with the accumulated scaling
errors and the fact that the spectra were taken from slightly different positions on
the sample within ≈150 µm. The reflectivity variations with sample position in
the OPA data are large, up to ∆R= 10% compared to the variations in the FT-IR
spectra, see Fig. 7.3. The larger fluctuations may be related to the small probe
focus in the OPA experiments: ≈28 µm FWHM. Since the FT-IR focus is typically
>150 µm FWHM, FT-IR reflectivity data is obtained from several crystal domains
simultaneously, resulting in an averaged reflectivity spectrum. The OPA focus,
however, is small enough to probe single crystal domains that are typically 30 µm
in size (see Section 7.2.2). Consequently, OPA spectra are much more sensitive to
local variations in the crystal structure than the FT-IR spectra, consistent with the
larger reflectivity variations in the OPA data.

Figure 7.3: Linear reflectivity spectra in the (111) direction of a Si inverse opal at two positions A
and D on the sample that are spaced by 1 mm. Solid and dashed curves: measured with an FT-IR
setup with a NA= 0.12 objective lens (focal width ≈150 µm). Dotted curve: FT-IR setup with a
NA= 0.28 Cassegrain objective, measured on position A in the center of the sample (focal width ≈75
µm). Symbols: linear Topas OPA reflectivity measurements at the same position on the sample (focal
width ≈28 µm.)

105



Ultrafast switching of Si inverse opals

7.3.3 Extended frequency range interferometry

To allow a simultaneous measurement of the first- and second order stop bands,
the frequency range of the FT-IR reflectivity setup was extended further into the
infrared, to ω= 2900 cm−1 to 10000 cm−1. All absorbing glass optics in the beam
path were replaced by non-absorbing reflecting components. Apart from being
non-absorbing, an additional advantage of reflecting components is the complete
absence of dispersion and chromatic aberrations in such components, which en-
sures that light of all frequencies is focused on the same spot on the sample. A
white light beam (halogen lamp) was spatially filtered by a pair of parabolic mirrors
and a 200 µm pinhole. A 2 µm thin pellicle film with high transmission down to
frequencies of 2500 cm−1 was used to replace the IR-absorbing quartz beam split-
ter. The detection range of the improved setup was limited by the broad spectral
response of the InAs photodiode (ω= 2900 cm−1 to 10000 cm−1).

A Cassegrain reflecting objective (NA= 0.28) was used to focus the light onto
a spot of ≈75 µm FWHM the sample. Inside the objective, the light only passes
through air, eliminating any IR-absorption or dispersion. A side-effect of the large
NA objective is that a considerable part of the diffusive reflectivity is collected
by the objective, since it effectively acts as an integrating sphere. This results in
an elevated background reflectivity of about 30%, compared to 5% in the small-
NA experiments, see dashed curve in Fig. 7.3. Similar results are apparent in
Ref. [33], but were neither mentioned nor analyzed. Due to the design of the
Cassegrain reflecting objective, a light collection cone centered around the optical
axis is blocked. The measured spectra are therefore reflectivity spectra integrated
between the limiting angles of the objective: 10◦ and 16◦. Consequently, the
reflectivity measurements are done at an effective angle of about 13◦, which does
not truly correspond to the Γ-L direction in reciprocal space, since the 0◦ region is
excluded. Nevertheless, we surmise that a comparison is still warranted, since the
Bragg condition for the {111} planes is blue shifted by only 2.6%, which results in
a negligibly small (≈2.6%) blue shift of the stop band. The center frequency of the
observed stop bands will therefore not differ much from the spectra obtained with
a glass objective.

The extensive detection range in our reflecting optics setup allows a broadband
measurement that spans both the first order peak and the peaks in the region of
second order Bragg diffraction (see Fig. 7.4(a). We observe an intense first order
reflectivity peak atω= 3155 cm−1 with a maximum reflectivity of 80% and a relative
width of ∆ω/ω= 17.7%. The feature near ω= 4200 cm−1 resembles the feature
observed in the reflection from the {100} planes at the same relative frequency a/λ=
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0.6 by Ref. [35]. Possibly, some crystallites are oriented in the {100} direction in
the measurement. The additional peaks at frequencies 5211 cm−1 and 5893 cm−1

with peak reflectivities R= 69% and R= 64% respectively, were also observed in
earlier spectra (see Fig. 7.3). The reflectivity in the second order range is compared
to the glass objective data in Fig. 7.3. Both the center positions as well as the
maximum reflectivity of the peaks agree well. In Section 7.3.4, the observed peaks
are identified with stop bands in the band structure of the fcc crystal.

Figure 7.4: (a) Linear FT-IR reflectivity measurements with a NA= 0.28 Cassegrain objective,
measured on position A (focal width ≈75 µm). The observed peaks in the range of second order Bragg
diffraction are labeled I, II, and III. (b) Photonic dispersion relation organized into a band structure for
fcc close packed air spheres (radius r= a/

√
8) surrounded by spherical Si shells (radius 1.15) connected

by cylindrical windows (radius 0.264r). The volume fraction of solid material is about ΦSi= 21.3%
(εSi= 12.74). The frequency scale on panel (b) corresponds to the one on (a) for lattice parameter a=
1427 nm

7.3.4 Photonic band structure

To interpret the origin of the peaks observed in Fig. 7.4(a), we have calculated the
photonic band structure by a plane-wave expansion method described in detail
in Ref. [16]. The model uses the structural constrained input parameters that
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were obtained in Section 7.2. The resulting photonic band structure is plotted in
Fig. 7.4(b). We find stop gaps in the Γ-L direction between bands 2 and 3, bands
5 and 6, bands 8 and 9, and bands 10 and 11. The stop gap between bands 8
and 9 is part of the band gap of an infinite perfect crystal [105]. We compare the
positions of the calculated stop gaps indicated by gray rectangles in Fig. 7.4(b) to
the measured center positions of the peaks in the region of second order Bragg
reflection in Fig. 7.4(a). In the scaling of the frequency axis of the measured data,
the measured lattice parameter of a= 1427 nm was used. The good agreement
between the measured peak position and the calculated stop gap frequencies in the
second order range is striking, particularly since no freely adjustable parameters
were used in the calculation.

Nevertheless, we observe two important inconsistencies in the range of first
order Bragg diffraction. Firstly, the measured peak appears at ω= 3199 cm−1 or
a/λ= 0.456, as much as 8% below the calculated center frequency of the L-gap a/λ=
0.495. We name three possible causes of this large disagreement:
i) the refractive index of Si in the crystal is higher than the value used in the calculations.
ii) the Si filling fraction ΦSi in the crystal is larger than the value used in the calculations.
iii) the lattice parameter normal to the sample interface is larger than the one used in the
calculations.
Secondly, the measured width of the first order stop band ∆ω/ω= 17.7% is smaller
than the calculated width ∆ω/ω= 19.5 %1. Two possible causes of this mismatch
are:
i’) the refractive index of Si in the crystal is lower than the value used in the calculations.
ii’) the Si filling fractionΦSi in the crystal is smaller than the value used in the calculations.

Strikingly, it appears to be impossible to get both the center frequency as well as
the width of the first order peak right, as this would require opposite corrections to
either i and i’ or ii and ii’. We have also tried to get a better agreement for the first
order peak by reducing the volume fraction ΦSi while increasing nSi. While this
procedure results in a much better agreement for the first order peak, we lose the
agreement for the peaks in the range of second order Bragg diffraction. Therefore,
the only reason left is iii; the structure may not be cubic close-packed, but slightly
rhombohedral. The corresponding band structure will therefore differ from the
one for fcc inverse opals shown in Fig. 7.4(b). It is unlikely that reason iii will
affect the first order peak, without changing the peaks in the second order region.
Therefore, we speculate that there may be other unknown causes for the observed

1Usually, measured peaks are broader than calculated corresponding stop gaps, notably due to finite
size effects and extinction.
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mismatch. We exclude Si dispersion as a cause of the mismatch since Si exhibits
normal dispersion in this frequency region [96]: the refractive index in the first
order range would be reduced, which would cause the calculated stop gap to shift
to higher frequencies, increasing the mismatch.

A similar disagreement between reflectivity measurements and band structure
calculations between first and second order diffraction in Si inverse opals exists in
the data of Ref. [35], who also demonstrates a first order reflectivity peak that is
both narrower and red shifted compared to the calculated L-gap. Our calculations
are in good agreement with those of Ref. [35]. Their explanation for the effect is
that dispersion was not taken into account in the calculations. In the previous
paragraph, however, we ruled out this possible reason. Ref. [34] also reported
reflectivity spectra of similar Si inverse opals in both first and second order ranges;
all peaks agree well with band structure calculations. In this case, however, the
measurements in the first and second order frequency ranges originate from two
separate samples with different lattice parameters, and thus potentially different
structural properties. In conclusion, there is still no definitive explanation for
the inconsistency between band structure calculations and reflectivity experiments
for Si inverse opals. We propose that the mismatch may be caused by a slightly
rhombohedral unit cell, which will result in a modified band structure. A distortion
of the fcc structure is consistent with other reports that vertical controlled drying
yields opal structures that deviate from fcc [37].

Nevertheless, in the frequency range of second order Bragg diffraction, where
our switching measurements have taken place, we find good agreement between
our model and measurements without free parameters. We therefore neglect the 8%
frequency mismatch of the first order peak. In the next Section 7.4, we will compare
our experimental data to band structure calculations to quantify the amount of
switching in our crystals.

7.4 Pump-probe reflectivity measurements

7.4.1 Differential reflectivity

Ultrafast switching experiments with our independently tunable OPAs were car-
ried out on the Si inverse opal crystals described in Section 7.2. The reflectivity
data covers the complete range of second order Bragg diffraction in our sample.
The measured spectra consist of multiple peaks that were identified with stop gaps
in Fig. 7.4. The reflectivity was studied as a function of probe delay τ over a 1800
cm−1 broad probe frequency range ωprobe. A two-photon process was used to ex-
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cite carriers in order to maximize the homogeneity of the switched crystal. The
pump frequency that was chosen depends on the probe frequency range, to allow
polarization based separation of pump and probe light (see Chapter 2). At low
probe frequencies ωprobe < 6250 cm−1, a high pump frequency ωpump= 6450 cm−1

was chosen. For probe frequencies ωprobe > 6250 cm−1, the pump frequency was
reduced toωpump= 5000 cm−1, below the red edge of stop band I. In all experiments,
the probe irradiance was kept at least 10 times lower than the pump irradiance to
avoid artifacts due to self modulation of the probe light. In the experiment shown
in Fig. 7.5, the pump irradiance was set to I0= 25±3 GWcm−2 for measurements on
stop band III with ωpump= 5000 cm−1 , and to I0= 4±1 GWcm−2 for experiments on
stop bands I and II whereωpump= 6450 cm−1. Since the density of excited carriers Neh

is proportional to I2
0β/ωpump (see Appendix A) we can estimate the ratio of excited

carrier density on both frequency ranges. Using the dependence of β on pump
irradiance (Appendix C), we deduce that the expected carrier density for the data
on stop bands I and II is about 12±4 times larger than the carrier density for the
experiments on the stop band III.

The resulting differential reflectivity of the crystal ∆R/R(τ, ωprobe) at ultrafast
time scales is represented as a three-dimensional surface plot in Fig. 7.5. Near stop
bands I, II and III, we observe clear dispersive shapes in the differential reflectivity,
caused by a shift of the peaks towards higher frequency. At the low frequency
edge of stop band I around 5260 cm−1, the reflectivity displays a large and ultrafast
decrease ∆R/R= -40% within 500 fs. At ω= 5893 cm−1, reflectivity of stop band II
decreases by ∆R/R= -20%, due to a combination of a shift combined with some
induced absorption in the sample. At frequencies above stop band III ω > 7000
cm−1, we observe additional dispersive curves that are related to the large shift
of the reflectivity features above the stop band. The observed strong variations
provide evidence of a large change in refractive index. Unlike in the experiments
with woodpile structures (see Chapter 6), we do not observe a Kerr effect at zero
time delay.

7.4.2 Switched spectra at fixed probe delay

The effect of the excited free carriers on the stop band is studied in more detail
by measuring the reflectivity changes at a fixed time delay of τ ≈ 1 ps. Fig. 7.6
(upper panel) shows measurements of the pumped and unpumped reflectivity in
the range of second order Bragg diffraction of the sample at normal incidence. Due
to dispersion in the probe path of the setup, there is a < 500 fs variation of the
delay time with frequency. The pump irradiance was set to I0= 24±2 GWcm−2 for
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Figure 7.5: Differential reflectivity as a function of both probe frequency and probe delay. The pump
frequency and peak irradiance were ωpump= 6450 cm−1 and I0= 4±1 GWcm−2 on the red part, and
ωpump= 5000 cm−1 and I0= 25±3 GWcm−2 on the blue part of the spectrum. The probe delay was
varied in small steps of ∆t= 50 fs on the blue edge and in steps of ∆t= 500 fs at the red edge. The
probe wavelength was tuned from 1600 to 2100 nm in ∆λ= 10 nm steps in the low frequency range,
and in 5 nm steps in the high-frequency range.

measurements on the blue part of the stop band with ωpump= 5000 cm−1 , and I0=

11±2 GWcm−2 on the red part of the stop band with ωpump= 6450 cm−1. Using the
analysis in Section 7.4.1, we estimate that the excited carrier density Neh on the red
and blue parts in Fig. 7.6 is roughly equal; the ratio is less than 1.5±0.4. Since the
difference in carrier density for both data sets is relatively small, Fig. 7.6 can be
used to compare the effect of excited carriers on both stop band edges.

The unpumped spectrum in Fig. 7.6 (upper panel) demonstrates a broad stop
band with a relative width ∆ω/ω= 28% FWHM that is centered around ω= 5930
cm−1. The stop band consists of two sub peaks at frequencies ω= 5320 cm−1 with
maximum reflectivity R= 51% and ω= 5950 cm−1 with maximum reflectivity R=
60%. The data are in good agreement with the FT-IR reflectivity measurements that
are plotted as a dashed line in the same Figure.
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The switched reflectivity spectra on the same sample are shown as closed circles
in Fig. 7.6 (upper panel). The entire stop band has shifter towards higher frequency,
indicating that the average refractive index of the crystal has been reduced. The
stop band has shifted to higher frequency by as much as ∆ω/ω= 1.5% at the red
edge, and by ∆ω/ω= 0.7% at the blue edge of the stop band. The shift of the
feature above the stop band at 7700 cm−1 (∆ω/ω= 1.2%) will be used in the analysis
in Section 7.4.5 to compare the experimental shift to band structure calculations.
Importantly, both the low and high frequency edge of the stop band have shifted,
indicating the absence of separate dielectric and air bands that were present in the
Bragg stack experiments in Chapter 5. The observed shift of the entire stop band
is consistent with predictions by Ref. [54].

The changes in reflectivity are even more pronounced in the differential reflec-
tivity of the sample that is plotted in Fig. 7.6 (lower panel). On the red edge of
stop band I, at ω= 5110 cm−1, we observe a large decrease in the reflectivity by
∆R/R= -50%. On the blue edge of stop band III, at ω= 7020 cm−1 the differential
reflectivity amounts to ∆ R/R= +40%. In between stop band I and II, and close to
the features above stop band III in the rangeω= 7000-9000 cm−1, the frequency shift
causes dispersive curves that were already observed in Fig. 7.5. In conclusion, the
excitation of free carriers in the backbone of the crystal causes a large blue shift of
up to 1.5% of all 3 stop bands in the range of second order Bragg diffraction as well
as of features above this range.

7.4.3 Switching time traces

The large and ultrafast shift of the stop band with time is studied in more detail
in Fig. 7.7. We have measured the frequency position of the red edge of the stop
band at ω= 5045 cm−1, at a large range of delay times after excitation. The pump
parameters are: ωpump= 6450 cm−1, I0= 4±1 GWcm−2. From each spectrum, the
frequency position of the red edge of the stop band was determined at the foot of
the peak at R= 15% (indicated by the arrow in Fig. 7.6 (upper panel)), to minimize
the contribution of induced absorption to the observed shift. The relative frequency
shift ∆ω/ω is plotted versus probe delay in Fig. 7.7. We observe a large shift of
the stop band edge from 0 to ∆ω/ω= 1.1% within 500 fs. The effect subsequently
decreases exponentially with a decay time of τ= 21±4 ps (least squares fit) to a small
residual shift∆ω/ω= 0.1%. The short relaxation time is in good agreement with the
typical carrier relaxation time of 18 ps that we found in poly-Si woodpile samples
studied in Chapter 6. The decay times are much faster than carrier relaxation
times in bulk Si, since our photonic crystals are made of poly crystalline silicon,
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Figure 7.6: (upper panel) Unswitched (open triangles) and switched (closed circles) reflectivity
spectra of the sample at normal incidence. In experiments on the red part of the spectrum (4500
cm−1 < ωprobe <6250 cm−1), the pump frequency was chosen to beωpump= 6450 cm−1. In experiments
on the blue edge (6250 cm−1 < ωprobe <8620 cm−1), the pump frequency was lowered to ωpump=

5000 cm−1. The pump irradiance for the switched spectrum was I0= 11±2 GWcm−2 on the red part
and I0= 24±2 GWcm−2 on the blue part of the stop band. The switched spectra were measured at
a pump-probe time delay of ≈1 ps. We observe a large blue shift of up to 1.5% of the complete stop
band in the range of second order Bragg diffraction as well as off features outside the stop band.
The dashed blue line is a FT-IR reflectivity spectrum that was measured on the same position on the
sample (within 100 µm). (lower panel) Differential reflectivity spectrum. A blue shift of the peak at
ω= 5200 cm−1 is illustrated by strong decreases and increases of the reflectivity below and above this
frequency respectively. Similar variations with frequency appear at frequencies above 7000 cm−1, and
are related to a blue shift of the reflectivity features in that frequency range.

whose lattice defects and grain boundaries act as efficient carrier recombination
traps [110]. The relatively fast decay time implies that switching could potentially
be repeated at a rate above 25 GHz, which is relevant to possible future switching
and modulation applications.

7.4.4 Induced probe absorption

Besides a frequency shift which is related to a change in the real part of the refractive
index, we also observe the effects of induced absorption, which are related to an
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Figure 7.7: Blue shift of the red edge of the stop band at ω= 5075 cm−1 plotted versus probe delay
(symbols). The pump frequency and irradiance were ω= 6450 cm−2 and 4±1 GWcm−2 respectively.
The large shift amounts to ∆ω/ω= 1.1% within the first 500 fs. The subsequent exponentially decay
is well fitted with a single exponential decay ∆ω/ω= A+ exp(−t/τ) (red curve), where the decay
time τ= 21±4 ps, and the small offset of ∆ω/ω is A= 0.13%.

increase in n′′Si. The induced absorption manifests itself in a reduction of the reflec-
tivity maximum after excitation. We therefore plot in Fig. 7.8 the relative decrease
in reflectivity maximum of stop band II at frequency ω= 5882 cm−1 as a function of
delay time. The data were measured in the same run as the experiment shown in
Fig. 7.7. The maximum decrease in reflectivity of the stop band directly after excita-
tion, is ∆R/R ≈ -21%. Note that this decrease is not only due to absorption but also
to a shift. In Chapter (6), the reduction in peak reflectivity of the woodpile samples
was related to the induced absorption through exact model method calculations
shown in Fig. 6.15. In absence of a stable real space model for Si inverse opals,
we estimate the amount of induced absorption by comparing the observed ∆R/R=
-21% to the calculated decrease in the Si woodpiles, see Fig. 6.15. We estimate that
the upper bound of the induced absorption in the Si backbone of the inverse opal
crystal is n′′Si < 0.1. Using the Si volume fraction ΦSi= 21.3%, obtained in 7.2.2, we
estimate the resulting probe absorption length in our switched inverse opal to be
`abs > λ/4πΦSin′′Si= 6.3 µm, comparable to the thickness of the sample L= 7×d{111}=

5.7 µm. We conclude that for refractive index changes larger than 2%, the sample
may lose its transparency. Fortunately, smaller changes in the refractive index will
suffice to considerably change the density of states (see Section 7.5.3), and thus less
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absorption will occur.
Fig. 7.8 also shows how the reflectivity change evolves in time after the initial

decrease to ∆R/R = −21%. The effect decays exponentially to ∆R/R = −10% with
a decay time of 4 ± 1 ps, followed by a much slower decay with about ns decay
times. The combination of a fast and a much slower decay indicates that there
are two separate relaxation processes involved in our sample. The fast relaxation
process is likely related to the fast recombination of carriers in the poly-Si backbone
of the crystal that was discussed in the previous Section. It is presently unclear
why the induced absorption decays about five times faster than the induced stop
band shift shown in Fig. 7.6, which was obtained from the same set of spectra.
The subsequent, much slower recombination process at ns times may be related
to recombination of excited carriers in the underlaying Si-wafer substrate. In
bulk Si at the carrier densities in the range of our experiment (1019 cm−3), carrier
recombination is dominated by Auger effects, with recombination times of the
order of 10 ns [135]. Any change in the substrate is likely to change the magnitude
of the reflectivity of the whole sample, while it should not affect the frequency
position of the stop band, which is related to changes in the poly-Si material in the
photonic crystal only. This hypothesis is consistent with our data, since we find
that the slowly decaying reflectivity decrease in Fig. 7.8 is still large after 100 ps,
while the residual effect on the stop band shift in Fig. 7.7 is almost negligible.

7.4.5 Irradiance scaling

To verify that the observed shifts are caused by free carriers generated by two-
photon absorption, we study how the observed switching effects scale with pump
irradiance. Switched reflectivity spectra were taken at position A on the sample.
The shift of the red edge at ω= 5075 cm−1 was determined at a reflectivity level
R= 20% at 1 ps after excitation. The pump frequency was ωpump= 6450 cm−1. We
plot the measured frequency shift versus irradiance squared as symbols in Fig. 7.9.
The measured shift is proportional to the pump irradiance squared up to I2

pump=

300 GW2cm−4. The data point at high pump irradiance I2
pump= 520 GW2cm−4, lies

below the line, likely due to induced absorption. The maximum observed shift of
the stop band is as much as ∆ω/ω= 2.8% at I0= 21 GWcm−2.

We have also measured the shift of the small reflectivity peak that appears just
above the blue edge of stop band III at ω= 7742 cm−1 at 1 ps after excitation. The
pump frequency was ωpump= 5000 cm−1. Data of frequency shift versus irradiance
squared is shown as symbols in Fig. 7.10. The measured shift is proportional to
the pump irradiance squared up to I2

pump= 400 GW2cm−4. The maximum observed
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Figure 7.8: Differential reflectivity decrease at ω= 5882 cm−1 versus probe delay. The pump
frequency and irradiance were ω= 6450 cm−2 and 11±2 GWcm−2 respectively. The large decrease
amounts to ∆R/R= -21% within the first 500 fs, followed by an exponentially decay that is well fitted
with a single exponential decay ∆ω/ω= A+ Bexp(−t/τ) (curve), with amplitude B= -11%, decay
time τ= 4.5±0.5 ps, the offset of ∆R/R is A= -10%. The remaining offset in ∆R/R: A= -10% appears
to decay slowly at ns times and is attributed to the substrate.

shift in the linear part of the curve at I0= 18 GWcm−2 is ∆ω/ω= 1.1%, about three
times lower than the maximum shift of the red edge.

Both at the low frequency edge, as well as at high frequencies, the shift of
the stop band scales linearly with the pump irradiance squared. From this we
conclude that a two-photon process is the dominant excitation mechanism in our
experiments. The induced effects remain after the pump pulse, and decay at a time
scale in between the decay time for free carriers in amorphous- [128] and single
crystalline Si [135]. We therefore conclude that the changes are indeed caused
my free carriers. The induced free-carrier effects are also consistent with Drude
dispersion since the changes are smaller at higher frequencies.

7.4.6 Comparison to band structure

We want to relate the measured frequency shifts shown in Fig. 7.9 and 7.10 to a
refractive index change in the Si backbone of our crystals. For that reason, we have
performed band structure calculations similar to the one shown in Fig. 7.4. The
refractive index in the calculations was varied to emulate our experiment in a quasi-
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7.4. Pump-probe reflectivity measurements

Figure 7.9: (symbols) Measured shift of the red edge of stop band I versus pump irradiance squared
measured at a fixed reflectivity of R= 15% at 1 ps after excitation. The pump frequency was ω=
6450 cm−2. The quadratic scaling with irradiance confirms a two-photon excitation process. (curve)
Calculated shift of the upper edge of the fifth band in the Γ-L direction in the band structure in Fig. 7.4
plotted versus∆n′Si/n

′

Si. The upper x axis was scaled such that the theory coincides with the measured
data, directly relating the pump irradiance to the refractive index change.

static approximation. The red edge of stop band I in the Γ-L direction corresponds
to the fifth band in the band structure shown in Fig. 7.4(b). The calculated shift of
the upper edge of the fifth band is plotted in Fig. 7.9 as a function of∆n′Si/n

′

Si (upper
scale) in the same graph as the measured shift of the red edge of stop band I. Note
that the calculated data shows that in the range of our experiment, the frequency
shift of the red edge of the stop band scales linearly with ∆n′Si/n

′

Si up to -2.0%. To
compare the calculated and measured frequency shifts, we set both ∆ω/ω axes to
the same scale, and varied the scale of ∆n′Si/n

′

Si until the calculated curve matches
the measured data. The upper x-axis now directly relates a measured shift to a
refractive index change. At ωpump= 6450 cm−1, I0= 14 GWcm−2 for instance, we
find that the refractive index at the red edge (ω= 5075cm−1) changes by as much as
∆n′Si/n

′

Si= -2.0%.

We follow a similar procedure to quantify the refractive index change at the blue
edge of the stop band. Although the shift of the feature atω= 7742 cm−1 in Fig. 7.10
does not directly correspond to a stop band in the band structure, we compare
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Ultrafast switching of Si inverse opals

Figure 7.10: (symbols) Measured shift of the small reflectivity peak at ω= 7742 cm−1 at 1 ps after
excitation versus pump irradiance squared. The pump frequency was ω= 5000 cm−1. The quadratic
scaling with irradiance confirms a two-photon process. (curve) Calculated shift of the upper edge
of the 11th band in the band structure in Fig. 7.4 in the Γ-L direction plotted versus ∆n′Si/n

′

Si. The
upper x axis was scaled such the theory coincides with the measured data, directly relating the pump
irradiance to the refractive index change.

the shift of the eleventh band in the band structure (see Fig. 7.4), which is located
at roughly the same frequency. Again, the top abscissa in Fig. 7.10 is adjusted to
obtain a good overlap between experiment and theory. From the resulting plot
in Fig. 7.10, we deduce a large maximum refractive index change ∆n′Si/n

′

Si= -1.6%
at ωpump= 5000 cm−1, ω= 7742 cm−1, and I0= 20 GWcm−2. We surmise that the
observed refractive index changes are sufficiently large to switch the density of
states on ultra fast timescales [54] (see Section 7.5).

7.5 Discussion

In this Section, several aspects of our switching experiments are discussed in more
detail. We use the Drude model to obtain the induced carrier density Neh. From
Neh and the pump irradiance I0, we deduce the two-photon absorption coefficient
β. Finally, we discuss how the induced change in the refractive index would affect
the photonic density of states inside an infinitely large crystal.
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7.5. Discussion

7.5.1 Carrier density

From our observations, we have concluded that the ultrafast refractive index
changes are caused by free carriers. The optical response of such carriers appears
to be well described by the Drude model [3, 73, 94, 136] (see also Appendix A).
Therefore we use the Drude model to relate the deduced refractive index changes
∆n′Si/n

′

Si to a carrier density in the Si backbone of the crystal. For silicon, at carrier
densities below 1020 cm−3, the refractive index is linear with the carrier density
within 0.2% (see Appendix A):

n′(ω,Neh) =
√
εB −

1
2
√
εB

(
ωp

ω

)2

=
√
εB −

e2

2
√
εBε0m∗optmeω2

Neh, (7.1)

where ωp =
√

Nehe2/ε0mopt∗me is the plasma frequency. We find that the observed

change ∆n′Si/n
′

Si= -2.0% at probe frequency ω= 5075 cm−1 corresponds to a plasma
frequency ωp= 0.741ω= 3623 cm−1. By using an optical effective mass m∗opt= 0.15,
see Ref. [73], we deduce the corresponding carrier density to be Neh= 2.1×1019 cm−3.
The smaller refractive index change ∆n′Si/n

′

Si= -1.6% in the experiment above stop
band III at ω= 7742 cm−1 corresponds to a somewhat higher plasma frequency ωp=

0.639ω= 4943 cm−1. The resulting carrier density at this frequency is Neh= 4.1×1019

cm−3. In both analyzed cases, we see that excellent switching conditions appear if
the probe frequency ω is about 1.5 to 2 times the plasma frequency of the carriers,
as predicted in Section 2.2.3.

7.5.2 Two-photon absorption coefficient

The two-photon absorption coefficient β is deduced by relating the carrier density
Neh to the pump intensities used in the experiments. For a two-photon excitation
process we find that this relation is equal to:

Neh =
I2
0τpump

2~ωpump
β, (7.2)

and thus the two-photon absorption coefficient equals:

β =
2~ωpumpNeh

I2
0τpump

. (7.3)

At a pump frequency ωpump= 6450 cm−1 we deduced the carrier density to be
Neh= 2.1×1019 cm−3 for a pump irradiance I0= 14 GWcm−2. The corresponding
two-photon absorption coefficient is β= 230±100 cmGW−1. In the experiments
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Ultrafast switching of Si inverse opals

where the pump frequency is ωpump= 5000 cm−1, we find a somewhat lower two-
photon absorption coefficient of β= 170±100 cmGW−1. The value of β decreases
with pump frequency, in agreement with the data in Appendix C. The absolute
values of β that we deduced, however, are at least two orders of magnitude larger
than the value found by us in z-scan measurements in bulk Si (see Appendix C).
The reason for this mismatch in β is presently unclear. We can exclude the variation
of the optical effective mass m∗opt with carrier density, since m∗opt varies by at most
factor of two in the range of our experiments Neh < 1020 [103]. We conclude that a
better understanding of the free-carrier generation process in our Si inverse opals
requires an independent measurement of the two-photon absorption coefficient,
for instance by z-scan measurements on poly-Si reference samples (see Appendix
C).

7.5.3 Switched density of states

Here, we investigate if the refractive index changes that were demonstrated in this
Chapter are sufficiently large to observe changes in the photonic density of states
(DOS) inside our crystals. To calculate the density of states we have modeled our
structure in the same way as in the band structure calculations in Fig. 7.4(b). A
detailed description of the DOS calculations can be found in Refs. [16, 54]. We
have based our model on the structural data obtained from SEM images in Section
7.2.2. Absorption and dispersion in the Si backbone were not taken into account.
We have calculated the DOS per unit volume for the unswitched crystal using a Si
refractive index comparable to the one in our unswitched crystal: n′Si= 3.57 (solid
curve in Fig. 7.11). The crystal appears to have a 6.0% wide band gap where the
DOS vanishes for frequencies between 0.818< ωa/2πc < 0.868.

The dynamic behavior of the DOS in the switched crystals was studied in a quasi
static way by reducing the refractive index of the backbone by the same amount
as observed in our experiments: by ∆n′Si/n

′

Si= -2.0% to n′Si= 3.50 (see dashed curve
in Fig. 7.11). We compare our results to the DOS for a homogeneous reference
sample with effective refractive index ne f f= 1.87, equal to that in the unswitched
crystal2 (dashed curve). The analytical result for the DOS in a homogeneous
medium isω2n3

e f f /(π
2c3), which may be rewritten in terms of normalized frequency

ω̂ = ω/ωa = ωa/2πc as n3
e f f ω̂

2
× [ω2

a/(π2c3)] [16].
We observe three important effects in the calculated switched DOS, which were

also predicted by Ref. [54]. Firstly, the photonic band gap becomes narrower:

2The effective refractive index was obtained from the volume averaged dielectric constant ne f f=
√
ε̄,

which holds for photonic crystal in the low frequency limit [137].
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7.6. Conclusions

∆ω/ω= 5.4% (0.832< ωa/2πc < 0.878), consistent with a reduced refractive index
contrast. Secondly, we observe a shift of all spectral features, including the band
gap, to higher frequencies. The magnitude of the calculated shift of the band gap
center frequency is 1.4%, comparable to the shift that was observed in reflectivity
features shown in Fig. 7.6. We must note, however, that a direct comparison be-
tween directional reflectivity spectra and the DOS, which is a wave vector averaged
property of the crystal, is not warranted. At any rate, the DOS features shift linearly
with ∆n′Si/n

′

Si, resembling the shift of the reflectivity features in Fig. 7.9. Finally,
DOS calculations demonstrate that switching causes large dispersive changes in the
DOS in the frequency range of the band gap. At ωa/2πc= 0.80, the DOS increases
by 133% of the DOS in the reference, at ωa/2πc= 0.91, we observe a large decrease
in the DOS by -220% of the DOS in the reference sample. At a frequency ωa/2πc=
0.817, which is just inside the band gap of the unswitched crystal, the DOS changes
from 0 to 68% of the DOS in the reference sample, which would allow the emission
rate of an light source to be switched from the ”off” state to the ”on” state.

Interestingly, the magnitude of the refractive index change required to induce
sizable changes in the emission rate of sources in our analysis is about 5 times
smaller than proposed in the switching scheme of Ref. [54], in which the band
gap of a GaAs inverse opal is shifted by its band width. Moreover, the large,
≈10% refractive index change that was proposed by Ref. [54] will bring about a
large amount of absorption, that will strongly reduce the probe absorption length.
Finally, the more advanced switching scheme of Ref. [54], which uses 2 subsequent
pump pulses to switch the DOS up and down, can be replaced by a single pulse
experiments, which induces both Kerr and free-carrier effects see Chapter 6.

The emission rate of light sources is proportional to the local radiative density
of states [138] (LDOS). Recent reports by Ref. [131] have revealed that in inverse
opals, the LDOS strongly depends on both the dipole orientation, as well as on the
position of the emitters. The DOS/vol. shown in Fig. 7.11 is the unit cell averaged
LDOS. We now assume that changes in the LDOS at the position of the emitters are
proportional to the calculated, sizable changes in DOS.

7.6 Conclusions

In this Chapter, we have studied all-optical ultrafast switching of high-quality Si
inverse opal photonic crystals by free-carrier effects as well as linear optics. We
find good agreement between the linear reflectivity of the crystals and calculated
stop bands in the frequency range of the band gap. Surprisingly the width and
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Ultrafast switching of Si inverse opals

Figure 7.11: Frequency dependence of the density of states per volume in units ofω2/(π2c3)normalized
to (ωa/2πc)2 for an infinitely large inverse opal of close packed spheres, calculated at two different
refractive indices of the semiconductor backbone n′Si. The black curve with closed symbols shows the
DOS per unit volume for an unswitched Si crystal with εSi= 12.75 (n′Si= 3.57). The red curve (open
symbols) shows the DOS for an Si crystal in which the refractive index has been lowered to n′Si= 3.50
(∆n′Si/n

′

Si= -2.0%). All spectral features shift towards higher frequencies by ∆ω/ω= 1.4% due to the
reduced average refractive index.

frequency position of the first order peak is inconsistent with band structure cal-
culations. Switching effects are studied as a function of the pump irradiance and
the time delay between pump and probe pulses. Large ultrafast variations in re-
flectivity are observed in the range of second order Bragg diffraction. During the
switching process, all spectral features in the observed stop bands, shift towards
higher frequencies within a few hundred fs, indicating the absence of separate di-
electric and air bands in our crystals. From a comparison to quasi-static with band
structure calculations we infer a large refractive index change of about 2%, while
the absorption length in the crystal remains larger than the sample thickness. From
subsequent density of state calculations, we surmise that the induced changes are
large enough to strongly modify the density of states inside the crystal. We briefly
discuss how the emission rate of internal light sources inside our switched crys-
tals can be switched by switching the local radiative density of states in photonic
crystals.
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Chapter 8
Recommendations

8.1 Applications

We have studied photonic crystals made with semiconductor fabrication techniques
near the telecom frequency range. It is therefore interesting to consider the appli-
cability of on-chip ultrafast all-optical switching. Importantly, the pulse energy
should be considerably reduced for two reasons: 1) applications will only arise if
low-power pump lasers (diode lasers) can be used. 2) This is feasible for devices
such as modulators wherein a cavity resonance with quality factor Q is switched by
one linewidth. Then, a small refractive index change ∆n′/n′= 1/Q suffices. Assum-
ing reported λ3-sized cavities with Q= 104 [139], ∆n′/n′ is 100 times smaller than
in our experiments. By pumping with a diffraction-limited pump pulse at above
band gap frequencies (ωpump= 20000 cm−1 for Si), free carriers are selectively excited
inside the cavity volume only, requiring low pulse energies ≤50 fJ. Moreover, the
observed decay times of less than 20 ps implies that switching could potentially
be repeated at a rate ≥25 GHz. From heat diffusion theory, we estimate that the
corresponding temperature increase in a Si sample is ≤10 K. Therefore, we con-
clude that ultrafast photonic crystal switching also opens exciting opportunities
in device applications, and we recommend switching experiments with reduced
pump energy in high Q-cavities.
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8.2 Adiabatic and non-adiabatic switching

To study the transition between adiabatic and non-adiabatic switching timescales,
we consider a cavity with resonance frequency ω1. The cavity is loaded by a probe
pulse that is at resonance with the cavity. In case of a high Q cavity, only part
of the pulse will enter the cavity. A pump pulse is used to shift the resonance
frequency of the filled cavity to frequency ω2 by either free-carrier or Kerr effects.
The switching time-scale can be controlled by changing the duration of the pump
pulse with a pulse stretcher. We identify two switching time-scale regimes: Firstly,
if the switching takes place slowly, the eigenmode of the system will adjust to the
new situation adiabatically and no transitions will be made. Consequently, the
frequency of probe light will be changed from ω1 → ω2. Such a change could be
observed if light that leaks out of the cavity is analyzed spectrally. Note that the
frequency conversion will only take place if the cavity is switched while the probe
light is inside the cavity. Secondly, it the non-adiabatic limit, at fast switching times,
the adiabatic theorem no longer applies, and transitions from the cavity mode to
other modes are allowed to take place.

In a planar multilayer cavity, for example, light in the cavity mode could make
a transition to propagating modes parallel to the layers. Interesting prospects
arise when cavities that are embedded in a three-dimensional band gap crystal
are switched adiabatically. In such a situation, large frequency changes due to
transitions to frequencies outside the band gap could take place.

We therefore recommend switching experiments in a planar multilayer cavities,
in which the switching time of the cavity is varied by controlling the duration of the
pump pulse by a pulse stretcher. Such an experiment allows to study the transition
between the adiabatic and non-adiabatic switching regime.

Furthermore, we propose an experiment in which the coupling efficiency of
probe light into a multilayer cavity is dynamically controlled by switching one of
the cavity mirrors. Such an configuration can be considered the solid-state analogue
of the experiment of Ref. [63], in which dynamic control over the coupling efficiency
into a marcoscopic cavity allowed for adiabatic and reversible compression of a
pulse into a single narrow cavity mode.

8.3 Switched lifetime measurements with ultrafast shutters

Switching photonic band gap crystals offers active control over the local density of
states. An experimental demonstration of the switched emission rate of internal
light sources due to a switched LDOS brings about several experimental challenges.
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8.4. Non-monotonic effects due to Kerr and free carriers

First of all, a large effect on the emission lifetime will only be observed if the
homogeneous line width of the sources is small compared to the magnitude of
the induced frequency shift ∆ω/ω ≈ 2%. Suitable light sources may therefore be
quantum dots, whose homogeneous line width can be less than 1.5×10−4 [140, 141].
Secondly, the light sources should emit a sufficient amount of light during the
period of the switching, which is typically tens of ps. The radiative lifetime of
novel colloidal PbSe quantum dots that emit at IR wavelengths is of the order of
250 ns nanoseconds [142, 143] and thus about 4 orders of magnitude larger than
the decay time of our free-carrier effect, thus to select photons that are emitted
during the time of the switching only, we recommend the use of ultrafast optical
Kerr gates [144], that allow to selectively measure the emission rate of light sources
in the first 20 ps.

Large changes of the emission rate of light sources into a cavity mode can
also be attained by switching a cavity in and out of resonance with an embedded
emitter. We expect such changes to be measurable in planar cavities that include
self assembled quantum dots. We propose an experiment in which the coupling
between emitter and cavity strength in such systems is tuned at ultrafast timescales,
resulting in variations in the emission rate.

8.4 Non-monotonic effects due to Kerr and free carriers

A first analysis of the reflectivity changes at zero time delay in the woodpile samples
in Chapter 6 showed that the observed reflectivity decrease is consistent with a χ(3)

nonlinearity. Part of the effect, however, may be due to absorption, which is related
to non-degenerate two-photon absorption of probe light in the presence of the
pump field [71]. This assumption could be tested by varying the probe pulse
energy, since this effect should also be proportional to the probe irradiance.

The effect at zero time delay may also be influenced by free carriers that are
generated instantaneously. We therefore propose to lower the pump frequency
to a value below the two-photon absorption edge of the Si. This configuration
would allow a measurement of the χ(3) nonlinearity without free-carrier effects.
Recent experiments, in which the pump frequency was tuned across the two-photon
absorption edge, have indeed demonstrated a transition between the free-carrier
and χ(3) effects. The χ(3) effect at short time delays appears to be a combination of
a positive Kerr changes and non-degenerate two-photon absorption [145].
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8.5 Z-scan experiments on poly silicon samples

An important difficulty in the interpretation of switching measurements of poly
crystalline samples such as the Si woodpiles in Chapter 6 and the Si inverse opals
described in Chapter 7 was the unknown nonlinear absorption coefficient and
Drude damping time of the backbone material. The values of β and τD that we
have deduced by comparing our data to theory strongly deviate from those found
in crystalline Si. In comparison, the GaAs absorption coefficient that we have
deduced from our experiments on (crystalline) GaAs/AlAs structures is in much
better agreement with its value in bulk crystalline GaAs. In addition, the effective
optical mass of the carriers may also depend on the crystallinity of the material.

We conclude that a better interpretation of our results requires an independent
measurement of β of poly crystalline Si. We propose two ways in which this could
be done: firstly, a z-scan experiment could be done on a non-photonic reference
sample. A z-scan experiment (see Appendix C), also allows for the measurement
of the nonlinear refraction in poly-Si, and could help to understand the nature
of the observed χ(3) effect. A difficulty is that a suitable reference sample must be
grown under the exact same growth conditions as the sample itself. A second, more
direct way of deducing the amount of absorption in the sample is to monitor the
transmission of pump light during the experiment. From the amount of absorbed
pump-light, the density of excited carriers can be estimated.

8.6 Samples fabricated by etching techniques

In the interpretation of our data on Si infiltrated opals, a problem arises, as the
crystal structure away from the surface as well as the Si filling fraction cannot
be determined accurately. Much better control over both the structure and the
filling fraction can be obtained in samples that are made by etching of single
crystalline materials, whose nonlinear optical properties are known from z-scan
measurements (see Appendix C). Three-dimensional photonic crystals can then be
fabricated by etching away material from a single crystalline wafer by combining
electro-chemical etching with focussed ion beam milling [52], or by a two-step
focused ion beam milling experiment [53]. An example of a GaP photonic crystal
made by focussed ion beam milling is shown in Fig. 1.3D. We propose that such
structures could be switched by either a three-photon process, or by utilizing the
nonlinear refraction of GaP (see Appendix C).
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Appendix A
Drude description of excited
semiconductors

A.1 Introduction

To change the refractive index contrast in our photonic crystals, the solid semicon-
ductor backbone with bulk dielectric constant εBG is excited with an optical pulse to
generate a free-carrier plasma through two-photon absorption. The complex index
of refraction of Si and GaAs is well described by the Drude model for moderately
high densities of excited free carriers [73, 136, 146, 147].

A.2 Basic assumptions

The Drude model is a theory that was originally posted by Paul Drude in 1900 to
describe metals [3, 94]. It provides a practical way to estimate optical properties of
a free-carrier plasma in metals or in semiconductors. There are four basic assump-
tions in the Drude model: First of all, it is assumed that an electron experiences
a collision with a probability per unit time 1/τD, where τD is known as the mo-
mentum relaxation time, or the mean free time of the electrons. The value of τD

is assumed to be independent of the position and speed of the electron. Secondly,
electron collisions are assumed to alter the velocity of the electrons instantaneously.
Thirdly, the model neglects electron-electron interactions (independent electron ap-
proximation) and electron-ion interactions (free electron approximation) between
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Drude description of excited semiconductors

collisions. Finally, the electrons are assumed to achieve thermal equilibrium with
their surroundings only through collisions. After a collision, the velocity of the
emerging electron is randomly directed, and its speed is related to the temperature
of the region where the collision took place.

A.3 Drude model for free carriers in Si

Under the assumptions in Section A.2, the dielectric response of semiconductors
with excited free carriers is well described by the Drude model, modified to include
separate electron and hole contributions. Here we focus on Si, and follow the
notation of Ref. [136]. The real part of the dielectric constant is equal to:

ε′(ω) = ε′BG(ω) −
Nehe2

ε0

(
1

m′e

(
τ2

e

1 + ω2τ2
e

)
+

1
m′h

(
τ2

h

1 + ω2τ2
h

))
+ 4πχVB, (A.1)

where ε′BG is the bulk Si dielectric constant, m′e= 0.27 and m′h= 0.38 (in units of the
electron mass m0) are the electron and hole optical effective masses for Si [103].
Neh is the electron density, which is on the order of 1019 cm−3 in our experiments.
τe and τh are the electron and hole momentum relaxation time, respectively. The
first term between the brackets describes the contribution of the free electrons, and
the second term the contribution of the holes. The final term is the susceptibility
associated with intervalence-band absorption [148–150].

The imaginary part of the dielectric constant is equal to:
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εBGσVB(ω,Neh)Neh

π
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(A.2)
where ε′′BG is the imaginary part of the unswitched background dielectric constant.
The first term between the brackets describes the contribution of the free electrons,
and the second term the contribution of the holes. Since the Drude model is essen-
tially based on classical ideas, it only incorporates intraband absorption through
the imaginary part of the dielectric constant with the refractive index obtained
from Kramers-Kronig. Therefore, we include the final term in Eq. A.2, which ac-
counts for the intervalence-band absorption cross Section σVB(ω,Neh) of the excited
carriers [148–150].

At higher carrier densities, the independent electron approximation breaks
down. We correct for this by using an adjusted expression for the momentum
relaxation rate of the electrons [118]:
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A.3. Drude model for free carriers in Si

1
τe,h
=

( 1
τe,h

)
e,h−pn

+ γN1/3
eh , (A.3)

where (τe)e−pn relates to electron-phonon interactions. The second term takes into
account electron-electron and electron-hole scattering, which depends on the aver-
age distance between the carriers, and thus on N1/3

eh . In single crystalline Si, in the
range of our experiment, the resulting values for τe and τh are of the order of 10−13

s [73].
We combine the effects of the electrons and the holes by using an optical effec-

tive mass m∗opt = (m′−1
e + m′−1

h )−1= 0.15m0. We assume that the absorption in the
unswitched crystal is zero (ε′′BG=0, which is valid in our experiments, since the probe
frequencies are chosen well below the electronic band gap of the semiconductors.
We assume that ωτe,h � 1. This assumption is validated since in our experiments
in poly crystalline Si, ωτe,h ≈ 12, at ω= 6660 cm−1, where we have used a relaxation
time τD= 10−14 that deduced for poly crystalline silicon by Ref. [91]. Under the
assumptions above, the dielectric constant is approximated by:

ε(ω,Neh) ≈ εBG −
(ωp
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π
, (A.4)

where the plasma frequency is defined as ωp ≡ Nehe2/ε0m∗opt. The interband ab-
sorption cross section in Si is about 10−17 cm2 at frequency ω= 5000 cm−1 and Neh=

2×1019 cm−3 [68, 149]. The resulting absorption length in Si is of the order of tens
of microns, and intervalence-band absorption in Si will therefore neglected in our
analysis. Consequently, the expression for n(ω) reduces to

n(ω) =
√
ε(ω) '

√
εBG(ω) −

(ωp

ω

)2(
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i
ωτD

)
. (A.5)

Here, the approximation x � a,
√

a − x2 =
√

a − x2/(2
√

a) + . . . is used. Thus, for
small changes (ωp/ω)2

� εBG, the refractive index is equal to
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which can be separated into a real and an imaginary n′ and n′′. After insertion of
the expression for ωp, we obtain for the real part of the refractive index

n′(ω) ' nBG −

(ωp

ω

)2 1
2nBG

= nBG −
e2Neh

2nBGε0mem∗optω
2 . (A.7)
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This expression clearly demonstrates that the refractive index change is propor-
tional to Neh, and inversely proportional to the optical effective mass m∗. In Si, the
approximation in Eq. A.7 is valid to within 0.2% for carrier densities up to 1020

cm−3. For the imaginary part we find

n′′(ω) '
(ωp

ω

)2 1
2nBGωτD

=
e2Neh

2nBGε0mem∗optω
3τD
. (A.8)

The corresponding absorption length of probe light `ans is obtained via `abs =

1/(2k0n′′), where k0 = ω/c:
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ω2ε0mem∗optτDnBGc

e2Neh
. (A.10)

Thus for carrier densities of the order of 1020 cm−3, the absorption length in excited
Si is inversely proportional to the carrier density Neh. Furthermore, the amount of
absorption depends on the material specific value τD, and on the optical effective
mass of the carriers m∗.

A.4 Drude description of excited carriers in GaAs

Due to the different electronic band structure of GaAs compared to Si, the properties
of excited free carriers also differ from those in Si. The first important difference is
the 2.6 times reduced optical effective mass m∗opt compared to Si, which implies that
the same carrier density will induce a 2.6 larger change in the refractive index (see
Eq. A.7). Table A.1 shows the room temperature values for the electron- an hole op-
tical effective masses that were taken from literature. A second distinction of GaAs
is that at the carrier densities in our experiments, electron-electron interactions
dominate the momentum scattering. The value of γ in Eq. A.3 is about 4 × 105m−1

[118]. At the typical carrier densities of about 1019 cm−3 in our experiment this
corresponds to a short relaxation time τe ≈ 20 fs. A third important difference is
related to the band structure of GaAs. In excited GaAs for wavelengths below 3
microns the probe absorption is dominated by a strong interband absorption of
excited carriers in the Γ-valley, which can be further excited into the X-valley [110].
Free carrier absorption is negligible below λ= 2 µm [119]. The resulting absorption
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A.4. Drude description of excited carriers in GaAs

crystalline Si (T= 300 K) crystalline GaAs (T= 300 K)
me 0.27m0 0.065m0

mh 0.38m0 0.51m0

m0 9.12×10−31 kg 9.12×10−31 kg
m∗opt 0.15m0 0.0577m0

τe - 9.25×10−14 s
τh - 2.18×10−14 s
τD 10−13 s∗ -
σinter - 5.6×10−18 cm2 [119]

Figure A.1: Tabulated values for the electron- and hole optical effective masses, at room temperature.
Values for Si taken from Refs. [73, 103]. GaAs data taken from Ref. [102]. * In polycrystalline Si, a
reduced value τD= 10−14 was deduced by Ref. [91]

coefficient can be discussed in terms of an (almost frequency independent) cross-
section αinter = σinterNeh [119]. At λ= 1.5 µm, we deduce a value σinter= 5.6±0.5×
10−18 cm2 from the data of Ref. [119]. The total absorption coefficient is equal to:

αtotal = αintra + αinter, (A.11)

where αintra is the absorption coefficient related to the Drude model.
In summary, the Drude model is expected to yield a good prediction of the

complex refractive index change in excited GaAs of carrier densities up to about
1019 cm−3, where free-carrier absorption is negligibly small. At higher densities,
however, the complex refractive index change is no longer correctly described by
the Drude model, since absorption in GaAs is dominated by additional absorption
processes. Using the Drude model to describe GaAs at high carrier densities
therefore yields unphysically low values of the momentum relaxation time τD.
Additional absorption processes such as interband absorption and electron-electron
scattering must be taken into account separately to correctly predict the complex
refractive index at carrier densities above 1019 cm−3 in GaAs. We note that these
absorption processes will also modify the real part of the refractive index due to
the Kramers-Kronig relations, and the corresponding susceptibility χ should be
therefore included in A.1.
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Appendix B
WPC model

This Appendix will discuss the basic assumptions and the working procedure of the WPC
(’WoodPile Crystal’) model that was introduced in Section 6.4. We will test the numerical
convergence by comparing to exact results. We will go through the program without going
into much mathematical detail. A complete mathematical description of the model can be
found in Ref. [125].

B.1 Solving Maxwell’s equation for a photonic crystal by Fourier
expansion

The behavior of electromagnetic waves is described by Maxwell’s equations. In
the absence of sources and currents, as is normally the case in an externally illu-
minated dielectric photonic crystal, Maxwell’s equations can be combined into a
single second-order differential equation for the electric field E(ω, r), the Helmholtz
equation:

ω2

c2 E(r) − ε(r)−1
∇ × ∇ × E(r) = 0, (B.1)

where ε0 is the free space permittivity, c the speed of light in vacuum, and
a harmonic time dependence with frequency ω is assumed. In our crystals, the
dielectric constant ε(r) is a periodic function of r. Consequently, the most common
approach to solving equation B.1 periodic media is fully expanding ε(r)−1 in its
Fourier components. For a 3D woodpile crystal the expansion has to be made in
the x, y and z directions, where x and y are the directions in which the grating

133



WPC model

planes are periodic and z the direction in which the gratings are stacked. The field
in the crystal is expanded in the same components and the equation can be solved.

A full Fourier expansion has some drawbacks, however. First of all, a Fourier
expansion implies a perfect and infinite crystal. While this approach is necessary
to obtain the photonic band structure of a crystal it cannot be used to obtain the
reflectivity of a finite sample since the boundaries of the crystal are not defined.
Secondly, a full expansion demands long calculation times, and uses large amounts
of internal computer memory. Therefore, the expansion needs to be truncated,
leading to either considerable truncation errors or long calculation times. Finally,
the permittivity ε(r) in this type of calculations must be real and constant, hence
dispersion and absorption can not be taken into account.

B.2 The Exact Model Method (EMM)

The WPC algorithm treats the woodpile crystal as a stack of gratings which extends
infinitely in the lateral x and y direction, and is finite in the z direction. The
Helmholtz equation in the crystal can now be solved by the so-called exact modal
method (EMM). The EMM is an extension of grating calculations by Refs. [151, 152].
For each layer, the equation is solved separately and the solutions for the individual
layers are connected via boundary conditions.

The EMM algorithm solves equation B.1 for each layer under the assumption
that within each layer, the permittivity is a function of the x or y coordinate only.
Equation B.1 is now decoupled into two first order differential equations:

E = (ωε0ε(r))−1
∇ ×H, H = (ωµ0)−1

∇ × E. (B.2)

We make the simplifications: Since the permittivity within each layer depends
on a single coordinate, E and H can be written in terms of either the x- or the
y-component only. Without loss of generality, we assume the periodicity to be
in the x direction, and we eliminate the y component. Writing out equations B.2
componentwise then results in a so-called evolution equation:

δ2
z

 Ex

Hx

 = L

 Ex

Hx

 =  Lµx 0
0 Lεx

  Ex

Hx
,

 (B.3)

where δz is the differential operator in the z direction, and Lµx and Lεx are complex
functions of ε(x), µ(x), ω and the differential operators δx and δy. The evolution
operator L describes the evolution of Ex and Hx with increasing z. The calculation
needs to be done for the x-direction only, the other components of the fields can be
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found using equations B.2. Subsequently, incoming fields on the layer can be now
expressed in eigenfunctions of the evolution operator L. The mathematical details
can be found in Ref. [125]. From the operator L, matrices are obtained that connect
Ex and Hx, expressed in eigenfunctions, at both sides of the layer.

Once the solution for a layer has been found, it is coupled to the solutions for the
adjacent layers via the continuous boundary condition condition for the tangential
components of E and H. By multiplication with a transformation matrix, the fields
at the boundary of a layer j with periodicity in the x direction are transformed to
the coordinate system of the next layer ( j + 1), where the periodicity can be in the
other (y) direction. This process is repeated for each layer in the crystal, and finally,
we can couple the equations for the internal and the external fields, and thus obtain
a reflectivity spectrum.

Up to here, the result of the EMM algorithm is exact. However, expressing
the incoming field for a layer in eigenfunctions of the evolution operator for that
layer can only be done exactly if an infinite number eigenfunctions are taken into
account. For numerical implementation, the series has to be truncated. In Ref. [125]
it is proved that truncation is possible and that the difference with the exact result
decreases exponentially with an increasing number of terms in the expansion. The
convergence of the program is investigated in Section B.6.

B.3 Advantages and limitations of the EMM algorithm

The EMM algorithm has two important calculational advantages with respect tot
other methods that solve the Helmholtz equation for a photonic crystal. First of all,
the algorithm makes uses of the symmetry of the structure by decomposing each
layer in one dimension only. The algorithm therefore converges faster than methods
that use a Fourier decomposition in all dimensions. The number of functions N to
be solved scales with M2, where M is the number of functions used per coordinate.
In standard Fourier decomposition, the scaling behavior is N = M3. Secondly, the
algorithm can handle complex or frequency-dependent refractive indexes, which
is essential in the descriptions of switched woodpile photonic crystals, whose
refractive index is both complex and highly dispersive. An important limitation of
the EMM algorithm is that it preferentially handles structures consisting of infinite
rectangular rods, as it is especially designed for calculations on woodpile crystals
and stacks of gratings. Consequently, is is a great challenge to use the algorithm
on structures other than stacked gratings, like opals and inverse opal photonic
crystals [127].
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B.4 Test on 1D Bragg stack with comparison to exact results

To verify if the WPC program works properly, we have calculated the reflectivity
spectrum of a 1D Bragg stack and compared it to the analytic result obtained by
transfer matrix calculations [153]. The Bragg stack consisted of a 11 layers with
alternating refractive index index 1 and 3. The layer thickness of 200 nm was
chosen such that the center frequency of the stop band of the Bragg stack (6000
cm−1) is comparable to that of the stop band our woodpile crystals. To model the
Bragg stack in the WPC program, the width of the rods was increased until they
touched each other. M= 9 waves were used in the expansion for each layer to ensure
sufficient convergence (see Section B.6). Reflectivity spectra for both calculation
are shown in Fig. B.1. Excellent agreement within ∆R= 0.2% is found over the
whole frequency range (see Fig. B.1, lower panel). The largest residual differences
are observed near steep slopes in the spectrum.

Figure B.1: Comparison between reflectivity calculated by the WPC program and exact result for a
eleven-layer Bragg stack. Agreement within 0.2% is found between both results.

B.5 Calculation time

The accuracy of the WPC calculations is governed by the number of plane waves
M, which can be specified by the user. By increasing M to reduce the truncation
error, however, at some point the calculation will take an unpractical amount of
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time. To find the maximum numbers M which can still be used in practice, a
set of calculations with increasing number of plane waves was done for a perfect
woodpile crystal of five layers thickness, so no structural imperfections were taken
into account. Parameters are: rod width a = 180 nm, spacing between rods b1 =

b2 = 650 nm, layer heights c of 200 nm, refractive index of the rods 3.45 (values
as in Fig. 5 in Ref. [125]). The reflectivity was calculated for a single frequency in
the stop gap. The corresponding calculation time is plotted versus the number of
plane waves in Fig. B.2. The calculation time increases exponentially with M: for
every 2 plane waves that are added, the calculation time increases by a factor of 3.
In our calculations we have used M = 7 waves, which limits the calculation time
per frequency point to less than 15 seconds, allowing high resolution reflectivity
spectra to be calculated in about 1 hour.

Figure B.2: Calculation time for the reflectivity at one fixed frequency in the stop band of a perfect
woodpile crystal, as a function of the number of plane waves M used in the calculation. The calculation
time increases exponentially with M.

B.6 Convergence test for a 3D woodpile crystal

To investigate if the chosen number of plane waves in the expansion M = 7 pro-
vides sufficiently accurate spectra, the reflectivity at perpendicular incidence of the
perfect woodpile crystal was calculated for 300 frequency points between 0 and
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10000 cm−1 and several values of M. The calculation was repeated for M = 5, 7 or
9 waves in the expansion. The resulting spectra are plotted in the upper panel of
Fig. B.3. Up toω= 7000 cm−1, the three spectra overlap within ∆R= 0.3% indicating
that in this range, the method already converges for M= 5. The lower panel in
Fig. B.3 shows the difference between the calculation for M= 5 and M= 7 with the
calculated spectrum for M= 9. The reflectivity difference between M= 7 and M= 9
is less than ∆R= 0.1% for frequencies below 7500 cm−1, showing excellent conver-
gence in this range. At frequencies in the range 7500-1000 cm−1, large differences of
up to∆R= 30% appear for M= 5. As the M is increased to 7, the maximum deviation
from the M= 9 spectrum is reduced to ∆R= 7%, indicating that the spectrum starts
to converge.

Despite the moderate convergence of the spectra at frequencies above 7500
cm−1, we decided to use M= 7 plane waves to avoid extreme calculation times.
The calculation of the stop band for a perfect woodpile crystal with 7 waves takes
about half an hour. However, when imperfections are introduced, the calculation
time increases by a factor three to four due to the larger unit cell dimensions [125].
We conclude that the calculated WPC spectra in Chapter 6 will be less accurate at
high frequencies above the stop band edge and are therefore disregarded in the
comparison to the experiments.

Figure B.3: (upper panel) Calculated stop band for a perfect five-layer woodpile crystal, using
respectively 7 or 9 wave functions in the expansion of the field in eigenfunctions of the evolution
operator. (lower panel) Excellent convergence within ∆R= 0.1% is observed at frequencies below
7500 cm−1 for M= 7, while at higher frequencies, errors of up to ∆R= 7% are observed.
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Appendix C
Z-scan measurements

C.1 Introduction

In our switching experiments, we use two-photon absorption to excite a free-carrier
plasma in the semiconductor backbone of photonic crystals. It is therefore impor-
tant to determine the two-photon absorption coefficient of these materials at the
pump frequencies used in our experiments. Several techniques can be used to
obtain then nonlinear refraction and absorption of materials. For example, high
sensitivities have been demonstrated by spectrally resolved pump-probe measure-
ments [154]. Unfortunately, this technique is sensitive to sample inhomogeneity
and relies on a good spatial overlap of pump and probe beam.

An elegant alternative method is the z-scan technique that was first demon-
strated by Sheik Bahae et al. to measure the nonlinear refraction n2 of semiconduc-
tors [155, 156]. A z-scan is a simple and robust measurement of the transmission of
a single beam that is focussed by a lens. The focal length of the lens is chosen such
that the focal depth is much larger than the sample thickness. Transmitted power
of a focused laser beam is measured while the sample is scanned in the z-direction,
along the optical axes of the beam, see Fig. C.1. The nonlinear refraction results in
both Kerr-lensing due to the change in real part of the refractive index, as well as
attenuation of the transmitted power due to nonlinear absorption. Both effects will
attain a maximum if the sample is located in the beam waist (z=0).

To separate the refractive and absorptive effects, two scans must be made. The
first experiment is a closed aperture z-scan, in which refraction and absorption are
measured simultaneously. A diaphragm that is placed in front of the detector
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blocks part of the linearly transmitted light. For example, a positive n2 will induce
a positive Kerr lens in the sample, which will guide more light into the detectors
if the sample is placed at a positive z-position in between the beam waist and
detector (see Fig. C.1). The transmitted intensity will be reduced if the sample is
placed in between the lens and beam waist. The nonlinear refraction will cause an
asymmetry in the z-scan data. The second experiment is a an open aperture z-scan,
in which the aperture is removed, and all transmitted light is collected. The effect
of nonlinear refraction is thus removed. The resulting curve only depends on the
induced absorption, and is therefore symmetric around the beam waist (z=0). By
subtracting the open aperture data from the closed aperture data, the refractive
and absorptive effects can be separated [97, 100, 114, 157].

In our switching experiments we are mostly interested in the nonlinear absorp-
tion coefficients near the two-photon absorption edge of Si and GaAs. Therefore
this appendix only describes open aperture z-scan experiments that were done on
Si, GaAs, and GaP single crystalline wafers. To the best of our knowledge the
results presented here are the first measurements of the two-photon absorption
coefficient of Si an GaAs near the two photon absorption edge (~ω ≈ 1

2 Egap). We are
also unaware of any prior measurement of the three-photon absorption coefficient
of GaP in the three-photon absorption frequency range ( 1

3 Egap < ~ω < 1
2 Egap).

C.1.1 Experimental

D1

D2

BS

+Z-Z

Sample

Figure C.1: Schematic drawing of the z-scan setup. Incoming laser beam from our OPA is split by
a beam splitter (BS). Two InGaAs photodiodes are used to monitor the output variation of the OPA
(D1) as well as the transmitted signal (D2). The detector signals are measured as a function of sample
position z.

Fig. C.1 shows a schematic drawing of our z-scan setup. The power of the
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C.1. Introduction

incoming beam is monitored by detector D1. The beam is focused by a lens with
focal length f . The sample, typically a double-side polished wafer, is placed on a
translation stage that scans the sample along the z-direction. The zero position is
taken at the beam waist. The transmitted power is collected by a second lens (not
shown) and measured by a InGaAs photodiode D2.

The shape of the transmission curve strongly depends on pump irradiance,
and pump power stability is therefore essential for the correct interpretation of
the experimental data. Each pulse was therefore measured individually using the
detection scheme described in Chapter 4. Both pump-monitor detector signals
(D1) and transmission signals (D2) for each pulse event are stored. We minimize
the effect of pulse-to-pulse variations in the laser output (which can be as high as
10%) by selectively removing all pulses with energy beyond a certain threshold.
In all experiments, the number of pulses collected and the threshold were chosen
such that the standard deviation in pump energy remained below 3%. Typically
between 2500 and 10000 pulses were collected for each datapoint. The correspond-
ing standard error in the transmission was typically better than δT/T<1%, which is
sufficiently sensitive for our z-scan measurements. The sensitivity can be further
increased by narrowing the pulse energy range, at the price of longer integration
times.

C.1.2 Model

To interpret the z-scan data, we have numerically calculated the nonlinear trans-
mission of a Gaussian beam through a thin slab. The beam width of a diffraction
limited gaussian beam is

w(z) =

√
w0

[
1 +

( λz
πw0

)2]
, (C.1)

where λ is the wavelength, z is the sample position relative to the focus [106]. The
diffraction limited width of the beam waist is equal to:

w0 =
fλ
πwb
, (C.2)

where f is the focal length of the lens and wb is the Gaussian width of the unfocused
beam at the position of the lens. At each wavelength, wb was determined by a knife
edge scan (see Fig. 4.2).

In our calculation we have discretized the sample into 256×256 independent
transmission channels of 10×10µm2. We have made sure that the lateral dimensions
of each channel are smaller than the focus width w0, to avoid discretization artifacts
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at z=0. We use Eq. 3.4 to calculate the nonlinear transmission through each channel.
Since our pump frequencies are in the two-photon absorption range 1

2 Egap < ~ω <

Egap where α=0, we can simplify Eq. 3.4. The transmitted power through a sample
with thickness L, normalized to the linear transmission (1 − R)2 is equal to:

T(z) =
1

1 + I0(z)βL
, (C.3)

where R is the Fresnel reflectance at the front- and back-face of the sample, β is the
two-photon absorption coefficient, and I0(z) the irradiance at the sample interface
after subtraction of the front-face reflection at position z. The added calculated
transmission of all channels is plotted versus sample position z. The adjustable
parameter in this calculation is β.

C.2 Results

C.2.1 Two-photon absorption in Si

First we consider open aperture z-scan measurements on a double-side polished
Si wafer with thickness L= 360 µm. Normalized transmission is plotted in Fig. C.2
as a function of sample position z. Data were taken at two wavelengths: λ= 1630
nm (open circles) and at λ= 1720 nm (closed squares). The measured data were
normalized to the linear transmission away from the focus. We observe that in
both scans, the transmission is strongly reduced as the sample scans through the
focus. The curves are numerically calculated transmission data, where βwas used
as fitting parameter. We find good agreement for β= 0.6±0.3 cmGW−2 (λ= 1630 nm),
and for β= 0.2±0.1 cmGW−1 at λ= 1720 nm. Fig. C.3 shows a z-scan of the same
Si wafer at a pump wavelength λ= 2000 nm, close to the two-photon absorption
edge of Si. The peak irradiance during this scan was I0= 800±200 GWcm−2. We
find good agreement for β= 0.20±0.05 cmGW−2.

C.2.2 Two-photon absorption in GaAs

Additionally, we have performed open aperture z-scan experiments on a double-
side polished GaAs wafer with a thickness of 189 µm. Figure C.4 shows z-scan
data taken at λ= 1720 nm, just above the two-photon absorption edge of GaAs.
The measured data were normalized to the linear transmission away from the
focus. The peak irradiance was I0= 366±60 GWcm−2 in Fig. C.4. The strongly
attenuated transmission near the waist of the beam indicates a strong nonlinear
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Figure C.2: Open aperture z-scan measurement for a 360 µm thick double-side polished Si wafer.
Open circles: λ= 1630 nm, f= 100 mm, I0= 385±40 GWcm−2. Closed squares: circles, λ= 1720
nm, f= 100 mm, I0= 315±40 GWcm−2. The curves are calculated transmission using β= 0.6±0.3
cmGW−2 (dashed curve, λ= 1630 nm) and β= 0.2±0.1 cmGW−2 (solid curve, λ= 1720 nm)
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Figure C.3: Open aperture z-scan measurement for a 360 µm thick double-side polished Si wafer.
Pump parameters: λ= 2000 nm, f= 150 mm, τp= 130 fs, I0= 800±200 GWcm−2. The dashed curve
represent the calculated transmission using β= 0.20±0.05 cmGW−2
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absorption. The curve is calculated using β as an adjustable parameter. We find
good agreement for β= 1.5±0.5 cmGW−2. Fig. C.5 shows z-scan data for GaAs at
a shorter wavelength λ= 1630 nm. Here, we find good agreement for β= 3.5±1.0
cmGW−2. The value β= 1.5±0.5 cmGW−2 at the two-photon absorption edge is
an order of magnitude smaller than the value β= 15.1±2.3 cmGW−1 at λ= 1.27
µm reported by Ref. [97]. We conclude that in GaAs, the two-photon absorption
coefficient strongly decreases as the pump wavelength approaches half the band
gap energy, allowing more homogeneous switching (see Chapter 3).
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Figure C.4: Open aperture z-scan measurement for a 189 µm thick double-side polished GaAs wafer.
Pump parameters: λ= 1720 nm, f= 100 mm, τp= 130 fs, I0= 366±60 GWcm−2. The curve represents
the calculated transmission using β= 1.5±0.5 cmGW−2

C.2.3 Three-photon absorption in gallium phosphide

We have also obtained open aperture z-scan data for GaP. The pump wavelength
was chosen in the range of three-photon absorption: 1

3 Egap < ~ω < 1
2 Egap. We

therefore neglect both linear and two-photon absorption in our analysis (α=β= 0).
The resulting equation for the nonlinear transmission of the sample, normalized to
the linear transmission (1 − R)2 is:

T(z) =
1√

1 + 2I0(z)2γL
, (C.4)

where γ is the three-photon absorption coefficient.
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Figure C.5: z-scan measurement for a 189 µm thick double-side polished GaAs wafer. Pump
parameters: λ= 1630 nm, f= 100 mm, τp= 130 fs, I0= 244±40 GWcm−2. The curve represents the
calculated transmission using β= 3.5±1.0 cmGW−2

Fig. C.6 shows typical z-scan data taken at a wavelengthλ= 1600 nm, close to the
three-photon absorption edge of GaP. We observe that the z-scan data in Fig. C.6 is
asymmetric; the transmission of the sample at positive z-values, where the sample
is located in between the beam waist and the detector, is slightly elevated. This
asymmetry indicates that nonlinear refraction also plays a role in this experiment.
Consequently, the data are strictly speaking not an open aperture z-scan. From
the shape of the curve we conclude that the sign of the nonlinear refraction in GaP
is positive in the wavelength range 1400-1600 nm. We therefore exclude that the
asymmetry is caused by free-carrier generated by three photon absorption, since
this would result in a negative refractive index change.

To obtain the three-photon coefficient γ for GaP, we disregard the relatively
small nonlinear refraction. We compare our results to a calculated transmission
curve, shown as a dashed curve in Fig. C.6. We have varied γ until the depth
of the minimum of the calculated scan matches the data. The calculated curve
agrees reasonably with the data even though the refractive effects have not been
taken into account. At λ= 1600 nm, we deduce γ= 1.0±0.3×10−3 cm3GW−2. Four
additional scans were made atλ= 1400 nm, λ= 1450 nm, λ= 1500 nm, and atλ= 1550
nm. The resulting deduced three photon absorption coefficients are plotted versus
frequency in Fig. C.7. We observe that γ tends to zero as the frequency approaches
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the 1
3 Egap, confirming a three-photon absorption process. A-three photon process

could be used to homogeneously switch GaP photonic crystals, such as the one
shown in Fig.1.3D.
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Figure C.6: Open aperture z-scan measurement for a 300 µm thick double-side polished GaP wafer.
Pump parameters: λ= 1600 nm, f= 100 mm, τp= 130 fs, I0= 285±60 GWcm−2. The curve represents
the calculated transmission using a three photon coefficient γ= 1.0±0.3×10−3

C.3 Conclusion

We have measured for the first time the two-photon absorption coefficients of
GaAs and of Si near the two-photon absorption edge by an open-aperture z-scan
technique. The experimental data was compared to a model that includes nonlinear
absorption in the sample. For both Si and GaAs we find that the two-photon
absorption coefficient tends to zero near half the gap energy 1

2 Egap. The value of
β= 0.6±0.3 cmGW−1 at λ= 1630 nm is in agreement with data obtained by Ref. [97]
at slightly shorter wavelength and at much lower pump irradiance: β= 0.79±0.12
cmGW−1 at λ= 1550 nm.

Three-photon absorption coefficients γ for gallium phosphide were deduced at
a range of pump wavelengths in the three-photon absorption range λ= 1400-1600
nm. We observe that γ tends to zero as the frequency approaches the 1

3 Egap, in
agreement with a three-photon process. We also observe an effect of Kerr lensing,
and conclude that the Kerr coefficient of GaP attains a positive sign in this frequency
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Figure C.7: Three photon coefficient γ for GaP were obtained at five wavelengths. The dashed
vertical line the three-photon absorption edge for GaP 1

3 Egap. We observe that γ decreases as the pump
frequency approaches 1

3 Egap.

range. We propose that the observed opposite sign of the refractive index change
by free-carrier effects and the change due to nonlinear refraction in GaP allows for
non-monotonic switching experiments in GaP photonic crystals.





Samenvatting

Er is wereldwijd een sterk groeiende interesse voor materialen waarmee de emissie
en propagatie van fotonen kan worden beheerst en waarmee licht kan worden
gevangen. Bij uitstek daartoe geschikt zijn metamaterialen; dit zijn materialen
waarin twee of meer verschillende stoffen in een specifiek ruimtelijk patroon
nieuwe optische eigenschappen hebben die niet voorkomen in de afzonderlijke
stoffen. Dit proefschrift richt zich speciaal op fotonische kristallen, een speciaal
soort metamaterialen die de toegang kunnen verbieden aan licht met bepaalde
kleuren.

Fotonische kristallen zijn periodieke structuren die opgebouwd zijn uit twee ma-
terialen met verschillende brekingsindices. Aan de grensoppervlakken waar het
ene materiaal overgaat in het andere materiaal worden lichtgolven verstrooid.
Wanneer de periodieke variatie van de brekingsindex plaatsvindt op lengteschalen
die vergelijkbaar zijn met de golflengte van licht, dan kan er interferentie van de
verstrooide lichtgolven optreden. Het verschijnsel waarbij constructieve interfer-
entie van verstrooide golven een verhoogde reflectie veroorzaakt in een bepaalde
richting wordt optische Bragg diffractie genoemd. Het frequentiebereik waarin
propagatie van licht verboden is wordt een stopgap genoemd. De gemeten reflec-
tiepiek wordt een stopband genoemd.

Hoe groter het brekingsindex verschil tussen de beide materialen in het kristal
wordt, hoe sterker de interactie met licht wordt en hoe breder de stopgaps. In
driedimensionale fotonische kristallen kan dan zelfs een frequentiegebied ontstaan
waarin stopgaps in alle richtingen overlappen, zodat licht zich in geen enkele richt-
ing kan voortplanten. Zo’n gebied wordt een fotonische bandkloof genoemd. Voor
licht met een frequentie die in de bandkloof ligt, zijn in 1987 twee belangrijke fun-
damentele effecten voorspeld. Ten eerste kan spontane emissie van lichtbronnen
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volledig worden stilgezet doordat een photon niet kan worden uitgezonden. Ten
tweede is voorspeld dat het mogelijk is om licht in de buurt van een defect in
een fotonisch kristal stil te zetten. De frequentie-positie van de bandkloof van
een kristal ligt vast door de rangschikking en de brekingsindex van de gebruikte
materialen; als een kristal eenmaal gemaakt is, verandert de bandkloof in principe
niet meer.

Het ligt voor de hand dat de potentiële mogelijkheden van zo’n bandkloof veel
groter zijn, als de bandkloof in de tijd gecontroleerd veranderd kan worden. Dit is
vooral interessant wanneer de verandering ultrasnel plaatsvindt. De bandkloof van
een kristal kan geschakeld worden door bijvoorbeeld de brekingsindex van één van
de componenten te wijzigen. Voor halfgeleiders die voldoende hoge brekingsindex
hebben om een fotonische bandkloof te realiseren, blijkt dat de brekingsindex
tijdelijk en ultrasnel verminderd kan worden door met een lichtpuls elektronen in
de halfgeleider aan te slaan. Met korte en intense laserpulsen kan de brekingsindex
voldoende veranderd worden om de bandkloof van kleur te laten verschuiven.
Men zou daarmee bijvoorbeeld een aangeslagen natrium atoom in een kristal met
een bandkloof voor oranje licht opeens met de schakelpuls tot spontane emissie
kunnen laten overgaan. Hierbij zorgt de schakelpuls ervoor dat de bandkloof
ineens niet meer oranje licht verbiedt, maar blauwere kleuren. Dit proefschrift
beschrijft de eerste schakelexperimenten fotonische bandkloof kristallen, waarin
de frequentiepositie van de stopband verandert door het optisch aanslaan van
elektronen.

In Hoofstuk 1 worden enkele belangrijke doelen van het experiment gesteld
zoals het schakelen van spontane emissie en het schakelen van de groepssnelheid
van licht, waardoor pulsen stilgezet kunnen worden. Het hoofdstuk bevat ook een
korte discussie over de tijdschaal waarop de schakeling plaats moet vinden zodat
deze niet meer adiabatisch is.

Vier belangrijke eisen waar schakelexperimenten aan fotonische kristallen aan
moeten voldoen worden besproken in Hoofdstuk 2. Ten eerste moet de verander-
ing in brekingsindex moet groot genoeg zijn. Ten tweede moet de verandering
snel plaatsvinden. Ten derde is het ook relevant dat het geschakelde kristal niet
absorberend wordt. Ten vierde is het belangrijk dat de schakelpuls niet alleen een
dunne oppervlakte laag van het kristal schakelt, maar doordringt in een groter
volume. In Hoofdstuk 3 wordt uitgelegd hoe in schakelexperimenten aan deze
vier eisen kan worden voldaan. Uit onze analyse blijkt blijkt dat de ruimtelijke
homogeniteit van geschakelde halfgeleiders en fotonische kristallen kan worden
geoptimaliseerd door een twee-foton absorptie proces te gebruiken in plaats van
lineaire absorptie. De pomp en probe opstelling die gebruikt is in de schakelmetin-
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gen wordt in detail beschreven in Hoofdstuk 4. Een belangrijke eigenschap van de
opstelling is dat zowel de schakelpuls als de meetpuls over een breed spectrum aan
kleuren is te verstemmen, waardoor octaaf-brede tijdsopgeloste reflectiemetingen
mogelijk zijn. Verder wordt er aandacht besteed aan een nieuwe meetmethode
waarmee ruis tengevolge van laserfluctuaties sterk kan worden onderdrukt.

Hoofdstuk 5 beschrijft schakelmetingen aan GaAs/AlAs Bragg reflectoren. Deze
eendimensionale samples zijn uitermate geschikt om het schakelproces in detail te
bestuderen, omdat de structuur een vergelijking met exacte transfer matrix theorie
toestaat. We gebruiken twee-foton absorbtie om selektief elektronen aan te slaan in
de GaAs lagen van de structuur en oberveren zowel een ultrasnelle versmalling als
een opschuiving van de reflectiepiek. Het schakelproces gaat gepaard met grote
veranderingen tot ∆R>40% in de reflectiviteit aan de randen van de stopband. De
geschakelde spectra komen goed overeen met transfer matrix theorie waarin het
effect van de geëxciteerde elektronen wordt beschreven met het Drude model.

Hoofstuk 6 laat de eerste metingen zien aan fotonische bandkloof structuren.
De silicium houtstapel kristallen bestaan uit regelmatig opgestapelde nanobalkjes
van silicium. Samen vormen deze balkjes een diamantachtige kristal structuur.
Reflectiemetingen in het frequentiegebied van de bandkloof vertonen een brede
stopband met een hoge piek reflectiviteit van bijna 95 %. De kristallen worden
homogeen aangeslagen via een twee-foton proces en de geschakelde reflectiviteit
wordt gemeten over een octaaf-breed frequentie gebied. Op zeer korte korte tijden
<200 fs nemen we een verrassende vernauwing van de stop band waar, terwijl op
”langere”tijden, na ongeveer een picoseconde, de complete stopband verschuift
naar hogere frequentie. Dit niet-monotone gedrag wordt veroorzaakt door een
combinatie van een Kerr effect op korte tijden en het effect van de vrijgemaakte
elektronen op iets langere tijden. De gemeten reflectiespectra komen goed overeen
met exact modal method berekeningen waarin het effect van de elektronen wordt
beschreven met het Drudemodel. Op grond van onze experimenten voorspellen
we interessante effecten in de LDOS op korte tijdschalen.

Schakelmetingen aan silicium inverse opalen worden gepresenteerd in Hoofd-
stuk 7. In de kristallen worden met behulp van twee-foton absorbtie elektronen
vrijgemaakt. De reflectiviteit van de kristallen wordt gemeten in het gebied van
tweede orde Bragg verstrooing; het gebied waar een bandkloof is voorspeld. We
observeren een grote verschuiving van alle pieken naar hogere frequenties. We
vergelijken de geschakelde spectra met berekende bandenstructuren. We herlei-
den een grote maximale verandering van de brekingsindex van ∆n′Si/n

′

Si > 2%. We
herleiden voor de eerste keer een DOS verandering uit experimentele schakelmetin-
gen. De verandering van de toestandsdichtheid is naar schatting groot genoeg om

151



Samenvatting

de spontane emissie levensduur van lichtbronnen te schakelen.
In Hoofdstuk 8 worden enkele aanbevelingen gegeven voor verdere experi-

menten. Ten eerste laten we zien dat in experimenten met trilholtes met een nauwe
resonantie de benodigde energie in de schakelpuls sterk kan worden verlaagd tot
50 fJ, hetgeen belangrijk is voor mogelijke toepassingen. Ten tweede stellen we een
experiment voor waarin de overgang tussen het adiabatische en niet-adiabatische
regiem kan worden onderzocht. Ten derde stellen we een methode voor om de
spontante emissie veranderingen in geschakelde kristallen te meten met behulp van
utrasnelle sluiters. Ten vierde adviseren we het verrichten van metingen waarin
ook de pump frequentie wordt verandert om het schakelgedrag op t= 0 fs in de
houtstapel kristallen te onderzoeken. Ten vijfde stellen voor om de twee-foton
absorbtie coefficient van onze kristallen te bepalen met behulp van niet fotonische
referentie samples. Als laatste stellen we voor om schakelmetingen te doen aan
fotonische kristalllen die gemaakt zijn met behulp van ets technieken.
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In de eerste plaats bedank ik mijn promotor. Willem, ik ben je dankbaar voor
de grote mate van vrijheid en vertrouwen die je me schonk. Ik heb genoten van
de bewegingsruimte die je me gunde tijdens het opbouwen van ons experiment.
Tegelijkertijd was het erg fijn om je altijd als coach aan de zijlijn te hebben die op
het juiste moment de speelwijze aanpast.

Nog meer wil ik je bedanken voor de vele dingen die je me geleerd hebt,
zoals het overzicht proberen te houden in een project; “wat is het doel?” maar
ook het tot in details analyseren van data om zo tot nieuwe inzichten te komen.
Verder leerde je me om resultaten meer didactisch te presenteren en om kleine
successen te waarderen als de grote nog even uitblijven. Je gedrevenheid en passie
voor natuurkunde hebben aanstekelijk op me gewerkt. Ik waardeer de steun en
adviezen die je me op persoonlijk vlak hebt gegeven.

Ad, ik heb het erg leerzaam gevonden om met je samen te werken. Bedankt
voor de wetenschappelijke discussies, waarin je scherpe blik en nieuwe ideeën
inspirerend hebben gewerkt. Ik ben je stijl van leiding geven gaan waarderen
omdat hierin het belang van het onderzoek voorop blijft staan, zelfs als hiervoor
moeilijke beslissingen nodig zijn. Bedankt voor je opbouwende kritiek tijdens
werkbesprekingen en colloquia, waarvan ik veel heb geleerd. Verder dank ik je
voor de keren dat je me persoonlijk advies hebt gegeven.

Cock, zonder jouw vakkundige technische ondersteuning zouden experimenten
in het COPS-lab nooit zo voorspoedig zijn verlopen. Welk probleem er ook was, je
had altijd een geschikte oplossing paraat. Ik heb met plezier met je samengewerkt,
in het bijzonder herinner ik me ons flitsende wit-licht avontuur in Denemarken. In
de onzekere periode waarin een groot deel van de groep naar Amsterdam vertrok,
heb je je ondanks alles volledig ingezet om alles in goed banen te leiden.
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Het was fijn om op AMOLF in Rob K. dezelfde deskundigheid en ervaring terug
te vinden. Je hebt erg veel voor onze experimentele opstellingen gedaan, in het
bijzonder in de periode van de verhuizing, waar je ons aanspreekpunt bent geweest
naar de technische staf op AMOLF. Het is mede dankzij jouw inzet geweest dat,
ondanks onvoorziene problemen, na enkele maanden de eerste schakelmetingen
op AMOLF konden worden gedaan.

Adriaan, ik wil je bedanken voor de fijne samenwerking. Je hebt tijdens je afs-
tudeerproject een bijzondere prestatie geleverd. Je kreeg een complexe opstelling
snel onder de knie. De schakelmetingen die je ermee hebt verricht aan de wood-
pile kristallen waren monnikenwerk, iets wat jou goed lag. Je goed georganiseerde
werkmethode heeft ervoor gezorgd dat de experimenten zo goed zijn verlopen.
Voor de wetenschap is het jammer dat jouw doel ergens anders ligt.

Rob v. L., ik kijk terug op een leuke tijd waarin we samen met Léon aan cavities
in opalen hebben gewerkt. Hoewel je niet aan het schakelexperiment werkte, heeft
je mooie werk wel de basis gevormd voor verdere experimenten binnen de groep.

Zonder een goede computer ondersteuning was dit onderzoek niet mogelijk
geweest. Op dit gebied wil ik twee mensen speciaal bedanken die mij verschillende
malen hebben geholpen in tijden van nood: Bas in Twente en Richard op AMOLF.
Voor advies op het gebied van elektronica wil ik Frans en Rindert bedanken.

Albert, ik wil je hartelijk bedanken voor het genereus ter beschikking stellen
van de prachtige woodpile samples en Si inverse opalen. Jeroen, het was erg leuk
om samen met je te kunnen meten aan en te discussiëren over de Si inverse opalen.
I would like to thank you, Jim Fleming, and David Norris for the beautiful photonic
crystals that are discussed in Chapter 6 and 7 respectively.

Femius, ik bedank je voor je geduldige uitleg over fotonische kristallen in het
begin van mijn promotie, en voor de inzichten die je hebt me hebt gegeven. Verder
bedank ik je voor je hulp bij het interpreteren van bandenstructuur berekeningen
aan inverse opalen. Ik wil Allard bedanken voor zijn hulp bij het analyseren van
onze data en voor zijn interessante ideeën voor nieuwe experimenten.

Ik wil Henry van Driel bedanken voor de prettige samenwerking en voor zijn
deskundige hulp bij de interpretatie van onze data aan GaAs/AlAs structuren.
In Tampere, I would like to thank Soile Suomalainen and Mircea Guina for our
collaboration and for the excellent III-V Bragg stacks.

Léon, Willem T. en Frans; de drie ets- en fibkoningen uit het oosten; helaas ga
ik iets te vroeg weg om jullie prachtige fotonische structuren te kunnen schakelen.
Ik bewonder jullie gedrevenheid en doorzettingsvermogen in het systematisch
verbeteren van de zeer uitdagende fabricagetechnieken van fotonische kristallen.
En het spijt me nog steeds van dat ene ”permanent geschakelde”kristal. . .
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Op AMOLF wil ik graag de groepsleiders van het Center for Nanophotonics
bedanken voor hun initiatieven om samenhang en informatieoverdracht tussen de
groepen te stimuleren. De wekelijkse colloquia en de nanofotonica workshop op
Ameland zijn voorbeelden hiervan die ik als erg nuttig heb ervaren. De kritische,
maar enthousiaste manier waarop tijdens de colloquia en werkbesprekingen over
wetenschap wordt gediscussiëerd spreekt me erg aan. Ik bedank iedereen die een
actieve bijdrage heeft geleverd aan dit motiverende klimaat, in het bijzonder de
groepsleiders.

Voor het regelen van vele administratieve zaken wil ik in Twente Karen en
Raymond bedanken en Ed voor zijn hulp bij vele praktische zaken op AMOLF.

Als experimentator neem ik op deze plek ook een beetje afscheid van “mijn” op-
stelling. Een troostende gedachte is wel dat de experimenten die we zijn begonnen
voortgezet worden. Philip, ik wens je veel succes met de mooie schakelexperi-
menten die in het vooruitzicht liggen.

Zoals wellicht bekend ben ik halverwege mijn promotie samen met een deel
van onze groep verhuisd van Enschede naar Amsterdam. Ik kijk met enigzins
gemengde gevoelens terug op het vertrek uit Twente. In Amsterdam lagen weliswaar
vele nieuwe kansen en uitdagingen te wachten, maar achteraf gezien heeft de ver-
huizing ook de opsplitsing betekend van de bijzonder hechte Complex Photonic
Systems groep zoals die toen was.

Voor hun hulp tijdens de verhuizing naar Amsterdam wil ik op AMOLF
Piet, Wouter en Roudy bedanken. Ik bedank ook alle groepsgenoten die hebben
geholpen met het zorgvuldig inpakken van ieder onderdeeltje van de experi-
mentele opstellingen.

Een van de voordelen van het experimenteren op AMOLF die ik al snel ontdekte
was dat je er nooit alleen aan het werk bent; niet als je experiment uitloopt tot in de
kleine uurtjes en ook niet in als er in het weekend nog wat moet worden gemeten.
Ik wil daarom de “vaste” overwerkers Alex, Avi, Dima, Euan, Jord, Maria, Marijn,
Paolo, Rob E. en Willem bedanken voor de gezelligheid en ook voor het letten op
elkaars veiligheid.

Niet alleen op wetenschappelijk gebied heb ik een leuke promotie-tijd gehad.
Zowel in Twente als op AMOLF is er een fijne werksfeer. Zonder uitzonder-
ing heb ik met iedereen goed op kunnen schieten. De leuke sfeer wordt voor
een belangrijk deel bepaald door gezellige buitenlabse activiteiten zoals: etentjes,
housewarmings, voetbalpartijen, barbecues, borrels, spelavonden, filmavonden,
zwemmiddagen en Batavierenrace trainingen. Zonder in een opsomming van na-
men te vervallen wil ik iedereen bedanken die in de afgelopen jaren hieraan heeft
meegedaan.
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Ik wil een paar mensen speciaal bedanken waarmee ik door de jaren heen
persoonlijk een sterke band heb gekregen. Alex, Cock, Dima, Femius, Ivan, Ivo,
Jaime, Karen, Léon, Martijn, Paolo, Peter, Raymond, Tom, Willem en Willem T.
bedankt voor de vele leuke momenten en voor jullie vriendschap.

Tom, het was erg fijn om in de afgelopen jaren de ups en downs binnen en
buiten onze promoties met jou te kunnen delen. Ik heb genoten van de keren
dat we samen hebben gekookt, gedronken en gesport. Ook was het fijn om af
en toe lekker Hollands te mopperen over dingen waaraan we ons gezamenlijk
ergerden, niet in de laatste plaats tijdens onze verkenning van de Amsterdamse
woningmarkt.

Ivan, jouw nuchtere kijk op dingen werkt verhelderend. Ik bedank je voor je
adviezen die mij vaak hebben geholpen. Ik wil jou en Nina ook bedanken voor
jullie vriendschap en de gezellige avonden in het Amsterdamse. Ik wens jullie veel
geluk in Brabant.

Mika, ik wil je een plaats geven in dit dankwoord omdat je erg belangrijk voor
me bent geweest. Ons avontuur verliep niet zoals we hadden gehoopt, maar we
kunnen in ieder geval terugkijken op een mooie tijd.

Hidde en Wenneke, wat is het fijn om je bij mensen thuis te voelen. Ik heb veel
steun en advies van jullie gekregen op momenten dat dat nodig was. Jullie zijn
geweldige vrienden.

Ik bedank verder alle vrienden en familieleden die me in de afgelopen jaren
hebben bijgestaan, raad hebben gegeven of gewoon interesse hebben getoond in
waar ik mee bezig was. Ik bedank in het bijzonder mijn paranimfen Tamar en
Sjoerd. Lieve zus en broer, bedankt voor jullie steun en voor het in goede banen
leiden van mijn promotiedag.

Lieve mama en papa, jullie hebben onvoorwaardelijk achter me gestaan in de
keuzes die ik door de jaren heen heb gemaakt. Ik wil jullie bedanken voor jullie
liefde en steun. Dit proefschrift draag ik op aan jullie.
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[23] E. Özbay, E. Michel, G. Tuttle, R. Biswas, K.-M. Ho, J. Bostak, and D. M.

Bloom, Appl. Phys. Lett. 65, 1617 (1994). — p.17.
[24] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho,

M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature 394, 251 (1998).
— p.17 and 96.

[25] J. G. Fleming and S.-. Y. Lin, Opt. Lett. 24, 49 (1999). — p.17, 41, and 74.
[26] S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Nature 289, 604 (2000).

— p.17 and 80.
[27] S. Hachisu and S. Yoshimura, Nature 283, 188 (1980). — p.17.
[28] J. V. Sanders, Nature 204, 1151 (1964). — p.17.
[29] B. T. Holland, C. F. Blanford, and A. Stein, Science 281, 5376 (1998). — p.17.
[30] J. E. G. J. Wijnhoven and W. L. Vos, Science 281, 802 (1998). — p.17 and 99.
[31] A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas,

J. Marti, and V. G. Ralchenko, Science 282, 897 (1998). — p.17.
[32] W. L. Vos and H. M. van Driel, Phys. Lett. A 272, 101 (2000). — p.17, 25,

and 99.
[33] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard,
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