
� ��� �����
	���
�������������� ��� ����	�
������ ���!�

" �#��$�% �'&(� ��� ���)�����)��� ���*� ���+�,���-�����.���

" $����,���

/�0.1325476!8:9;0=<?>A@
BC4ED
9F0=<G@H8ID�J

KMLONQP�LRNMSTNVU WYX
U[Z\X.P+]�Z_^`LaX
NV]
]�^bP+]�Z3^`c`deKMc�N;]�]�Zf^\Lhg)ZHU[P
LONjikU[KMLRUlK
Pm]�Z�n-oGiYKVLONj^\]�opc
qrX
LOsR]�X*P+]�Z�^`Lut.LvdwKMc
Nyx�]�X
Z\Ulz{de|Hi} NMc�~Y� �ENv� �7���E� P+]�Z_^`LRZ_��c�c
o'KVLOZ=c+P
LONjiYKj]�]�ZEP+]�Z=LOLRZ_^`cTc�NQ�\LeK
dec�����LOX�L�P
c�c
Nuq\NVc�o�c�KVU[LviuU[ZHX�LRikKMLR��^\L�dec�o�o�U�iMiMU[L
��U�Z��\LeK
c�q{LOZT�H]�]�NyKML�P�LRNV^\LR^`U�X�LRZ�U[Z�^`L�n-|\��]r^`LON(g)ZHU[P
LONjikU[KMLRUlK

c�q�PTNMU Wk^\]�X��v�7ZHc+P�LOo7��LRN)�����T�T��KMLG�R�H� ���3|\|\Nv�

^`cTc�N

� <_15�_J�1G� �¡1G�I47@H8:15�G8

X�LO�{c�NVLOZ�KML=t.c
o�L��\¢£Kj]���U[¤



¥§¦©¨�ª ¨`«w¨�¦
: Prof. Dr. D. Frenkel

¬b­
® ¦Y¯ ° ®C± ®�²\®T³
: Prof. Dr. P. G. Bolhuis

Prof. Dr. Ir. M. Dijkstra
Dr. E. J. Meijer
Prof. Dr. F. Sciortino
Prof. Dr. Ir. B. Smit

´Tµ�¶�· ± « ® ¯�«
: Natuurwetenschappen, Wiskunde en Informatica

The work described in this thesis was performed at the FOM Institute for Atomic and Molecular Physics,
Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands. The work is part of the research program of the
Stichting voor Fundamenteel Onderzoek der Materie (FOM) and was made possible by financial support
from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Cover: Julien Husson.

Subject headings: / computer simulation / homogeneous nucleation / phase transitions / rare
events / crystallization / bubble formation / nucleation under shear



A Edu.
Alla mia "grande" famiglia.



The work in this thesis is based on the following publications¸7¹Qº\»Q¼v½
¾C¿�À
Computing stationary distributions in equilibrium and non-equilibrium systems with Forward
Flux Sampling.
C. Valeriani, R. J. Allen, M. J. Morelli, D. Frenkel and P. R. ten Wolde.
J. Chem. Phys. Á\Â�Ã , 114109 (2007).¸7¹Qº\»Q¼v½
¾�ÄÅÀ
Rate of homogeneous crystal nucleation in molten NaCl.
C. Valeriani, E. Sanz and D. Frenkel.
J. Chem. Phys. Á\Â�Â , 194501 (2005).¸7¹Qº\»Q¼v½
¾�ÆÇÀ
Evidence of out-of-equilibrium crystal nucleation in suspensions of oppositely charge
colloids.
E. Sanz, C. Valeriani, D. Frenkel and M. Dijkstra.
Phys. Rev. Lett. È�È , 055501 (2007).¸7¹Qº\»Q¼v½
¾CÉ�À
Local structure of liquid carbon controls diamond nucleation.
L. M. Ghiringhelli, C. Valeriani, E. J. Mejer and D. Frenkel.
Phys. Rev. Lett. È�È , 055702 (2007).¸7¹Qº\»Q¼v½
¾ Ã À
Perturbation-theory estimates for the liquid-solid and the liquid-vapor γ of Lennard-Jones
systems.
C. Valeriani, Z. Wang and D. Frenkel.
Accepted, Mol. Sim.¸7¹Qº\»Q¼v½
¾CÊ�À
Homogeneous bubble nucleation in a Lennard-Jones fluid: pathway analysis and rate
calculation.
Z. Wang, C. Valeriani and D. Frenkel.
In preparation.¸7¹Qº\»Q¼v½
¾ È À
Irreducible finite-size effects in surface free energies from crystal-nucleation data.
T. Zykova-Timan, C. Valeriani, E. Sanz, E. Tosatti and D.Frenkel.
Submitted for publication.¸7¹Qº\»Q¼v½
¾ ÁTË À
Study of homogeneous nucleation under shear in a 2D Ising model.
R. J. Allen, C. Valeriani, S. Tanase, D. Frenkel and P. R. ten Wolde.
In preparation.

Other publication not in this Thesis:
Fluctuation-Dissipation Relations and Energy Landscape in an Out-of-Equilibrium Strong-
Glass-Forming Liquid.
A. Scala, C. Valeriani, P. Tartaglia and F. Sciortino.
Phys. Rev. Lett. È�Ë , 115503 (2003).



Ì �!���Í�������

ÎkÏ Ð�ÑFÒ;Ó�Ô�Õ;ÖT×�Ø.Ù Ú
ÛHÜ,Ý�³ «w¦Y¨ ² ·`¶+«e¯�¨ ³ Þ
ßàÜ,á ·`¶ ± ® µ�«e¯�¨ ³ â

2.1. The physical phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . ã
2.2. Classical Nucleation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . ���

2.2.1. The free-energy barrier . . . . . . . . . . . . . . . . . . . . . . . . �v�
2.2.2. Equilibrium distribution of cluster sizes . . . . . . . . . . . . . . . . �R�
2.2.3. The nucleation rate according to CNT . . . . . . . . . . . . . . . . . �m�

2.3. Numerical techniques to study rare events . . . . . . . . . . . . . . . . . . . � ã
2.3.1. Bennett-Chandler method . . . . . . . . . . . . . . . . . . . . . . . ��ä

2.3.1.1. The Umbrella Sampling technique . . . . . . . . . . . . . �+�
2.3.1.2. Estimation of the attachment rate in the kinetic pre-factor . ���

2.3.2. Forward Flux Sampling . . . . . . . . . . . . . . . . . . . . . . . . ��å
2.3.2.1. Numerical computation of the steady-state flux . . . . . . . � ã
2.3.2.2. Numerical computation of P0→B . . . . . . . . . . . . . . ä
�

Appendix A: Order parameter used to study homogeneous crystal nucleation . . . ä��
Appendix B: Landau free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . ä
�
Appendix C: Details on the FFS calculations . . . . . . . . . . . . . . . . . . . . . ä��
Appendix D: Tips for beginners . . . . . . . . . . . . . . . . . . . . . . . . . . . . ä
å

ÎVÎkÏçæ§ØhèVéCÕ§èwê(æEÓëÑ;ìîí.Õ�ï¡ðhÓë×IÙFñAÖ�ÔÅÒ;ò�Ùa×ôó)ÑFÔõÕ�ðhð�Óö×�ÔÅêAÖ�Ø#Ù�ÑFÒ;Ó�Ô�Õ;ÖT×�Ø.Ù÷ðhòFÔàø
ÙFØ.ïAÔ§ÙFÕ ù-Ú

ÞàÜ�ú ¨{ª�û�·T«e¯ ³ °�üw«wµ�«e¯�¨ ³ µ
¦£ý ² ¯ üw«e¦Y¯[þH·T«e¯�¨ ³ übÿb¯ «��,´�´�� � Þ
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��ä
3.2. Stationary distributions: the theory . . . . . . . . . . . . . . . . . . . . . . . ���
3.3. Stationary distributions: the method . . . . . . . . . . . . . . . . . . . . . . �
�
3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��å

3.4.1. Testing on a one-dimensional system . . . . . . . . . . . . . . . . . �
å
3.4.2. Testing on the two-dimensional Maier-Stein system . . . . . . . . . . � �

P



3.4.3. Homogeneous nucleation in a two-dimensional Ising model . . . . . � ä
3.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � �

ÎVÎMÎkÏ�ÎôØ.Ùh×�Ò��	�
��Ö�Ô§ï�� ��

� Ü�� µ�« ® ¨����\¨�ª ¨`° ®T³`® ¨�·`üE¶�¦©ý�üw«wµ ±�³ ·`¶ ± ® µ�«e¯�¨ ³ ¯ ³ ª ¨ ± « ®T³ á µ úh± �{Û

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �H�
4.2. Simulations details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
�
4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���
4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �`�
Appendix A: Tail corrections of the total energy . . . . . . . . . . . . . . . . . . . ���
Appendix B: Crystalline clusters in NaCl . . . . . . . . . . . . . . . . . . . . . . . �+ä
Appendix C: Computing β∆µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . �m�

� Ü�¬ ·T«��k¨���� ®	� ·\¯ ± ¯lþ�¦Y¯l·Hª�¶
¦£ý�üw«wµ ±;³ ·`¶ ±�® µ�«e¯�¨ ³ ¯ ³ üR·TüRû ®`³ üO¯�¨ ³ ü3¨��b¨�ûHû{¨`üO¯�« ®T± ý�¶	�`µ�¦©° ®
²
¶�¨ ± ± ¨H¯ ² ü ���
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �
�
5.2. Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��å
5.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . å
�
5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . å��
Appendix A: Charge swap move . . . . . . . . . . . . . . . . . . . . . . . . . . . å �
Appendix B: Order parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . å �

Î�� Ï���Ø! ÅÕ�Ó[Ô§Ù;Ö"�#�$�
Ö�Ô§ï��&%�Ö`ò;Ô'��Õ§è)(aØ.Ù�ÒàÕ*��Ô +-,
�àÜ�. ¨à¶�µ ± üw«e¦k·\¶+«O·\¦ ® ¨/� ± ¯ � ·\¯ ² ¶�µ�¦Mþ{¨ ³ ¶�¨ ³ «w¦Y¨ ± ü ² ¯�µ\ª ¨ ³`²�³ ·`¶ ± ® µ�«w¯ ¨ ³ 0\â

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . å ã
6.2. Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ã �
6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ã �
6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ã �
Appendix A: LCBOPI+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ã �
Appendix B: Order parameter to study diamond nucleation from molten carbon . . ã �
Appendix C: Self-diffusion coefficient . . . . . . . . . . . . . . . . . . . . . . . . ã�ã
Appendix D: Computation of the crystal nucleation rate at state point A and B . . . �v���
Appendix E: Computing the super-saturation . . . . . . . . . . . . . . . . . . . . . �R�H�
Appendix F: Inter-facial free-energy estimate via the free-energy barrier . . . . . . �v�
�
Appendix G: Estimating the nucleation rates throughout the region of the phase

diagram between TA and TB . . . . . . . . . . . . . . . . . . . . . . . . . . �R���

� Ï21�Ñ�(3(�Ó[Ô�ÙhÑ§Ò;Ó[Ô�Õ;ÖT×�Ø.Ù Ú$4�,

PTU



� Ü ¥ ® ¦£«O·H¦kþ`µ�«e¯�¨ ³ �Y«5� ® ¨T¦£ý ® üw«w¯[ª5µ�« ® ü ¨�� ± ¯ � ·\¯ ² �Yüe¨ ± ¯ ² µ ³\² ± ¯ � ·\¯ ² � ­ µ\û{¨�·H¦
γ
�£¨T¦.
®`³H³ µ�¦ ² �76
¨ ³`® ü Û	8Hâ

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �R� ã
7.2. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���v�
7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���R�

7.3.1. Calculation of the liquid-solid inter-facial free energy . . . . . . . . . �
�O�
7.3.2. Calculation of the liquid-vapour surface tension . . . . . . . . . . . . �
� �

7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���+�
Appendix A: Comparison with Fowler’s expression . . . . . . . . . . . . . . . . . �m���

0àÜ�9 ¨�ª ¨`° ®`³T® ¨{·Tü;:�·Hþ�þ ± ® á ·`¶ ±�® µ�«e¯�¨ ³ ¯ ³ «�� ®<.�®T³�³ µ�¦ ² �76
¨ ³T® ü>=�·H¯ ²�Ü Û�ß\Þ
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �v��ä
8.2. Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �v� �
8.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �v��å
8.4. Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . �v� ã
Appendix A: Details on the thermostat and the barostat . . . . . . . . . . . . . . . �vä
�
Appendix B: TSF-LJ liquid-vapour phase diagram . . . . . . . . . . . . . . . . . . �vä
�
Appendix C: Lowe-Andersen thermostat and the FFS scheme . . . . . . . . . . . �vä��

� ÎkÏ-? ò;Ô
γ
ï��$�
Ö�Ô§è@� ÚBA-,

âàÜ,Ý ¦Y¦ ®
² ·\¶�¯lþ ± ®>CÅ³ ¯ « ® �YüO¯ED ®=®GFF® ¶+«jü)¯ ³ üR·\¦H�£µT¶ ® �Y¦ ®�®3®T³T® ¦£°�¯ ® ü��©¦©¨{ª�¶
¦£ý�üw«wµ ± � ³ ·\¶ ± ® µ
«e¯�¨ ³
² µ�«wµ Û�Þ\â
9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �Rä ã
9.2. Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �O���
9.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �O���
9.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �O���
Appendix A: Averaged cluster shapes and numerical Wulff’s construction . . . . . �R�T�
Appendix B: Thermodynamic versus geometric N . . . . . . . . . . . . . . . . . . �R� ã
Appendix C: Different choices of the dividing surface bring to different values of γ

�R� ã
Appendix D: Gibbsian droplet model and the compressibility effect . . . . . . . . . � � ä
Appendix E: Comparison with edge and corner free energies at 0 Kelvin . . . . . . �v�
�
Appendix F: Comparison with experiments . . . . . . . . . . . . . . . . . . . . . �v���

� ÎMÎkÏ�I�Ø.ïAØ ñ Ô§ÙFÔ�Ø.Ñ*��Ù�ÑFÒ;Ó�Ô�Õ;ÖT×�Ø.Ù�ÑhÙ§êhÔ§èJ�HòFÔ�Õ§è Ú
K!�
Û	8ÇÜ �à«O· ² ý ¨��L�`¨�ª ¨`° ®`³T® ¨{·Tü ³ ·`¶ ±�® µ�«e¯�¨ ³ · ³`²\® ¦�üM� ® µ�¦)¯ ³ µ ß&N�Ý üO¯ ³ °,ª ¨ ²\®�± Û#� �

10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �R�T�
10.2. Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �R� ã
10.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �m�`�
10.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �m���
Appendix A: Shear algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . �m� ã

PTU�U



:h¯lþ ± ¯�¨`°{¦©µ\ûO�Tý Û#0{Û
�Å·�ª�ª µ�¦£ý Û�â\ß
�Çµ\ª ®T³T­ µ�«V«e¯ ³ ° Û�â��
. µ ³ ·`¶ ±�® µ�D�¯�¨ ³`® ß/8�8
P�¶	Q ³ ¨
ÿ ± ®�² °{ª ®T³ «Vü@��R$SUTWV�X�YWZ)S Y#[L\]TM^�S ß/8HÞ

PTU[U�U



_ ����� `�a

b cedgfihkjklnmOo p

�





q a `;�#���)� � �*	'� ���!�

It is common experience that liquid water if cooled at ambient pressure below its melting
temperature of 0 ◦C, freezes into ice. However, ice formation happens only when liquid
water is thermalised at a much lower temperature than the melting one. It is indeed possible
to test in the laboratory that a sample of distilled water can be thermalised at -10 ◦C without
freezing and, if divided into small droplets, it can be even super-cooled down to -30 ◦C
without converting into ice. More in general, many purified liquids can be maintained in a
metastable state for long time until a spatially and temporally localised density fluctuation
of the new stable phase is larger than a r5sut�v�twr@xzy size, and the all system transforms into ice.
The same holds if the starting system is a super-heated liquid changing into a vapour. This
mechanism demonstrates the existence of a kinetic barrier to first order phase transitions,
and is called {�|G}~|��	�����@|G�����i�Or5y��@xGv�tw|G� . Due to the presence of a free-energy barrier, the
nucleation process can be considered as an example of a s�xzs7�����W���Ov happening in Nature.
Rare events are activated processes, for which the average waiting time between events can
be orders of magnitude longer than the event itself. As such, rare events are intrinsically
difficult to investigate.

Fahrenheit was the first who did a systematic study of crystallisation of water in 1714 [1],
experimenting for the first time the concept of super-cooling. Later on, Gay Lussac extended
Fahrenheit’s observations showing that the phenomenon of super-cooling was not only valid
for water [2]. However, the first one who gave a detailed description of the criteria for phase
equilibria was Josiah Willard Gibbs in 1878 [3]. He suggested the distinction between stable
metastable and unstable phases, and that in order to understand phase transformations in the
metastable region, it is necessary to measure the work needed to form a droplet of the new
stable phase. This concept was revisited in 1926 by Volmer and Weber [4], who formulated
a phenomenological theory that describes the nucleation phenomenon, the so-called Clas-
sical Nucleation Theory (CNT). Volmer and Weber stated that the metastability of a super-
saturated phase was mainly a kinetic effects. Studying nucleation of a liquid droplet (new
phase B) from a metastable vapour (parent phase A), they adopted the Gibbs formulation of
the reversible work for the formation of a nucleus of phase B from the metastable phase A
to calculate the equilibrium cluster density distribution; they also obtained an expression for
the nucleation rate. Later on, Becker and Döring derived the steady-state nucleation rate [5]

R = N1k+,n∗

( |∆G′′(n)|n∗

2πkBT

)1/2

e−β∆G(n∗) � �
�[�W�
where N1 is the equilibrium distribution of particles, k+,n∗ the attachment rate of single parti-
cles to the critical cluster, |∆G′′(n)|n∗ the second derivative of the Gibbs free energy ∆G(n)
as a function of the phase B-cluster of size n, n∗ is the critical cluster size, corresponding to
the top of the free-energy barrier ∆G(n∗).
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CNT is based on the capillary approximation, in which small portions of the new phase

are treated as if they represent macroscopic regions of space. According to CNT, the Gibbs
free-energy barrier ∆G of the growing phase-B cluster with respect to phase A, is computed
by means of few x��&sutw|zsut assumptions on the growing cluster, such as that it should have a
geometrically well defined shape, should be characterised by bulk properties of the B phase
(like density and inter-facial free energy), and be incompressible. Thus, ∆G for a spherical
cluster of radious R is written as

∆G(R) = γ∞4πR2 +
4

3
πR3ρB∆µ, � �
� �	�

where γ∞ is the inter-facial free energy between phase A and B, ρB the phase B density,
and ∆µ=µB(PB) − µA(PA) the chemical potential difference between the two phases, also
driving force for the nucleation of phase B. ∆G is characterised by a surface term, that
corresponds to the free-energy cost (positive) to make the surface of the new phase B (first
addendum), and a free-energy gain (negative) the system gets while the cluster of phase-B
is growing. The two terms balance and ∆G reaches its maximum (∆G(n∗)) at a size of the
cluster n∗ defined as r�sut�v�twr@xzyLr�yE���uv��5s ; ∆G(n∗) is the height of the free-energy nucleation
barrier.

Thus, once the nucleation rate is measured in experiments, it is possible to use CNT to
estimate the height of the nucleation barrier ∆G(n∗) [6], and from this the inter-facial free
energy by means of eq. 1.2.

Even though widely spread, there are many cases where CNT fails in describing the nucle-
ation process. Experiments on non-polar fluids have shown that CNT predicts very accurate
nucleation rates, whereas for strongly polar fluids CNT fails in predicting the rates by several
orders of magnitude. Oxtoby and Evans [7] demonstrated that by increasing the range of the
attractive tail on a realistic potential, the initial agreement between CNT and a non-classical
theory, based on Density Functional Theory, completely vanished. Although nucleation the-
ory is one of the few areas of science in which agreement of predicted and measured rates
to within several orders of magnitude is considered a major success, few years ago Oxtoby
pointed out that a reason why CNT works in many cases is due to a “ cancellation of er-
rors” [8]:

1. on one side, the assumptions that the surface free energy of a small cluster is the same
as of an infinite planar interface and does not depend on the cluster’s curvature, should
lower the value of the nucleation rate;

2. on the other side, the fact that the nucleation barrier does not vanish at the spinodal
point, whereas it should, should increase the rate.

Both factors lead to a cancellation of errors at certain temperatures, but not avoiding the
incorrect temperature dependence of the nucleation rate estimated by Classical Nucleation
Theory. Nevertheless, CNT is nowadays the most used theory to understand the nucleation
processes from experimental or numerical measurements.

Computer simulations are a natural tool to understand the nucleation mechanism at a mi-
croscopic level. Simulations might help where experiments have limitations: in fact, experi-
ments cannot detect nucleation pathways of clusters containing only few particles. Moreover,
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simulations might also be useful to support the develop of a “new” theory of nucleation, that
could improve the already existing CNT.

Being nucleation a rare event, it is characterised by a time-scale separation: on one side,
the long average waiting time between two events; on the other side, the very short event
itself. In studying activated processes, such as nucleation, ��su�/v��!�5|zs7r@� numerical simulations
might not be enough, as they tend to be computationally very demanding. Thus, we need to
employ x]��{O|Mr simulation techniques. Over the past few years, there has been a flourishing
of computational methods for finding transition pathways for rare events in both equilibrium
and non-equilibrium systems.

The above-mentioned time-scales separation allows to describe the kinetic of the process
as a two-step procedure, as presented in the Transition State Theory (TST) theory [9, 10].
Central in TST, is the use of a reaction coordinate Q, that quantifies the transition from phase
A to phase B. For a crystal nucleation, Q can be considered as the biggest solid cluster size.
By means of Q is then possible to identify in the phase space the dynamical bottleneck for
the rare transition to happen: Q∗, the saddle point in the phase space that separates the two
phases A and B, which only rarely visited by the system. Once Q∗ is known, the nucleation
rate can be written as the product of two factos

R = κ(Q∗)P (Q∗), � �
� ä#�
where the probability for the system to be at Q∗, P (Q∗), is multiplied by the frequency at
which the saddle point Q∗ is crossed. P (Q∗) is a function of the reversible work needed
to allow the system to reach Q∗: β∆G. This is the procedure followed in the Bennett-
Chandler (BC) scheme, one of the techniques we have used in our nucleation studies. The
Gibbs free-energy barrier to nucleation can be computed via the Landau free-energy function
of the order parameter Q, by means of the Umbrella Sampling technique [11]; while κ(Q)
can be computed by means of Molecular Dynamics or kinetic Monte Carlo, as explained in
subsection 2.3.1.2.

The other technique we have utilised to study nucleation phenomena is the so-called For-
ward Flux Sampling technique. The Forward Flux Sampling (FFS) technique is a novel
simulation technique developed to both analyse the nucleation pathways and calculate the
rate to nucleation. FFS needs an order parameter to follow the transition from A to B, but
this choice does not determine the results obtained. Being at Q = λ0 the boundary of phase
A, the FFS nucleation rate is expressed as

RAB = ΦA→0 · P0→B , � �
� ���
where ΦA→0 is the steady-state flux of trajectories leaving state A, which is the number
of crossings per unit of time and volume of the first interface λ0, and P0→B is the overall
probability that trajectories, coming from A and initially at λ0, manage to reach the final
state B.

As dated as widespread in our daily life experience, nucleation is still a not completely
understood phenomenon. Thus, our contribution is devoted to add another piece to this in-
triguing puzzle.

�
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This thesis focus on the study of the homogeneous nucleation process in different systems.

In chapter 2 we discuss Classical Nucleation Theory, and present the techniques used in
this thesis: Umbrella Sampling(US) [11, 12] to compute the free-energy barrier that must
be known to compute nucleation rates if the process can be described as a diffusive barrier
crossing, and Forward Flux Sampling(FFS) [13, 14, 15] to analyse the nucleation pathways
and compute the nucleation rate. We employ for the first time Forward Flux Sampling to
compute the free-energy barrier for nucleation, as we will explain in chapter 3. Having in-
troduced the necessary numerical tools, we apply them to study crystal nucleation in ionic,
covalent bonded, and dispersive forces systems.

In chapter 4 we investigate crystal nucleation from the melt in an super-cooled sodium
chloride liquid, and compute the nucleation rate using both US and FFS.

In chapter 5 we test the Stransky-Totomanow [16] conjecture, by over-compressing a sys-
tem made of oppositely charged colloids [17]. In this system, there are several possible
crystal-nucleation pathways. We use simulations to investigate which of the many possible
crystal phases [17] will form under what circumstances.

In chapter 6 we study the effect of the local structure of the parent liquid on crystal nucle-
ation. We focus on the example of diamond nucleation from liquid carbon. Liquid carbon
is peculiar because its local structure changes dramatically with temperature and pressure.
At temperatures around 5000K and pressures around 80GPa, it mainly manifests a �5|G�/su¢E�5|zy��r@|M|Gs7�zt��&xzv��@� structure, whereas at temperatures around 3800K and pressure around 30GPa it
exhibits a v�{�s7�@��¢E�5|zy���r@|M|Gs7�zt��&xzv���� structure. By simulation, we can study how such a change
in the structure of the liquid affects the pathway for crystal nucleation.

In chapter 7 we apply the standard thermodynamic perturbation theory to estimate the
effect of small changes in the attractive part of the inter-molecular potential on the liquid-
vapour surface tension and, for the first time, on the liquid-solid inter-facial free energy in a
system with different truncations of the Lennard-Jones potential. These calculations provide
useful input for analytical (CNT) estimates of nucleation rates in a number of systems.

We then focus on the bubble nucleation phenomenon from a super-heated Lennard-Jones
fluid. We compute the nucleation rate and analyse the pathways (chapter 8). To our knowl-
edge, this is the first time Forward Flux Sampling is used in combination with a Molecular
Dynamics simulation.

In chapter 9 we investigate the origins of the discrepancy between the liquid-solid inter-
facial free energy of sodium chloride as obtained from Classical Nucleation Theory with
estimates based on a study of partial wetting at the solid-liquid-vapour interface [18].

Finally, we show how the Forward Flux Sampling technique can be used to calculate the
steady-state distributions of non-equilibrium systems. In chapter 10 we apply an external
shear to a two-dimensional Ising system, initially thermodynamically metastable, and study
the effect the shear has on the nucleation process.

�



Before starting the reading of this thesis, we want to add few useful remarks:

• the word “solid” is always used with the reference to “crystal”, a periodically long-
range ordered solid. We have not taken under consideration other classes of solids, like
the amorphous ones.

• the word “state” is quite often used with the same meaning as “phase”. This is correct
as long as each state exists only in one phase: as an example, if we look at diamond
and graphite, both are in a solid state but correspond to different phases of solid carbon.
More in general, this is the case whenever a material presents different crystal structure;

• quotations at the beginning of the chapters might refer to the work done with collabo-
rators.
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Dante Alighieri, Primo canto, Inferno, Divina Commendia.

This chapter, is devoted to a description of the physics behind the nucleation phenomenon
and the numerical tools needed to study it.

In section 2.1 we introduce the nucleation phenomenon, describe the distinction between
homogeneous and heterogeneous nucleation, and explain the importance of studying homo-
geneous nucleation. In section 2.2 we illustrate the Classical Nucleation Theory (CNT), an
empirical theory to interpret homogeneous nucleation phenomena. We show the way to de-
fine the reversible work for the formation of a nucleus of the stable phase, that leads to the
free energy nucleation barrier, and the steady-state nucleation rate, a quantity that can be
measured both in experiments and in computer simulations. To conclude, we devote sec-
tion 2.3 to give a short overview on few numerical techniques developed to study rare events,
and we mainly focus our attention on two of them we have used along our studies to com-
pute the nucleation rate: the Bennett-Chandler scheme [10] and the Forward Flux Sampling
technique [13, 14, 15]. Within the Bennett-Chandler scheme, the free-energy barrier can be
computed by means of the Umbrella Sampling technique [11] (see subsection 2.3.1.1): this
gives the probability to find a critical-size solid cluster in the system; whereas the kinetic pre-
factor κ can be computed as the flux of trajectories at the top of the free-energy barrier, as
explained in subsection 2.3.1.2. Concerning the Forward Flux Sampling (see section 2.3.2),
the computation of the flux through the first interface ΦA→0 is described in subsection 2.3.2.1,
whereas the computation of the probability that configurations at the first interface can reach
the final state (P0→B) is analytically described in subsection 2.3.2.2. Appendix D contains
few tips hopefully useful to start simulating nucleation problems.

¯�°u±§°³² <_4µ´ <>¶f9a8£0.1G��´ <_4��_B�6�47�3BC�
Nucleation is the onset of a ·-s@�uv-|zs7�	�5s*�O{�xz�5�>v�s7xG���ut�v�tw|z� [19]. According to Ehrenfest, a first
order phase transition happens whenever the first derivative of the free energy with respect to
a thermodynamic variable is discontinuous. The various liquid-to-solid, liquid-to-vapour and
vapour-to-solid phase transitions are classified as first-order phase transitions, because they
involve a discontinuous change in the density ρ, which corresponds to the first derivative of

ã
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the Gibbs free energy per particle (the chemical potential µ) with respect to the pressure (P )
at constant temperature (T ):

(

∂µ
∂P

)

T
= 1

ρ .
In 1906, Gibbs was the first to propose in a liquid-to-vapour phase transition a distinc-

tion between two different types of instability, which characterise the early stages of phase
transitions [20]. Figure 2.1 shows an isotherm curve of a mono-atomic simple fluid in the
pressure(P)-volume(V) plane: Pcoex indicates the pressure at which the two phases coexist,
VL and VV the respective volumes. The region between VL and VV is the r@|)�7¾	t¿�uv��5�&r�� region.

VL VV

Pcoex
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A phase is considered to correspond to a minimum in the Gibbs free energy, if its isother-
mal compressibility κT is positive 1, where κT is defined as

κT = −
(

1

V

)(

∂V

∂P

)

T

. � �\�[�W�
Let’s consider the system initially in the vapour phase (VV in fig. 2.1) and compress it (in-
creasing the pressure) at constant temperature in the coexistence region: the system is now
in a �&|z�"�@ñ��/t�yEtw��sut��/} state. Classical mean-field theories predict a Van der Waals loop in the
non-equilibrium region: there are two kinds of transformations to put a thermodynamically
stable system in a non-equilibrium state. The dashed in the coexistence region is charac-
terised by ∂P/∂V < 0, meaning that the isothermal compressibility stays positive: this is the
so-called ��t���|)�]xzy region, where a compression leads the system to a a }J��vHxz�@v�x]��y�� state. Thus,
both stable and metastable phases are distinguished by a positive value of κT . However, thereòèóMôªõWöÊ÷

κT
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are two inflection points where ∂P/∂V changes sign. This happens in the uniform-grey re-
gion where κT becomes negative: the so-called ����t��&|M�	xzy region, where a compression leads
the system to an �/���uv�x]��y�� state.

Phase transformations in the metastable region are initiated by �O�Or�y��@xzv�tw|z� , a process gen-
erated by finite-amplitude and localised fluctuations. Whereas phase transformations in the
unstable region occur by ����t��&|M�	xzyL�]�@r@|z}L�O|W�ut�v�tw|G� mechanism [21], identified by infinites-
imal amplitude and non localised fluctuations, that can be governed by the Cahn-Hilliard
equation [22].

Once the metastable phase is formed in the binodal region, there is a finite free-energy
barrier the system has to overcome in order to phase transform into the stable phase. Whereas
at the spinodal point, the free-energy barrier vanishes, and a small perturbation in density
leads to a decrease in free energy, and thus a spontaneous growth of the perturbation.

When talking about nucleation, it is important to distinguish between {���vH��s7|��	�����@|z��� and{�|G}~|��#�5�&��|G��� nucleation. Heterogeneous nucleation happens whenever the phase transition
can be assisted by walls or impurities within the system: clusters of the new phase are then
formed at the surface of these “foreign bodies”. In contrast, homogeneous nucleation occurs
due to spontaneous density fluctuations in the bulk of a pure phase, as shown in fig. 2.2.

Ä&ÅEÆ)Ç]ÈÊÉ;ËzÌ ËGÌEÎ���Ú§ÒÊÓ#É>ÝEÉ�Ø Ò�ÛwÐ�ÅUß	ÉMÎ>ÙMÚ�É�ê	ÙMÔ>Ü#ÝEÉíÑ�Ø-Ó#É�ÒÊÉ7ÈÊÑ)Æ)É�Ú#É@ÑMÇ#ÐLÕ�È�î]ÐHÒèÙMÝäÚGÇ	Õ@ÝEÉuÙ�ÒÊÅEÑ)ÚàÙ5Ò�ÒÊÓ#Éíç!Ù�ÝEÝ�Ì��Ú ÒÊÓ#É3ÈÊÅEÆMÓGÒ�ÛwÐ�ÅUß	ÉMÎ$Õ�ÈÊÅªÒÊÅUÕ@ÙMÝ&ß]É@Ú#Ð�ÅªÒ�î>Þ�Ç#Õ7ÒÊÇ�Ù�ÒÊÅEÑMÚ«ÈÊÉ@Ü]ÈÊÉ@Ð�É@ÚzÒÊÅEÚ#ÆéÙ­Ð�Ñ)ÝEÅUß;ÅEÚ�ÙéÔ>Ñ)Ú	ÑMÛ�Ù�ÒÊÑMÔ>ÅUÕ�ÐHî]ÐHÒÊÉ@Ô~ÌÏ�Ú�ð/ÑMÒÊÓ¥ÕuÙ�Ð�É@Ð@ë$ÒÊÓ#É Ð�Ç	È�ÈÊÑMÇ#Ú#ß	ÅEÚ#Æ~Ô>É7ÒèÙMÐHÒèÙMð	ÝEÉ«ÝEÅ��zÇ#ÅUß�ÅEÐéÚ	ÑMÒ�ÈÊÉ@Ü]ÈÊÉ@Ð�É@ÚzÒÊÉußOÌ¥á! äÑ)Ç	È�ÒÊÉ�ÐHî¥ÑMØ#"�Ú#ÆMÉ@ÝEÑ *ÙMÕ�Õ@ÅEÇ	ÒÊÑzã
Even though in real life heterogeneous nucleation is more likely to happen, homogeneous

nucleation is more than just the theoretician’s desire to idealise (and simplify) the physics
of phase transitions. There are a number of real world situations in which homogeneous
nucleation is the dominant mechanism for phase transitions, like condensation in supersonic
nozzles [23], explosions occurring when a cold liquid comes in contact with a much hotter
one [24], and formation of heavily microcrystallised ceramics [25]. A deep and clear un-
derstanding of the process of homogeneous nucleation is still lacking, making homogeneous
nucleation a challenging topic to study.

¯�°è¯�°ç� �I139Q9h8:0.15�%$'&30f�:4E1=J§8:B�� ² <34EB�@	¶
The most used theory to describe homogeneous nucleation is Classical Nucleation Theory
(CNT). CNT is commonly employed to predict the rate of nucleation and estimate the height
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of the nucleation barrier. The theory was first formulated by Volmer and Weber [4], then
modified by Farkas [26], Becker and Döring [5], and Turnbull and Fisher [27]. Looking at
the phase transition of a new stable phase happening in a metastable parent phase, Volmer
and Weber applied the Gibbs formulation of the reversible work of the formation of a static
cluster of the new phase, thus building the first theory of nucleation that would calculate
the nucleation rate. The latter was considered to be proportional to the rate of formation
of critical-sized clusters in equilibrium. Later on, Farkas formulated a kinetic model for
cluster evolution that became the basis for subsequent modifications. Afterwards, Becker
and Döring argued that a steady-state distribution was more suitable than the equilibrium
distribution proposed by Volmer and Weber, and obtained an expression for a �uv���x	�)(z¢H�uv�xzv��
nucleation rate in a vapour condensation experiment. Turnbull and Fisher first applied the
Becker and Döring formalism to the case of nucleation in condensed systems.

In the following subsection, we show the derivation of the reversible work for the formation
of a cluster in a metastable parent phase according to CNT, define the equilibrium distribution
of cluster sizes, and finally derive the expression for the nucleation rate,

* Ï * Ï©ÚaÏ ? ò;Ô,+mèVÔÅÔàøvÔ§ÙFÔ§èjñ-� (;Õ èRèR×�Ô§è
We now consider a metastable phase A, for instance a vapour (left-side of fig. 2.3), at thermo-
dynamic conditions where phase B (for instance a liquid) is the stable phase. As figure 2.3
shows, clusters of phase B will then start growing in phase A (right-side of fig. 2.3).
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Ä&ÅEÆ)Ç]ÈÊÉ�ËGÌ 1]ÌEÎ�2;É�ÒèÙ�ÐHÒèÙMð#ÝEÉºÜ	Ó�Ù�Ð�É
A
á�Ñ)Ú>ÒÊÓ#É3ÝUÉ7Ø Ò�ÛwÓ�Ù�Ú�ß Ð�Å�ß]É5ã7Ì�3�Ç	Õ@ÝEÉuÙ�ÒÊÅEÑMÚ�Ñ�Ø�ÒÊÓ#É3Ú#É�ç¬ÐHÒèÙMð#ÝEÉºÜ	Ó�Ù�Ð�É

B
á�Ñ)Ú;ÒÊÓ	É�ÈÊÅEÆ)ÓzÒ�ÛwÓ�ÙMÚ#ß�Ð�ÅUß	Éuã7Ì

In what follows, we indicate with system I , the initial metastable phase A (on the left-hand
side of fig. 2.3) and system II the metastable phase A where a phase B cluster is growing (on
the right-hand side of fig. 2.3). Our aim is to compute the reversible work for the formation
of a cluster of the new phase B in the parent phase A at constant temperature and pressure.
We start with computing the internal energy of both systems I and II . The internal energy
of system I containing only the A phase, can be written as

U I
A = T ISI − P IV + µIN, � �\� �	�

where T is the temperature of the system, S the total entropy, P the pressure, V the total
volume, µ the chemical potential and N the total number of particles (N = NA in this case).

�v�
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The internal energy of system II , where the metastable phase A contains the phase B cluster,
is

U II
A+B = T IISII − P II

A V II
A − P II

B V II
B + Aγ + µII

A NA + µII
B NB

� �\� ä#�
where PA and PB are the pressures of phase A and B, respectively, VA and VB their vol-
umes, γ the inter-facial free energy existing between A and B, A the surface area of the
growing stable phase, µA and µB their chemical potentials, and NA (NB) the number of A
(B) particles in the system.

We assume uniformity in the temperature throughout the system (T I = T II), but not
uniformity of the pressure or the chemical potential. We anticipate that the uniformity of the
chemical potential only holds for a system containing the critical cluster. Considering the
Gibbs’s r@x���t�y�y xzsut�v4(<x��]�&s7|�¾	t�}Jxzv�tw|z� , according to which the surface dividing the two phases
is sharp, contains no particles and has no volume, the total number of particles in the system
is given by N = NA + NB and the total volume V = VA + VB . Thus, eq. 2.3 can be written
as

U II
A+B = T IISII − P II

A V + (P II
A − P II

B )V II
B + Aγ + µII

A N + (µII
B − µII

A )NB . � �\� ���
In a constant temperature - constant pressure (P I = P II

A = P ) transformation, we can
assume that µII

A = µI , being NA � NB . Thus, the reversible work to grow a cluster of
phase B from the metastable phase A is expressed by the change in the Gibbs free energy
between GI

A and GII
A+B . As in an NPT ensemble, ∆G = ∆U + P∆V − T∆S, using

eqns. 2.2 and 2.4

∆G = GII
A+B − GI

A = (P − P II
B )V II

B + Aγ + (µII
B − µII

A )N II
B , � �\� � �

where µII
B = µII

B (PB) and µII
A = µII

A (PA). In order to obtain the final Classical Nucleation
Theory expression of the nucleation barrier, there are few assumptions to make:

1. the growing cluster is characterised by the bulk properties of the stable phase B;

2. the inter-facial free energy γ is independent on the radius R of the cluster, or γ =γ∞,
being γ∞ the inter-facial free energy of a sphere with an infinite radius, i.e. a flat
interface. This condition is satisfied at the surface of tension. In case the Gibbs ab-
sorption at the surface of tension is zero, the surface of tension coincides with the
equimolar dividing surface. This allow to set the mathematical surface dividing the
two phases at the equimolar dividing surface (or equivalently, at the surface of ten-
sion), i.e. R = Re = Rs;

3. the cluster is incompressible, meaning that its density ρ does not change with pressure.
As we know that, at constant temperature dµ

dP = V
N = 1

ρ , the chemical potential of the
new phase B can then be written as

µII
B (P II

B ) = µII
B (P II

A ) +
P II

B − P II
A

ρB
, � �\� �#�

where ρB is the B phase density.
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Using eq. 2.6 and all the CNT assumptions, eq. 2.5 becomes the CNT expression of the excess
free energy to form a cluster of area A containing NB particles

∆G(NB) = A(NB)γ∞ + [µII
B (PA) − µII

A (PA)]NB

= A(NB)γ∞ − |∆µ|NB
� �\���]�

where the expression of A depends on the cluster shape, and |∆µ| = [µII
B (PA) − µII

A (PA)]
is the chemical potential difference between the two phases, and it is a negative quantity.

CNT also assumes that the cluster of the new phase B should have a spherical shape with
radius R. Hence, being A = 4πR2 and using the relation ρB = NB/VB being VB = 4

3πR3,
the Gibbs free energy of formation of a spherical cluster of phase B with radius R in the
metastable phase A is

∆G(R) = 4πR2γ∞ − |∆µ|ρB
4

3
πR3 � �\� å#�

A representation of ∆G is given in fig. 2.4. Eq. 2.8 contains two terms:

1. the first is a “surface” term, that takes into account the free-energy cost of creating an
interface between phases A and B. This term is positive and proportional to the surface
area of the cluster (surface free energy);

2. the second is a “bulk” term, that expresses the fact that phase B is more stable than the
supersaturated phase A. This term is negative and proportional to the volume of the
cluster (volume free energy). ∆µ is the driving force for nucleation to happen.

G∆

RRcrit

Ä&ÅEÆ)Ç]ÈÊÉ~ËzÌ 5]ÌEÎ76�ÅEð	ð#Ð�Ø ÈÊÉ@É�É@Ú#É�ÈÊÆ�î¥Ñ�Ø�ÙJÕ@ÝEÇ	ÐHÒÊÉ�È>Ù�ÐíÙ~Ø¿Ç	Ú#Õ�ÒÊÅEÑ)ÚàÑ�Ø3ÅªÒÊÐLÈèÙ)ß	ÅEÇ	Ð
R
ÙMÕ@Õ�ÑMÈèß	ÅEÚ	Æ�ÒÊÑJÒÊÓ	É �3ºì�Ì

The function ∆G goes through a maximum at

R∗ =
2γ∞

ρB |∆µ| ,
� �\� ã �
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that denotes the critical cluster size. The value of ∆G at this maximum, i.e. the height of the
nucleation barrier, is

∆G∗ =
16π

3

γ3
∞

(ρB |∆µ|)2 . � �\�[�v�	�
We stress the fact that the height of the nucleation barrier is directly proportional to the third
power of the inter-facial free energy (γ∞), and inversely proportional to the square of both
the density of the stable phase (ρB) and the super-saturation (|∆µ|). When the two phases A
and B coexist, ∆µ = 0 and the barrier goes to infinity; if the system is in a stable phase, it
will never transform by homogeneous nucleation into the other coexisting phase.

Within the CNT framework, we define the Laplace pressure, that is the difference between
the pressure of the metastable phase A surrounding the cluster and the pressure inside the
growing cluster B:

∆P =
2γ∞
R∗

. � �\�[�
�)�
the Laplace pressure depends on the critical cluster size and γ∞.

Eq. 2.8 can also be expressed as a function of the number of particles in the growing cluster
of the new phase NB :

∆G(NB) = (36π)1/3γ∞(NB/ρB)2/3 − NB|∆µ|. � �\�[�m�]�
It follows that N∗

B , the number of particles in the critical cluster, is given by

N∗
B =

32πγ3
∞

3ρ2
B |∆µ|3 . � �\�[�vä	�

In what follows, we will indicate the number of phase-B particles NB as n.
When Classical Nucleation Theory is compared with experiments or theory (like density

functional theory), it shows an incorrect temperature dependence [8]. Two possible reasons
might be:

1. the inter-facial free energy of small clusters should depend on curvature, and within the
CNT framework it does not;

2. the nucleation barrier ∆G should vanish at the spinodal.

While the first feature should lower the nucleation rate, the second feature should increase it.
This effects can lead to a cancellation of errors at some temperature.

γ∞ 8�9;: »=<Å¼v½?>A@:¾ 9B: ¼R¹;½Í¼ 9 » 9 @)¼R¹;½DCE< 8GF ½Tº`¼IH 9 CKJ;º`¾m¾)Hë½�¾
Using the CNT assumption of incompressibility of the cluster we known that NB = ρBVB ,
where VB is the cluster volume. In case of a cubic cluster NB = ρBL3, where L is the edge
of the cluster. Eq. 2.7 then becomes

∆G(L) = 6L2γ∞ − L3ρB |∆µ|, � �\�[�R�#�

� �
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while for a spherical one we refer to eq. 2.8. From eq. 2.14, the top of the free-energy barrier
corresponding to a cubic critical cluster is

∆G∗ =
32γ3

∞

(ρB |∆µ|)2 . � �\�[� � �
By means of equation 2.15, we can estimate the value of γ∞. The same procedure has to be
followed in case of a spherical cluster, leading to

γ∞ =

(

3

16π
∆G × (|∆µ|ρ)2

)1/3

and γ∞ =

(

1

32
∆G × (|∆µ|ρ)2

)1/3

,� �\�[�v�	�
for a spherical and cubic cluster shape respectively.

* Ï * Ï * ÏMLEó)Ñh×IÓë×�(§èR×IÑ�ï ê)× �
Ö`èR×�(�ÑQÖT×�Ø.ÙyØN+�Ò;ÓëÑ*�
Ö�Ô§è��\×POàÔ$�
The Gibbs free-energy difference between system II and system I at constant temperature is
given by eq. 2.7, where we call NB = n and introduce the chemical potential of a cluster of
size n as µn(P ) = γA + nµB(P ), being P the pressure of phase A.

In order to compute the equilibrium distribution of phase-B clusters, we assume a low
concentration of clusters forming in the metastable phase A. This assumption allows us to
ignore the interactions between the clusters, and consider the system as an “ideal” mixture,
made of N1 monomers, N2 dimers, up Nn clusters of size n, all embedded in phase A. Thus,
a size n cluster exerts a partial pressure Pn on the system (such as

∑∞
i=1 Pi = P ). The

chemical potential of a size n cluster at Pn is

µn(Pn) = µn(P ) + kBT ln

(

Pn

P

)

, � �\�[�+�G�
obtained by means of dµ/dP = 1/ρ and the equation of state of an ideal gas (P = ρkBT ).
It is then possible to rewrite eq. 2.7 as

∆G = µn(Pn) − kBT ln

(

Pn

P

)

− nµA(P ). � �`���Rå#�
Using the fact that, at equilibrium, µn(Pn) = nµA(P ), the expression of the free-energy
barrier within CNT becomes

∆G = −kBT ln

(

Pn

P

)

. � �\�[� ã �
By means of Raoult’s law, Pn/P is equal to Nn/NA ∼ Nn/N , and the final CNT expression
of the equilibrium distribution of clusters of size n is

∆G = −kBT ln

(

Nn

N

)

= −kBT ln (P (n)) , � �`�����#�
where P (n) is the probability to have clusters of size n.

�R�
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Experimental nucleation data are generally interpreted via a phenomenological reaction rate
theory, the Classical Nucleation Theory, first formulated by Volmer and Weber [4]. Classical
Nucleation Theory (CNT) consents to understand the kinetics of the nucleation process of
clusters of the new phase B from the metastable initial phase A, by computing the nucleation
rate.

CNT assumes that phase B clusters slowly grow or shrink via the attachment of single
particles:

Bn−1 + B1

k+,n−1



k−,n

Bn
� �\� �\�)�

Bn + B1

k+,n



k−,n+1

Bn+1

where Bn−1 is a cluster with n − 1 particles, B1 with one particle (monomer) k+,n−1 the
attachment rate of one single monomer to a n − 1 cluster, and k−,n the detachment rate.
This assumption was initially made for vapour-liquid nucleation, where the concentration of
monomers is much larger than the one of dimers, trimers, etc., and where collisions between
growing clusters are extremely rare [30]. It is possible to compute the time-dependent cluster
distribution Nn(t), by solving the following Master equation [31]:

dNn(t)

dt
= Nn−1(t)k+,n−1 − [Nn(t)k−,n + Nn(t)k+,n] + Nn+1(t)k−,n+1.

� �\� �
�]�
The net nucleation rate at a given cluster size n is the time-dependent flux of clusters that
reached n, and is given by

Rn,t = Nn(t)k+,n − Nn+1(t)k−,n+1.
� �\� ��ä	�

To compute the rate in eq. 2.23, Volmer and Weber made few assumptions:

1. the back flux was zero when the clusters were larger than the critical cluster size:
Nn(t) = 0 for n > n∗;

2. for n ≤ n∗, they assumed that Nn(t) was the �@ñ��/t�yEtw��sut��/} clusters distribution Nn (see
eq. 2.20), with N ∼ N1 the total number of monomers, and e−β∆G(n∗) determines the
probability to find the critical cluster in equilibrium with its environment.

Therefore, eq. 2.23 is expressed as

R = Nnk+,n∗ = N1k+,n∗e−β∆G(n∗) � �\� ���#�
where k+,n∗ is the attachment rate of a single particle to the critical cluster, and ∆G(n∗) is
the free-energy barrier to nucleation.

Subsequently, Becker and Döring replaced the equilibrium clusters distribution Nn with a�uvH�@x	�)(z¢H�uvHxGvH� clusters distribution N s
n, and changed eq. 2.23 into

R = Ns
nk+,n − Ns

n+1k−,n+1,
� �\� � � �

�m�
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equation that can be solved by recurrence (see e.g. ref. [32])

R = N1

[

∞
∑

i=1

1

k+,nξn

]−1

, � �\� ���	�
being

ξn =

n−1
∏

j=1

k+,n

k−,n+1
for n > 1. � �`���
�]�

To explicitly determine R, it is assumed that the rate constant does not depend on the system
being in equilibrium. Imposing the system initially in equilibrium,

nN1
K

 Nn, � �\� ��å	�

where N1 is the equilibrium distribution of monomers, Nn the equilibrium distribution of
clusters of size n, and K the equilibrium constant, and relate the ratio of rate constants k+,n

k−,n+1

in eq. 2.27 to the equilibrium constant. The equilibrium constant K for this reaction is then
given by eq. 2.20, thus eq. 2.26 becomes

R = N1

[

∞
∑

i=1

1

k+,ne−β∆G(n)

]−1

. � �\� � ã �
Finally, in order to compute the steady-state nucleation rate R, Becker and Döring made
several approximations:

1. the terms of the sum corresponding to clusters near the top of the free-energy barrier
∆G(n∗) dominate the sum in eq. 2.29;

2. ∆G(n) is replaced by the first two non-zero terms of the Taylor expansion around n∗;

3. k+,n is replaced by k+,n∗ ;

4. the sum replaced by an integral from n − n∗ = −∞ to n − n∗ = ∞, considering Nn

to be a continuous function of n.

Therefore, the final expression of the steady-state nucleation rate is

R = N1k+,n∗

( |∆G′′(n)|n∗

2πkBT

)1/2

e−β∆G(n∗), � �\� ä
�	�
where |∆G′′(n)|n∗ is the second derivative of the Gibbs free energy ∆G(n) with respect to
n computed at the critical cluster size n∗, and

Z =

( |∆G′′(n)|n∗

2πkBT

)1/2 � �\� äH�)�

�Rå
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is the Zeldovitch factor. Z was called after J. Zeldovitch [33] showed the need to introduce a
factor of this form whenever instead of solving the original Becker-Döring Master Equation
one solves the limiting Fokker-Planck equation. In practise, the Zeldovitch factor considers
that during the steady-state nucleation process, the concentration of critical clusters is not
“really” an equilibrium concentration.

Using the CNT expression of ∆G as a function of n (see eq. 2.10 for a spherical cluster),
the CNT steady-state nucleation rate per unit volume can then be written as

R = N1k+,n∗

( |∆µ|
6πkBTn∗

)1/2

e−β∆G(n∗). � �\� ä��]�
where

Z =

( |∆µ|
6πkBTn∗

)1/2

. � �\� ä
ä	�
Eq. 2.32 can also be written as

R = κe−β∆G(n∗), � �\� ä��#�
where

κ = N1k+,n∗Z � �\� ä � �
is the XGt�����v�twræ�&s7��¢E�5x]r�vH|Gs .

Turnbull and Fisher for the first time applied eq. 2.32 to the nucleation process in con-
densed systems, and rewrote the steady-state nucleation rate as

R = N1
24DS(n∗)2/3

λ2
Ze−β∆G(n∗), � �\� ä
�	�

and the kinetic pre-factor becomes

κ = N1
24DS(n∗)2/3

λ2
Z, � �\� äT�G�

where N1 is the number density of the initial parent phase (ρL is the initial phase is a liquid),
and DS the self-diffusion coefficient. The atomic jump distance λ comes from the jump fre-
quency 6DS/λ, related to the attempt frequency of attach/detach one single particle. Finally,
the term 4(n∗)2/3 counts the number of available attachment sites on a cluster assumed to be
spherical. From eq. 2.37, it is clear that increasing the super-saturation (∆µ), both the barrier
∆G(n)∗ and the critical cluster size n∗ decrease, leading to a consequent increase of the rate
R.

¯�°�Y�° $'&56�47@H8£0.1G� J�4f0=<5�584Z[&_4b9uJ�B 9QJ\&32~¶ @�1_@�4 4 � 4��=J�9
Computer simulations can be a useful tool to get a microscopic understanding of the nucle-
ation phenomenon. However, in order to observe nucleation happening by means of �5su�/v��

� ã
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�5|zs�r�� simulations on reasonable time-scales and on the small length scales dictated by sys-
tem size limits, we have to impose an extreme super-saturation to the system. This is, for
instance, what happens in a Lennard-Jones fluid, where nucleation events ���O|z�Ov�xz�&�@|z���uy]( ap-
pear once the system is super-cooled to around 50% of its melting temperature [34]. If we
reduce the super-saturation applied to the system, the barrier to nucleation gets higher, and
the probability to detect a nucleation event on such time and length-scales gets extremely
low. Thus, �5su�/v��í�5|zs�r�� numerical simulations become prohibitively time consuming. The
system will spend a long time in a stable state and s7xzs��5y]( jump to another state in a short
time. Nucleation is indeed an example of a s7xzs������W���Ov observable in Nature. This separation
of time scales makes it possible to describe the kinetics of rare events as a product of two
factors. The basic idea behind this approach was already contained in Eyring’s Transition
State Theory(TST) [9, 10]. The first stage in the description is the definition of a s7�@x	r5v�tw|z�r@|M|Gs7�zt��&xzv�� Q that measures the progress of the system from the initial s7�@x]r�v�xz�Ov state A to
the final ��s�|M�G�Or5v state B 2. Q is defined such that for Q < Q∗, the system is in the basin
of attraction of state A, while for Q > Q∗ the system will most likely end up in state B.
The transition surface is the collection of all the points in the in the configurational space
where the probability to evolve to state A or B is 0.5. If Q is a relevant reaction coordinate,
TS can be viewed as the dynamical bottleneck for the rare event, and the more rarely visited
hyper-surface separating A and B. Ideally, TS corresponds to the hyper-surface defined at
Q = Q∗. However, in practise, the surface Q = Q∗ provides only an approximation to the
true TS.

If the location of the TS surface is known, it is then possible to formulate a “two-stage”
scheme to compute the rate of the rare event under study. Such a computation involves the
following steps:

1. computing the s7�5�z��s@�@tw��y��V^�|Gs�X (∆W (Q)) required to move the system from A to TS
(located at Q∗), allows to estimate the probability that a spontaneous equilibrium fluc-
tuation can bring the system all the way up to TS:

P (Q∗) = e−βW (Q∗), � �\� ä
å	�
where β is 1/kBT . As we have previously showed, the reversible work to grow a new
phase with size Q∗ in the metastable parent phase, is proportional to the Gibbs free en-
ergy ∆G. Therefore, P (Q∗) = e−β∆G(Q∗). It is natural to locate the dividing surface
Q∗ at the top of the free-energy barrier ∆G(Q) separating the two states, considered
to be the rate-limiting step for the phase transition;

2. once the system is at TS, it is possible to compute the frequency of successful crossings
of trajectories fired from the Transition Surface: this calculation yields the crossing rate
κ(Q∗).

The combination of step 1 and step 2 give a measurement for the rate of the rare event:

R = κ(Q∗)P (Q∗). � �\� ä ã �_�` �W÷-û�÷èþ@ö�ý�ôªüuõ«öÊü�üuû��)ôªõzþ�ý�÷Ua	þ@ø��)÷SbWõW÷S�>ôªõéöc�W÷Sdæôªöèþ@ÿ?e�ôªõW÷�ý�ôªöÊø�aGôªø$ý��W÷-ý�û�þgfw÷ÊöÊý�üuûh�>ü���ý4�W÷�ùzþ�ý��íôªõ­ý��W÷\� ûw÷Ê÷ji÷ÊõW÷Êû�
��æÿEþ@õI�Wø�öèþ@ùG÷äþ@ÿªüuõI
\kl�Wôªö4�ºý4�W÷
ø��Mø�ý�÷Sd ùWûwüU
uû�÷Êø�ø�÷Êø�a)þ@õ��æöc�zþ@û�þ@ö�ý�÷Êûwôªø�÷Êøúý4�W÷m�I�Mõzþ�dæôªöèþ@ÿ�dæ÷Êöc�zþ@õWôªø�dü��/ý4�)÷�ûw÷èþ@ö�ý�ôªüuõn�
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This shows that the rate constant is given by the product of two terms: the probability of
being at the top of the free-energy barrier times the rate at which it is crossed.

The Bennett-Chandler [10] method is based on this two-step procedure. As explained in
ref. [10], the rate computed when t → 0 corresponds to the Transition State Theory approx-
imation for the rate constant. Transition State Theory also assumes that trajectories at Q∗

going towards B will always end up in state B (the same holding for state A), assumption
that is correct if there is never "recrossing" of trajectories starting from the top of the barrier.
Nevertheless, this is not the case in diffusive barrier-crossing processes, like crystal nucle-
ation. In the Bennett-Chandler [10] scheme P (Q∗) can be computed known by means of the
Umbrella Sampling technique [11, 12]. Drawbacks of this method are that it is computation-
ally demanding, and that its success depends strongly on the choice of Q. If poorly chosen,
the system will sample the wrong part of the phase space, which will not only conceal the
mechanism of the transition, but also impede the computation of the rate constant. Therefore,
a reasonably good initial guess is needed to select a reaction coordinate relevant for the nu-
cleation process under study: this requires an x��&sutw|zsut insight into the reaction mechanism,
something that is particularly difficult to obtain for highly dimensional complex systems.

Is is important to introduce the concept of “order parameter”, that will be widely used in the
rest of the thesis. The order parameter is the variable that identifies the “basin of attractions”
A and B and, in principle, not the dynamical mechanism of the reaction. An example is
given in the following sketch: at the top we represent the phase space projected onto two
order parameters Q and Q′, where Q is used to define the basins of attractions A and B;
at the bottom, the free energy as a function of Q. The left-hand side of the sketch shows a
case when the order parameter Q is “also” a good reaction coordinate, as the Transition State
coincides with Q∗. However, this does not happen on the right-hand side, where Q clearly
distinguish state A from state B, but the TS does not correspond to Q∗. Moreover, it emerges
from the right-hand side of fig. 2.5 that other order parameter Q′ is even more important to
describe the A to B transition. Computing the distribution of the commitment probabilities
for the configurations belonging to the ensemble at the Transition State Surface, allows to
understand the relevance of the chosen order parameters. In a transition from A to B the
commitment probability is the probability that short trajectories initiated from a configuration
in the phase space with randomly chosen momenta, will reach state B. Thus the Transition
State Surface consists of the ensemble of configurations such that PA = PB ∼ 1/2. A
good test to ensure that the order parameters describe well the transition, is to measure the
distribution of PB , and verify if it is a delta-function distribution peaked at 1/2. Initially
introduced by Du et al. [36], it has been further elucidated by Bolhuis et al. [37].

As already mentioned, the Bennett-Chandler method is strongly based on a good choice of
Q. Transition Path Sampling (TPS) [38, 39, 35] has been developed to alleviate this problem.
This scheme generates an ensemble of trajectories between initial and final state using Monte
Carlo sampling in the trajectory space. TPS only requires an order parameter to distinguish
both the initial and the final state; this order parameter does not need to be the v�su�O� reaction
coordinate. TPS thus makes it possible to compute the rate constant without prior knowledge
of the reaction mechanism. However, this method does require knowledge of the steady-state
phase space distribution, which is needed for the acceptance/rejection step in the Monte-
Carlo scheme, and it does not allow direct computation of the free-energy barrier separating

�`�
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the two states. The main drawback of TPS is that the calculation of the rate constant is rather
time consuming. Moroni, van Erp and Bolhuis developed an efficient approximation to TPS,
called Transition Interface Sampling (TIS) [40, 41, 42].This method relies on the computation
of the crossing probabilities of a series of interfaces (or hyper-surfaces) located between the
initial and final state. The same authors also derived a variant of this method, called Partial
Path TIS (PPTIS) [43], which assumes the loss of time correlations in the transition paths
over a distance of two interfaces. After proving that PPTIS calculations yielded not only
the nucleation rate, but also the free-energy barrier [44], Moroni and coworkers used this
method to study crystal nucleation from a moderately super-cooled Lennard Jones fluid [45].
A similar method to PPTIS is the mile-stoning method of Faradjian and Elber [46], which also
employs a series of interfaces to compute rate constants, and also assumes that the interface-
crossing probability does not depend upon the full history of the path. A string method
has also been developed by Vanden-Eijnden and coworkers [47, 48], which can be used to
compute minimum free-energy paths and the probability current of reactive trajectories.

In the last few years, a novel simulation technique was developed by Allen and coworkers,
named Forward Flux Sampling (FFS) [13, 14, 15]. This technique allows to calculate rate
constants and transition paths for rare events in both equilibrium and non-equilibrium systems
with stochastic dynamics. Among the algorithms mentioned above, TPS, (PP)TIS, mile-
stoning and the string method are only applicable to systems that obey �]��v�xzt�y��@���@xzy�xG��r@�
���
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and }�twr�s7|W��r@|��&twr�s��5�z�5s@�utw��t�yEt�v4( . They are thus limited to systems that are in thermodynamic
equilibrium. Whereas Forward Flux Sampling can be applied to both equilibrium and non-
equilibrium systems with stochastic dynamics. Like TIS, PPTIS, and mile-stoning, it uses a
series of interfaces to compute the rate constant. However, unlike PPTIS and mile-stoning,
FFS does not make the Markovian assumption that the distribution of paths at the interfaces
is independent of the paths histories. Importantly, the order parameter used to define the
location of the interfaces need not be the reaction coordinate.

We briefly list other rare-event techniques, that are useful when studying nucleation pro-
cesses. The Blue Moon approach by Ciccotti and coworkers [49, 50] is a constrained
Molecular-Dynamics method to estimate rates of rare events. The Meta-Dynamics by Par-
rinnello and coworkers [51] is a technique that allows an accurate determination of the free-
energy landscape, by means of constructing a non-Markovian coarse-grained dynamics in an
M -dimensional space, characterised by M collective coordinates relevant for the transition
under study. Among many applications, the technique has been used to study bulk melting
of hexagonal ice [52], and homogeneous crystal nucleation in a super-cooled Lennard-Jones
fluid [53]. Radhakrishnan and Trout [54] applied the committor analysis to examine nucle-
ation of hexagonal ice in liquid water, together with a two-dimensional Umbrella sampling
scheme to compute the free-energy nucleation barrier. Reguera and coworkers [55] have pro-
posed a method based on the calculation of mean first-passage time to evaluate reaction rates
and locate the Transition State Surface. Lately, an approach for calculating reaction coordi-
nates based on TPS and likelihood maximisation has been proposed by Peters and Trout [56].
Finally, an order-parameter-based Monte Carlo simulation to compute the free-energy pro-
file between liquid and solid in crystal nucleation processes has been explored by de Pablo
and coworkers [57]. For more details on some of these techniques, we refer the reader to an
exhaustive review by van Erp and Bolhuis [58] on different interface sampling methods.

In what follows, we describe the techniques we have used to study homogeneous nucle-
ation in this thesis, namely the Umbrella Sampling, employed to compute the free-energy
nucleation barrier within the Bennet-Chandler approach, and the Forward Flux Sampling
technique, to compute the nucleation rate, analyse the pathways to nucleation, and, for the
first time, also calculate the free-energy barrier. Whenever studying crystal nucleation, we
have employed the local bond-order parameter explained in details in appendix A.

* Ï�A-Ï©ÚaÏ 1�Ô§Ù�ÙFÔÇÖ+Ömø]�Cò;Õ�Ù§ê)Ó�Ô§è�ï�Ô�Ö`ò;Ø.ê
As already mentioned, the Bennett-Chandler method consists of a two-step procedure to com-
pute the nucleation rate constant [10]: the calculation of the free-energy barrier can be ob-
tained by means of the Umbrella Sampling scheme [12, 11], while a Molecular Dynamics
simulation "constraint" at the top of the free-energy barrier gives information about the ki-
netic pre-factor. Even though the rate constant R is independent of the choice for Q, the
efficiency by which it is computed can strongly depend upon it.

��ä
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The Umbrella Sampling technique was firstly proposed by Torrie and Valleau [12], and af-
terwards van Duijneveld and Frenkel [11] suggested to apply it in a nucleation process as a
scheme to estimate the free-energy barrier.

Considering a phase transition of a complex system from state A to state B, it is possible
to use a Monte Carlo algorithm (MC) in an NPT ensemble to equilibrate the system in the
initial A state. According to MC, regions of the phase space are sampled depending on the
Boltzmann factor exp−β[U(~rN )+PV ] (being U(~rN ) the total internal energy of an N particles
system with coordinates ~rN , V its volume and P the pressure). When studying a phase
transition, a Monte Carlo sampling leads to a poor statistics of the transition region where
the Boltzmann factor is very small. This is due to the fact that the system spends most of its
time either in state A or in state B, and only s7xGs7��y]( and ñ��/twr�Xzy]( crosses the Transition State
Surface. Introducing an order parameter Q(~rN ) relevant for the transition, the probability
that a spontaneous fluctuations of Q happens to be around Q0 is:

P (Q0) =

∫

exp−β[U(~rN )+PV ] δ(Q(~rN ) − Q0)dΓ
∫

exp−β[U(~rN )+PV ] dΓ
= 〈δ(Q − Q0)〉NPT , � �\� ���	�

where the integral is extended to the 3N configurational space (Γ).
Following Van Duijneveldt’s approach, the knowledge of the Landau free energy allows to

compute the Gibbs free-energy nucleation barrier as a function of a chosen order parameter
Q from its probability distribution P (Q) (see appendix B). P (Q) is an equilibrium property
of the system, and can be measured by means of either Molecular Dynamics and Monte Carlo
simulations 3: small values of P (Q) corresponds to values of Q rarely visited by the system.
The procedure to get better statistics for small values of P (Q), is based on the use of a �&|z�{ |zyEvh|�}~xG�O� Monte Carlo sampling of the phase space:

exp−β[U(~rN)+PV ] W (Q), � �`� �H�W�
where W (Q) is a weighting function meant to enhance the sampling at certain values of Q,
and is expressed in terms of a bias potential w(Q):

W (Q) = exp−βw(Q) . � �\� �T�]�
Thus the probability for Q to be Q0 becomes

Pw(Q0) =

∫

exp−β[U(~rN )+PV ]+w(Q) δ(Q(~rN ) − Q0)dΓ
∫

exp−β{[U(~rN )+PV ]+w(Q)} dΓ
. � �\� ��ä	�

In general, to compute the NPT ensemble average of a thermodynamic variable A measured
in the Monte Carlo simulations (such as the energy):

〈A〉NPT =
〈A/W (Q)〉w
〈1/W (Q)〉w

, � �\� �
�#�
}g~¿ý�k$þ@ø�ø��Wü�k
õ3ý��zþ�ý�öèüuõ)ø�ý�û�þ@ôªõW÷S���íüuÿª÷ÊöS�WÿEþ@ûB�m�)õWþ�dæôªöèø�ý��Wû�õ�üU�)ýiý�üN
G÷$ÿª÷èø�øiøwý�û�þ@ô�
U�5ý���üuû!kúþ@û��æý��zþ@õ��íüuõ5ý�÷� þ@û�ÿªüºø�ô�d��WÿEþ�ý�ôªüuõWø=� �U�g���
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where the index w in eq. 2.44 refers to averages taken in the biased ensemble. Since the Gibbs
free energy is computed in the NPT ensemble as β∆G(Q) = − ln(P (Q)), the probability
distribution obtained in the biased Monte Carlo simulations has to be re-weighted:

〈δ(Q − Q0)〉NPT =
〈δ(Q − Q0)/W (Q)〉w

〈1/W (Q)〉w
. � �\� � � �

Thus, the unbiased Gibbs free energy around Q0 is computed as

β∆G(Q) = − ln [〈δ(Q − Q0)〉NPT ]

= − ln[〈δ(Q − Q0)/W (Q)〉w] + constant. � �`� �
�	�
We mention only few drawbacks of the Umbrella Sampling technique are: the need of anx«��sutw|Gsut knowledge of Q, the dependence of the free-energy barrier on the order parameter
chosen, and the fact that an unlucky choice of W (Q) would not affect the correctness of the
calculation, even though it might adversely affect its the statistical accuracy.

Q
º���¼R¹;½[J�H��B�{½?�O¼ 8�F <m�R¼R½�¾��IH!��½ n

We now show how to compute P (n) in eq. 2.20 in order to obtain the nucleation free energy
barrier. For a moderate supersaturation, P (n) is sketched in fig.2.6. For small clusters that ap-
pear spontaneously in the system, we use the definition of the probability, P (n) = 〈Nn〉/N .
In practise, we just average the number of clusters of size n along an unbiased simulation.

However, the probability of appearance of big clusters is very small and a bias potential
must be introduced in order to compute P (n). The system is then biased to have a biggest
cluster whose size fluctuates around n0, as we will see in the next paragraph. As Ten Wolde
et al. showed [103, 29], for big clusters (that at moderate supersaturation do not appear
spontaneously) P (n) is equivalent to the probability that the biggest cluster present in the
system has size n.

The probability distribution P (n) of all the solid clusters in a moderately super-saturated
liquid is equal to:

P (n) = 1 × P1(n) + 2 × P2(n) + 3 × P3(n) + ... =
∑

i

iPi(n), � �`� �T�]�
where Pi(n) is the probability to have i clusters of size n. If we assume that the formation of
different clusters is uncorrelated, then Pi(n) = P i

1(n). Thus, eq. 2.47 becomes

P (n) =
∑

i

iP i
1(n). � �`� �
å#�

At these thermodynamic conditions it is possible to neglect terms of order higher than one
in the sum of eq. 2.48, as the probability to sample even one single cluster with size n is
relatively small. Hence,

P (n) ≈ P1(n), � �`� � ã �

� �
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that is the probability to have “only” one big cluster of size n in the metastable liquid. P (n)
is calculated in an umbrella sampling scheme by biasing the simulation to explore configura-
tions with a biggest cluster of size n.

Thus, at moderate super-saturations, the biggest cluster size n can be considered a good
order parameter: Q=n. In crystal nucleation n is identified by means of local bond order
parameters explained in details in appendix A.

¸7¹ 9l9 �IH!C�� ¼v¹Q½�J=Hëº���H�Cm��@c<mC 8 ¼IH 9 C w(Q)
The optimum choice of the biasing function w(Q) would be the Gibbs free-energy barrier it-
self (G(Q)), as this would guarantee an equally probable sample of all values of Q. However
G(Q) is not xí�&sutw|zsut know. A way to overcome this problem was presented by Lynden-Bell
et al. [60]. The authors used the G(Q) obtained from unbiased Monte Carlo simulations, ex-
trapolated this function to higher values of Q, and then “iteratively” computed the free energy
for all values of the order parameter. However, this approach might not give a good estimate
of the Gibbs free energy in complex systems characterised by a steep free-energy barrier.

Thereafter, Ten Wolde et al. [103, 29] introduced a biasing function w(n), function of the
biggest cluster size n and modelled as an harmonic potential in the order parameter n:

w(n) =
1

2
κ (n − n0)

2 , � �\� � �	�
where κ and n0 determine the width and the location of the equilibrium position; the phase
space around n0 defined by this width is called “window”. By using consecutive and over-
lapping windows, all having the same width (κ) it is possible to compute the equilibrium
distribution of all n values needed to compute the free-energy barrier 4. Thus, P (n) after
having applied the biasing potential is represented in figure 2.7.� ~�õ�üuû��)÷èû3ý�ü«öc�Wü�üuø�÷Lý4�W÷�
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As we already showed in chapter 2, the Umbrella Sampling technique allows to calculate the
equilibrium probability distribution of the biggest cluster size P (n), and thus the free-energy
barrier to nucleation. The free energy in each window ∆Gi is then computed by means of
eq. 2.20. ∆Gi is computed but a constant different in each window. Once ∆Gi is known with
its statistical error (σ(∆G)i) 5, we assume that the best curve passing through two adjacent
windows is an order kmax = 8 polynomial function [61], whose coefficients come from
minimising the χ2 function:

χ2 =

nmax
∑

n=1





nw
∑

i=1

1

σ2

(

∆Gi(n) −
kmax
∑

k=1

aknk − bi

)2


 . � �\� � �)�
The use of a polynomial fit is preferred to the self-consistent procedure of Flyvbjerg [62], as
it can be used even when the adjacent windows do not or slightly overlap.

However, ∆G(n) is the free energy needed to grow a size-n cluster in the metastable liquid.
Thus, the metastable liquid is the reference state of the nucleation process. Therefore, it is
necessary to compute the free energy of the metastable liquid in an �/����twxW���@� Monte Carlo
simulation to obtain the first part of the barrier by means of eq. 2.20.

ßàÜlÞàÜ�Û�ÜlßàÜ¡  üw«w¯[ª5µ�«e¯�¨ ³ ¨�� «�� ® µ�«j«wµT¶	�Hª ®T³ «E¦©µ�« ® ¯ ³ «5� ® Q�¯ ³`® «e¯�¶�û�¦ ® ���£µT¶+«w¨T¦
According to Classical Nucleation Theory, the kinetic pre-factor is given by eq. 2.35. How-
ever, it is also possible to estimate it without making use of CNT. The only assumption we¢ ` �W÷
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make is that the barrier crossing is a diffusive process and the Zeldovitch pre-factor is well
approximated by the form presented in eq. 2.33. The attachment rate of particles to the critical
cluster k+,n∗ takes into account the number of available attachment sites on the surface of a
spherical cluster. Assuming a diffusive attachment or detachment of single particles from the
critical cluster, Auer and Frenkel [63] related the forward rate k+,n∗ at the top of the barrier
to the spontaneous diffusion of n at the top of the nucleation barrier:

k+,n∗ = lim
t→∞

1

2

〈(∆n∗(t))2〉
t

� �\� � �]�
where 〈(∆n∗(t))2〉 = 〈[n∗(t)−n∗(0)]2〉 is the mean square change in the number of particles
belonging to the critical cluster during a time interval t. In order to compute the attachment
rate k+,n∗

1. we generate a set of uncorrelated configurations at the top of the free barrier;

2. we carry out NV T MD simulations, whilst the system is diffusing near the top of the
free energy barrier without falling in either of the free-energy basins;

3. from eq. 2.52, we compute the slope of 〈(∆n∗)2(t)〉 as a function of t for long times
and obtain k+,n∗ .

It is important to distinguish between k+,n∗ , which is the rate at which particles are added to
a cluster with the critical size, and the net flux across the nucleation barrier. In steady-state,
this net flux is equal the number of clusters that go from n∗ to n∗ + 1 minus the number of
clusters that go from n∗+1 to n∗ [4, 26, 5]. Hence, the actual nucleation rate is a combination
of the forward rate k+,n∗ and the backward rate k−,n∗ . However, because of detailed balance,
knowledge of k+,n∗ (combined with knowledge of the barrier height and shape) is enough to
compute the nucleation rate.

* Ï�A-Ï * Ï æ ØaèVéCÕ èjê æEÓëÑ;ì�í.Õ�ï¡ðhÓë×IÙFñ
The Forward Flux Sampling technique was developed by Allen et al. [13, 14, 15] in order
to study s7xGs7�à���W���Ov�� in soft matter and biophysical related problems. Here, we will limit
ourselves to the original FFS scheme [13], and describe the way we applied it in studying
nucleation processes in appendix C. An exhaustive discussion on various versions of FFS,
all based upon this idea [13], can be found in [14] and [15]). Considering a rare transition
between two regions of the phase space, A and B, Forward Flux Sampling is a technique
that allows to compute both the crossing rate between the two states, and analyse the features
of the pathways connecting A to B. In what follows, we present the FFS technique in a
“step-by-step” manner.

1. First of all, it is necessary to introduce an order parameter Q, function of the phase
space coordinates, to define both states A and B and relevant to describe the phase
transition from A to B. It is important to mention that the results coming from the
FFS runs do not depend on the choice of Q (see ref. [13]). When studying crystal
nucleation, we select the number of solid particles in the biggest cluster n as the order
parameter Q;

��å
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2. hence, by means of Q, we define the system being in state A whenever Q < λ0, where

λ0 is state A boundary, or being in state B whenever Q > λn, where λn is state B
boundary;

3. since transitions from A to B, and vice versa, are rare, most of the time Q will either
be smaller than λ0 or larger than λn. The key idea of FFS is to use a series of hyper-
surfaces in the phase space, also called t��ivH��s��5x]r@�5� , each one identified by a value of
the order parameter Q (Q = λ0, Q = λ1, . . . , Q = λn−1, Q = λn) to drive the system
from state A to state B in a ratchet like manner;

4. once the interfaces are known, the next step is to perform a conventional brute-force
simulation in one of the stable states, say state A. Each time the system crosses the
interface λ0 during this simulation, the coordinates of the phase space point are stored.
At the end of this simulation, one has a distribution of state points at the first interface,
λ0 (as indicated in sketch (a) in fig. 2.8);

5. this distribution is then used to fire off a set of trajectories from the first interface λ0.
Each trajectory is continued until the system either reaches the next interface, λ1, or
arrives in state A again, i.e. crosses λ0 (as indicated in sketch (b) in fig. 2.8). This
procedure generates a distribution of state points at λ1;

6. by repeating the same operation for the subsequent interfaces, one has for each interface
i an estimate of the probability P (λi|λi+1), which is the probability that given that a
trajectory is at interface i and has come from A, it reaches λi+1 before it returns to
state A (as indicated in sketch (c) in fig. 2.8). Figure 2.8(d) shows the last step: when
a trajectory is originated at the last interface, it can either reach state B by crossing its
boundary λn, or go all the way back to state A.

According to FFS, the nucleation rate is computed as a product of two terms: the flux
at which stochastic trajectories starting at the initial state cross its boundary λ0, times the
probability that these trajectories can reach the final state of the transition. The rate constant
R can then be obtained from [44] by

R = ΦA→0 · P0→B = ΦA→0

n−1
∏

i=0

Pi→i+1
� �\� � ä	�

Here, ΦA→0 is the steady-state flux of trajectories crossing state A boundary, which is the
number of crossings of λ0 per unit time and volume (NA→0), and P0→B is the overall prob-
ability that trajectories, initially at the first interface, manage to reach the final state B.

ßàÜlÞàÜlßÇÜ�ÛHÜ5á ·�ª ® ¦Y¯�¶�µ ± ¶�¨�ªCûH·`«jµ�«e¯�¨ ³ ¨�� «�� ® üw« ® µ ² ýG�Yüw«wµ�« ® =Å·?¤
In practise, the flux can be obtained from a first, brute-force simulation in state A:

ΦA→0 =
NA→0

t · V
� �\� � �#�

� ã
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where V is the volume of the simulation box and t is the average time the system spends in
A before crossing NA→1 times the first interface (see fig. 2.8(a)). While computing the flux,
we collect N0 configurations at the first interface λ0.

In practise, to measure the flux, we collect the configurations crossing the interface λ0, and
measure the total time spent by the system in the A state, neglecting the time spent at λ0.

ßàÜlÞàÜlßÇÜlßàÜ5á ·�ª ® ¦Y¯�¶�µ ± ¶�¨�ªCûH·`«jµ�«e¯�¨ ³ ¨��
P0→B

The N0 configurations collected at the first interface are used as starting points to shoot for
each of them M0 stochastic trajectories. The M0 runs differ from each other in the different
random seed of the random number generator. A trajectory is then considered to end

• either if it succeeds to reach the next interface (the second interface λ1, in this case),

• or if it fails by going all the way back to the initial state A.

Hence, the probability to go from interface λ0 to interface λ1, P0→1, is the ratio between the
number of successful trajectories that reach interface 1 (N succ

0→1 ) and the total number of trial

ä��



¸���Q/�º¹ ��R�¼u�7���@½G»!�H¼W�S������T���¼U�í�H�V�M�è���)���u½z�5¼­¼)WW¼u���4�
trajectories (M0 · NA→0):

P0→1 =
Nsucc

0→1

M0 · NA→0
. � �\� �	� �

In the next step, the N succ
0→1 configurations can be used as starting points to compute the

probability to go from interface λ1 to interface λ2, P1→2, and so on until we reach the final
state B. Thanks to the fact that configurations have been stored at each interface, it is possible
therefore to analyse the pathways to nucleation,

/�0�°3�_Bí¡��:4b2²±�4�6�47�_J�9
Concerning this chapter, I would like to thank E. Sanz for a patient and careful reading,
together with J. A. van Meel and R. Hawkins.
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In order to quantify the progress of crystal nucleation from a metastable super-cooled liquid,
we choose an order parameter that has the following general features:

1. it is sensitive to the differences between solid and liquid structures;

2. it does not depend on the orientation or position in space of the solid;

3. in case the system presents a rich phase diagram, characterised by several solid struc-
tures, the order parameter should not bias any of them.

The order parameter on one side detects only few particles as solids in the metastable liquid
phase, on the other side it recognises “almost” all particles as solid-like in the stable solid
phase.

In all our works, every time we have studied crystal nucleation, we used a so-called y�|)r�xGy�@|z�&�z¢è|zs��]��s parameter. The bond-order parameters were initially introduced by Steinhardt
et al. [64] to describe the orientational order in liquids. They have been first used by van
Duijneveldt et al. [11] to estimate the free energy as a function of the overall crystallinity in
a metastable liquid of soft and repulsive spheres (v(r) = ε( σ

r )12). Later on, ten Wolde el
al. [103, 65] studied crystal nucleation from a super-cooled Lennard-Jones liquid, by means
of the same bond-order parameters. More recently, ten Wolde el al. [29] and Auer et al. [66]
analysed crystal nucleation from, respectively, metastable Lennard-Jones and hard-spheres
fluid employing a y |Mr@xzy bond-order parameter.

Whenever studying homogeneous crystal nucleation, we have exploited the same local
bond-order parameters to identify the ��tU�M�#�u�uv«r�sU(W�uvHxGy�yEt����àr�yE���uv��5s , whose size we consider
to be the relevant order parameter to follow the liquid-to-solid phase transition. In practise,
we start by distinguishing between liquid-like and solid-like particles, and then use a cluster-
algorithm to group neighbouring solid-like particles into crystalline clusters. The last step
consists of selecting the biggest cluster, which size is going to be our local order parameter.
In order to compute it:

1. we define the neighbour list of each particle i, as the set of all particles j within a cut-
off distance of rij ≤ rc

6. The cut-off radius rc corresponds to the first minimum of the
radial distribution function of the thermalised solid state;

2. now, we look at the spatial orientational correlation of vectors joining neighbouring
atoms. For every particle i, we compute the y�|)r@xzy spatial orientation ~qlm(i), which is a
(2l + 1)-dimensional complex vector, whose components are given by

ql,m(i) =

1
Nb(i)

(

∑Nb(i)
j=1 Υl,m(θij , φij)

)

(

∑l
m=−l |~ql,m(i)|2

)1/2
, m = [−l, l] � �\� n3�[�W�

· ~�õ�kl�zþ�ý���üuÿªÿªü�k
ø�a�kú÷N�)÷èõ)ü@ý�÷=k
ô ý��
~ri

ý��W÷!ùGüuø�ô ý�ôªüuõzþ@ÿG�5÷Êö�ý�üuû
ü���ùzþ@û�ý�ôªöÊÿª÷
i
�
~rij = ~rj − ~ri

ôªøúý��W÷N�WôªøwýHþ@õWöÊ÷
G÷Êý�k&÷è÷Êõ;ý�k&üéùzþ@û�ý�ôªöÊÿª÷Êø
i
þ@õ��

j
aGkm�)üuø�÷�dæüq���Wÿ��Wø!ôªø

rij = |~rij |
a/þ@õ��

r̂ij = ~rij/rij

ý��W÷��Wõ)ô ý#�5÷Êö�ý�üuûùGüuôªõ�ý�ôªõ�
ºôªõ�ý4�)÷#�)ôªû�÷Êö�ý�ôªüuõéü��
~rij

�
ä
�
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j
á�ÐHÒ�ÈÊÅEÜ/Éuß§Ü�Ù5È�ÒÊÅUÕ�ÝUÉ�Ðèãæç-ÅªÒÊÓ#ÅEÚ�ÒÊÓ	ÉíÕ@Ç]Ò�Û�Ñqs�ÈèÙ)ß]ÅUÇ	Ð
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where Nb(i) is the number of neighbours of the particle i, and Υl,m(θ, φ) are the order
l spherical harmonics, obtained from the polar representation of r̂ij (see fig. 2.A.2);
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i
ãäç-ÅªÒÊÓÙMÚzî�ÑMØ
ÅªÒÊÐ3Ú	É@ÅEÆ)ÓGð/Ñ)Ç]ÈÊÐ

j
ß	Égt#Ú#É

θij
ÙMÚ#ß

φij
ë/Ç#Ð�Éuß;ÒÊÑ>Õ�Ñ)Ô>Ü#Ç]ÒÊÉ�ÒÊÓ#É�Ñ�Èèß	É�È

l
Ð�Ü#Ó#É7ÈÊÅUÕ@ÙMÝ&Ó#Ù�ÈÊÔ>Ñ)Ú	ÅEÕ@ÐÅEÚ;ÉU��Ì�ËGÌ "LÌEÍMÌ

3. in order to distinguish liquid-like from solid-like particles, Ten Wolde et al. [29] pro-
posed a rotationally invariant function dl(i, j)

7, i.e. the dot product between ~ql,m

computed at particle i, and the same complex vector computed for each of its neigh-
bours:

dl(i, j) =

l
∑

m=−l

~ql,m(i) · ~q∗l,m(j). � �\� n3� �	�
dl(i, j) is a normalised quantity correlating the local environments of neighbouring
particles, it is a real number and is defined in the range −1 ≤ dl(i, j) ≤ 1. The value
of l is chosen depending on the symmetry of the growing cluster;

4. once dl(i, j) is computed for every particle i, it is possible to define a criterion to dis-
tinguish between liquid-like and solid-like particles. After calculating the probabilityÇ�È û�ü@ý�þ�ý�ôªüuõWþ@ÿªÿ �éôªõ��uþ@ûwôEþ@õ�ýBüuû!�W÷ÊûBùzþ@û�þ�dæ÷�ý�÷Êûl�Wü�÷�õ)ü@ým�)÷èùG÷Êõ��íüuõLý4�)÷�ö4�Wüuø�÷Êõéûw÷j� ÷Êûw÷ÊõWöÊ÷#��û�þ�dæ÷U�
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distribution P (dl(i, j)) both in the metastable liquid and in the solid (see fig. 2.A.3)
for a generic system 8, two neighbouring particles i and j are defined as "connected",
if dl(i, j) exceeds a certain threshold dc. dc is an x]�<{O|Mr cut-off, corresponding to
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P (dl(i, j))

ÑMØ!Ù Ô>É�ÒèÙ�ÐHÒèÙMð#ÝEÉLÝEÅË�zÇ	Å�ßàá�Ñ)ÚJÒÊÓ	É­ÝEÉ�Ø�Ò�Ó�ÙMÚ#ß]ÛÐ�ÅUß	É5ãBÙMÚ�ß«ÙæÒÊÓ#É�ÈÊÔ Ù�ÝUÅEÐ�Éuß Ð�Ñ)ÝEÅUß¨á�ÑMÚ«ÒÊÓ	É�ÈÊÅEÆMÓGÒ*Ó�ÙMÚ#ß]ÛwÐ�ÅUß	É5ã
ÑMØ�Ù­Æ)É�Ú#É�ÈÊÅEÕ�ÐHî]ÐHÒÊÉ@Ô~Ìúìiç*Ñ­Ü�Ù�È�ÒÊÅEÕ@ÝEÉ@Ð-Ù5ÈÊÉÌ Õ�Ñ)Ú#Ú	É@Õ�ÒÊÉuß Ì ë]ç-Ó#É@Ú
dl(i, j) ≥ dc

ë	ç-Ó	É�ÈÊÉ
rc ≈ 0.3

Ì�á! äÑ)Ç]È�ÒÊÉ@ÐHî;Ñ�ØlÍ	Ìn"LÌ]×)Ù�Ú²2;É@É�Ý ã
the smallest value of dl(i, j) where the probability that particle i is embedded in a
solid-like environment is not zero. However, it appears clear from fig. 2.A.3 that at
dl(i, j) = dc the two probability distributions overlap, and there is a finite probability
for particle i to be in a liquid-like environment, not connected to particle j;

5. thus, to enforce the above-mentioned criterion, Ten Wolde suggested a second criterion
to identify a particle in a solid-like environment, by counting the number of connections
of particle i

ncon(i) =

Nb(i)
∑

j=1

H(dl(i, j) − dc),
� �\� n3� ä#�

where Nb(i) is the number of neighbouring particles, H is the Heaviside step function
and dc the connection threshold. ncon is the total number of scalar product dl with
respect to particle i that overcomes the imposed threshold dc.Î ~�õ>þ�dæ÷�ý�þ@ø�ý�þ�
Wÿª÷!ÿªô�Ïq�Wô��

P (dl(i, j))
ôªø
þ��Wôªøwý�ûwô�
��)ý�ôªüuõíùG÷èþ�eu÷��íþ�ý*þ�ø�d�þ@ÿªÿG
I�)ý
ù]üuø�ô ý�ô �5÷N�@þ@ÿ��W÷!ü��

dl(i, j)
�Ð �)÷èûw÷èþ@ø*ôªõ>þ�ý��W÷Êû�d�þ@ÿªôªø�÷S�íø�üuÿªô��

P (dl(i, j))
ôªøBþ�
Wûwü5þ��W÷Êû=�Wôªø�ý�ûwô�
��)ý�ôªüuõ>ù]÷èþ�eu÷S� þ@ûwüU�Wõ��«þ��uþ@ÿ��W÷-öÊÿªüuø�÷ý�ü�üuõW÷Ua��uþ@ÿ��W÷UaWý��W÷!ÿEþ�ýwý�÷ÊûSazý4�)÷N�Wôªø�ý�û�ô�
I�)ý�ôªüuõíþ@ø�ø4�Idæ÷èø$ôªõ­þ�ô��W÷èþ@ÿ#ÿEþ�ýwý�ôªöè÷U�
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By looking at the probability distribution of ncon per particle P (ncon) (fig. 2.A.4),
it turns out that in a liquid the number of connections is fairly low, whereas typical
values for solids are higher: ncon = 12 for a fcc crystal, ncon = 8 for a bcc crystal and
ncon = 6 for a simple cube (NaCl crystal). The fact that there is no overlap between
the two ncon distributions, allows a clear distinction between liquid-like and solid-like
environment. Thus, a particle is considered to be solid (or in a solid-like environment)
if its number of connections exceeds an assigned threshold nc

con (in fig. 2.A.4, nc
con = 6

is a reasonable cut-off);
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6. once all the solid particles are identified in the system, a cluster-algorithm can be used
to check which particles belong to the same solid clusters: starting from a solid particle
i, if particle j is a solid neighbour closer than a cut-off rcluster

c , then i and j belong
to the same solid cluster. The procedure is iterated over all the solid particles, that are
labelled in a similar way if they belong to the same clusters;

7. at last, the biggest of those clusters is selected as v�{�� order parameter to describe the
liquid-solid phase transition. In all our studies, the ��tU�M�#�u�uv�r�yE���uv��5sJ�utË|)� is indicated
with n.

ä �
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From equation 2.A.1, it is possible to construct the �]y�|]�@xGyæ�@|G���z¢è|Gs7�]��s parameters used by
van Duijneveldt [11] and ten Wolde [29]. After computing the average of ql,m over all the
bonds, the global order parameter is defined as

Q̄l,m =

∑N
i=1 Nb(i)ql,m(i)
∑N

i=1 Nb(i)
, m = [−l, l] � �\� n3� ���

and its rotationally invariant version

Ql =

(

4π

2l + 1

l
∑

m=−l

|Q̄l,m|2
)1/2

. � �\� n3� � �
It has been proved by Ten Wolde et al. [29] that the use of a global bond-order parameter can
cause a spontaneous breaking of the pre-critical clusters into many small crystallites due to
entropic reasons.

/ ´§´547�32Í8h³ÒÑÓ´%Ô315�72G1¡&�D�@
4b4 4��_43@n±;¶
The use of order parameters to construct phenomenological theories of phase transitions was
pioneered by Landau [67]. In this approach, the order parameter Q is chosen based on phys-
ical concept in the Landau theory of continuous phase transitions, and can also be used to
discuss first order phase transitions. The Landau free energy G is defined as It is defined as

G(Q0) = −kBT ln(P (Q0)) = −kBT ln

∫

exp−β(H0+PV ) δ(Q − Q0)dΓ + constant ,� �`� �b�[�W�
where P (Q0) is the probability per unit interval to find the order parameter at a given value
Q0, H0 is the Hamiltonian of the system, V its volume, P the external pressure, kB denotes
Boltzmann constant, and Γ indicates that the integral is over the phase space.

Let us assume that Q is an order parameter, function of the 3N system coordinates, relevant
for the liquid (L) to solid (S) phase transition. In such a transition, we expect that above the
freezing temperature P (Q) is a distribution peaked at a low value of QL, corresponding
to the liquid state. A peak in P (Q) matches a minimum in the Landau free energy. At
the freezing temperature the distribution gets double-peaked, the second peak at higher QS

values corresponding to the solid state. The fact that G(Q) has two minima (L and S) means
that there are two possible stable phases at QL and QS , respectively. At the thermodynamic
coexistence point, the probabilities to find the system in each phase are equal, while at a
given super-saturation one of the two peak becomes less stable, corresponding to a metastable
minimum in G(Q). The lifetime of the system trapped in this metastable minimum depends
on the height of the free-energy barrier separating it from the stable minimum.

The Gibbs free energies of each of the two phases (minima) can be written as

GL = −kBT log

∫

L

exp−β(H0+PV ) dΓ, � �`� �b� �	�
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obtained integrating over the phase space occupied, respectively, by phase L, and phase S
(GS). Therefore, the Gibbs free energy difference between the two phases is

GL − GS = −kBT ln(PL/PS), � �`� �b� ä#�
where PL(PS) is the probability to find the system in phase L(S). Being PL ∼
exp−βG(QL), eq. 2.B.3 becomes

GL − GS = G(QL) −G(QS) + O(Q2) � �`� �b� ���
G(QL) and G(QS) are the values of the Landau free energies at the two minima, and the
second term is a small correction that depends on the curvature of these minima (assumed to
be the same). In order to calculate G(Q), Lynden-Bell et al. [60] used standard Monte Carlo
sampling, augmented with Umbrella Sampling to facilitate the sampling of those parts of the
free-energy landscape that would be inadequately sampled in standard Metropolis sampling.

/ ´§´547�32Í8h³ � ´AÕ�4EJ�1G8M�I9�B���J <_4ÒÖ×ÖÙØ 0.1G�£0�&G�:1=J§8IB��_9
Motivated by computational issues, to study nucleation processes we have applied the FFS
scheme in a slightly different manner than the one presented in the original scheme [13],
and [14], making sure to obtain the same results in both schemes. The way we have structured
our calculations is the following:

1. as FFS prescribes, we fire off Mi−1 stochastic trajectories from the Ni−1 configura-
tions collected at λi−1. This corresponds to Ni−1 × Mi−1 trials to get to the next
interface λi. We decide to run all trial shootings starting from each configuration on
the same computer cluster node. In this way we use as many processors as starting
configurations;

2. assuming that the trajectories produce N succ
i−1→i configurations at the next interface λi,

we then use these configurations as starting points for trajectories shot towards the next
interface λi+1;

3. if Nsucc
i−1→i is bigger than the number of computer cluster nodes available, we randomly

select some of the configurations ( N sel
i−1→i) to keep the computational time under

control, and shoot Mi times the N sel
i−1→i configurations using N sel

i−1→i nodes in our
computer cluster.

We iteratively repeat the shooting scheme until the last interface is reached.

¸ 9B: »�<Q¼Rº`¼IH 9 C 9 @ P0→B

Thus, the probability to reach interface λi+1 from interface λi becomes

Pi→i+1 =
Nsucc

i→i+1

(Mi × Nsel
i−1→i)

, � �`� �E�[�W�
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and eq. 2.53 can be written as:

RAB = ΦA→0
Nsucc

0→1

M0 × NA→0

n−1
∏

i=1

Nsucc
i→i+1

(Mi × Nsel
i−1→i)

. � �`� �E� �	�
In order to test the validity of these calculations, we study homogeneous nucleation in a two-
dimensional Ising model, and compare the nucleation rate computed by means of eq. 2.C.2
with the one obtained using the original FFS scheme of ref. [14]: we obtain (6.3±2.5)×10−13

MC step−1 spin−1, in very good agreement with the value of RAB = 2.8 ± 0.3 × 10−13

MC step−1 spin−1 computed according to ref. [14] (see also chapter 3) and with the value
3.3× 10−13 MC step−1 spin−1 computed for the same system by Sear et al.[68].

Ú 9l8 º`¼IH 9 C 9 @ ¼v¹Q½DH�Cà¼R½�¾)@£º 8 ½?�
In order to locate the first interface, also boundary of the A state, , λ0, we employ the cumu-
lative distribution function of the order parameter n in the A basin.

F (n) =
∑

ni≤n

P (ni),
� �`� �E� ä#�

where F (n) is the probability that the biggest cluster has size less or equal than n.
The procedure we follow is:

1. we extract a random number, r from a random number generator uniformly distributed
between 0 and 1;

2. we compare r with the values of the cumulative distribution F (n), starting from n = 0;

3. we find which value of n corresponds to an F (n) bigger than r, and set λ0 at the
corresponding value of n;

4. in this procedure, we define an upper boundary for the numerical values r can assume:
if r is at least 0.995 or bigger, the value of λ0 is located at the value n assumes when
F (n) is 0.995.

The position of λ0 can be either chosen before starting the FFS runs, or every time we check
if a trajectory shot from λi to λi+1 is coming back to the initial state A.

To locate the other interfaces λi, we execute a “trial” FFS simulation, and select each λi

as soon as it is reached by “at least” few percent of the trajectories coming from the previous
λi−1 interface. It is important to add that the FFS results do not depend on the position
chosen for the interfaces. We have checked this statement using a different set of locations of
the interfaces, and obtaining the same nucleation rate.

/ ´§´547�32Í8h³ÒÕµ´ ² 8è´39�D
B�@ÓÛ54�±C8V�5�_47@
9
The aim of this appendix is to give few tips for newcomers in the field of computer simulations
of nucleation of a stable phase B from a metastable parent phase A.
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NPT

Øhè
NV T

Ô§Ù*�
Ô§ï (�Ó[Ô=Ü
In what follows, we give reasons why an NPT ensemble is more suited to study homoge-
neous nucleation than an NV T one. If we perform numerical experiments on condensation
(vapour-to-liquid phase transition), we observe that at the top of the free-energy barrier the
critical liquid cluster coexists in an unstable equilibrium with the surrounding vapour, while
the vapour pressure decreases. However, as the clusters concentration is relatively small, the
change in vapour pressure is negligible, and we can argue that the pressure in the system is
constant during the nucleation process. In an NPT ensemble, whenever a cluster starts grow-
ing, the volume of the system adjusts in order to keep the vapour pressure constant. Whereas,
in order to simulate the same process in an NV T ensemble, one would need a very large
number of vapour particles to keep the vapour pressure constant. This implies a very large
system. Moreover, real life nucleation experiments are carried out at constant temperature
and pressure.

Ý,×ÊÞ_Ô§èVÔ ÙQÖ��HÑ�ðaÔ§èMø)��Õ;Ö`ÑhèjÕ;ÖT×�Ø.Ù*� ØN+ Ö`òFÔ �#�$�
Ö�Ô§ï
Before tackling a nucleation study, knowledge of the “degree” of super-saturation to impose
to the system is required. The super-saturation is measured in terms of the chemical potential
difference between the nucleating and the parent phase: ∆µ = [µB(P )−µA(P )]. Depending
on the super-saturation, we observe different scenarios:

1. if the super-saturation is almost zero, the system is still close to the coexistence region,
where the free-energy barrier to nucleation is almost infinite. The critical cluster would
be too large and finite size problems would arise;

2. if the super-saturation is very high, the system is in a region of the phase diagram
where the free-energy barrier to nucleation is very small. In a vapour-liquid phase
transition, when the barrier becomes zero, the system rapidly separates into the two
different phases by means of a ����t���|)�]xGy��	��r@|G}��O|W�ut�v�tw|z� mechanism 9. This mechanism
is kinetically different from the nucleation one in the binodal region [69];

3. at last, if the super-saturation is moderate, there is a reasonably high free-energy barrier
the system has to overcome in order to nucleate the new stable phase. What happens
is that the system spends long time in the initial metastable state A, and ���z�5�iv��OxGy�y]( a
¨rare¨ density fluctuation happens, leading the system at the final stable B state.

Knowing the phase diagram of the chosen material makes it possible to quantify the amount
of super-saturation. In all our simulations we study systems at moderate super-saturations.

íæ�
��Ö�Ô§ï �\×POàÔ'Õ�ÙFêµßEÔ§èR×�Ø.ê)×�Ò (aØ)ÑhÙ§êaÕ è���ÒàØ.ÙFê)×[ÖT×�Ø.Ù*�
In order to simulate a bulk system, we accommodate N particles in a cubic box, and periodi-
cally repeat the box in all three directions [70, 71]. In this way none of the particles is at the
boundaries or close to the surface, as there are no surfaces in any direction.àgázüuû
ø�üuÿªô��Wø�aMý��W÷-ø�ùWôªõ)ü��zþ@ÿ	ùWôªö�ý4�)û�÷�ôªøúõWü@ýäþ@ùWùWûwüuùWû�ôEþ�ý�÷�� âg�
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A criterion to choose the appropriate system size is based on Classical Nucleation Theory.

By means of eq. 2.13 it is indeed possible to estimate the critical cluster size: the system has to
be large enough to accommodate (at least) the critical cluster. This means, in particular, that
correlations induced in the parent phase due to the presence of the cluster (such as layering
of particles in the liquid close to the cluster surface, anisotropy in the particles orientation
close to the cluster surface, etc.) must decay on a length scale shorter than half of the the
box length. Otherwise the cluster might interact with its own periodic images, leading, as a
consequence, to spurious finite size effects.
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We present a method for computing stationary distributions for activated processes in equi-
librium and non-equilibrium systems using Forward Flux Sampling (FFS). In contrast to most
approaches to study rare events, the stationary distributions can be obtained directly from the
rate-constant calculations for the forward and backward reactions; it is thus not necessary to
perform one series of calculations for the stationary distribution and a separate one for the
rate constant. We apply the method to the rare event problem proposed by Maier and Stein,
and to nucleation in a two-dimensional Ising system.

Y�°u±§°ûú �=J§@�BC2[&70 J§8IB��
In the field of soft-condensed matter physics a number of simulation schemes have been de-
veloped in recent years, which makes it possible to zoom in on the rare events themselves.
Techniques such as Umbrella Sampling allow the calculation of free-energy barriers sepa-
rating the stable states [12, 11], while schemes such as the Bennet-Chandler method [10]
and Transition Path Sampling [72, 41] also allow the computation of rate constants. Indeed,
these techniques have now been widely applied to study ion permeating through membranes,
protein folding, and nucleation. However, these schemes require previous knowledge of the
phase space density.

For systems that are in thermodynamic equilibrium—systems that obey detailed balance
and microscopic reversibility—the phase space density is known: it is given by the Boltzmann
distribution. In contrast, for systems that are out-of-equilibrium, the phase space density is
usually not known.

Hence, most numerical techniques for simulating rare events are limited to equilibrium
systems only, and thus exclude a host of important rare-event problems in non-equilibrium
systems, such as polymer collapse under flow, crystal nucleation under shear, and rare events
in biology, such as protein trans-location and switching events in biochemical networks.
A recently developed numerical technique, called Forward Flux Sampling (FFS), makes itò Ð üuû�eLöèþ@û�ûwôª÷S�>üU�)ý
ôªõéöÊüuÿªÿEþ�
Güuû�þ�ý�ôªüuõük
ô ý���ýN�)þ�� È ÿªÿª÷èõGa)�V�I�íüuû�÷Êÿªÿªô�þ@õI��ÿ ��ý\�Mý�÷Êõ Ð üuÿ��)÷��
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possible to compute rate constants in both equilibrium and non-equilibrium systems with
stochastic dynamics.

In this chapter, we show how, by performing an FFS calculation for the transition from the
initial A to the final B state, and one for the reverse transition, not only the rate constants, but
also the stationary distributions can be directly obtained.

The method can be used for both equilibrium and non-equilibrium systems. For equilib-
rium systems the advantage is that from an FFS simulation not only the rate constant, but also
directly the free energy can be obtained. For non-equilibrium systems in steady-state, this ap-
proach is, to our knowledge, the first that allows the computation of stationary distributions.

The method is conceptually similar to that used in TIS and PPTIS to compute free-energy
barriers, in the sense that the stationary distribution is obtained by matching the forward and
backward trajectories [43, 41, 40].

In the next two section, we discuss the method to obtain the stationary distributions. We
then illustrate the method using a symmetric and asymmetric double-well potential system
(section 3.4.1), and both an equilibrium and non-equilibrium two-dimensional Maier-Stein
system (section 3.4.2). Finally, in section 3.4.3, we apply the method to calculate the free-
energy barrier for nucleation in a two-dimensional Ising system.

Y�°è¯�° ØCJ�1=J§8IB��_13@]¶�2�8I9QJ§@H8�Û�&=J§8IB��_9£´÷J <34 J <_4bB�@]¶
We are interested in computing the stationary distribution ρ(Q), which is the probability per
unit interval to find the order parameter Q at given values.

The key idea of the proposed scheme to obtain stationary distributions using FFS is to write
ρ(Q) as a sum of two contributions

ρ(Q) = φA(Q) + φB(Q). � äH�[�W�
Here φA(Q) is the contribution to ρ(Q) at a given Q from those trajectories that come from
region A and have not yet reached state B or state A again, and φB(Q) is the analogous
contribution from the backward transition (see fig. 3.1). The forward FFS simulation harvests
trajectories from A back to A (pathway I in fig. 3.1) and from A to B (pathway II in fig. 3.1),
while the backward FFS simulation harvests trajectories from B back to B (pathway III in
fig. 3.1), or from B to A (pathway IV in fig. 3.1).

Since transitions from A to B are rare, trajectories that are initiated at interface λ0 tend to
rapidly return to state A; the same holds for trajectories initiated at interface λn, that return
to state B. FFS employs a series of interfaces to generate the Transition Path Ensemble
"step by step". In this procedure, at each step an ensemble of paths is generated by firing
off trajectories from points at an interface that have been obtained in the previous step; each
trajectory is terminated as soon as it either reaches the next interface or λ0 (see section 2.3.2).

We now can consider all the different kinds of trajectories represented in fig. 3.1 (I,II,III
and IV), as independent parts of a longer (ideally infinite) trajectory connecting A and B:
this allows us to write eq. 3.1, and to define an average over the ensemble of trajectories.

As we will describe below, the distribution function φA(Q) can be obtained by performing
an FFS simulation for the transition from A to B, while φB(Q) can be computed using an

���
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FFS simulation on the reverse transition, from B to A. For equilibrium systems, once ρ(Q)
is known, the free energy can be obtained from ∆G ∼ −kBT ln [ρ(Q)].

We now describe φA(Q) and φB(Q). The function φA(Q) is given by

φA(Q) = pAΦA t̄(Q; λ0),
� äH� �	�

and φB(Q)

φB(Q) = pBΦB t̄(Q; λn), � äH� ä#�
Here, pA(pB) is the probability that the system is at the beginning in state A(B), ΦA(ΦB)
is the flux of trajectories leaving state A(B) and crossing its boundary λ0(λn), and
t̄(Q; λ0)(t̄(Q; λn)) is the time a trajectory coming from A(B) and not yet in B(A) or in
λ0(λn), spends at a certain value of Q (averaged over the ensemble of paths starting at
λ0(λn)).

We now focus on t̄(Q; λ0), as t̄(Q; λn) can be analogously computed. t̄(Q; λ0) is ex-
pressed as

t̄(Q; λ0) =

∫

D [x(t)] · P [x(t)]

[
∫ tf

ti

dτδ (Q − Q[x(τ)])

]

, � äH� ���
where x is a point in the multi-dimensional phase space, and [x(t)] is the ensemble of tra-
jectories starting at λ0, and ending either at λ0 or at λn

1. The integral is run over the entireò ~¿ý-ôªø-þ@ÿªø�üLô�dæùGüuûwý�þ@õ5ý!ý�ü­õWü@ý�ôªöÊ÷�ý��zþ�ý
[x(t)]

a#ý��W÷º÷ÊõWø�÷Sd	
Wÿª÷�ü��&ý�û�þgf�÷Êö�ý�üuû�ôª÷Êø�a �)÷èùG÷Êõ��Wø�üuõ>ý4�)÷��I�Mõzþ�dæôªöÊø�Wø�÷S�Lý�üæøwý4�����­ý��W÷-û�þ@ûw÷�÷S�5÷Êõ5ý��;�W÷ÊùG÷èõI�Wôªõ�
�kl�W÷�ý4�W÷Êû
ý4�W÷-ø!�)øwý�÷Sd ÷j�5üuÿ �5÷Êø*þ@öÊöÊüuû��)ôªõ�
æý�üæþ���þ@õ�
u÷j�)ôªõíüuûþ��íüuõ5ý�÷ � þ@ûwÿªü��I�Mõzþ�dæôªöÊø�a
[x(t)]
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ensemble of trajectories (D [x(t)]). P [x(t)] is the properly normalised probability associated
to the trajectory x(t) of the ensemble starting at λ0: P [x(t)] is the conditional probability
sampled by means of FFS in section 2.3.2. For equilibrium systems, the contributions to
the average are weighted according to the Boltzmann distribution, while for non-equilibrium
systems in steady-state they are weighted according to the steady-state phase space density.
From eq. 3.4, we see that

[

∫ tf

ti
dτδ (Q − Q[x(τ)])

]

is the average residence time of a trajec-
tory x(t) at a certain value of q, averaged over all the trajectories going either from λ0 to λn

or back to λ0; it also indicates the contribution of the over-mentioned path starting at time ti

and ending at time tf to each value of the order parameter q2. We emphasise also that the
contribution to t̄(Q; λ0) not only comes from trajectories that reach B from A, but also from
trajectories starting in A, but ultimately returning back to A before reaching B. We underline
the fact that eq. 3.4 is dimensionally correct, as P [x(t)] has dimensions of [1/(D [x(t)])], τ
of time and δ of the inverse of the order parameter ([1/Q]): therefore, t̄ will have dimensions
of [t/Q], i.e. a time divided by the order parameter.

Now that we know the way to compute t̄, the flux of trajectories leaving state A and cross-
ing the surface λ0, ΦA, is obtained from the forward FFS calculations. The same holds for
ΦB , computed in the reverse FFS.

In order to compute ρ(Q), we also need to evaluate pA and pB . In steady-state,

pARAB = pBRBA, � äH� � �
where RAB and RBA are the forward and backward rate constants measured in the forward
and backward FFS, respectively, and pA(pB) is the probability the system is initially in state
A(B). Since we assume a two state system (ignoring intermediate states), we can choose a
normalisation such that pA + pB = 1, meaning that the system, at the beginning, can only be
either in A or in B, but nowhere in between. This leads us to the following expressions for
pA and pB :

pA =
RBA/RAB

1 + RBA/RAB
, � äH� �#�

and
pB =

1

1 + RBA/RAB
. � äH���]�

This choice of normalisation can be corrected at the end of our calculations, such that ρ(Q)
in eq. 3.1 becomes a properly normalised probability distribution.

Y�°�Y�° ØCJ�1=J§8IB��_13@]¶�2�8I9QJ§@H8�Û�&=J§8IB��_9£´÷J <34 6�4EJ <_B�2
As already mentioned, to obtain the stationary distribution ρ(Q) we perform an FFS simula-
tion for the transition from A to B and one for the reverse transition from B to A. For details
on the computation of the fluxes ΦA and ΦB , as well as the rate constants RAB and RBA,
we refer to section 2.3.2 and ref. [14]._ ` �W÷!ùzþ�ý��Wø*þ@ûw÷!ý4�q�Wø
õWü@ý
õW÷ÊöÊ÷èø�øHþ@ûwôªÿ �éü���÷SÏq�zþ@ÿ�ÿª÷Êõ�
@ý����§ý4�)÷3õq��d�
G÷Êûúü��Oø�ý�÷ÊùWøBùG÷Êû$ùzþ�ý����Wü�÷èø��uþ@ûh���
�
�
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Here, we discuss a "step by step" procedure to compute t̄(Q; λ0) and t̄(Q; λn). We only

consider t̄(Q; λ0), as t̄(Q; λn) is obtained similarly.

1. Having collected N0 trajectories at λ0. We fire a total of M0 trial runs, each one
terminated either when the next interface λ1 is reached, or when it goes back to the
initial A state;

2. every time the fired trajectory evolves, we update t̄(Q; λ0): when trajectories come
from the first interface λ0, the contribution to each value of Q has the form of

t0 =
∆t0

∆h(Q)M0
, � äH� å#�

where ∆h(Q) is the bin size chosen to sample the order parameter space, M0 is the
total number of trial runs starting at λ0, and ∆t0 is

∆t0 =

M0
∑

i=1

∆ti,
� äH� ã �

being ∆ti the simulation time steps (that are all the same in a Monte Carlo run). In
order to avoid double counting, the contribution coming from the starting interface,
should not be taken into account.

3. As FFS prescribes, after firing M0 trial runs, we estimate the probability p01 of reach-
ing λ1 from λ0 by

p01 =
N

(1)
s

M0
, � äH�[�v�	�

where N
(1)
s is the number of trials that successfully reached λ1.

4. We then proceed to the next interface λ2. The end points of the successful trajectories
from λ0 form a new collection of starting configurations at λ1 (N (1)

s ). We now fire M1

total trial runs, which either go to λ2 or go back, beyond λ0. Each of these trial runs,
contributes to t̄(Q; λ0) with

t1 =
∆t1 p01

∆h(Q) M1

� äH�[�
�)�
being

∆t1 =

M1
∑

i=1

∆ti
� äH�[�m�]�

The factor p01 in eq. 3.11 arises from the fact that we have “forced” the system to be
at λ = λ1, and shows that in a brute force simulation, trajectories starting from λ1

would be less probable than those starting from λ0 by a factor p01. We therefore have
to include it to get the correct weighting for trial runs starting from λ1, relative to those
that started from λ0.

�T�
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Following the same procedure for all subsequent interfaces, t̄(Q; λ0) is properly updated.

More in general, for a generic interface i, the contribution of t̄(Q; λ0) at each value of Q can
be computed as

ti =
∆ti

∏i−1
j=0 pj,j+1

∆h(Q) Mi
, � äH�[�vä	�

where
∏i−1

j=0 pj,j+1 is the probability of finding a trajectory starting from λi in a brute force
simulation, relative to that of finding one starting from λ0, and

∆ti =

Mi
∑

j=1

∆tj .
� äH�[�R�#�

ti is then the average residence time at Q of the trajectory that starts at λi and ends at either
λi+1 or λ0, weighted with the probability of being at λi. At the end of the FFS sampling
all the ti’s lead to the numerical estimate of t̄(Q; λ0). Note that this quantity should not be
normalised, since it is not a probability distribution.

In order to compute φB(λ), we repeat the same FFS algorithm, but going in the backward
direction, i.e. from B to A. We first sample the B region, and then compute t̄(Q; λn).

Having obtained t̄(Q; λ0) and t̄(Q; λn), we use them in eq. 3.1, to estimate ρ(Q) in the
region between λ0 and λn: now the stationary probability can be properly normalised.

For equilibrium systems, it is possible to compute the free-energy barrier between A and
B, as ∆G = −kBT ln ρ(Q), including the information on both states A and B. This is done
by matching the stationary probabilities collected in A and B to the ones collected between
the two states.

Y�°��"°�� 4b9	&G�IJ�9
We present our results in the following paragraphs.

A)Ï�ùbÏ©ÚaÏ ?7Ô$�
ÖT×IÙFñ�Ø.Ù�Õ#Ø.ÙFÔàømê)×IïAÔ§Ù*�\×�Ø.ÙFÕhÓ3�	�$�
Ö�Ô§ï
As an initial test, we have applied the method to a single particle moving with Brownian
Dynamics in a one-dimensional double-well potential

V (x) = −bx2 + cx4, � äH�[� � �
with b = 2 and c = 1. Distances are measured in units of x0, while time is measured in units
of t0. The stationary distribution function, as a function of the x-coordinate, is the Boltzmann
distribution:

ρ(x) ∼ e−V (x)/kBT . � äH�[�v�	�
The system is symmetric, so that p(A) = p(B). According to the Langevin equation, the
particle’s velocity is:

v(t) =
D

kBT
f(t) + ξ(t), � ä\���m�]�

�
å
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where f is the instantaneous force, D the diffusion constant, T the absolute temperature, kB

the Boltzmann constant, and ξ a random velocity, chosen from a Gaussian distribution with
zero mean and variance 〈ξ(t)ξ(0)〉 = 2Ddt [71]. In our simulations, we use the following
values: D = 0.01x2

0/t0, kBT = 0.1 and the time step is dt = 0.05t0.
We have carried out FFS simulations with 8 interfaces and N1 = 10000 starting configu-

rations at λ0 as shown in table 3.1, where the value of the interfaces is set at specific values
of x.

i λi M(λi) i λi M(λi)� �©�\� å �R�
���
��� � �£�H�[� � � �
���� �©�\� � � � ���
��� � �\��� �m���
���
� �©�\� � �m�����
� � �\� ä �v���
���
ä �©�\� ä �+�
���
� � �\� � �v���
���

ì&Ù�ð#ÝEÉ�1]ÌEÍ)ÌEÎàâ&ÑMÐ�ÅEÒÊÅEÑMÚ Ñ�ØæÒÊÓ#ÉJÅEÚzÒÊÉ�È�Ø�Ù�Õ@É@Ð;ÙMÚ�ß"Ú]Ç	Ôéð/É�È Ñ�ØæÒ�ÈÊÅUÙMÝEÐ�Ø ÑMÈ«ÒÊÓ#É§ÄúÄ��"ÐÊÙMÔ>Ü	ÝEÅUÚ	Æ�ÑMØæÒÊÓ	ÉÐHî]Ô>Ô>É�Ò�ÈÊÅEÕ�ÑMÚ#É�Û�ß	ÅEÔ>É@Ú	Ð�ÅEÑ)Ú�Ù�ÝOß	Ñ)Ç	ð#ÝEÉ�Û�ç*É�ÝUÝOÜ/ÑMÒÊÉ�ÚGÒÊÅUÙ�Ý�Ì
From the calculations, we obtain a forward rate constant of RAB = (3.87 ± 0.05) ×

10−6t−1
0 (repeating twice to obtain the error bar). Because of the symmetry of the problem, it

is not necessary to carry out separate FFS calculations for the backward transitions: the back-
ward probability distribution can be obtained from the forward one by a simple coordinate
inversion. The stationary distribution obtained from the FFS calculation is then compared to
the expected Boltzmann distribution in fig. 3.2.
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Ä&ÅEÆ)Ç]ÈÊÉ�1GÌ ËzÌEÎ��GÒèÙ5ÒÊÅEÑ)Ú�Ù5È�îæß]ÅUÐHÒ�ÈÊÅEð	Ç	ÒÊÅEÑ)Ú á�Ð�Ñ)ÝEÅUßæÝEÅUÚ	É5ãOÑMð	ÒèÙ�ÅUÚ	ÉußºÇ#Ð�ÅEÚ	Æ-ÒÊÓ	É$Ü	ÈÊÑzÕ@Éuß]Ç	ÈÊÉBß	É@Ð�Õ7ÈÊÅUð/É@ßæÙMð/Ñ5×WÉ)ëÕ@ÑMÔ>Ü�Ù�ÈÊÉ@ß�ÒÊÑ�ÒÊÓ	É�Ú	ÑMÈÊÔ Ù�ÝUÅEÐ�Éuß �äÑMÝªÒÊï@Ô ÙMÚ	Úàß	ÅEÐHÒ�ÈÊÅEð#Ç	ÒÊÅEÑMÚ á�Õ�ÅEÈÊÕ�ÝUÉ�ÐèãLØ¿Ñ�È ÙJÐHî	Ô>Ô>É7Ò�ÈÊÅUÕ ß]Ñ)Ç	ð#ÝEÉ�Û�ç*É@ÝEÝÜ/ÑMÒÊÉ�ÚGÒÊÅUÙ�Ý�ÌBì*Ó	É�ß	ÑMÒ�ÒÊÉ@ß;ÙMÚ#ß;ß	ÙMÐ�Ó#É@ß;ÝEÅUÚ	É@Ð-Ð�Ó#Ñuç
t̄(x;λ0)

ÙMÚ#ß
t̄(x; λn)

ë]ÈÊÉ@Ð�Ü/É@Õ7ÒÊÅU×)É@ÝªîzÌ

We have also considered the asymmetric case, in which we include a term linear in x in

� ã
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eq. 3.15:

V (x) = ax + −bx2 + cx4, � äH�[�vå	�
with a = 0.25, b = 2, c = 1, D = 0.01x2

0/t0, kBT = 0.1 and dt = 0.05t0. In this case,
as p(A) 6= p(B), it is necessary to carry out FFS sampling in both directions. We perform
FFS simulations with 8 interfaces and N1 = 10000 starting configurations. For the forward
transition, we use λ = x, and for the backward transition, λ = −x. For both the forward
and backward transitions, the parameters for the FFS runs are as shown in table 3.2. The

i λi M(λi) i λi M(λi)� �©�\� å �v�����
��� � �£�H�[� � �����
�� �©�\� � � �����
��� � �H�[� �������
�
� �©�\� � ��ä����
��� � �H� ä �m�����
�
ä �©�\� ä �+�+���
��� � �H� � �v�����
�

ì&Ù�ð#ÝEÉ�1]Ì ËGÌEÎàâ&ÑMÐ�ÅEÒÊÅEÑMÚ Ñ�ØæÒÊÓ#ÉJÅEÚzÒÊÉ�È�Ø�Ù�Õ@É@Ð;ÙMÚ�ß"Ú]Ç	Ôéð/É�È Ñ�ØæÒ�ÈÊÅUÙMÝEÐ�Ø ÑMÈ;ÒÊÓ	É�ÄúÄ��"ÐÊÙMÔ>Ü	ÝEÅUÚ	Æ�ÑMØæÒÊÓ	ÉÙMÐHî]Ô>Ô>É�Ò�ÈÊÅEÕ3Ñ)Ú#É7Û�ß]ÅEÔ>É@Ú#Ð�ÅEÑ)Ú#ÙMÝiß	ÑMÇ#ð#ÝEÉ�Û�çäÉ@ÝEÝiÜ/Ñ�ÒÊÉ@ÚzÒÊÅ�Ù�Ý�Ì
forward and backward rate constants are calculated to be RAB = (3.03 ± 0.06) × 10−7t−1

0

and RBA = (3.96 ± 0.03) × 10−5t−1
0 , and the fluxes across the A boundary are ΦA =

(0.1526 ± 0.0007)t−1
0 and ΦB = (0.3648 ± 0.0001)t−1

0 , respectively. On the left side in
fig. 3.3 we show t̄(x; λ0) and t̄(x; λn), while on the right side we show ρ(x) calculated
from eq. 3.1 and properly normalised. Excellent agreement is obtained with the expected
Boltzmann distribution.

A)Ï�ùbÏ * Ï ?7Ô$�
ÖT×IÙFñ�Ø.ÙyÖ`òFÔ�ÖOé�ØFømê)×IïAÔ§Ù*�H×�Ø.ÙFÕ�Ó"!yÕh×�Ô§èkø�í Ö�ÔF×:Ù2�	�
��Ö�Ô§ï
We now compute the stationary distributions both in and out of equilibrium in a two-
dimensional system moving according to an over-damped Brownian motion in the force field
proposed by Maier and Stein [74]:

{

ẋ = fx(x, t) + ξx(t)
ẏ = fy(x, t) + ξy(t),

� äH�[� ã �
where x = (x, y) is the particle’s position, v = (ẋ, ẏ) its velocity, f = (fx, fy) the time-
independent force field, given by

{

fx = x − x3 − αxy2

fy = −µy(1 + x2),
� äH� ���	�

being α and µ adjustable parameters, and ξ = (ξx, ξy) the stochastic force, resulting from a
δ-function-correlated white noise with variance ε

〈ξi(t)〉 = 0 ; 〈ξi(t)ξj(0)〉 = ε δijdt, � ä\���`�W�
being i = x, y. In our simulations, we use ε = 0.1. This system is bistable: the stable points
are at (±1, 0) and the saddle point at (0, 0). When α = µ, the force field can be expressed as

� �
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t̄(x;λ0)

á�ß	Ñ�Ò�ÒÊÉuß;ÝEÅEÚ#É5ã�ÙMÚ�ß
t̄(x;λn)

á�ß#Ù�Ð�Ó#Éuß>ÝEÅEÚ#É5ã7Ìm��ÚíÒÊÓ	É3ÝEÉ�Ø�Ò*Ð�ÅUß	ÉMë�t#Ú�Ù�Ý#ÈÊÉ@Ð�Ç#ÝªÒBØ¿ÑMÈ
ρ(x)

Ñ)ð	ÒèÙ�ÅEÚ#ÉußíØ ÈÊÑMÔ ÉU��Ì 1GÌEÍéá�Ð�ÑMÝUÅUß>ÝEÅEÚ#É5ãÕ@ÑMÔ>Ü�Ù�ÈÊÉ@ß«ÒÊÑéÒÊÓ	ÉºÉ�ê]Ü/É@Õ�ÒÊÉuß#�äÑ)ÝªÒÊï@Ô Ù�Ú#Ú;ß	ÅEÐHÒ�ÈÊÅEð#Ç	ÒÊÅEÑMÚ¥á�Õ@ÅªÈÊÕ@ÝEÉ@Ðèã7Ì

the gradient of a potential energy function and the system is “in equilibrium”. However, when
α 6= µ, the force field cannot be expressed as the gradient of a potential energy function, and
the system is intrinsically "out-of-equilibrium".

We set λ at fixed values of x and calculate the stationary distribution for −0.8 < λ < 0.8.
For the FFS calculations, we use 8 interfaces and N1 = 100000 initial configurations at λ0.
The parameters used are listed in table 3.3.

 &� ·\¯ ± ¯lþ�¦Y¯l·�ª ¶�µ�ü ®
We initially consider the equilibrium case, with α = µ = 1 and ε = 0.1: a particle moves
in the potential field φ(x, y) = y2(1+x2)

2 − x2

2 + x4

4 . Figure 3.4 both on the left-side and
on the right-side show the stationary distribution ρ(x, y), as a function of x for y = −0.39,
y = −0.19 and y = 0.01, and as a function of y for x = −0.312, x = −0.152 and

� �
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x = 0.008. In both panels, the results are in excellent agreement with the expected Boltzmann
distribution (shown by circles).
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We next discuss the non-equilibrium case (α 6= µ), taking α = 6.67, µ = 2.0 and ε = 0.1.
Fig. 3.5 shows equivalent results to fig. 3.4, but this time the FFS calculations are compared
to stationary distributions computed from long brute-force simulations. The brute-force sim-
ulation results are normalised over the entire space. Even in this case, very good agreement
is observed.
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We now address a rare event problem in a more complex system: homogeneous nucleation
in a two-dimensional Ising model. For now, we confine ourselves to an equilibrium system
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without any external shear; non-equilibrium nucleation in an Ising model with an external
shearing field will be considered in chapter 10. The two-dimensional Ising model consists of
an L × L square lattice of spins with nearest neighbour interactions and periodic boundary
conditions. Its Hamiltonian is

H = −J

′

∑

ij

σiσj − h
∑

i

σi,
� äH� �
�]�

where J is the coupling constant between neighbouring spins (σi = ±1) and h the external
magnetic field [75]. The prime indicates a sum over first nearest neighbour interactions only.
We simulate a system with N = 45×45 = 2025 spins, a positive magnetic field (βh = 0.05)
and a positive coupling constant (βJ = 0.65) above the critical point (βJc = 0.44). The
thermodynamically stable state is therefore the ferromagnetic state with net positive magneti-
sation, meaning that the system tends to have the majority of spins in the up state. However,
if the system is initially in a state with an overall negative magnetisation (i.e. spins predomi-
nantly in the down state), it is metastable and remains in that state for a significant time. We
aim to compute the free-energy barrier, as well as the rate constant, for transitions from this
metastable down state to the thermodynamically stable up state. We begin our simulations
in the down state and consider the formation of a cluster of up-spins, under conditions of
moderate super-saturation (these conditions are identical to those used by Sear [68]). All our
simulations are performed using a Metropolis Monte Carlo algorithm, in which we attempt
to flip each spin once, on average, during each Monte Carlo cycle.

According to Classical Nucleation Theory [6], the free-energy cost of forming a square
cluster of edge L is given by the sum of a line energy and a surface energy:

∆G = 4γL− 2hL2, � äH� ��ä	�
where γ is the inter-facial free energy between a cluster made of up-spins and the neigh-
bouring down-spins, h is the driving force for nucleation (the external magnetic field), and
(-2hL2) is the energy cost of flipping the whole square cluster with area L2. Therefore, using
eq. 3.23, the nucleation free-energy barrier height is given by

∆G∗ =
2γ2

h
. � äH� ���#�

Plugging in numbers, if we compute the inter-facial free energy according to Onsager [76,
68], βγ = 0.74, the barrier height as predicted by Classical Nucleation Theory is ∆G∗ ∼ 22
kBT .

We compute the free-energy barrier using two simulation techniques: Umbrella Sampling
and Forward Flux Sampling (both described in chapter 2). In both cases, we characterise the
extent of the transition using a global order parameter, S, the total number of up-spins in the
system. The free-energy barrier is then defined as β∆G(S) ≡ − ln[ρ(S)/N ], where ρ(S)
is the probability of observing S up-spins in the stationary state, and N is the total number
of spins in the system, such that ρ(S)/N is now an intensive quantity. For the Umbrella
Sampling calculations, we use an harmonic potential in S to bias the sampling of phase space
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along the phase transition [12, 11], and use 25 windows to cover the range of 0 ≤ S ≤ 300,
with an overlap between neighbouring windows of 11 spins. We sample each window for
500000 MC cycles, and fit the resulting histograms together using a least-squares fitting pro-
cedure to obtain the free-energy profile in the same range. We do not attempt to calculate
the barrier for values of S greater than 300, since once the top of the barrier is crossed, the
system is expected to evolve rapidly and we cannot rely on the assumption of local thermo-
dynamic equilibrium anymore. Moreover, when S is larger than half of the simulation box,
the growing cluster is likely to interact with its own periodic images in neighbouring cells,
making the results highly system-size dependent.

Concerning the FFS simulations, the interfaces λ are also defined in terms of the order
parameter S, and are located, both for the forward and backward sampling, at values of S
given in table 3.4, where we also list the number of trials performed at each interface.
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To calculate the free-energy barrier using FFS, we need to be able to sample the reverse

transition, from the thermodynamically stable up state to the metastable down state. In gen-
eral, this is very difficult in a nucleation problem, since the final thermodynamic state is much
more stable than the metastable state, and there is a very high free-energy barrier for the sys-
tem to overcome to return to the initial down state, making the reverse transition difficult to
sample even with FFS.

In order to solve this problem, we construct a reflecting wall beyond the top of the nu-
cleation barrier at a value of S indicated by B ′ in fig. 3.6. This wall is incorporated via
a constraint on the system dynamics: each trial move that leads to S > SB′ is simply re-
jected 3.

Since we are only interested in the free-energy profile of the region between A and the
top of the barrier, we are allowed to perturb the free-energy landscape outside this region
as we need. This fact, which is also exploited in Umbrella Sampling, depends on the sys-
tem being in equilibrium - for a system driven out-of-equilibrium, we would not be able to}g` �W÷\�Wø�÷!ü���ý��W÷-û�÷%$z÷Êö�ý�ôªõ�
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S = SB
′ = 1050

Ì

use this approach. In general, in equilibrium systems the flux between any two state points
is zero in steady-state. While for non-equilibrium systems this need not be the case, as in
non-equilibrium systems the stationary distribution depends upon the full history of the tra-
jectories, prohibiting the introduction of artificial boundaries. The reflecting wall, located
at S = SB′ = 1050, replaces the B state as an artificial stable state B

′ (see fig. 3.6). In
this way, the free-energy barrier for the B′ → A transition is then much lower than that
for the B → A transition, and the shape of the free-energy barrier on the A side remains
unchanged. Before starting our calculations, we have also verified that the location of the
reflecting wall is indeed well beyond the top of the free-energy barrier, which is estimated
to be for 200 < S < 280. The initial state A is defined by the first interface λ0 = 30, i.e.
when 0 < S < 30 the system is in the A state. While the final state B ′ has its boundary
in λn = 1000, i.e. when 1000 < S < 1050 the system is in the B ′ state. In our FFS
calculations, we consider N1 = 50 configurations at the first interface.

The FFS calculations of the forward transition from A to B
′ is straightforward. The flux

ΦA through λ0 of trajectories coming from A is ΦA = 1.5 × 10−5 MC step−1 spin−1

and the forward rate constant RAB′ = (2.8 ± 0.3) × 10−13 MC step−1 spin−1, in good
agreement with the value of 3.3 × 10−13 MC step−1 spin−1 computed by Sear et al. [68].
We also check that the computed forward rate constant does not depend on the reflecting wall
position SB′ . In the reverse direction, we use the same interfaces and sample from λn to λ0.
We obtain the flux Φ

′

B = 1.4 × 10−6 MC step −1 spin−1 and the backward rate constant
RB′A = (2.0± 0.2)× 10−19 MC step−1 spin−1. Combining the rate constants as in eqs. 3.6
and 3.7, we obtain pA = 7 × 10−7 and pB′ = 0.999. By means of eqs. 3.1 and 3.2 we
finally compute ρ(S) for 30 < S < 1000 that, fitted together with the distribution obtained
by conventional sampling in A (as described in section 3.2), gives us the free-energy barrier
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as − ln [ρ(S)/N ].
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βJ = 0.65
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βh = 0.05
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Figure 3.7 shows the nucleation barrier β∆G(S) in the range 0 < S < 300. The free-

energy minimum at S ≈ 20 indicates that at this super-saturation, the system has a finite
number of up-spins even in the down state.

The top of the free-energy barrier, as obtained by Umbrella Sampling and FFS, is ∆GUS =
24.5kBT and ∆GFFS = 23kBT , respectively. These values coincide within the error bars,
which for both schemes are on the order of kBT . The computed barrier heights also agree
remarkably well with the CNT prediction of 22kBT at the same super-saturation.

Y�°%*<°ç� B��30f�g&_9a8:B��_9
The key concept used here to obtain the stationary distribution in the unstable region between
two states A and B is to add the contributions from the trajectories that start in A and go
to B or return to A, and those that start in B and go to A or return to B (see fig. 3.1).
These contributions can be obtained by performing FFS calculations starting in state A and
calculations starting in state B. For many rare event problems this is entirely possible -
however, for systems where one state is very much more stable than the other, sampling
the reverse transition (B → A) may be computationally difficult, even with FFS. We have
encountered this problem in the Ising nucleation example. For equilibrium systems, this
problem is overcome by imposing an artificial stable state, as demonstrated here for the case
of nucleation in an Ising system. However, this trick is not applicable for non-equilibrium
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systems. As already mentioned, in general, in equilibrium systems the flux between any
two state points is zero in steady-state, while in non-equilibrium systems this need not be
the case. In these non-equilibrium systems, the stationary distribution depends upon the full
history of the trajectories. This, in general, prohibits the introduction of artificial boundaries.
In particular, while for equilibrium systems detailed balance and microscopic reversibility
dictate that the forward and backward transition paths have to occupy the same region in state
space, for systems that are out of equilibrium the backward and forward trajectories do not
have to coincide; indeed, in these systems cycles in state space can occur. If the forward and
backward transition paths form a cycle in state space, then it is conceivable that the artificial
stable state “short cuts” the cycle and generates a wrong ensemble of points from which
trajectories are initiated in the reverse direction.

For the computation of free-energy barriers in equilibrium systems a wide range of numeri-
cal techniques is available. The advantage of the scheme proposed here is that the free energy
can be directly obtained from an FFS simulation, giving simultaneously the rate constant,
transition paths and free-energy landscape. This is important because both the calculation of
the rate constants and the evaluation of the free-energy barriers are computationally demand-
ing, especially for large and complex systems.

It has long been appreciated that free-energy barriers are critical quantities for understand-
ing rare events in equilibrium systems, such as nucleation and protein folding. However,
the “barriers”, or minima in the stationary probabilities, that separate steady-states in non-
equilibrium systems are equally important, because the rate of switching from one steady-
state to the next is proportional to the probability of being at the top of the “barrier” [73].

To our knowledge, this technique is the first to be proposed for efficient computation of sta-
tionary distributions for rare events in non-equilibrium systems. This should prove useful for
enhancing our understanding of a range of important non-equilibrium rare event processes,
as well as improving the efficiency of computation of free-energy landscapes in equilibrium
systems.

/�0�°3�_Bí¡��:4b2²±�4�6�47�_J�9
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Dante Alighieri, Quinto canto, Inferno, Divina Commendia.

We report a numerical simulation of the rate of crystal nucleation of sodium chloride from
its melt at moderate super-cooling. In this regime nucleation is too slow to be studied with
“brute-force” Molecular Dynamics simulations. The melting temperature of (“Tosi-Fumi”)
NaCl is ∼ 1060K. We studied crystal nucleation at both 800K and 825K. We observe that the
critical cluster formed during the nucleation process has the crystal structure of bulk NaCl.
Interestingly, the critical cluster is clearly faceted: the clusters have a cubical shape. We have
computed the crystal-nucleation rate using two completely different approaches, one based
on an estimate of the rate of diffusive crossing of the nucleation barrier, the other based on
the Forward Flux Sampling method. We find that the two methods yield the same result
to within an order of magnitude. However, when we compare the extrapolated simulation
data with the only available experimental results for NaCl homogeneous nucleation, we ob-
serve a discrepancy of nearly 5 orders of magnitude. We discuss the possible causes for this
discrepancy.

�"°u±§°ûú �=J§@�BC2[&70 J§8IB��
Crystallisation of salts is a phenomenon of great practical relevance. In fact, it is one of the
most important industrial separation processes. But it also plays a crucial role in geological
processes that occur on an altogether different time scale.

It is clearly important to be able to predict the rate of nucleation of salts and – at a later
stage – to understand the factors that influence nucleation. In the present chapter we aim to
demonstrate that, with current simulation techniques and currently available force-fields, it
is indeed possible to compute the rate of nucleation of a real salt crystal (in the present case
NaCl from its melt). This opens the way to “ab-initio” predictions of nucleation rates of many
ionic substances.

Under experimental conditions, nucleation is infrequent on the time scale of typical molec-
ular processes. Yet, when it happens, it proceeds rapidly. This makes it difficult to study theò Ð üuû�eLöèþ@û�ûwôª÷S�>üU�)ý
ôªõéöÊüuÿªÿEþ�
Güuû�þ�ý�ôªüuõük
ô ý��"6l�zó)þ@õ87U�
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structure and dynamics of crystal clusters of atoms or small molecules in experiments. In
the case of NaCl, the experiments are also complicated by the fact that crystallisation oc-
curs at high temperatures. This may explain why there is a scarcity of experimental data on
the nucleation of NaCl. To our knowledge, the only data are those of Buckle and Ubbel-
hode [77, 78] from the 1960’s. In these experiments, crystallisation in NaCl micro-droplets
was observed visually. As the droplet size ((O(3µ)) and time window for the measurement
(1–30 seconds – after which the droplets sedimented out of view) – were fixed, the nucleation
rate could be determined at one temperature only (905 K). At this temperature, the nucleation
rate was such that, on average, one cluster would form during the observation time (O(10s))
in a droplet with a volume of order 10−17m3, leading to an experimental nucleation rate per
unit volume of O(1016) m−3s−1.

For experimental nucleation rates of this order of magnitude, brute-force MD simulations
are out of the question. The average time it would take for clusters to form spontaneously in
a system consisting of several thousands of particles is of order of 1020 seconds. Clearly, this
is beyond the scope of MD simulations. The standard solution to circumvent this problem
is to perform simulations at much larger super-cooling than used in the experiments. Huang
et al. [79] performed MD simulations of melting and freezing of a droplet composed of
216 NaCl ions in vacuum: to this end, they performed temperature quenches down to 550K
(i.e. approximately half the melting temperature) and found nucleation rates of the order
of O(1036)m−3s−1, which is 20 orders of magnitude higher than the experimental rate at
905K.

Another effort to study nucleation at less severe super-cooling was made by Koishi et
al. [80]. These authors performed an MD simulation of 125000 ions system in vacuum, at
temperatures of 740K (i.e. approximately 0.7 the melting temperature Tm) and 640K (i.e.
approximately 0.6 the melting temperature Tm). Both free and periodic boundary conditions
were used. The estimated nucleation rate at 740K was O(1035)m−3s−1, which is virtually
the same value as the one found by Huang et al. [79] at a much larger super-cooling. This is
surprising because nucleation rates tend to depend very strongly on temperature, and suggests
that, at least at the lowest temperatures, the barrier for crystal nucleation is negligible. More
in general, crystal nucleation under extreme super-cooling need not to proceed following the
same path as under moderate super-cooling [6].

In the present work we study homogeneous crystal nucleation in the Tosi-Fumi NaCl model
at two different temperatures, viz. T1=800K and T2=825K, corresponding to 25% and 22%
super-cooling, respectively. For this system, we compute the nucleation barrier, examine the
structure and shape of the critical cluster and calculate the nucleation rate.

�"°è¯�° Ø,8M6é&G�:1=J§8IB��_9�2G4EJ�1G8k�:9
The Tosi-Fumi rigid-ion two-body interaction potential for NaCl is of the following form
[81],

Uij(r) = Aije
[B(σij−r)] − Cij

r6
− Dij

r8
+

qiqj

r
, � ���[�W�

where i, j indicates Na or Cl, and the parameters have the values given in table 4.1.
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Aij B Cij Dij σij

[kJ/mol] [Ȧ−1] [Ȧ6kJ/mol] [Ȧ8kJ/mol] [Ȧ]: ];� : ]
25.4435 3.1546 101.1719 48.1771 2.340: ];�k�h�
20.3548 3.1546 674.4793 837.0770 2.755�h�<�k�h�
15.2661 3.1546 6985.6786 14031.5785 3.170
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This pair potential is written as the sum of a Born-Mayer repulsion term, two attractive van

der Waals contributions and a Coulomb interaction term.
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In our simulations, we calculate the Coulomb interactions using the Ewald summations

method [82, 83] with a real space cut-off of 10 Ȧ and a real space damping parameter of 0.25
Ȧ−1 1. We truncate the Van Der Waals part of the potential at 9 Ȧ, assuming the g(r) = 1
beyond this cut-off, and take care of the truncation when computing the total energy of the
system (see appendix A). The computed number density in the bulk solid at 800K and 825K
and ambient pressure (105 Pa) is 0.041Ȧ−3, in agreement with the experimental one [84]. The
number density in the super-cooled liquid at the same temperature and pressure is 0.034Ȧ−3.
We prepare under cubic periodic boundary conditions a system of (12)3 NaCl ion pairs at
ambient pressure, and we super-cool it down below its melting temperature. For the present
model, Anwar et al. [85] computed the value of the melting temperature: TM=(1064±14)K,
which is very close to the experimental melting temperature (T exp

M =1072K).
Using constant number of particles, pressure, temperature (NPT ) Monte Carlo simula-ò ~�õ~üuû!�W÷Êû�ý�üéý��WõW÷æý��W÷=6�k$þ@ÿ��?> ø�ùWþ@û�þ�dæ÷�ý�÷èûwø�a kú÷æõq��dæ÷Êûwôªö7þ@ÿªÿ � öÊüUdæù��Mý�÷�
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tions, we cool the system down to the temperatures where we want to study nucleation:
T1=800K and T2=825K, corresponding to 25% and 22% super-coolings. Note that the exper-
iments on NaCl nucleation were performed at a somewhat higher temperature (905K, or 16%
super-cooling). The reason why we could not perform simulations at these high temperature
is that at this condition the critical cluster would be about twice the size of the cluster that
could be studied without spurious finite-size effects for the system sizes that we employ [86].
We also notice that at temperatures below Tmin = 750K, spontaneous nucleation occurs
during simulations. Therefore, when choosing the temperatures to study nucleation, we ther-
malise the system at Ti > Tmin (i = 1, 2), as we are interested in studying the nucleation
mechanism at moderate super-coolings.

In what follows, we use the technique of refs. [11, 87, 88] based on a combination of Um-
brella Sampling (to determine the barrier height) and a dynamical simulation (to determine
the crossing rate) (see chapter 2). The computing time required for this scheme does not
scale exponentially with the nucleation barrier, but it does increase with increasing cluster
size, therefore the system size. We also compute the nucleation rate using an algorithm based
on Forward Flux Sampling [13, 14] (see chapter 2) and compare it with the one obtained us-
ing the method previously mentioned. Once computed the nucleation rate per unit time and
volume, we compare the results with those obtained using Classical Nucleation Theory (see
equation 2.32).

The order parameter used to follow the phase transition from the liquid to the solid state,
is the biggest solid cluster size (n): this is based on a local bond order parameter already
mentioned in chapter 2 and hereby described in appendix B.

�"°�Y�°�� 4b9	&G�IJ�9
We compute the free-energy barrier to crystal nucleation at ambient pressure and two dif-
ferent temperatures T1=800K and T2=825K, corresponding to β∆µ1=0.54 and β∆µ2=0.48.
We numerically estimate β∆µ by means of thermodynamic integration from the coexistence
temperature TM and the free energies reported by Anwar et al. [85] (see appendix C).

Fig. 4.2 shows the computed nucleation barriers as a function of n. As expected, β∆G
decreases with increasing super-saturation. Around T≤750K the barrier gets sufficiently low
that spontaneous nucleation can take place on the time scale of a simulation.

We estimate the size of the critical cluster, nc, by computing the value of n corresponding
to the maximum of a fit of the functional form of the CNT free energy: nc ≈ 120 ions at T1

and nc ≈ 150 ions at T2
2. Koishi et al. [80] estimated nc = 120 − 130 ions at 640K and

740K, which is surprising in view of the CNT prediction that the size of the critical cluster
scales as (γ/|∆µ|)3, where γ is the liquid-solid surface free energy per unit area, ∆µ is the
difference in chemical potential between the solid and the super-cooled liquid. If we make_ Ð ÷=d�þ�eu÷äø��Wûw÷äý4�Wþ�ý$üU�Wûúø�ô�d	�WÿEþ�ý�ôªüuõ)øúþ@û�÷äõWü@ý�
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the usual assumption [6, 89] that γ ∼ ∆h and ∆µ ≈ (∆h/TM )(T − TM ), where ∆h is the
entropy of fusion per ion pair, then we would expect that nc ∼ (1 − T/TM)−3, and predict
that the critical cluster at 640K should contain a quarter as many particles as those at 800K.
Next, we consider the structure and shape of the critical cluster.

Ä&ÅEÆ)Ç]ÈÊÉ�5	Ì 1]ÌEÎ
�]Ú#ÙMÜ#Ð�Ó	ÑMÒ-Ñ�Ø&ÒÊÓ#ÉæÕ�ÈÊÅªÒÊÅEÕuÙ�Ý�Õ@ÝEÇ#ÐHÒÊÉ7È�Ù5Ò
T2 N ­WË�o&PíÌ

Fig. 4.3 shows a snapshot of the critical cluster at T2=825K. Note that the crystal presents
rudimentary low-index facets. In experiments [77, 90] the existence of such facets was postu-
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lated, as they may act as sites for subsequent heterogeneous nucleation. Moreover, as can be
seen from the figure, the critical cluster already shows the charge-ordered rock-salt structure
of the bulk phase, exhibiting the morphology of macroscopic NaCl crystals [91]. fig. 4.3 also
shows that, in the temperature range we studied, the critical cluster is non-spherical.

In order to better analyse the structure inside the crystallites, we have compared the radial
distribution function (g(r) ) of the solid particles inside the cluster with the one of the bulk
solid at the same thermodynamic conditions. Figure 4.4 shows the comparison for a 135
solid-particles cluster obtained in a typical FFS nucleation pathway. From the figure it is
evident that the crystallites have the same structure as the bulk solid NaCl, showing the peaks
at the same positions. This indicates that, at least for NaCl, nucleation does not proceed via
an intermediate metastable phase, as Ostwald’s step rule implies [92].
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Using the computed height of the nucleation barrier and the values of ∆µ as input, we

can estimate the liquid-solid surface free energy γ. To this end, we make use of the CNT
expression for the barrier height (eq. 2.10). However, this expression assumes the critical
cluster being spherical. It is easy to derive the corresponding expression for a cubical cluster
(see eq. 2.15) and express γ for different cluster shapes.

As already discussed chapter 2, eqns. 2.15 allows us to compute the liquid-solid inter-facial
free energy for a pre-defined cluster shape. In our simulations, the computed number density
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in the bulk solid at ambient pressure and at both T1 and T2 results to be 0.041 Å−3: thus, the
specific volume is v1,S ≈ v2,S = 24.4 Å3. The super-saturation of the system is β∆µ1=0.54
and β∆µ2=0.48. As the free-energy barrier heights are β∆G1 = 24 and β∆G2 = 29, by
means of eq. 2.16 we get γLS ≈ 100 mJ m−2 for a spherical cluster and γLS ≈ 80 mJ m−2

for a cubic one, values that are reasonably close to the experimental measurement reported
in the literature [77] (84 mJ m−2 for a spherical cluster and 68 mJ m−2 assuming a cubical
shape). The results for both estimates of γ are summarised in table 4.2.

UWV<XZY
γsphere γcubeÊ Ë{Ë 98± 2 80± 1Ê Â Æ 99± 1 79± 1

È�Ë Æ 84.1exp 67.8exp
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There exist experimental estimates of γ at 905K [77]. These estimates are based on a
somewhat questionable CNT expression for the nucleation rate. Moreover, in ref. [77] it is
assumed that the critical cluster is spherical. The experimental estimate of γ (γexp=84.1 mJ
m−2) is therefore not based on a direct determination. Nevertheless, in the absence of other
experimental data, this is the only number we can compare to. As the table shows, there is
a fair agreement between simulation and experiment. Again, the experimental estimate for
γ is based on the assumption that the critical cluster is spherical. If cubic, one would obtain
the number in the lower right-hand corner. In view of the many uncertainties in the analysis
of the experimental data, it is impossible to tell whether the discrepancy between simulation
and experiment is significant. An estimate of γ based on the experimental enthalpy of fusion
following Turnbull would yield γ ≈ 115 mJ m−2 (see e.g. ref [79]). Huang et al. [79]
estimated the liquid-solid surface free energy of NaCl from the computed nucleation rate at
550K. To achieve this, Huang implied the validity of the CNT expression for the nucleation
rate. Under those assumptions, they obtained: γ= 119.6 mJ m−2 for a spherically shaped
cluster.

In the present work, we compute absolute nucleation rates making the assumption that the
barrier crossing is a diffusive process and the Zeldovitch pre-factor is well approximated by
the form presented in eq.2.33. The Zeldovitch factors are found to be respectively Z1=0.016
at T1 and Z2=0.013 at T2

3. From our simulations, we compute k+,n∗ i.e. the attachment
rate of particles to the critical cluster, according to eq. 2.52. In practise, we start with gen-
erating 120 uncorrelated configurations at the top of the free barrier, and carry out NV T
MD simulations using the DLPOLY package [93] with a time-step of 0.5 fs 4. Then, we
measure the average mean square displacement of n (〈(∆n∗)2(t)〉), and plot it as a func-
tion of 2t: for long times the slope is proportional to the attachment rate. Thus, our results} ` �W÷�ý�û!�W÷�]G÷Êÿ��Wü��Mô ý�ö4�¡� þ@ö�ý�üuû�d�þ�� 
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are k+,n∗=0.013 ps−1 at T1 and k+,n∗=0.033 ps−1 at T2. We can then compute the kinetic
pre-factor (eq. 2.35): κ(T1)= 6.9×1036 m−3s−1 and κ(T2)= 1.5×1037 m−3s−1. As it is to
be expected, the kinetic pre-factor depends only weakly on temperature. Using eq. 2.32 we
finally calculate the nucleation rates: R(T1)= O(1026±1) m−3s−1 and R(T2)= O(1024±1)
m−3s−1. These rates are about ten orders of magnitude higher than the estimated experi-
mental rate at 905K (O(1016)m−3s−1). Such a difference is hardly surprising because the
nucleation rate is expected to increase rapidly with increasing super-cooling.

We have also computed the nucleation rate at T1 using an algorithm based on the path-
sampling technique of ref. [13], Forward Flux Sampling, as we describe in details in chap-
ter 2. Table 4.3 illustrates the chosen interfaces and number of trials for each of them,
when studying crystal nucleation from molten sodium chloride. λ0 is the boundary of theH!Cà¼v½
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metastable liquid state, while whenever λn > 900 the system is in the solid state basin of
attraction. The location of λ0 is chosen according to the cumulative function presented in
fig. 4.6.
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The value obtained is RFFS(T1) = O(1027±2) m−3s−1, which agrees surprisingly well
with the one computed using the diffusive barrier-crossing approach. As FFS does not depend
on the choice of the order parameter and does not require prior knowledge of the phase space
density, we can conclude that the diffusive barrier-crossing method based on the free energy
calculation gives us a good estimate for the nucleation rate.

A summary of our numerical results for the nucleation barriers and rates is given in ta-
ble 4.4. UWV<XZY

β∆µ β∆G∗ k+,n∗ R[m−3s−1] RFFS [m−3s−1]Ê Ë{Ë 0.54 24 0.013
ä ×1026±1 1027±2Ê Â Æ 0.48 29 0.033
� ×1024±1 −−ì&Ù�ð#ÝEÉ�5]Ì 5	ÌEÎ\�]Ç	Ô>Ô Ù�È�î ÑMØ$ÒÊÓ	ÉLÐ�ÅEÔ­Ç#ÝUÙ�ÒÊÅEÑ)Ú~ÈÊÉ�Ð�Ç#ÝªÒÊÐ3Ø ÑMÈ�ÒÊÓ	É�ÕuÙMÝEÕ@Ç	Ý�Ù5ÒÊÅEÑ)Ú§ÑMØ$ÒÊÓ#ÉæØ ÈÊÉ�É�ÛwÉ@Ú#É�ÈÊÆ�î~ð#Ù�È�ÈÊÅEÉ�ÈÙMÚ#ß«ÒÊÓ	ÉºÚGÇ#Õ@ÝEÉuÙ5ÒÊÅUÑMÚ;ÈèÙ�ÒÊÉºØ ÑMÈ�ì�Ñ)Ð�ÅªÛ�Ä#Ç	Ô>Å�3�Ù� äÝ�Ì

We can also compare our calculated nucleation rate at 800K to the rate estimated with
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CNT. In order to do that, we need to compute the kinetic pre-factor κ that, using the CNT
approximations, is given by eq. 2.37. We compute the self-diffusion coefficient with MD
simulations using the DLPOLY package in the super-cooled liquid at T1=800K5 , and find
DNa

S = 3.4×10−5cm2s−1, in good agreement with an estimate based on extrapolation of the
available experimental data of ref. [94] to the same temperature: DNa

S = 2.3× 10−5cm2s−1

(since DNa
S /DCl

S ≈ 1, we only consider the self-diffusion of the Na+ ions). We estimate λ
as a fitting parameter from the kinetic pre-factor numerically calculated, and obtain λ(T1) =
102Ȧ. However, considering that the ion size is σNa ∼ 1.1 Ȧ, this value for the jump
distance seems to be unphysical (λ ∼ 100σ). Typically, one would expect λ to be of the
order of a mean free path: in a molten salt, the mean free path of an ion is certainly less
than a particle diameter. This discrepancy also suggests that the CNT picture is inadequate to
describe crystal nucleation of NaCl.

To conclude, we have also computed the nucleation rate at 750 K, by means of the FFS
scheme. The computed nucleation rate is O(1035) m−3s−1, the same order of magnitude as
the nucleation rate obtained by Koishi et al. [80] using “brute-force” MD. At this temperature
it is not possible to use the diffusive barrier-crossing approach, as the barrier is too low to
avoid spontaneous nucleation to occur during long runs. However, if we assume that the
kinetic pre-factor, the surface free energy, and latent heat of fusion do not vary too much
with temperature, we can use CNT to extrapolate the nucleation rate from 800K to 750K:
RCNT = O(1030 m−3s−1 which is considerably lower than the results of the FFS direct
calculations. This suggests that an extrapolation procedure based on CNT is not reliable.

A similar problem occurs if we try to extrapolate our numerical data obtained at 800K and
825K to the experimental temperature of ref. [77]. At 905K the chemical potential difference
between liquid and solid is β∆µ=0.3. By means of CNT, we obtain an estimated nucleation
rate of the order of O(6 × 1011)m−3s−1. This is some nearly five orders of magnitude less
than the experimentally observed rate. In order to resolve the discrepancy between simulation
and experiment, we make few assumptions:

1. There might be an appreciable (but unspecified) error in the experimental estimates
(e.g. due to residual heterogeneous nucleation).

2. The estimated error in the computed melting temperature of the Tosi-Fumi model is of
the order of 20K [85]. Such an uncertainty, again, easily translates into a variation of
the nucleation rate by several orders of magnitude.

3. In view of the extreme sensitivity of nucleation rates to the details of the inter-molecular
potential (see, e.g. [95]), the Tosi-Fumi interaction potential may be inadequate to
model nucleation in NaCl, even though it can reproduce the static properties of the
solid and liquid NaCl [18].

4. Finally, it is not quite correct to assume that the kinetic pre-factor, the surface free
energy and the latent heat of fusion are temperature-independent quantities.¢ Ð ÷*þ@ÿªø�ü#�)ø�÷m�A� ÿ`_A�&a�ý�ü�ý�÷Êø�ýúüU�)û
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In summary, we have computed the crystal nucleation rate of sodium chloride from the melt
using two independent methods: one based on calculations of the free-energy barrier and the
diffusive barrier-crossing and another based on Forward Flux Sampling.

We have found that, to within an order of magnitude, the two approaches yield the same
value for the nucleation rate. As FFS does not depend on the choice of the order parameter
and does not require prior knowledge of the phase space density, we conclude that the dif-
fusive barrier-crossing method based on the free-energy calculation function of the biggest
cluster size, gives a good estimate for the nucleation rate.

When we use Classical Nucleation Theory to extrapolate our numerical data to lower tem-
peratures, we observe serious discrepancies with the results of direct calculations. At the
same time, when we extrapolate to higher temperatures, we find serious discrepancies with
the nucleation rates found in experiments. Several factors may contribute to this discrepancy
but, at present, it is not yet known which factor is the most important.

/�0�°3�_Bí¡��:4b2²±�4�6�47�_J�9
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Whenever we truncate the interaction potential at a certain cut-off (rc), we need to compute
the tail corrections of the thermodynamic properties of the system, such as the total energy:
if the inter-atomic potential is not zero for distances larger than the cut-off (r ≥ rc), we have
to add a tail correction to the total energy. In the case of NaCl, the total energy can be written
as

Utot = UTF + ULT
� ��� n3�[�W�

where UTF is the Tosi-Fumi potential (eq. 4.1), and ULT are the long tail corrections to
it [70],

ULT (r) =
1

2

∫ ∞

rc

4πr2ρUTF (r)dr

=
1

2

∫ ∞

rc

4πr2ρ

(

Ae[B(σ−r)] − C

r6
− D

r8

) � ��� n3� �	�
where we omit the subscript i and j indicating the particle species. We do not consider the
Coulomb interactions, as this will be treated separately by means of the Ewald summations
method. Computing each contribution of eq. 4.A.2, we find

2πρ

∫ ∞

rc

(

A expB(σ−r)
)

r2dr = 2πρ
A expBσ

B expBrc

[

rc2 +
2

B
rc +

2

B2

] � ��� n3� ä#�
2πρ

∫ ∞

rc

(

−C

r6

)

r2dr = 2πρ
C

3

1

r3
c

2πρ

∫ ∞

rc

(

−D

r8

)

r2dr = 2πρ
D

5

1

r5
c

.

By summing them up, we obtain the tail corrections ULT to the total energy of the Tosi-Fumi
NaCl interaction potential.

Moreover, when calculating the total energy of the system, we should also take into account
that NaCl is a binary mixture, where the total number of particles is N = NNa + NCl.
Therefore, the fraction of particles of each species is xNa = NNa

N and xCl = NCl

N . Eq. 4.A.2
then becomes

ULT =

Na,Cl
∑

i,j

xixjULT (rij)
� ��� n3� ���

= (xNaxNa) ULT (rNaNa) + (xClxCl) ULT (rClCl) + 2 (xClxNa) ULT (rNaCl).

As xNa = xCl = 1
2 , eq. 4.A.4 becomes

ULT =
1

4
ULT (rNaNa) +

1

4
ULT (rClCl) +

2

4
ULT (rNaCl).

� ��� n3� � �
Differently from an NV T simulation, where the density is constant, in an NPT , as the
density changes, we have to update the tail corrections every time the volume is changed.
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To distinguish between solid-like and liquid-like particles, and identify the solid-like par-
ticles belonging to the biggest cluster, we use the local bond order parameter presented in
chapter 2, where the complex ~q vector in eq. 2.A.1, and its thresholds are optimised for the
cubic symmetry of NaCl:

1. according to the radial distribution function computed in the bulk liquid and solid, we
identify a cut-off radios rc of 4Ȧ, corresponding to the first minimum in the Na-Cl g(r)
(see fig. 4.B.1);
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2. we compute the normalised complex vector in eq. 2.A.1 at l = 4 for every particle i.
Each component m of this vector is given by:

q4,m(i) =

1
Nb(i)

∑Nb(i)
j=1 Υ4,m(θi,j , φi,j)

(
∑4

m=−4 |q4,m(i)|2)1/2
, m = [−4, 4], � �H� �E���)�

where Nb(i) is the number of neighbours of particle i within rc , and Υ4,m is the order
4 spherical harmonics;

3. we then compute the scalar product d4(i, j) (eq. 2.A.2) at l = 4 between every particle
i and each of its neighbouring particle j: a connection is satisfied whenever d4(i, j) is
bigger than a threshold of dc = 0.35 (value beyond which there is a non-zero probabil-
ity that particle i is in a solid-like environment, as shown in fig. 4.B.2);

�+ä



�����L½��H¼í�89����)R��8�/¼u��¼��/���­�7��� �M��½G»&�����7»�¼5½/�����z�¨� ��R§�W»��H¼@�¥¹­½B�ä»

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
q4* q4

0

0.01

0.02

0.03

0.04

0.05

P(
q 4* 

q 4)
solid
liquid

Ä&ÅEÆ)Ç]ÈÊÉ�5	Ì �3Ì ËGÌEÎ!âúÈÊÑ)ð#ÙMð	ÅUÝEÅªÒ�î;ß	ÅEÐHÒ�ÈÊÅEð#Ç]ÒÊÅEÑ)Ú;Ñ�Ø
d4

ÑMØúð/Ñ�ÒÊÓ;ð	Ç#Ý]¯ ÝUÅ��zÇ#ÅUß~Ù�Ú�ß«Ð�Ñ)ÝEÅUß~Ù�Ò
T1

Ì

4. however, at dc = 0.35, there is a finite probability for particle i to be in a liquid-like
environment, as it is evident by observing the two probability distributions in fig. 4.B.2
overlapping around dc. Therefore, we compute the number of connections (eq. 2.A.3)
for each particle i, and state that particle i is solid-like when d4(i, j) > dc b=ced the
number of connections overcomes the chosen threshold of nc

con = 6 (see fig. 4.B.3);

5. the cut-off chosen for the cluster analysis is rcluster
c =3.4 Ȧ.

/ ´§´547�32Í8h³ � ´ � B�6 ´�&_J§8M��±
β∆µ

In order to calculate the super-saturation imposed to the system (β∆µ), we compute the
temperature dependence of the difference between the molar enthalpy of the super-cooled
liquid and the one of the stable crystal at constant pressure (∆h), and then evaluate ∆µ by
means of thermodynamic integration from the melting point [70]. In an NPT ensemble

(

d(βµ)

dβ

)

P,N

= h � �H� �E�[�W�
where µ is the chemical potential of one phase, β = 1/kBT (kB the Boltzmann constant,
T the temperature), and h the enthalpy per particle. Note that h = u + Pv, where P is the
pressure of the system, u the internal energy per particle and v the specific volume, a quantity
easily sampled in a (e.g. Monte Carlo) simulation. We now integrate eq. 4.C.1 in each phase

�m�
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along an isobar at 1 atm from the coexistence point (βM = 1/(kBTM)) to the temperature of
the selected state points below coexistence (T1 and T2, respectively). At T1, for instance, we
find that

[β1µS(β1) − βMµS(βM )] − [β1µL(β1) − βMµL(βM )] =

[β1µS(β1) − β1µL(βM )] = ∆(β1µ), � �H� �E� �	�
being βM (µS(βM ) − µL(βM )) = 0 at coexistence; thus eq. 4.C.2 can be numerically com-
puted by integrating eq. 4.C.1:

∆(β1µ) =

∫ β1

βM

〈[hS(β) − hL(β)]〉P dβ. � �H� �E� ä#�
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We report a numerical study of the rate of crystal nucleation in a binary suspension of
oppositely charged colloids. Two different crystal structures compete in the thermodynamic
conditions under study. We find that the crystal phase that nucleates is metastable and, more
surprisingly, its nucleation free-energy barrier is not the lowest one. This implies that, during
nucleation, there is insufficient time for sub-critical clusters to relax to their lowest free-
energy structure. Such behaviour is in direct contradiction with the common assumption that
the phase that crystallises most readily is the one with the lowest free-energy barrier for nu-
cleation. The phenomenon that we describe should be relevant for crystallisation experiments
where competing solid structures are not connected by an easy transformation.

*<°u±§°ûú �=J§@�BC2[&70 J§8IB��
Liquids often must be cooled substantially below the freezing temperature before sponta-
neous crystallisation occurs in the bulk. The reason is that the system has to overcome a free-
energy barrier when moving from the metastable liquid to the stable solid phase. When the
two phases are separated by a high free-energy barrier, spontaneous fluctuations that would
result in the formation of the stable phase are unlikely and therefore rare. Most fluctuations
will result in the formation of ephemeral “sub-critical” crystal clusters that redissolve spon-
taneously. Only occasionally a crystal cluster will form that exceeds the critical size needed
for spontaneous subsequent growth [6]. The crystal nucleation rate is defined as the number
of post-critical clusters that form per unit time in a unit volume.

In Classical Nucleation Theory (CNT), it is assumed that sub-critical clusters are in quasi-
equilibrium with the parent phase [6]. This assumption is reasonable if the time it takes to
establish an equilibrium distribution of sub-critical clusters is short compared to the time
needed to nucleate a crystal.

If the nucleation rate is low, the steady-state distribution of sub-critical clusters of size n
is (nearly) proportional to exp(−β∆G(n)), where ∆G(n) is the free energy associated withò Ð üuû�eLöèþ@û�ûwôª÷S�>üU�)ý
ôªõéöÊüuÿªÿEþ�
Güuû�þ�ý�ôªüuõük
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the formation of a crystalline cluster of size n in the metastable liquid. The CNT expression
for the nucleation rate per unit volume is given in eq. 2.35.

It was already pointed out by Ostwald [92] that often, during crystal nucleation, a solid
phase forms that is not the thermodynamically most stable one. Stranski and Totomanow [16]
have rationalised this observation in the language of CNT by suggesting that the phase that
nucleates is the one separated from the parent phase by the lowest free-energy barrier - and
this need not be the most stable solid phase. Implicit in this explanation is the assumption
that the kinetic pre-factor κ is similar for different nucleation routes, and that hence the rel-
ative nucleation rates are exclusively determined by the heights of the nucleation barriers.
Unfortunately, the assumptions underlying the Stranski-Totomanow (ST ) rule cannot easily
be tested in experiments. Here we present simulations where we compute independently the
rate of crystal nucleation and the height of the free-energy barriers separating a metastable
liquid from two more stable solid phases.

*<°è¯�° Ø,8M6é&G�:1=J§8IB�� 2G4EJ�1G8M�I9
In order to study rare events such as liquid-to-solid nucleation by simulation, one has to
resort to special simulation techniques, precisely because a typical nucleation event does not
occur within the time scale of a conventional simulation. The only alternative is to use very
large system sizes [96] and long simulation times [97]. But even then the metastable system
has to be prepared in a state deeply super-saturated before spontaneous nucleation can be
observed [79].

Here, we use the Forward Flux Sampling (FFS) method of Allen et al. to compute the
rate of crystal nucleation (see chapter 2, appendix G in chapter 4 and ref. [13, 14, 15]). This
method was designed to study rare events both t�� and |G�/v of equilibrium systems. It can
be used under conditions where brute-force simulations become impractical. FFS has been
used to calculate the rate of crystal nucleation in molten salts (see chapter 4 and [98]) and the
nucleation rate of an Ising model in pores [99].

To compute the free-energy barriers for crystal nucleation, we use the Umbrella Sam-
pling scheme (see chapter 2). This method has been used before to compute the free-energy
barriers for the nucleation of crystals [100, 101] and liquids [87]. The Umbrella Sampling
approach determines the variation of the free energy of the system with an order parameter
that measures the progress of the transformation from the liquid to the crystalline phase (or
from the vapour to the liquid phase). It should be noted that, whereas the nucleation rate is an
observable quantity, the height of the free-energy barrier for crystal nucleation may depend
somewhat on the choice of the order parameter.

Making use of the information obtained using both methods we will show below that crys-
tal nucleation in a mixture of oppositely charged colloids is incompatible with the ST con-
jecture.

In our simulations, we study a 1:1 binary mixture of mono-disperse, oppositely charged
colloids. The screened Coulomb interaction between two colloids of diameter σ and charge

�+å
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Ze is approximated by a Yukawa potential:

U(r)/kBT =











∞ r < σ

± Z2

(1+ κσ
2 )2

λB

σ
e−κ(r−σ)

r/σ σ ≤ r < rc

0 r ≥ rc,

� � �[�W�

where the sign is positive for equally charged and negative for oppositely charged colloids,
λB = e2/εskBT is the Bjerrum length (εs is the dielectric constant of the solvent) and
κ =

√
8πλBρsalt is the inverse Debye screening length (ρsalt is the number density of

added salt). A hard core prevents colloids from overlapping. The total energy of the system
is the sum of the pair interactions. The cut-off radius, rc, is 3.5σ. We define the reduced
temperature T ∗ = (1 + κσ/2)2σ/Z2λB as the inverse of the contact energy, the reduced
pressure as P ∗ = PT ∗σ3/kBT , and the packing fraction as η = πσ3N/6V .

The phase diagram of this potential for kσ = 6 reproduces the solid structures that are
found experimentally in mixtures of oppositely charged colloids [17]. In this system, two
solid phases can coexist with the fluid. At high temperatures, the liquid phase coexists with
a substitutionally charge disordered face-centred-cubic colloidal crystal (disordered fcc). At
low temperatures the stable solid at coexistence has a CsCl structure, where the charges are
ordered on a bcc lattice (fig. 5.1).
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T ∗ N ÍMë P ∗ N Í�oGë η N OGÌ oMË��)ã7Ìºì*Ó	Ééß]ÅUÐ�Ñ�Èèß	É�ÈÊÉ@ßJØ Õ@Õ�ÛwÝEÅ��GÇ	ÅUß]Û4 äÐ� äÝ&Ò�ÈÊÅEÜ#ÝEÉ�Ü/Ñ)ÅEÚzÒ�ÒÊÉ@Ô>Ü/É�ÈèÙ5ÒÊÇ	ÈÊÉæÅEÐ
T ∗ N Í)Ì O��zÌ

This system is a suitable candidate to test the Stranski-Totomanow conjecture as two dis-
tinct solid phases may form during crystal nucleation. In contrast to systems that have been
studied earlier [63, 102] these two solids are not connected by an “easy” (e.g. martensitic)
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transformation. Besides, we study nucleation close to the coexistence temperature between
both solids (The disordered fcc-liquid-CsCl triple point temperature being T ∗=1.07).

In order to test the ST conjecture, i.e. the assumption that sub-critical clusters are in
quasi-equilibrium, we make use of a r�{Oxzs��#�«�U^�x�� move, described in appendix A.

Both for the FFS calculations and for the calculation of the free-energy barrier separating
liquid and solid, we need an order parameter that measures the progress of the nucleation
process. In the present study, we use n, the number of particles in the biggest solid cluster
(see appendix B, chapter 2 and ref. [103]). We stress that the order parameter in the FFS
scheme is only used to measure the progress of the crystal growth –it does not favour one
crystal structure over another [13, 14].

As already described in chapter 2 (see eq. 2.53), the FFS technique expresses the nucleation
rate from the metastable liquid to the crystal, RLS , as the product of two factors:

RLS = ΦLjPjS , � � � �	�
where ΦLj is the rate at which spontaneous fluctuations lead to the formation of a small
crystallite consisting of j particles, whilst PjS denotes the probability that such a cluster
will grow to form a bulk solid, rather than redissolve. The probability PjS is computed as a
product of probabilities:

PjS = PjkPkl...PtS , � � � ä#�
where Pjk is the probability that a trajectory that starts with a cluster of size j, will grow
to size K rather than redissolve. This probability can be estimated by starting a number of
trajectories from a cluster of size j and dividing the number of those that arrive at k by the
total number of trials. The successful trajectories provide starting configurations for the next
step, namely, the calculation of the probability that cluster k will grow to size t, rather than
redissolve. The FFS method only works if the dynamics of the system is not fully determin-
istic. In the present case, different kinetic Monte Carlo (MC) stochastic trajectories (with
maximum displacement of 0.04 σ) are generated from the same configuration by changing
the seed of the random number generator.

In what follows, we will ignore the effect of hydrodynamic interactions and estimate ΦLj

using a kinetic Monte Carlo algorithm in an NPT ensemble 1 with a maximum displacement
of 0.01 σ [63, 66, 105]. When computing the flux ΦLj , we should respect the s7�@xzy kinetics
of the system. Therefore, as we will discuss later, we are not going to use the charge swap
moves in the calculation of ΦLj .

*<°�Y�°�� 4b9	&G�IJ�9
In this work, we have studied the crystallisation of the metastable liquid phase in a system of
1000 particles at T ∗ = 1 and P ∗=15 (P ∗/P ∗

coex ≈ 1.7). The packing fraction of the liquidò � ôªöc�Wü�öce�ôi÷�ý!þ@ÿP� �MCpoHEU��ø���
U
u÷Êø�ý�÷��>ý��zþ�ý!ôªõéý��W÷3ÿªô�dæô ýBü��iø4d�þ@ÿªÿnd�þg�)ô�d	��d ùWþ@ûwý�ôªöÊÿª÷��Wôªø�ùWÿEþ@öÊ÷�dæ÷Êõ5ý�aGý�û�þ�f�÷Êöjiý�üuûwôª÷Êø=
u÷ÊõW÷Êû�þ�ý�÷S�V
���dæ÷èþ@õWøBü�� �íüuõ5ý�÷ � þ@û�ÿªüLø�ô�d	�WÿEþ�ý�ôªüuõWøBûw÷Êø�÷Sd�
)ÿª÷�øwý�ü�öc�zþ@øwý�ôªö�ý�û�þgfw÷ÊöÊý�üuûwôª÷èø-üU
)ý�þ@ôªõW÷S�� ûwüUd ý��W÷éó�dæüuÿ��Wöc�)ü�k
ø4e�ô�÷SÏq�zþ�ý�ôªüuõG� ` �)÷èûw÷j� üuûw÷Ua�ý��W÷£� � þ@ÿ�
uüuû�ô ý���d ôªø�öÊüuõWø�ô��)÷èûw÷S�~ý�ü þ@ù)ùWû�ü5þ@ö4��ý��W÷q û�ü�k
õWôEþ@õ��m�Mõzþ�dæôªöÊø��
å��



'#��Q/���­¼����]»��4�
at the coexistence pressure, P ∗

coex = (8.8 ± 0.1), is η = (0.471 ± 0.005). At T ∗ = 1 and
P ∗ = 15, the packing fraction of the metastable liquid is (0.526± 0.005).

At P ∗ = 15, no spontaneous nucleation is observed even after 3 · 106 MC cycles (a cycle
consists of a trial move per particle and a volume move). However, the nucleation rate can be
computed at P ∗ = 15 using the FFS method. We find that the probability that a crystalline
cluster of 5 particles will continue to solidify is 10−28±2. The rate at which spontaneous
fluctuations in the metastable liquid result in the formation of crystalline clusters of 5 particles
is equal to 10−4±1D0σ

−5 (where D0 denotes the diffusion coefficient at infinite dilution) 2.
Therefore, the nucleation rate is estimated to be 10−32±3D0σ

−5.
We observe the growth of a rather compact solid cluster in the metastable liquid. When

the crystalline cluster has reached a size of n = (120 ± 15), it has a 50% probability of
redissolving: this is our operational definition of the critical cluster size. To identify the
crystal structure of the solid cluster, we analyse the radial distribution function g(r) of the
particles that belong to the cluster. This provides a convenient way to distinguish between
disordered fcc and CsCl structures.
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Fig. 5.2(a) shows the comparison of the radial distribution function for a cluster of 80
particles with that of the bulk solid phases. From the figure, it is evident that the arrangement
of the particles in the growing solid cluster is fcc-like even though the stable solid phase at
T ∗ = 1 and P ∗ = 15 is CsCl._
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The formation of crystal clusters of a metastable solid phase can be interpreted as

a manifestation of the Ostwald step rule. According to the conjecture of Stranski and
Totomanow[16], the free-energy barrier for the formation of disordered fcc should then be
lower than the one for the formation of a CsCl cluster. The ST conjecture relies on the as-
sumption that sub-critical clusters are in quasi-equilibrium. However, as we will show, this
turns out not to be the case.

We can test this by repeating the FFS scheme with a different kinetic Monte Carlo scheme
that includes an additional trial move: the swap of positive and negative particles (see ap-
pendix A). If the system is already in equilibrium, or in quasi-equilibrium, the introduction
of additional MC moves will not change the structure of the sub-critical clusters.

However, when we perform FFS simulations including 20% charge swap moves, we ob-
serve the formation of charge-ordered clusters with a CsCl structure (fig. 5.2(b)). Not only
the structure of the sub-critical clusters has changed, but also the size of the critical cluster:
it now contains (65 ± 15). Moreover, the probability that a solid cluster of 5 particles will
transform into a bulk crystal has increased to 10−15±1.

The fact that the pathway for crystal nucleation can be altered by artificially improving the
sampling of the configurational space indicates that local equilibrium is not established during
the natural nucleation dynamics (without swaps). This observation is in direct contradiction to
the key assumption underlying the Stranski-Totomanow conjecture. Our simulations suggest
that the time it takes a cluster to grow from a small size to the critical size is too short to allow
for efficient sampling of the accessible configurational space – as a result, it gets Xzt��&�5v�twr@xzy�y](v�s7x��	���@� in a metastable structure. We expect that such behaviour will be common when there
is no “easy” kinetic route (e.g. martensitic transformation) from the metastable to the stable
crystal phase.

At higher pressures (P ∗ = 18), where the probability of forming a post-critical cluster
is higher and no FFS is needed to observe the transition, the same phenomenology is repro-
duced: in a kinetic Monte Carlo simulation without swap moves, a substitutionally disordered
fcc lattice is formed. In contrast, when swap moves are included, the liquid transforms into a
substitutionally ordered lattice.

Interestingly, as we can selectively prepare fcc or CsCl clusters by changing our kinetic
Monte Carlo scheme, we can now separately compute with Umbrella Sampling [11] the free
energies of these two different types of clusters. In Umbrella Sampling simulations, the
minimum free-energy path is sampled along a given order parameter. Nevertheless, when the
calculation is carried out without swap moves, the growth of CsCl clusters is dramatically
slowed down, instead, fcc clusters are formed and persist for long time in the system. If the
simulation is run long enough, the structure of the clusters changes into CsCl, suggesting
that CsCl clusters have indeed lower free energy. By including swap moves in the Umbrella
Sampling scheme, clusters grow directly in their lowest free-energy state (CsCl), yielding a
different free-energy barrier.

Fig. 5.3 shows the barriers for both types of calculations.
As can be seen from the figure, the free-energy barrier for the nucleation of fcc clusters

is higher than that for CsCl clusters. Snapshots of two typical critical clusters (disordered
fcc (a) and CsCl (b)) are shown in figure 5.4.

This observation has direct implication for the interpretation of experiments on charged
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colloids [106, 107]. The dynamics of real binary crystals of charged colloids is best de-
scribed by the kinetic Monte Carlo scheme (i.e. without any unphysical swap move). Hence
we should expect that in charged colloidal systems, crystallisation proceeds through a se-
quence of ��|z�i¢è�@ñ5�/t�yEtw��sut��/} sub-critical crystal clusters. In experiments on crystallisation in
binary charged colloids [17], both substitutionally ordered (CuAu-like) and substitutionally
disordered (fcc-like) crystallites have been observed. The simultaneous observation of both
phases could be explained thermodynamically if the experimental conditions fortuitously
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happened to correspond to coexistence. The present work suggests another explanation: non-
equilibrium nucleation of the fcc phase precedes a subsequent, slow transformation to the
substitutionally ordered crystal phase.

*<°��"°ç� B��30f�g&_9a8:B��_9
Our work conjecture that ��|G�O¢è�@ñ��/t�yEtw�5sut��/} nucleation of the metastable phase precedes a
slow transformation to the stable phase. At first sight, it might seem that the present results,
although at odds with the Stranski and Totomanow conjecture, are not incompatible with
CNT. After all, within that theory, preferred nucleation of the crystal structure with the higher
nucleation barrier is possible if a large kinetic pre-factor in eq. 2.35 compensates the effect
of the higher nucleation barrier. Yet, the existing versions of CNT do not correctly describe
this effect: in CNT the kinetic pre-factor describes the rate at which clusters grow due to
the attachment and detachment of single particles to a pre-existing crystallite, and the rate of
addition and removal of particles is hardly different for fcc and CsCl clusters. What seems to
happen is that small clusters have a disordered fcc structure, but this structure cannot act as a
template for subsequent CsCl growth, whilst a structural phase transition inside the clusters
is kinetically inhibited. A crystal cluster could change its internal structure by a succession
of particle additions and removals, but in practise this would mean that a disordered fcc
cluster would have to redissolve almost completely before it can form a CsCl cluster. The
“success” of the small sub-critical disordered fcc clusters blocks the subsequent formation
of the more stable CsCl clusters. This phenomenon is reminiscent of the “self-poisoning” of
small crystallites during the rapid growth of post-critical crystal clusters [108]. The difference
is that, in the present case, the self-poisoning already takes place with sub-critical clusters.

The present results imply that, at least to predict crystal nucleation, there are situations
where it is not enough to compute the free-energy barrier that separates the parent phase
from resultant solid structures - beyond a certain cluster size, the formation of the lowest
free-energy clusters may be kinetically inhibited. The fast growth of the clusters results in
the breakdown of the local equilibrium assumption for sub-critical clusters.

/�0�°3�_Bí¡��:4b2²±�4�6�47�_J�9
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In order to sample more efficiently the configurational space, we introduce another trial move,
that respects the detailed balance and follows the Metropolis acceptance rule:

1. we calculate the internal energy of the system;

2. we select two particles at random in the system (they do not have to be neighbours):
one has to be positively and the other negatively charged;

3. we swap the particles positions (see fig. 5.A.1);

4. we now compute the internal energy of the trial configuration, and accept or reject the
move according to the Metropolis criterion.
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The order parameter we use to study this phase transition is the local bond-order parameter
with l = 6 (d6), already introduced in chapter 2. This order parameter, though being capa-
ble to distinguish between liquid and solid particles, is not sensitive to the structure of the
crystalline lattice. In fact, at the thermodynamic conditions under study (T ∗ = 1, P ∗ = 15),
every particle in either the disordered fcc or the CsCl-like solid phase is identified as crys-
talline. On the contrary, in the metastable liquid phase, less than five out of 1000 particles are
identified as solid-like. The parameters used are the followings:

• the cut-off to identify two particles as being neighbours is set to rc = 1.33σ, corre-
sponding to the first minimum of the radial distribution function of both bulk crystalline
structures, disordered fcc and CsCl;
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• after computing d6, we check whether it overcomes an earlier defined threshold of

dc = 0.7. This threshold is chosen according to the d6 probability distributions of both
liquid and solid: beyond dc, there is a finite probability for particle i to be embedded
in a solid-like environment;

• thus, if d6(i, j) ≥ dc, particles i and j are considered to be connected;

• to enforce this criterion, we also count the number of connections, and establish that a
particle is solid-like when ncon > nc

con = 9;

• finally, two solid-like particles are considered to belong to the same crystalline cluster,
if they are closer than rcluster

c = 1.3σ.
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Diamonds melt at temperatures above 4000 K. There are no measurements of the steady-
state rate of the reverse process: diamond nucleation from the melt, because experiments
are difficult at these extreme temperatures and pressures. Using numerical simulations, we
estimate the diamond nucleation rate and find that it increases by many orders of magnitude
when the pressure is increased at constant super-saturation. The reason is that an increase
in pressure changes the local coordination of carbon atoms from three-fold to four-fold. It
turns out to be much easier to nucleate diamond in a four-fold coordinated liquid than in a
liquid with three-fold coordination, because in the latter case the free-energy cost to create a
diamond-liquid interface is higher. We speculate that this mechanism for nucleation control is
relevant for crystallisation in many network-forming liquids. On the basis of our calculations,
we estimate the conditions under which homogeneous diamond nucleation is likely in carbon-
rich stars and planets.

��°u±§°ûú �=J§@�BC2[&70 J§8IB��
Most liquids can be cooled considerably below their equilibrium freezing point before crys-
tals start to form spontaneously in the bulk. This is caused by the fact that microscopic crys-
tallites are thermodynamically less stable than the bulk solid. Spontaneous crystal growth
can only proceed when, due to some rare fluctuation, one or more micro-crystallites ex-
ceed a critical size (the “critical cluster”). An estimate of the rate at which critical clusters
form in a bulk liquid can be obtained from Classical Nucleation Theory (CNT) (see chap-
ter 2). This theory relates R, the number of crystal clusters that form per second per cubic
meter, to ∆G∗, the height of the free-energy barrier that has to be crossed to nucleate a
crystal (see eq. 2.30). CNT assumes that ∆G(N), the Gibbs free-energy difference between
a metastable liquid containing an c -particle crystal cluster and a pure liquid, is given by
∆G(N) = S(N)γ − N |∆µ|, where S(N) is the area of the interface between an N-particle
crystallite and the metastable liquid, γ is the liquid-solid surface free energy per unit area,
and ∆µ is the difference in chemical potential between the solid and the super-cooled liquid.
The surface area S(N) is given by c(N/ρS)2/3, where the factor c depends on the shape andò Ð üuû�eLöèþ@û�ûwôª÷S�>üU�)ý
ôªõéöÊüuÿªÿEþ�
Güuû�þ�ý�ôªüuõük
ô ý����;���V�)���Wôªûwôªõ�
U�W÷Êÿªÿªô/þ@õI�"6l��þ�� �í÷Êô f�÷ÊûS�
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the geometry of the cluster (e.g. c = 16π/3 for a spherical cluster). From our simulations,
we can only determine the product cγ: it is this quantity and the degree of super-saturation
(∆µ), that determine the the top of the free-energy barrier, and hence the nucleation rate.

The nucleation rate depends strongly on the height of the nucleation barrier. CNT predicts
the following expression for the height of the nucleation barrier (see eq. 2.10 for the spherical
case):

∆G∗ = c
γ3

ρ2
S |∆µ|2 , � �H�[�W�

where ρS is the number density of the crystalline phase. As the nucleation rate depends
exponentially on ∆G∗, a doubling of γ may change the nucleation rate by many orders of
magnitude. Because of the extreme conditions under which homogeneous diamond nucle-
ation takes place, there have been no quantitative experimental studies to determine its rate.
Moreover, there exist no numerical estimates of ∆µ and γ for diamond in super-cooled liquid
carbon. Hence, it was thus far impossible to make even an order-of-magnitude estimate of
the rate of diamond nucleation.

��°è¯�° Ø,8M6é&G�:1=J§8IB�� 2G4EJ�1G8M�I9
In this chapter, we calculate the diamond nucleation rate � in a liquid carbon of 2744 atoms
at two state points {P = 85 GPa, T = 5000 K} and {P = 30 GPa, T = 3750 K} (points A
and B in the carbon phase diagram shown in fig. 6.2). The phase diagram was computed by
means of the LCBOPI+ semi-empirical potential (see appendix A). At both state points, the
liquid is super-cooled by (Tm − T )/Tm ≈ 25% below the melting curve of diamond, with
Tm the melting temperature and T A

m = 6600 K and T B
m = 5000 K, respectively. Simulations

studies of the diamond melting curve have been reported for pressures up to 400 GPa [109],
1400 GPa [110], and 2000 GPa [111]. The last two studies were carried out by using “ab-
initio” Molecular Dynamics. However, it would be prohibitively expensive to study nucle-
ation using such an approach. We therefore use a semi-empirical many-body potential that
has been fit to experimentally measured and "ab-initio" calculated properties of both carbon
solid phases and liquid [112] (see appendix A). We use this model to study diamond nu-
cleation in a system of 2744 particles in the "low-pressure" ( P < 100 GPa) region of the
phase diagram. In this pressure-range, the calculated melting line of refs. [109], [110] and
[111] are in reasonable agreement. In particular, all the three calculations predict a melting
temperature of about 7000 K at 100 GPa.

In order to compute the nucleation free energy, we need an order parameter that quanti-
fies the progress of the transformation from liquid to crystal. Our order parameter to study
the nucleation phenomenon is the size of the biggest solid cluster in the system: in order to
identify solid-like particles, we analyse the local environment of a particle using a criterion
based on a spherical-harmonics expansion of the local bond order (see chapter 2). However,
the present bond-order parameter is based on invariants constructed out of rank three spher-
ical harmonics. This order detector can unambiguously identify solid particles in the liquid,
without the need to distinguish between a graphite and a diamond lattice. Thus, the growing
cluster can have a diamond, or a graphite, or a mixed structure. Only after nucleation has
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taken place, we distinguish between diamond and graphite structures among the solid parti-
cles belonging to the biggest cluster by using a bond-order parameter based on second rank
spherical harmonics. We extensively test our local order detector in samples of thermalised
graphite and diamond and in liquid samples containing dissolving clusters. For more details,
see appendix B.

In the present work, we compute the free-energy barrier ∆G∗ to form a critical cluster,
by means of the Umbrella Sampling technique, already mentioned in the chapter 2. In order
to equilibrate the growing clusters, we implement a “parallel tempering” algorithm similar
to the one described in ref. [113]. To ensure that the biggest cluster, when growing to its
critical size, does not interact with its own periodic images, we make sure that the radius of
a crystal cluster is always less than 25% of the box diameter L. When computing the kinetic
pre-factor to get the nucleation rate, we have to consider the fact that for our model potential,
LCBOPI+, only a Monte Carlo code is available. In order to evaluate the self-diffusion
coefficient needed to compute the CNT kinetic pre-factor (see chapter 2), we propagate a 128
carbon atoms system via Car-Parrinello Molecular Dynamics (as implemented in the CPMD
code [114]) starting from a configuration equilibrated with LCBOPI+. Data for the high
pressure state point come from simulations used in ref. [115], while data for the low pressure
state point come from a new simulation, with the same technical details as reported in [115].
For more details, see appendix C.

��°�Y�°�� 4b9	&G�IJ�9
As we know the free-energy barrier ∆G∗ to form a critical cluster at state point A from
ref. [116] (∆G∗

A = 25 kBT for a critical cluster size of NA = 110), after measuring
the kinetic pre-factor, we compute the crystal-nucleation rate at state point A: RA =
1030m−3s−1 (see appendix D). From the calculated ∆G∗

A and the number density of the
solid (ρA = 0.191 Å−3), we can estimate the surface free energy per unit area at state point
A using equation( 6.1). Assuming that the critical cluster is effectively spherical, we find
γA ≈ 0.27 kBT /Å2 = 1.86 J m−2. We stress that, in what follows, we do not make use
of this estimate: rather, we always employ the combination cγ that follows directly from the
simulations. ∆µ is evaluated by thermodynamic integration from the melting point. We find:
|∆µA/kBT | = 0.60 and |∆µB/kBT | = 0.77, respectively (see appendix E).

In state point B we cannot follow the same procedure, as a system of 2744 particles is too
small to accommodate a critical cluster . We therefore have to resort to an indirect way, based
on CNT, to estimate ∆G∗ (see appendix F for more details on this calculation). In order to
estimate γB , we prepare a rod-like crystal in a system with a slab geometry (a flattened box
containing N ∼ 4000 particles, with lateral dimensions that are some four times larger than
its height). The crystal rod is oriented perpendicular to the plane of the slab. It spans the
height of the simulation box and is continued periodically. The cross section of this crystal
rod is lozenge shaped, such that its [111]-faces are in contact with the liquid. 1. We then useòj` �W÷��MCTCTCj�MùWÿEþ@õW÷Êø�þ@ûw÷�ý4�)÷ dæüuø�ý/øwýHþ�
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Umbrella Sampling to determine the Gibbs free energy of such a crystallite as a function of
its size, both at state points A and B. In this way we estimate the ratio of the surface free
energies at A and B. We find that cγB/cγA = γB/γA ∼ 2.5. Since we know γA from
the height of the nucleation barrier in state point A for a spherical cluster, we deduce the
corresponding γB for a spherical cluster. Using our estimate, γA ≈ 1.86 J m−2, we find
γB ≈ 0.68 kBT/Å2 = 3.5 J m−2. As ∆µ and ρB are known (ρB = 0.17 Å−3), we can
now use CNT to estimate ∆G∗ in state point B. It turns out that, mainly because γB is 2.5
times larger than γA, the nucleation barrier in B is more than ten times higher than in point
A, thereby hugely suppressing the nucleation rate (RB ∼ 10−80 s−1m−3).

To understand the microscopic origin for the large difference in nucleation rates in state
points A and B, it is useful to compare the local structure of the liquid phase in both state
points. It turns out that the liquid structure in state points A and B is markedly different (see
also refs. [115, 117]): liquid carbon is mainly four-fold coordinated at state point A (20%
three-fold and 80% four-fold ), while at the lower temperatures and pressures of point B, the
coordination in the liquid resembles that of the graphite and is mainly three-fold coordinated
( 5% two-fold, 85% three-fold and 10% four-fold ). Apparently, it is less favourable to create
an interface between a diamond and a graphitic liquid than between a diamond and a four-fold
coordinated liquid. The destabilising effect of the graphitic liquid on the diamond clusters is
most pronounced for small clusters (large surface-to-volume ratio). In fact, in state point B,
clusters containing less than 25 particles tend to be graphitic in structure, with a small number
of four-fold coordinated particles linking the different graphite planes. Clusters containing
up to 60 particles show a mixed graphite-diamond structure, whereas larger clusters have a
diamond bulk like structure, but the surface remains graphitic in nature (see appendix B and
fig. 6.1). The unusual surface structure of the diamond cluster is an indication of the poor
match between a diamond lattice and a three-fold coordinated liquid.

There are many network-forming liquids that, upon changing pressure and temperature,
undergo profound structural changes or even liquid-liquid phase transitions [118]. Experi-
ments on a completely different class of materials, viz. liquid metals [119], suggest that the
local structure, in particular, local icosahedral packing, may interfere with direct nucleation
of crystals. What is interesting about the present simulations is that we show that the ease
of homogeneous crystal nucleation from one-and-the-same meta-stable liquid can be tuned
by changing its pressure, and thereby its local structure. The thermodynamic conditions we
discuss are relevant for experiments that study nucleation in compressed, laser-melted car-
bon. In addition, homogeneous nucleation of diamond may have taken place in carbon-rich
white dwarf [120]. It has also been suggested that diamonds could also have formed in the
carbon-rich middle layer of Uranus and Neptune [121]. The present work allows us to make
a rough estimate of the conditions that are necessary to yield appreciable diamond nucleation
on astronomical timescales. Neither white dwarfs nor planets consist of pure carbon. Never-
theless, it is useful to estimate an upper bound to the diamond nucleation rate by considering
the rate at which diamonds would form in a hypothetical environment of pure carbon. To this
end we use our numerical data on the chemical potential of liquid carbon and diamond and
our numerical estimate of the diamond-liquid surface free energy, to estimate the nucleationý4�)÷äþ����)ô ý�ôªüuõæü�� �MCTCTCj�]ÿEþ��5÷Êûwø���@Bü@ý�÷$ý4�zþ�ý;km�)÷èõ�
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barrier of diamond as a function of temperature and pressure. We then use CNT to estimate
the rate of diamond nucleation (see appendix G for details). The results are shown in fig. 6.2.
The figure shows that there is a region of some 1000K below the freezing curve (continuous
red line) where diamond nucleation is less than 10−40 m−3s−1. If the rate is lower than this
number, not a single diamond could have nucleated in a Uranus-sized body during the life of
the universe. As can be seen from the figure, our simulations for state point B are outside the
regime where observable nucleation would be expected.

However, this figure provides just an upper bound to the rate of diamond nucleation. In
practise, the carbon concentration is somewhat less in carbon-rich stars (∼50%) [120], and
much less (1-2% [121]) in Uranus and Neptune. In fig. 6.3, we show how dilution affects
the regime where diamond nucleation is possible. To simplify this figure, we do not vary
pressure and temperature independently but assume that they follow the adiabatic relation
that is supposed to hold along the isentrope of Uranus [122]. We make the assumption that
nucleation takes place from an ideal mixture of C, N,O and H [123]. In practise we extend
our results by making use of the relation: β∆µ = β∆µ0 + βln([C]), where β∆µ0 is the
chemical potential of the pure substance (C) and [C] is the concentration of carbon in the
mixture. Not surprisingly, fig. 6.3 shows that dilution of the liquid decreases the driving
force for crystallisation to the extent that no diamond phase is expected for C concentrations
of less than 8%. As before, there is a wide range of conditions where diamonds could form
in principle, but never will in practise. Assuming that, for a given pressure, the width of
this region is the same as in the pure C case (almost certainly a serious underestimate), we
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m−3s−1 ã7Ìì*Ó#É�Õ@ÑMÚzÒÊÅUÚGÇ	Ñ)Ç#Ð�ð#ÝUÙ�Õ�¯�Õ@Ç	ÈÊ×WÉæÅEÚ#ß	ÅEÕuÙ�ÒÊÉ�Ð3ÒÊÓ#É�ð/ÑMÇ#Ú�ß	Ù�È�î�ÑMØ$ÒÊÓ#ÉæÈÊÉ@ÆMÅEÑ)ÚJç-Ó#É�ÈÊÉæÒÊÓ	ÉLÚGÇ	Õ@ÝEÉuÙ�ÒÊÅEÑ)Ú~ÈèÙ5ÒÊÉÅEÐ-Ú#É@ÆMÝUÅEÆMÅUð	ÝEÉ«á
< 10−40m−3s−1 ã7Ì

arrive at the estimate in fig. 6.3 of the region where nucleation is negligible (i.e. less than
one diamond per planet per life-of-the-universe). From this figure, we see that quite high
Carbon concentrations (over 15%) are needed to get homogeneous diamond nucleation. Such
conditions do exist in white dwarfs, but certainly not in Uranus or Neptune.

��°��"°ç� B��30f�g&_9a8:B��_9
We conclude that is less favourable to create an interface between a diamond and a graphitic
liquid than between a diamond and a four-fold coordinated liquid. The destabilising effect of
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Ä&ÅEÆ)Ç]ÈÊÉN�]Ì 1]ÌEÎR£ºÅUÙMÔ>Ñ)Ú#ßæÚ]Ç	Õ@ÝEÉuÙ�ÒÊÅEÑMÚéð/Ñ)Ç	Ú�ß	Ù�È�î�Ù�Ð$Ù-Ø Ç#Ú#Õ7ÒÊÅUÑMÚ­Ñ�Ø�ÕuÙ5ÈÊð/Ñ)Ú­Õ@Ñ)Ú	Õ@É@ÚzÒ�ÈèÙ�ÒÊÅEÑ)ÚOÎ�ÅEÚ�ÒÊÓ#ÉBÜ#ÝEÑMÒuëÒÊÓ#ÉLÈèÙ�ÒÊÉíÅEÐæï@É7ÈÊÑ�á�Ú#Ñ ÒÊÓ#É7ÈÊÔ>ÑGß]î]Ú�Ù�Ô>ÅUÕLßGÈÊÅU×GÅEÚ#Æ«Ø¿Ñ�ÈÊÕ@ÉéÒÊÑ;ÚGÇ	Õ@ÝEÉuÙ�ÒÊÅEÑ)Ú�ã�ÅEÚ§ÒÊÓ	É­ÒÊÑ)Ü§ÈÊÉ@Æ)ÅEÑMÚ�á�ÝEÅ��GÇ	ÅUß�ã7ëÅªÒ�ÅUÐ�Ú#É�Æ)ÝEÅEÆ)ÅEð#ÝEÉ«á
< 10−40m−3s−1 ã!ÅEÚ;ÒÊÓ	ÉæÔ>ÅUß#ß	ÝEÉ�ÈÊÉ�Æ)ÅEÑ)Ú§ÙMÚ#ß�Ú	Ñ)Ú	ÛwÚ	É@Æ)ÝEÅEÆ)ÅEð#ÝEÉ«á > 10−40m−3s−1 ãÅEÚ¨ÒÊÓ	É>ð/ÑMÒ�ÒÊÑ)ÔíÛ�ÈÊÅEÆ)ÓzÒºÈÊÉ�Æ)ÅEÑ)ÚOÌ#¤�ÉíÕuÙMÝEÝ
ÒÊÓ#ÉíÚGÇ#Õ�ÝUÉ@Ù�ÒÊÅEÑ)Ú�ÈèÙ5ÒÊÉ>Ú#É@ÆMÝEÅUÆMÅEð#ÝEÉ ÅEØ-ÅªÒ�Õ@Ñ�È�ÈÊÉ@Ð�Ü/Ñ)Ú#ß	Ð�ÒÊÑ~ÝEÉ@Ð�ÐÒÊÓ�Ù�Ú�Ñ)Ú#É­Õ@ÝEÇ#ÐHÒÊÉ�ÈºÜ/É�È�)�ÈèÙMÚGÇ#ÐHÛwÐ�ÅEï@ÉußJÜ#ÝUÙ�Ú#É�ÒæÑ5×WÉ7ÈæÙ Ü/É�ÈÊÅEÑGß§Ñ�Ø�ÍTO 10 îzÉuÙ5ÈÊÐ@ÌLì*Ó#É­ÝUÉ7Ø ÒæÓ#ÙMÚ�ß~îGÛ�Ù�ê]ÅEÐÈÊÉ@Ü]ÈÊÉ@Ð�É@ÚzÒÊÐäÒÊÓ#É�ÒÊÉ@Ô>Ü/É�ÈèÙ5ÒÊÇ	ÈÊÉIrzÒÊÓ	É3ÈÊÅEÆ)ÓzÒ�ÛwÓ�Ù�Ú�ßíîGÛ�Ù5ê]ÅUÐBÅEÚ�ß	ÅEÕuÙ5ÒÊÉ@Ð*ÒÊÓ#É3Õ@ÑMÈ�ÈÊÉ�Ð�Ü/Ñ)Ú�ß]ÅEÚ#ÆéÜ]ÈÊÉ@Ð�Ð�Ç	ÈÊÉ�Ø¿Ñ�È�Ù)3ÈèÙ�ÚGÇ#ÐHÛwÝEÅ�¯)ÉºÅEÐ�É@ÚzÒ�ÈÊÑ)Ü/É>áúÐ�É@ÉºÈÊÉ�Ø�Ì;uEÍ5ËzÍ�v ã7Ì

the graphitic liquid on the diamond clusters is most pronounced for small clusters, where the
surface to volume ratio is larger. The unusual surface structure of the biggest cluster at state
point B demonstrate the bad match between a diamond structure and a 3-fold coordinated
liquid. Moreover, our work indicates that quite high Carbon concentrations are needed to get
homogeneous diamond nucleation. Therefore, it is extremely unlikely that diamonds could
ever have nucleated in the carbon-rich middle layer of Uranus and Neptune [121], while
the appropriate thermodynamic conditions to diamond nucleation are present in carbon-rich
white dwarfs.

/�0�°3�_Bí¡��:4b2²±�4�6�47�_J�9
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LCBOPI+

LCBOPI+ [124] is a �@|z�&��|zs��]��s potential good to describe both solid and liquid structures
of carbon in a broad range of temperatures and pressures. This potential was modelled in
order to be capable to deal with the r@|G�&¥u�]�#xzv�tw|z��|Ê��v�{�� π �@|z�&� , i.e. the coupling between the
free orbitals of neighbouring carbon atoms with less than four first neighbours, that can lead
to hybridisation effects. The family of LCBOPI+ potentials [124] include both ��|G���	��� and��|G�"�@|z�&�]�@� interactions, such as

V (rij) =
1

2

N
∑

i,j

(fcV
SR(rij) + (1 − fc)V

LR(rij))
� �H� n3�[�W�

where rij is the distance between atom i and j, fc is a cut-off function, V SR is the short
range �@|z���	�@� part and V LR is the long range ��|z� �@|z���	�@� part. The short range part of
the potential only accounts for covalent and metallic bonds, and can be explicitly written
as V SR = VR(rij ) − bijVA(rij , where bij is the angular dependent term, function of the
local environment of i and j, also called ��|G���"|zs7�	�5s , VR(rij) = A exp−αrij stands for all
the repulsive inter-atomic interactions and VA(rij) = B1 exp−β1rij + B2 exp−β2rij for the
attractions, being A, α, B1, β1, B2, β2 parameters specific for the atom species.

Whereas V LR is the long range ��|G�§�@|z���	�@� part, that was introduced for the need of taking
into account the week coupling of the π orbitals between the graphite sheets. It has to be long
range as the inter-planar distance is ∼ 0.34 nm, whereas the first and second neighbours are
at ∼ 0.14nm and ∼ 0.25 nm, respectively (while the same distance in the diamond lattice is
∼0.15 nm). Numerically, V LR comes from a best fit to the Density Functional data at the
Local Density Approximation level for the inter-planar energies in graphite, and has the shape
of V LR(r) = Θ(r0 − r)V M

1 (r) + Θ(r − r0)V
M
2 (r), being V M (r) a Morse-like potential.

For further details, we refer to ref. [116]. Therefore LCBOPI+ contains the isotropical non
bonded term, and the short range term, both fitted to match the reference data in the range
where both contributions (bonded and non bonded) are present.

LCBOPI+ was computed at zero Kelvin and pressures of the order of TPa for solid
structures, like simple cubic and face centred cubic, and fitted by means of x]�³t��Ot�v�tw| calcu-
lations. At finite temperatures (of the order of thousands Kelvin), this interaction potential
was tested for both solid and liquid structures using Car-Parrinello Molecular Dynamics. For
liquid structures available experimental data (like the coexistence line between graphite and
diamond) were also adopted to validate the fits. Some of us estimated the region of validity
of LCBOPI+ to be up to 15000 K and 4000 GPa. At a certain point, beyond 4000 GPa,
the liquid is expected to become mainly 5 and 6 fold coordinated [110, 111]: features that
LCBOPI+ does not reproduce.

ã �
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The local order parameter we use to detect the biggest crystal cluster from molten carbon is
the biggest cluster size n, already described in chapter 2. However, due to the symmetry of the
diamond crystal, this time the local bond order parameter is chosen to be a function of order
three spherical harmonics (Y3m). This choice allows us to identify the tetragonal symmetry
of the diamond structure, as already described in ref. [116], and is also perfectly suited to find
particles in a graphite-like environment. We consider an odd order of the spherical harmonics,
as both diamond and graphite are not invariant upon inversion of coordinates. To define the
local order parameter, we start with computing

q3,m(i) =
1

Zi

∑

j 6=i

Sdown(rij) Y3m(r̂ij)
� �\� �b�[�W�

for each value of m, where the sum extends over all particle i neighbours. Sdown(rij ) is a
smooth cut-off function, introduced in the context of LCBOPI+[124, 116]

Sdown(rij) =







1 for 0 < rij ≤ 1.7
(1 − x)(1 + 2x + 3x2)(1 − x)2 for 1.7 < rij ≤ 2.2
0 for 2.2 < rij ,

� �\� �b� �	�

where x =
(

rij−1.7
2.2−1.7

)

, and Zi is the r@|M|Gs7�zt��&xzv�tw|z� of particle i , i.e. the fractional number of
neighbours around it (Zi =

∑

j 6=i Sdown(rij)). Normalising eq. 6.B.1, we get

q
′

3,m(i) =
q3,m(i)

(
∑l

m=−l q3,m · q∗3,m)1/2
, � �\� �b� ä#�

being q∗3,m the complex conjugate of q3,m. According to eq. 2.A.2, we calculate d3(i, j),
i.e. the dot product between the normalised function q

′

3,m of particle i and the same function
computed for each of its first neighbours, and sum them up over all the m values:

d3(i, j) =

l
∑

m=−l

q
′

3,m(i) · q′∗
3,m(j)Sdown(rij),

� �\� �b� ���
d3 is a real number defined between -1 and 1: it assumes the value of -1 when computed
for both the graphite and diamond ideal structures. Two neighbouring particles i and j are
considered to be connected whenever d3(i, j) ≤ dc = −0.87, as shown in ref. [116]. By
counting the total number of connections (ncon) and plotting the probability distribution of
ncon, we define a threshold for the number of connections needed to neatly distinguish be-
tween a liquid-like and a solid-like environment: we assume that whenever ncon > nc

con = 3
a particle is considered to be solid-like. By means of a cluster algorithm we then define all
the solid-like AND r@|z�O�&�@r5v��@� particles as belonging to the same crystal cluster. After com-
puting the size of each cluster, we select the biggest as the local order parameter to describe
the phase transition. At this stage, we do not specify any nature of the particle’s crystallinity,
whether diamond-like or graphite-like.
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B

Only after the nucleation process, we try to differentiate graphite-like from diamond-like
particles. In an a posteriori analysis, we use another order parameter, this time function
of the order two spherical harmonics, particularly sensitive to the graphite planar geometry:
being q2m(i) the linear combination of spherical harmonics computed for each particle i

q2m(i) =
1

Zi

∑

j 6=i

Sdown(rij) Y2m(r̂ij)
� �\� �b� � �

where the sum extended over all particle i neighbours. We then sum over all the m values and
calculate the modulus, |q2|. The |q2| probability distribution for both A and B is represented
in fig. 6.B.1.
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Ä&ÅEÆ)Ç]ÈÊÉ��]Ì �3ÌEÍ)ÌEÎäì*Ó#É�ÒÊÑMÜ	ÛwÝEÉ�Ø Ò*Ð�Å�ß]É�ÈÊÉ@Ü]ÈÊÉ@Ð�É@ÚzÒÊÐ*Õ@ÝEÇ#ÐHÒÊÉ7ÈÊÐ�Ñ�Ø
∼
Ë&OéÙ�Ú�ß>ÒÊÓ#É�ÒÊÑ)Ü	Û�ÈÊÅEÆ)ÓzÒ!Ð�ÅUß]ÉºÕ@ÝEÇ#ÐHÒÊÉ�ÈÊÐ!Ñ�Ø

∼
�IoíÙ5Ò3ÐHÒèÙ5ÒÊÉ�Ü/Ñ)ÅEÚzÒ

B
Ì¦¤ Ó#É�ÈÊÉ@ÙMÐ!ÒÊÓ#Éæð/Ñ�Ò�ÒÊÑ)ÔíÛwÝEÉ�Ø Ò�Ð�ÅUß	É�Õ@ÝEÇ#ÐHÒÊÉ7ÈÊÐ3Ñ�Ø

∼
Ë&O>ÙMÚ#ß�ÒÊÓ#Éæð/Ñ�Ò�ÒÊÑ)ÔíÛ�ÈÊÅEÆ)ÓzÒÐ�ÅUß	É�Õ@ÝEÇ#ÐHÒÊÉ7ÈÊÐ�ÑMØ

∼
ËIo&OíÜ�Ù5È�ÒÊÅUÕ�ÝUÉ�ÐºÙ�Ò3ÐHÒèÙ�ÒÊÉLÜ/Ñ)ÅEÚzÒ

A
Ì!ì*Ó#É�Ç#Ð�Éuß�Õ@ÑGß	É�ÅEÐ@Î!Õ@ÅªÈÊÕ@ÝEÉ@Ð N ÝEÅ��zÇ#ÅUß~Ü�Ù5È�ÒÊÅUÕ�ÝUÉ�Ð@ëÐS�zÇ�Ù5ÈÊÉ@Ð N Ü�Ù5È�ÒÊÅUÕ�ÝUÉ�Ð�ð/É@ÝEÑ)Ú	Æ)ÅEÚ#ÆíÒÊÑíÒÊÓ	É�ð#ÅEÆ)ÆMÉ@ÐHÒ�Õ�ÝUÇ	ÐHÒÊÉ�È Æ Ð�Ð�Ç]È�Ø�ÙMÕ�É)ë�ß	ÅUÙ�Ô>Ñ)Ú�ß]Ð N Ü�Ù5È�ÒÊÅUÕ�ÝUÉ�Ð�ç-ÅªÒÊÓ#ÅEÚ~ÒÊÓ	Éð#Ç	Ý]¯�Õ@ÝEÇ	ÐHÒÊÉ�Èuë/Ò�ÈÊÅUÙMÚ#ÆMÝEÉ@Ð N Ü#Ù�È�ÒÊÅEÕ@ÝEÉ@Ðºð/É@ÝEÑMÚ#Æ)ÅEÚ	Æ ÒÊÑ>ÒÊÓ	É�t	ÈÊÐHÒ�ÝEÅ��zÇ#ÅUß~ÝUÙ@îzÉ�ÈºÐ�Ç]È�ÈÊÑ)Ç	Ú�ß	ÅEÚ	ÆíÒÊÓ#É�ð#ÅEÆ)ÆMÉ@ÐHÒÕ@ÝEÇ#ÐHÒÊÉ7ÈuÌ�ì*Ó#É­ÅUÚ	Ð�É�ÒºÐ�Ó	Ñuç-ÐºÒÊÓ#É

|q2|
Ü	ÈÊÑ)ð#ÙMð	ÅUÝEÅªÒ�îJß	ÅEÐHÒ�ÈÊÅEð#Ç	ÒÊÅEÑMÚ�Ø ÑMÈ�Ù�Ú¨É��GÇ	ÅEÝUÅEð]ÈèÙ�ÒÊÉußJð#Ç	Ý]¯Jß	ÅUÙMÔ>ÑMÚ�ßá5£�ã�á�ÝEÉ�Ø�Ò�Û�Ó#ÙMÚ#ß�Ð�ÅUß	É5ã!Ù�Ú�ß�Æ�ÈèÙMÜ	Ó#ÅªÒÊÉ>á!6æãºá¿ÈÊÅUÆMÓzÒ�Û�Ó#ÙMÚ#ß«Ð�ÅUß	Éuã7Ì

The figure depicts the features of both the smallest (∼ 20 in both state points A and B)
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and the biggest clusters (∼ 250 in A and ∼ 75 in B). Later, we distinguish among: liquid-
like particles (circles), particles belonging to the biggest cluster’s surface 2 (squares), particles
within the bulk cluster (diamonds) and particles belonging to the first liquid layer surrounding
the biggest cluster (triangles). To neatly distinguish between a diamond-like or a graphite-like
environment, we use as a reference the |q2| probability distribution for both bulk diamond (D)
and graphite (G), delineated in the inset of fig. 6.B.1. At state point A, it is clear that bulk
particles belonging to the both small clusters (bottom-left side) and big clusters (bottom-right
side) are mainly diamond-like, as well as particles belonging to the surface of the clusters.
While at state pointB, bulk particles belonging to the small clusters (top-left side) show both
graphite-like and diamond-like finger-prints. By visual inspection, we note that when clusters
reach a bigger size (around 75 particles), particles at the surface tend to be mainly 3-fold
coordinated, while bulk particles stay 4-fold coordinated, as shown in the top-right side of
fig. 6.B.1. Concerning the particles belonging to the first liquid layer surrounding the cluster,
they usually display the same behaviour as the ones belonging to the surface, coherently with
the uncertainty in distinguishing a surface-particle from a first-liquid-layer particle.

It is also important to notice that the metastable liquids in A and B are structurally differ-
ent. In A the liquid is mainly 4-fold coordinated (diamond-like), while in B the percentage
of 3-fold coordinated liquid is dominant: in this region, even though the diamond is energeti-
cally more stable, both diamond and graphite crystal structures can compete in the nucleation
process. In fact, it has been shown in ref. [125, 126] that a simple path exists to transform
graphite into diamond, i.e. via the buckling of the graphite plane at several thousand Kelvins
into the 111 diamond plane.

/ ´§´547�32Í8h³ � ´×ØC43�ID;§à2Í8L¨M&_9h8IB�� 0)B�4ª© 0f8:47�_J
In order to compute the self-diffusion coefficient, we use the fact that molten carbon is an
Arrenhius-like liquid: therefore, once the activation energy is known, we compute the vis-
cosity as a function of temperature and by means of the Stokes-Einstein relation obtain the
diffusion coefficient. Earlier on, Kanter [127] measured the liquid carbon activation energy,
getting EA =683 kJ

mol . Later, Fedosayev [128] reported a measurement of the molten carbon
viscosity: η = 5 ×1011 poise at T = 1860K. From the Stokes-Einstein relation [83], we can
estimate the self-diffusion coefficient at the same temperature:

D =
kBT

ηa
� �\� �E�[�W�

where a = 1.54Ȧ and kB is the Boltzmann’s constant: D(1860K) = 3.3× 10−17 cm2/s. As
we assume that molten carbon is an Arrenhius-like fluid [129],

D(T ) = D0 exp
−

EA
kB T , � �\� �E� �	�

we can calculate D0: D0 = 470cm2/s, and then extrapolate the diffusion coefficient for
different temperatures. In order to make sure that our extrapolations are correct, we use a_ È öÊöèüuû!�Wôªõ�
�ý�üLüU�)û=�W÷jbzõWô ý�ôªüuõna]ùzþ@û�ý�ôªöÊÿª÷ÊøN
G÷èÿªüuõI
uôªõ�
æý�üæý��W÷3ø��Wûh�¿þ@öÊ÷�ü��Oý��W÷3öÊÿ��Wøwý�÷ÊûSa�þ@ûw÷-ý4�Wüuø�÷�«�¬T­;­ ®�«p¯5®�°ý�üºþ�ø�üuÿªô��Ii¿ÿªô�eu÷äùzþ@û�ý�ôªöÊÿª÷Êø�a�
��)ýBõWü@ý
ø�üuÿªô��Ii�ÿªô�eu÷
ý4�)÷�dæø�÷Êÿ �5÷èø��
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Car-Parrinello Molecular Dynamics [114] to calculate the self-diffusion coefficient by means
of the mean square displacement: at state point A D = 2.3 × 10−5cm2/s, that match really
well with the diffusion coefficient estimated by means of the Arrhenius law, D = 3.5× 10−5

cm2/s.
Hence, we are allowed to extrapolate the values of D for a broad range of temperatures

(see fig. 6.C.1).
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EA = 7

É�å Ø ÈÊÑ)Ô ÈÊÉ�Ø�Ì]uUÍuËI��v�Ì
UWV<XZY ±

[Ȧ/s2]
U�V<XZY ±

[Ȧ/s2]�m� � � �\�[� × 10−2 ä
����� �\� ä × 106����å
� äH� � × 101 ä
ä���� �T� � × 107��ä�å
� � � � × 104 ä � �+� � � � × 108����å
� �\� � × 105 äT�+��� �`� � × 109

ì&ÙMð	ÝEÉ��GÌ  3ÌUÍMÌEÎ²�GÉ@ÝªØ$ß	Å�s�Ç#Ð�ÅEÑMÚ~Õ@ÑzÉF³>Õ�ÅUÉ�ÚGÒ3Ù�Ð�Ù­Ø Ç#Ú	Õ�ÒÊÅEÑ)Ú;Ñ�ØúÒÊÉ@Ô>Ü/É�ÈèÙ5ÒÊÇ	ÈÊÉ)Ì
At state point A DA = 3.5× 10−5 cm2/s, while at state point B DB = 2 × 10−7 cm2/s.
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In our computer simulations, we have also calculated the crystal nucleation rate at both state
points A and B by means of the FFS technique (see chapter 2 and ref. [13, 14]). At state point
A we obtain RA ∼ 1033 m−3 s−1. However, due to the time-consuming empirical potential
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used (LCBOPI+), we only sample few tens of trajectories crossing the top of the nucleation
free-energy barrier: this leads to a poor statistics of the estimated rate. Comparing RA to the
crystal nucleation rate in a Lennard-Jones system at the same under-cooling, RLJ ∼ 1030

m−3 s−1 [29], we conclude that molten carbon nucleates faster than Lennard-Jones, leading
to the formation of many small diamond crystallites. However, comparing RA to the crystal
nucleation rate of sodium-chloride (see chapter 4) (RNaCl ∼ 1024 m−3 s−1), we conclude
that NaCl nucleates into a big crystal with a much slower rate than molten carbon.

Fig. 6.D.1 represents the critical cluster obtained in the FFS simulations: it contains around
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110 particles surrounded by mainly 4-fold coordinated liquid particles. The pictures shows
two different views of the same cluster: all particles within the bulk are diamond-like, while
the surface particles are less r@|z�i���@r5v��@� , but still mainly 3-4 fold coordinated.

At state point B, it is not possible to nucleate any crystal cluster bigger than 75 particles,
even though we try to shoot several hundreds stochastic trajectories: this leads to a nucleation
rate of RB ∼ 0 s−1m−3. As already shown in fig. 6.1, a 75 particles cluster presents 3-
fold coordinated surface particles surrounding the 4-fold coordinated bulk particles, while
embedded in a 2-3 fold coordinated liquid.
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In order to study the liquid-to-solid phase transition, we start by simulating in a Monte Carlo
scheme a metastable liquid by means of the semi-empirical potential LCBOPI+ (see ap-
pendix A) deeply described in refs. [124, 116]. The liquid is made metastable in an c k ¤
ensemble, by cooling it down, while keeping pressure fix, to a temperature below the coex-
istence temperature (Tcoex), both at pressure of 85 GPa (state point A) and 30 GPa (state
point B). Defining the amount of super-cooling as (T − Tcoex)/Tcoex, we have that the
super-cooling in A is 24% while in B is 25%, being Tcoex,A =6600K and Tcoex,B =5000K.
Following the same procedure as the one described in appendix C in chapter 4, we obtain that
β∆µ =0.60 in state point A and β∆µ =0.77 in state point B.
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According to Classical Nucleation Theory (CNT) (thoroughly discussed in chapter 2), the
crystal nucleation rate depends exponentially on the top of the free-energy barrier (see
eq. 2.10). The latter is a function of the inter-facial free energy (γ) cube and inversely propor-
tional to the super-saturation (∆µ) square. Since the super-saturation is quite similar in both
cases (β∆µA =0.60 and β∆µB =0.77 that are the same if expressed in Joule), we deduce
that the inter-facial free energy might play a major role. Thus, in what follows, we calculate
γ in both state point A and B, while keeping in mind that the structures of the metastable
liquids in A and B are utterly dissimilar.

In order to calculate the inter-facial free energy γ we use CNT. Thus, to practically get the
value of γ:

1. we compute the free-energy barrier as a function of the biggest cluster size n using the
Umbrella Sampling scheme;

2. we select only the first part of the nucleation curve given by eq. 2.7. The first part
results to be mainly dominated by the surface term A(n)γ;

3. we fit the slope of the free-energy barrier curve to a polynomial function, while impos-
ing the value of the super-saturation (|∆µ|);

4. from the coefficient of the fit, we extract the value of γ, once having assumed the shape
of the growing cluster (A(n)).

We start with computing γ at state point A (γA). The free-energy barrier as a function of
the biggest cluster size was already computed in ref. [116] by means of Umbrella Sampling.
Assuming a spherical shape for the nucleating cluster, we obtain eq. 2.12, where ρB = ρS ,
the solid number density. By fitting the first part of eq.2.12 we obtain that the inter-facial free
energy is γA = 0.27kBT/Å2 ∼ 1.86 J m−2. Same value of the inter-facial free energy is ob-
tained from the top of the free-energy barrier (eq. 2.10): ∆G∗ = 25kBT , being β∆µ =0.60
and ρS = 0.191 Å−3. By means of eq. 2.13, we can estimate the size of the critical cluster: at
state point A is n∗ ∼85, corresponding to the value observed at the top of the free-energy bar-
rier in ref. [116] (n∗ ∼110), within the error bars. At the chosen thermodynamic conditions,
there are no finite size effects, caused by �����/sutw|G��� interaction of the critical cluster with its
own periodically repeated image. 3 Knowing the inter-facial free energy in A, and assuming
the validity of CNT, we estimate the crystal nucleation rate by means of eq. 2.32, where we
use eq. 2.35 to compute the kinetic pre-factor (the diffusion coefficient being discussed in
appendix C and the atomic jump distance λ being of the order of the diamond bond distance
1.54Å): RCNT

A ∼ O(1030) s−1m−3. This value is three order of magnitude smaller than
the one computed by means of FFS. Nevertheless, if we consider that the standard deviation
corresponding to γ is around 10% of its measured value, we conclude that the nucleation rate} ` �W÷\
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is O(1030±3) s−1m−3. Moreover, as already pointed out in appendix D, another source of
error can be the poor statistics used to compute the nucleation rate by means of FFS.

We now attempt to explain the results of our simulations at state point B. As by means of
FFS we are not able to reach the critical cluster, we conclude that a system of 2744 particles
might be too small to accommodate a spherical critical cluster. Therefore, we resort to an indi-
rect way to estimate the free-energy barrier ∆G∗ to grow a spherical critical cluster. In order
to measure the free-energy barrier, as we know the solid number density (ρS = 0.177 Å−3)
and the chemical potential difference between the liquid and the solid (β∆µB =0.77), we
only need to calculate the inter-facial free energy. Nevertheless, as we cannot accommo-
date a spherical critical cluster in our simulation box, we reduce the dimensionality of the
problem. We compute γ for a rod-like crystal in a system with a slab geometry (containing
around 4000 particles): the crystal is oriented perpendicular to the plane of the slab and has a
parallelepiped-like shape spanning the height of the simulation box with the [111] faces ex-
posed to the liquid. Fig. 6.F.1 represents the top side view at state point B (30 GPa and 3750
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K) of a rod-like crystal, formed by four [111] faces and two bases as [1-10] lozenge with the
acute angles of θ=70.52 degrees. We then rewrite eq. (2.7) for a rectangular parallelepiped
having four [111] faces and two basis [1-10] as lozenges with acute angle of θ = 70.52

∆G = 4

√

h

ρ sin θ
γln1/2 − |∆µ|n, � �\� ¸��[�W�

where h is the slab’s height. We then use the Umbrella Sampling technique to compute the
slope of the first part of the free-energy barrier. As h = 10 Å, we obtain from fitting eq. 6.F.1
that the inter-facial free energy for the lozenge-shaped cluster is γ l

B = 0.91kBT/Å2 ∼ 4.70
J m−2. By computing the inter-facial free energy of the rod-like crystal at state point A, we
obtain γl

A = 0.37kBT/Å2 ∼ 2.55 J m−2, considering the same slab’s height and the same
angle θ. Now that we know the inter-facial free energies of the lozenge-shaped clusters at the
state points A and B, we estimate the ratio between them: we find that cγB/cγA = γB/γA ∼
2.5. As we compare clusters having the same shape, this ratio turns out to be independent on
the assumed cluster shape. Therefore, we claim that at state point B the early stage of the
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crystalline clusters is mainly dominated by the inter-facial free-energy term, that obstacles
the clusters to grow further and, consequently, the liquid to wet the surface. Since we know
γA of the spherical cluster and the ratio between the two γ’s, we can infer γB of a cluster
with the same spherical shape: γB = 0.68kBT/Å2 ∼ 3.50 J m−2.

If we now estimate the size of a critical spherical cluster at state point B, by knowing the
lozenge-shaped parallelepiped critical cluster, we can indeed show that we would have needed
a much larger system in order to accommodate such a cluster at the thermodynamic conditions
simulated in B. From eq. 6.F.1, we calculate the critical cluster size for the lozenge-shaped
parallelepiped n∗

l and use it to estimate the critical spherical cluster n∗
s in B. As

n∗
l =

4h

ρS sin θ

(γ)2

(∆µ)2
. � �\� ¸�� �	�

At state point B n∗
l ∼330 particles. Expressing n∗

s of a spherical cluster as a function of the
lozenge-shaped parallelepiped one, we get

n∗
s =

8

3
π

γ sin θ

ρS∆µh
× n∗

l ,
� �\� ¸�� ä#�

where ρS the solid density (ρB = 0.17 Å−3), ∆µ the chemical potential difference between
the solid and the super-cooled liquid (|∆µB/kBT | = 0.77), and h is the height of the slab
(10 Å). Eq. 6.F.3 corresponds to a spherical cluster of n∗

s ∼ 1700 particles at state point B.
Thus, one would need a system of at least 17000 particles to contain such critical cluster and
avoid finite size effects. Such a system size is beyond our present computational capacity. 4

In contrast, in the slab geometry we find that the free energy of a lozenge-shaped crystal goes
through a maximum at a size of∼ 340 particles, which is much less than the system size (4000
particles). Now that we know γB , we can estimate the nucleation rate according to CNT. The
free-energy barrier height of a spherical cluster is ∆G∗ ∼ 280kBT , roughly 11 times higher
than the free-energy barrier in A, and the nucleation rate is RB ∼ 10−80 s−1m−3, confirming
our consideration that the growth is intrinsically more difficult at state point B.
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In order to extrapolate our results to thermodynamic conditions that are proper of planets like
Uranus and Neptune and carbon-rich stars, we extend the estimate for the nucleation rate from
the triple point pressure up to 100 GPa, from the melting temperatures to 35 % undercooling
(at which our samples stopped diffusing) by means of eq. 2.32, 6.1, and 2.35. The state point�g` ü�
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dependent quantities are the solid and liquid densities ρL and ρS , the self-diffusion coefficient
DS , the surface free energy γ, the difference in chemical potential between the liquid and the
solid ∆µ, and the critical cluster size N ∗. We estimate them in the following way:

• the densities are directly measured after the MC simulations of the solid and the liquid;

• for the self diffusion coefficient, we assume an Arrhenius behaviour, where the activa-
tion energy is the bonding energy per particle;

• concerning the chemical potential difference, we extrapolate the values calculated via
eq. ½�½ at 30 and 85 GPa to all pressures: in practise, ∆µ at a certain (P, T ) point is
estimated by linearly combining the values at 30 and 85 GPa at the same under-cooling;

• in view of the strong dependence of γ on the atomic coordination in the liquid phase,
we assume that γ(P, T ) depends linearly on c4, the equilibrium concentration of 4-fold
coordinated atoms at the selected state point. This quantity is easily measured during
the MC simulations of the liquid;

• we assume that the height of the nucleation barrier is given by the CNT expression of
eq. 6.1 and we that the factor c is the same for all clusters.
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The most naive perturbation method to estimate inter-facial free energies is based on the
assumption that the interface between coexisting phases is infinitely sharp. Although this
approximation does not yield particularly accurate estimates for the liquid-vapour surface
tension, we find that it works surprisingly well for the interface between a dense liquid and
a solid. As an illustration we estimate the liquid-solid inter-facial free energy of a Lennard-
Jones system with truncated and shifted interactions and compare the results with numerical
data that have been reported in the literature. We find that the agreement between theory and
simulation is excellent. In contrast, if we apply the same procedure to estimate the varia-
tion of the liquid-vapour surface tension for different variants of the Lennard-Jones potential
(truncated/shifted/force-shifted), we find that the agreement with the available simulation
data is, at best, fair. The present method makes it possible to obtain quick and easy esti-
mate of the effect on the surface free energy of different potential-truncation schemes used in
computer simulations.

Æ °u±§°ûú �=J§@�BC2[&70 J§8IB��
In computer simulations of classical many-body systems, the intermolecular potential is often
truncated at a finite distance to reduce the numerical computational cost, which, inevitably,
changes the system properties such as energy, pressure, etc. Standard “tail corrections” ex-
ist to compensate for the truncation errors in uniform systems with sufficiently short-ranged
potentials (see e.g. ref. [70]). In contrast, in inhomogeneous systems, calculations of the
tail corrections are not straightforward, and they might not be small compared to the refer-
ence values. In particular, expressions for the tail corrections of the liquid-vapour inter-facial
free-energy density (γ) in Lennard-Jones systems were derived using the thermodynamic per-
turbation theory [130, 131, 132]. Chapela et al. [133] employed the Kirkwood-Buff-Fowler’sò Ð üuû�eLöèþ@û�ûwôª÷S�>üU�)ý
ôªõéöÊüuÿªÿEþ�
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formula to compute the correction to the exact surface tension while postulating a hyper-
bolic tangent shape for the inter-facial profile, and their results were subsequently refined by
Blokhuis et al. [134] and Mecke et al. [135]. These results were used in ref. [133, 134, 135]
to compute the free energy of the liquid-vapour interface in a Lennard-Jones fluids with trun-
cation of the intermolecular potential, adopting the full Lennard-Jones system as a reference.

Interestingly, this approach can also be used for a “rule-of-thumb” estimate of the liquid-
solid inter-facial free energy, as we show in the present chapter. The following assumptions
on the interface profile and the reference system seem to be in order in this case. The sim-
plest inter-facial profile goes back to Laplace [136], who treated it as a step function in the
density. Not surprisingly, it does not yield a particularly good estimate for the liquid-vapour
surface tension, where the dividing surface is rough and not well defined, especially close to
the critical point. However, one might expect this approximation to be much better for the
sharp interface between crystal and dense (and rather incompressible [83]) liquid, where the
role of fluctuations is much smaller. As a reference system the hard-sphere model can be
exploited by means of the Weeks, Chandler and Andersen [137]’s approach. The hard-sphere
system exhibits a liquid-solid interface under the appropriate conditions. This, again, simpli-
fies situation in comparisons with the liquid-vapour interface, where the full Lennard-Jones
system needs to be taken as a reference (the hard-sphere do not exhibit a liquid-vapour phase
separation).

Thus, we use perturbation theory approach in the present chapter to estimate the surface
free energy of truncated-force-shifted Lennard-Jones crystals in contact with its melt. For the
sake of comparison, we employ the same approach to estimate the difference in the liquid-
vapour surface tension of truncated and un-truncated LJ models. Although it is not particu-
larly good in the latter case, we include the results for future reference, because the relevant
simulation data appeared to be rather scattered in the literature.

Æ °è¯�°�Ê 4-J <_B�2
We aim to estimate the inter-facial free energy of particles interacting via a modified (trun-
cated and (force)shifted) Lennard-Jones potential, using either the hard-sphere system (for
liquid-solid) or the full Lennard-Jones model (for liquid-vapour) as the reference state.

γLJ = γref + γP . � �`�[�W�
We assume that γref is known. Below, we list the various contributions to the perturbation
(γP ). The overall perturbation is additive. In all cases we make the “Laplacian” assumption
that the interface separating the two phases has a step profile. We consider three possible
“perturbation” terms: vP1(r),vP2(r) and vP3(r) contributions to obtain the truncated and
shifted interaction potential:

1. vP1(r) is a constant term that is needed to shift a truncated potential to zero at the
cut-off radius rc:

vP1(r) =

{

−vLJ(rc) for r ≤ rc

0 for r > rc.
� �`� �	�

It guarantees the continuity of the potential at rc. vP1 is positive, as vLJ(rc) < 0.
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2. vP2(r) is the perturbation that removes the long-range part of the LJ potential (for

r ≥ rc):

vP2(r) =

{

0 for r < rc

−4ε
[

(

σ
r

)12 −
(

σ
r

)6
]

for r ≥ rc.
� �`� ä#�

3. Finally, only in the truncated and force-shifted potential, we also use vP3(r), a term
that ensures the continuity of the first derivative of the potential at rc

vP3(r) =

{

−(r − rc)v
′

LJ(rc) for r ≤ rc

0 for r > rc,
� �`� ���

where v
′

LJ(r) is
(

24εσ6

r

[

1
r6 − 2σ6

r12

])

. vP3(r) is also positive, as the first derivative is
positive for r > rc.

We can now easily estimate the contributions of these three perturbations to the surface free
energy, that follows Rowlinson and Widom’s prescription [130]. We start our procedure, by
considering a system (I) where particles interact via a full Lennard-Jones potential (vLJ ). As
shown in the left side of fig. 7.1, we divide it into two sub-systems: one half is in the liquid
phase (phase 1), and the other half is the solid phase (phase 2), for instance. The two halves
are separated by a dividing surface (S). We then consider a second system (II) divided the
same way as system I in two halves containing phase 1 and 2 (right side of fig. 7.1): here
particles interact via a full Lennard-Jones plus a long range perturbation potential (vLJ +vP ),
for instance a truncated and force shifted interaction potential.

1

2

1

2

I

I

II

II
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vLJ

Ì��Ú�ÒÊÓ	É�ÈÊÅEÆ)ÓzÒuë]ÒÊÓ#ÉºÐÊÙ�Ô>ÉæÜ#Ó�Ù�Ð�É@ÐæÍ�ÙMÚ#ß~Ë­Ñ�Ø$ÙéÐHî]ÐHÒÊÉ@Ô ç-Ó	É�ÈÊÉæÜ�Ù5È�ÒÊÅUÕ�ÝUÉ�Ð3ÅEÚzÒÊÉ�ÈèÙMÕ7Ò3×GÅUÙ
vLJ + vP

Ì

Being ρ1 the phase 1 density and ρ2 the phase 2 density, ∆ρ = (ρ2 − ρ1) is the density
difference between the two phases separated by the dividing surface S: ∆ρ will have the same
value in both systems I and II .

We now consider the energy at the dividing surface S between phase 1 and 2 in system I
(ε1−2

I ), and the same quantity estimated in system II (ε1−2
II ). We then compute the difference

between ε1−2
I and ε1−2

II , defined as ∆ε: this difference corresponds to the contribution to the
inter-facial energy in S due to the perturbation terms. We notice that we can evaluate ∆ε either
starting from phase 1 or from phase 2, and we use a subscript to indicate it: accordingly, we
obtain ∆ε1 and ∆ε2. Therefore, both ∆ε1 and ∆ε2 only depend on the contribution coming
from the long range perturbations vP .
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As the inter-facial free energy is defined as the energy at the dividing surface per unit area,
we express the corrections γP to the inter-facial free energy of the unperturbed system, as the
total ∆ε at the dividing interface S per unit area:

γP =
∆ε1 + ∆ε2

S
� �`� � �

where ∆εi is the inter-facial energy difference between phase 1 and 2 in both system I and
II , starting from 1 and 2, respectively (i=1,2), and S is the area of the interface between the
two phases. Therefore, in order to compute γP we start by evaluating ∆ε1 and ∆ε2. Then
we use eq. 7.1 to get the liquid-solid inter-facial free energy in a truncated and force shifted
Lennard-Jones system.

In order to compute ∆ε1, we consider the interaction zone of a particle P located in phase 1
nearby the surface dividing the two phases (S). Fig. 7.2 shows the particle P interaction zone.

ÌÌÍÍ
r

xz1

θP

1 2

S

Ä&ÅEÆ)Ç]ÈÊÉ��zÌ ËzÌEÎ3Ï�ÚzÒÊÉ�ÈèÙMÕ�ÒÊÅEÑMÚ§ï�Ñ)Ú#ÉLÑMØBÙ>Ü�Ù5È�ÒÊÅEÕ@ÝEÉéâ¬ÝEÑzÕuÙ5ÒÊÉuß§ÅEÚJÜ	Ó�ÙMÐ�É ÍLÚ#ÉuÙ5ÈÊðzî;ÒÊÓ#ÉLß]ÅU×GÅUß	ÅEÚ	Æ«Ð�Ç]È�Ø�Ù�Õ@É��Ìzì*Ó#É�ÅUÚzÒÊÉ�ÈèÙ�Õ�ÒÊÅEÑ)Ú ï@ÑMÚ#É�ÅUÚ	Õ@ÝEÇ�ß]É@Ð*Ù�Ð�Ü#Ó	É�ÈÊÅEÕuÙMÝ�Õ@ÙMÜ ÅEÚ«Ü	Ó�Ù�Ð�ÉºËzëzç-Ó#É�ÈÊÉ
z1

ÅEÐBÒÊÓ	É�ß]ÅUÐHÒèÙ�Ú#Õ@É�ð/É�Ò�ç*É@É@Úâ ÙMÚ�ß�ÒÊÓ#É>ß]ÅE×]ÅUß]ÅUÚ	Æ�Ð�Ç]È�Ø�Ù�Õ@É)ë
θ
ÅUÐæÒÊÓ	ÉéÕ@ÑMÚGÒèÙ�Õ�Ò�Û�ÙMÚ	Æ)ÝEÉ)ë

x
ÅEÐ�ÒÊÓ	ÉéÓ	É@ÅEÆ)ÓzÒ�ÑMØ*ÒÊÓ	ÉíÕuÙ�Üië�ÙMÚ�ß�ÈæÒÊÓ#É>âÅEÚzÒÊÉ�ÈèÙMÕ�ÒÊÅEÑMÚ;ÈèÙ)ß]ÅUÇ	Ð@Ì

For any particle P in phase 1 nearby the dividing surface S, the interaction zone in phase
2 can be described as a spherical cap, where z1 is the distance between P and S, θ is the
contact-angle, x is the height of the cap, and r the P interaction radius. Being

x = r − z1 = r − r cos θ = r
(

1 − z1

r

)

, � �`� �#�
the area of the spherical cap is a function of r and z1:

S(r, z1) = 2πr · x = 2π(r2 − z1r).
� �`���]�

Hence, the contribution at P coming from phase 2 to the inter-facial energy difference ∆ε1

is a function of S(r, z1). In order to estimate the total contribution to the inter-facial energy
due to phase 2, we integrate the energy in r deeply into phase 2, from z1 to ∞. To conclude,
to calculate the inter-facial energy not only in P but due to all the particles in phase 1, we
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integrate the energy previously calculated in z1 over all phase 1 from 0 to ∞, i.e. within
phase 1.

In practise, using the first order in Zwanzig’s perturbation theory [138], as suggested by
Abraham [139], in the limit of a sharp dividing surface of zero thickness, and assuming
that the liquid is homogeneous on the length scale of the interaction potential (the radial
distribution function g(r) → 1) (see ref. [130]), we get

∆ε1 =
1

2
ρ1(ρ2 − ρ1)S

∫ ∞

0

dz1

∫ ∞

z1

dr vP (r) S(r, z1)
� �`� å#�

where ρ1 is the phase 1 density, ρ2 the phase 2 density, and the subscript 1 indicates that we
have started our calculations from in phase 1.

Repeating the same calculation for the symmetric case, where we start from particles in
phase 2, we obtain

∆ε2 =
1

2
ρ2(ρ1 − ρ2)S

∫ ∞

0

dz1

∫ ∞

z1

dr vP (r) S(r, z1).
� �`� ã �

Now that we know the energy at the dividing surface, we introduce eq. 7.8 and 7.9 into
eq. 7.5, and obtain

γP =
∆ε1 + ∆ε2

S

= −1

2
(∆ρ)2

∫ ∞

0

dz1

∫ ∞

z1

dr vP (r) S(r, z1)

� �`�[�v�	�
In what follows, we separately calculate each contribution to the correction due to the

different perturbation terms: γP1, γP2 and γP3, respectively. In all our calculations, we
choose rc = 2.5σ as a cut-off. Three-body and higher order terms are not included in the
energy calculations. The total energy of the system is assumed to be pairwise additive. All
the variables are expressed in reduced units: σ and ε are length and energy units, respectively;
the reduced temperature is T ∗ = kBT

ε , (where kB is the Boltzmann’s constant), the reduced
density ρ∗ = Nσ3

V and the reduced inter-facial free energy γ∗ = γσ2

ε . In what follows, we
express both γ and ρ omitting the asterisks, but always refer to variables in reduced units.

1. The contribution due to vP1(r), is denoted by γP1 and given by:

γP1 = −1

2
(ρ2 − ρ1)

2

∫ rc

0

dz1

∫ rc

z1

dr(−vLJ (rc))
(

2π(r2 − z1r)
)

=
π

8
vLJ(rc)r

4
c (∆ρ)2. � �`�[�
�)�

For rc = 2.5σ, vLJ(rc) ≈ −0.0163ε < 0, and we obtain: γP1 = −0.25(∆ρ)2.
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2. γP2, the contribution due to vP2(r) is:

γP2 = −1

2
(ρ2 − ρ1)

2

∫ ∞

0

dz1

∫ ∞

z1

dr

{

−4ε

[

(σ

r

)12

−
(σ

r

)6
]}

(2π(r2 − z1r))Θ(r − rc)

= 2πε

[

σ12

8r8
c

− σ6

2r2
c

]

(∆ρ)2. � �`�[�m�]�
For rc = 2.5σ, we obtain: γP2 = −0.50(∆ρ)2.

3. Finally, γP3 (the contribution due to vP3(r)) is:

γP3 = −1

2
(ρ2 − ρ1)

2

∫ rc

0

dz1

∫ rc

z1

dr
[

−(r − rc)v
′

LJ(rc)
]

(2π(r2 − z1r))

= − π

40
v

′

LJ(rc)r
5
c (∆ρ)2. � �`�[�vä	�

For rc = 2.5σ, v
′

LJ(rc) ≈ 0.039 ε
σ > 0, and γP3 ≈ −0.3(∆ρ)2.

Æ °�Y�°�� 4b9	&G�IJ�9
We present our results in the following paragraphs.

,)Ï�A-Ï©ÚaÏ ��Õ�Ó�Ò;Ñ�Ó[Õ;ÖT×�Ø.Ù¡ØN+�Ö`ò;Ô#Óö×ôó)Ñh×�ê ø)��Ø.Óö×ôê(×:ÙQÖ�Ô§èMø�+wÕ§ÒQ×�Õ�Ó�+mèVÔ�Ô�Ô§ÙFÔ§èjñ-�
A numerical calculation of the liquid-solid inter-facial free energy of a Lennard-Jones system
(more precisely: truncated and force-shifted LJ (TSF)) was reported in 1986 by Broughton
and Gilmer [140] and, more recently, by Davidchack and Laird [141]. Both sets of authors
considered the [100], [110] and [111] surfaces. In addition, Davidchack and Laird computed
the inter-facial free energy for the same faces of a hard sphere crystal. It so happens that the
reduced density difference between solid and liquid for the TSF-LJ system at the triple-point
temperature considered in both refs [140, 141] is very nearly equal to that of the hard-sphere
system, making the system an ideal target for the liquid-solid flat-interface version of the
Fowler-Kirkwood-Buff theory.

The TSF-LJ potential has the following form:

vTSF−LJ(r) =











4ε
[

(

σ
r

)12 −
(

σ
r

)6
]

+ c1 for r ≤ 2.3σ

c2

(

σ
r

)12
+ c3

(

σ
r

)6
+ c4

(

σ
r

)−2
+ c5 for 2.3σ < r ≤ 2.5σ

0 for r > 2.5σ,� �`�[�R�#�
where c1 = 0.16132ε, c2 = 3.1366 × 103ε, c3 = −6.8069 × 101ε, c4 = 0.083312ε, and
c5 = 0.74689ε ( see ref. [140]). For the perturbation-theory estimate of the inter-facial free
energy, we use the full Lennard-Jones as the reference system. To compute its contribution, as
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suggested by Weeks, Chandler and Andersen [137], we separate the LJ interaction potential
in a repulsive term (hard-sphere-like, vR)

vR(r) =

{

∞ for r ≤ 21/6σ
0 for r > 21/6σ

� �`�[� � �
and an attractive perturbation term (vA)

vA(r) =

{

−ε for r ≤ 21/6σ

4ε
[

(

σ
r

)12 −
(

σ
r

)6
]

for r > 21/6σ� �`�[�v�	�
To map the repulsive LJ system onto a hard -sphere system, we use the Barker-Henderson
rule [142] to compute the equivalent hard-sphere radius of continuous repulsive potential:

σHS =

∫ ∞

0

[exp−βvR(r) −1]dr, � �T���m�]�
where σ denotes the effective hard-sphere diameter of particles interacting via the Lennard-
Jones potential, and β = ε/(kBT ) = 1/T ∗ assuming ε and kB equal to 1. As is obvious
from eq. 7.17, σHS is a function of temperature, but not of the density. Calculating eq. 7.17
at T ∗ = 0.617, the temperature where Broughton and Gilmer computed γ, we find that
σHS = 1.032σ. We then compute the LJ liquid-solid inter-facial free energy by adding to
the hard-sphere term the perturbation coming from the attractive part of the potential, and
estimate the inter-facial free energy of the TSF-LJ potential by including the perturbation
terms computed according to eq.7.14.

Table 7.1 contains the values of the hard-sphere liquid-solid inter-facial free energy com-
puted by Davidchack [143] (first column: in units of [kBT/σ2

HS ], second column: in units
of [ε/σ2]); our estimate for γ based on the perturbation theory, assuming a step profile in the
density (γTSF−LJ ); at last, the numerical data for the TSF-LJ potential reported by David-
chack and Laird [141] and by Broughton and Gilmer [140]. As can be seen from the table, the
perturbation-theory results are in rather good (2-3%) agreement with the numerical data. In-
terestingly, the variation of the surface free energy with the crystal face appears to be largely
due to the corresponding variation in the hard-sphere reference system.

Below, we use the same approach to estimate the difference in surface free energy of var-
ious Lennard-Jones-like models (un-truncated, truncated and shifted, truncated and force-
shifted). In this case, we do ��|Gv use a hard-sphere reference system (as this system has no
liquid-vapour interface). Rather we use the full (un-truncated) LJ system as our reference
system.

,)Ï�A-Ï * Ï ��Õ�Ó�Ò;Ñ�Ó[Õ;ÖT×�Ø.Ù¡ØN+5Ö`òFÔ�Óö×ôó)Ñh×�ê øM ÅÕ�ðaØ)Ñhè~�HÑ�èg+jÕ§ÒàÔ'Ö�Ô§Ùä�H×�Ø)Ù
According to the expressions given in the Method section, the correction to the full Lennard-
Jones surface tension due to truncation and shifting of the potential (γTS−LJ) at rc = 2.5σ
is of the order of γP1 + γP2 = −0.75(∆ρ)2 (for a cut-off of rc = 2.5σ). Considering the
full Lennard-Jones as the reference system of our perturbation calculation, we summarise our

�
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γHS Î kBT/σ2
HS Ï Î �R�
ä Ï γHS Î ε/σ2 Ï γTSF−LJ γTSF−LJ Î �O��� Ï γTSF−LJ Î �O�
� Ï�\� � ��� �H� äH�R� �\� ä��T� �\� ä��`� � ä#� �\� ä � � �]��\� �]� � �H� ä���ä �\� ä�� ã �\� ä��
� � ä#� �\� ä�� � �]��\� � �+� �H� ä
ä�ä �\� ä ��ã �\� ä��`� � ä#� �\� ä�� � �]��\� �]��ã �H� ä��+� �\� ä � �H� ä ��ã �H� ä �ì&Ù�ð#ÝEÉ��zÌEÍ)ÌEÎrÐiÅ��zÇ#ÅUß]ÛwÐ�ÑMÝUÅUß>ÅEÚzÒÊÉ�È�Û�Ø�ÙMÕ�Å�Ù�Ý�Ø ÈÊÉ@É�É@Ú	É�ÈÊÆMî>Ñ�Øiß	Å�s�É�ÈÊÉ@Ú	Õ@É3Õ7È�î	ÐHÒèÙ�ÝEÝUÅEÚ	É3Ñ�ÈÊÅUÉ�ÚGÒèÙ5ÒÊÅEÑ)Ú#ÐBØ¿ÑMÈäÓ�Ù5Èèß]ÛÐ�Ü#Ó	É�ÈÊÉ�uEÍ�5I1Ivwë�Ü]ÈÊÉ@Ð�É@ÚzÒ«Ü/É�È�ÒÊÇ	ÈÊð#Ù�ÒÊÅEÑ)Ú]ÛwÒÊÓ	É@ÑMÈ�î"É@ÐHÒÊÅEÔ Ù�ÒÊÉ�Ñ�Ø

γTSF−LJ
ë�É@ÐHÒÊÅEÔ Ù�ÒÊÉ�ÑMØ

γTSF−LJ
ðzî£æÙu×GÅUß	ÕèÓ�ÙMÕ�¯>Ù�Ú�ßuÐ�Ù�ÅEÈèß²uEÍ�5]ÍUvwë]É@ÐHÒÊÅEÔ Ù5ÒÊÉ3Ñ�Ø

γTSF−LJ
ðzîu�
ÈÊÑ)Ç#ÆMÓzÒÊÑ)Ú�ÙMÚ�ßx6�ÅEÝEÔ>É�È�uEÍ�5�OIv�Ì
ì*Ó#É	t	ÈÊÐHÒÝEÅEÚ#ÉæÈÊÉ@Ü	ÈÊÉ�Ð�É@ÚzÒÊÐ�ÒÊÓ	ÉæÕuÙMÝEÕ@Ç	Ý�Ù5ÒÊÅEÑ)Ú¨Ù�Ò-ÒÊÓ#É�uEÍ)ÍMÍgvúÐ�Ç]È�Ø�ÙMÕ�É)ë/ÒÊÓ#ÉæÐ�É@Õ�Ñ)Ú�ßJÙ5Ò3ÒÊÓ	É�uEÍ)ÍTO�v�ëOÒÊÓ	ÉºÒÊÓ#ÅªÈèß~Ù5Ò3ÒÊÓ	ÉuEÍTO�Oqv�Ì*ì*Ó	Éæð/ÑMÒ�ÒÊÑMÔ ÝUÅEÚ	ÉæÑMØ&ÒÊÓ	ÉºÒèÙMð#ÝEÉ)ë	ÅEÐ

γ
Ù5×)É�ÈèÙMÆMÉæÑ�×)É�È!ÒÊÓ#É�ß]Å]s�É7ÈÊÉ@ÚzÒ-ÑMÈÊÅEÉ@ÚzÒèÙ�ÒÊÅEÑ)Ú	Ð@Ì

resulting predictions for the truncated and shifted Lennard-Jones potential in the following
tables, where we also show the numerical data, where available.

The data for the full (or “almost full”) Lennard-Jones potential (table 7.3) are taken
from Potoff and Panagiotopoulos [144], Errington [145], Trokhymchuk and Alejandre [146]
(truncated Lennard-Jones with rc = 5.5σ), Holcomb, Clancy and Zollweg [147](truncated
Lennard-Jones with rc = 6.3σ), Mecke, Winkelmann and Fischer [135](truncated Lennard-
Jones with rc = 6.5σ), and Nijmeijer, Bakker and Bruin [148] (truncated Lennard-Jones with
rc = 7.33σ). These data are all considered to be un-truncated, as the effect of truncation for
these large values of rc is negligible.

The data for the truncated and shifted Lennard-Jones potentials are taken from Haye
and Bruin [149], Holcomb, Clancy and Zollweg [147], Nijmeijer, Bakker and Bruin[148],
Trokhymchuk and Alejandre [146], Adams and Henderson [163] and Mecke et al. [135]. It
is evident that the perturbation-theory with the sharp dividing surface estimate, that works
well for the TSF-LJ liquid-solid interface, fails rather badly in the case of the liquid-vapour
interface. Although the latter observation is not new, we have included tables 7.2-7.3, as they
contain data that are rather scattered in the literature.

The data of table 7.2 have been plotted in fig. 7.3, where the full Lennard-Jones data from
table 7.3 are fitted to a polynomial function. We estimate the surface tension as a function of
∆ρ = ρL − ρV (fig. 7.3) for the full Lennard-Jones potential (Tc = 1.312 ref.[151]), and for
the truncated and shifted LJ potential (Tc = 0.935 ref. [152]).

The figure clearly shows that the step-profile perturbation theory estimate is not particularly
accurate and gets worse as we approach the critical temperature: so much so that for small
∆ρ, γTS−LJ would become negative. However, there is also considerable spread between the
various numerical data. It has been noted before (already in ref. [153]) that the discrepancy
between the discontinuous-interface approximation and the simulation results is due to the
fact that the L-V interface gets more and more diffuse as Tc is approached. The step-profile
approximation is then not justified (see ref. [134]).
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∆ρ ρl ρv T γLJ γTS−LJ Ñ c�|\NjdeL�\� �
� ± �H� ��� �H� � � ã � �H�[�v��ä
� ��� � � �H� �
å
� ± �H� �
��å Î �O��� Ï�\� �
� ± �H� ��� �H� � � ã � �H� � ã åT� ��� � � �H� �T�+� ± �H� �
�
� Î �O� ã Ï�\� �
� ± �H� ��� �\� � � � �\���R��ä ��� � � �H� �
å�å ± �H� �
��� Î �O��å Ï�\� �
� ± �H� ��� �\� � å�� �\���R��� ��� � �\���v�+� ± �\� ���\� a �©�\� ����� d

�\� �]� ± �H� ��� �H� ���`�vä �H� �
���
å �\� ã	� � �H�[� � � ± �H� �
��ä Î �O� ã Ï�\� �]� ± �H� ��� �\� �\�Rå �H� �
���
å �\� ã	� �H� �
�+� ± �H� �
�\� b �©�\� ���
ä d

�\� ��ã ± �H� �H� �H� � � � � �H� � � �vå �\� ã � � �H�[� ã � ± �H� �H�R� Î �O��� Ï�\� ��ã ± �H� �H� �\� ��� � �\� � �]� �\� ã � �H� ä��
ä ± �H� �
�
� c �\� ��å d

�\� �
� ± �H� ��� �H� �
�\� ã �H� ��� � � �\� ã � � �H� �
��ä ± �H� �
��ä Î �O� ã Ï�\� �
� ± �H� ��� �\� ���
� �H� ���
ä ã �\� ã � � �H� �
�+� ± �H� �
� ã Î �O��å Ï�\� �
� ± �H� ��� �\� ���T� �\� ���
� �\� ã � � �H� ��ä ± �\� �
� Î �R�
ä Ï�\� �
� ± �H� ��� �H� �
���
� �H� �����
� �\� ã � � �H� �
�
� ± �H� �H�R� Î �O��� Ï�\� �
� ± �H� ��� �\� ����� �\� ���
� �\� ã � �\� �
� ± �\� ��ä a �\���m� d

�\� ��� ± �H� �
ä �H� � ã ��ä �H� �
ä��T� �\� å � � �H� ä
��ä ± �H� �
��ä Î �O� ã Ï�\� ��� ± �H� �
ä �\� �+��� �\� �
�
� �\� å � � �H� � ã ± �\� ��� Î �R�
ä Ï�\� ��� ± �H� �
ä �\� � ã�ã �\� �
� ã �\� �m� � �\� � � ± �\� �
� a �\����� d

�\� �T� ± �H� �H� �H����ä��
� �H� �H� ã � �\� å�� � �H� ����å ± �H� �H�Rå Î �O��� Ï�\� �T� ± �H� �H� �H����ä\� � �\��� ã	� �\� å�� � �\� ä ã ± �\� �\� Î �O��å Ï�\� �T� ± �H� �H� �\� �+ä\� �\� �
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Concerning the computation of the liquid-solid inter-facial free energy, we think that the
agreement found between simple perturbative calculations and simulations might be caused
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ã7Ì

by some cancellation of errors - on one side, an assumption of a infinitely sharp interface
(typically, the dividing surface is about one particle diameter thick), and, on the other side,
the disregard of the dense liquid layering in proximity of the interface with the solid.

However, in the liquid-vapour case, the perturbation theory approach with the sharp inter-
face seems to be too simplistic, possibly due to the fact that for liquid and vapour at coexis-
tence, the interface is fairly rough and not well defined, especially close to the critical point.
In view of the rather poor performance of the perturbation-theory estimate for the liquid-
vapour interface, the success in the case of the liquid-solid interface is encouraging and, in
fact, somewhat surprising.

/�0�°3�_Bí¡��:4b2²±�4�6�47�_J�9
Concerning this work, I would like to thank F. Diotallevi and K. Shundyak for very helpful
discussions and a critical reading of this chapter.
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Recently, Mulero et al.[154] considered the Fowler’s formula [132] of the liquid-vapour sur-
face tension including also the contribution of the vapour density:

γ =
π(ρL − ρV )2

8

∫ ∞

0

r4u
′

g(r)dr � �T� n_���)�
this corresponds to the Fowler’s expression with the Laplace approximation of a sharp in-
terface, and it is also equivalent to the result obtained by Rowlinson and Widom [130] for
ρV = 0. By means of the mean field approximation, that considers the liquid homogeneous
on the length scale of the potential, (g(r) = 1), it is possible to recover the Laplace’s equation
for the surface tension, as shown in Rowlinson and Widom [130].

Considering only the (σ/r)6 term in the Lennard-Jones potential, it is also possible to
compute the tail corrections for a truncated and shifted potential at a certain cut-off rc, by
integrating from rc to infinite eq. 7.A.1 with the above-mentioned approximations, obtaining
:

γtail =
3

2
π(∆ρ)2

ε

r2
c

� �`� n3� �	�
Hence, for rc = 2.5σ, eq. 7.A.2 becomes γtail = 0.75(∆ρ)2.

At this point, we want to demonstrate that our calculations recover eq. 7.A.2, that is also
the zero thickness limit of Blokhuis’s expression [134]. We start by describing Blokhuis’s
equation for the liquid-vapour surface tension of a flat interface of a truncated and shifted
Lennard-Jones potential. Blokhuis used the Kirkwood-Buff[131] expression for the surface
tension

γ =
1

4

∫ ∞

−∞

dz1

∫

dr u
′

(r)r(1 − 3s2)ρ(2)(z1, z2, r)

=
π

4
(ρL − ρV )2

∫ 1

−1

ds

∫ ∞

0

dr u
′

(r)r4(3s3 − s)g(r) coth

(

sr

2ξ

)

, � �`� n3� ä#�
where r ≡ |r1−r2|, s ≡ cos θ12, z2 ≡ z1+sr, u′

(r) is the derivative of the potential, and ξ is
the thickness of the interface. The second equation is obtained from the first integrating over
z1, after approximating the pair density by the product of the density and the pair correlation
function in the uniform liquid, assuming g(r) ∼ 1, the first derivative of the potential equal to
24r−7 in Lennard-Jones units (neglecting the repulsive part of the potential), and the density
profile through the inter-facial region with a tanh profile with finite thickness. Performing
the integration in eq. 7.A.3 over r from the cut-off rc in case of a Lennard-Jones interaction

γtail = 12π(ρL − ρV )2
∫ 1

0

ds

∫ ∞

rc

dr

(

1

r

)3

(3s3 − s) coth

(

2sr

ξ

) � �`� n3� ���
that is Blokhuis’s expression for the tail corrections of the truncated Lennard-Jones inter-
action potential. Considering the limit of zero thickness, eq. 7.A.4 recovers the result in
eq. 7.A.2.
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We now show that our calculations of the tail corrections correspond to eq. 7.A.2 (and

therefore eq. 7.A.4 ). Computing the contribution due to the overall perturbation by means of
our analytical calculation we obtain: γP1+γP2=-0.75 (∆ρ)2 perfectly matching the absolute
value of the previous result. Our result has the opposite sign as Blokhuis’s one, as we have
slightly different approaches.

1. We compute the tail correction for the surface free energy.

2. We add it to the reference system;

while Blokhuis and Mecke

1. compute the surface free energy for the truncated potential, and

2. add the tail corrections in order to recover the surface free energy for the full Lennard
Jones.

We underline the fact that in our analytical approach we do not assume xL��sutw|Gsut the nature
of phase 1 and 2.
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Italian imagination.

We present a numerical study of homogeneous bubble nucleation in a super-heated
Lennard-Jones liquid. For the first time, we employ Forward Flux Sampling in combina-
tion with a Molecular Dynamics simulation to estimate the rate of bubble nucleation and
investigate its pathway. In contrast to earlier work by Shen and Debenedetti [155], we find
that explosive boiling starts with compact, rather than with ramified bubbles. We find that the
bubble-nucleation rate coincides with the one expected on the basis of Classical Nucleation
Theory, assuming the surface tension γ equal to 0.08. However, the CNT result is extremely
sensitive to the precise value of the surface tension of the bubble. Hence, a precise value of γ
for the truncated potential used is needed in order to make a correct comparison.

Ý�°u±§°ûú �=J§@�BC2[&70 J§8IB��
Anyone who has ever sprinkled water droplets into a pan with hot frying oil is familiar with
the phenomenon of explosive boiling: the liquid water will be heated far above its equilib-
rium boiling point before the vapour phase nucleates suddenly and violently. As this example
illustrates, explosive boiling is very common, and usually undesirable in practical situations.
In addition to explosive boiling itself [156], application areas include the study of cavitation
erosion [157], sonochemistry [158] and the design of high-efficiency heat exchangers [159].
In spite of the practical relevance of these phenomena, the mechanism by which the vapour
phase nucleates in a homogeneous, super-heated liquid is still under debate. The standard
model to describe bubble nucleation is based on Classical Nucleation Theory (CNT). In 1975,
Blander and Katz [160] wrote a review on this topic in which they concluded that the mea-
sured bubble-nucleation rates of a large number of organic compounds were consistent with
the prediction of Classical Nucleation Theory (CNT) [161, 162, 6]. However, the picture
is not always that simple. Bubble nucleation in n − nonane (C9H20) was investigated us-
ing a variety of different techniques: fast expansion cloud chamber [163], two-piston cloud
chamber [164] and upward thermal diffusion cloud chamber [165]. The resulting rates ex-
tended over 14 order of magnitudes, from 10−4 to 1010 cm−3 s−1. The analysis of Hungò Ð üuû�eLöèþ@û�ûwôª÷S�>üU�)ý
ôªõéöÊüuÿªÿEþ�
Güuû�þ�ý�ôªüuõük
ô ý���] � þ�� Ð þ@õI
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et al. [164] showed that CNT failed to predict the temperature dependence of the bubble nu-
cleation rate, yet correctly predicting the variation of nucleation rate with super-saturation.
The same observation applies to bubble nucleation in water [166, 167], toluene [168], and
n-alcohols [169, 170]: the predicted CNT nucleation rates were too low at low temperatures,
and too high at high temperatures, with error bars of several orders of magnitude.

As bubble nucleation is a rare event, its mechanism depends crucially on the processes
that lead to the formation of microscopic “embryonic” bubbles that can subsequently grow
to macroscopic size. Unfortunately, at this stage there are no experiments that probe the in-
cipient bubbles directly, although such experiments should be possible in colloidal systems.
In recent years, theory and numerical simulation have proved to be valuable tools to explore
the microscopic and initial phases of nucleation phenomena, both for coalescence [103] and
for cavitation [155] . Zeng and Oxtoby [171] studied the liquid-to-vapour phase transition
in a Lennard-Jones fluid by means of Density Functional Theory, and found that CNT un-
derestimated the nucleation rate by more than 15 orders of magnitude. Classical Nucleation
Theory has been widely criticised in the past. On the one hand, Oxtoby and co-workers [172]
pointed out the fact that CNT, based on the capillary approximation, ignored the effect of
curvature on the surface free energy. On the other hand, both Cahn and Hilliard [69, 173] and
Oxtoby and Evans [7] illustrated the failure of the theory in predicting a finite barrier while
approaching the spinodal curve- a topic that remains controversial to this day [174]. Delale et
al. [175] attempted to derive the minimum work of bubble formation in a phenomenological
way, using the data of the experimental super-heating. With this phenomenological approach
they then estimated the steady-state bubble nucleation rate, and found the same discrepancy
between computed and measured rates already observed when comparing the nucleation rates
with the CNT predictions. More recently, Shen and Debenedetti [155] reported the first direct
Monte Carlo simulations to estimate the free-energy barrier for bubble nucleation in a sim-
ple model system (truncated and shifted Lennard-Jones potential). These authors computed
the free-energy barrier using Umbrella Sampling. The progress of the bubble nucleation was
monitored using a global order parameter based on the density of the system. A geomet-
ric analysis of the resulting vapour phase suggested that the critical cluster had a web-like,
system-spanning structure rather than a spherical shape as CNT would predict. This finding
is puzzling, as nucleation is expected to be a highly localised event.

The work reported in the present chapter was prompted by the findings of ref. [155]. How-
ever, rather than using the Umbrella Sampling scheme (which, after all, makes assumptions
about the quasi-equilibrium and Markovian nature of the nucleation process), we decide to
study bubble nucleation of the same truncated force shifted Lennard-Jones potential, using
Forward Flux Sampling, a technique also suited to simulate nucleation events proceeding in
a distinctly non-equilibrium manner.
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To follow the process of bubble nucleation, we simulate a system consisting of 3375 particles
interacting via a truncated and force-shifted (TSF) Lennard-Jones potential:

vTSF (r) = vLJ (r) − vLJ (rc) −
∣

∣

∣

∣

dvLJ

dr

∣

∣

∣

∣

rc

(r − rc).
� åH�[�W�

where vLJ denotes a 12-6 Lennard-Jones potential truncated at rc = 2.5σ (σ is the particle
diameter), the second term ensures the continuity of the potential and the third term the
continuity of its first derivative at rc. The reason to use a truncated and shifted potential,
rather than the full LJ potential is related to the fact that, when a bubble nucleates, the system
becomes spatially inhomogeneous: this does not allow the use of energy and pressure tail
corrections, employed when simulating a a homogeneous system. We equilibrate this system
using constant-NPT Molecular Dynamics simulations with a Nosé thermostat [176, 70] and
an Andersen barostat [177] (see appendix A) 1. In order to integrate the equations of motion,
we use a leap-frog algorithm [178]. The integration time step is fixed at δt∗ = 0.00046: using
the Lennard-Jones parameters for Argon, this corresponds to a time-step of 1 femto-second.
In our simulations, we adopt periodic boundary conditions. As a test of our MD code, we first
reproduce the (known) liquid-vapour phase diagram of the TSF-LJ model (see appendix B
and ref. [152]). In what follows, we express all variables in Lennard-Jones units; σ, m, ε, and
√

mσ2/ε are, respectively, the length, mass, energy, and time units, i.e. r∗ = r/σ, m∗ = 1,
e∗ = e/ε, and t∗ = t/

√

mσ2/ε.
When bubble nucleation happens, we expect that the volume of the simulation box ex-

pands quite rapidly, especially once the bubble size exceeds the “critical” value, growing
essentially without bound. In our simulations we check for finite-size effects, to avoid spu-
rious interactions of the bubbles with their own periodic images. The choice of the system
size has to be balanced with the choice of the super-saturation, as if the super-saturation is
too low, the critical bubble becomes too large, thus implying a large system, whereas if the
super-saturation is too high, the system may become absolutely unstable: boiling does not
proceed anymore through bubble nucleation but through spinodal decomposition. In order
to get a rough estimate of the super-saturation, we make use of Classical Nucleation The-
ory. Assuming that the pressure in the critical bubble is the same as the vapour pressure
at the imposed temperature, the critical bubble size is given by eq. 2.11, where the Laplace
pressure is ∆P ∗ = P ∗

V (T ) − P ∗ with P ∗ the imposed pressure of the liquid and P ∗
V (T )

the equilibrium vapour pressure at temperature T ∗. Shen and Debenedetti [155] studied at
the saturation pressure of P ∗ = 0.046, the same system at different super-heatings S (de-
fined as S=(T ∗ − T ∗

sat)/T ∗
sat, where T ∗

sat is the vapour-liquid coexistence temperature at the
given pressure). Among others, ref. [155] considered S=9% , in which case CNT predicts
a free-energy barrier height of about 20kBT . To accommodate a critical cluster in our 3375
particles system, we super-heat the system by the same amount as in ref. [155], but imposingòj` ü«ø�ý����I�²
��I
�
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a lower saturation pressure, P ∗ = 0.026. At P ∗ = 0.026 the coexistence temperature is
T ∗

sat = 0.785. At T ∗ = 0.785 and P ∗ = 0.026, the equilibrium liquid and vapour den-
sities are, respectively, ρ∗

L = 0.668 and ρ∗
V = 0.043. Therefore, we super-heat the liquid

at constant pressure up to T ∗ = 0.855, that corresponds to 0.91T ∗
c (where T ∗

c = 0.935 es-
timated by Errington et al [152]) and to a super-saturation of S=9%. By super-heating the
liquid up to T ∗ = 0.855 keeping the external pressure constant, the liquid density becomes
ρ∗L = 0.58. At the coexisting state point of T ∗

sat = 0.855 and P ∗
coex = 0.046, the liquid

density is ρ∗
L = 0.598, and the vapour one ρ∗

V = 0.083.
In order to follow the progress of a bubble nucleation event, we compute the size (volume)

of the biggest bubble present in the system, and use this quantity as the order parameter. As
we impose a moderate super-saturation to the system, we assume that, at any given time,
the system contains at most one very big bubble. Due to spontaneous density fluctuations
happening in the system, there may be many regions where, locally, the density is low. Even
though these fluctuations might not be important for the formation of a localised bubble,
they do contribute to the total void volume in the system. Indeed, if we consider a very big
simulation box, the local density fluctuations will completely dominate the total void volume.
Shen and Debenedetti, in their study, employed a global order parameter based on the overall
density of the system. However, as it was already pointed out by ten Wolde et al. [29], a global
order parameter probes the total void volume, rather than the void volume concentrated in one
bubble. Moreover, the entropic factors that favour a homogeneous distribution of void volume
bubbles are indeed more pronounced for big systems.

In what follows, we describe the �@v�����¢è�q(z¢H�@v���� procedure to identify vapour bubbles as the
biggest domain of low-density ( �&|z�O¢�yUtwñ5�/tw�G¢�yEtËX]� ) volume:

1. following the approach of ref. [179], we superimpose a three-dimensional grid with
unit cell mesh of (0.5σ∗3) on the system;

2. as in ref. [180], we use Stillinger’s cluster criterion [181] to identify all the nearest
neighbours j of each particle i. A particle j is considered to be a neighbour of a given
particle i if it is located within a cut-off distance of r∗c = 1.6, that corresponds to the
first minimum of the radial distribution function of the liquid. Using this criterion, we
compute the probability distribution of the number of neighbours of each particle N in
both the liquid and the vapour phases;

3. we identify a particle as yUtwñ5�/tw�G¢�yEtËX]� if it has more than five neighbours. This choice of
this threshold is dictated by the fact that essentially all vapour-like particles have less
neighbours than the liquid-like ones (see fig. 8.1);

4. we define a spherical volume with radius r∗c around every liquid-like particle: all grid
cells that are included in a sphere with radius r∗c around a liquid-like particle are la-
belled as “liquid”;

5. the grid cells that are not identified as yUtwñ5�/tw�G¢�yEtËX]� constitute the �zx��O|z�/su¢�yEtËX	� volume;

6. we now perform a cluster analysis on the vapour-like cells: bubbles are defined as
compact clusters of vapour-like cells;
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7. finally we select the biggest bubble;

8. once we have the biggest bubble, the order parameter that measures the bubble nucle-
ation process is defined as the volume of the biggest bubble Wb, expressed in units of
∆V ∗ = 0.1σ∗3 .
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Ä&ÅEÆ)Ç]ÈÊÉ²­]ÌEÍ)ÌEÎ§âúÈÊÑ)ð#ÙMð#ÅEÝEÅªÒ�î"ß	ÅEÐHÒ�ÈÊÅEð#Ç]ÒÊÅEÑ)Ú<ÑMØºÒÊÓ	É;ÚGÇ#Ô­ð/É�ÈéÑ�ØæÚ#É�ÅUÆMÓGð/Ñ)Ç	ÈÊÐ
N
Ø¿Ñ�È�ð/Ñ�ÒÊÓ"ÝEÅ��zÇ#ÅUß<ÙMÚ�ß×MÙMÜ/Ñ)Ç]ÈºÙ5ÒæÕ@ÑzÉ�ê]ÅEÐHÒÊÉ@Ú	Õ@É

T ∗ = 0.785
ÙMÚ�ß

P ∗ = 0.026
Ìæìiç*Ñ«Ü�Ù5È�ÒÊÅEÕ@ÝEÉ@ÐæÙ�ÈÊÉ­Ú#É@ÅEÆMÓ]ð/ÑMÇ	ÈÊÐ�ç-Ó#É@Ú	É@×WÉ�ÈÒÊÓ#É�ÅEÈ�ß]ÅEÐHÒèÙMÚ#Õ�ÉæÅUÐ�Ð�Ô ÙMÝEÝEÉ�È-ÒÊÓ�Ù�Ú

r∗c = 1.6
Ì

In our simulations, we use the Forward Flux Sampling (FFS) technique (already introduced
in chapter 2) to study the cavitation phenomenon: by means of FFS, we measure the bubble
nucleation rate and analyse the pathways to nucleation at T ∗ = 0.855 and P ∗ = 0.026. To
our knowledge, the present study is the first example where FFS is used in combination with
a Molecular Dynamics simulation. The FFS technique can only be used for systems that
present a time evolution at least partially stochastic. A normal Molecular Dynamics (NV E
ensemble) simulates deterministic events, thus unsuited to be used together with FFS. In the
present work instead, we use constant NPT Molecular Dynamics simulations, and employ
the stochastic nature of the thermostat. In particular, together with a Nosé thermostat, we
combine a Lowe-Andersen thermostat as a noise generator [182]. In doing so, we ensure a
"tunable" dynamical instability in the evolution of the trajectories in the phase space [183],
whilst preserving a realistic dynamics of the system, obtained by monitoring the diffusion
coefficient with and without the noise generator, and tuning the thermostat parameters in
order not to affect the diffusivity of the system (see appendix C).
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As mentioned above, at T ∗ = 0.855 and P ∗ = 0.026, the average density of the metastable
liquid is ρ∗

L = 0.58, thus the average volume of the 3375 particles system is V ∗ = N/ρ∗L ∼
5820. We locate the boundary of the metastable liquid basin at Wb = 25 and collect O(102)
configurations at this interface. The complete set of location of the interfaces at T ∗ = 0.855
and P ∗ = 0.026 is:

i � Wb)i Mi i (Wb)i Mi i (Wb)i Mi� � � → ä�� �v��� � �vå�� → ���
� � � ��� ����� → å���� �v�
� ä�� → � � �v��� � ���
� → ä
��� ��� �v� å���� → ã#� � �
�
ä � � → ã � �v��� å ä
��� → ����� � � �Rä ã	� � → �v����� �v�
� ã � → �m��� ��� ã ����� → �	� � � � �O� �v����� → � ã ��� �v�
� �v��� → �Rå
� ä�� �R� �	� � → ����� �v� � � � ã �
� ä � ���ì&Ù�ð#ÝEÉ�­GÌEÍ)ÌEÎ
â&Ñ)Ð�ÅªÒÊÅEÑ)Ú ÑMØ�ÒÊÓ	É�ÅEÚzÒÊÉ�È�Ø¿ÙMÕ@É@ÐäÙMÚ#ßíÚ]Ç	Ôéð/É�È$Ñ�Ø�Ò�ÈÊÅ�Ù�ÝEÐäÜ/É�ÈBÅEÚGÒÊÉ7È�Ø�ÙMÕ�É�Ø ÑMÈäÒÊÓ	É�ÄúÄ��éÐÊÙMÔ>Ü#ÝEÅEÚ#ÆÑMØ�ÒÊÓ#É=ÐiÉ�Ú#Ú�Ù5Èèß]Û�Í)ÑMÚ#É@Ð!ÕuÙu×GÅªÒèÙ�ÒÊÅEÑ)ÚJÐHÒÊÇ#ß]îzÌ

We fix the boundary of the stable vapour state at Wb =3500, a value where the probability
a bubble is committed to completely phase transform and fill the system is almost one. We
estimate that the critical bubble has size Wb around 950. However, there is a considerable
variation in the sizes of the critical bubbles. In our simulations, we do not allow the bubble
to grow bigger than Wb =3500, as this would correspond to infinitely large an expansion of
the box size.

We compute the bubble nucleation rate at T ∗ = 0.855 and P ∗ = 0.026 to be R =
9 × 10−15±1σ∗−3τ∗−1, in CGS units (assuming the Lennard-Jones parameters for Argon)
R = 1019cm−3s−1. We cannot directly compare these numbers with experimental data for
Argon. However, we note that the computed bubble-nucleation rate is much higher than
the one measured experimentally for a number of volatile organic liquids at 0.89T ∗

c . For
these systems, Blander and Katz [160] reported a bubble nucleation rate of the order of
104 − 106cm−3s−1.

��Ø)ï�ðFÕ§èR× ��Ø.Ù�éõ×[Ö`ò �CÓ[Õ*�	�H×�ÒàÕ�Ó=ÐÍÑ§Ò;Ó[Ô�Õ;ÖT×�Ø.Ù2?õòFÔ�Øaè@�
A CNT-based theoretical estimate of the bubble nucleation rate was given by Katz (eq. 12 in
ref. [30]):

RCNT = N

[

2γ

πmB

]

exp−β∆G, � å\���]�
where the pre-factor (N

[

2σ
πmB

]

) contains the number density of the liquid (N ) and the Zel-
dovitch factor (

[

2σ
πmB

]

), m is the mass of a molecule, γ the liquid-vapour surface tension,
and B a term that takes into account the mechanical equilibrium of the bubble: in cavitation
experiments, B is always equal to unity. β∆ G is the free-energy barrier to form a critical
bubble, assumed to be spherical: −16πγ3

3[PV −PL]2 , where PV − PL is the Laplace pressure.
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As a first approximation, we consider the value of the liquid-vapour surface tension com-

puted for the truncated and shifted Lennard-Jones potential by Haye et al. [149] at the same
∆ρ∗ = ρ∗L − ρ∗V = 0.54 as our simulations : γ∗ = 0.154, even though this value of the
liquid-vapour surface tension over-estimates the γ∗ of the interaction potential we use, thus
of the free-energy barrier. Nevertheless, computing the free-energy barrier by means of CNT,
we obtain β∆G ∼ 180 and RCNT ∼ O(10−81)σ∗−3τ∗−1. However, if we assume a value of
γ∗ around 0.08, we get β∆G ∼ 25 and a nucleation rate comparable with the one computed
by means of FFS, RCNT ∼ O(10−12)σ∗−3τ∗−1.

1�Ñ3(�(�Ó[Ô�Ù�Ñ§Ò;Ó[Ô�Õ;ÖT×�Ø)Ù#ðFÕ;Ö`òQé�Õ$�$�
Figure 8.2 shows a generic pathway we observe in the bubble nucleation simulations, from a
super-heated liquid at T ∗ = 0.855 and P ∗ = 0.026: the top left snapshot is the initial stage
of the bubble, while the bottom right snapshot is the critical bubble corresponding to the top
of the free-energy barrier. The growing bubble does not exhibit a ramified, system-spanning
structure, not even the critical bubble. In this respect, our findings differ qualitatively from
those reported in ref. [155]. We speculate that, on the one hand, the percolation of the vapour
phase observed by the authors is the result of the use of a global order parameter. On the other
hand, we believe the authors were fairly close to the critical point, thus inducing a spinodal
instability to the system. Their chosen super-saturation was around 9% at P ∗ = 0.046, where
the coexistence temperature is T ∗

sat = 0.855. Therefore the temperature where the authors
studied the nucleation phenomenon was T ∗ = 0.93, very close to T ∗

c . Even though our results
seem promising, we have to point out a possible drawback of our “local” order parameter. It
can happen that a bubble is formed by two sub-bubbles attached by a narrow ��|G�O¢�yEtwñ��/tw�z¢�yUtËX]�
volume (only one or two grid cells). This results in sudden jumps of Wb (see fig. 8.3 top and
bottom). However, as the Forward Flux Sampling technique does not depend on the choice
of the order parameter, we believe this effect should not compromise the calculation of the
rate.

Ý�°��"°ç� B��30f�g&_9a8:B��_9*15�72 DB&=J\&5@
4 ¡�B�@;°
Using Forward Flux Sampling and the volume of the biggest bubble as a local order param-
eter, we have studied cavitation in a Lennard-Jones liquid. We have compared the computed
bubble-nucleation rate with the value estimated using CNT. In order for the simulations and
the CNT prediction to match, we have to assume a value for the surface tension of the TSF-
LJ fluid a relatively low value of the surface tension. However, an exact calculation of γ∗ is
needed for a precise comparison.

We have observed that nucleation takes place via the formation of compact bubbles. In
contrast, Shen et al.[155] observed the formation of ramified, percolating void spaces. We ar-
gue that this discrepancy may be partly due to the use of a global order parameter in ref. [155]
and, more pertinently, that the simulations in ref. [155] were carried out at a state point that
is very close to the liquid-vapour spinodal of the FTS-LJ model.

Analysing the nucleation pathways, we have observed that the bubbles are fairly compact.
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T ∗ = 0.855

Ù�Ú�ß
P ∗ = 0.026

ÌLì*Ó	É­ð/Ñ�Ò�ÒÊÑ)Ô2ÈÊÅEÆ)ÓzÒºÐ�Ú#ÙMÜ#Ð�Ó	ÑMÒ�ÅUÐ�ÒÊÓ#ÉLð#Ç	ð#ð#ÝEÉ�Õ@Ñ�È�ÈÊÉ@Ð�Ü/Ñ)Ú#ß	ÅEÚ#Æ ÒÊÑÒÊÓ#É3ÒÊÑ)Ü~Ñ�Ø&ÒÊÓ#É�Ø�ÈÊÉ@É�ÛwÉ@Ú	É�ÈÊÆMî�ð�Ù5È�ÈÊÅUÉ7Èuë�Å�Ì É)Ì$ÒÊÓ#ÉºÕ�ÈÊÅªÒÊÅEÕuÙ�Ý�Õ@ÝEÇ#ÐHÒÊÉ7ÈuÌ

However, we have also detected bubbles with different topologies (work in progress), proving
that small bubble are strongly fluctuating objects. We plan to attempt a systematic character-
isation of the topology of the bubbles, as we believe it might play an important role in the
cavitation process.

In addition, we also think that the propensity to nucleate a bubble is related to the local
structure of the liquid. However, if we consider the reverse process, bubble collapse – in par-
ticular in the extreme case of sonoluminescence – we should expect that the local temperature
at the site of an emerging bubble may have a strong influence on the propensity for bubble
nucleation. Further work is needed to clarify this issue.
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Concerning this work, I would like to Z. Wang for a careful reading of the chapter.
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In our Molecular Dynamics simulations we choose a time step of δt∗ = 0.00046. To select
reasonable relaxation times for both the thermostat and barostat in our NPT ensemble, we
perform different trial runs at different temperatures and pressures. On the basis of the re-
sults of these runs, we select τ∗

T = 0.093 for the thermostat and τ ∗
P = 1.39 for the barostat.

Fig. 8.A.1 illustrates the (kinetic) temperature fluctuations and the (virial) pressure fluctua-
tions in the Lennard-Jones fluid during an NPT simulation using the above-mentioned re-
laxation times, with 〈T ∗〉 = 0.9 and 〈P ∗〉 = 0.064. In order to choose the proper mass of the
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piston, we accord the volume fluctuations in the system on a time scale of around 1 ps, that
corresponds to the simulation box edge (V ∗1/3) divided by the speed of sound in the liquid (
900÷1500 m/s at room temperature) [177].

/ ´§´547�32Í8h³ÒÑÓ´ ² Ø�ÖÃ§\Ô�ë �k8cZ[&G8£2#§ � 1J´5B�&G@2´ <_139Q4�2�8I1�±C@�156
It is well known that many thermodynamic properties depend sensitively on the details of the
long-range part of the potential. A truncation of the full Lennard-Jones interaction potential
can severely affect both the location of the critical point and the value of the surface tension.

The location of the critical point in a Lennard-Jones system was studied by several authors
using a combination of theory and computer simulation. For the full Lennard-Jones, a predic-
tion of the critical point based on the equation of state by Nicolas et al. [184] and Levesque et
al. [185], resulted in a critical temperature of T ∗

c =1.35 and a critical density of ρ∗
c=0.35. How-

ever, by fitting Nicolas’s results to a density scaling law, and assuming the three-dimensional
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Ising critical exponent (β = 0.32), Smit obtained T ∗

c =1.316 and ρ∗
c=0.304 [186] . More

recently, Potoff and Panagiotopoulos, using the histogram re-weighting method and mixed-
field-finite-size-scaling techniques within a Grand Canonical Monte Carlo simulations, ob-
tained T ∗

c =1.312 and ρ∗
c=0.316 [151]. Wilding [187], with the same techniques as Potoff but

imposing a truncation at rc = 2.5σ, computed T ∗
c =1.19 and ρ∗

c=0.32.
The truncated but un-shifted Lennard-Jones critical point at rc = 2.5σ, was estimated by

Finn and Monson via an isobaric-isothermal Monte Carlo scheme [188]: they corrected the
full Lennard-Jones equation of state of Nicolas, because of the discontinuity of the potential
in rc and the absence of long tail corrections, and found T ∗

c =1.23 and ρ∗
c=0.32.

The truncated and shifted Lennard-Jones critical point at rc = 2.5σ was estimated by Smit
using Gibbs ensemble Monte Carlo and a version of the Nicolas equation of state, corrected
for the long tail of the potential [186]: from his calculations, T ∗

c =1.085 and ρ∗
c=0.317.

Smit and Frenkel [189] used Gibbs ensemble Monte Carlo simulations to show that in a
two-dimensional Lennard-Jones system both the critical point and the overall shape of the
liquid-vapour coexistence curve, was strongly dependent on the long range part of the inter-
action. The same observations apply to the three-dimensional Lennard-Jones system [186].
The overall effect of truncation of the full Lennard-Jones potential is a (substantial) shift of
T ∗

c to lower temperatures.
By adding a truncation and shift of the forces to the Lennard-Jones potential (TSF-LJ),

Errington et al. [152] computed the liquid-vapour phase diagram by means of Monte-Carlo
simulations. Fig. 8.B.1 represents the liquid-vapour phase diagram for a Lennard-Jones sys-
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ÐiÉ�Ú#Ú�Ù5ÈèßVÍ)ÑMÚ#É@Ð@Ì
tem: the full Lennard Jones data are from Potoff et al. [144] and Smit [186], the truncated
and shifted Lennard-Jones at rc = 2.5σ from Smit [186] and Trokhymchuk et al. [146], and
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the truncated-shifted-force Lennard Jones (rc = 2.5σ) from Errington et al. [152]; in the
same figure, we also plot our simulation data, perfectly matching Errington’s results. From
fig. 8.B.1 it is evident that truncation and shifting of the potential have a considerable effect
on the phase behaviour and on the critical properties. In fig. 8.B.2, we plot the phase diagram
in the pressure-temperature plane. The continuous line and the triangle (critical point) are
from the Monte Carlo simulations in reference [152], while crosses and circles our data for
the liquid and the vapour: the critical point being at T ∗

c,TSF =0.937 and ρ∗
c,TSF =0.320.
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The Lowe-Andersen (LA) thermostat is a momentum conserving and Galilean invariant ana-
log of the Andersen thermostat. It works as follows:

1. we compute the relative velocity between two particles, knowing each particle’s veloc-
ity from the MD runs;

2. we extract from a Gaussian distribution a “new” relative velocity with probability
ν∗∆t∗ where ∆t is the MD time step (1fs in our case) and ν the LA tunable parameter
indicating the strength of the coupling between the system and the thermostat [182]:
the smaller the ν∗, the weaker the coupling;

3. we then compute the “new” velocity of each particle from the relative velocity.

ν∗ is the tunable parameter of the LA thermostat: the dynamical properties of the system
can be tuned by properly choosing ν∗. In fig. 8.C.1 we show the self-diffusion coefficient
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computed for different values of ν∗: when ν∗ ≤ 100, the diffusion of the system with the LA
thermostat is indistinguishable from the one obtained in a system without this thermostat. In
fact, there is little change in the diffusion coefficient as long as ν∗ ≤ 1000. However, when
ν∗ ≥ 10000, the thermostat clearly affects the dynamics.
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In order to use the FFS combined with our Molecular Dynamics simulation, we need to
generate stochastic trajectories. This means that, on the one hand we need to add enough
“stochasticity” to the system to have a proper sampling of distinct trajectories, on the other
hand, we need to keep the dynamics of the system close to Newtonian. We find that when
ν∗ = 500 (see fig. 8.C.2), the stochasticity of the trajectories is sufficient to be used in FFS
under the chosen thermodynamic conditions (T ∗ = 0.855 and P ∗ = 0.026), and the “real”
dynamics of the system is preserved, as shown in fig. 8.C.1.
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In this chapter we report a simulation study in which we compare the liquid-solid inter-
facial free energy of NaCl at coexistence with the value that follows from the height of the
homogeneous nucleation barrier. We find that the two estimates differ by more than 100%.

Similar, although smaller discrepancies are found for crystals of hard-sphere colloids and
of Lennard-Jones (“Argon”) particles. We consider a variety of possible causes for this dis-
crepancy and are forced to conclude that it is due to a finite-size effect that cannot be corrected
for by any simple thermodynamic procedure. Importantly, we find that the surface free ener-
gies that follow from real nucleation experiments should be subject to large finite size effects.
Taking this into account, we obtain quantitative agreement between the simulation data and
the surface free energy of NaCl that follows from nucleation experiments. Our finding sug-
gests that virtually all published liquid-solid surface free energies will have to be revised.

021 � 1ûú)3547698;:2<�=>47?@8A3
The study of homogeneous crystal nucleation is of interest because it provides information
about the pathway by which crystalline order emerges from the disordered parent phase.
However, such experiments are also of considerable practical importance, as they are used
to estimate the magnitude of the liquid-solid inter-facial free energy. Classical Nucleation
Theory (CNT, see chapter 2) provides the route by which experimental nucleation rates are
related to surface free energies. CNT relates the number of crystal clusters that form per
second per cubic meter (denoted by R) to ∆G∗, the height of the free-energy barrier that has
to be crossed to nucleate a crystal, as already shown in eq. 2.32. As already mentioned in
chapter 2 (and eq. 6.1), CNT predicts the height of the nucleation barrier ∆G∗ as a function
of γ the liquid-solid surface free energy per unit area, ∆µ the difference in chemical potential
between the solid and the super-cooled liquid, and ρS the number density of the crystalline
phase. As already discussed in chapter 6, c is a constant that depends on the shape of theB ÐDCFE@GIHKJ�E@E�LNMPO5CFQSR�LNTUHPCFVNV#J�W+CFE.JXR@LNCFTUY�L R@ZU[7\ ]�] GFCK^FJX_`[aLNb�J�T9c 6 \+deJ�T 7 J�TfO 6 \f[gCFh.JXR@R@Li\
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cluster, e.g. c = 16π/3 for a spherical crystal cluster. As the nucleation rate depends ex-
ponentially on ∆G∗, the rate is a very sensitive function of the surface free-energy density
γ.

A crucial assumption underlying CNT is that the bulk and surface properties of a small
crystal cluster are the same as those of a macroscopic crystal. However, it has been long
realised that this assumption is questionable, as a critical crystal cluster often contains only a
few hundred molecules. Indeed, in his review on crystal nucleation, Kelton writes: “...while
the precise meaning of [γ] is uncertain, it constitutes a parameter that can be determined
for each element and profitably used to make predictions of the nucleation behaviour”. In
other words: the γ determined from nucleation experiments can only be used to predict the
outcome of other nucleation experiments, thus severely limiting the predictive value of CNT.
A similar conclusion about the limitations of CNT was drawn by Harrowell and Oxtoby [190]
on the basis of their Density Functional Theory calculations of crystal nucleation barriers.
Nevertheless, surface energies that derive from nucleation experiments are often used in the
literature as if they pertain to macroscopic surfaces.

Increasingly accurate simulation techniques allow us to probe both the free energy of small
clusters and the surface free energies of planar crystal-liquid interfaces. A case in point is the
system NaCl in contact with its melt. Ref. [191] reports the surface free energy of a NaCl
[100] interface in contact with the coexisting liquid phase: γ ≈ 36± 6 mJ m−2. However, as
already shown in chapter 4 and ref. [98], the effective surface free energy that follows from
the NaCl crystal-nucleation barrier at 800 K is γ = 80± 1 mJ m−2 assuming that the cluster
has a cubic shape. In addition, nucleation experiments at 905K [77] provided an experimental
estimate of γ ≈ 68 mJ m−2. Another example of a large difference between γ derived from
the nucleation barrier and from coexistence data comes from hard-sphere colloids: a compar-
ison of simulations at coexistence [192] and in the super-saturated regime [88] indicate that
the value of γ estimated on the basis of the nucleation barrier is some 30% larger than the
value for a planar interface at coexistence. A similar discrepancy (O(20%)) exists between
the surface free energy for the planar interface and the crystal cluster of the (truncated and
(force-)shifted) Lennard-Jones potential [140, 141, 100] (see table 7.1 in chapter 7).

It is clearly of considerable interest to understand the origin of the discrepancy between the
nucleation data and the results for γ at coexistence, as this might facilitate the interpretation
and analysis of experimental nucleation data. In what follows, we will indicate the liquid-
solid inter-facial free-energy with γLS.

021K�21���?���<��.�547?@8A3�:���4a��?��@�

In this section, we report a systematic study of the finite-size effects in the surface free energy
of NaCl crystals in contact with their melt. We choose this system because it shows the largest
discrepancy of all examples listed above. As in refs. [191, 98] we use the Tosi-Fumi rigid-
ion-pair interaction potential [81] to model the inter-ionic interactions in NaCl. In the first
method we describe, the liquid-solid inter-facial free energy was obtained via the Young’s
equation by Zykova-Timan et al. [191]:

γLS = γSV − γLV cos θLV , � l-�&jf�
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where θLV is the contact angle at the interface between the liquid and the vapour, and γSV,
γLV, γLS are, respectively, the solid-vapour, liquid-vapour and liquid-solid inter-facial free
energies. To find γLS, γLV and θLV the authors carried out Molecular Dynamics simulations.
After having computed

1. γLV by means of the Kirkwood-Buff formula [131];

2. and γSV by means of thermodynamic integration;

3. they performed a computer experiments of spreading a liquid nanodroplet on the [100]
NaCl solid surface in the vicinity of the melting point.

They observed that the droplet settled down on the surface forming a finite contact angle
θLV of (50◦±5◦); by substituting in eq. 9.1 θLV , γLV is then 104 mJ/m2 and γSV is 103
mJ/m2. Thus γLS=(36±6) mJ/m2, an unusually large value for the liquid-solid inter-facial
free energy in comparison with other materials [193], that the authors justified because of the
large differences between the NaCl solid and liquid bulk properties (see ref.[18]).

In the second method, already discussed in chapter 4 the estimation of the liquid-solid inter-
facial free energy based on the cluster analysis, is developed by means of Monte Carlo simula-
tions of the same model potential. We equilibrate a system of (12)3 NaCl ion pairs in an NPT
ensemble at 1 atm and three different temperatures: T1 = 800 K, T2 = 825 K and, differ-
ently from chapter 4, also at the coexistence temperature (1060±10) K. Tcoex=(1060±10) K.
Tcoex is reported in [191, 85], and it is close to the experimental value: T exp

coex=1072 K [84].
Due to the moderate super-saturation in T1 and T2, we claim our system to be in  )¡ (�¢F�`£�  )¡ �`"¤��¥)�F� ¡g¦ , and compute the Gibbs free-energy barrier via an Umbrella Sampling technique

(see chapter 2) at constant N, P and T , that uses the number of solid particles belonging
to the biggest cluster (n) as an order parameter to study the liquid-to-solid phase transition.
We then estimate the liquid-solid inter-facial free energy using the prescription of Classical
Nucleation Theory, e.g. from the top of the free-energy barrier to grow a critical cubic-like
cluster. In what follows, we will refer to the biggest cluster size as Ng instead of n.

021K§21©¨ª�U�$<��@4a�

We note at the outset that it is imprecise to speak of the surface free-energy density of a small
crystallite, as the value of γ depends on the choice of the dividing surface (equimolar dividing
surface, equi-enthalpy dividing surface, surface of tension etc. - see ref. [130, 194]). For flat
interfaces, the corresponding surface free energies are all the same, but this is not the case for
strongly curved surfaces.

The surface free energy that enters into CNT is the one associated with the surface of
tension [195]. One property of the surface of tension is that it is, to lowest order, independent
of the choice of the dividing surface. We use this property to determine γ associated with
the surface of tension. To facilitate the comparison with the data of ref. [191] that refer to a
flat interface at coexistence, we deduce γLS from the size-dependence of the free energy of
a small crystallite at coexistence. At coexistence, there is no difference in chemical potential

je�-j



m9n	oqpXpFrfs-tguXv.w�xyrIz|{|v.}!r%«�~�v&��r�r��arSue}.~�v�{A~et+pX����u)r��`p)r%r5rF{�r�p���vyrF~	�`p)�f��uXpP�-~e}.��x`«�{�t|u�xyr)�g}@v`��{2s9�|}.�

between the liquid and the bulk solid, hence the excess free energy of a small crystallite is
entirely due to its surface.

As a first step, we determine the dependence of the free energy of small NaCl crystallites
on the number of ions in the crystal. For this part of the calculation, we make use of Umbrella
Sampling [11, 29]. These simulations yield the excess free energy of the biggest crystalline
cluster in the system as a function of the number of particles in that cluster (Ng). We use a
geometrical criterion (see chapter 4) to distinguish crystalline from liquid-like particles.
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We can then deduce the surface free-energy density using eq. 2.7 where we assume that

the growing cluster is either a cube or a sphere (see chapter 2). Although there are strong
fluctuations in the shape of a small NaCl crystallite in contact with its melt, its average shape
is fairly cubic (see fig. 9.2)1. Of course, we need not assume a priori that the cluster is cubic:
we can use the average cluster shape from figure 9.2 to perform a Wulff construction (see
e.g. [196] and appendix A) that yields the variation of the surface free energy with orientation.
Assuming that the surface free energy of the [100] interface equals the macroscopic value, we
can then compute the average γ of the cluster. Leaving apart the question whether a Wulff
construction is at all meaningful for clusters containing O(102) particles, we note that this
procedure yields 〈γLS〉 ≈ 40 mJ m−2, which is within 10% of the value expected for a perfect
cube. In what follows, we will therefore assume that small NaCl crystals have the same cubic
morphology as macroscopic crystals.

From figure 9.1, we cannot yet deduce the surface free energy because there is no a priori
reason to assume that the surface of this geometrical cluster has any thermodynamic meaning
BqÎ h�R.ZSM	h.ZfJ�Ï�MÇC�ÐÑh.QfH!Z�J�h@b�J�VNV9HPVNQfh�R.MPEÓÒ�QSHPR@Q�JXR@MPh�c�YÔM$CFWeR!J�LNT�R@ZfM$JK^)MPE.J�ÕFM	h.Z�J�Ï+MÇW ] h.QfÏ+MPE@LNb�Ï+CFh@LNTfÕ�JV#J�E@ÕFMÇT%Qfb	W+MPEÖC�ÐÑLNTfh�R!J�T)R!J�TSMKCFQShÇHPCFTS×fÕFQfE.JXR@LNCFTfh7C�Ð-R.ZSM	h!J�b�M7b�J�h@h�cf×SØSLNTfÕ�R@ZfMPLNEÓHPMPT%R@E�M	C�ÐÑb�J�h.h�c�J�TfOR.ZSM	CFE�LNMKT)R.JXR.LNCFT�C�Ð®R.ZSM	HPE ] h@R.J�V®JXØeMPh�\\ÐDM�JK^)MPE@J�ÕFM�C�^)MPE·J�VNV|Ù)ÚIh ] b�b�MqR@E ] _`E�MPV#JXR.MPO�CFE@LNMPT)R!JXR@LNCFTfhK\	[aZfMh.QfEyÐ�J�HKM$LNhÉOfMq×�TfMPO�J�hÉR.ZSM	h.MqR7C�Ð�Ï+CFLNT%R@hÉY�ZfMPE@M	R@ZfM	JK^)MPE.J�ÕFM�OSMKTSh.L R ] M Ï QfJ�VNhÓR.ZSM�JK^)MPE@J�ÕFM�C�Ð�R@ZfM	h@CFVNLNOJ�TfOUVNL Ï QfLNOIOfMPTfh.L R@LNMPh�\�ÛÓTfV ] R@ZfM7HPE ] h@R.J�VNVNLNTfM·Ï�J�EyR.LNHPVNMPhÖLNTSh.LNOfMÉR@ZfLNhah.QfEyÐ�J�HKMÇJ�E�M7h.ZfCKY�T9\
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(see appendix B). We know, however, that in the thermodynamic limit, the ratio of Ng to N ,
the “thermodynamic” number of atoms in the crystal, should approach 1. We therefore make
the ansatz:

N = (N1/3
g + a)3 � l-� Ü��

where a is an adjustable parameter that remains to be determined. To find the number of
atoms within the surface of tension, we choose a value of a that minimises the variation of
γLS with the size of the cluster. This analysis leads to a value of a ≈ 0 at the surface of
tension. Figure 9.3 shows that, over the range of cluster sizes studied, the resulting value of
γLS is indeed almost independent of N for all but the smallest clusters.
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a ì ã�´
More interestingly, we find that the resulting value of γLS is very close to the value

γLS ≈ 80mJ m−2 that follows from the analysis of the nucleation barrier at 800K [98] (see
figure 9.3 and chapter 4). Moreover, a similar analysis at 800 K, leads to the same estimate of
γLS. The internal consistency between the values of γLS derived from the nucleation barrier
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and from the surface of tension would be encouraging, were it not for the fact that it does
nothing to resolve the discrepancy with the value of 36 mJ m−2 found for a flat interface.
Choosing another conventional dividing surface (e.g. the equimolar or the equi-enthalpy sur-
face (see appendix C)) only makes matters worse: in both cases we find a negative value of
a that results in an even larger value of γLS that is, moreover, strongly cluster-size depen-
dent. Hence, we conclude that the discrepancy between the properties of a small crystal and
a flat interface cannot be corrected for by choosing a better definition of the location of the
liquid-solid interface.

The above discussion suggests that the conventional version of CNT cannot account for the
observed discrepancy between the surface free energy of a flat interface and that of a small
crystallite. However, even within a thermodynamic approach, one can introduce corrections
to Classical Nucleation Theory that would change the apparent value of the surface free en-
ergy. One such correction takes into account that the crystal cluster is compressible and that
the surface free energy depends on the density of the crystal. To estimate the magnitude of
this effect, we extend the analysis of Mullins [195] (see appendix D for more details on the
calculation) to obtain:

r ≈ (γLS(ρS)/γLS(ρS(0))3
(

1 − ∆µρS/(2B) − 1
2Bε2/(ρS∆µ)

)2

where r is the ratio between the barrier height in the case of compressible clusters (with
density ρS), compared to that for incompressible clusters (with density ρS(0)). B denotes
the bulk modulus of the crystal and ε the elastic strain, compared to that of a solid at the same
chemical potential as that of the parent liquid. From our simulations, we find that the density
at the centre of the crystal cluster is some 6% lower than the reference value. Even with this
rather extreme estimate of the strain in the cluster, we find a compressibility-correction to the
apparent value of γLS that is no more than 10%. Hence, we conclude that compressibility
effects cannot account for the observed discrepancy.

Thus far, we have not considered the effect of edges and vertexes on the surface free energy
of a small cluster. This effect is certainly non-negligible. If, for instance, we consider a cubic
NaCl crystal in vacuum at T = 0K (see fig. 9.4), both the line energy of the edges and the
vertex energy of the corners can be determined directly (see appendix E). The energy of an

¬®­#¯S°�±P²�³�´ â�´#¶Éí�¹�½%Ë9ÀqÈ�ÄeÃ·ÄeÁÔ½UËg²X±qÁi²XÂXÃ	ÂX°9»g²�½)Ã$ÍX²X±PÄ�î�²�Ì#ß+­#¹¼Ê�½Sä�²>ÄeÁÔ³U°9¹�­#Ã·ÂX²�Ì#Ì¤À�´
NaCl cube can be written as:

e = eB`3 + 6eS`2 + 12eE` + 8eC � l-� k9�
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where e is the total internal energy per particle, eB , the energy per particle in a bulk crystal,
eS the energy of a particle belonging to the surface, eE the energy of a particle belonging to
an edge, eC the energy of a particle belonging to a corner of the cube, and ` is the number
of atoms per edge. Computing this energy for a crystal of 64, 216 and 512 atoms [198], we
find that eE/eS = 0.22 and eC/es = 1.2. The effect of these edge and vertex contributions
is to increase the apparent surface energy by 13% for a crystal of 216 particles. Of course,
these numbers do not apply to a hot NaCl crystal in contact with its melt and it is not at even
obvious how to define the various terms in that case, as not only the magnitude but even the
sign of eE and eC depend on the precise choice of the dividing surface. This means that,
within the macroscopic framework imposed by CNT, we cannot reliably estimate the edge
and corner contributions to the surface free energy. We are therefore forced to conclude that
the large apparent value of γLS of small crystallites is due to a finite-size effect that is not
easily accounted for by within a “thermodynamic” theory. Rather, the free energy of small
clusters must be computed using a molecular approach, either theoretically (as in DFT [190])
or numerically, as illustrated in the present work.

In the present chapter, and in ref. [98], we compute the free energy of relatively small
clusters (up to 200 solid particles). However, under the experimental conditions for crystal
nucleation of NaCl (T=905K), the critical cluster is expected to contain O(6×102) particles.
Calculations for larger clusters would be feasible, but expensive. We therefore use the Tol-
man ansatz [199], namely that the leading correction to surface free energy is proportional to
1/R∗, where R∗ is the radius of the critical cluster 2. As 1/R∗ ∼ ∆µ, we assume that the
variation in γLS is of the form: γLS(∆µ)= γM

LS + b∆µ(see appendix F). We can determine
b from the simulation data of refs [191, 98]. Inserting the value ∆µ = 0.3kT at T=905K,
we predict that under the condition of the nucleation experiments of ref. [77], the effective
value of γLS should be 67 mJ m−2, in almost embarrassing agreement with the experimental
data (γLS=68 mJ m−2). Although this good agreement is almost certainly fortuitous, it does
support our conjecture that the surface free energies measured in nucleation experiments are
subject to very large finite size corrections (in this case: more than 80%). If we take this
strong ∆µ-dependence of γLS seriously, it would mean that for strongly faceted crystals (al-ï [aZfM7[gCFVNb�J�T�VNMPTfÕ�R.Z�ð
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though not for NaCl), the nucleation barrier could start to rise again at large super-saturations.
This should be experimentally observable, as it would lead to an increase in the final crystal-
lite size in fully crystallised samples [200, 197]. Interestingly – but we do not know if it is
really relevant – the final crystallite size in hard-sphere crystallisation suddenly grows as the
concentration is increased beyond a volume fraction of 58%. If the barrier is a monotonically
decreasing function of the volume fraction, this should not happen.

021�� 1�� 8A3D=��X<��Ç?.8A3��

In summary, our study of the free energy of NaCl crystallites indicates that the surface free
energy is subject to large finite size corrections that cannot be accounted for within a thermo-
dynamic theory. Based on the small number of examples where the relevant simulation data
are available (NaCl, Lennard Jones, hard spheres), we speculate that the finite size effects
are most pronounced for strongly faceted crystals, such as NaCl. The present results support
the suggestion by Kelton that the large number of published surface free energies that are
based on nucleation data are of little use to predict macroscopic surface free energies. Our
work highlights the need for a simple, yet accurate molecular theory for crystal nucleation
that properly accounts for the fact that crystal clusters are far from macroscopic.
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Concerning this work, I would like to thank A. Arnold for the computation of the cubic NaCl
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Analysing the instantaneous solid clusters, we observe that their shapes strongly fluctuates
and is far from being spherical. In the framework of CNT, one should neglect these fluctua-
tions and assume some average equilibrium shape for the clusters. Assuming we can neglect
small clusters, it follows that

• the average shape will necessarily retain the symmetry of the bulk crystal;

• it should possess the lowest inter-facial free energy γLS among all possible shapes,
given a fixed volume: this corresponds to the cluster shape obtained via the Wulff’s
construction.

In particular, if γLS does not depend on the orientation of the crystal, i.e. the cluster is
isotropic, this shape should be spherical, as the ideal CNT predictions. In our calculations, we
take into account both the increase of the inter-facial area with respect to the spherical shape,
and its related anisotropy. Both effects enhance the value of the effective nucleation barrier,
in particular the second one could be very large in the NaCl case, due to the presumable high
cost of the presence of "charged" interfaces, such as the [111] one. Thus, the steps we take
are the following:

1. we superimpose several clusters of the same size Ng, while keeping their centre of
mass fixed;

2. we find the main crystalline directions of each cluster, by computing the maximum of
the structure factor and orienting it along the x,y and z crystalline axis corresponding
to the [100] plane. At this point, if the statistics is good enough, the surface profile
averaged over these clusters, is the Wulff’s profile we are looking for. However, as the
number of clusters we can deal with is limited to few tens, the average cluster profile
is rough and fairly asymmetrical;

3. in order to solve this problem, we consider the fact that the equilibrium shape should
have a cubic symmetry and apply the correspondent symmetry operations to the larger
clusters. A cubic symmetry belongs to the octahedral crystallographic symmetry group
Oh. Thus, we apply all the 48 symmetry operations to every instantaneous cluster
configuration: the identity E, the rotation by π around the axes x, y,z (3C2

4); the
rotations by ±π/2 around the axes x,y,z (6C4); the rotations by π around the bisectrices
in the planes xy, yz, xz (6C2); the rotations by ±2π/3 around the four diagonals of
the cube (8C3), and the combination of the inversion (I) with the above-mentioned 24
symmetry operations;

4. next, we compute the average cluster shape by means of a density distribution profile.
We super-impose a three-dimensional cubic grid to the cluster, and compute the density
distribution: the ¢ ¡ �y')(����$#|(+�F, of the cluster is defined whenever the number density is
constant and is 1/2 ρS . We then cut the cluster along the surface, keeping in mind
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that its volume is constrained to be equal to the averaged volume of the instantaneous
clusters;

5. finally, the inter-facial free energy is obtained from an inverse Wulff’s construction
[196]. We following Nozieres’s procedure, as sketched in fig. 9.A.1:

a) we consider the centre of mass of the cluster as the origin (O);
b) we compute the distance between a point (P) on a facet of the cluster’s equilibrium

shape and the centre (OP);
c) OP is a catetus of a rectangular triangle, whose hypothenuse (OM) defines the

inter-facial free energy (OM = γLS(θ)), and whose other catetus belongs to the
plane tangent to a facet;

d) the locus of all the M point is the polar plot of γLS(θ) (the envelope passing for
M plotted)in fig. 9.A.1;

e) the inter-facial free energy γLS(θ) of each facet is then directly proportional to
OM and inversely proportional to the area of the facet;

z
M

P

φ
O

θ
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The γLS-plot so obtained is analytically solvable only in case the cluster is rough in all di-
rections (see the right-side of fig. 9.A.2): this happens when the shape is convex and has no
mathematically flat facets (in the γLS-polar plot this would lead to cusps). Fig.9.A.2 (left-
hand side) shows the (faceted interpolated) shape for the N = 140 solid cluster, and the
corresponding γLS-polar plot is represented in the right side of the same figure. The aver-
aged cluster shape has many [100] facets, possibly artificially made, that suggests a "flat"
liquid-solid interface at coexistence. Most liquid-solid interfaces are rough at the melting
point. Besides this fact, the overall shape is sufficiently rounded, and the γLS-plot is not very
anisotropic.

If we assume γLS[100] equal to 36 mJ/m2, then the maximum value obtained for the
average-shape cluster is γmax

LS = 69 mJ/m2, while the value averaged over all possible facets
is γav

LS ∼ 40 mJ/m2, still a factor 2 lower than the one previously computed from the CNT
nucleation barrier. Conversely, accounting for a factor of about two would require an unreal-
istically high anisotropy — far higher than that of crystalline NaCl clusters,[201]. Therefore,
it seems that this is not contributing to understand our discrepancy.
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N

According to the CNT expression for the free-energy barrier, N is the thermodynamic number
of solid particles of the biggest cluster in the system. However, as already shown in chapter 2,
what we measure in our simulations, is the number of solid-like particles belonging to the
biggest cluster identified by means of a local bond-order based geometrical criterion (Ng).

In principle, Ng is different from from N , and depends on the location of the liquid-solid
dividing surface. In the thermodynamic limit, all choices of the dividing surfaces coincide,
but at the small length scale of the cluster size, differences are indeed substantial.

In order to relate our simulation results of the inter-facial free-energy function of Ng, to
the values depending on the thermodynamic N , we use a similar approach as Cacciuto et
al.[202], and assume an explicit relation between N and Ng , that allows us to express the
inter-facial free energy as a function of N , as presented in eq. 9.2.

����� ��3D:2?��:� �<; ? �ª�D69��3�4 =	��8;?.=��U� 8>= 4?��� :A? � ?.:A?X3�� �	<�6@=9�D=��
A 6Ñ?�3�� 4a8 :A? �ª�D69��354 � ����<D��� 8B=

γ

We now estimate γLS as a function of N at the surface of tension, at the equimolar dividing
surface and at the equi-enthalpy dividing surface. The inter-facial free energy for a spherical
and a cubic cluster is expressed in terms of the thermodynamic number of particles N , being
the radius of the surface of tension proportional to N :

γSL(N) =
∆G(N) + N |∆µ|

(4π)
1/3

(ρs

3

)2/3

N−2/3; γSL(N) =
∆G(N) + N |∆µ|

6
ρ2/3

s N−2/3.

� l|�DC��&jf�
The parameter a in eq. 9.2 is properly tuned for every dividing surface, by plotting

a =
(N − Ng)

3N
2/3
g

+ O(N−1/3
g ). � l|�DC�� Ü��
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as a function of Ng for relatively big clusters.

γLS EGFHFJILKNMPO0QSR2EUT(KNVUR�FWKUXLMPYZV[X
The value of a that minimises the variation of γLS with the size of the cluster, is a = 0. By
means of eq. 9.C.2 we find that when a = 0, γLS at the surface of tension does not depend
on the radius of the cluster. For a spherical cluster γLS is presented in fig. 9.C.1 while for a
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½%À	½IÁi°9¹�ÂXÃP­#ÄS¹�ÄeÁ
N
½%Ã·ÃPÈ�²>Àq°�±qÁi½eÂ�²�ÄeÁ�ÃP²�¹9Àq­#ÄS¹�ÁiÄe±$½UÀqË�È9²X±P­#ÂF½%Ì�Â�Ì#°�À!ÃP²X±F´

cubic cluster, we have already shown it in fig. 9.3. Even though for small clusters γ assumes
really large values, its asymptotic limit for a spherical cluster is around 100 mJ m−2 and it
does not depend on temperature.

γ EGF\FJIGK^]�Y _0_LM\Ka`$O�Y bcV[dZEUQ8e$Ygf?Yhe$Y XLijMPO0QkRlEUT(K
The equimolar dividing surface, according to Gibbs, is the surface that does not contain
any excess particles and has no volume. The total volume of the system 〈V 〉 is 〈V 〉 =
〈vL〉NL + 〈vS〉NS , being vL and vS the liquid and solid volume per particle, respectively.
The total number of particles in the system (Ntot) is then equal to the sum of the overall solid
(NS) and liquid (NL) particles, Ntot = NS + NL. The number of solid particles enclosed
by the equimolar dividing surface NS coincides with the thermodynamic number of solid
particles N previously defined (NS = N ), and is equal to:

N = Ntot
〈v〉 − 〈vL〉
〈vS〉 − 〈vL〉

, � l|�DC�� k9�
where Ntot is 3456, 〈vS〉 and 〈vL〉 are the bulk solid and liquid average volumes per particle
at coexistence (〈vS〉 = 25.66Å−3 and 〈vL〉 = 33.13Å−3), and 〈v〉 is the average volume per
particle (in the NPT simulations) of the metastable liquid containing the biggest solid cluster
Ng. Figure 9.C.2 illustrates the average volume per particle for the system at coexistence.
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NPT

Àq­#Ê�°9Ì¤½%ÃP­#ÄS¹�À5½%ÃUÂ�Ä�²XÅ�­#À!ÃP²�¹9ÂX²S´�n�½eÂKÈËgÄS­#¹�Ã7±P²�Ë�±P²�Àq²�¹�ÃPÀÇ½UÊ5²XÃK½eÀ!ÃK½%»9Ì#²�Ì#­o1+°�­¤ä�Â�Äe¹+ÃK½%­#¹9­#¹9¯UÃPÈ�²�»9­#¯S¯e²�À!ÃÇÀqÄSÌ#­¤ä�Â�Ì#°9À!ÃP²X±·ë·­NÃPÈ
Ng

­¤Äe¹9À�´

In order to compute 〈v〉, we average over several configurations with the same Ng ranging
from 100 to 160.

We thus obtain a set of values (N, Ng) for each cluster size, and assuming the same depen-
dence as in eq. 9.C.2, we get an estimate of the parameter a, as it is shown in fig. 9.C.3 The
inset in fig. 9.C.3 shows how, for clusters with less than 100 particles the value of a is quite
noisy, whereas for sizes beyond 100 particles, a seems to fluctuate around an average value:
by using eq. 9.C.2 a=-0.95 at the equimolar dividing surface.
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We then plot the inter-facial free energy as a function of the thermodynamic number of
solid particles N for the computed value of a (see fig. 9.C.4): the asymptotic limit (which
should be equal to the one obtained for the surface of tension), is not nearly reached for the
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studied cluster sizes, and the slow convergence is particularly obvious when the system is at
coexistence.
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From this analysis, we conclude that we the surface of tension’s calculations give a better
estimate of the asymptotic value of γLS than the result obtained with the equimolar dividing
surface

γ EGF\FJIGKNK,`uOvYgwmKUXGFJILE�d xzy�e$YgfUY{e[Y|XGi}MPO0QSR2EUT(K
We also estimate the inter-facial free energy associated with the equi-enthalpy dividing sur-
face. The total enthalpy of the system is defined as H = NShS + NLhL, where NS and NL

are the total number of solid and liquid particles in the system and hS , hL are the liquid and
solid enthalpies per particle, respectively. At the equi-enthalpy dividing surface, we assume
that there are no excess particles and neglect possible contributions due to the interface. Since
the total number of particles is Ntot = NS + NL

H = NShS + NLhL = NtothS + NL∆h = NtothL − NS∆h � l|�DC�� ���

jm��Ü



m9n �|n	�·��{Ôu�x.t�~�v`��{-~
where ∆h is enthalpy of fusion per particle, available from both experimental and simulation
data [84, 191]. The thermodynamic number of solid particles in the biggest cluster (NS)
is the number of solid particles enclosed by the equi-enthalpy dividing surface (N ) and can
be evaluated from eq. 9.C.4, where NtothL is the total enthalpy of the bulk liquid and H is
the enthalpy we measure in an NPR simulation. We obtain that the enthalpy of fusion per
particle is equal to ∆h = −1.59kBT , while the enthalpy per particle is h1

L = −54.74kBT at
T1, h2

L = −52.98kBT at T2, and hcoex
L = −40.66kBT at coexistence. By means of eq. 9.C.2,

we get an estimate of the parameter a at the equi-enthalpy dividing surface, considering Ng

ranging from 100 to 160 particles, we obtain a = -0.35.
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½%Ã�ÃPÈ�²�²21�°9­N¸�²�¹�ÃPÈ�½%Ì¤Ë�º ä�­#ß�­¤ä�­¤¹�¯AÀq°�±qÁi½eÂ�²�Á�Äe±�ä�­*)|²X±P²X¹+Ã�ÂXÌ¤°�À!ÃP²X±Àq­#Í�²�ÀÇ±K½e¹9¯e­#¹9¯�Á�±PÄeÊ µ�ãSãUÃPÄ�µlrSã5Ë�½)±qÃP­¤ÂXÌ¤²XÀ�´ÇÆÉÈ9²�­#¹9Àq²XÃ$ÀqÈ9ÄFë·À·ÃPÈ�½%ÃFê�ÁiÄ%±>Â�Ì#°9À!ÃP²�±PÀ$ÀqÊ�½%Ì¤Ì#²X±ÇÃPÈ�½%¹AµFãeãË�½)±qÃP­#Â�Ì#²�À�ê�ÃPÈ�²>ße½eÌ#°9²$ÄeÁ

a
­#Àv1�°9­NÃP²	¹�ÄS­#À!º�´aç.¹�ÃPÈ9²$­¤¹�Àq²XÃFê�ÃPÈ9²$Å�½%¹�ä5ÃPÈ9²	ºD½)Å�²XÀÉ±P²�Ë�±P²�Àq²X¹+ÃÓÃPÈ9²>ÀP½%Ê5²ße½%±P­¤½e»�Ì¤²XÀ�´

We then compute γLS as a function of N at the equi-enthalpy dividing surface for the
estimated value of a (see fig. 9.C.6), and observe that in this case the asymptotic limit of γLS

is reached faster than in the equimolar dividing surface case, in better agreement with the
results previously obtained at the surface of tension.

����� ��3D:2?�� ;���� ? A�A �$?@�è3 :A6�8 � �.�I4��©8A:��D� �è3D: 4?���
=�8A� � 69���Ó�$? A ?��K?�4P7 �q�ª�U=>4
Another attempt we make is based on including the compressibility effect in the thermody-
namics of the nucleating crystal clusters.

]�Y _0_LM�YhE�X�euQkV[x0dgKzF�bcV.e�KUd
In the Gibbsian droplet model of (liquid (phase B) from supersaturated vapour (phase A))
nucleation, the free-energy barrier for nucleation is computed by considering the effect of the
Laplace pressure on the chemical potential of the critical cluster. At the top of the free energy
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barrier, the critical liquid cluster is in (unstable) equilibrium with the supersaturated vapour
phase. Hence, the droplet and the vapour must have the same chemical potential. This is
only possible if the pressure inside the cluster is higher than the pressure of the parent phase
(see fig. 9.D.1). Therefore, there is a difference between the chemical potential µA(PA)
of the metastable phase and the chemical potential µB(PA) that would correspond to the
bulk stable phase B at this thermodynamic conditions. ∆µ is a negative quantity given by
µB(PA) − µA(PA) , and it constitutes the driving force to nucleation.

If we work within the CNT framework, we assume that the cluster is incompressible. This
leads to dµ/dP = constant: meaning that in CNT the curve representing the chemical
potential (µB) in phase B is approximated by a straight line, as shown in fig. 9.D.1. Thus,
the accuracy of the CNT approximation depends on the curvature of µB : if the curvature is
high, the CNT approximation can lead to a different value of µB , hence of ∆µ.

In the droplet model, the pressure difference between the metastable vapour surrounding
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­¤À7±P²�Ë�±P²�Àq²�¹�ÃP²Fä�½eÀÇ½UÀ!Ãq±K½e­#¯eÈ+ÃÇÌ#­#¹9²S´

the droplet and the inside of the droplet needed to keep the same chemical potential differ-
ence, is the Laplace pressure of eq. 2.11, where R∗ is radius of the critical cluster of the
surface of tension, and γ the surface tension. Assuming that both γ and the pressure depen-
dence of the chemical potential of both phases are known, we can then compute R∗, and the
nucleation barrier itself, that for a spherical cluster will be

∆G =
4

3
πγR

∗2 =
2

3
∆PR∗3. � l-� ���&jf�

In contrast to CNT, the droplet model allows for the
��� ¦ #®���F¢�¢F��¥%�`"#�`, �

of the phase that
nucleates. As the Laplace pressure is always positive, the droplet model predicts that small
clusters are denser than the corresponding bulk phase.

But as Gibbs already realised [20], the droplet model cannot be applied to crystallites
because the excess pressure of crystals is not equal to the Laplace pressure 2γ/R∗. For
solid interfaces, we have to distinguish between the surface tension and the surface stress In
Mullins’s work [195], we find the correct expression for the excess pressure inside a critical
crystal cluster of density ρS and radius R is:

∆P =
2γLS − 3ρS

(

∂γLS

∂ρS

)

R∗
. � l-� ��� Ü��

For materials with a large cohesive energy, the derivative
(

∂γLS

∂ρS

)

is large and positive. So
much that ∆P can become negative. Therefore, it results that small crystal clusters can be
very different from the bulk material.
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For solid interfaces, one should distinguish between the surface tension and the surface stress.
Therefore, it results that small crystal clusters can be very different from the bulk material.
For materials with a large cohesive energy, the surface free energy will decrease strongly with
the bulk density. This leads to a negative surface stress. As a result, small clusters may have
a much lower density than the bulk at coexistence.

This will consequently have an effect on the nucleation barrier. If we use the expression for
nucleation of a compressible crystal under conditions where the surface stress differs strongly
from the surface free-energy density, we find that the effect of the surface stress is to:

• decrease the thermodynamic driving force for nucleation, and

• decrease the surface free energy.

Therefore, in order to get the same barrier height we should find a lower γLS.
We now demonstrate that an analysis of the nucleation barrier assuming incompressibility

results in a systematic overestimation of the surface free energy. In what follows, we will
define γLS as γ, and ρS as ρ.

� OLTGdZKzEGF&YZV[X�_LEUQ�Q�YZK?Q
T(V$XGMPYhe�KUQ�Y XLijFJILK�M�O�QkR2EUT(K�M�FJQkK,M�M�K���KaT�F
To study the effect of surface stress on nucleation, we start by considering the generalisation
of the Gibbs expression for the nucleation barrier in the fluid/fluid case

W ∗ =
γA

3
� l-� ��� k9�

(where A is the surface area of the cluster and γ is the inter-facial free energy), and the Buff
and Kondo [203, 204] equation

ωL − ωS =
1

R2

∂(R2Ω)

∂R
=

2Ω

R
+

∂Ω

∂R
� l-� ��� ���

where ωL/ωS are the grand potentials per unit volume of the liquid and the nucleating solid
spherical cluster, R is the radius of the spherical dividing surface (following Gibbs’s pro-
cedure), and Ω represents the excess of gran potential associated with the dividing surface.
Equation 9.D.4 holds at equilibrium for an arbitrary choice of the dividing surface radius R 3.�l� QSûDJ�TfO��ÖCFTfOSCs� hÖM Ï Q�JXR.LNCFT�ó �FöFý�cs�FöFõ�ø9Ð&CFEÖJ·Ò�QfLNO9ð&h.ÏSZfMPE@M ñ�� Ò�QfLNO�h ] h@R@MPb LNh

(ωS − ωL) =
∂(AΩA)

∂V S

ði÷S\ �$\ ý ñ
Y�ZfMPE@M

ΩA
LNh-R.ZSMÓMqØSHPMPh.h�C�Ð�ÕFE@J�T�Ï�C�R@MPT%R@L#J�V�J�h.h.C%HPL#JXR.MPO�Y�L R.Z>R@ZfM�OfL ^eLNOfLNTfÕ·h.QfEyÐ�J�HKMFc Î LNh-R.ZfMÓJ�E@MKJ7C�Ð9R@ZfMHPVNQfh@R@MPEKc�J�TfO

V S LNhaR.ZSMÇ^)CFVNQfb�M7C�Ð|R@ZfMÇh.CFVNLNOUHPVNQfh�R.MPEP\a� Ï Q�JXR.LNCFT�÷S\ �$\ ý>LNh�^�J�VNLNO�JXRÓM Ï QfLNVNLNWfE�LNQfb Ð�CFEÖJ�TJ�E@WSL R.E@J�E ] H.ZfCFLNHPM	C�Ð-R.ZfM$h.Z�J�Ï+M$C�ÐÑR@ZfM	OSL ^SLNOfLNTSÕ�h.QfEyÐiJ�HPMFc9J�TfO�H�J�T�J�VNh@C�W�M·Y�E@L R�R@MKT5Y�L R@ZfCFQSR7LNb�Ï+CFh.LNTSÕJ�T ] HPVNQfh@R@MPEÓh.ZfJ�Ï�MF\ÖùiR7J�ÏfÏ+MKJ�E�hÉR.ZfMPT5Mq^eLNOfMPT%RÉR@Z�JXR
Ω
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At the surface of tension Rs

(

∂Ω
∂R

)

Rs
= 0. We then define Ω(Rs) ≡ γ such that

ωL − ωS =
2γ

Rs
� l-� ��� �9�

where γ is the R-independent inter-facial free-energy density at the surface of tension.
When a fluid sphere is embedded in a different fluid [206], equation 9.D.6 becomes the

Gibbs-Thomson equation: being ωL = −PL and ωS = −PS

PS − PL =
2γ

Rs
� l-� ���*%��

where ∆P = PS −PL is the so-called Laplace pressure. As we just mentioned, in the liquid
phase the gran potential per unit volume is

ωL = −PL � l-� ��� 39�
where PL is the pressure of a liquid at coexistence. For a bulk solid at coexistence, ωS =
−PS , being PS the pressure at which the bulk solid has the same chemical potential as the
liquid at the same temperature but at pressure PL.

However, for small clusters, ωS 6= −PS due to elastic deformations. In order to properly
compute ωS , we start by adopting Mullins’s approach (eq. 40 and eq. 41 in ref. [195]): we
consider both eq. 9.D.6 and

PS − PL =
2f

Rs
� l-� ��� l9�

where f is now the surface stress, defined as

f = γ +
3

2
v
dγ

dv
� l|� �D��je�9�

eq. 9.D.9 indicates that f and not γ determines the pressure in the solid spherical cluster:
f 6= γ unless

(

dγ
dv = 0

)

(see eq. 29 in ref. [195]).
In principle, it should be possible to simultaneously solve eq. 9.D.6 and 9.D.9 at a given

T and µ for Rs and v, given the functions PL(T, µ), ωS(T, µ, v) and γ(T, µ, v). Mullins
obtained an approximate solution by expanding the latter two functions (ωS and γ) to second
order in powers of ε ≡ (v − vS)/vS ≡ ∆v/vS , where vS is the volume per unit cell of
a bulk solid at T and µ, and ∆v = v − vS indicates the density dependence of the inter-
facial free energy. Therefore, ε measures the elastic strain of the solid cluster: assuming, for
convenience, that the crystal is elastically isotropic, we argue that ε << 1.

In what follows, whenever we use the super-script S, we indicate the bulk state. We can
now express ωS as (see eq. 43a in ref. [195])

ωS = −PS +
1

2
Bε2 + O(ε2) ≈ −PS +

1

2
B

(

∆v

vS

)2 � l|� �D��j�jf�
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where PS is the bulk solid pressure at T and µ, and B the bulk modulus
(

B = −V
(

∂P
∂V

)

T

)

,
that corresponds to a dilatation of the unit cell at constant T and µ. Equation 9.D.11 is lacking
the linear term in ε, as we can see that the coefficient in front of the linear term is zero:

dωS = d(ΩS/VS) = −sSdT − ρSdµ − (ωS + PS)dv/vS = −sSdT − ρSdµ � l|� �D��jSÜ��
being ωS = −PS for a fluid. Moreover, to the zero order in ε, ωS in the spherical cluster
assumes the bulk value.

According to Mullins, γ can be written as (see eq. 44 in ref. [195])

γ = γS + γ1ε +
1

2
γ2ε

2 � l|� �D��jek9�
where γS is the inter-facial free energy of the bulk solid, γ1 is

γ1 =

(

2

3

)

(fS − γS) � l|� �D��j%���
being fS the surface stress of the bulk solid, and γ2

γ2 =

(

−10

9

)

(fS − γS) +

(

2

3

)(

∂f

∂v

)

S

� l|� �D��jm���
All coefficients in eq. 9.D.11 and 9.D.13, and vS , are functions of T and µ. Hence, Mullins
obtains, by means of eq. 9.D.11 and 9.D.13, a cubic equation in ε, whose solution is given by
the following term (see eq. 46 in ref. [195])

ε = −3γ1(PS − PL)

2γSB
� l|� �D��j��9�

Until this point, we have been written Mullins’s results. While from here on, we will
extend his results to obtain an expression of the nucleation barrier for compressible clusters.

We now rewrite eq. 9.D.16 as

v − vS

vS
= −3γ1(PS − PL)

2γSB
� l|� �D��js%��

using eq. 9.D.7, we obtain that
v − vS

vS
= − 3γ1

RsB
� l|� �D��j�39�

by means of both eq. 9.D.14 and eq. 9.D.10, γ1 becomes γ1 = vS

(

dγ
dv

)

S
. Therefore, we can

write ε as
v − vS

vS
= − 3vS

RsB

(

dγ

dv

)

S

� l|� �D��jel9�
In what follows, we will discuss two possible sub-cases: on one side, the case when the

inter-facial free energy is constant (Case a), on the other side, when the inter-facial free energy
differs from the surface stress (Case b).
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Let us first consider the case where γ is constant. Even then, eq. 9.D.3 and 9.D.6 are not
equivalent to the corresponding equations within the CNT framework, because we are now
including the cluster’s compressibility.

We start by expressing the chemical potential of the solid cluster at the pressure of the
surrounding liquid:

µS(PL) = µS(PS) +

(

∂µS

∂P

)

T

(PL − PS) +
1

2

(

∂2µS

∂P 2

)

T

(PL − PS)2 + · · · � l|� �D�NÜ+�9�
Being ∆P ≡ PS − PL, and ignoring all terms higher than the quadratic one in ∆P , we get

µS(PL) = µS(PS) − vS∆P − 1

2

vS

B
(∆P )2 � l|� �D�NÜgjf�

where
(

∂µS

∂P

)

T
= − VS

NS
= −vS and

(

∂2µS

∂P 2

)

T
= vSκT = vS

B , with κT the isothermal
compressibility

(

κT = − 1
V

(

∂V
∂P

)

T

)

, and B the bulk modulus (B = 1/κT ).
As the critical solid cluster is in thermodynamic equilibrium with the liquid (at constant

temperature)
µS(PS) = µL(PL) � l|� �D�NÜ�Ü��

Using the notation ∆µ ≡ (µL(PL) − µS(PL)), we see that

1

2

vS

B
(∆P )2 + vS∆P − ∆µ = 0 � l-� ���NÜ+k��

or

∆P = B(
√

1 + 2∆µ/(BvS) − 1)

= B(
√

1 + 2∆µρS/B − 1) � l-� ���NÜ��9�
We now consider two examples: first when the solid is not very compressible, therefore the

bulk modulus is large, next when the solid is highly compressible, therefore the bulk modulus
is small.

£v¤¦¥�§©¨�ª>«©£v¬®­}¯
°©«©£v«�±
B

If the solid is not very compressible (large bulk modulus B), we can write

∆P ≈ B

(

1 +
1

2

(

2∆µρS

B

)

− 1

8

(

2∆µρS

B

)2
)

= ∆µρS

(

1 − ∆µρS

2B

)

� l|� �D�NÜ@���
Combining this result with eq. 9.D.6, we get an expression for the Laplace pressure

2γ

Rs
= ∆µρS

(

1 − ∆µρS

2B

)

� l|� �D�NÜW�9�
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that implies a radius of the critical cluster of

Rs =
2γ

∆µρS(1 − ∆µρS

2B )
� l|� �D�NÜ�%��

Therefore the height of the nucleation barrier, assuming a spherical cluster, is given by

WCOMP =
16π

3

γ3

(∆µρS

(

1 − ∆µρS

2B )
)2 . � l|� �D�NÜW39�

If we compare this with the result for the nucleation barrier of an incompressible solid
WINCOMP (see the CNT expression for the free-energy barrier in chapter 2), we find that

WCOMP =
WINCOMP
(

1 − ∆µρS

2B

)2 � l|� �D�NÜ+l9�

For solid clusters, this correction is usually small (a few percent).
However, in bubble nucleation, it can be very substantial. If a bubble is filled with an

ideal gas, we know that PV = NkBT . In an isothermal transformation (PV = const)
d(PV ) = PdV + V dP = 0, that implies dV/V =-dP/P . So, being the bulk modulus
B = −dP/(dV/V ), we get B = P = ρGkBT , where ρG is the density of the vapour at the
same thermodynamic conditions as the metastable liquid. The above relation then becomes:

WCOMP =
WINCOMP

(1 − 1
2

∆µ
kBT )2

. � l|� �D� k��9�
that implies a larger contribution that eq. 9.D.29.

±,­j¤�£�£NªB«©£v¬®­}¯
°©«¦£�«�±
B

For highly compressible materials, we obtain a completely different expression for the nucle-
ation barrier. For small B, we can write eq. 9.D.24 as

∆P = B(
√

1 + 2∆µρS/B − 1) ≈
√

2∆µρSB � l|� �D� k|jf�
Therefore, the top of the free-energy barrier, assuming a spherical cluster, becomes

WCOMP =
16π

3

γ3

2∆µρSB
� l|� �D� k�Ü��

This expression is qualitatively different from the usual CNT expression as, it predicts that
the nucleation barrier scales as (∆µ)−1, rather than as (∆µ)−2.
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Next we consider the situation where the surface stress differs from the inter-facial free en-
ergy. The theoretical analysis of Mullins [195] shows that, to the lowest order in the crystal
strain, the density change of a crystalline cluster is given by eq. 9.D.19, that here we rewrite
for the sake of clarity:

v − vS

vS
= − 3vS

RsB

(

dγ

dv

)

S

� l|� �D� k�k9�
We now want to express eq. 9.D.33 in terms of ρ = 1/v.

v − vS

vS
=

ρS − ρ

ρ
� l|� �D� k+���

if we introduce ∆ρ = ρ − ρS

ρS − ρ

ρ
=

∆ρ

∆ρ + ρS
= −R � l|� �D� k����

where we introduce a parameter R. Therefore

∆ρ

ρS
=

−R

1 + R
≈ −R � l|� �D� k@�9�

assuming R << 1; this brings us to eq. 9.D.19 expressed as a function of ρ

ρ − ρS

ρS
= −

(

∂γ

∂ρ

)

S

3ρS

RsB
� l|� �D� k�%��

If we now insert this equation in eq. 9.D.11, we get

ωS = −PS +
1

2
B

(

ρS − ρ

ρS

)2

= −PS +

(

∂γ

∂ρ

)2
9ρ2

S

2R2
sB

� l|� �D� k@39�
We only focus on the generalised Laplace equation when the inter-facial free energy dif-

fers from surface stress and the bulk modulus is large (see eq. 9.D.25). We insert eq. 9.D.8
and 9.D.38 into eq. 9.D.6 and get

2γ

Rs
= ∆µρS

(

1 − ∆µρS

2B

)

−
(

∂γ

∂ρ

)2
9ρ2

S

2R2
sB

� l|� �D� k�l9�
Solving this equation for Rs, to the lowest order, in the incompressible case, Rs ≈

2γ/(∆µρS) and hence

2γ

Rs
= ∆µρS

(

1 − ∆µρS

2B

)

−
(

∂γ

∂ρ

)2
9ρ4

S∆µ2

8γ2B
� l|� �D� ���9�

= ∆µρS

(

1 − ∆µρS

2B
−
(

∂γ

∂ρ

)2
9ρ3

S∆µ

8γ2B

)

� l|� �D� �-jf�
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Therefore, the nucleation barrier in case of a not too compressible solid with a surface
stress unequal to the inter-facial free energy is:

WCOMP =
WINCOMP

(

1 − ∆µρS

2B −
(

∂γ
∂ρ

)2
9ρ3

S∆µ

8γ2B

)2 � l|� �D� �9Ü��

A more manageable form is obtained if we insert expression (9.D.37). Then

WCOMP =
WINCOMP

(

1 − ∆µρS

2B − 1
2B
(

ε2

ρS∆µ

))2 � l|� �D� ��k9�

� V$bNbcKUXGFWMµV[X � E � d
First of all, we start noticing that the density of small NaCl clusters – both at coexistence and
in the super-cooled regimes – is some 4% lower than the bulk density. This indicates a large
negative surface stress, and it is consistent with our observations that the radius of the Gibbs
equimolar dividing surface is smaller than the radius of the surface of tension that follows
from the cluster analysis.

In particular, we can estimate the bulk modulus of NaCl through the volume fluctuations,
obtaining B ≈ 15GPa; the number density of the solid is ρS = 0.0376 Å−3 that in kBT
units is ρskT = 5 108Pa at coexistence (TM = 1060K). However, compressing a bulk solid
to the pressure inside the cluster would increase its density by almost 2%. Hence, the value
of ε that we should use in eq. 9.D.43 is almost 6%. Such a deformation results in an increase
of the barrier height with respect to the incompressible case of about 25%!

Whilst this effect is non-negligible, it is not huge. It would correspond to an apparent
increase in the inter-facial free energy of 16%. However, γLS would be decreased as the
density of the cluster is lower than the bulk density. Roughly, this decreases γLS by 5%.
Hence the net effect of the surface stress in NaCl is to increase the apparent γLS by 11%.
This would corresponds to a γLS of around 70 erg/cm2. This analysis is rather sensitive to the
procedure we use to determine the density of the cluster. If we only look at the density within
the core, we obtain the 4% expansion above mentioned. However, it may be more meaningful
to compare the radius of the equimolar surface and the one of the surface of tension. If we do
that, we get much larger values for ε.

����� ��3D:2?��5¶ � � 8A� � ��6Ñ?@�Ó8A3·
�?@4?� �U:��¼� �è3D: =�8�6Ñ3���6�=Ñ6��U�
�¼3��D6��;?@�U� �54¹¸»º ��� � ?�3
It is known that the surface energy at 0 Kelvin is different depending on the orientation of the
surface itself. Wortis [201] computed, by means of analytical calculations, the energies of a
[100], [110] and [111] surface for the Born-Mayer-Huggins[207] model potential (NaCl), ob-
taining 187, 349 and 659 mJ/m2, respectively, showing that the cheaper surface was the [100]

j��9Ü
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one. However, the Wulff construction analysis on our clusters indicates that the influence of
facets other than [100] on the overall inter-facial free energy is not relevant.

There obviously are directions other than [100] in the cluster surface: for a faceted cluster,
that implies surface energy contributions coming from edges (where two facets meet) and
corners (where three facets meet), not taken into account in the Wulff’s construction analysis.

We start by analysing the surface energy dependence on the system size for a perfect cubic
cluster in vacuum at zero Kelvin: we will consider a 2x2x2 crystal (64 atoms), 3x3x3 (216
atoms), 4x4x4 (512 atoms), and 9x9x9 (5832)(shown in fig.(9.4))

At these thermodynamic conditions, the total energy of a cubic shaped cluster is

e = eBl3 + 6eSl2 + 12eEl + 8eC � l|� ¼��&jf�
where e is the total internal energy per particle, eS is the energy of a particle belonging to
the surface, eE the energy of a particle belonging to an edge, eC the energy of a particle
belonging to a corner of the cube, and l is the number of atoms per edge. The cube consists
of 6 [100] facets.

To estimate eB , we determine the energy per particle of an ideal periodic lattice with a unit
cell spacing of 2.62Å, which minimises the total energy: we obtain eB = −64.5 erg/atom
[198]. For the calculation of eS , eE and eC , we create a perfect cubic crystal of 2, 3, . . . , 9
unit cells and relax it. While the corner particles change their position significantly by about
0.5Å, the overall lattice spacing remains almost unchanged (5.59Å for the 2x2x2 crystal (64
atoms), 5.60Å for 3x3x3 (216 atoms) and 5.61Å for 4x4x4 (512 atoms) compared to 5.62Å
for the bulk). This corresponds to a density change of less than 2%. To obtain eS , eE and eC ,
we fit equation (9.E.1) to the measured relaxed energy, imposing eB from the bulk crystal
calculation. The difference of the fitted e to the measured one is less than 1%, and less than
.01% for more than 4 unit cells. Expressing the surface energy in mJ/m2, we find eS=187

eS[10−13 ½�¾S¿JÀÂÁÂÃkÄ@ÅBÆ eE [10−13 ½Ç¾k¿&ÀWÁÂÃkÄ@ÅBÆ eC [10−13 ½Ç¾k¿&ÀÂÁWÃSÄ�Å>Æ eE/eS eC/eSj�� ��% �-� k�� j�� l �|�NÜ�Ü j��NÜ
Æ®½%»9Ì#²�³+´ n7´#µS´#¶

eS
­#À�ÃPÈ�²�²�¹�²X±P¯eº Ä%Á�½èË�½)±qÃP­¤ÂXÌ¤²¼»g²�Ì#ÄS¹9¯e­#¹9¯ ÃPÄèÃPÈ9²�Àq°�±qÁi½eÂ�²Sê

eE
ÃPÈ9²¼²X¹9²X±P¯%º ÄeÁ	½Ë�½)±qÃP­#Â�Ì#²�»g²�Ì#ÄS¹�¯S­#¹9¯¼ÃPÄ¼½e¹é²Fä�¯e²5½e¹9ä

eC
ÃPÈ9²�²�¹9²�±P¯eºéÄeÁÉ½�Ë�½)±qÃP­#Â�Ì#²�»g²�Ì#ÄS¹�¯S­#¹9¯¼ÃPÄ¼½�Â�Ä%±P¹9²X±�Ä%ÁÓÃPÈ�²Â�°�»g²S´

mJ/m2, in perfect agreement with the calculation by van Zeggeren and Benson [208], that
obtained eS=188 mJ/m2. Ignoring the edge and corner contributions does not change the
surface energy significantly; to test this, we impose eE = eC = 0 in equation (9.E.1), and
repeat the fits for eS to obtain the apparent surface energy e′S , that are shown in the following
table(9.E.2) The 9x9x9 (5832) case can almost be considered a bulk system: there the system
is so big that corners and edges do not play any role, differently from the 2x2x2 system.
Moreover, the 9x9x9 result perfectly match the result obtained by Shi and Wortis[201] for
the surface energy of the same system modelled with another interaction potential, the CDN
I[209]. To conclude this analysis, we observe that for clusters of around 200 particles, typical
cluster size that fits in our simulation box, these results indicate that the edge and corner
contributions are negligible, as the cluster density changes by ≈ 1% and the apparent surface
energy differs by about 15% from that of a perfect surface.

jm��k
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e′S [10−13 ½Ç¾k¿&ÀWÁÂÃkÄ@ÅBÆ j�� l�� j��D%Â3 j��D%+Ü j�� ��Ü
eS/e′S

j�� Ü|j j���jek j���je� j�� ��k
Æ®½%»9Ì#²�³�´ n7´ Ý�´#¶7í+°�±qÁ`½%Â�²�²�¹�²X±P¯eº�ÄeÁa½�Ë�½%±qÃP­#Â�Ì#²�ë·­NÃPÈA¾

eS ¿ ½e¹9äDë·­NÃPÈ9Äe°�ÃI¾ e′S ¿ ²Fä�¯e²�½e¹9ä�Â�Ä%±P¹9²X±PÀ�´
����� ��3D:2?��5Ï � � 8A� � �D6-?@�Ó8A3®
 ?@4?� �u� � ��6-?X�©��354a�

As all the ¦ ���)����¢%�X�l#���� attempts to describe the crystallites have failed, we now try a different
route. We expand γLS in terms of 1/R, the curvature correction: the "effective" inter-facial
free energy of a cluster of size N is then

γLS,eff (N) = γLS,100 +
c

N1/3
� l|� Ð	�&jf�

where γLS,100 is the value numerically estimated by Zykova-Timan et al. [191] for a [100]
flat NaCl surface by means of the Young’s relation, and the second term is a correction due to
the presence of edges in the cluster: here, c is a constant and N is the thermodynamic number
of particles belonging to the cluster. As the surface of tension is the dividing surface where
we observe the best convergence of our results to the asymptotic limit of infinite large cluster,
in what follows we are going to use the surface of tension as the liquid-solid dividing surface.
At the surface of tension N = Ng, being Ng the geometrical number of solid particles
belonging to the biggest cluster. Therefore we can express eq. 9.F.1 in terms of Ng. If we
now consider the value of γLS obtained at T2=825K in chapter 4 as the effective inter-facial
free energy at this super-saturation γLS,eff (T2) = 80mJ/m2, being Ng ∼125 particles, we
find that c = 220. At last, we want to estimate the liquid-solid inter-facial free energy at the
temperature where Buckle and Ubbelohde did the experiments [77]: γLS,eff (Texp), where
Texp=905K. In order to estimate γLS,eff we assume that clusters at T2 and at Texp have the
same shape. Hence, as the critical cluster size is proportional to γ3

LS

(ρS∆µ)3 , we can compute
the number of particles a critical cluster would contain at Texp:

N1

Nexp
=

[γLS,eff (T2)]
3

(ρS,2∆µ2)3
(ρS,exp∆µexp)

3

[γLS,eff (Texp)]3
� l|� Ð	� Ü��

where ρS,2=0.0408 is the density of the solid, ∆µ2=0.48 the super-saturation at T2,
ρS,exp=0.0402 the density of the solid and ∆µexp=0.3 the super-saturation at Texp, and
γLS,eff (Texp)=68 mJ/m2 the experimental liquid-solid inter-facial free energy for a cubic
critical cluster. Therefore, we obtain that Nexp ∼315. Considering the values of c and Nexp

already computed, by means of eq. 9.F.1, we get that γLS,eff (Texp)=67 mJ/m2, in prefect
agreement with the experimental measurement. This founding corroborate our idea that γLS

for a finite size cluster at coexistence should be higher than the one obtained by Zykova-
Timan et al. [191] for a [100] flat NaCl surface by means of the Young’s relation.
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We report a numerical study of nucleation in a two-dimensional Ising model under shear.
The system is studied using Forward Flux Sampling (FFS) and single-spin-flip Metropolis
Monte Carlo dynamics. We find that the nucleation rate goes through a maximum and de-
creases for large shear rates. We argue that this behaviour is due to two competing effects:
first of all, shearing a sub-critical cluster increases the number of kinks on its perimeter. The
kinks are places where the growth of the cluster is favoured, therefore extra kinks increase
the growth rate. This effect is essentially due to the discreteness of our system and appears
to be linear for small values of the shear rate. Secondly, the nucleating cluster is deformed
by the shear. This increases the perimeter-to-area ratio, and, therefore, the free-energy cost
of nucleating a cluster of a given size. For geometric (symmetry) reasons this effect, which
decreases the nucleation rate, is a symmetric function of the shear rate. We determine the
transition state ensemble (TSE), and show that the TSE configurations exhibit a wide vari-
ation in surface and perimeter. This supports the view that the size of the biggest cluster is
not a good reaction coordinate to study homogeneous nucleation under an external shear. We
argue that the observed nucleation behaviour can be relevant for experiments on aggregation
in viscous mixtures.

� ¸ 1 � 1ëü)35476�8A:2<D=�47?@8A3
The nucleation of a stable phase from a metastable one is a common process in nature. Al-
ready when the system is in  )¡ (�¢F�`£ equilibrium the nature of the metastable phase as well
as the relaxation toward the stable phase is not so well understood. This mechanism results
even less known in systems driven out of equilibrium such that the microscopic dynamicsB ÐDCFE@GIHKJ�E@E�LNMPO5CFQSR�LNTUHPCFVNV#J�W+CFE.JXR@LNCFTUY�L R@Z�ý7\Âþf\ Î VNVNMKT�c+d�\S[aÿ�TfJ�h.Mq_��ÖLNHPCFV#J>J�TSO��g\Âý7\SR@MKT�Ð�CFVNOSM)\
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do not satisfy detailed balance. In order to gain a better understanding of nucleation in non-
equilibrium systems, we study this phenomenon in a two-dimensional Ising model under
shear. The reason why we choose this system is that most of its equilibrium properties are
known analytically. Moreover, it is computationally cheap.

Numerical studies of homogeneous nucleation in two and three-dimensional Ising sys-
tems without shear have been reported in the literature. In particular, Binder and Muller-
Krumbhaar [210] obtained a detailed description of the nucleation process in a two-
dimensional Ising system, and found that their simulations were incompatible with existing
nucleation theories [211]. However, they found that a nucleation theory based on Fisher’s
cluster model [212] was consistent with both static and dynamic scaling results. Shnei-
dman et al. [213, 214] investigated the kinetics of phase transitions of a two-dimensional
Ising models on a triangular lattice. When they studied nucleation as a function of the de-
gree of super-cooling, they found that a droplet-model based nucleation picture including
the estimate of the kinetic pre-factor, was yielding good results at moderate under-coolings.
Nucleation in the two-dimensional Ising model was simulated by Peters and Trout [215].
These authors showed that the “reaction coordinate” measuring the progress of the nucleation
event, depends both on the size of the cluster and on the length of its perimeter. Interestingly,
they found that a larger surface area increases the propensity a cluster in two dimensions
grows but decreases it in three dimensions, presumably because a protrusion from a flat sur-
face on the two-dimensional clusters tends to grow a new layer on the face, while for the
three-dimensional system, a protrusion tends to disappear. Stauffer et al. [216] computed the
nucleation rate in a three-dimensional Ising model as a function of super-saturation. Anal-
ysis of the results allowed them to estimate the surface tension of the droplets. Simulations
at significantly lower temperatures than earlier numerical experiments [217] yielded good
agreement with the predictions of Classical Nucleation Theory [218]. A similar conclusion
was reached by Acharyya et al. [219], who analysed nucleation phenomena in the Ising sys-
tem for various system sizes and dimensionalities. On the whole, their numerical results
were consistent with the predictions of Classical Nucleation Theory. Brendel et al. [220]
examined nucleation in the two-dimensional Ising model. In particular, they computed the
free-energies barriers for nucleation. There results are consistent with the predictions of the
Becker-Döring expression [5], provided the assumption of an effective surface tension that
exceeds the macroscopic surface tension by up to 20%. Wonczak et al. [221] examined the
same system and found good agreement with the Gibbs-Thomson relation for cubical instead
of spherical clusters. Pan and Chandler [222] studied the three-dimensional Ising model by
means of transition-path sampling [39] of single spin flip Monte Carlo dynamics. These au-
thors analysed the transition state ensembles and showed that the critical clusters are rough
and anisotropic. They also demonstrated that the cluster size and their surface area might not
be enough to fully describe the nucleation phenomenon. All the above-mentioned authors
considered the case of a two or three-dimensional Ising system in a uniform magnetic field
and studied the nucleation of the stable phase (for instance up spins) from the metastable
down-spins phase.

In the present study, we choose to drive the system out of equilibrium by applying an
external, macroscopic, shear. This type of non-equilibrium dynamics is rather artificial in
the context of the Ising model. However, it may be viewed as a rough description of the
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experimental situations of droplet nucleation in emulsions [223]. In the present study, we use
this model merely as a test case to study the basic features of activated processes in systems
driven out of equilibrium.

Homogeneous nucleation is a
��(����¼�Çûf�%*-,

. We study this phenomenon using Forward Flux
Sampling (FFS) [13] as this method can also easily be applied to systems that are driven out
of equilibrium [224]. In contrast, algorithms based on Umbrella Sampling, transition-path
sampling or (partial-path) transition-interface sampling, are limited to systems in thermody-
namic (quasi)equilibrium.

In an earlier study (see chapter 3) we had shown that FFS can reproduce the known ho-
mogeneous nucleation behaviour of a two-dimensional Ising model without external driving
fields. Below, we show that an applied shear strongly influences the nucleation pathways in
the Ising system. As in the equilibrium case, the relaxation from the metastable phase takes
place through the nucleation of a cluster of the stable state. However in the non-equilibrium
case the nucleation rate has a non-trivial dependence on the shear rate.

� ¸ 1K�21�� ?X��<��@��47?@8A3�:���4a��?K�.�

We consider a two-dimensional Ising model consisting of an L×L square lattice of spins with
nearest-neighbour interactions and periodic boundary conditions. The Ising Hamiltonian is

H = −J

′

∑

ij

σiσj − h
∑

i

σi, � jS�|��jS�

where J is the coupling constant between neighbouring spins (σi = ±1) and h the external
magnetic field. The prime indicates that the sum is restricted to nearest-neighbour interac-
tions.

All of our simulations are performed using a Metropolis spin-flip Monte Carlo dynamics,
in which we randomly choose a spin and attempt to flip it. The spin flip is accepted or rejected
according to the Metropolis rule. One Monte Carlo cycle corresponds to N attempts where
N is the number of spins. We simulate a 65 × 65 lattice with periodic boundary conditions
in the x and y directions. We use parameter values h = 0.05kBT and J = 0.65kBT , above
the critical coupling Jc. The thermodynamically stable state is therefore a ferromagnetic one
with net positive magnetisation, meaning that the system tends to have the majority of its
spins in the up-spins state. Hence, an initial state with an overall negative magnetisation (i.e.
spins predominantly in the down-spins state) is metastable and a system prepared as such will
remain in that state for a significant time.

In the absence of shear, this system is the same as the one investigated in chapter 3 and
ref. [68], except that in the present work we use a larger box size. We chose a larger box
size because we found that the nucleation rate is more sensitive to system size in the presence
of shear. We find no evidence for finite-size effects in the L = 65 × 65 spins system, at
least, not for the shear rates used in this study. We apply a shear using a method based on
the one proposed by Cirillo et al. [225] (see appendix A). As we consider rare fluctuations
between two regions of state space A and B, being state A the initial metastable state mainly
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characterised by down spins and B the final stable state with the overall ¡ # spins, we use
FFS to study the transition fro A to B. According to the FFS prescription, the regions A
and B are defined in terms of an order parameter λ(x) (being x the phase space coordinates)
such that the system is in state A if λ(x) < λ0 (state A boundary), and it is in state B if
λ(x) > λn (state B boundary). For the system studied in this chapter, the λ parameter is
chosen to be Nup, the total number of ¡ # spins. FFS calculations are carried out with 39
interfaces, defining the A state at λ < λ0 where λ0 = 25 ¡ # spins, and the B state at λ > λn

where λn = 2005 ¡ # spins. The rate constant RAB can then be obtained as in eq. 2.53. By
tracing back paths that successfully arrive at λn, we can sample the transition path ensemble
for the rare event. Analysis of these paths can lead to insight into the mechanism by which
the event occurs.

We use N1 = 1000 points at the first interface and repeat the sampling 25 times to obtain
the error bars. The positions λi of the interfaces and the number of trials Mi shot at each
interface are given in table 10.1.

i λi Mi i λi Mi i λi Mi� Ü@� ������� jek 3@� �9����� ÜW� jÂ%�j k������j k�� %������ j%� l|j �9����� Ü�% jm3|j k������Ü k�� 3������ jm� l@� �9����� ÜW3 jSl|j k������k ��� ������� j�� je�-j k������ Ü+l Ü��|j k������� ��� %������ js% je��� jSk���� k�� k���Ü k������� ��l �+����� j�3 j�j�j k������ k|j �9��� k������� �+k ������� jel j�jm� k������ k�Ü ����� k������% ��% �+����� Ü+� jSÜ|j k������ k�k 3���� k������3 �|j �+����� Ügj jSÜ@� k������ k+� jS����� k������l �@� �+����� Ü�Ü jek-j k������ k�� jfÜ+��� k������jS� %�j �+����� Ü+k j%�Ñj k������ k@� je����� k������j�j %Â� ������� Ü�� jm�|j k������ k�% jm����� k������jfÜ 3|j ������� Ü@� j��-j k������ k@3 jm3���� k������
Æ®½%»9Ì#²�µ�ã�´#µS´#¶a/®ÄSÀq­NÃP­#ÄS¹�ÀÉÄeÁ-ÃPÈ9²Ç­#¹+ÃP²�±qÁ`½eÂX²�À

λi
½%¹�ä�ÃPÈ9²Ç¹+°9ÊU»g²�±ÖÄ%ÁÑÃq±P­¤½%Ì¤ÀÉ½%ÃÉ²�½eÂKÈD­#¹�ÃP²X±qÁi½eÂ�²

Mi
°9Àq²FäÃPÄ�À!ÃP°9ä�º�È9ÄeÊ5ÄS¯e²�¹9²�Äe°9À·¹+°9Â�Ì#²F½)ÃP­#ÄS¹�­#¹�½�Ã@ëÉÄ%¸.ä�­#Ê5²�¹9Àq­#ÄS¹9½eÌ|ç.Àq­#¹�¯�Ê5Ä+ä�²�Ì|°�¹�ä�²�±·ÀqÈ9²F½)±F´

With FFS, it is possible to compute stationary distributions for activated processes, both in
equilibrium and in driven systems. However, this method requires that one can simulate both
the forward and backward reactions (see chapter 3).. We find that backwards reactions are
extremely rare in the presence of shear. Rather, we compute the steady-state distribution for
a system under shear with an (�¥F¢%���%¥%�`*9 ¥X� ¡ *���(��2� . That means that we terminate the simu-
lation as soon as the final up-spins state is reached, and start a new one from the metastable
down state.
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Fig. 10.1 shows the nucleation rate R as a function of the shear rate γ̇. At zero shear rate,
the value of R is in good agreement with the value of 3.3 × 10−13 per MC cycle per site
obtained by Sear [68]. For small shear rates R appears to increase linearly with γ̇ by an order
of magnitude, before reaching a maximum value around γ̇ = 0.06. At that point, for an even
larger shear rate, R starts decreasing again. Such behaviour may be qualitatively understood
as follows:

1. first, shearing a sub-critical cluster increases the number of kinks on its perimeter.
The kinks are places where the growth of the cluster is favoured, therefore extra kinks
increase the growth rate. This effect is essentially due to the discreteness of our system
and seems to be linear for small values of the shear rate;

2. at higher shear, the nucleating cluster becomes increasingly deformed. This increases
the perimeter-to-area ratio, leading to an effective decrease of the nucleation rate: fur-
ther growth of the cluster is strongly disfavoured, as growing clusters tend to be broken
up by the shear.
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In what follows, we analyse the transition path ensemble, using two order parameters: the
size of the biggest cluster of up spins Nc and its perimeter Pc. We focus on three values of the
shear rate: zero shear rate (γ̇ = 0.0), moderate shear rate (γ̇ = 0.06), before the maximum of
the nucleation rate in fig. 10.1, and high shear rate (γ̇ = 0.12). Figure 10.2 shows a selection
of configurations appearing on transition paths, for γ̇ = 0 and γ̇ = 0.06, plotted as a function
of both Nc and Pc.

In panel (a), for the case of zero shear, the inset shows that Pc increases approximately
as N

1/2
c , as expected for a shape that grows isomorphically by expansion in all directions:
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Nc

½%¹�ä¼­NÃPÀ
Pc

Á�Äe±ÃPÈ9²�¹�Ä5ÀqÈ9²F½)±$±K½)ÃP²�ÂF½eÀq²
γ̇ = 0.0

¾`Ë9½e¹9²XÌ®½ ¿ ½e¹9ä�ÃPÈ9²�ÀqÈ�²F½%±Ç±K½%ÃP²�Â�Ä%±q±P²�ÀqËgÄS¹9ä�­#¹9¯5ÃPÄ�ÃPÈ�²�Ê�½%Å�­#ÊU°9ÊÄeÁÔÃPÈ�²�¹+°9Â�Ì#²F½)ÃP­¤Äe¹¼±K½%ÃP²
γ̇ = 0.06

¾`Ë9½e¹�²�ÌÑ» ¿ ´anÖ½%Â�È¼Ãq±K½%¹9Àq­NÃP­#ÄS¹�Ë9½%ÃPÈ�­#À7±P²�Ë�±P²XÀq²�¹�ÃP²Fä¼»�º�½�Àq²X±P­#²�À$Ä%ÁÂ�ÄeÌ¤Äe°�±P²Fä�ä�Ä%ÃPÀ7½e¹9äDÂ�Äe¹�ÃP­¤¹+°�ÄS°9ÀÓÌ¤­#¹�²S´�ÆÉÈ9²>­#¹�Àq²XÃPÀÉÀqÈ9ÄFëªË9½%ÃPÈ9ÀÉ½eÀÉÁi°�¹9ÂXÃP­#Äe¹9À7ÄeÁ
log Pc

½%¹�ä
log Nc

¸ÃPÈ9²	ÀqÄSÌ#­¤ä�Ì¤­#¹�²�À·Â�Äe±q±P²�ÀqËgÄe¹�ä�ÃPÄ
Pc = N

1/2
c

´

Peters and Trout [215] observed the same scaling behaviour, that is also in agreement with
Classical Nucleation Theory. In panel (b), we present the sheared system with γ̇ = 0.06.
We observe that in this case the perimeter of the cluster grows more rapidly with Nc than
for the zero shear case. This indicates that the perimeter is rougher and has more kinks. For
Nc > 750, Pc reaches a plateau, meaning that at this point, the elongated cluster stretches
right across the simulation box along the direction of shear ( see figure 10.4).

We also measure the distributions of the lengths τ of the transitions paths, for the same
γ̇ = 0, γ̇ = 0.06 and γ̇ = 0.12. Figure 10.3 shows the distribution of τ , expressed in MC
cycles. The figure shows that the phase transition occurs much more rapidly in the presence
of shear. Moreover, the distribution of path lengths gets narrower the higher the applied shear.
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To understand better the nucleation mechanism in the presence of shear, we have extracted
members of the transition state ensemble (TSE) from the transition paths 1.

To determine the TSE, we follow the same procedure described by Pan and Chandler [222].

1. We check every 10Th configuration along each transition path, and then initiate a series
of trajectories from that configuration.

2. After 11, 14, 17, 20, 25, 30, 35, 42, 49 and 100 trajectories, we check whether the ratio
of trajectories ending in B to the total trajectories is 0.5, to within a 95% confidence
interval.

3. If not, we terminate the procedure.

The purpose of this is simply to avoid firing a large number of unnecessary trajectories for
configurations with PB far from 0.5. Using this procedure, we obtain 3472 TSE configura-
tions for γ̇ = 0.0, 959 for γ̇ = 0.06 and 6135 for γ̇ = 0.06. Fig. 10.4 shows typical snapshots
from the transition-state ensemble, for zero shear rate γ̇ = 0.0, low shear rate γ̇ = 0.06 and
high shear rate γ̇ = 0.12.

It is evident that the critical clusters become larger and more elongated in the presence of
shear. Sheared clusters are also less compact (as illustrated by the branches in fig. 10.4c),
which might explain the reason why Pc increases faster with Nc in the presence of shear in
fig. 10.2. It is clear from the preceding analysis and especially from the snapshots of fig. 10.4
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ê�Ë�½e¹�²�Ì�¾`» ¿ÃPÄ
γ̇ = 0.06

½e¹9ä�Ë�½%¹9²�Ì�¾`Â ¿ ÃPÄ γ̇ = 0.12
´

that shear causes the TSE configurations to both elongate and align in the direction of the
shear.

In fig. 10.5, we plot the distribution of points in the TSE as a function of the size Nc and
perimeter Pc of the biggest cluster for γ̇ = 0.0, γ̇ = 0.06 and γ̇ = 0.12. For γ̇ = 0.0,
the TSE points are rather densely clustered, indicating that Nc is a useful order parameter to
study the phase transition. It also indicates that the critical clusters all have similar shape.
However, this picture changes dramatically in the presence of shear. The effect of shear is to
smear out the TSE distribution. For γ̇ = 0.12, the TSE points cover a wide range of Nc and
Pc, suggesting that these order parameters are no longer good order parameters to describe
nucleation of an island of up spins in a see of down spins.

To try to characterise the mechanism for nucleation in the presence of shear, we plot the
distribution of various order parameters over the TSE points in fig. 10.6.

Figure 10.6a shows the distribution of the biggest cluster sizes Nc for points in the TSE.
We notice that the average critical cluster size varies non-monotonically with the shear rate.
The width of the distribution, however, increases with γ̇, indicating that while Nc may be
a good descriptor of the transition mechanism for the zero shear case, it increasingly fails
to characterise the mechanism as the shear rate increases. Figure 10.6b shows a similar
characterisation of the perimeter Pc of the biggest cluster for the TSE configurations. The
critical clusters are quite uniform in shape for the zero shear case, but become increasingly
non-uniform as γ̇ increases. The average perimeter of the biggest cluster monotonically
increases, as it might be expected from the typical configurations shown in fig. 10.4. This
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¬®­#¯S°�±P²�µFã+´ r�´#¶.�>­#À!Ãq±P­#»9°�ÃP­#ÄS¹9À	ÄeÁ�ÃPÈ9²I»9­#¯S¯e²�À!Ã�Â�Ì#°9À!ÃP²X±>Àq­¤ÍX²�À
Nc

¾`Ë�½e¹�²�Ì7¾y½ ¿q¿ ½e¹9äèËg²�±P­¤Ê5²�ÃP²X±PÀ Pc
Ä%ÁÃPÈ9²Ó»9­#¯S¯e²�À!ÃÓÂXÌ¤°�À!ÃP²X±$¾`Ë�½e¹�²�Ìy¾`» ¿q¿ Á�Äe±ÖËgÄS­#¹�ÃPÀ�­#¹IÃPÈ9²·Æ·í�n7êSÁ�Äe±�ÀqÈ9²�½%±�±K½%ÃP²�À

γ̇ = 0.0
¾`Â�Äe¹+ÃP­#¹+°9Äe°9ÀÔÌ#­#¹9² ¿ ê

γ̇ = 0.06
¾yä�ÄeÃqÃP²�ä�Ì#­#¹9² ¿ ½e¹9ä γ̇ = 0.12

¾yä9½%ÀqÈ9²FäDÌ¤­#¹�² ¿ ´

indicates that a CNT-type analysis, in which the shape of the growing cluster is assumed to
be circular, will certainly fail in the presence of shear.
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In order to check the validity of the chosen order parameter, we have also used FFS to cal-
culate stationary distribution functions ρ(Nc, Pc) according to chapter 3 for a system with an
“absorbing” boundary condition 2. In figure 10.7, we plot − log ρ(Nc, Pc), and superimpose
the scatter plots of fig. 10.5 for the TSE points, for the two cases of γ̇ = 0 and γ̇ = 0.12.
Firstly, it is clear that ρ(Nc, Pc) is strongly affected by the shear, being shifted toward clusters
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¾`Â�ÄS¹�ÃPÄS°�±®Ì#­#¹9²�ÀÔÀqË9½eÂ�²�ä�½)ÃÔ­#¹+ÃP²�±PßS½%Ì¤À�ÄeÁ|Ý�´ ~ ¿ ê%ÃPÄS¯S²�ÃPÈ9²X±®ë·­NÃPÈ�Ê5²�ÊU»g²X±PÀÄeÁ�ÃPÈ9²�Æ·í�n ¾i±P²Fä¼ä�ÄeÃPÀ ¿ ´,/Ô½%¹9²�ÌÖ¾y½ ¿ Â�Ä%±q±P²�ÀqËgÄS¹9ä�À·ÃPÄ γ̇ = 0.0
ê9Ë�½%¹9²�Ì�¾`» ¿ ÃPÄ γ̇ = 0.12

´

with larger perimeters. For γ̇ = 0, the TSE does appear to correspond quite closely to the
main “exit channel” from the metastable state. However, for γ̇ = 0.12, although the TSE still
lies within the “exit channel”, it is very much more spread out and, moreover, is not longer
oriented perpendicular to the contour lines of − log ρ(Nc, Pc). This seems to indicate either
that Nc and Pc no longer provide enough information to describe the transition mechanism,
not being #
$&% relevant reaction coordinates for the transition, or that the transition paths do
not follow the stationary distribution function in the presence of shear.

� ¸ 1�� 1�� 8A3D=���<D�Ç?.8;3D�

We have studied the nucleation in a two-dimensional Ising system with an imposed external
shear using Forward Flux Sampling. This method is suited to simulate rare events systems in
non-equilibrium steady-states.

We observe that for a large shear rate, the nucleation rate R decreases with the applied
shear. This behaviour could be explained using an analogy with the equilibrium system. In
figure 10.4 we can see that the shear deforms the growing cluster by imposing an elongationï deQfH.Z�J�HKJ�VNHPQfV#JXR@LNCFT ] LNMPVNOfhÉR@ZfM�JK^)MPE@J�ÕFMIC%HPHPQfÏ�JXR@LNCFT¼C�ÐaJIE@MPÕFLNCFT¼C�Ð®ÏfZ�J�h.M	h.Ï�J�HPM>Ð&CFEÉR.E@J���MKHqR@CFE@LNMPh·R.ZfJXRCFE@LNÕFLNTfJXR.M·LNT�R.ZfM·b�MqR.J�h@R.J�WfVNM7OfC�Y�T�h@R.JXR.MÇJ�TfOIR.MPE�b�LNT�JXR.M7QSÏ�CFTUMKT)R@MKE�LNTfÕ>R@ZfM·QfÏS_`h@ÏfLNTfhah@R.JXR@M)\
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along the shear direction. As a consequence, for the same number of spins in the cluster under
shear, the perimeter is larger under a finite shear that at zero shear (when the cluster is more or
less isotropic). Therefore the "free-energy barrier" will be larger under shear, thus decreasing
the nucleation rate. This "macroscopic" deformation is independent of the direction of the
shear, and has, for symmetry reasons, to depend on even powers of the shear rate.

Nevertheless, we can see from figure 10.2 that the perimeter of the growing cluster does
not scale uniformly with its surface but somewhat faster. This indicates either an increased
anisotropy or an increase of the roughness of the cluster’s perimeter. A non-uniform perimeter
would contain more kinks, or concave regions where down spins will have an advantage in
flipping and thus increasing the size of the cluster. This effect would enhance the nucleation
rate. Indeed, we observe that at low shear the nucleation rate increases. This interpretation is
in agreement with all our results. To summarise:

1. for moderate shear rates we observe a positive and linear increase in the nucleation
rate, as an effect of the discreteness of the system under study;

2. at moderate and high shear rates we observe an increased diffusion in the size of the
clusters, therefore nucleation paths are shorter in time;

3. at moderate shear rates the increase of the perimeter of TSE clusters corresponds to a
decrease of their size, as seen in fig. 10.6.

4. at high shear rates, the nucleation rate R decreases as the shear deforms the growing
cluster, and this is independent of the direction of the shear.

We suggest that the clusters roughness (number of concave kinks in the growing clusters)
might be a better order parameter together with the biggest cluster size to study the nucleation
phenomenon. Indeed, with the additional driving from the kinks, the cluster should need
less bulk "free energy" to commit to the up-spins phase. This additional parameter strongly
influences the nucleation dynamics and could explain the increased spread of the TSE clusters
in figures 10.5 and 10.7.

In conclusion, at moderated shear the nucleation rate increases due to a microscopic effect
of kink creation. This effect has less to do with the macroscopic shear and corresponds more
to a induced non-equilibrium microscopic disorder, more along the lines of the model of
Hurtado [226, 227]. On the other hand the macroscopic shear increases the size of the critical
cluster and the nucleation barrier, decreasing the nucleation rate, but only as a higher order
effect in the shear rate.

It would be interesting to experimentally study the surface of the nucleating droplet, as
we predict rougher droplets that could even increase the nucleation rate at low shear. We
stress that our conclusions cannot be extended to crystal nucleation phenomena, as we have
completely neglected the hydrodynamics interactions and we imposed an "artificial" shear to
the system, such that it cannot respond to the external applied shear.
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The shear algorithm is characterised by two parameters, Ns and Ps, being Ns the number of
steps and Ps the probability to shear, and it is described as follows:

1. after each Monte Carlo cycle, we carry out a series of Ns × L attempts to shear the
system;

2. in each attempt, we carry out a “shearing step” with probability Ps;

3. in a shearing step, we choose a row js at random from the lattice, and all lattice sites
with j > js are then shifted to the right by (
)�* lattice site.

4. At the end of each shearing step we update the relevant part of the neighbour list 3.

The results of one row shift are illustrated in fig.10.A.1.

¬®­#¯S°�±P²�µFã�´ Þ�´¤µe´#¶Éç.Ì#Ì#°9À!Ãq±K½)ÃP­#ÄS¹�ÄeÁ�½I±PÄ)ë ÀqÈ9­NÁ&Ã$­#¹¼ÃPÈ�²�ÀqÈ9²F½)±P­#¹9¯�½eÌ#¯eÄe±P­NÃPÈ9Ê�´Öç.¹DÃPÈ9­#À·Àqåf²XÃPÂKÈÑê�ÃPÈ9²>»gÄFÅÀq­#Í�²�­#À
L = 7

¾`Àq°�±q±PÄS°9¹9ä�²Fä�»�ºD½IÃPÈ�­¤ÂKå�Ì#­¤¹�² ¿ ¸ L = 65
­#¹�ÃPÈ�²>Àq­#ÊU°9Ì¤½)ÃP­¤Äe¹9À�´ÖÆÉÈ9²$±PÄ)ë ÀqÈ9½Sä�²�ä�¯e±P²�º­#ÀÇÃPÈ�²�ÄS¹�²�ÃPÈ9½%Ã$­#À$ÀqÈ�­#Á&ÃP²Fä-´7Þ$Ì#ÌÑ±PÄFë·À$½e»gÄ)ßf²�­NÃ>½)±P²IÀqÈ�­NÁ�ÃP²Fä¼ÃPÄ�ÃPÈ�²>±P­¤¯eÈ�Ã	»�º�ÄS¹9²�Ì¤½%ÃqÃP­#Â�²�Àq­NÃP²S´·ÆÉÈ�²­#Ê�½e¯e²�À	Ä%ÁÖÃPÈ�²IÀ!º�À!ÃP²�Ê ë·È9­#ÂKÈèÌ¤­#²�½e»gÄ)ßf²�½e¹9ä�»g²�Ì#Ä)ë ­¤¹�ÃPÈ�²IËg²�±P­¤Ä+ä�­#ÂUÌ¤½%ÃqÃP­#Â�²D¾`ÀqÈ9ÄFë·¹�ë·­NÃPÈ ä�ÄeÃqÃP²Fä»gÄe±Kä�²X±PÀ ¿ È�½Fßf²>»g²X²�¹¼ÀqÈ�­#Á&ÃP²Fä�Á�Äe±që7½)±Kä�À$½e¹9ä�»�½%Â�å�ëÉ½%±Kä�À�ê�±P²�ÀqËg²�ÂXÃP­#ßf²XÌ#º�ê�»�ºDÄS¹�²�Ì&½)ÃqÃP­#Â�²�Àq­NÃP²S´

In this scheme, rows that have larger j values will be shifted more often to the right;
therefore the net result is a “velocity gradient” linear in y: the average number of times that
row j is shifted per MC cycle is NsPsj, so that the shear rate is γ̇ = NsPs. In contrast to
the work of Cirillo [225], we do not shift by more than one lattice site in any shear step, but
instead use multiple shear steps per MC cycle to achieve high shear rates. 4� YÔMÖh.ZfCFQfVNO�TfC�R®CFTfV ] h@R@CFE�MÖR@ZfMÉh.ÏSLNTfh®C�ÐgJ�VNV�R@ZfMÓV#JXR�R@LNHKMÖh.L R@MPh�ceWfQSRaJ�VNh@CÇLNTeÐ�CFE�b�JXR.LNCFT�CFT�R@ZfMÓHPQfE�E�MKT)R�h@R.JXR.MC�Ð�R@ZfM>TfMPLNÕFZ%W+CFQfE7VNLNh@R@h�c�h.LNTSHKMÇR.ZSMKh@M�J�E�M>h.ZfL Ð¤R@MKO�W ] J�TDJ�b�CFQfT)RÉR.ZfJXR·OfMPÏ�MPTfOShÇCFT5R@ZfM>ZfLNh�R.CFE ] C�Ð®R@ZfMh.ZfMKJ�E�LNTfÕf\+ [aZfM®T%QfHPVNMKJXR.LNCFT$O ] TfJ�b�LNHKhgOSMKÏ+MPTfOfh-CFT·R.ZfMÔÏSE@MPHPLNh.M®b�MqR@ZfC%O$Qfh@MPOÇÐ&CFEgLNb�ÏfVNMPb�MPT%R@LNTfÕÔR.ZSM®h.ZfMKJ�EP\ ÐDMÔZ�JK^)MÐ�CFQSTfO5R.Z�JXR·LNTSHKE�MKJ�h.LNTfÕIR.ZSM>h.L-,PM	C�ÐÑR.ZSM>h.ZfMKJ�E7h�R.MPÏ�JXR7HPCFTfh@R.J�T%RÇh@ZfMKJ�E7E.JXR@M�OfMPHPE@MKJ�h.MPh7R@ZfM>T%QfHPVNM�JXR@LNCFT
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The focus of the research presented in this thesis is the study of nucleation pathways in a vari-
ety of different systems. To this end, we make use of existing and novel simulation techniques
to study rare events, mainly the Umbrella Sampling [12, 11] (US) and a simulation method
recently developed by Allen et al. [13, 14, 15] named Forward Flux Sampling (FFS). Differ-
ently from other path sampling techniques, FFS allows to evaluate

¢�,q(�,.����*®(��2� �+�i¢F,@�F��¥ ¡ ,@���+*|¢
for both equilibrium and non-equilibrium systems. We employ both US and FFS to compute
the rate of nucleation in various systems. By means of FFS, we analyse the pathways taken
by the system to nucleate a new thermodynamically stable phase from the metastable one,
and through US, we compute free-energy nucleation barriers as a function of an order param-
eter relevant for the phase transition. Moreover, for the first time we numerically estimate
free-energy barriers adopting the FFS technique (chapter 3).

Using FFS, we study crystal nucleation from the melt in charged systems. First, we explore¢%�e�+� ¡g¦ �X�g"&���F�����
(NaCl). Computing the nucleation rate by means of both US and FFS, we

obtain the same results, thus validating the FFS scheme for the first time applied to crystal
nucleation. We also observe that the critical cluster formed during the nucleation process
has the crystal structure of bulk NaCl. Interestingly, the critical cluster is clearly faceted,
presenting a cubical shape (see chapter 4). We then investigate a system made of oppositely
charged colloids, and encounter a puzzling behaviour (chapter 5). Charged colloids show a
"zoo" of crystal phases, as both Smit and Frenkel and Vega and coworkers [228, 229] have
shown in the case of the Restricted Primitive model, and Hynninen et al. [17] in the case of
a ¼|¡ ��(��Ç( ¥%�`*�(��2� ¦ � � , ¡ ��� . By over-compressing the last system at constant temperature,
we observe the growth of disordered fcc clusters of higher free energy than the ordered-CsCl
counterparts, contradicting both the Stranski-Totomanow conjecture [16], and the Classical
Nucleation Theory picture (CNT) [6]. Within CNT, preferred nucleation of the crystal struc-
ture with the higher nucleation barrier is possible when a large kinetic pre-factor compensates
the effect of a higher barrier. However, in CNT, the kinetic pre-factor describes the rate at
which clusters grow due to the attachment and detachment of single particles to a pre-existing
crystallite, and the rate of addition and removal of particles is hardly different for fcc and CsCl
clusters. What we believe happens instead, is that small clusters growing in the metastable
liquid have a disordered fcc structure with higher probability. However, this structure cannot
act as a template for subsequent CsCl growth, whilst a structural phase transition inside the
clusters is kinetically inhibited.

We then carry on a study on the way crystal nucleation pathways change with thermody-
namic conditions in �+*��%£K(�*��+£q,`�-�)£!¢%( ¦ � meta-stable liquid: ��(+�%¥X�+* . Liquid carbon is fairly
peculiar, as its local structure changes dramatically with temperature and pressure. At tem-
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peratures of 5000K and pressures of 80GPa, it mainly manifests a
')� ¡ �F£#')�+"&� ���e�+�����`*®(�,q�X�

structure, whereas at temperatures of 3800K and pressure of 30GPa it exhibits a
,`�g�����)£#')�+"&����e�+�����`*®(�,q���

structure. When studying nucleation in these two liquids, we observe that it is
less favourable to create an interface between a crystallite with a diamond structure and a ���(k#-���`,.���)£q"#�»���

liquid than between the same crystallite and a
����( ¦ �+*���£q"¤�»��� liquid. The un-

usual surface structure of the diamond cluster is an indication of the poor match between a
diamond lattice and a graphitic-like liquid. We then extrapolate our results to carbon-rich
planets and stars, and find that quite a high carbon concentration is needed to get homo-
geneous diamond nucleation: we conclude that it is extremely unlikely that diamonds can
never have nucleated in the carbon-rich middle layer of planets such as � ��(+* ¡ ¢è(�*®�HK���#®£, ¡ *�� , while the appropriate thermodynamic conditions for diamond nucleation are present in��(��%¥���*Ñ£q�F���X�W�Ö���`,q�¼���Ç(��y'X¢5¢F,q(���¢ (see chapter 6).

In chapter 7 we re-interpret and applied a standard thermodynamic
#-�)�F, ¡ �%¥�(�,.����*Ñ£K¥X(�¢%�X�,y�|�����2�

to estimate both the liquid-vapour and the liquid-solid
�`*-,q�)�F£#')(��)��(+"Ñ'������;�)*®�)�. W�

in a
system with different truncations of the Lennard-Jones potential. We make the simplifying
assumption (already made by Laplace) that the interface dividing the two phases is infinitely
sharp, and find that on the one hand this approach is not correct for liquid and vapour at
coexistence, as the dividing interface is fairly rough. On the other hand, to our surprise, the
theory can be very useful in the case of estimating the liquid-solid inter-facial free energy of
these truncated model potentials - this application is, to our knowledge, new.

Triggered by the work of Shen and Debenedetti [155], we also study the liquid-to-vapour
phase transition, or

¥ ¡ ¥e¥%"&�;* ¡ �)"&��(+,@���+* , from a Lennard-Jones fluid using the FFS scheme.
To our knowledge, this is the first time Forward Flux Sampling is used in combination with
a Molecular Dynamics simulation. We observe nucleation taking place via the formation
of compact bubbles, contrary to the web-like-system-spanning critical clusters observed by
Shen. We argue that the difference between the present results and those of ref. [155] are
partly due to the use of a global order parameter by the authors but, more likely, because the
simulations of ref. [155] were carried out at a state point relatively close to the liquid-vapour
spinodal of the model system under study. We also compare the computed bubble-nucleation
rate with the value estimated adopting CNT. We notice that in order for the simulations and
the CNT prediction to match, we have to assume a relatively low value of the surface tension
(γ) of the Lennard-Jones fluid. However, an exact calculation of γ is needed for a precise
comparison (see chapter 8).

In chapter 9 we examine the differences between the liquid-solid
�`*Ñ,!�%�F£#')(��%��(�"Ó'������ �%*-£�%�@ W�

measured by bulk properties and by Classical Nucleation Theory in
¢%�S��� ¡g¦ �X�g"&���F�����

.
Zykova-Timan, Tosatti and coworkers [191] measured by means of computer simulations the
liquid-solid inter-facial free energy of the Tosi-Fumi NaCl model at coexistence using the
Young’s equation in liquid droplet embedded in its vapour and deposited onto a NaCl [100]
crystal plane. They obtained about one third of the value we got in chapter 4 employing
CNT. In order to find the origin of this mysterious discrepancy, we thoroughly analyse the
free energy of NaCl clusters obtained at melting conditions where liquid and solid coexist,
and conclude that the surface free energy is subject to quite large finite size corrections that
cannot be accounted for within a thermodynamic theory. Therefore, supporting Kelton’s sug-
gestion [6], we conclude that the large number of published surface free energies, based on



nucleation data, are of little use to predict macroscopic surface free energies.
The last chapter of this thesis (chapter 10) is devoted to a computational study of the

effect of an
(k#�#�"#����� ¢K�-��(��

on crystal nucleation in a lattice model: the two-dimensional
Ising model. This type of non-equilibrium dynamics is rather artificial. It might be viewed
as a rough description of the experimental situations of the droplet nucleation process in
emulsions [223]. We find a dependence of the nucleation rate on the applied shear rate. On
the one hand, at moderate shear rate, shearing a sub-critical cluster increase the number of
kinks on its perimeter. The kinks are places where the growth of the cluster is favoured.
We claim that this effect is essentially due to the discreteness of our system, and seem to be
linear for small values of the shear rate. Moreover, we find similarities between our results
and the same effect noticed in a model with an induced non-equilibrium microscopic disorder,
along the line of Hurtado and coworkers [226, 227]. On the other hand, the higher shear rate
increase the perimeter-to-area ratio of the critical clusters, leading to an effective decrease
of the nucleation rate. To conclude, we also suggest that the clusters roughness (number of
concave kinks in the growing clusters) might be a relevant order parameter, together with the
biggest cluster size, to study the nucleation phenomenon.
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Het onderzoek in dit proefschrift focusseert zich op de studie van nucleatie paden in ver-
schillende systemen. Hiervoor gebruiken we bestaande en nieuwe simulatie methoden voor
de studie van zeldzame gebeurtenissen, voornamelijk de Umbrella Sampling [12, 11] (US)
en de Forward Flux Sampling (FFS) simulatie methode welke recentelijk ontwikkeld is door
Allen et al. [13, 14, 15]. In tegenstelling tot andere path sampling technieken, kan FFS sta-
tionaire distributies bepalen voor zowel evenwicht en niet-evenwicht systemen. Om de nu-
cleatie snelheid in verschillende systemen te berekenen passen we zowel US en FFS toe. Met
behulp van FFS analyseren we paden die het systeem neemt bij de nucleatie van een nieuwe
thermodynamisch stabiele fase vanuit een metastabiele fase. Met behulp van US berekenen
we de vrije energie nucleatie barrières als functie van een voor de fase transitie relevante orde
parameter. Bovendien berekenen we voor het eerst de vrije energie barrières met behulp van
de FFS methode (hoofdstuk 3).

Met behulp van FFS bestuderen we kristal nucleatie van supergekoelde vloeistof in geladen
systemen. Eerst onderzoeken we natrium chloride (NaCl). De berekening van de nucleatie
snelheid met zowel US en FFS levert dezelfde resultaten op, waarmee we voor het eerst
de FFS methode valideren voor kristal nucleatie. We zien ook dat de kritische cluster die
gedurende het nucleatie proces gevormd wordt, de kristal structuur heeft van bulk NaCl.
Het is interessant dat de kritische cluster duidelijke vlakken vertoont, resulterend in een
kubusvorm (zie hoofdstuk 4). Vervolgens onderzoeken we een systeem van tegengesteld
geladen colloïden, en stuiten op een vreemd gedrag (hoofdstuk 5). Geladen colloïden to-
nen een "dierentuin" van kristal fases, zoals zowel Smit, Frenkel en Vega en medewerk-
ers [228, 229] hebben aangetoond in het geval van het Restricted Primitive model, en Hyn-
ninen et al. [17] in het geval van een Yukawa binary mixture. Door het laatste systeem bij
constante temperatuur extreem samen te drukken, vinden we de groei van ongeordende fcc
clusters met hogere vrije energie dan bij geordend CsCl, wat zowel de Stranski-Totomanow
beraming [16], en het Classical Nucleation Theory (CNT) beeld [6] tegenspreekt. Binnen
CNT, is de geprefereerde nucleatie van de kristal structuur met een hogere nucleatie bar-
rière mogelijk wanneer een grote kinetische pre factor het effect van de hogere barrière com-
penseert. In CNT beschrijft de kinetische pre factor echter de snelheid met welke clusters
groeien door binding en het loslaten van enkele deeltjes aan een vooraf bestaande crystallite,
en de snelheid van toevoeging en verwijdering van deeltjes is nauwelijks anders voor fcc en
CsCl clusters. Wij geloven daarentegen dat kleine clusters die in de metastabiele vloeistof
groeien, een hogere waarschijnlijkheid hebben om een ongeordende fcc structuur te hebben.
B [gE@J�Tfh.V#JXR@LNCFT�W ] �ÓJFJ�T��ÉL ^eLNMPR
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Deze structuur kan echter niet dienst doen als template voor de daarop volgende CsCl groei,
omdat een structurele fase transitie binnen de clusters kinetisch geïnhibeerd is.

Vervolgens bestuderen we hoe kristal nucleatie paden veranderen afhangen van thermody-
namische condities in één en dezelfde metastabiele vloeistof: koolstof. Vloeibaar koolstof is
een beetje vreemd, aangezien haar locale structuur dramatisch verandert afhankelijk van tem-
peratuur en druk. Bij een temperatuur van 5000K en een druk van 80GPa, bevindt het zich
vooral in een viervoudig gecoördineerde structuur, terwijl bij een temperatuur van 3800K en
een druk van 30GPa het een drievoudig gecoördineerde structuur vertoont. Bij het bestuderen
van nucleatie in deze twee vloeistoffen, zien we dat het minder aantrekkelijk is om een inter-
face te creëren tussen een crystallite met een diamantachtige structuur en een grafietachtige
vloeistof dan tussen hetzelfde crystallite een diamantachtige vloeistof. De ongebruikelijke
oppervlakte structuur van de diamant cluster gaf aan dat er een slechte match is tussen een
diamant rooster en een grafietachtige vloeistof. Wanneer we onze resultaten vervolgens ex-
trapoleren naar koolstofrijke planeten en sterren, zien we dat een vrij hoge koolstof concen-
tratie nodig is voor homogene diamant nucleatie: we kunnen concluderen dat het extreem
onwaarschijnlijk is dat nucleatie van diamanten ooit plaatsvindt in de koolstofrijke middel-
ste laag van planeten zoals Uranus en Neptunus, terwijl de benodigde thermodynamische
condities voor diamant nucleatie wel aanwezig zijn in koolstofrijke witte dwerg sterren (zie
hoofdstuk 6).

In hoofdstuk 7 herinterpreteren we een standaard thermodynamische op perturbatie
gebaseerde theorie en passen het toe om zowel de vloeistof-damp en de vloeistof-vaste stof
inter-facial vrije energie te berekenen in een systeem met verschillende afkappingen van de
Lennard-Jones potentiaal. Hierbij maken we de simplificerende aanname (reeds gemaakt
door Laplace) dat het scheidingsvlak tussen de twee fases oneindig scherp is, en vinden dan
dat deze benadering aan de ene kant niet juist is wanneer vloeistof en damp tegelijkertijd
bestaan, vanwege het feit dat hun scheidingsvlak dan vrij ruw is. Aan de andere kant, en
tot onze verrassing, is de theorie goed bruikbaar om de vloeistof-vaste stof inter-facial vrije
energie te bepalen van deze afgekapte model potentialen - deze toepassing is zover wij weten
nieuw.

Gestimuleerd door werk van Shen en Debenedetti [155], bestuderen we ook de vloeistof
naar vaste stof fase transitie, oftewel bubble nucleatie, van een Lennard-Jones vloeistof ge-
bruikmakend van het FFS methode. Voor zover wij weten, is dit de eerste keer dat Forward
Flux Sampling gebruikt wordt in combinatie met een Molecular Dynamics simulatie. Hier-
bij zien we dat nucleatie plaatsvindt via de vorming van compacte belletjes, in tegenstelling
tot de web-like-system-spanning kritische clusters die door Shen zijn waargenomen. We re-
deneren dat het verschil tussen de onze resultaten en die van referentie [155] gedeeltelijk zijn
toe te schrijven aan hun gebruik van globale order parameters, maar vooral aan het feit dat de
simulaties van referentie [155] uitgevoerd zijn bij een state point dat vrij dicht bij de vloeistof-
damp spinodal ligt van het bestudeerde model systeem. We vergelijken de berekende snelheid
van bel nucleatie ook met de waarde zoals bepaald met de CNT methode. Hierbij valt het
op dat om de simulatie en CNT voorspellingen te laten overeenkomen, het nodig is om een
relatief lage waarde van de oppervlaktespanning (γ) van de Lennard-Jones vloeistof aan te
nemen. Desondanks, is het voor een precieze vergelijking nodig om γ exact te berekenen (zie
hoofdstuk 8).



In hoofdstuk 9 bestuderen we hoe de vloeistof-vaste stof inter-facial vrij energie in natrium
chloride verschilt wanneer die berekend wordt met behulp van bulk eigenschappen of met
de Klassieke Nucleatie Theorie. Zykova-Timan, Tosatti en medewerkers [191] hebben de
vloeistof-vaste stof inter-facial vrije energie van de Tosi-Fumi NaCl model bij coexistence
door gebruik te maken van de Young formule in een gesimuleerde vloeistof druppel, ingebed
in zijn damp en gedeponeerd op een NaCl [100] kristal laag, en bepaalde een waarde welke
ongeveer een derde van is van de waarde die wij met behulp van CNT vinden in hoofdstuk 4.
Om de reden van deze mysterieuze discrepantie te vinden, analyseren we de vrij energie van
NaCl clusters bij smelt condities waar vloeistof en vaste stof tegelijkertijd bestaan, en komen
vervolgens tot de conclusie dat de oppervlakte vrije energie bloot staat aan vrij grote finite size
correcties die binnen de thermodynamische theorie genegeerd worden. Derhalve concluderen
we dat, Keltons suggestie bevestigend [6], de grote hoeveelheid vrije oppervlakte energieën
die gepubliceerd zijn op basis van nucleatie gegevens, weinig nut hebben om macroscopische
vrije oppervlakte energieën te voorspellen.

Het laatste hoofdstuk van dit proefschrift (hoofdstuk 10) is toegewijd aan de computa-
tionele studie van het effect van een toegepaste shear bij kristal nucleatie in een rooster
model: het tweedimensionale Ising model. Dit soort niet-evenwicht dynamica is vrij arti-
ficieel. Het kan gezien worden als een ruwe beschrijving van de experimentele situatie van
het druppel nucleatie proces in emulsies [223]. Wij vinden dat de nucleatie snelheid afhanke-
lijk is van de toegepaste shear snelheid. Aan de ene kant vermeerdert bij een gematigde
shear snelheid het shear-en van subkritische cluster het aantal breuken aan de rand. Deze
breuken zijn plekken waar groei van het cluster gunstig is. Wij claimen dat dit effect in wezen
veroorzaakt wordt door het discreet zijn van ons systeem, en lijkt het lineair te zijn voor kleine
waardes van de shear snelheid. Bovendien vinden we overeenkomsten tussen onze resultaten
en waarnemingen van hetzelfde effect door Hurtado en medewerkers [226, 227] in een model
met geïnduceerde niet-evenwichtige microscopische wanorde. Aan de andere kant, verhoogt
de hogere shear snelheid de omtrek-oppervlakte verhouding van de kritische clusters, wat
leidt tot een effectieve vermindering van de nucleatie snelheid. Tot besluit, suggereren we
dat de ruwheid van de clusters (gedefinieerd door het aantal concave breuken in de groeiende
clusters) een relevante orde parameter kan zijn, samen met de grootste cluster grootte, om het
nucleatie fenomeen te bestuderen.
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Cinque anni orsono decisi di partire alla volta dell’Olanda con l’intenzione di studiare un
fenomeno fisico chiamato

* ¡ �%"&��(\Ã%���+*�� . Anche se puo’ suonare sconosciuto, cio’ che viene
indicato con il termine di nucleazione e’ un fenomeno molto diffuso nella vita quotidiana di
ognuno di noi.

Cominciamo pero’ dall’inizio. Tutta la materia in Natura si puo’ presentare in tre stati
distinti: solido, liquido o gassoso. Prendiamo come esempio l’acqua: e’ esperienza comune
il fatto che a temperatura e pressione ( ¦ ¥)���%*-,q� (riscontrabili nella cucina di casa) l’acqua
esiste nello stato liquido, come quella che esce dal rubinetto del lavandino. Ora, noi italiani
sappiamo bene che mettendo una pentola sul fuoco per preparare la pasta, dopo un po’ di
tempo l’acqua

¥��+"`"&�
: passa quindi dallo stato liquido a quello gassoso. Un altro esperimento

casalingo consiste nel mettere una bottiglia di acqua “al fresco” nel congelatore. Sappiamo
tutti che e’ bene non dimenticarla per troppo tempo, visto che l’acqua solidifica diventando f����(����%���

, e puo’ anche rompere il vetro della bottiglia!
Appare chiaro da queste osservazioni come cambiando la temperatura a pressione costante,

sia possibile portare un sistema fisico (l’acqua) da uno stato (liquido) a un altro (gassoso o
solido). Ora voi vi chiederete: ma in tutto cio’, la nucleazione che c’entra? La mia risposta
e’: “C’entra c’entra”. Si chiama nucleazione proprio il ¦ ������(�*Ñ�i¢ ¦ � di trasformazione da
uno stato della materia all’altro. In pratica, quello che succede (�� ¡ *;���%�F,!�$# ¡ *-,q� alla nostra
bottiglia d’acqua nel congelatore e’ la formazione

�`* ¡ *�# ¡ *-,q��� ¦ #������%�i¢%(�,q�
del liquido di un

cristallo di ghiaccio piccolo piccolo, che poi cresce solidificando tutta l’acqua della bottiglia.
“Ma e’ mai possibile che ancora oggi non si sappia esattamente come avviene la trasfor-

mazione dell’acqua in ghiaccio?”. Vi stupiro’ dicendovi che il fenomeno della nucleazione,
pur essendo diffusissimo in Natura e antico quanto le stelle che sono in cielo, non e’ ancora
del tutto compreso. Questo costituisce una ragione in piu’ per cui molti scienziati in tutto il
mondo e da qualche secolo sono interessati a displicarne i misteri. Ma dietro a tutto questo
studio, non c’e’ solo puro diletto intellettuale: l’intenzione e’ ben piu’ ambiziosa. Capendo
il meccanismo che governa questo fenomeno fisico, potremo imparare a controllarlo, limi-
tandone i danni e beneficiandone dei vantaggi. E come se non bastasse, in futuro potremmo
persino utilizzare la nucleazione a scopi tecnologici.

Iniziamo con il vedere la diffusione che la nucleazione ha in Natura. Senza andare troppo
lontano, questo fenomeno puo’ malauguratamente anche avvenire nel nostro organismo, cau-
sando disturbi piu’ o meno gravi. L’ anemia falciforme e’ una malattia genetica debili-
tante, che colpisce centinaia di migliaia di bambini ogni anno in tutto il mondo. E’ stato
recentemente dimostrato che il suo primo evento patogeno e’ la nucleazione di un mu-
tante dell’emoglobina, la proteina del sangue responsabile del trasporto di ossigeno, con la
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conseguente formazione di forme anomale. Esistono molte altre malattie dell’uomo come
l’Alzheimer e la mucca pazza che iniziano con la nucleazione di alcune proteine. Persino, i
meno gravi seppur dolorosi calcoli renali hanno origine da un fenomeno di nucleazione di un
composto organico, l’ossalato di calcio.

Tuttavia, anche se dannosa per noi, la nucleazione puo’ essere un processo molto impor-
tante per molti altri organismi viventi. Sempre di nucleazione si tratta se pensiamo al guscio
delle chiocciole. Queste ultime sono animali invertebrati che formano il loro esoscheletro* ¡ �%"&��(�*®��� un composto inorganico, la calcite (carbonato di calcio). Lo stesso dicasi per il
guscio di altri organismi marini tra cui le prelibate ostriche.

Sembra quindi evidente che la nucleazione della calcite avviene in condizioni ambiente,
ossia a temperature e pressioni che si trovano sulla superficie della terra. Ma la nucleazione
e’ presente anche all’interno del nostro pianeta. Infatti nella crosta terrestre, dove temper-
ature e pressioni sono molto elevate, ci sono le condizioni per cui il carbonio si trasforma
nella gemma piu’ preziosa e antica del mondo: il diamante. Ma attenzione: lo stesso car-
bonio a condizioni di pressione e temperatura diverse puo’ formare, sempre per mezzo della
nucleazione, un cristallo assai meno prezioso quanto utile: la grafite.

Un modo per capire cosa origini la formazione di fasi cosi’ diverse sarebbe quello di fare
esperimenti in laboratorio che riproducano la nucleazione di diamante e grafite a partire da
un liquido costituito solo di carbonio puro. Tuttavia, le temperature e pressioni a cui questo
fenomeno avviene sono proibitive in qualsiasi laboratorio moderno.

Una soluzione a questo problema e’ l’uso di simulazioni al calcolatore. La simulazione al
calcolatore e’ nata piu’ o meno dopo l’avvento dei primi calcolatori circa cinquanta anni fa,
e puo’ essere di supporto sia agli esperimenti, soprattutto quando non realizzabili (come nel
caso delle formazione del diamante), sia che alle teorie, al fine di testarne la validita’.

Per mezzo delle simulazioni al calcolatore, e’ quindi possibile studiare i meccanismi mi-
croscopici su cui si fonda la nucleazione. Torniamo al nostro esperimento della bottiglia di
acqua nel congelatore; le simulazioni al calcolatore possono essere usate come una

"&�%*-,q����	�`*9 ���(+*���� ¦ �%*-,q� che permette di sapere  %¡ (�*®��� e
���Âû��

si formeranno i piccoli cristalli di
ghiaccio.

E proprio le simulazioni al calcolatore sono il mezzo da me utilizzato per investigare come
si forma un cristallo di sale da cucina, provare che i diamanti non si possono trovare su pianeti
gassosi come Urano e Nettuno, ma sono invece presenti nelle nane bianche, e approfondire
come bolle un liquido (l’Argon). Quest’ultimo argomento ha delle immediate applicazioni
tecnologiche, visto che l’ebollizione di un liquido se non controllata, puo’ essere molto peri-
colosa, specialmente nel trasporto di gas naturali liquefatti o in reattori nucleari.

In futuro, la nostra speranza e’ quella di arrivare ad una comprensione totale del processo
di nucleazione, sia con l’intento di spiegare molti fenomeni naturali, ma anche con lo scopo
di utilizzare la nucleazione in modo controllato a fini medici e tecnologici.
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Daan has been my PhD supervisor during the last five years. Working with Daan has been
an amazing experience. His wide knowledge allowed me to learn interesting and different
“hot topics” in the Physics of Matter. With Daan, I always had the impression to have the
freedom to learn and explore several scientific issues. However, this exploration could not
overcome a certain threshold, beyond which Daan would intervene to put me back on track.
His enlightening “zipped” solutions to my scientific problems, have revealed to be as helpful
as valuable (once unzipped). He was always patient during my learning, and gave me many
possibilities to broaden my scientific knowledge, allowing me to visit labs in other countries,
and attend to many physics schools and international conferences. Moreover, he transferred
to me his enthusiasm, creating an enjoyable working atmosphere within the computational
physics group at Amolf.

The same cooperative and friendly atmosphere could be found in the all bio-soft-matter
simulation-theory-experiments Amolf’s wing: the Overloop. I enjoyed and learnt a lot from
scientific discussions with Pieter Rein and Bela, and from our “controversial” weekly group
meetings. Also many post-docs actively and patiently contributed to the learning that finally
led to my scientific work. Angelo who helped me to start. He had also been a really good
friend, and initiated me to the fascinating world of the trumpet. Harald, who tough me with
his kind attitude the way to be a good teacher, and gave me many valuable advices on writing
down my work. The most supportive “woman-in-science” had been Rosalind. She explained
me how to use the Forward Flux Sampling scheme, a technique I thoroughly adopted through-
out all my work, and was an extremely valuable coworker. With Georgios I shared endless
scientific conversations, whereas Peppino taught me the way to be relaxed still keeping the
passion for science.

My PhD thesis could not have included all these chapters without the collaboration with
many colleagues-now-friends: Eduardo (and our sodium chloride project, involving “la bal-
lena piloto”), Luca Maria (and our endless conversations by phone), Zunjing (“Katanga, the
whishing Chinese” full of energy), Tanya (and her lively temper) and Sorin (and his critic and
analytic mind). I had enormously benefited from working with all of them, and last but not
least, had a lot of fun!

My scientific adventure began in Rome, in the group of Francesco Sciortino, where I
did my Master thesis guided also by Antonio, a funny “monarchist” post-doc from Napoli.
Francesco gave me the possibility to approach the field of Physics of Matter studied by means
of computer simulations... and I liked it a lot! Thus, in October 2002 I moved to Amsterdam,
full of enthusiasm and curiosity. And my adventure in the
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started...

Daan’s group has always been multi-cultural and full of nice people. Just arrived, I received
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a warm welcome by Tanya, Mark and Chinmay; a German, an English (Maltese) and an
Indian post-doc willing to help me and involve me in their activities, ranging from a harmless
singing chorus directed by Mark-the musician, to an exiting Judo lesson with the energetic-
Tanya, and a funny trip to Germany, where Chinmay started learning Italian by reading my
“really-really nice” Noam Chomsky’s book.

At that time, a characteristic of Amolf was the relatively big size of the Italian commu-
nity, mainly concentrated in the Overloop wing. A considerable issue in our “Little Italy”,
strangely enough, was the food. Important events were Angelo’s cheese and Mirto from
Sardegna, Marco J’s “polenta” from Bergamo, my grandma’s “fettine panate”, and Ivan-
Aifan Colvezza’s notorious “magic” bags, filled with all the food cooked by his mum. There
was also a lot of cooking activity: Fabiana experimented different kinds of “risotto”, Angelo
and Marco made an excellent “limoncello”, and Fabrizio-babbo Capuani and his girlfriend
Annamaria, delighted us with delicacies from “Napoli e dintorni”. The crew was also made
up of Marco-Costantino Lagomarziano with his positive way of life, and his friendly girl-
friend Barbara, Bea-Donna Marino, “half woman-half elf” and her magic land, and Daniele
(at the UvA) notorious for his amusing parties. However, with time the Italian community in
Amolf suffered a shrinkage, the only new-comers being Paolo-Nederlandse spreker, Matteo-
la coscienza del popolo italiano and his family, and Mimmo-il cuoco.

Time going by, the flow of people in our group never stopped, always bringing friendly
people, fellows first, friends next: if-I-understand-correctly Georgios (“gboul”), Peppino-
Peppino, Tati, with whom I swam in the dutch waters (swimming pool, not canals), Behnaz,
with whom I shared the passion for “speekstein”, and Rosalind, with whom I had a go to
play music for a trumpet-saxophone duo. And also Koos and his availability, Axel and his
penguin, Live and her babies, and Patrick and his improvised Italian-English translation.

Our group, the computational physics group, has been located for a long while in the
“Overloop”, continuation of the main Amolf building into a prefab one too hot in summer
and too cold in winter. Even though properly thermalised by means of air-conditioners and
heaters, seeking the “correct” temperature in our office has always been a delicate issue.
On one side Marco J, such as “don Quijote” fighting against wind-mills, claimed his rights
to keep the room temperature slightly lower than his body temperature (or “at least” at 25
degree Celsius), on the other side Dima (with his diplomacy), myself (“the chief penguin”)
and Rhoda (with her goodness) tried an exhausting and daily campaign to convince him that
“cool is cool”.

The Overloop also lodged “theorists”, “experimentalists”, and “bio-simulators”, big words
translated into friendly and cheerful people, such as Daan K, Frank, Julien, Simon, Kostya,
Page, Aileen, Ruud, Rutger, Siebe, Liedewij, Laura, Gertjan and Nienke, only to mention
“few” of them. They contributed to create an enjoyable working atmosphere, peaked at the
funny and relaxing Friday evenings at the “East of Eden”. In this enviable working environ-
ment, there were also “the visitors”, young scientists from all over the world coming every
year to Amolf, the “Mecca” for computer simulators. Thus, I could enjoy the presence of Na-
dia with her kindness (and her chocolate fondue), Yuri with his never-ending energy (and the
yellow monster only he could tame), Bianca with her generosity (and her appelstrudel), and
Eduardo. As all the other visitors, he was here to learn new simulation techniques. We then
though it could be nice to work together at crystal nucleation from molten sodium chloride.



We spent a lot of time discussing together: I really appreciated his careful attitude towards
science, his curiosity, his will and ability to learn always something new, and his sensible so-
lutions to problems. But also enjoyed working with him, valuing his sense of humour, funny
jokes and vitality. I am very happy to have had the luck to meet him, and willing to live with
him many “scientific and non” adventures.

My non-scientific life was shared between “Little Italy” and the rest of the world, highly
present here at Amolf, such as the french community with Nicolas “the climber”, Boris “the
runner”, and Sebastian and Celine and their fantastic parties. Besides french parties, I dis-
covered the importance of food and hospitality not only in the chinese culture, when having
“luculliane” dinners first at Wenbing’s later at Zunjing’s home, but also in slovakian culture,
as Jozef and Renata explained me while I was filling my mouth with cheese from Kosice,
and of course in spanish culture, as I confirmed eating Andrea F’s “patatas a la riojana”. I
also spent nice evenings chatting and cooking Italian-Greek-English food with Olgaki, an
always-smiling greek. Her wedding in Corinthos with Panaio’ was an unforgettable experi-
ence, visiting the ancient Greek ruins and dancing “sirtaki”with Georgiana and Thea.

The Italian “food-lovers” community extended its boundary also outside Amolf’s gates.
Andrea, Valentina and Lorenzino’s house was always open for hungry (or lazy) brothers
and sisters knocking at their door. Enrico’s “crostata” was one of the best cake you could
ever dream of (even better than my mum’s one). Whereas at Marco and Pasquale’s you
could savour a tasty and “creative” regional cuisine from Calabria. The “stereotypical” Italian
passion towards food and cooking, tantalised Salina’s attention so much, to induce her to
shoot a short movie titled “Cake” on it.

During these years, I discovered to appreciate dutch specialities such as Karnemelk, cro-
quettes, and paling, traumatising “Little Italy”, who threatened me to formally ask the Italian
embassy for the withdrawal of my passport. However, my “dutch experience” went beyond
the food: I had to see for myself the “housing” problem. Someone once told me: housing in
Amsterdam is really difficult. Now I know he was right: in five years I moved seven times.
However, looking back, this “inconvenience” allowed me to live in different and interesting
neighbourhood in Amsterdam, from the Moroccan to the Jewish one, and most of all, to meet
nice people. As soon as I arrived, I stayed at the guest house in Middenweg, a comfortable
flat where I was lucky enough to share with a really nice couple: Tanya and Douggy, with
which I experienced my first days in Amsterdam. After the guest house, I moved to Wa-
tergraafsmeer, a residential and quite neighbourhood for medium-class dutch-families very
close to the lab, where I shared the apartment with the Ukrainian-Canadian Anna. After
a “relaxation time” to adjust one another, I discovered her delicious Ukrainian borsch, and
her patience when I started to learn the trumpet. We also shared a common interest in the
“Alexander technique”, taught us by Marja, a positive and calm dutch woman who also gave
me few insights on the dutch culture and tips on good restaurants in Amsterdam. Next stop
was a flat in the “Indische Buurt”, a colourful neighbourhood mainly inhabited by Turkish
and Moroccan Amsterdammers, where Laura and Peppino have been two discreet and very
friendly flat-mates. The evenings spent with Peppino chatting in the kitchen, while drinking
tea and always hearing someone calling upon “Tyson”, built our endurable friendship. At
last, I moved with Eduardo to the “Jewish quarter” of Amsterdam, in an old house with a
nice garden. Thanks to the vicinity of the water, we could enjoy the Amsterdam experience



of “boat trips” along the canals with our friend and neighbour Christian.
Nothing that I have told you until now, would have been possible without the support of

my family and friends in Rome (and the legendary yellow boxes labelled with the “Poste
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The Roman Emperor Adriano built an imponent wall to prevent military raids by ancient
Scottish tribes. By means of a big wall, he clearly indicated the boundary between the Roman
Empire and the “Caledonian” region, nowadays better known as Scotland. However, differ-
ently from the Romans, I decided to dare more and, still full of enthusiasm and curiosity, go
beyond "the wall" and reach the cold and hilly Edinburgh with Eduardo.




