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Chapter 1

Introduction

The lack of real contact between mathematics and biology
is either a tragedy, a scandal or a challenge.

Giancarlo Rota

Even the simplest organisms must be able to detect and respond to changes in their
environment. In unicellular organisms, these decisions are performed by networks of
proteins and DNA that chemically and physically interact with each other. In this Thesis,
I will study gene regulatory networks in bacterial cells. I will use computer simulations
to study the design principles of network motifs: overrepresented patterns of interactions
that serve as the building blocks of gene regulatory networks. The central question is how
these network motifs can operate reliably even in the presence of biochemical noise.

In this Introduction, I will first summarise the history of genetics, and discuss the
principal findings that lead to the seminal work of Jacob and Monod on gene regulation.
Since the concept of regulation of gene expression lies at the heart of this Thesis, I will
discuss the principles of gene regulation in Section 1.2. In the next Section, I will discuss
the statistical properties of gene regulatory networks, and subsequently address the var-
ious sources of biochemical noise they are prone to. The most widely-used descriptions
to model gene regulation networks will be presented in Section 1.5, while Section 1.6 will
discuss common and novel computational techniques that I used to simulate the systems.
A brief outline of the thesis is printed at the end of Section 1.6.
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1 Introduction

1.1 Genetics: an historical background
The XIX century was preparing for another scientific revolution, as important and as
contested as Copernicus’ new vision of the universe. It is exactly from astronomy that
some fundamental ideas about the dynamic nature of the universe were borrowed: the as-
tronomer William Herschel understood that the solar system not only is currently moving
through space, but also did all the planets form from a primitive state, a gas nebula, thus
“downgrading” further the status of Earth from a religious viewpoint. The evidence for
these discoveries came mostly from geological data. When Charles Darwin studied geol-
ogy at the University of Edinburgh, he surely was challenged to get in touch with ideas.
Perhaps his imagination was tickled by a distic written by Charles Lyell in his textbook
”Principles of Geology":

He that such quest would go must know not fear or failing
To coward soul or fatihless heart the search were unavailing.

Lyell was referring to the problem of the origin of species and called it the "mystery of
mysteries". On the 3rd of June 1836, during his trip on the Beagle, Charles Darwin vis-
ited the mathematician and astronomer John Herschel in Cape Town. His host “verbally
aggressed” him on the question of the presence of extinct species in nature.

Darwin was profoundly influenced by Herschel’s words, and started bridging the gap
between his background in geology and his interest in the life sciences. This seminal
meeting between two bright scientists, held almost two centuries ago, questioned one of
the ascertained paradigms in science, namely that the species are created by God and do
not change in time. The seeds of the spectacular successes of modern genetics are rooted
in the questions these two english gentlemen brought to attention, and in the history of the
answers that the scientific community slowly accumulated. It is then interesting to retrace
this history, which has benefitted from contributions of scientists coming from a plethora
of different backgrounds, and that was strongly influenced by the concomitant evolution
of the zeitgeist.

Two decades later, in 1859, Charles Darwin published his book "The Origin of Species",
where he summarised his investigations and formulated the revolutionary hypothesis that
animal and vegetal species can change, driven by the fight for survival and competition
for resources. Another echo of these ideas can be found in the theories of the economist
Thomas Malthus, who believed that populations fight to survive by competing for food
resources. As in every scientific major turning point, Darwin’s ideas created a lot of scan-
dal, and involved a radical re-thinking of the Lamarckian paradigm "the use creates the
organ". Darwin’s second famous book, "The Descent of Man"(1871) challenged the ori-
gin of human life on earth, and therefore its role: if human beings were also subject to the
rules of evolution, it was no longer possible to believe they were collocated by God to rule
over the world, but rather the result of an accidental process in common with all the other
animals. Eventually, the “brute” nature of life, based on rough competition rather than
on a divinely-planned harmony, was accepted by most intellectuals, yet leaving a crucial

2



1.1 Genetics: an historical background

question unanswered: how are the “characters” of individuals transmitted?

During this time, the Bohemian monk Gregor Mendel patiently cultivated and cross-
bred generations of peas (Pisum sativum), and collected comprehensive statistics of how
their hereditary characters are transmitted. He was aware of Darwin’s results and driven
by the same curiosity towards the roots of the manifest variety of nature. On the 8th of
February 1865, during a meeting of the Natural History Society of Brünn (now Brno,
Moravia), he illustrated the results of his meticulous records: in every plant, during mat-
ing the characteristics of the parents are combined according to precise statistical rules,
and transmitted to the following generations. Mendel’s studies in physics clearly influ-
enced his reductionistic views: the simple “hereditary elements” which combine in fixed
proportions bear much resemblance to the atomic entities recently discovered in physics
and chemistry. With the physicists, he also shared a statistical approach to the scientific
problems. Unfortunately, his results did not spread beyond the German-speaking scien-
tific community, and the manuscript Mendel sent to Darwin was completely ignored by
the English scientist. The nature of the “hereditary elements” stayed mysterious. How-
ever, since the observations at the microscope of the German biologists Theodor Schwann
and Matthias Schleiden in the first half of the XIX century, it became clear that plants and
animals are made of basic structural and functional units, called cells: the hereditary ele-
ments must then be searched for within the cells.

Mendel’s results were re-discovered by the German-speaking scientists Hugo de Vries,
Carl Correns and Erich von Tschermak, at the beginning of the XX century. In the same
years, the German physicist Max Planck showed that energy is quantized and therefore
is not a continuous quantity. The first advances of the quantum theory brought the idea
of discreteness under the spotlight: the theory of elementary hereditary elements was re-
considered, and a new name was created for them: genes, from the greek word γενoς
(race, offspring). The science studying genes was called genetics.

The seminal experiments that shed light on the mystery of genetics in the second half
of the XX century were primarily conducted on very simple organisms. It is therefore
instructive to make a short digression and briefly explain the main features of such or-
ganisms. Bacteria are tiny, unicellular forms of life that were first seen by the Dutch
tradesman Anthony van Leeuwenhoek with his hand-crafted microscope in the XVII cen-
tury. They were extensively studied by the French chemist Louis Pasteur and the German
physician Robert Koch in the second half on the XIX century. The outbreak of the French-
Prussian conflict made the two scientists enemies; luckily, before that event they had
already identified bacteria as the pathogenic micro-organisms responsible for many dis-
eases. Bacteria are prokaryotes, that is their cells do not have a clearly defined nucleus and
are much less spatially organised than cells showing a clear nucleus, called eukaryotes.
Up to current times, prokaryotic cells are the preferred object of experimental investiga-
tion, due to their simplicity. There exists diseases that are carried by sub-microscopical
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1 Introduction

particles that can affect biological cells: viruses. Invisible under most microscopes and
able to penetrate any known filter, these small, elusive agents were first identified on to-
bacco plants by the Russian biologist Dmitri Ivanovsky in 1892. Viruses are composed
of genetic material encapsulated in a protein shell or in a membrane, and they cannot re-
produce alone: they need to get into a host cell, and exploit its biochemical machinery to
multiply as much as possible; eventually, the progeny is released, and the host is killed.
Viruses lie therefore at interface between life and the inanimate world. Viruses infecting
bacteria, called bacteriophages, were extensively studied in early molecular biology.

Genetics made one of its first steps in 1903 with the American biologist Walter Sutton
who saw that when sex cells are formed, small filaments reorganize and randomly divide
in the two daughter cells. Such structures were first observed by the German physician
Walther Flemming and earned their name (chromosomes) by virtue of their capacity to
be stained very strongly by many dyes. By cross-breeding mutated fruit flies Drosophila
melanogaster, the American biologist Thomas Morgan was able to demonstrate in 1915
that genes are carried on chromosomes. Despite all this progress and acquisition of im-
portance in science, genetics was still permeated by a deep mystery: what were genes
made of, exactly? How do they reproduce? How do they transmit hereditary characters?

A bacteriologist, the American Oswald Avery, made in 1944 a breakthrough discovery,
complementary to Morgan’s observations: he demonstrated that all hereditary information
is contained in a unique chemical species, deoxyribonucleic acid, or DNA, which was
first isolated from the cellular nucleus by the Swiss physician Friedrich Miescher in 1863.
In his experiments, Avery followed the seminal work of the British geneticist Frederick
Griffith. He systematically removed various organic compounds from virulent bacteria,
and checked if the remaining compounds were still able to infect new bacteria: when
DNA was removed, the bacteria lost their infecting power.

The German physicist Max Delbrück, together with Carl Zimmer and Nikolai Timofeef-
Ressovsky, proposed in 1935 that the genes must carry some kind of information, and that
it should be written in a specific “alphabet”. This work was profoundly influenced by the
physics background of its authors, and tried to interpret the phenomenon of mutations
on the basis of collision theory. Unfortunately, their mathematically challenging article
was ignored by the biological community. His ideas nevertheless exerted an influence
on Erwin Schrödinger’s famous book of 1945, "What is Life?", arisen from a collection
of lectures in Dublin. The idea that the transmission of the piece of information carried
by a gene happens by the recursion of a limited number of symbols, whose distribution
represent a message, spread into the scientific community, and the quest for the genetic
code intensified.

During the XIX and the XX centuries, another piece of evidence had become clear in
biology: the multiplicity of functions necessary for the development of life are sustained
by a single type of molecule. These molecules, called proteins by the Swedish chemist
Jöns Berzelius in 1838, are composed of chains of smaller elements, called amino acids,
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1.1 Genetics: an historical background

which are now known to be of 20 different types.
Since 1929, it was known that the DNA molecule was also composed of repeating

units, first recognised by the American biochemist Phoebus Levene with X-ray tech-
niques. These units, called nucleotides, are formed by a phosphate, a base and a sugar,
and are linked together through phosphate groups, which form the “backbone” of the
molecule. Amusingly, Levene thought DNA was chemically too simple to store the ge-
netic code.

The presence of repeated elements in two of the main molecules of life led the sci-
entific community to hypothesise a correspondence between the two sequences. Along
these lines, in 1941, the American geneticists George Beadle and Edward Tatum found
that when the bread mold Neurospora crassa is irradiated with X-rays its capacity to
produce enzyme changes. It was clear since the experiments on Drosophila performed
by the American geneticist Hermann Muller in 1926 that the exposition to X-rays cre-
ated mutations in organisms that could be inherited: Beadle and Tatum’s experience thus
demonstrated a profound link between genes and proteins, and suggested a one-to-one re-
lationship. By the middle of the XX century, then, the unanswered questions of genetics
had become: how did the DNA replicate in cells? How did the information contained in
the DNA, which never leaves the cell nucleus, pass to proteins?

In order to shed light on these issues, the simple chemical composition of the DNA
was not sufficient, and the quest for the three-dimensional structure of the molecule
started. In 1953, the American biologist James Watson, together with the English physi-
cist Francis Crick, using unpublished X-ray images and preliminary results from Ros-
alind Franklin, finally proposed the famous double helix model for the DNA. The helixes
are formed by two phosphate backbones which lay at the outside of the structure, and
are formed by 4 different kinds of nucleotides, that vary in their base part (adenosine,
thymine, guanine, cytosine). Nucleotides are repeated aperiodically. The discovery that
the amount of guanine was equal to cytosine and the amount of adenine was equal to
thymine, led to the hypothesis of a specific base-pairing. This already suggests a simple,
template-based mechanism that could be exploited to faithfully duplicate DNA. However,
the relationship between the molecule carrying the information, DNA, and the proteins,
was not yet completely understood: how does the information stored in the DNA pass
to proteins, which then make the specificity of a form of life? How does the periodic
structure of DNA, based on 4 different bases, map onto the protein chains, formed by 20
elements?

The situation started getting clearer in 1956, when the German biologist Vernon In-
gram analysed the hemoglobin molecules in patients affected by the sickle cell disease.
He determined that in all the sickle hemoglobins the same amino acid (the 6th) was mu-
tated. It was already known that the origin of this disease was genetic, as it was transmitted
according to Mendel’s laws. These two indications together highlighted that not only did
genes control the nature of amino acids in proteins, but also their positions. It was known
that every cell contained another nucleic acid, called RNA (ribonucleic acid). Later, it
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1 Introduction

Figure 1.1: Central dogma
of molecular biology. Ge-
netic information is encoded
on stretches of DNA called
genes. Genes are copied to
messenger RNAs by a process
called transcription. In eukary-
otic cells, mRNA is processed
and migrates from the nucleus
to the cytoplasm. Ribosomes
"read"the information content
of mRNAs and use it for pro-
tein synthesis (translation).

became clear that this molecule has a similar structure to DNA, but it is much smaller,
and composed of a single chain of nucleotides, and does not necessarily have a helical
structure. The Belgian biologist Hubert Chantrenne managed to isolate RNA from rab-
bits (Oryctolagus cuniculus), inject it into frogs of the Xenopus genus, and obtain rabbit
hemoglobin proteins from these latter animals, thus elucidating the role of RNA in protein
synthesis.

A correspondence between the codes of nucleic acids and proteins was almost certain.
However, the different number of basic units posed a problem. Once more, the key idea
towards the solution came from an outsider: the Russian physicist Georg Gamow, who
proposed the idea that short sequences of bases could form a “code”, capable of carry-
ing necessary information for the synthesis of proteins. Finally, in 1958 Crick stated the
so-called central dogma of molecular biology, where he systematised the known state of
the art of molecular biology. As it is depicted in Figure 1.1, the dogma states that genetic
information can be transmitted between nucleic acids, by a process called transcription
and from a nucleic acid to a protein, by a process called translation but not vice-versa,
from protein to nucleic acids. The DNA needs not to directly intervene in the synthesis
of proteins: the relevant part of the code (the genes) is copied to RNA molecules. When
the RNA acts as an information carrier, it is called messenger RNA (mRNA). The mRNA
can leave the nucleus, and the information it carries can be translated to proteins by other
biochemical machines called ribosomes. Ribosomes are able to couple triplets of bases on
the mRNA to transfer RNAs (tRNAs): specific molecules, each carrying an amino acid.
tRNAs are recruited by ribosomes that add amino acids to a nascent protein chain, thus

6



1.2 Principles of Gene Regulation

faithfully translating the information present on the DNA. The genetic code is redundant,
as out of the 64 possible triplets of basis, only 20 different amino acids are obtained. In
1961 the biochemists Marshall Nirenberg and Heinrich Matthaei demonstrated experi-
mentally the central dogma: they created a synthetic mRNA, formed of a single repeated
base, inserted it into an E. coli extract, and obtained a pseudoprotein composed of a single
amino acid, the phenylalanine. This was a key step in deciphering the genetic code, which
was quickly completed in the following years. This genetic code is universal, conserved
in every living organism.

Since the discovery of the central dogma, molecular biology has taken off and genetics
is now considered one of the most promising research areas in the XXI century. With
new experimental techniques, the double helix is no longer a mere object of theoretical
investigation, but rather a material that can be modified to make new mutant organisms
that fulfill required tasks. Collaborations with industries are leading to applications which
are revolutionising our everyday life.

However, the seeds of the scientific revolution that led to the birth of the molecular
viewpoint and its successes were planted during a long period of time, largely benefitting
from the influence of other disciplines, that contributed to modify the intellectual atmo-
sphere of the time. As in the famous words of Bernard of Chartres, reported by John
Salisbury in his Metalogicon (1159):

We are like dwarfs sitting upon the shoulders of giants,
and so able to see more and see farther than the ancients.

1.2 Principles of Gene Regulation
In 1961, the French biologists François Jacob and Jacques Monod explored the idea that
the control of enzyme expression levels in cells is a result of feedback on the transcription
of DNA sequences. After the determination of the structure and central importance of
DNA, it became clear that the production of proteins might form a key control point.
Jacob and Monod studied lactose metabolism in E. coli, and demonstrated that there are
specific proteins that are devoted to repressing the transcription of the DNA to its mRNA
product.

Accordingly, some genes code for proteins having a specific function in the cell, and
other genes code for proteins whose task is to regulate the expression of other proteins.
These regulatory interactions can govern key biochemical and cellular mechanisms, and
achieve a notable level of complexity.

In this Thesis, I will study some features of gene regulation. However, the process
of protein production and its regulation can be extremely complicated in eukaryotic cells.
I will therefore focus on the regulatory interactions in simple organisms consisting of
single prokaryotic cells, typically the bacterium E. coli. In these simple organisms, gene
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1 Introduction

transcription and mRNA translation lacks most of the additional complexity of higher
forms of life, and allows a reductionistic approach, with the aim to extract the universal,
elementary features of the process.

In prokaryotic cells, gene regulation happens mainly at the level of transcription
[1]. The fundamental molecule involved in gene transcription is called RNA polymerase
(RNAp): formed by the assembly of several subunits, it can grab the DNA with its crab-
claw structure, and form a bound state called closed complex. The RNAp binds specif-
ically to DNA: it can recognize specific sequences, called promoters, which are found
immediately upstream of every gene. When the RNAp is bound to a promoter, it can
separate the two DNA strands and open a bubble of about 13 base-pairs in the double
helix. RNAp starts then walking along the DNA, reading the sequence of base pairs and
simultaneously synthesising an mRNA molecule which bears a faithful copy of the same
sequence (a process called elongation). During the process the bubble grows to about 17
base-pairs, moves together with the RNAp and it is eventually closed when a palindromic
sequence causes the formation of a hairpin structure of the mRNA. At this point, RNAp
detaches from the DNA and releases the mRNA molecule.

Proteins that regulate the transcription of a gene are called transcription factors (TFs).
They typically exert their role by binding to the DNA on promotor regions, located im-
mediately upstream of a gene. These proteins can either repress a gene by blocking the
binding of RNAp, or activate a gene by enhancing the the open complex formation, or the
affinity of RNAp for the promoter. Clearly, the abundance of TFs on the DNA depends
on their concentration. In this way, the cell has a method to regulate the expression of a
gene as a function of the concentration of another regulating molecule. This strategy can
be used to express genes only when they are needed, thus realising a substantial saving of
the available energetic resources.

It was already mentioned that the study of gene regulation started with the experiments
by Monod on the lac genes in E. coli. This system represents an excellent example of
the complex behaviours that a simple organism can achieve via gene regulation: it is
instructive to briefly analyse it as an illustrative example (see Figure 1.2).

The three lac genes share the same promoter, and are therefore transcribed together
in one operon: lacZ codes for an enzyme cleaving the lactose molecules into simpler
sugars, lacY codes for the β-galactoside permease, a membrane-bound transport protein
that pumps lactose into the cell, and lacA, an enzyme that transfers an acetyl group to
β-galactosides.

The cell requires these genes for the transport and metabolism of lactose, a sugar that
can be used by the bacterium as a carbon and energy source. However, there is a preferred
energy source for the cell: glucose, which is easier to convert into ATP. In the presence
of both sources of energy, it is therefore more advantageous for E. coli to primarily use
glucose.

The promoter for the lac genes overlaps with a binding site for the lacI protein, also
known as the lac repressor. lacI has a high affinity for the DNA: it can bind strongly,
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1.2 Principles of Gene Regulation

Figure 1.2: The lac operon regulates lactose metabolism in E. coli. Lactose is a sec-
ondary energy source, and it is used only when there is no glucose in the environment.
(a) The genes coding for the LacZ, LacY and LacA proteins are regulated and transcribed
together. Regulation happens by binding of several molecules to DNA, on a region up-
stream of the operon: LacI binds on the operator O, RNA polymerase to the promoter P,
and CAP to its own binding site. (b) In case of low glucose and high lactose, the CAP-
cAMP complex binds to the DNA and helps RNA polymerase to bind: the lac genes are
strongly expressed. (c) For high glucose and low lactose, the lac repressor strongly binds
to the DNA and blocks the transcription of the lac genes (large crosses indicate a repressed
gene). (d) For low lactose and low glucose, both the lac repressor and the CAP-cAMP
complex are bound to the DNA, and the lac genes are turned off. (e) For high glucose and
high lactose, the DNA is free and the lac genes are weakly transcribed at the basal rate.
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block the association of RNAp to the promoter, and turn off the transcription of the lac
operon. When lactose is present however, one of its metabolites can bind to the lac repres-
sor, which undergoes a conformational change and drastically lowers its affinity to DNA.
RNAp can therefore bind to the lac promoter, and start transcribing the genes.

The intrinsic affinity of RNAp to the lac promoter is low, and the level of gene expres-
sion may not be sufficient. Another mechanism helps then the bacterium to enhance the
production of the lac operon beyond the basal level, by means of another protein, called
CAP (Catabolyte Activator Protein), which can bind upstream of the lac promoter. When
CAP is bound, some of its residues can interact with some subunits of the RNA poly-
merase, strongly facilitating its binding and thus the frequency of the gene transcription.
CAP is therefore an activator for the lac genes. CAP only works when it is bound to an-
other molecule, called cyclic AMP (cAMP). This in turn is produced only when glucose
is absent from the cell.

The lac genes are then both positively and negatively regulated, being under the con-
trol of both an activator and a repressor molecule. Using a genetic network based on these
simple mechanisms, the bacterium is able to choose between two different nourishments,
with one being preferred.

1.3 Large-scale properties of Genetic Networks
Since a few years, high-throughput techniques allow the simultaneous execution of mil-
lions of biochemical, genetic or pharmacological assays. The most successful technique
is based on microarrays: plastic or glass plates featuring a grid of small spots, containing
an antibody, or a small piece of DNA or RNA, that can be used to measure, respectively, a
large number of protein-protein (as well as other specific properties like post-translational
modifications), or protein-DNA interactions simultaneously. Each spot is used for a sin-
gle experiment, whose qualitative output can be automatically revealed by a dedicated
machine. Protein-protein interactions can also be screened with the yeast two-hybrid
method.

With this qualitative experimental evidence, it is possible to visualise and study the
properties of a generic transcriptional regulatory network [2]: one represents the elements
genes and regulating proteins as nodes, and connects pairs of them with (possibly di-
rected) edges when there is an interaction between the two nodes. The graphs obtained
with this procedure are well known to mathematicians (probably the first proof in this
field was given by Euler in 1735 when he solved the famous problem of the Köninsberg
bridges). However, in the past few decades the exponentially increasing amount of avail-
able data has made it possible to characterise networks of huge dimensions, for which a
direct visual analysis is not informative. As an example, Figure 1.3 shows a representation
of the E. coli transcriptional regulatory network. It is then necessary to define statistical
quantities that characterise the network, and that can be numerically measured.

The most elementary characteristic of a node is its degree k: the number of edges
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Figure 1.3: Graph-
ical representation of
the E. coli transcrip-
tional regulatory net-
work. Nodes repre-
sent transcription fac-
tors (TF), or regulated
operons. Links re-
fer to the activating or
repressing function of
the TFs. Figure taken
from [3].

connecting it to other nodes (supposing undirected edges). Collecting the number of nodes
with the same degree yields the degree distribution P(k), which represents the probability
that an arbitrary node has exactly k edges. If the network is directed, i.e. the edges
are directional, one can define an incoming degree distribution Pin(k) and an outgoing
degree distribution Pout(k). For a random network, where each pair of nodes has the same
probability of being connected, P(k) decays exponentially and therefore the number of
nodes with high k is very low.

The gene regulating network of E. coli is directed: focussing on nodes representing
transcription factors, the distribution Pout(k) decays exponentially: most genes are regu-
lated by one to three transcription factors. However, Pin(k) decays instead with a power
law: Pin(k) ∼ k−α, with 2 < α < 3 [2]. Such networks are highly non-uniform: most of
the nodes have only a few links, while a few nodes (called hubs) have a large number of
links and hold the network together. In the case of E. coli, this means that there are a few
proteins that regulate a large number of genes.

When P(k) decays with a power law, the variance of P(k) is infinite, hence the network
does not have a typical node: such networks are called scale-free. Scale-free networks
arise spontaneously when new nodes are preferably attached to other nodes with a high
number of links. It has been speculated that, in the case of genetic networks, this might
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have arisen from gene duplication during evolution [2]. In scale-free networks, the short-
est path between two nodes (that is, the path composed by the smallest number of edges
between the two nodes) increases much more slowly with the total number of nodes in
the network as compared to randomly connected networks [4, 5]. Therefore, in scale-free
networks it is very easy to “travel” between nodes (an effect often called small world) and
local perturbations spread quickly. Scale-free networks are much less vulnerable to fail-
ures of random nodes than random networks, since most probably the failure will involve
a relatively unimportant low-degree node. Yet their reliance on hubs leaves them prone to
targeted attacks.

Cellular functions are carried out in a modular manner [6]. A module refers to a group
of physically or functionally linked molecules that work together to achieve a distinct
function. The signature of modularity can be traced even for a genetic network, where
a module can be identified by the fact that a subset of nodes is connected in a specific
wiring diagram. A complex network is likely to display all sorts of distinct subgraphs,
from triangles to squares, to higher-order figures. However, recent work indicates that
transcription networks contain a small set of recurring regulation patterns, called motifs
[7, 8]. Such patterns occur much more often in a transcription network than would be ex-
pected in a random network. Investigating these motifs will reveal whether their frequent
presence could be related to a functional role.

The transcription regulatory network of E. coli shows several motifs composed of a
few nodes. The topology of these nodes is usually quite simple, and every motif can carry
out an elementary operation. Complex behaviours can then be achieved by wiring simple
components together, like in an electronic circuit. A cartoon representing the principal
motifs found in the E. coli genetic network is shown in Figure 1.4.

The simplest motif found in this network is the simple regulation: a transcription
factor activates or represses a gene X. If X encodes for the TF, the mechanism is called
autoregulation, as shown in Figure 1.4(a-b). Without any regulation, the concentration
of X rises in response to a stimulus and reaches a steady state equal to the ratio of the
production and decay rates of X. In the case of negative autoregulation, the protein X
represses its own gene: if the promoter for X is strong, this mechanism can be exploited
by the cell to have a faster rise in the concentration of the protein, which will stop when
it has reached the repression threshold and its production rate starts to decrease. This
is the case for the SOS DNA-repair system of E. coli, in which the master regulator,
LexA, represses its own promoter [9]. Moreover, negative autoregulation can be used to
reduce cell-cell variation in protein concentrations. Conversely, in the case of positive
autoregulation, a TF enhances its own rate of production. The dynamics of this system
shows an initial slow rise of the concentration of X, followed by a quick increase when
the enhancement takes off. It can be used to shift the response of a network to shorter
timescales. Moreover, it tends to enhance cell-to-cell variability. The effect of positive
and negative autoregulation on the response time of a gene X is shown in Figure 1.5.

A more complicated motif involves three genes: a regulator X, which regulates Y, and
a gene Z, which is regulated by both X and Y, as it is depicted in Figure 1.4(c-d). This
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Figure 1.4: Simplest motifs in prokaryotic transcription regulatory networks. In a tran-
scription regulatory network, nodes are either genes or proteins regulating them, while
edges can represent coding or regulatory relationships. Many of the X proteins are acti-
vated specifically by a signal S (not shown in Figure). Motifs are subnetworks occurring
in nature much more frequently than in random networks. (a-b) Single-gene motifs, in-
volving negative or positive autoregulation. (c-d) Feed Forward loops: three-gene motifs
used to filter signals or introduce delays. (e) Single Input Module: a single transcription
factor controls the expression of several genes, including itself. (f) Dense Overlapping
Regulon: a set of regulators that combinatorially control a set of output genes.
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Figure 1.5: Response time comparison
for a simply-regulated, negatively au-
toregulated and positively autoregulated
system. Negative autoregulation (top
curve) speeds up the response time of
a protein X (the time needed to reach
halfway to the steady state concentration
of X, Xst) relative to a simply-regulated
system (middle curve) that reaches the
same steady state expression. Posi-
tive autoregulation (bottom curve) slows
down the response time. Figure taken
from [10].

motif is called Feed-Forward Loop (FFL), and can exist in 8 different combinations of
positive and negative regulation. In the E. coli network, two versions occur much more
frequently than the others: in the first case (let us call it FFL1, Figure 1.4(c)), both X
and Y are transcriptional activators. With FFL1, if the simultaneous presence of X and
Y is necessary to activate Z, the system will show a delay in the activation of Z (due
to time necessary to accumulate Y), but no delay when the stimulation stops. Such a
system can be exploited by the cell to filter brief spurious pulses. This is the case for the
arabinose-utilisation system in E. coli: a delay of 20 minutes occurs when the input signal
cAMP is added to the system [11]. The timescale of the delay is similar to the timescale
of random pulses of cAMP in the environment: with FFL1, the network is able to filter
them. Conversely, if only the presence of at least one of the two activators is needed at Z,
the delay will not be present in the activation, but only at the end of the stimulation (due
to the time necessary switch Y off). This behaviour was experimentally demonstrated in
the flagella system in E. coli, where a delay is observed when the input signal stopped, but
no delay occurred when the input signal appeared [12]. In the second feed-forward type
loop (FFL2, Figure 1.4(d)), X activates Y and Z, but Y represses Z. As a result, when X is
activated, Z is rapidly produced, falling back down when Y has accumulated. This results
in pulse-like dynamics, whose rise is very fast, as it is demonstrated for a synthetic FFL2
[13] constituted by the activator LuxR (X), a GFP reporter (Z) and the λ repressor cI (Y).

More complicated motifs involve a regulator X regulating a group of target genes
(Single-Input Module, or SIM), typically including itself (Figure 1.4e). This motif can
generate a temporal expression program or block several reactions that occur simultane-
ously when they are needed, like in the case of the arginine-biosynthesis pathway in E. coli
[14]. Finally, the most complex motif found in the genetic networks of bacteria involves
a set of regulators that combinatorially control a set of output genes (Dense Overlapping
Regulons, DOR, Figure 1.4(f)). DORs are used when complex computations need to be
carried out. DORs have a single layer of regulation in E. coli: there is no other DOR at
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the output of a DOR, as the need of rapid response forbids the presence of long regulatory
cascades. An example of a DOR in E. coli is the set of genes regulated by RpoS that are
expressed upon entry into stationary growth phase [15].

The large-scale analysis of transcription networks highlights the modularity of such
networks and the involvement of small subgraphs that occur frequently and can carry out
independent functional tasks. The top-down approach presented so far to characterise
these networks can be complemented by a detailed analysis of some of the recurrent fun-
damental motifs. A similar attempt cannot be extended to the whole network because of
the intrinsic complexity of the problem. Moreover, high-throughput techniques can not
easily provide quantitative details of the interaction between proteins, or between pro-
teins and DNA: in general quantities such as binding affinities, reaction rates, diffusion
constants, etc. must be obtained by specific, laborious procedures. In the rest of this
Thesis, I will zoom in on some statistically significant building blocks of transcription
networks, and analyse them individually.

1.4 Fluctuations in Gene Expression
Cells deriving from the same common bacterial ancestor are genetically largely identical.
They can nonetheless display notable differences in their phenotypes. These variations
can be traced back to stochastic fluctuations to which cells are subject. Such fluctuations
can originate in the process of gene expression, or they can derive from variations in the
external environment.

Recent advances in genetic engineering have made it possible to build small synthetic
gene networks in bacterial cells. These networks are typically much simpler than those
naturally occurring in the cell, and they can therefore be used to investigate the influence
of stochastic effects.

One of the first networks to be constructed was composed of three genes, positioned in
a small piece of circular DNA (a plasmid), and inserted into E. coli cells [16]. Each gene
represses another gene, in a circular arrangement, as illustrated in Figure 1.6a. The first
gene, tetR is regulated by the protein lacI; the protein tetR represses the cI gene, which
can in turn down-regulate the lacI gene. The tetR protein repressed also the expression
of a green fluorescent protein (GFP, encoded in a reporter plasmid, Figure 1.6b), whose
amount in the cell was directly related to the amount of TetR. The concentration of GFP
was monitored by fluorescent microscopy. A theoretical analysis predicted oscillations
in TetR, with a period of several hours, which were indeed observed. However, when
sibling cells were monitored, they had the same amount of TetR at division, but they lost
synchronisation within a few hours (Figure 1.6b).

The emergence of these oscillations, and in general the functioning of every genetic
network, relies on protein-protein and protein-DNA interactions. Chemical reactions are
stochastic in nature, and fluctuations in the number of molecules of a chemical species,
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Figure 1.6: The repressillator system [16]. (a) Three genes, each repressing another one
in a circular arrangement, are engineered on a plasmid and inserted into a bacterial cell.
The stability of the three repressors is reduced by the presence of destruction tags, and
they are called “lite”. (b) The reporter plasmid contains the gene for a green fluorescent
protein (GFP), which is repressed by TetR. GFP concentration can be monitored via fluo-
rescence microscopy. (c) TetR shows an oscillatory behaviour. However, synchronisation
between sibling cells is lost after a few hours due to fluctuations in gene expression.

or in their position, can introduce elements of variability in every cell. When only a few
copies of a molecular species exist in a cell (as it is often the case for mRNAs or transcrip-
tion factors), stochastic effects can become prominent. Gene expression is then a noisy
process, and genetic networks are noisy devices. However, some key decisions that must
be taken by the cell rely on these networks. Therefore, cells must have adapted to deal
with the noise, and perhaps to exploit it as a source of variation.

Fluctuations in genetic networks can have a temporal and/or a spatial origin, both
dramatically increasing when chemical species are found in a low copy number.

Temporal fluctuations are related to the stochastic behaviour of the chemical reac-
tions governing gene expression: the times between subsequent reactions are not regularly
spaced, but rather follow a particular probability distribution, depending on the parame-
ters of the system. Assuming a constant probability per unit time for first-order processes,
such as dissociations of oligomers or associated complexes, a Poissonian statistics of the
reaction times is obtained. The case of second-order reactions is different, because reac-
tants must first find each other in space: the distribution of reaction times can be consid-
ered poissonian only if the concentration of both chemical species is high and the system
is well-stirred. Low concentrations of reactants can lead to substantial variations in this
distribution.

Spatial fluctuations are related to the erratic behaviour of molecules, can produce
strong variations in local concentrations, and give rise to effects like fast rebinding of
dissociated species, or formation of spatial patterns. They can become predominant when
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molecules move slowly or when the system is far form well-mixed. Prokaryotic cells
are less compartmented than eukaryotic, and molecules move primarily by free diffusion:
spatial fluctuations are therefore particularly important in these systems. In Chapter 6,
it will be shown that spatial fluctuations are the dominant source of noise for a genetic
network, representing a repressed gene when the concentration of the repressor is below
50nM.

The fluctuations in the biochemical reactions leading to the production of a protein
have an intrinsic source: they introduce variations in protein levels even in a population
of cells with identical genotype and concentrations and states of cellular components.
However, noise in protein levels can also derive from fluctuations in the amount or activity
of molecules involved in the expression of a gene, like RNA polymerase or ribosomes.
These fluctuations depend on the particular state of individual cells, and are sources of
extrinsic noise.

An elegant experiment [17] allowed the decomposition of noise in protein production
into these two internal and external contributions: a plasmid with two different genes
under the control of identical promoters was inserted in E. coli cells. The two genes
encoded fluorescent proteins of different colour, which allowed simultaneous detection of
their concentration. In the absence of intrinsic noise, the abundance of the two proteins
should be perfectly correlated, and points should align on the diagonal of a scatter plot:
when the level of the first protein increases or decreases by a certain amount, the level of
the second follows the same pattern (Figure 1.7A). The results of a numerical simulation
representing this situation are collected in the upper panels of Figure 1.7. However, since
the biochemical steps in the expression of the two genes are independent, gene-intrinsic
noise causes the number of expressed proteins to differ, spreading off of the diagonal in the
scatter plot, as depicted in the lower panels of Figure 1.7. The spread along the diagonal
represents then the extrinsic contribution to the noise, while the spread on the orthogonal
direction measures the intrinsic noise. This calculation, reproducing the experiment of
Ref. [17], shows that both sources of noise contribute to variation within cells, although
the extrinsic part generally dominates [18, 19]. In eukaryotic cells, the slow remodelling
of the packed structure of DNA can turn on or off genes by exposing or concealing the
genes, adding another source of extrinsic noise to gene expression [20].

The production of proteins depends on a cascade of processes, starting with the bind-
ing of an RNA polymerase to a gene promoter, and ending with the folding of the protein
into its active state. Stochastic effects can be manifested in each step and be propagated to
the final product. Recently, the propagation of noise along this cascade has been subject
of theoretical studies.

For prokaryotic cells, transcription generally is the dominant source of noise in protein
levels, as demonstrated by monitoring the fluctuations of reporters in Bacillus subtilis cells
for several transcriptional and translational efficiencies [21]. As the lifetime of mRNA is
much shorter than the lifetime of proteins, a cell would like to fully exploit an mRNA
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Figure 1.7: Computational equivalent of the two-protein assay experiment [17]. Protein
dynamics was simulated by generating stochastic trajectories according to the Chemical
Master Equation of the system. (A) If noise in gene expression comes only from extrinsic
sources, the stochastic expression of two proteins under the control of identical promoters
in a single cell is correlated and on a scatter plot points align on the diagonal (B). (C) As
the biochemical steps in the expression of the two genes are independent, gene-intrinsic
noise causes the number of proteins to differ (protein productions were allowed to inde-
pendently fluctuate around the same mean level), giving rise to a scatter plot containing
off-diagonal points (D).

molecule and produce as many copies of a protein as possible from a single transcript.
However, a high translation rate results in large bursts of protein production, which intro-
duces a large noise. Therefore, in order to keep the protein noise low, a prokaryotic cell
needs to have a high transcription rate (to produce many mRNAs molecules), followed
by a low translation frequency. Yet, this strategy has a high energetic cost, and can be
used only for a few key genes. An example is the cya gene in E. coli, which codes for
Adenylate cyclase. Adenylate cyclase is involved in the regulation of many genes via its
enzymatic product cAMP, and its expression display a very low translation frequency.

In Chapter 6, I consider a gene under the control of a repressor, and investigate how
noise propagates through all the substeps that lead to production of the protein product.

The situation is similar to gene expression in the eukaryote Saccaromyces cerevisiae:
transcription is mainly responsible for the noise in protein products and for their possible
bursty production [22]. However, in eukaryotes, slow promoter fluctuations due to the
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remodelling of chromatin, followed by efficient transcription can reduce the noise.

Genetic networks are then noisy devices working in noisy environments. They must
however be able to carry out the specific task they are designed for in a wide range of
conditions, i.e. they must be robust. The robustness property was investigated in the case
of the chemotactic network of E. coli: the cascade of reactions that allows the bacterium
to respond to changes in the food distribution and swim towards food sources. A compu-
tational model [23] and subsequent experiments [24] showed that the network is able to
perform even when a large number parameters such as reaction rates or protein concen-
trations were strongly varied within the physiological range. Thanks to the robustness of
the chemotactic network, the bacterium is able to cope with many different environmental
conditions and survive in a wide range of situations. Robustness could then have arisen
by evolution: a highly optimized, fine-tuned network would not be the most advantageous
strategy in a noisy environment.

As it is widely known in the field of engineering, negative feedback can be used to
operate robustly in an uncertain environment [25]. It is mentioned in Section 1.3 that
negative autoregulation can lower the noise in gene expression. In a recent experiment
[26] the distribution of fluorescence of a TetR-EGFP fusion protein was found to become
much narrower when the gene is under the control of a negatively autoregulated promoter.
About 40% of the genes of E. coli are negatively autoregulated, suggesting that this mech-
anism of noise-reduction is widely utilised by prokaryotic cells.

Noise can also be exploited and amplified by cells to create heterogeneity in a popu-
lation. When bacteriophage λ infects a bacterium, the decision to commit to either of two
alternative pathways (i.e. the lytic or the lysogenic states, described in detail in Chapter 4)
depends on the level of two proteins, cI and cro. By means of a stochastic fluctuation, one
of the two proteins may reach a concentration sufficient to repress the expression of the
other, and establish a stable epigenetic state [27].

Positive feedbacks are typical devices that can be used to generate a bistable behaviour
by amplifying the noise and partition a genetically identical population into different phe-
notypes. This effect can be understood by thinking of networks showing a steep response
curve, as in Figure 1.8: an increased variability of the input signal in the region of high
sensitivity can cause a transition from a unimodal to bimodal population distribution.

Exploiting stochasticity to populate multiple steady states may play an important role
in differentiation in multicellular organisms. In the fruit fly, Drosophila melanogaster, a
GFP reporter subject to repeated rounds of stochastic activation and inactivation of gene
expression resulted in patches of fluorescent cells [28].

Microbial cells monitor very specifically their environment in order to adapt efficiently
to sudden changes in environmental conditions. Fluctuations in gene expression can pro-
vide a mechanism for sampling distinct physiological states and therefore increase the
probability of surviving during times of stress, without the need for a genetic mutation.
Heterogeneous bacterial populations of isogenic cells might achieve higher survival prob-
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Figure 1.8: Positive feedback can am-
plify noise and generate a bistable be-
haviour in a cell population. (A) The re-
sponse curve of a generic reporter gene
to an inducing signal displays the high-
est sensitivity for intermediate values of
the signal, where the slope is highest. (B)
When fluctuations in the incoming signal
around its mean values are moderate, the
response curve yields a single-peaked dis-
tribution of reporter genes. Positive feed-
back in the signal can increase the ampli-
tude of stochastic fluctuations, leading to
a bistable distribution of reporters.

abilities than a homogeneous population [29]. Heterogeneity can also be exploited by
bacteria to survive antibiotic treatment: while most of the bacterial population will be
quickly killed, a genetically identical minority may persist because of a dormant state de-
termined by an alternative gene expression pattern.

Recent measurements of gene expression in single E. coli cells over long time peri-
ods have provided insights into the relative amplitude and relevant time scales of intrinsic
and extrinsic noise [18]. These results confirm that the dominating contribution to noise
comes from extrinsic factors, and provides a dynamical explanation of this effect. The
autocorrelation time of the extrinsic noise is in fact about 40 minutes, much longer than
the autocorrelation time of intrinsic fluctuations (≤ 10 min, consistent with the rapid fluc-
tuations of mRNA numbers). Therefore, perturbations due to extrinsic sources can accu-
mulate over a cell cycle, and be transmitted to daughter cells, affecting their phenotypes.

The frequency components of the noise in protein production were determined by
monitoring green fluorescence proteins in E. coli cells [30]. Intriguingly, when the protein
negatively autoregulates its own expression, the noise frequency distribution broadens,
and shifts to higher frequencies. Autoregulation frequency response is limited by protein
decay and dilution, and therefore has a larger effects on slower fluctuations than on faster
fluctuations. This results in a remodeling of the frequency range of the noise, pushing
the time scale of extrinsic noise towards faster dynamics. Fast fluctuations can be more
easily filtered out by downstream gene circuits in a regulatory cascade, and therefore have
a smaller regulatory impact.

In Chapter 6, I perform a frequency analysis on the noise propagated in a genetic
network, aimed to repress a gene, and I show that high-frequency noise, due to fluctuations
in promoter occupancy, is filtered out by the slow protein dynamics.
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1.5 Models
Models and experiments on biochemical networks benefit from concepts used in several
branches of science: physics, (bio)chemistry, biology, mathematics and engineering. An
interdisciplinary approach is needed when one wants to analyse a biological system try-
ing to recognize its universal features beyond the specific details of components. This
approach is typical of systems biology which brings together scientists coming from dif-
ferent backgrounds.

In this Section, I will briefly review the most common mathematical descriptions of
genetic networks; computational techniques will be described in the next Section.

1.5.1 The Macroscopic Rate Equation
Biochemical networks are traditionally described in terms of kinetic rates that describe
how the concentrations of the various species change with time. The case of a simple
birth-and-death process, where a species A is created with rate k and degraded with rate
µ will be used as an illustrative example:

/0 k−→ A µ−→ /0. (1.1)

The macroscopic rate equation for the process is the following ordinary differential equa-
tion (ODE)

dA(t)
dt = k−µA(t), (1.2)

and its solution is a simple exponential relaxation to the steady state value A∞ = k/µ:

A(t) = A(0)e−µt +
k
µ(1− e−µt). (1.3)

This formulation of the problem is deterministic: if the starting conditions are fixed, the
future evolution of the system is also precisely fixed. In the case of the rate equations de-
scribed in Section 1.5.1, the set of ODE can be solved numerically by standard integration
techniques, even for complex networks. This way of modelling biochemical networks as-
sumes that the cell is well-mixed and homogeneous, and the number of copies of A is high
enough to justify the use of a continuous variable for the chemical species. Temporal or
spatial fluctuations are therefore not taken into account (see Section 1.4). A linear stabil-
ity analysis can be performed on rate equations to identify the number of steady states of
complicated reaction networks, and their stability.

1.5.2 The Chemical Langevin Equation
Molecular fluctuations can be incorporated explicitly by including random variables in the
macroscopic model. The easiest approach is to append a noise term to the rate equation.
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Eq. (1.2) becomes then:
dA(t)

dt = k−µA(t)+ξ(t), (1.4)

where ξ(t) is a stochastic variable. Typically, ξ(t) is assumed to be a white noise term:
〈ξ(t)〉= 0, 〈ξ(t)ξ(t ′)〉= qδ(t − t ′). Eq. (1.4) is a stochastic differential equation (SDE),
often referred to as a chemical Langevin equation. In this framework, species concen-
trations are now fluctuating stochastic variables; it is possible to reformulate a Langevin
equation to an equivalent form [31], called Fokker-Planck equation, that describes the
time evolution of the probability density of a chemical species A. The Fokker-Planck
equation is a partial differential equation (PDE), whose general form is:

∂p(A, t)
∂t =

∂
∂A [c1(A, t)p(A, t)]+ 1

2
∂2

∂A2 [c2(A, t)p(A, t)]. (1.5)

However, for systems involving more than a few species, it is impossible to solve the
Fokker-Planck equation, even numerically. An alternative possibility is to generate many
trajectories of the system with the Langevin equation, and use their statistics to estimate
the probability density function at a given time t. Implicit in the Langevin and Fokker-
Planck approach is the continuous description of molecular species. However, when the
copy number of some species is very low, the discreteness can give rise to dynamical
states that cannot be captured by a continuous model [32, 33].

1.5.3 The Chemical Master Equation
Genetic networks often involve chemical species present is very low copy numbers. One
can then model every single reaction event in the framework of probability theory, and
adopt a discrete, particle-based, event-driven approach. Every chemical species has then
a probability per unit amount of time of undergoing a certain reaction. The equation that
describes how the probability p(nA, t) of having nA molecules of a species A varies in
time is called the chemical Master Equation (ME). The master equation for the system
described in Eq. (1.1) is:

∂p(nA, t)
∂t = − (k p(nA, t)−µnA p(nA, t))+ (1.6)

k p(nA −1, t)+µ(nA +1) p(nA +1, t).

The master equation is linear, the moments of the distribution p(nA, t) can be obtained in
steady state by using the moment generating functions [31].

In order to quantitatively characterise the fluctuations of a chemical species, a concise
parameter is introduced: the noise coefficient η2

X relative to a species X , defined as the
variance of X over its squared mean: η2

X = (〈X2〉−〈X〉2)/〈X〉2. η2 can be computed and
measured in experiments; however, it does not give any information about the frequency
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distribution of the fluctuations in X . Spectral techniques provide instead a more detailed
insight into the stochastic behaviour of a species, and can be used to understand more
deeply how a genetic network processes the noise.

For the simple reaction (1.1), the moments of the steady state solution p∞(nA) of the
master equation (1.6) can be obtained analytically:

〈nA〉 = k/µ, 〈n2
A〉 = k2/µ2 + k/µ. (1.7)

The noise is easily computed:

η2
A = µ/k = 1/〈nA〉. (1.8)

Intuitively, the higher the copy number of species A in steady state, the lower its noise. As
production and degradation of A are independent events, η2

A shows the 1/N dependence
typical of Poissonian processes. The power spectrum SA(ω) of the noise can be obtained
by calculating the Fourier transform of the autocorrelation function of A:

SA(ω) = 2
Z ∞

0
dt cos(ωt)Cii(t) =

2k
µ2 +ω2 , (1.9)

where
Cii(t) = 〈(A(0)−〈A〉)(A(t)−〈A〉)〉 . (1.10)

The noise and the power spectrum of a fluctuating signal are linked by the following rela-
tion: η2

A = (2π)−1 R ∞
−∞ dωSA(ω). SA(ω) is shown in the Inset of Figure 1.9: and displays,

on a logarithmic scale, a corner frequency, representing the time scale on which fluctua-
tions relax back to steady state. In this case, the corner frequency is just the decay rate of
the protein: ωcorner =µ.

Fluctuations in the number of protein molecules can be strongly influenced by fluc-
tuations in the low number of mRNA molecules and their power spectra were recently
measured [30]. To spectrally analyse the propagation of noise in gene expression, a more
complicated model of protein production is introduced: a protein P is randomly produced
from an mRNA M, which is stochastically created and removed according to a birth-
and-death process. Its fluctuations are therefore an extrinsic source of noise to protein
production. The reaction scheme is the following:

/0 kM−→ M µM−→ /0, M kP−→ M +P, P µP−→ /0. (1.11)

In this case, the average number of P molecules depends on the average number of pro-
teins produced during the lifetime of M, b=kP/µM [34]:

〈nM〉 =
kM
µM

, 〈nP〉 =
kP
µP

〈nM〉 = b kM
µP

. (1.12)
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The noise for the two species can be computed analytically:

η2
M =

µM
kM

=
1

〈nM〉 , η2
P =

1
〈nP〉

(

1+
kP

µM +µP

)

. (1.13)

While η2
M is typical of a Poisson process, η2

P is given by two terms: the first represents
the intrinsic protein fluctuations and is similar to the noise for a birth-and-death process
(Eq. (1.8)); the second is an extrinsic contribution coming from mRNA fluctuations. The
power spectrum of the noise can be computed analytically for the two species [34]:

SM(ω) =
2kM

µ2
M +ω2 ,

SP(ω) =
2kM

µ2
M +ω2

k2
P

µ2
P +ω2 +

2kP〈M〉
µ2

P +ω2 = Sext(ω)g(ω)+Sint(ω). (1.14)

Similarly to the noise, the power spectrum of proteins can be decomposed into an intrinsic
contribution and an extrinsic term, which is processed by the network with a transfer
function g(ω). As it is presented in Figure 1.9, the power spectrum of P is dominated
by extrinsic contributions at low frequencies: the power spectrum of the extrinsic noise is
much higher than the power spectrum of intrinsic noise at these frequencies.

1.5.4 Reaction-diffusion systems
Spatial fluctuations can be significant in bimolecular reactions. A network motif can then
be modelled as a reaction-diffusion system, where a chemical species i can diffuse with
a diffusion coefficient Di, and react with a partner located in its close proximity. The
evolution of this system is described by a reaction-diffusion equation, which correctly
accounts for spatial and temporal fluctuations.

In the case of the elementary reaction A + B k−→ C, the interaction between particles
can be modelled with a potential U(|rA−rB|), which gives rise to a force F(r)=−∇BU(r)
acting on B, and an opposite force acting on A. If the particles diffuse with coefficients
DA and DB respectively, the reaction-diffusion equation can be written as:

∂
∂t p(rA,rB, t|rA0,rB0, t0) = [DA∇2

A +DB∇2
B −DBβ∇B ·F(r)+DAβ∇A ·F(r)]

p(rA,rB, t|rA0,rB0, t0), (1.15)

This equation can be solved exactly for pairs of particles, but not in the case of a many-
body interaction. Therefore, an analytical solution for the spatial fluctuations is not feasi-
ble.
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Figure 1.9: Power spectrum of the model (1.11), for kM =µM =1, kP =µP =10. Com-
putational data fluctuate around the analytical curves (thicker lines). The power spectrum
for the noise in protein production Sp is given by the combination of an intrinsic contri-
bution and an extrinsic term, due to fluctuations in the number of mRNAs. The extrinsic
term increases the spectrum at low frequencies, and is therefore responsible for the largest
contribution to the noise. The inset represents the power spectrum of a simple birth and
death process (1.1), for k=10 and µ=1, and it displays a corner frequency (the inverse of
the decorrelation time) at ωcorner =µ.

1.6 Computational Techniques

Computational techniques are ideal instruments to investigate the stochastic behaviour
of network motifs: they allow us to express the structure and composition of a network
formally, and to explore its dynamical behaviour. Numerical techniques can be used to
test and generate hypotheses about the fundamental operating principle of a network and
the sources and consequences of intracellular noise. Such models are occasionally in a
cross-talk with experiments: they often incorporate experimentally-measured parameters,
and can unravel new effects suggesting new experiments.
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1.6.1 The Stochastic Simulation Algorithm
In general, when one models a system at the level of the master equation (Section 1.5.3),
one rarely works directly with expressions like Eq. (1.6), because a huge number of equa-
tions are necessary to model systems involving more than a few reactions of species;
analytical solutions are then not feasible. Alternatively, one can simulate the random evo-
lution of the system using a Monte Carlo approach. A Stochastic Simulation Algorithm
(SSA) was applied by Gillespie in the field of biochemical networks [35] and it is now
widely used in the literature.

The SSA, or “Gillespie algorithm” consists of an event-driven kinetic Monte Carlo
scheme [36] applied to a set of chemical reactions. The algorithm evolves the system
in time consistently with the corresponding master equation. All the chemical reactions
in the system must be specified, together with their rate constants. It is assumed that all
reactions are Poisson processes: the probability that a reaction i occurs at time t +τ, given
that the previous reaction occurred at time t, is

Pi(t + τ)dτ = ai(t)exp
{

−τ
Nr

∑
j=1

a j(t)
}

, (1.16)

where Nr is the total number of reactions in the system and ai(t) is the “propensity” of
reaction i at time t. For a zeroth order reaction like /0 → A, ai=kiV , where V is the volume
of the system, assumed here to be constant, and ki is the rate constant per unit volume of
reaction i. For a first-order reaction like A → B, ai = kinA, i.e. the propensity depends
linearly on the number of molecules of the reacting species. In the case of a second-order
reaction involving different species,like A + B → C, ai = kinAnB/V , while for a second
order reaction involving identical species, such as the dimerisation reaction 2A → A2, the
propensity depends on the number of possible reaction pairs: ai = kinA(nA − 1)/V . One
could include a factor of two in the last equation. Here, we choose not to use this factor
of two.

At each simulation step, one calculates the propensity of all the reactions, based on
the current state of the system. The probability that the next reaction happens between
time t+τ and t+τ+dτ, given that no reactions occurred between t and t+τ is

P(t + τ)dτ =
Nr

∑
i=0

Pi(t + τ)dτ =
Nr

∑
j=1

a j(t)exp
{

−τ
Nr

∑
j=1

a j(t)
}

, (1.17)

while the probability that the ith reaction occurs at time t + τ is

Pi =
ai(t)

∑Nr
j=1 a j(t)

. (1.18)

Using two random numbers, the next reaction time t + τ is chosen from the distribution
(1.17) and a reaction s is chosen with probability (1.18). The simulation time is then ad-
vanced to t + τ and the numbers of molecules of all species are updated according to the
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stoichiometry of reaction s.

When the number of reactions is high, this procedure is time consuming: although a
few strategies have been proposed to increase the efficiency [37], there exist currently no
satisfactory approach for simulating processes across multiple time scales. In Chapter 3,
I design a general coarse-graining strategy with the aim to integrate out physiologically
relevant fast reactions from a biochemical reaction set. I then apply our scheme to a
biochemical network displaying bistable behaviour (a genetic switch).

The master equation, and thus the SSA, correctly accounts for the temporal fluctu-
ations and low copy number of biochemical species and can therefore be used to study
propagation of noise in biochemical networks. However, the SSA assumes a well-stirred
system, where many non-reactive collisions happen between two reactive events. The dis-
tribution of the species is assumed to be homogeneous in the whole cell. This is often not
the case, as proteins display a diffusive behaviour in prokaryotic cells, which can strongly
enhance local concentrations, especially for low copy numbers. Moreover, spatial effects
such as pattern formation cannot be described by SSA, which tells us only how many
particles are in the system at time t, but not where they are.

Several attempts have been made to extend the SSA to the reaction-diffusion system
described in Section 1.5.4: in the most common, the space is divided into small volume
elements, and the diffusion of species from one volume element to the next is added as
extra reactions [38, 39]. However, this method often creates huge reaction lists that need
special routines to be efficiently updated. Moreover, in every volume element the homo-
geneity assumption of the SSA must be obeyed.

The output of a simulation is usually a time track representing the fluctuations of a
chemical species. The noise η2 can easily be computed from such data. It is also possible
to numerically compute the Fourier transform of the signal, and then its power spectrum.
If signals are not evenly sampled, the usual Fast Fourier Transform techniques cannot be
used. In Appendix C a special algorithm used to obtain Fourier Transforms of unevenly-
sampled tracks is presented.

The numerical power spectrum of the process (1.1) is displayed in the Inset of Fig-
ure 1.9, while the power spectra of the species in the reaction set (1.11) are presented
in the main panel: in both cases, the data obtained from numerical simulation fluctuate
around the analytical results of Eqs. (1.9) and (1.14).

In the case of more complicated networks, analytical results are rarely available.
Moreover, if the intrinsic and the extrinsic contributions to the noise in a chemical species
are correlated, the noise addition rule as in Eq. (1.13) is not valid. Noise-propagating
and spectral techniques will be applied in Chapter 6 to investigate the dynamics of a gene
under the control of a repressor.
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1.6.2 Brownian Dynamics
A reaction-diffusion model of a genetic network can be simulated by a Brownian Dynam-
ics (BD) algorithm. With this method, individual particles move in space and experience
stochastic fluctuations in their position as a result of the numerous interactions with an
implicit solvent. The random walk of particles in space can bring two reaction partners
in close proximity: if so, the probability of a reaction is evaluated. Hence, the algorithm
correctly accounts for spatial and temporal sources of fluctuations.

Usually, particles are considered to have a finite probability to react when a BD move
brings them to overlap. However, such a choice violates the detailed balance rule, and the
algorithm is no longer able to reproduce the equilibrium properties of the system. It is not
trivial to incorporate reactions in a BD scheme in a manner that correctly obeys detailed
balance. In Chapter 5, I design a rigorous reaction-diffusion BD algorithm, and I illustrate
the systematic errors introduced by violation of detailed balance.

Even if this rule is perfectly obeyed, BD simulations can be extremely inefficient, as
the simulation requires very small time steps to resolve the fast reaction events. A particle
can typically move only a small fraction of its radius in such time steps. Therefore, if the
system is dilute (as it is often the case in genetic networks), most of the computational
time will be spent on simulating the uninteresting diffusion of particles, and only few re-
action events will be sampled.

1.6.3 Green’s Function Reaction Dynamics
The most commonly used computational methods for studying biochemical networks fail
to efficiently model spatial and temporal sources of fluctuations. In this thesis, a novel al-
gorithm, called Green’s Function Reaction Dynamics (GFRD) [40, 41] was implemented
and used. With GFRD it is possible to efficiently speed up the simulation of reaction-
diffusion systems.

The algorithm relies on the analytical solution of the reaction-diffusion equation for
the reaction A+B 
 C (1.15). In order to find this solution, the first step is to express the
positions of the A and B particles (rA,rB) as functions of a new set of coordinates (r,R)
defined as:

R =
√

DB/DA rA +
√

DA/DB rB, r = rB − rA. (1.19)

In this new reference frame, Eq. (1.15) can be decomposed into two independent equations
for R and r:

∂
∂t pR(R, t|R0, t0) = (DA +DB)∇2

R pR(R, t|R0, t0), (1.20)

∂
∂t pr(r, t|r0, t0) = (DA +DB)∇r · (∇r −βF(r)) pr(r, t|r0, t0). (1.21)

The equation for R describes the simple diffusion of this coordinate, with diffusion co-
efficient DA+DB. The equation for r is not trivial, as the reaction is incorporated as a
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boundary condition for Eq. (1.21):

− j(σ, t|r0, t0) ≡ 4πσ2D
(

∂
∂r −F(r)

)

pr(r, t|r0, t0)||r|=σ = kpr(|r| = σ, t|r0, t0), (1.22)

where σ is the sum of the radii of the two particles and k is the forward reaction rate.
Eq. (1.21), with the reacting boundary condition (1.22) and the usual behaviour at infinity
and at initial time

pr(r, t0|r0, t0) = δ(r− r0), pr(|r| → ∞, t|r0, t0) = 0, (1.23)

admits an analytical solution in terms of cylindrical Bessel functions.
The analytical solution for the interparticle distance gives then two pieces of informa-

tion: 1) what is the probability that two particles have reacted at a certain time, and 2) at
which relative distance r the two particles are located if they have not reacted. The first
quantity is given by the survival probability:

S(t|r0, t0) =
Z

|r|>σ
dr pr(r, t|r0, t0), (1.24)

which yields the probability that two particles have not reacted at time t, given that they
were at a distance r0 at time t0. The survival probability is monotonically decreasing in
time because of the reactions between A and B. Therefore, the rate at which S(t) changes
in time is a measure of the probability that a reaction between A and B happens at time t.
This quantity is the next-reaction time distribution:

q(t|r0, t0) ≡− ∂
∂t S(t|r0, t0). (1.25)

The distribution q(t) measures the probability per unit amount of time that a pair, initially
separated by r0, will have a next reaction event at time t.

The dissociation from the bound state C is easy to treat, because it is a first-order
process which does not depend on space. Poissonian statistics will be assumed for these
events, thus yielding an exponential next-reaction time distribution.

An efficient algorithm to simulate a system composed by two particles that diffuse
and can react until time tsim is then the following:

1. If the system is in the dissociated state A+B, draw a next association time tass from
the distribution q(t|r0, t0), where t0 is the current simulation time.

(a) If tass<tsim, the next reaction will happen within the simulation time. Particles
A and B will then be removed from the system, and a new position for C is
obtained from the distribution pR(R, tass|R0, t0). Time is advanced to tass.

(b) If tass > tsim, the reaction will not happen within simulation time. The system
will then be propagated until tsim by drawing new positions for A and B from
the probability distributions pR(R, tsim|R0, t0) and pr(r, tsim|r0, t0).

29



1 Introduction

Figure 1.10: The GFRD algorithm automatically reduces a many-body reaction-diffusion
system to a sum of one-body and two-body problems. In a time step tstep, 99.7% of
particles diffusing with coefficient D will remain within a sphere of radius 3

√

6Dtstep
centered on the particle. In order to avoid three-body interactions, the maximum time
step of the system is determined by the smallest second nearest neighbor distance between
particles. In the Figure, the four particles are divided in a pair and two singles. The pair
can undergo a reaction, whereas the single particles will be propagated diffusively. The
leftmost particle sets the maximum time step.

2. If the system is in the associated state C, draw a next dissociation time tdiss from an
exponential distribution.

(a) If tdiss < tsim, the C particle diffused until tdiss and then suddenly dissociated.
Particle C is then removed from the system, and particles A and B will be posi-
tioned at contact, with a random orientation; the position of the center of mass
of the system will be drawn from a three-dimensional gaussian distribution
with mean rC0 and width

√

2DC(tdiss − t0).
(b) If tdiss > tsim, the dissociation will not happen within the simulation time. The

particle C will freely diffuse until time tsim.

The time step of the algorithm is adaptive, and it can become very large when the
particles are far apart. The propagation of particles is yet exact, because it makes use
of an exact analytical result. This approach can be extended to a many-body system,
provided that it is broken down to a sum of one-body and two-body problems. This is
possible by fixing a maximum time step tmax, as it can be seen in Figure 1.10. In a time
step, particles will stay with a probability of 99.7% within spheres with radius 3

√

6Dtstep.
A maximum radius for the spheres is set by the smallest second neighbour distance; the
maximum radius is translated to a maximum time step tmax. Therefore, for a general
system of species that can diffuse and react, the GFRD algorithm is the following:
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1. Determine tmax as the minimum time that would create a many-body interaction in
the system. In this way, the system is partitioned in a set of pairs and single particles
and a list of potential reactions is created.

2. Draw for each element of the list of potential reactions a time treact,i from the dis-
tributions qi(t). If the smallest of these times treact, j is smaller than tmax, the corre-
sponding reaction will occur and tstep = treact, j. Otherwise tstep = tmax.

3. Propagate single particles by free diffusion for a time tstep. Apply the reaction
procedure described above for the selected pair of particles. Propagate the other
pairs according to the solution of the diffusion-reaction equation.

4. Update the identities of the particles according to the selected reaction.

The algorithm is event-driven, and it can take very long time steps when particles are far
apart and they cannot interact. Conversely, when particles are close together, the time
step decreases automatically and resolves the large number of reactive events that may
happen. In contrast with the SSA, the spatial fluctuations are rigorously accounted for;
with respect to BD, the efficiency is enormously increased, especially for dilute systems.
I apply this algorithm in Chapter 6 to study the effect of diffusion of repressors in the
expression of a gene.

1.6.4 Forward Flux Sampling
A major challenge in the simulation of genetic networks is the sampling of events that
are rare, yet important. A prominent example is given by genetic switches, i.e. genetic
networks displaying a multistable behaviour. With these networks, a cell can commit to
one among several epigenetic states (states that are not directly encoded in the DNA) and
maintain it through many generations. The well-known example of the bacteriophage λ
bistable genetic switch will be discussed in depth in Chapter 4.

Fluctuations in a genetic switch can cause the system to spontaneously flip from one
stable state to another. The switching events are very rare, and, when they happen, occur
on time scales much shorter than the mean residence time in the basins of attraction of
every stable state. With conventional techniques like the SSA, most CPU time is wasted
on simulating the uninteresting waiting times in between the switching events.

A novel method, called Forward Flux Sampling (FFS) [42, 43, 44], has recently been
developed for sampling spontaneous transitions between two regions in phase space A
and B, and for computing the rate constant for such transitions. A and B are defined by
an order parameter λ, such that λ < λA in A and λ > λB in B. A series of nonintersecting
surfaces λ0, . . . ,λn are defined in phase space, such that λ0 = λA and λn = λB. Any path
from A to B must cross each interface, without reaching λi+1 before λi.
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The transition rate kAB from A to B is the average flux of trajectories reaching B from
A Φ̄A,n, and it can be decomposed in the following way:

kAB = Φ̄A,n = Φ̄A,0P(λn|λ0) = Φ̄A,0
n−1
∏
i=0

P(λi+1|λi). (1.26)

Here, Φ̄A,0 is the average flux of trajectories leaving A in the direction of B and P(λn|λ0)
is the probability that a trajectory that crosses λ0 in the direction of B will eventually
reach B before returning to A. On the right-hand side, P(λi+1|λi) is the probability that a
trajectory which reaches λi, having come from A, will reach λi+1 before returning to A. In
Eq. (1.26), the flux of trajectories from A to B is split into the flux across the first interface
λ0, multiplied by the probability of getting from that interface to B, without returning to
A. This last term is then factorized in a product of conditional probabilities of reaching
the next interface (before returning to A), having arrived at a particular interface from A.

The flux Φ̄A,0 is obtained by running a simulation of the system in the “basin of
attraction” of A and counting how many times the trajectory in phase space crosses λ0
coming from A. At the same time, one generates a collection of phase space points that
correspond to the moments that the trajectory reached λ0, moving in the direction of B.
This ensemble of points is then used as the starting point for a calculation of P(λ1|λ0). A
point from the collection is chosen at random and used to initiate a new trajectory, which
is continued until either A or λ1 is reached. If λ1 is reached, the trial is designated a
“success”. This is repeated many times, generating an estimate for P(λ1|λ0) (the number
of successes divided by the total number of trials), plus a new collection of points at λ1
that are the end points of the successful trial runs. This collection of points is used to
initiate trial runs to λ2, generating an estimate for P(λ2|λ1) and a new collection at λ2,
etc. The procedure is schematised in Figure 1.11.

The interfaces are used to drive the system over the barrier. While the efficiency of
the method will depend upon the precise positioning of the interfaces and thus upon the
choice of the order parameter λ, λ does not have to be the true reaction coordinate: the
transition paths are generated according to the underlying dynamics of the system and are
free to follow any possible path between state A and B. The choice of a specific λ will not
affect the rate constant, nor the ensemble of transition paths.

FFS can be applied to systems out of equilibrium and allows sampling of the trajec-
tories corresponding to the transition (the transition path ensemble) by tracing back to A
paths that eventually arrive in B. The trajectories allow an estimation of the steady state
probability distribution as a function of the order parameter λ.

The thesis is organized as follows: in Chapter 2, I will analyse a genetic network
modelling a simple genetic switch. The fluctuations that cause a spontaneous flip of the
switch come from different biochemical processes, such as oligomerization of transcrip-
tion factors or binding to DNA. I will elucidate which sources of fluctuations are actively
exploited by the system, and characterise the switching trajectories.

In Chapter 3, I will study the effect of several dynamical coarse-graining techniques
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Figure 1.11: Scheme of the Forward Flux Sampling method for sampling rare events in
non-equilibrium systems. A parameter λ monotonically increases when the system moves
in phase space from the stable state A towards B. A series of interfaces is set between A
and B, such that a trajectory from A to B must cross the interface λi before λi+1. A brute-
force run in the A basin is used to store a collection of points on the first interface λ0.
From these points, many trial trajectories are fired and stopped when they reach either
A or the next interface. The number of successful trajectories over the number of trials
yields an estimate of p(λ1|λ0). From the new collection of points on λ1 the procedure is
repeated until B is reached. Partial paths can be connected to obtain switching trajectories
from A to B.

on the model switch: I find that one can safely integrate out protein-protein interactions,
because they are fast and their fluctuations are not exploited by the system to flip the
switch. The coarse-graining procedure must, however, be conducted at the level of the
master equation, since methods based on the macroscopic rate equation give incorrect
values of the switching rates.

The work carried out in Chapter 2, will then be applied to a realistic model of the
bacteriophage λ genetic switch, where dimerisation of transcription factors will be inte-
grated out, in Chapter 4. Using FFS, I will be able to measure a spontaneous switching
rate between the two stable states of the system that agrees with experimental predictions.
I will then investigate the effects of the crowded cellular environment and of a possible
DNA loop that could stabilise one stable state.

As discussed above, Brownian Dynamics algorithms that treat second order reactions
naively may introduce systematic errors originating from violations of the detailed bal-
ance rule. In Chapter 5, I will design a rigorous reaction-diffusion BD algorithm and
extensively test it. As an illustrative example, I apply the algorithm to a network consist-
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ing of a substrate under the action of two antagonist enzymes, and evaluate the effects of
the spatial fluctuations on the response of the system.

Finally, in Chapter 6, I will apply the GFRD method to study the dynamics of a gene
under the control of a repressor. I will design a detailed model of protein production and
see that diffusion of repressor molecules is the dominant source of noise in the protein
output. The enhancement of noise comes from the immediate rebinding of repressors to
the DNA, a purely spatial effect that could not be captured with techniques like the SSA. I
will compute the power spectrum of the noise to demonstrate that the slow protein decay
filters out the high-frequency fluctuations.
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Chapter 2

Barriers and reaction coordinates for
the flipping of genetic switches

The things we fear most in organizations –
fluctuations, disturbances, imbalances

are the primary sources of creativity
Margaret Wheatley

We have applied Forward Flux Sampling to elucidate the switching dynamics of a ge-
netic toggle switch, which consists of two genes that mutually repress each other. In anal-
ogy with the spontaneous transitions between two stable equilibrium states, the switching
rate can be factorised in a kinetic prefactor times the probability of being at the separa-
trix between the two states. The analysis reveals that the switching rate increases with
the rate of dimerisation, while it decreases with the rate of operator binding. These reac-
tions affect the switching rate in a fundamentally different manner: while increasing the
rate of dimerisation only increases the kinetic prefactor, increasing the rate of operator
binding decreases both the kinetic prefactor and the probability of being at the dividing
surface (separatrix). We elucidate these differences computing the paths as a function of
the probability the system has to commit the transition. These reveal that varying the rate
of operator binding can drastically change the pathway of switching, while changing the
rate of dimerisation predominantly changes the speed the transition paths are travelled,
but not the location of the transition state ensemble. The implications for the simulation
of other rare events in non-equilibrium systems are discussed.
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2 Barriers and reaction coordinates for the flipping of genetic switches

2.1 Introduction
Multistable biochemical networks are omnipresent in living cells. Multistability can pro-
vide cellular memory, it can enhance the sharpness of the response to intra- and extracel-
lular signals, it can make the cell robust against biochemical noise, and it allows cells to
differentiate into distinct cell types. The steady states of a multistable biochemical net-
work are often very stable and the network typically only switches from one state to the
next under the influence of an external signal [45]. A key question, therefore, is what
determines the stability of these steady states. To understand the stability of multistable
networks, we have to elucidate the pathways of switching from one steady state to the
next. These switching events are, however, intrinsically difficult to study experimentally,
because the switching event itself can be much faster than the typical life time of the
steady state. Computer simulations are a natural tool to study rare switching events. But,
precisely because the switching events are rare, special numerical techniques are required.
In this Chapter, we show how Forward Flux Sampling, described in Section 1.6.4 and in
Refs. [42, 43, 44] can be combined with committor distributions to characterize the path-
ways of switching and to elucidate the stability of multistable biochemical networks.

If a biochemical network is bistable, with two stable states A and B, respectively, then
it will show a bimodal steady-state probability distribution, P(q), of some order parameter
q. This order parameter can be the concentration of a species, or a combination of the
concentrations of a number of species. It is usually interpreted as a reaction coordinate
that measures the progress of the “reaction” from state A to B. Recently, such bimodal
distributions have been measured experimentally for biochemical networks [46, 47, 48].
These distributions are potentially useful, because they are linked to the rate of switching
from one state to the other. For equilibrium systems, widely studied in the field of soft
condensed matter physics, as well as in other branches of physics and chemistry, the
transition rate kAB from state A to state B is given by

kAB = Rexp [−β∆F∗(q∗)] = RP(q∗). (2.1)

Here, β is the inverse temperature, q∗ denotes the location of the top of the free-energy
barrier that separates the two (meta)stable states, ∆F∗(q∗) is the height of the free-energy
barrier, and R is a kinetic prefactor that gives the average flux over the barrier. The above
expression shows that the height of the free-energy barrier is related to the probability of
finding the system at the top of the barrier, P(q∗). While Eq. (2.1) has mostly been used
for equilibrium systems, we have recently shown that an identical relation can also be
derived for rare switching events in non-equilibrium systems [49]. This is useful, because,
as Eq. (2.1) shows, the rate of switching from one steady state to the next, can be written
as the probability of being at the dividing surface, the separatrix [49, 50], times a kinetic
prefactor that describes the average flux of trajectories crossing the dividing surface.

However, while the rate kAB is insensitive to the choice of the order parameter q as long
as it connects the states A and B, the location of the barrier, q∗ (the probability P(q∗) of
being at the top of the barrier) and the kinetic prefactor R all depend upon the choice for q.
Only if the order parameter q is the true reaction coordinate that accurately describes the
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progress of the reaction, does q∗ give the location of the transition state, which separates
the two steady states. And only then are P(q∗) and R accurate measures for the probability
of being at the top of the barrier and the flux over the barrier, respectively. Hence, an
important question is: what is the reaction coordinate q that describes the progress of the
transition?

To answer this question, we need to study the pathways of switching. However, path-
ways of switching are intrinsically difficult to study experimentally. The reason is that
the average waiting time in between the switching events is typically orders of magnitude
longer than the time scale of the event itself. The flipping of biochemical switches is thus
both infrequent and fast, and this makes it very difficult to obtain good statistics on these
rare events.

Computer simulations are a powerful technique to study the flipping of biochemi-
cal switches. However, conventional simulations, using brute-force Kinetic Monte Carlo
schemes [36] such as the Gillespie algorithm [35], are highly inefficient, because most of
the CPU time is waisted on simulating the uneventful waiting time. In the field of soft-
condensed matter physics, a number of numerical techniques have been developed that
makes it possible to simulate rare events efficiently. These techniques, however, usually
exploit the fact that the system obeys detailed balance and microscopic reversibility. Bio-
chemical networks, however, are always out of equilibrium (as long as the cell is alive),
and this means that these techniques cannot be used.

We have recently developed a new class of techniques, called Forward Flux Sampling,
which make it possible to efficiently simulate rare events in both equilibrium and non-
equilibrium systems [42, 43, 44]. FFS allows us to generate switching pathways and
obtain the rate of switching kAB. Moreover, we have recently shown that from a single
FFS calculation one can simultaneously determine the steady-state probability distribution
P(q) [51]. Using Eq. (2.1), one can then also obtain the kinetic prefactor R.

In this Chapter, we apply FFS to study a toggle switch that consists of two genes that
mutually repress each other [52, 53, 54, 55, 49, 42, 56, 57, 58]. We show that both the rate
of operator binding and the rate of dimerisation of the gene products can strongly affect
the switching rate: while the switching rate decreases with an increasing rate of opera-
tor binding, it increases as the rate of dimerisation is increased. In both cases, we vary
the forward and backward rate constants keeping their ratio, i.e. the equilibrium constant
unchanged. Interestingly, varying these rate constants changes the switching rate in a fun-
damentally different manner. Changing the rate of operator binding can have a profound
effect on the mechanism of switching [42, 50]; it thereby changes the switching rate by af-
fecting both the kinetic prefactor and the probability of being at the separatrix. In contrast,
changing the rate of dimerisation only has a minor affect on the location of the switch-
ing pathways; the mechanism of switching is indeed fairly insensitive to the dimerisation
rate. Concomitantly, the probability of being at the separatrix is only marginally affected
by changes in the dimerisation rate. However, the rate at which the system crosses the
dividing surface, is strongly reduced as the dimerisation rate is decreased. Dimerisation
thus changes the switching rate via the kinetic prefactor.
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2 Barriers and reaction coordinates for the flipping of genetic switches

To elucidate the effect of dimerisation and operator binding on the switching rate, we
discuss the pathways of switching and show how committor distributions can be used to
identify the reaction coordinate [59, 42]. Every configuration x has a commitment prob-
ability or “committor”, PB(x). This is the probability that a trajectory, fired at random
from that configuration, will reach state B before state A. The transition state ensemble
(TSE) is formed by the ensemble of configurations that have a committor of PB(x)=0.5.
After generating transition paths by FFS, the committor values can be computed for the
configurations these trajectories visit. Each transition path will cross the dividing surface,
the separatrix where PB =0.5, one or more times, and will therefore generate one or more
members of the TSE. The objective is then to find an order parameter, or a combination of
order parameters, that characterizes the states of the TSE. To test whether a (combination
of) order parameter(s) constitutes the reaction coordinate, one can compute the probabil-
ity distribution of this (combination of) parameter(s) for the harvested configurations of
the TSE [59, 42]. While poorly chosen parameters will exhibit a broad distribution or
even a bimodal one [60], the combination of order parameters that describe the reaction
coordinate will have a narrow distribution of values in the TSE.

We have applied this analysis to the toggle switch. It reveals that the reaction coordi-
nate does not only involve the difference in the total copy number of the two species, but
also the state of the operator [42]. In contrast, we find no evidence that dimerisation is an
important reaction coordinate. This explains why the rate of operator binding affects both
the probability of being at the separatrix and the kinetic prefactor, while dimerisation only
affects the kinetic prefactor.

In the next Section, we first describe the model of the genetic switch. We then present
the results on the switching rate, the kinetic prefactor and the probability of being at the
separatrix. We also show how they depend upon the rate of operator binding and the
rate of dimerisation. To elucidate these dependencies, we then discuss the pathways of
switching in the next Section. We end with a discussion of the implications of our findings
for the modelling of genetic switches.

2.2 Model: The Exclusive Switch

We consider a genetic toggle switch in which the two genes mutually repress each other
[61, 52, 55, 49, 42, 56]. In particular, we study the ‘exclusive switch’ introduced by one of
us [55, 49]. In this system, two transcription factors mutually exclude each other’s binding
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2.2 Model: The Exclusive Switch

Figure 2.1: Pictorial representation of
our model switch, corresponding to
Eq. (2.2). Two divergently-transcribed
genes are under the control of a shared
regulating binding site on the DNA,
called the operator. Both proteins can
bind, in the homodimer form, to the op-
erator and block the production of the
other species.

to the operator. The switch is represented by the following set of reactions [55, 49, 42]:

A+A
kf


kb

A2, B+B
kf


kb

B2 (2.2a)

O+A2
kon


koff

OA2, O+B2
kon


koff

OB2 (2.2b)

O
kprod−→O+A, O

kprod−→O+B (2.2c)

OA2
kprod−→OA2 +A, OB2

kprod−→OB2 +B (2.2d)

A µ−→ /0, B µ−→ /0 (2.2e)

In this reaction scheme, O represents a stretch of DNA containing a regulation site
(operator) and two adjacent genes sharing it. These genes code respectively for proteins
A and B, transcribed in opposite directions, as shown in Figure 2.1. The promoter O can
randomly produce both A and B with the same rate. Each protein can form a homod-
imer that can bind to the promoter; we note here that while mean-field analysis predicts
that cooperative binding of the TFs to the DNA is essential for bistability [61], it has
been demonstrated recently that cooperative binding is not critical for bistability when
the discrete nature of the reactants is taken into account [56]. When an A(B) dimer is
bound to O, the production of B(A) is blocked. Monomers can also decay, which models
degradation and dilution in a cell. Clearly, when one species is abundant over the other
one, many dimers of the majority species are formed, and the probability of finding one
of them bound to O is therefore high. This effect in turn lowers the production of the
minority species, leading to a stabilization of the state. If a rare fluctuation, however, is
able to build up a substantial number of the minority species, these molecules will in turn
dimerise and bind to O, leading to a stochastic flip of the switch. Here, we have assumed
that transcription, translation and protein folding can be modelled as a single Poisson pro-
cess, neglecting the molecular details and substeps that lead to the production of a protein.
Ref. [49] discusses the effects of both shot noise and fluctuations in the number of proteins
produced per mRNA transcript on the switch stability.

A previous work has demonstrated that the switch stability depends strongly on the
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2 Barriers and reaction coordinates for the flipping of genetic switches

mean copy number of species A and B [55]. In the model described here, the mean copy
number is given by the ratio of the production and decay rates, i.e. kprod/µ. While this
ratio is directly related to the switch stability, the individual values of these rate constants
only set the time scale of the reactions. The choice of either k−1

prod or µ−1 as the unit of
time is therefore arbitrary. Following the earlier work, we use the faster reaction of the
two: k−1

prod is thus the unit of time [55]. Choosing the volume of the system, V , as the unit
of volume, we define the following baseline set of parameters: kf =5kprodV , kb =5kprod
(so that Kd

D = kb/kf = 1/V ), kon =5kprodV , koff = kprod (so that Kb
D = koff/kon = 1/(5V )),

µ=0.3kprod. These numbers are biologically motivated, as we discuss in more detail in
the Discussion Section. We assume that the rates for proteins A and B are the same, in
order to have a completely symmetric switch.

The flipping of biochemical switches will be studied with the Forward Flux Sampling
technique, described in Section 1.6.4: We have used the original FFS scheme to compute
the rate constant and to generate members of the transition-path ensemble (TPE) [42,
43, 44]. In contrast to schemes such as Milestoning [62] and PPTIS [63], FFS does not
have to make the Markovian assumption that the paths lose memory of where they come
from. Moreover, in contrast to these approaches, FFS does not have to assume that the
distribution of state points at the interfaces {λ0, · · · ,λn} equals the stationary distribution
of states: each point at interface i lies on a path which originates in the initial state A. We
show below that this is essential for this analysis of the genetic switch, even though this
system is highly diffusive.

2.3 Results
The mean field analysis performed in [49] demonstrates analytically for this system the
existence of three fixed points for the parameter values listed above: two symmetrical
stable states, one rich in A and the other rich in B, separated by one unstable state where
the total number of A equals the total number of B. This implies that the system can be
considered as a truly bistable switch. However, while this mean-field analysis indicates
the regions in parameter space where the system is bistable, it cannot predict the switch
stability and elucidate the switching pathways.

To harvest switching pathways and to calculate the switching rate, we have performed
Kinetic Monte Carlo simulations in conjunction with FFS. The order parameter to lay
down the FFS interfaces (see Section 1.6.4) is the difference between the total numbers
of the two kinds of molecules: λ = nA + 2nA2 + 2nOA2 − (nB + 2nB2 + 2nOB2), where nX
is the number of copies of species X.

2.3.1 Switching rates
Figures 2.2A and 2.2B show the switching rate as a function of the dimerisation rate
and the operator binding rate, respectively. In both cases, the forward and backward rate
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constants are scaled such that the equilibrium constant is kept constant. It is seen that
while the switching rate increases with the rate of dimerisation (panel A), it decreases
with the rate of operator binding (panel B).

FFS not only makes it possible to compute rate constants, it also allows the calcula-
tion of stationary distributions, both for equilibrium and non-equilibrium systems [51].
Figure 2.3 shows the steady-state probability distribution P(λ) of finding the system at
a particular value of the order parameter λ, for different values of the dimerisation and
operator binding rate. First of all, it should be noted that for the range of parameters con-
sidered here, the distribution is bimodal, as expected for a bistable system. Secondly, it
is seen that the location of the basins of attraction are fairly insensitive to both the rate
of dimerisation and the rate of operator binding. Also the shape of the stationary distri-
bution does not depend much on these rate constants. However, as inset B of Figure 2.3
and Figure 2.2D show, the relative probability P(λ=0) of being at the top of the barrier
that separates the two stable states, does depend on the rate of operator binding. Interest-
ingly, the probability of being at the top of the barrier is much less sensitive to the rate of
dimerisation (inset B of Figure 2.3 and Figure 2.2C).

Eq. (2.1) makes it possible to derive from the computed rate constant kAB and the
calculated relative probability of being at the top of the barrier P(q∗) = P(λ = 0), the
kinetic prefactor R. Figures 2.2E and 2.2F show the kinetic prefactor as a function of
the dimerisation rate and operator binding rate, respectively. It is seen that the kinetic
prefactor strongly increases with the rate of dimerisation, while it decreases with the rate
of operator binding.

2.3.2 Switching pathways
To elucidate the dependencies of the switching rate, “the barrier height” and the kinetic
prefactor on the dimerisation and operator binding rates, we will examine the switching
pathways as harvested by FFS. Here, and in what follows, we will focus on three sets
of parameters: (1) the base-line set, with an operator binding rate of kon =5kprodV and a
dimerisation rate of kf=5kprodV ; (2) a set with slow dimerisation, kf=0.1kprodV , and kon=
5kprodV ; (3) a set with fast operator binding, kon=500kprodV , kf=5kprodV . As above, in all
cases the backward rates are scaled such that the equilibrium constants remain constant:
Kd

D =kb/kf =1/V and Kb
D =koff/kon =1/(5V ).

To characterize the switching pathways, we need to define a parameter that measures
the progress of the transition. One choice would be to take λ, the difference between the
total copy numbers of A and B. However, as we will show below, λ is not sufficient to
describe the progress of the reaction: the reaction coordinate involves at least one other
order parameter. We have therefore also used this other parameter to characterize the
progress of the reaction, namely the committor PB(x). As discussed in the introduction,
the committor is the probability that a configuration reaches state B before state A when it
is propagated in a random direction. After the transition paths have been harvested with
FFS, the committor values can be computed for the configurations that these trajectories
visit; for each configuration x, PB(x) was estimated by firing 100 test trajectories from
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Figure 2.2: Dependence of the switching rate on the dimerisation speed (A) and on the
rate of operator binding (B). Backward reaction rates are scaled such that equilibrium
constants remain constant: Kd

D =kb/kf =1/V and Kb
D =koff/kon = 1/(5V ). The switching

rate kAB can be written as the product of two factors: kAB =RP(q∗)=RP(λ=0), where
R is a kinetic prefactor and P(q∗)= P(λ = 0) is the relative probability of being at the
dividing surface. The latter quantity, P(q∗)=P(λ=0), can be derived from the stationary
distribution P(λ), which can obtained from the FFS calculation to obtain kAB, and which
is plotted in Figure 2.3. The middle panels show P(q∗) as a function of the dimerisation
speed (C) and the rate of operator binding (D), while the lower panels show the kinetic
prefactor R as a function of both rates (E and F, respectively). It is seen that both the
kinetic prefactor R (F) and the probability of being at the diving surface P(q∗) (D) de-
crease as the rate of operator binding increases. In contrast, the probability of being at the
separatrix (C) is fairly insensitive to the rate of dimerisation, while the kinetic prefactor
(E) increases with increasing dimerisation speed. The three pairs of panels have different
scales on the y axis to improve visualization.
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Figure 2.3: Probability distribution as a function of the order parameter λ = nA +2nA2 +
2nOA2 − (nB +2nB2 +2nOB2), as obtained from the FFS calculations [51], for three differ-
ent sets of parameters. Inset A magnifies the left peak and demonstrates that in the basins
of attraction, the stationary distribution does not depend upon the rate of dimerisation and
operator binding. However, as shown in Inset B, fast operator binding does modify the
distribution at the top of the “flipping barrier”, i.e. around the unstable steady state λ=0.

that point. Since PB is the likelihood that a configuration will end up in B, it could be
considered as the true reaction coordinate that measures the progress of the transition.

Figure 2.4 shows the average switching pathways in the nA,nB plane, where nA and
nB are the total copy numbers of species A and B, respectively. The trajectories are aver-
aged in the PB ensemble: the values of nA and nB are averaged over those configurations
with the same value of PB. It is seen that the average paths in the PB ensemble are rather
“noisy”: this is due to the fact that PB is a stochastic quantity, which has to be estimated by
a computationally demanding procedure. The inset therefore shows the average switching
pathways in the λ ensemble; here, the values of nA and nB are averaged over those con-
figurations with the same value of λ. Figure 2.4 shows that while the rate of dimerisation
affects the location of the switching pathways as they leave the basin of attraction, it does
not influence the location of the transition state ensemble (TSE). In contrast, the rate of
operator binding affects the location of the TSE: it is seen that the switching pathways
cross the dividing surface at lower values of nA and nB.

To characterize the switching pathways further, Figure 2.5 shows the probability that
the operator is bound by a B2 dimer, 〈nOB2〉 as a function of PB, and, in the inset, as a func-
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Figure 2.4: Switching paths projected onto the nA,nB surface, for three different sets of
parameters. The main panel shows the paths averaged in the PB ensemble, where nA and
nB are averaged over configurations with the same value of the committor PB. The inset
shows the average paths in the λ ensemble, where the values of nA and nB are averaged
over configurations with the same value of λ = nA +2nA2 +2nOA2 −(nB +2nB2 +2nOB2),
where nX is the copy number of species X. The forward paths, corresponding to transitions
from A to B are shown with solid lines, while the reverse transitions, from B to A are shown
with dashed lines. Note that the location of the transition state ensemble depends on the
rate of operator binding, but is fairly insensitive to the rate of dimerisation.

tion of λ. The solid lines correspond to the average switching paths of the transition from
A to B, while the dashed lines corresponds to the paths of the reverse transition, from B to
A. It is seen that when the rate of operator binding is fast, the forward and backward paths
essentially coincide. This situation differs markedly for the system with the base-line pa-
rameter set and for the system with slow dimerisation: although the switch is symmetric
on interchanging A and B, the transition path ensemble (TPE) for the transition from A to
B does not coincide with that from B to A [42]. This is a manifestation of the fact that this
switch is a non-equilibrium system: for equilibrium systems that obey detailed balance
and microscopic reversibility, the forward and backward paths must necessarily coincide.

The fact that the forward and backward paths do not coincide also means that the
switching paths do not follow the most probable steady-state path in phase space, which,
for equilibrium systems, would correspond to the lowest free-energy path: Since this
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Figure 2.5: The probability that a B dimer is bound to the operator, 〈nOB2〉, as a function
of the committor PB (main panel) and as a function of λ for three different sets of pa-
rameters. The solid lines correspond to the transition from A to B, while the dashed lines
corresponds to the reverse transition from B to A. It is seen that when the rate of operator
binding is fast (kon = 500) the forward and backward paths coincide, while for the other
systems they do not.

system is symmetric, this “lowest-free energy path” is symmetric on interchanging species
A and B, while Figure 2.5 shows that the dynamical switching trajectories are not (unless
operator binding is fast). This also means that it is essential not to make the Markovian
assumption of memory loss, which underlies path sampling schemes such as Milestoning
[62] and PPTIS [63].

That the forward and reverse transition follow different routes in state space (Fig-
ure 2.5) shows that the system actively exploits operator state fluctuations to flip the
switch [42, 50]. Indeed, the progress of the transition, and hence the reaction coordi-
nate, is not only determined by the difference in the number of protein molecules, λ, but
also by which type of protein happens to be bound to the operator. This is illustrated in
Figure 2.6, which shows for the three sets of parameters, the probability distribution P(λ)
for the TSE for the forward transition from A to B, separated into the components due
to the three operator states O, OA2, and OB2. First of all, it should be noted that in the
TSE the state of the operator and λ are correlated: the histograms for OA2 are shifted to
higher values of λ with respect to those for OB2. This means that if a B dimer is bound
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to the operator, then, on average, the number of A molecules has to exceed the number of
B molecules in order to have the same value of PB, and vice versa. Secondly, for the sys-
tem in which the operator binding and unbinding is fast, at the separatrix the probability
〈nOA2〉 that an A species is bound to the operator (which is given by the area under the
histogram corresponding to OA2), equals the probability 〈nOB2〉 that a B species is bound
to the operator. In contrast, for the reference system and the system with slow dimerisa-
tion, 〈nOB2〉 > 〈nOA2〉 in the transition state ensemble. This unambiguously demonstrates
that the system uses the binding of B to the operator to flip the switch from state A to state
B.

We can now understand the dependence of the flipping rate on the rate of operator
binding (Figure 2.2). In the non-adiabatic limit of slow operator binding and unbinding
[42, 50], the binding of the minority species to the operator strongly enhances the flipping
of the switch: when the minority species happens to bind the operator, it will stay on the
DNA for a relatively long time, thus blocking the synthesis of the majority species and
allowing the production of the minority species. Indeed, in this limit, the system reaches
the dividing surface with only a few operator binding and unbinding events. As the rate of
operator binding and unbinding is increased, the state of the operator is increasingly being
slaved to the difference in the total number of A and B molecules, λ. In the adiabatic limit
of fast operator binding, the probability that a molecule of type A or B is bound to the
operator is completely determined by λ [50]. In this limit, the dividing surface is located
at λ ≈ 0 and 〈nOA2〉 ≈ 〈nOB2〉; to reach the separatrix, the system has to wait for a series
of fluctuations in the birth and decay of both species that lead to nA ≈ nB. This implies
that the total number of copies of A and B at the dividing surface decreases as the rate of
operator binding increases (see inset Figure 2.4). It also explains why the prefactor R and
the probability of being at the separatrix, P(q∗), and hence the switching rate, decrease as
the rate of operator binding increases (Figure 2.2).

Figures 2.4–2.6 suggest that the rate of dimerisation only has a marginal effect on
the switching pathways. However, it should be realised that this could be a result of
projecting the switching pathways onto the wrong coordinates. Indeed, Figure 2.2 shows
that the rate of dimerisation does affect the switching rate if kf < kprodV . It is conceivable
that dimerisation also affects the switching pathways in this regime, but that we have
to find other order parameters to describe the switching pathway. We have investigated a
number of order parameters, but with limited success. The most successful result is shown
in Figure 2.7, which shows 〈nB2〉 as a function of 〈nB〉2. When the dimerisation reaction
remains in equilibrium during the transition, this function should be a straight line with a
slope given by the dissociation constant KD. Figure 2.7 shows that this is the case for the
system with the base-line parameters and for the system with the fast operator binding.
For the system with slow dimerisation, however, deviations from this equilibrium scenario
are visible: while at the transition state the dimerisation reaction is in equilibrium, at
the “pre critical” and “post critical” side of the barrier the dimerisation reaction is out of
equilibrium. Note that a similar behaviour can be seen for the projections of the switching
pathways in the nA,nB plane (inset Figure 2.4). The reason for this behaviour is that the
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Figure 2.6: The probability p(λ) for the transition state ensemble (PB = 0.5) of the tran-
sition from A to B, split into color-coded contributions from the three operator states;
the area under each histogram gives the probability 〈nOX〉 that the operator is bound to
species X (the three areas thus sum to unity). The left panel corresponds to the system
with slow dimerisation kf = 0.1; the middle panel corresponds to the system with the
base-line parameters; the panel on the right corresponds to the system with fast operator
binding kon = 500. Note that in all cases the state of the operator is correlated with λ. Note
also that with fast operator binding (right panel), 〈nOA2〉 ≈ 〈nOB2〉, while in the other cases
predominantly species B is bound to the operator in the TSE ensemble: 〈nOA2〉 < 〈nOB2〉.

switching pathways spend relatively little time on the flanks of the barrier, while, because
of the diffusive dynamics, they stay fairly long on the top of the barrier. On the top of the
barrier, the dimerisation reactions thus have time to equilibrate, even when they are fairly
slow (i.e. with kf = 0.1kprodV ).

The dependence of the switching pathways (Figures 2.4-2.7) on the rate of dimeri-
sation helps to understand the importance of dimerisation for the switching rate. The
dimerisation reactions mostly affect the dynamics of the trajectories, in particular as they
leave their basins of attraction. In contrast, they hardly change the location of the transi-
tion state ensemble. Together, these observations explain why the dimerisation reaction
affects the switching rate via the kinetic prefactor R, and not via the relative probability
of being at the top of the barrier, P(q∗). Our results thus show that the underlying dynam-
ics of the system can have a large effect on the switching rate. In this case, it is caused
by an interplay between the time scales of dimerisation and protein decay events: when
the system is in a stable steady state, in order to start a switching event, two copies of
the minority species must be produced. They must then dimerise and bind to the opera-
tor, to efficiently increase their production. If the dimerisation rate is comparable to the
degradation rate, it becomes increasingly probable that copies of the minority species are
removed from the system before they can for a dimer. This effect is thus truly dynamical
in origin and fundamentally different from the enhanced switch stability via cooperativity
due to nonlinear degradation [64].
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Figure 2.7: The copy number of the dimer B2, 〈nB2〉, as a function of the square of the
copy number of the monomer B, 〈nB〉2, for the forward paths (solid lines) and backward
paths (dashed lines) for three different sets of parameters. If dimerisation would be in
equilibrium during the transition, then 〈nB2〉 as a function 〈nB〉2 would be given by a
straight line with a slope given by the dissociation constant KD. It is seen that when the
dimerisation is slow (kf = 0.1), the dimerisation reaction is out of equilibrium during the
transition.

2.4 Discussion

We have studied the flipping rate of a genetic toggle switch as a function of the rate of
dimerisation and operator binding. To this end, we have varied the rate constants of these
reactions over more than four orders of magnitude (see Figure 2.2). This large range is
important, because the rate constants of biochemical reactions tend to vary over a wide
range. For instance, in prokaryotic cells, the inverse rate of protein production, k−1

prod,
is in the range of seconds to minutes [65]. With the size of a typical E. coli cell being
on the order of 1µm3, this corresponds to kprodV = 10−2−10 nM−1/min. The rate of
dimer association, kf, is about 10−2−10−1nM−1/min, while the dimer dissociation rate is
on the order of kd = 10−2−103/min, corresponding to dissociation constants in the range
Kd

D = 0−102nM [64]. This means that kf = 10−2−10kprodV . Figure 2.2A shows that while
for kf > kprodV the switching rate is fairly insensitive to changes in the dimerisation rate,
the flipping rate reduces strongly as the dimerisation rate is decreased when kf < kprodV .
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2.4 Discussion

Hence, under biologically relevant conditions, the rate of dimerisation can strongly affect
the switching rate. The rate of operator (un)binding can vary over a similar broad range as
the rate of dimerisation [65]. This means, as Figure 2.2B shows, that also operator state
fluctuations can have a marked effect on the flipping rate of genetic switches in living
cells.

Figure 2.2 shows that while dimerisation affects the switching rate predominantly via
the kinetic prefactor, operator binding affects the switching rate via the kinetic prefactor
and the probability of being at the separatrix: both decrease as the rate of operator binding
increases. Interestingly, the steady-state phase-space density in the basins of attraction
are much more robust to changes in the rate of operator binding and dimerisation (see
Figure 2.3). Clearly, dimerisation and operator binding do not significantly affect the
behaviour of the network in the stable state, but can strongly affect the switching of one
stable state to the next.

Genetic switches have become a paradigm for rare events in non-equilibrium systems.
In the analysis of rare events in equilibrium systems, it is often assumed that one coor-
dinate, the reaction coordinate, is slow, while the other degrees of freedom are fast. If
this is the case, then the transitions can be accurately modeled by assuming that the re-
action coordinate evolves according to a Langevin equation, while the other degrees of
freedom create friction and provide the activation energy to cross the free-energy barrier.
The “barrier crossing” in the toggle switch differs fundamentally from this classical sce-
nario. The reaction coordinate consists of at least two parameters, namely the difference
in total copy number of species A and B and the state of the operator [42]. Moreover,
these coordinates move on comparable time scales—the operator state fluctuates on time
scales similar to those of protein production and decay; in addition, their dynamics mix
in a non-equilibrium fashion [50]—the degradation and production of proteins are non-
equilibrium processes. This hampers the application of standard theoretical tools to model
barrier crossings [50]. Indeed, it appears that new theoretical approaches are required to
accurately model such rare events in non-equilibrium systems.
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Chapter 3

Eliminating fast reactions in stochastic
simulations of a genetic switch

Our life is frittered away with detail.
Simplify, simplify, simplify!

Henry David Thoreau

In many stochastic simulations of biochemical reaction networks, it is desirable to
“coarse-grain” the reaction set, removing fast reactions while retaining the correct sys-
tem dynamics. For “fast” reactions we mean here reactions that have a high propensity
to happen, because of fast reaction rates, or large number of reactants, or both. Vari-
ous coarse-graining methods have been proposed, but it remains unclear which methods
are reliable and which reactions can safely be eliminated. We address these issues for
a model gene regulatory network that is particularly sensitive to dynamical fluctuations:
a bistable genetic switch. We remove protein-DNA and/or protein-protein association-
dissociation reactions from the reaction set, using various coarse-graining strategies. We
determine their effects on the steady-state probability distribution function and on the rate
of fluctuation-driven switch flipping transitions. We find that protein-protein interactions
may be safely eliminated from the reaction set, but protein-DNA interactions may not. We
also find that it is important to use the chemical master equation rather than macroscopic
rate equations to compute effective propensity functions for the coarse-grained reactions.
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3 Eliminating fast reactions in stochastic simulations of a genetic switch

3.1 Introduction
Biochemical reaction networks control how living cells function. Computer simulations
provide a valuable tool for understanding how complex biochemical network architec-
ture is connected to cellular function. A popular method for simulating biochemical net-
works is the “Stochastic Simulation Algorithm” (SSA) which was introduced in this field
by Gillespie [66, 35]. For many reaction networks, however, SSA simulations are pro-
hibitively expensive because of “time-scale separation”: the reaction set contains some
reactions which occur much more frequently than others. For every “slow” reaction event,
many “fast” reaction events have to be simulated. This problem has led to the develop-
ment of various methods for coarse-graining the reaction set [67, 68, 69, 70, 71, 72, 73] -
that is, eliminating the fast reactions and simulating only the slow reactions. Key issues
are which fast reactions can safely be eliminated, and how this should be done, so as not
to disturb the original dynamics. In this Chapter, we address these issues for a biochem-
ical network which is especially sensitive to dynamical fluctuations: a bistable genetic
switch. Because of its sensitivity, this model provides a useful test system for assessing
how to coarse-grain biochemical networks. We expect our conclusions to be valid for a
wide range of biochemical networks where fluctuation-driven processes are important.

The SSA is a kinetic Monte Carlo method which generates trajectories for the number
of molecules of each chemical species in the reaction system. The molecular discreteness
of the reacting species is included, as well as stochastic fluctuations in the numbers of
molecules, assuming that each reaction is a Poisson process. It is assumed that the system
is well-stirred - i.e. possible inhomogeneities in the spatial distribution of the compo-
nents are ignored (alternative methods that do include spatial effects have recently been
developed [38, 39, 40, 41]). The SSA generates trajectories that are consistent with the
chemical master equation. Its implementation is outlined in Section 1.6.1 - in brief, reac-
tion propensities are computed, which are the probability per unit time for each reaction to
occur. These propensities are used to determine the time and identity of the next reaction
event. Modifications of the SSA for large numbers of reaction channels or for high copy
numbers of the reacting species have been developed [37, 74].

The SSA becomes inefficient when some of the reaction channels (“the fast reactions”)
have much higher propensities than others (“slow reactions”) - this is known as the time-
scale separation problem, and several methods for dealing with it have been proposed. In
all cases, the first step is to identify which reactions are “fast” and which are “slow”. The
criterion is generally that fast reactions should reach a steady state faster than the waiting
time between slow reaction events. The slow reactions are generally simulated using the
SSA, while the various methods differ in their treatment of the fast reactions. In one class
of methods, the fast reactions are propagated using the deterministic or chemical Langevin
equation [67, 75, 76]. Alternatively, one may assume that the propensity functions of the
fast reactions do not change between firings of the slow reaction, as in the τ leap method
of Gillespie [74, 70]. The accuracy of these techniques requires that the species in the
fast reactions are present in large copy numbers. In another class of methods, which
we consider here, the fast reactions are eliminated entirely and the slow reactions are
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3.1 Introduction

Figure 3.1: Pictorial representation of
our model switch, corresponding to
Eq. (2.2). Two divergently-transcribed
genes are under the control of a shared
regulating binding site on the DNA,
called the operator. Both proteins can
bind, in the homodimer form, to the op-
erator and block the production of the
other species.

propagated according to effective propensities that depend on steady-state averages over
the chemical master equation for the fast reactions. Because these algorithms take account
of molecular discreteness, they do not require the species in the fast reactions to be present
in large copy numbers. These schemes are discussed in more detail in Section 3.3.

In this Chapter, we use a bistable genetic switch as a test system for assessing vari-
ous coarse-graining strategies. Our model switch is a gene regulatory network with two
genes, in which the protein product of gene A dimerises and represses gene B, and vice
versa [61, 52, 55, 49, 42, 57, 56]. The network occasionally flips spontaneously between
its two stable states due to random fluctuations. The switch flipping rate is highly sensitive
to the fluctuations in the network and can be used as a measure for whether the coarse-
graining schemes correctly reproduce the network dynamics. The model switch shows
dynamics on a wide range of timescales - protein-protein and protein-DNA association
and dissociation over seconds to minutes, synthesis and degradation of proteins over tens
of minutes, and switch flipping over tens of hours. It is by no means obvious whether the
protein-protein and protein-DNA interactions may safely be eliminated, since it is likely
that fluctuations in these reactions are crucial in driving the longer timescale switch flip-
ping events [42, 50]. We investigate the consequences of eliminating the protein-protein
and protein-DNA interactions for this system, using various coarse-graining schemes for
the SSA, in combination with the recently developed “Forward Flux Sampling” (FFS)
method for rare event simulations [42, 43, 44]. We compute steady-state probability dis-
tributions, as well as the switch flipping rate. We compare coarse-graining strategies in
which averages over the fast reactions are computed using the chemical master equation
to those where macroscopic rate equations are used. Our results show that the chemical
master equation rather than the macroscopic rate equations should be used for integrat-
ing out fast reactions. We find that the steady-state distribution of the system is quite
insensitive to removing either protein-protein or protein-DNA association and dissocia-
tion reactions, but the switch flipping rate is strongly affected by coarse-graining over
protein-DNA interactions and less affected by removing protein-protein interactions.

In the next Section, we describe the model genetic switch. In Section 3.3, we give
background information on the various coarse-graining schemes, and in Section 3.4, we
discuss these in the context of the model switch. In Section 3.5, we present results on the
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3 Eliminating fast reactions in stochastic simulations of a genetic switch

Reaction Propensity Reaction Propensity
A+A 
 A2 kfnA(nA−1), kbnA2 B+B 
 B2 kfnB(nB−1), kbnB2 (3.1a)

O+A2 
 OA2 konnOnA2 , koffnOA2 O+B2 
 OB2 konnOnB2 , koffnOB2 (3.1b)
O → O+A kprodnO O → O+B kprodnO (3.1c)

OA2 → OA2 +A kprodnOA2 OB2 → OB2 +B kprodnOB2 (3.1d)
A → /0 µnA B → /0 µnB (3.1e)

Table 3.1: Reactions and propensity functions for the model genetic switch.

computational speed-up and the accuracy of the various coarse-graining procedures using
the stationary distribution and the switching rates as read-outs. We end with a discussion
on the implications of our findings for the simulation of complex biochemical networks.

3.2 The Model Genetic Switch
The model bistable genetic switch is shown schematically in Figure 3.1 and the set of
reactions is listed in Table 3.1 [61, 77, 49]. As shown in Figure 3.1, two genes A and B
are transcribed in divergent directions, under the control of a single operator region, O,
which contains a single binding site. Coding region A encodes protein A, while coding
region B encodes protein B. Both proteins A and B are transcription factors, which, upon
homodimerisation, are able to bind to the operator sequence O. When A2 is bound at O,
the transcription of B is blocked [A2 is a repressor for B]; while, conversely, when B2 is
bound at O, the transcription of A is blocked [B2 is a repressor for A]. When neither A2
or B2 is bound at O, both A and B are transcribed at the same average rate kprod. Protein
monomers are also removed from the system with rate µ, modelling active degradation
processes as well as dilution due to cell growth. For convenience in this model system, we
use the rather high value µ = 0.3kprod, corresponding to the case where removal from the
cell is dominated by active degradation. In our model, we assume that all the steps leading
to production of a protein molecule (transcription, translation and protein folding) can be
modelled as a single Poisson process with rate constant kprod. The system is symmetric
on exchanging A and B.

For this model system, bistability has been demonstrated using a mean field analysis
and with simulations [49]. In one stable state, a large number of A proteins are present;
this ensures that the operator O is mostly bound by A2, keeping B repressed. Conversely,
in the other stable state, B proteins are abundant, so that O is mostly bound by B2, and A
remains repressed. Previous work has demonstrated that, when simulated stochastically
with appropriate parameters, the system makes occasional random flipping transitions
between these two stable states [49], as in Figure 3.2. In our simulations, we use the
inverse of the production rate, k−1

prod as the unit of time. We assume that the cell volume
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3.3 Dynamical coarse-graining: background
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Figure 3.2: Typical sim-
ulation trajectory for the
model switch, with base-
line parameters except
for µ which is replaced
by µ = 0.45kprod. The
total numbers of A and
B molecules fluctuate
around two stable states,
one rich in A and the
other rich in B. Transi-
tions between these states
are rapid, yet infrequent.

V remains constant. For simplicity, we use a value V =1, and define our rate constants in
appropriate units. We choose a “baseline” set of parameters, in the region of parameter
space where the system has previously been found to be bistable: kf =5kprodV , kb =5kprod
(so that Kd

D =kd/kf =1/V ), kon =5kprod, koff =kprod (so that Kb
D =koff/kon =1/(5V )), µ=

0.3kprod. This model system is loosely based on the bacteriophage λ genetic switch [78].
For the phage λ proteins cro and cI, assuming diffusion-limited protein-DNA association
and using Refs. [79] and [80], kon ≈ 5−10kprod. For cI and cro dimer formation, using
Refs. [81] and [82], kf ≈ 50−100kprod. Protein degradation rates are much lower for phage
λ (of the order of µ ≈ 0.1−0.01kprod) than for our model system - this contributes to the
observed stability of the phage λ switch.

Throughout this Chapter, we represent the number of molecules of chemical species
X which is present in the cell by nX. Later in the Chapter, we will need to characterize
the switching process by an “order parameter”, which we denote λ. A natural choice is
the difference between the total number of the two proteins in the cell: λ ≡ nA + 2nA2 +
2nOA2 − (nB + 2nB2 + 2nOB2). Figure 3.2 shows λ plotted as a function of time for a
simulation of this reaction set using the SSA. Bistable behaviour is indeed observed: the
system spends most of its time in one of the two stable states with occasional transitions
between states. The average duration of a flipping transition event is much shorter than
the average “waiting time” between the flipping transitions.

3.3 Dynamical coarse-graining: background
Dynamical coarse-graining schemes begin by splitting the reaction set into fast and slow
reactions, as described in Section 3.1. The slow reactions are generally simulated using
the SSA. The fast reactions are approximated in ways that differ for different methods. In
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3 Eliminating fast reactions in stochastic simulations of a genetic switch

this Chapter, we only consider approaches in which the fast reactions are removed entirely
from the reaction set, by assuming that they relax to a steady state faster than the waiting
time between slow reactions. Effective propensities for the slow reactions are computed
as averages over the steady state distribution, obtained from the chemical master equation
for the fast reactions.

The key step is the determination of the effective propensity functions as
j(ns,n f ) for

the slow reactions in the coarse-grained reaction scheme. These depend on the copy
numbers ns of the “slow species” (those that are only affected by the slow reactions), and
n f of the “fast species” (those that are affected by both the fast and the slow reactions).
The effective propensities are given by

as
j(n f ,ns) = ∑

n′f

P∞(n′f |n f ,ns)as
j(n′f ,ns), (3.2)

where as
j denotes the propensity function for a given slow reaction j and P∞(n′f |n f ,ns) is

the probability of obtaining a given copy number n′f for the fast species, at the end of a
very long simulation of the fast reaction set only, starting from state space point (n f ,ns).
These effective propensities are designed to give the same flux along the slow reaction
channel, on average, as in the full system.

The effective propensity functions in Eq. (3.2) can be obtained by performing short
SSA simulations of the fast reactions at fixed copy numbers of the slow species [72,
73]. Alternatively, one may solve the chemical master equation for the fast reactions
analytically or numerically [68, 69, 71].

It is important to discuss the definition of the “fast variables” (n f in Eq. (3.2)) and
“slow variables” (ns) [68, 71, 34]. In the work of Cao et al. [71], the slow variables are
the copy numbers of those species which are unaffected by the fast reactions, while the
fast variables can be changed by both fast and slow reactions. During the coarse-grained
simulation, both the fast and the slow variables are propagated in time, even though only
the slow reactions are simulated. However, Bundschuh et al. [68] describe a way to
eliminate not only the fast reactions but also the fast variables from the simulation scheme
- so that the coarse-grained simulation includes only slow species and slow variables.
Here, the fast variables are the copy numbers of all species which are affected by the
fast reactions. The slow variables are made up of the copy numbers of species which
are unchanged by the fast reactions, as well as combinations of the fast variables. These
combinations are chosen so that they are unchanged by the fast reactions. For example,
for a fast reaction set 2A 
 A2, an appropriate slow variable would be nǍ = nA + 2nA2 .
The original slow reaction set is then rewritten in terms of these new slow variables. This
eliminates all the fast species from the slow reaction set and the simulation proceeds by
simulating only the slow variables. This is the strategy which we adopt in this Chapter.
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3.4 Coarse-graining for the model genetic switch

3.4 Coarse-graining for the model genetic switch
Stochastic simulations of the model genetic switch have characteristic features that de-
pend on the timescale over which we observe the simulation. In a timeframe of about
0.2k−1

prod, we will observe mainly protein-protein association and dissociation events (typ-
ical timescale [nA(nA−1)k f ]−1 and [nA2kb]

−1 respectively), as well as protein-operator
association and dissociation (typical timescale [nA2kon]−1 and [koff]

−1). If we extend our
observation “window” to a timeframe of about 4k−1

prod, we observe also protein production
and degradation (typical timescale [kprod]

−1) and µ−1 ≈ 3k−1
prod). In a much longer time-

frame, we observe flipping events between the two stable states. It is these flipping events
that are the phenomenon of interest - yet for each “interesting” switch flipping event, very
many “less interesting” association and dissociation events need to be simulated. This
is an example of timescale separation, which we seek to overcome by coarse-graining -
eliminating the protein-protein and/or protein-DNA association and dissociation reactions
from the simulation scheme.

To coarse-grain the model genetic switch, we divide the full reaction set (3.1) into
fast and slow reactions. We will consider three cases: (i) protein-protein association and
dissociation reactions (3.1a) are fast, (ii): protein-DNA association and dissociation re-
actions (3.1b) are fast, and (iii): both reactions (3.1a) and (3.1b) are fast. For each of
these cases, we define fast and slow variables. The fast variables are the copy numbers
n f of species which are affected by the fast reactions. The slow variables ns are either
the copy numbers of species unaffected by the fast reactions, or linear combinations of
fast variables which are unchanged by any of the fast reactions - e.g. nǍ +nA +2nA2 . To
accompany these slow variables, we define “slow species”. These may represent either
single chemical species, or combinations of species. For example, the species Ǎ repre-
sents an A molecule which is in either monomer or dimer form. We then rewrite the slow
reaction set in terms of the new slow species, and carry out a simulation using Gillespie’s
SSA, with effective propensities given by Eq. (3.2). For this system, only the first mo-
ment of P∞(n′f |n f ,ns) is required. This can be obtained by solving the chemical master
equation for the fast reactions at a fixed value of the slow variables. Alternatively, one
may approximate the macroscopic rate equations for the fast reactions. A summary of the
various coarse-graining methods used in this Chapter is given in Table 3.2. Table 3.2 also
lists the coarse-grained reaction sets, and gives formulae for the effective propensity func-
tions. The notation 〈X〉METHOD

SLOW VARIABLES denotes the first moment (average) of the steady
state probability distribution function P∞(n′f |n f ,ns), the superscript denoting whether the
master equation or macroscopic rate equation is used to find the average, and the subscript
indicating which slow variables the average depends upon.

3.4.1 Coarse-graining protein-DNA binding
We first remove the protein-DNA association and dissociation reactions

O+A2 
 OA2 O+B2 
 OB2 (3.3)
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3 Eliminating fast reactions in stochastic simulations of a genetic switch

Table 3.2: Summary of coarse-graining schemes for the original reaction set (3.1): elim-
inating operator binding (EO), eliminating dimerisation reactions using the Macroscopic
Rate Equation (ED1) or the Master Equation (ED2), eliminating both dimerisation and
operator binding using the Macroscopic Rate Equation (EO-ED1) or the Master Equation
(EO-ED2). For each coarse-graining scheme, the coarse-grained reaction set is indicated
together with the propensity function for each reaction. We also give definitions of the
new slow variables for each scheme.
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3.4 Coarse-graining for the model genetic switch

from the original reaction scheme (3.1). We denote this approach “Eliminating Operator
state fluctuations (EO)”. In our coarse-grained simulation, the system will still experience
fluctuations due to protein-protein association and dissociation, protein production and
protein decay, but not those due to the binding and unbinding of molecules to the DNA.

The “fast species”, which are affected by reactions (3.3), are A2, B2, OA2, OB2 and O.
The “slow species” are A, B, Â2 and B̂2, where A and B are simply the protein monomers
- these are unchanged by the fast reactions (3.3) - and Â2 and B̂2 are new species, such
that:

nÂ2
= nA2 +nOA2 (3.4)

nB̂2
= nB2 +nOB2

nÂ2
and nB̂2

are simply the total numbers of dimers in the system - including both free and
DNA-bound dimers. The new, coarse-grained, reaction set is given in Table 3.2, together
with the effective propensities. As the operator O has been removed from the scheme,
protein production has become a simple birth process, in which a monomer appears from
“nowhere”. The propensity for this birth of a monomer (say A) takes into account the
“lost” reactions - it reflects the probability, in the full reaction scheme, of finding the
promoter O in one of the states O and OA2 that are able to produce A. The protein-
protein interactions (3.1a) have been changed to reflect the fact that free dimers A2 have
been replaced by the new species Â2. Two monomers can now reversibly associate to
generate a molecule of Â2, while the reaction representing dissociation of free dimers to
monomers has an effective propensity that depends on the average number of free dimers
that would be present in the full reaction scheme, for a given value nÂ2

of total dimers.
Protein degradations (3.1e) remain unchanged since these reactions affect only monomers.

To evaluate the effective propensities listed in Table 3.2, we require the averages
〈nO+nOA2〉Â2,B̂2

, 〈nO+nOB2〉Â2,B̂2
,〈nA2〉Â2,B̂2

and 〈nB2〉Â2,B̂2
. These depend on both slow

species Â2 and B̂2, because the two operator binding reactions are coupled. This arises
from the competition between A2 and B2 for the same binding site. In this particular case,
as it is shown in Appendix B, solving the master equation for the fast reactions (3.3) and
approximating them by the corresponding macroscopic rate equations give the same re-
sult, so we will only consider the rate equation approach. Solving for the steady state of
Eqs. (3.3), we obtain

Kb
D〈nOA2〉RE

Â2,B̂2
= 〈nO〉RE

Â2,B̂2
· 〈nA2〉RE

Â2,B̂2
(3.5)

Kb
D〈nOB2〉RE

Â2,B̂2
= 〈nO〉RE

Â2,B̂2
· 〈nB2〉RE

Â2,B̂2
.

Combining this with the fact that in our scheme there is only one DNA copy:

nO +nOA2 +nOB2 = 1 (3.6)
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3 Eliminating fast reactions in stochastic simulations of a genetic switch

we obtain

aA,eff = kprod〈nO +nOA2〉RE
Â2,B̂2

(3.7)

= kprod
1+(Kb

D)−1〈nA2〉RE
Â2,B̂2

1+(Kb
D)−1

(

〈nA2〉RE
Â2,B̂2

+ 〈nB2〉RE
Â2,B̂2

) ,

and similarly for aB,eff. To find 〈nA2〉RE
Â2,B̂2

and 〈nB2〉RE
Â2,B̂2

in Eq. (3.7), we combine rela-
tions (3.5) and (3.6) with

nÂ2
= nA2 +nOA2 (3.8)

nB̂2
= nB2 +nOB2 .

Numerical solution techniques are required here, and we have used the Newton-Raphson
method [83].

3.4.2 Coarse-graining protein-protein binding
We now remove instead the protein-protein association and dissociation reactions

A+A 
 A2 (3.9)
B+B 
 B2

from our original reaction scheme (3.1). We denote this approach “Eliminating dimeri-
sation (ED)”. These interactions are particularly attractive candidates for coarse-graining,
since they tend to consume a large fraction of the computational effort when there are
significant numbers of free monomers and dimers in the system.

The “fast” species - those whose number is affected by reactions (3.9) - are A, A2, B
and B2. The “slow species”, which will remain in our coarse-grained reaction scheme,
are O, OA2, OB2 - species from the original scheme which are not affected by reactions
(3.9) - together with two new species, Ǎ and B̌, defined by:

nǍ ≡ nA +2nA2 (3.10)
nB̌ ≡ nB +2nB2

These new species Ǎ and B̌ are combinations of the fast species whose number remains
unchanged by the fast reactions (3.1a). The new, coarse-grained, reaction set with the cor-
responding propensity functions, is given in Table 3.2. The protein production reactions
(3.1c) and (3.1d) now produce the new species Ǎ and B̌. In the original reaction set (3.1),
the protein degradation reactions (3.1e) affected only monomers. The corresponding re-
action in the new reaction set removes a molecule of the new species Ǎ and B̌ from the
system, but with an effective propensity that depends on the average number of monomers
that would be obtained by a simulation of the fast reactions, at fixed nǍ or nB̌. Similarly,
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3.4 Coarse-graining for the model genetic switch

reactions (3.1b) in the original set, corresponding to the association and dissociation of
dimers with the DNA, have been replaced by the association/dissociation of two units of
Ǎ or B̌ to O, with an effective propensity proportional to the average number of dimers
given by the fast reaction set for fixed nǍ or nB̌. Here, the averages required for the effec-
tive propensity functions depend on only one slow variable - either Ǎ or B̌ but not both
- in contrast to method EO, where the averages depend on both slow variables. This is
because the two reactions (3.9) are not coupled to each other: dimerisation of A has no
direct effect on the dimerisation propensity of B and vice versa.

We shall test two alternative approaches to the computation of the averages 〈nA〉Ǎ,
〈nA2〉Ǎ, 〈nB〉B̌ and 〈nB2〉B̌ in Table 3.2. In the first approach, which we denote ED1, we
make the approximation that these averages correspond to the steady state solutions of the
macroscopic rate equations corresponding to (3.9):

kb〈nA2〉Ǎ − kf〈nA〉2
Ǎ = 0 (3.11)

kb〈nB2〉B̌ − kf〈nB〉2
B̌ = 0

so that

Kd
D〈nA2〉Ǎ = 〈nA〉2

Ǎ (3.12)

Kd
D〈nB2〉B̌ = 〈nB〉2

B̌.

Relations (3.12) can be used together with the definitions (3.10) to give

〈nA〉RE
Ǎ = Kd

D

(

√

8nǍ/Kd
D +1−1

)

/4 (3.13)

〈nB〉RE
B̌ = Kd

D

(

√

8nB̌/Kd
D +1−1

)

/4.

The average numbers of dimers 〈nA2〉Ǎ and 〈nB2〉B̌ are given in this approximation by
combining (3.13) with (3.12). Method ED1 is expected to give incorrect results when nǍ
or nB̌ is small, since the macroscopic rate equation approximation breaks down in this
limit. This is expected to be a serious problem, because for our genetic switch model,
both nǍ and nB̌ will be small at the crucial moments when the switch is in the process of
flipping between the two steady states [49]. Alternatively, one may solve the master equa-
tion corresponding to the eliminated reactions (3.9) to compute the averages. We denote
this approach ED2. Numerical solution of this master equation, as described in Appendix
A, results in the probability distribution functions p(nA|nǍ), p(nA2 |nǍ), p(nB|nB̌) and
p(nB2 |nB̌) for the fast variables, for given values of Ǎ and B̌. These can be used to find
〈nA〉ME

Ǎ , 〈nA2〉ME
Ǎ , 〈nB〉ME

B̌ and 〈nB2〉ME
B̌ . These averages are then substituted into the ex-

pressions given in Table 3.2 to obtain effective propensities for the coarse-grained SSA
simulation. We note that the effective propensity functions for methods ED1 and ED2
in Table 3.2 are identical. The only difference between the two schemes is the way in
which the required averages are obtained: using a macroscopic rate equation approxima-
tion (ED1) or by numerical solution of the master equation (ED2).
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3.4.3 Coarse-graining protein-DNA and protein-protein binding
We now eliminate both protein-DNA interactions [Eq. (3.3)] and protein-protein interac-
tions [Eq. (3.9)]. We will be left with a coarse-grained scheme in which the only fluctu-
ations are due to protein production and degradation. Our “fast reactions” are then (3.3)
and (3.9), and our “fast species”, whose number is changed by the fast reactions, are in
fact all the species in the original scheme: O, OA2, OB2, A, A2, B and B2. Our only slow
species, Ã and B̃, are then combinations of the fast species whose number is unchanged
in any of the fast reactions:

nÃ ≡ nA +2nA2 +2nOA2 (3.14)
nB̃ ≡ nB +2nB2 +2nOB2 .

nÃ and nB̃ correspond to the total number of A and B molecules in the system. On removal
of reactions (3.3) and (3.9), our coarse-grained reaction scheme, given in Table 3.3 under
the labels EO-ED1 and EO-ED2, consists simply of a pair of birth-death processes for
species Ã and B̃. The effects of the “lost” fast reactions are incorporated via effective rate
constants that account for the average number of the relevant fast species expected in a
simulation of the fast reaction set, for fixed numbers of the slow species. As in the EO
coarse-graining scheme, but not in the ED schemes, the averages here depend upon both
slow species, since the fast reactions for A and B are coupled by the shared DNA binding
sites.

As for the ED schemes, we consider two alternative ways of obtaining the necessary
averages 〈nO〉Ã,B̃, 〈nA〉Ã,B̃, 〈nA2〉Ã,B̃, 〈nOA2〉Ã,B̃, 〈nB〉Ã,B̃, 〈nB2〉Ã,B̃ and 〈nOB2〉Ã,B̃. Firstly,
in approach EO-ED1, we approximate these averages by the steady state solutions of the
macroscopic rate equations corresponding to the fast reactions (3.3) and (3.9). Following
the same steps as in the previous two Sections (applying equations (3.5) and (3.11)), we
arrive at

〈nÃ〉RE
Ã,B̃ = 〈nA〉RE

Ã,B̃ +2(Kd
D)−1

(

〈nA〉RE
Ã,B̃

)2
+ (3.15)

2(Kd
D)−1(Kb

D)−1(〈nA〉RE
Ã,B̃)2

1+(Kd
DKb

D)−1
[

(〈nA〉RE
Ã,B̃)2 +(〈nB〉RE

Ã,B̃)2
]

〈nB̃〉RE
Ã,B̃ = 〈nB〉RE

Ã,B̃ +2(Kd
D)−1

(

〈nB〉RE
Ã,B̃

)2
+

2(Kd
D)−1(Kb

D)−1(〈nB〉RE
Ã,B̃)2

1+(Kd
DKb

D)−1
[

(〈nA〉RE
Ã,B̃)2 +(〈nB〉RE

Ã,B̃)2
] ,

which can be combined with relations (3.14) and inverted numerically to give 〈nA〉RE
Ã,B̃ and

〈nB〉RE
Ã,B̃ [83]. The other averages required in Table 3.2 are obtained using relations (3.5),

(3.6) and (3.12). Approach EO-ED1 is approximate, since it assumes that the average
numbers of molecules that would be produced by long stochastic simulations of the fast
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Reaction Propensity Reaction Propensity
A+A 
 A2 kfnA(nA−1), kbnA2 B+B 
 B2 kfnB(nB−1), kbnB2

O+A2 
 OA2 konnOnA2 , koffnOA2 O+B2 
 OB2 konnOnB2 , koffnOB2

Table 3.3: Reaction scheme for the preliminary simulations to compute the effective
propensity functions given in Eqs. (3.16) and (3.17), for scheme EO-ED2.

reaction set are given by the steady-state solutions of the corresponding macroscopic rate
equations. This approximation is avoided in approach EO-ED2, in which we calculate the
averages of the fast variables A, A2, OA2, B, B2, OB2 and O from the master equation
corresponding to the coupled reactions (3.3) and (3.9). This is difficult to do directly
(as in scheme ED2), so we use simulations. We carry out a series of short preliminary
simulations, using the SSA, of reactions (3.3) and (3.9), for fixed values of nÃ and nB̃.
The reaction scheme for these preliminary simulations is given in Table 3.3. From these,
we compute the averages required for the effective propensities

aA,eff = kprod
(

〈nO +nOA2〉ME
Ã,B̃

)

(3.16)

and
µA,eff = µ〈nA〉ME

Ã,B̃. (3.17)

These propensities are stored in a lookup table, which is referred to during the coarse-
grained simulations of the slow variables.

3.5 Results
We now assess the performance of the various coarse-graining approaches, in terms of
how much they speed up the simulations, and how accurately they reproduce the be-
haviour of the full system. Key features of the behaviour of this system are its bimodal
steady state probability distribution function and its spontaneous flips between the two
stable states. In this Section, we assess how well the coarse-grained simulations repro-
duce the bimodal probability distribution for the difference in total number between the
A and B proteins, which we denote λ:

λ = nA +2nA2 +2nOA2 − (nB +2nB2 +2nOB2) (3.18)

We also test how well the various schemes reproduce the rate of fluctuation-induced
switching between the A- and B-rich states, which we measure using the Forward Flux
Sampling (FFS) rare event simulation method [42, 43, 44]. We compare our results to
SSA simulations of the full reaction set (3.1) which we denote ORN (“Original Reac-
tion Network”). The coarse-graining schemes are based on the assumption that the “fast”
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3 Eliminating fast reactions in stochastic simulations of a genetic switch

reactions are indeed fast compared to the slow reactions. We therefore expect their accu-
racy to improve as the rate constants for the “fast” reactions increase. We will see that
the accuracy also depends on which are the “fast” reactions, and on how we compute the
averages needed for the propensity functions.

3.5.1 Computational Performance
We begin by running the system for a fixed simulation time with the various coarse-
graining approximations, and measuring the computational speed-up. The coarse-graining
procedure itself takes a negligible time in all schemes but EO-ED2; in this last case, mak-
ing the lookup table is done with a separate code, which runs for 6-24 hours. The speed
increase depends on the values that we choose for the rate constants. Table 3.4 shows
the CPU time, in seconds (on an AMD Athlon 1600+ processor), required for a simula-
tion run of length 105k−1

prod, for various values of the rate constants kon for protein-DNA
binding and kf for dimerisation. In all cases, koff and kb are adjusted so as to keep the
equilibrium constants Kd

D and Kb
D fixed. Considering the full reaction network (ORN)

- top row in the table - we observe that the CPU time is much more sensitive to the
dimerisation rate than to the protein-DNA binding rate. This shows that the SSA mostly
executes monomer-monomer association and dimer dissociation reactions (reactions that
are likely to have the largest propensities), even when kon is much greater than kf. This
is because the propensity for dimerisation depends on (roughly) the square of the number
of free monomers, which is generally quite large. Protein-protein association/dissociation
is therefore the performance bottleneck for this system. Bearing this in mind, it is not
surprising that when we consider the next row in Table 3.4, we see that removing protein-
DNA association and dissociation reactions (EO), is only useful when the rate constants
for these reactions are exceedingly large. Eliminating the protein-protein association and
dissociation reactions (ED1 and ED2) results in a dramatic speed-up compared to the
ORN case (rows 3 and 4). This speed-up is most impressive when the dimerisation rate
is high. There is no significant difference in the CPU time required between the ED1 and
ED2 methods. When we eliminate both protein-DNA and protein-protein association and
dissociation (bottom two rows in Table 3.4), we obtain a further factor 2-25 decrease in
CPU requirement. Again, there is no significant difference in CPU time between meth-
ods EO-ED1 and EO-ED2. We therefore conclude that, in the physiological parameter
range, some computational speed-up can be obtained by removing protein-DNA binding
reactions; however, much more computer time can be saved by coarse-graining protein-
protein association and dissociation reactions.

3.5.2 Steady-state probability distribution
We now compute the steady-state probability distribution function P(λ) for the difference
λ between the total number of A and B molecules, as given by Eq. (3.18). We expect
P(λ) to have two peaks around the known stable steady states λ=±27 [49], and a “val-
ley” around the unstable steady state λ=0. To compute P(λ), we carry out a long SSA
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kf = 5 kf = 100 kf = 5 kf = 100
kon = 5 kon = 5 kon = 100 kon = 100

ORN 5.81 113 5.55 118
EO 5.25 103 5.08 70.7
ED1 0.18 0.19 1.94 1.94
ED2 0.18 0.19 1.92 1.91

EO-ED1 0.085 0.082 0.081 0.081
EO-ED2 0.083 0.082 0.081 0.084

Table 3.4: CPU time (in seconds) required to simulate the system for tsim = 105k−1
prod,

for different parameter sets. The coarse-graining procedure takes a negligible time in all
schemes but EO-ED2; in this last case, the lookup table is made by a separate code that
runs for 6-24 hours. Simulations were performed on an AMD Athlon 1600+ processor.
The dissociation rates were scaled such that the equilibrium constants for dimerisation
and operator binding were kept constant at Kd

D =1/5 and Kb
D =1.

simulation, during which we compile a histogram for the probability of finding the system
at each λ value. This procedure is repeated for all the coarse-grained simulation schemes
in Table 3.2. However, it is hard to achieve good sampling of P(λ) in the “valley” region
close to λ = 0, where the system is very unlikely to be found. In this region we use the FFS
method to compute P(λ) more accurately [51]. This method is described briefly in the fol-
lowing Section and in Section 1.6.4. Results are shown in Figure 3.3, for the “baseline”
parameter set given in Section 3.1. As expected, P(λ) is clearly bimodal and shows sym-
metric peaks flanking a “valley” at λ=0. The location of the peaks and valley correspond
to the stable and unstable solutions of a mean field analysis [49] of the switch. Compar-
ing the results for the different coarse-graining schemes in Figure 3.3, we see that they
all appear to reproduce P(λ) quite well, giving the correct position, height and width of
the peaks. Inset A magnifies the left probability peak, showing that the only methods dis-
playing a small systematic error are ED1 and EO-ED1, i.e. the coarse-graining schemes
relying on the solutions of the Macroscopic Rate Equation. In general, we can conclude
that all the methods reproduce P(λ) rather well in the peak regions. However, when we
investigate in more detail the results for the “valley” region around λ=0, clear differences
are observed between the coarse-graining methods. Inset B of Figure 3.3 shows on a log-
arithmic scale the results for P(λ) in this region, generated using the FFS method. All
the coarse-graining methods deviate from the results of the full reaction network (ORN).
The apparent effect of removing dimerisation (ED1/ED2) is to shift the minimum up in
probability, with the macroscopic rate equation approach (ED1) having a stronger effect.
Removing operator state fluctuations (EO) has the opposite effect, shifting the minimum
down in probability. Methods EO-ED1 and EO-ED2 appear to show a combination of
these two effects. Although these deviations from the ORN results are small, they will
turn out to be rather important for the dynamical switching behaviour to be discussed in
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Figure 3.3: Probability distribution P(λ) as a function of the order parameter λ. Inset
A zooms in on the left peak and shows how all the methods are able to reproduce the
positions and heights of the peaks. Inset B shows, on a logarithmic scale, deviations
between the different coarse-graining schemes and the original network for the region
around λ=0. FFS was used to sample P(λ) in this region.

the next Section. However, if one is only interested in the steady state distribution, the
choice of the particular coarse-graining method does not appear to be crucial.

3.5.3 Rate of stochastic switch flipping
In many cases, fluctuation-driven dynamical properties are an important output of a sim-
ulation of a biochemical network. This is especially true of genetic switches, where a key
characteristic is the rate of flipping between stable states (as shown in Figure 3.2 for the
model genetic switch). When simulating these systems, one requires not only an accurate
representation of the steady-state distribution, but also of the dynamical behaviour of the
system. We now test whether the various coarse-graining methods are able to reproduce
the correct rate of stochastic flipping of the model switch. This is a particularly stringent
test, since this fluctuation-driven process is likely to be highly sensitive to the accuracy
with which dynamical fluctuations are reproduced in the different schemes.

To measure the rate kAB of stochastic switch flipping, we use the FFS method [42, 43,
44], which allows the calculation of rate constants and the sampling of transition paths for
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Figure 3.4: Switch flipping rate kAB as a function of the dimer-DNA association rate kon,
adjusting koff so that the equilibrium constant for DNA binding remains unchanged. The
switch is more stable when operator binding/unbinding is rapid, suggesting that fluctua-
tions in these reactions play an important role in the switch flipping. Methods that remove
these reactions yield a straight line in the Figure; among those, only methods EO and EO-
ED2 are able to capture the asymptotic behaviour of the curve for kon → ∞. Method ED2
always gives a good approximation of the rate, while ED1 consistently overestimates it
by about one order of magnitude.

rare events in stochastic dynamical systems. FFS is described in more detail in Section
1.6.4, and in Refs. [42, 43, 44]. The method can also be used to obtain the steady state
probability distribution as a function of the λ parameter, as in inset B of Figure 3.3 [51].

Figure 3.4 shows the switch flipping rate kAB, as a function of the dimer-DNA asso-
ciation rate kon. The dimer-DNA dissociation rate is adjusted to keep Kd

D =1. The other
parameters are fixed at kf=5kprod, µ=0.3kprod and Kb

D=1/5. For the full reaction network
(ORN; solid line), the flipping rate decreases as DNA binding becomes faster, flattening
for very fast (kon > 500kprod) operator association/dissociation. The switch is more sta-
ble (i.e. its spontaneous switching rate kAB is lower) when operator binding/unbinding
is rapid, suggesting that fluctuations in these reactions play an important role in switch
flipping. For the EO method, in which protein-DNA association/dissociation reactions
are “lost”, the flipping rate does not depend on kon (since only the equilibrium constant
Kb

D features in this method and this is kept constant). As expected, the flipping rate for
the EO method corresponds to the ORN result in the limit of large kon. When we coarse-
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Figure 3.5: Switch flipping rate kAB as a function of the protein-protein association rate
kf, adjusting kb so that the equilibrium constant for dimerisation remains unchanged. For
the full reaction set, the switching rate increases with the rate of dimerisation. The EO
curve consistently underestimates the rate by approximately an order of magnitude. The
methods that remove the dimerisation reactions yield a constant line in Figure. Among
them, only methods EO-ED1 and EO give good results for high kf, although for the latter
we suspect this comes from a lucky cancellation of errors.

grain over protein-protein interactions (ED1 and ED2), our results are very dependent
on whether the macroscopic rate equations or the master equation is used to compute
propensity functions. For the rate equation approach (ED1), the decrease in kAB with kon
is reproduced, but the switch is almost an order of magnitude less stable than for the full
reaction set. However, when the chemical master equation is used to compute the propen-
sities, the results are remarkably accurate - the ED2 approach gives switch flipping rates
in good agreement with the full reaction set. The two methods EO-ED1 and EO-ED2,
which coarse-grain over both DNA binding and dimerisation reactions, also show this be-
haviour: for EO-ED1, where the rate equation approximation is used, the switch flipping
rate is similarly almost an order of magnitude too high, whereas for EO-ED2, where the
master equation is used, kAB is indistinguishable from that given by method EO (where
dimerisation is simulated explicitly). These results show that dimer-DNA binding plays
an important role in switch flipping for association/dissociation rates in the physiological
range, and that, for reliable coarse-graining, effective propensities need to be computed
with the master equation rather than the macroscopic rate equation approximation.
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Figure 3.5 shows the equivalent result when the monomer-monomer association rate
kf is varied, adjusting kb so that Kd

D=1. The other parameters are kon=5kprod, µ=0.3kprod
and Kb

D =1/5. For the full reaction set (ORN), kAB increases with kf: as the dimerisation
reactions become faster, the switch becomes less stable. This is in contrast to the be-
haviour observed in Figure 3.4. It appears that switch flipping is hindered by fluctuations
in the monomer-dimer reactions. This apparently somewhat counter-intuitive result can
perhaps be explained as follows: protein is produced in the monomer form. To flip the
switch, it needs to dimerise and bind to the operator. If dimerisation is slow, the monomer
may be degraded before it has a chance to dimerise, and in this case it does not contribute
to flipping the switch. On the other hand, if dimerisation is fast, then every monomer
that is produced makes a contribution to the dimer pool and can potentially bind to the
operator, leading to switch flipping. The EO approach (eliminating dimer-DNA binding)
shows the same increase in kAB with kf, but underestimates the value of kAB by about
an order of magnitude. This supports our view that fluctuations in operator binding are
important for switch flipping. On eliminating dimerisation fluctuations (ED1 and ED2),
we observe the same problem with the macroscopic rate equation approximation as in
Figure 3.4 - ED1 produces a flipping rate that is too high, while ED2, where the mas-
ter equation is used, gives good agreement with the full reaction set (ORN) in the high
kf limit. When both protein-protein and protein-DNA association/dissociation reactions
are eliminated, method EO-ED2 gives results in agreement with EO in the high kf limit.
Method EO-ED1 gives unexpectedly good results, in fairly close agreement with ED2 and
ORN. However, given that we expect removing DNA binding to reduce the rate constant,
while using the macroscopic rate equation approximation increases it, this is likely to be
just a lucky cancellation of errors for this particular parameter set. Figure 3.5 therefore
demonstrates that fluctuations in the monomer-monomer association/dissociation reac-
tions actually disfavour switch flipping. Moreover, as for Figure 3.4, we see that the
macroscopic rate equation approximation is not reliable for predicting switch flipping
rates, while coarse-graining over the dimerisation reactions using the master equation ap-
proach (ED2) becomes reliable when kf > 5kprod (for this parameter set).

We have also tested the various coarse-graining approaches for the case where both
protein-protein and protein-DNA association/dissociation reactions are fast (kf=100kprod,kon=
100kprod). In this case, as expected, methods EO, ED2 and EO-ED2 all give flipping rates
in agreement with the full reaction set (ORN), while ED1 and EO-ED1 do not. This in-
dicates once again that in general the macroscopic rate equation approach is not suitable
for computing switching rates.

3.6 Discussion
Understanding cellular control systems is likely to require the study of very complex
biochemical reaction networks. Computer simulations clearly have an important contri-
bution to make in this area, since they can provide quantitative understanding of how
biochemical networks work. It is clear that in many cases (including the understanding
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on gene regulation), stochastic simulations are required. However, the more reactions a
biochemical network has, the more computationally expensive it is to simulate. Elimi-
nating fast reactions will be essential for simulating biochemical networks of the scale
and complexity that is relevant for biology. It is therefore very important to understand
how this can be done reliably, while preserving the correct dynamical features of the full
reaction network. In this Chapter, we have made a systematic study of the computational
speedup and accuracy of a range of coarse-graining schemes, for a model gene regu-
latory network. All gene regulatory networks involve protein-protein and protein-DNA
interactions. These tend to be rapid in comparison to protein production (transcription,
translation and folding) and removal from the cell (active degradation and dilution due to
growth and division). We try to address the general question of what the consequences
are of eliminating protein-protein or protein-DNA association and dissociation reactions
from stochastic simulations of gene regulatory networks. We use as our case study a
bistable genetic switch, since this gives us a very sensitive readout, in the form of the
switch flipping rate, of the accuracy with which dynamical fluctuations are reproduced
by the various coarse-graining schemes. We hope that our results will prove relevant to
simulations of real genetic switches and gene regulatory networks in general.

To coarse-grain the reaction scheme for the model genetic switch, within the context of
Gillespie’s Stochastic Simulation Algorithm (SSA), we have used the approach described
by Bundschuh et al. [68]. Here, the reaction set is divided into “fast” and “slow” reactions.
Chemical species whose number is changed by the fast reactions are designated “fast”.
A set of “slow” chemical species is constructed, which consists of the original species
that were unaffected by the fast reactions, together with new species, formed from linear
combinations of the fast species, such that their number is unaffected by the fast reactions.
The slow reactions are then rewritten in terms of the set of slow species, with effective
propensity functions that depend on averages (and in some cases variances) of the fast
reaction set, for fixed numbers of molecules of the slow species. These averages may
be obtained by explicit or numerical solution of the chemical master equation for the
fast reactions. Alternatively, one may make the approximation that the averages are well
represented by the steady-state solutions of the corresponding macroscopic rate equations
for the fast reactions. In either case, having computed the effective propensity functions,
one simply implements the SSA for the slow reaction set, propagating the set of slow
variables, using these effective propensities.

For the model genetic switch, we investigated the effects of eliminating protein-protein
association/dissociation reactions, and/or protein-DNA association/dissociation reactions,
from the full reaction set. We also compared the macroscopic rate equation approximation
to the master equation approach for computing the effective propensities. Using all the
coarse-graining schemes, we computed the steady-state probability distribution as well
as spontaneous switch flipping rates. We found that all the coarse-graining methods gave
good agreement with the full reaction network for the steady-state probability distribution,
although small deviations were observed around the unstable steady state. However, dra-
matic differences were observed in the switch flipping rates computed using the different
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coarse-graining schemes. Elimination of protein-DNA association/dissociation increased
the stability of the switch (but agreed with the full reaction set in the fast reaction limit).
In contrast, elimination of protein-protein association/dissociation decreased the stability
of the switch (again, agreeing with the full reaction set in the fast reaction limit). How-
ever, over most of the range of parameters tested, protein-protein association/dissociation
reactions can be eliminated with a minimal effect on switching rates, and with the advan-
tage of an impressive computational speed-up. This result is likely to prove very useful
when simulating complex and computationally expensive networks. The implications of
these observations for the physics of the switching mechanism for this model switch are
be investigated in Chapter 2.

We also observed that the macroscopic rate equation approximation does not produce
reliable switching rates, even though the steady-state probability distribution is reasonably
well reproduced. Typically, switching rates computed using the macroscopic rate equation
approximation are an order of magnitude too high, even in the limit of fast reactions. In
contrast, when the chemical master equation is used to compute the effective propensities,
results are in excellent agreement with the full reaction set for fast reaction rates. This
result serves as a warning that care must be taken in how coarse-graining is applied. As an
example, the lysogeny-lysis switch of bacteriophage λ is extremely stable to fluctuations
[84, 53], a fact that computational modelling (using macroscopic approximations) has
thus far been unable to satisfactorily explain [85, 53]. In such a case, careful coarse-
graining is crucially important.

Our results show that under certain biologically relevant conditions fast reactions
can be eliminated while preserving the correct dynamical characteristics of the system,
even when highly sensitive fluctuation-driven quantities such as switch flipping rates are
considered. This is very encouraging for the simulation of more complex reaction net-
works, and it would be interesting to apply these approaches to more complicated genetic
switches, and also to other gene regulatory networks where dynamical fluctuations are
important. We hope that this work will be of use as a “tutorial” in designing and im-
plementing coarse-graining schemes, and that it may aid in pointing the way to accurate
and efficient coarse-grained simulations of a wide variety of interesting and important
biochemical networks.
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Chapter 4

The bacteriophage λ genetic switch

Stability is not immobility.
Klemens von Metternich

Genetic networks allow a cell to respond to different environmental conditions, and to
take decisions accordingly. Some networks are able to establish a stable epigenetic state
and to maintain it in the cell for many generations. The cell then can “choose” among
a small number of alternative states. The case of two states is most typical. Systems
showing two alternative stable states are called bistable. One of the best-characterised
examples of a bistable genetic network is the bacteriophage λ genetic switch: a regulatory
circuit which allows the phage to maintain either of two alternative stable states, and to
reliably switch from one to the other upon a change in the environmental conditions.
One state, where the phage stays dormant in the host DNA (lysogenic) exhibits extreme
stability. The reasons for this stability are not yet completely understood, given that the
system is continuously subjected to stochastic fluctuations which might flip the switch.
Several models, based on equilibrium assumptions [53, 86], have failed to explain the
measured spontaneous switching rate, which is less than 10−9 per generation per cell.
In this work, we design a fully stochastic model aiming to explain the stability of the
lysogenic state of bacteriophage λ. The model, based on a set of chemical reactions,
describes the dynamics of transcription factors binding to the OR operator and exploits
the Forward Flux Sampling technique to measure the spontaneous switching rate between
the two stable states of the system. In order to speed up the simulations, we apply a
recently-developed approximation scheme that dynamically integrates out fast reactions,
and we obtain results compatible with the available literature data. Furthermore, we
investigate the effects of macromolecular crowding and of DNA looping on the system,
and we find that both mechanisms could increase the stability of the lysogenic state.
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4.1 Introduction
Genetic networks consist of genes whose protein products regulate the expression of other
genes via activation or repression mechanisms. These proteins, called transcription factors
(TFs) typically bind to the DNA upstream of the gene they regulate and either block the
access of RNA polymerase (RNAp) to the gene promoter or help the RNAp to unwind
the DNA and initiate transcription. Some networks exist stably in either of two different
states, which are inherited by the cell progeny and propagated into the cell population.
These states are called epigenetic, because they are not directly encoded in the genome
itself, but rather in the patterns of regulation to which the genes are subjected. Even very
simple organisms can display very stable epigenetic states in which one state of the switch
is extremely stable, despite the cell being prone to strong stochastic fluctuations, which
might lead to an accidental flip. These fluctuations come from the intrinsic stochasticity
of biochemical reactions and can give rise to effects that cannot be accounted for at a
mean-field level, but require solution of the chemical master equation of the system. In
this Chapter, we focus on one of the best characterised bistable systems in biology, the
bacteriophage λ genetic switch.

Bacteriophage λ is a virus which infects the bacterium E. coli. After inserting its
DNA into a host cell, it takes the decision to enter either of two alternative pathways,
called lytic and lysogenic, which lead to different behaviour. In the lytic case, the phage
uses the biochemical machinery of the host to replicate as much as possible, thereby
killing the bacterium and releasing its progeny. In the lysogenic state, the virus integrates
its DNA into the bacterial chromosome, and stays dormant for a large number of host
generations. The phage reliably switches from the lysogenic to the lytic state upon UV
damage of the bacterial genetic material (an event called prophage induction). The two
states of the phage have been demonstrated to be stable [87], i.e. to be robust against
variations in the environmental conditions. The system can then be considered a bistable
genetic switch. Spontaneous flipping events are extremely rare, with a rate that has been
estimated to be not higher than 10−9 per generation per cell [84], which is extremely
low (lower than the rate of spontaneous DNA mutations). Two transcription factors (TF),
called cI and cro, regulate the early stages of the switching mechanism, and are ultimately
responsible for its extreme stability. As depicted in Figure 4.1, the genes encoding these
two proteins are divergently transcribed, and share a regulatory region of the DNA, called
the OR operator. Both cI and cro can bind, in homodimer form, to the operator and
repress the production of either protein. Protein cI is present in high concentrations when
the phage is in the lysogenic state, whereas cro is abundant in the lytic state. On the
DNA, in the region between the two genes, 3 binding sites, each spanning 17 base-pairs,
are found (see Figure 4.1). cI binds preferably to OR1, thereby blocking the production
of cro. At higher concentrations, cI can also bind cooperatively to OR2, thus recruiting
an RNA polymerase molecule and enhance its own production. Finally, at very high
concentrations, cI binds to OR3, repressing its own production, thus preventing the build
up of an excessive concentration in the cell. Cro shows similar behaviour (with the notable
absence of cooperative interactions), with reversed affinity to the operator sites. The two
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Figure 4.1: Pictorial representation of the phage λ binding sites on the OR operator. The
cI and cro genes are transcribed divergently and share the OR regulatory region. cI and
cro proteins can bind, in homodimer form, to three distinct binding sites on the operator.
cI has higher affinity to OR1, and binds less tightly to OR2 and OR3; conversely, the affinity
of cro is higher for OR3. The promoters for the two genes asymmetrically overlap with
the operator binding sites; their asymmetry has been exaggerated in the cartoon, to reflect
the interference between the binding of RNA polymerase and the transcription factors.

genes mutually repress each other, which enables the existence of two stable states rich
in either species; only a rare fluctuation in the number of the minority species can trigger
the flipping of the switch. A combination of positive and negative regulation is exploited
to prevent this undesirable event.

The λ system has been studied thoroughly over the last 60 years, and a large amount
of data is available. For our purposes, the binding energies of cI and cro to OR have been
accurately measured, together with their oligomerization energies [79, 81, 82, 88]. The
OR operator is commonly accepted to be the core of the genetic network determining the
bistability of the system. Our model focuses then on this region, neglecting the role of
other λ genes that intervene later in the lytic pathway, or are activated when the virus first
infects the host. We consider the phage genome to be already integrated in the host chro-
mosome and we predict the behaviour of the system in the two stable epigenetic states, and
how often the switch will spontaneously flip in either direction. Several other modeling
attempts have taken the same approach [53, 86, 89]. However, all these models rely on the
key assumption of rapid equilibrium for the operator binding and dimerisation reactions.
Notably, none of these models is able to correctly reproduce the measured spontaneous
switching rate from the lysogenic to the lytic state, all overestimating it by at least 1-2
orders of magnitude. We argue that the stochastic fluctuations neglected in the above-
mentioned models need to be considered in order to achieve a faithful representation of
the system and could play a crucial role in the stability of the switch.

When pondering the faithfulness of the model in representing reality, we should re-
alise that the cellular environment is packed with macromolecules and cellular structures.
Reaction equilibria “feel” the consequent “lack of space” and achieve steady states with
different concentrations of reactants and products than would be expected for in vitro
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dilute conditions. This effect is ubiquitous in cells, yet few studies pay attention to it.
We argue that macromolecular crowding could further stabilise the lysogenic state, by
favouring compact structures such as TF-DNA complexes.

Recent experiments have highlighted the role of another, distant operator called OL in
maintaining the stability of the lysogenic state. cI dimers bound to OL could interact with
the dimers bound to OR, locking the DNA in a looped state and reinforcing the repression
of the PR promoter [90, 91, 92]. We include the effects of crowding and of the OL operator
in our model, and we find that both can help in increasing the stability of the lysogenic
state.

The rest of the Chapter is organized as follows: in Section 4.2, we describe our
stochastic model, and we discuss the choice of parameters: many of these are available
(sometimes already for decades!) in the literature, yet we have nevertheless made some
assumptions, which will be justified. In the following Section, we briefly describe the nu-
merical methods used to solve the model at the level of the chemical master equation, and
to compute the switching rate, while in Section 4.4 we explain the results obtained. As
simulations of large reaction networks are computationally demanding, we use the coarse-
graining procedure described in Chapter 3 to integrate out some of the “fast” reactions,
preserving the fluctuations exploited by the system in the switching process. Furthermore,
the model is modified to probe its validity on some relevant mutant phages. In Section 4.5,
we investigate the effects of macromolecular crowding on the bistability of the system,
and we find that excluded volume interactions could be exploited by the phage to increase
the stability of the lysogenic state. Finally, in Section 4.6, we extend our model to include
the OL auxiliary operator, which is thought to interact with OR via a long DNA loop.

4.2 Model
In Chapter 2, we considered the dynamics of a model switch, loosely based on bacte-
riophage λ, and we pointed out how dynamical properties of the system, such as the
switching rate, are fluctuation-driven and could depend crucially on the individual rate
constants of the reactions involved. Therefore, in order to properly study the dynamics of
a genetic switch and predict a correct switching rate, a fully stochastic model is required.
In the case of bacteriophage λ, the large body of data available in the literature made it
possible to obtain measured values for most of the necessary parameters for the detailed
reaction set we describe below, leaving only few quantities to be estimated.

We model the system as a set of chemical reactions between transcription factors and
DNA, of which the former can form homodimers or bind to specific sites on the DNA,
here represented as distinct chemical species. The model is designed to describe the core
of the bacteriophage λ genetic switch, i.e. the dynamics of the transcription factors cI and
cro. In the following, a brief description of the model and of how the reaction rates are
obtained will be given.

Both transcription factors can bind to the operator region OR. As we have discussed
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in Section 4.1, in the short piece of DNA (82 base-pairs) stretching between the two
divergently-transcribed genes cI and cro, there are multiple binding sites: three for the
cI and cro dimers, and two for RNA polymerase. Binding sites for RNA polymerase are
called promoters and asymmetrically overlap with the binding sites for TFs: the promoter
for cI, PRM, overlaps with OR3, and marginally with OR2, while the promoter for cro, PR,
overlaps with both OR1 and OR2. An RNAp molecule bound to PRM therefore blocks only
the binding of a TF to OR3, whereas when RNAp is bound to PR, TFs can bind to neither
OR2 nor OR1. Therefore, there are in total 40 possible occupation states for the operator.
Our scheme contains a reaction for every possible transition among these states. The most
recent measurements of the free energies of binding, to our knowledge, were obtained
by Darling et al. [79]. These data correct the early measurement of Shea and Ackers
[89], adding a weak cooperativity between sites occupied by cro dimers. However, these
binding free energies do not suffice to define our model, because they do not provide any
information about the time scales of the binding and unbinding events—only their ratio.
We thus have to make another assumption, namely that the binding of a TF molecule to the
DNA is diffusion-limited [1]. The forward reaction rate of is then set to the Smoluchowski
rate kass = 4πDL, where D is the diffusion constant of the protein and L is the linear
protein size. cI and cro molecules have about average size and weight for small proteins
in bacteria, and we therefore assume for them the typical values of D = 5µm2/s [93],
L=5nm [94], which gives kf=0.314µm3/s = 0.188(nM)−1/s. Combining this association
rate with the free energies of binding, we can extract dissociation rates for each binding
site:

kdiss = kf[Vcell(l)/Vcell(µm3)]exp(∆G/RT ) , (4.1)

where the factor Vcell(l)/Vcell(µm3) = 6.023 · 108 converts the standard volume of 1 liter
into µm3 units, and T is assumed to be 310K, corresponding to the physiological temper-
ature of 37 °C. The volume conversion factor is needed because the standard free energy
∆G is measured with reference to a concentration of 1 mol/liter [95].

The dimerisation reactions for cI and cro are explicitly simulated. The most recent
data we are aware of measure the free energy of dimerisation to be about −11 kcal/mol for
cI [81, 88, 82] and −8.7 kcal/mol for cro [81]. At a temperature of 37 °C, the equilibrium
dissociation constants are, respectively, KD =15 nM for cI and KD =740 nM for cro. Cro
dimers appear then to be much more unstable than cI dimers, in contrast with what was
assumed in early papers [96, 97, 89, 27]. Recently, Jia et al. [98] have measured the
dissociation rate of cro dimers in vitro to be about 0.02−0.04 s−1 using FRET. However,
as will be explained more clearly in the next Sections, we believe that the conditions in the
cell can have a major effect on these time scales, and therefore, analogous to the binding
reactions, we use a diffusion-limited association rate for the dimerisation reactions (this
time using the relative diffusion constant between two diffusing molecules D=D1 +D2),
and we obtain dissociation rates from Eq. (4.1).

The production of transcription factors is modelled as a two-step process leading first
to the synthesis of a messenger RNA (mRNA) transcript of the corresponding gene, and
later to its translation into a protein. In order to start the whole process, an RNA poly-
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merase molecule must first bind to a promoter, which must not be blocked by a transcrip-
tion factor bound to one of the overlapping operators. The RNAp then forms a DNA-
bound state, called closed complex, from which it can either dissociate or unwind the
DNA to start transcription of the gene, forming an open complex. Once the open complex
is formed, transcription proceeds irreversibly [99] and eventually leads to the production
of an mRNA molecule. We combine the many stages of the transcription process into an
effective mRNA production reaction [53], assuming that the rate of mRNA synthesis is
proportional to the frequency of transcription initiation [89] and neglecting details such
as gene length, efficiency of the transcriptional stop signal and promoter-specific number
of abortive inititations. The PRM promoter is much weaker than PR, i.e. its open complex
formation rate is lower. However, when a cI dimer is bound to OR2, the rate for open
complex formation of the cI gene is significantly increased. Ref. [89] provides the ra-
tios between the various transcription rates: kRM2/kRM1 = 11 and kR/kRM1 = 14, where
kRM1 is the basal transcription rate of PRM, kRM2 is the enhanced transcription rate of the
same promoter, and kR is the transcription rate of PR. Averaging the values measured in
[100, 101, 102] for kRM1 to 0.001s−1, we obtain kRM2 = 0.011s−1 and kR = 0.014s−1,
which will be used in our model. Translation of mRNA molecules is modelled as a re-
action that produces proteins from transcripts; mRNAs can undergo repeated translations
and are stochastically degraded with a rate µmRNA = 0.0058s−1, corresponding to a typ-
ical half life of 2 minutes [103]. The translation rate of the messenger RNA is set to
kprod = SµmRNA, where S indicates the average number of proteins produced from one
mRNA. S strongly depends on the gene transcript: it is reported that a cI mRNA tran-
script produces a factor 20-70 less proteins than a lacZ mRNA transcript [104], while cro
transcripts produce about half the number of proteins as lacZ transcripts [105]. This data
allows us to estimate that ScI = 6 and Scro = 20. Having determined S and µmRNA, we can
obtain kprod, bearing in mind that this rate is a coarse-grained description of a complex
process, depending on numerous factors affecting translation, such as ribosomes binding
sites, limiting amino acids and rare codons. Moreover, this reaction also accounts for
post-translational protein modifications and folding.

Proteins in general have a long half-life, which can greatly exceed the cell generation
time. They are thus mainly removed from the cell by dilution due to cell growth and
division. We model the depletion of proteins due to dilution by introducing a degradation
reaction for all the proteins in the scheme (monomers and dimers), with rate µdilution =
ln2/tcell cycle, We assume here tcell cycle = 34 min as in the experiments of Little et al.
[84]. In addition to dilution effects, [106] reports that the protein cro has a half-life
of 30-60 minutes due to active degradation processes. As in Ref. [53], we choose a
mean half-life of 42 minutes, and add an active degradation term for cro monomers µcro =
ln2/(42min)+ µdilution. cI monomers and both cI and cro dimers TFs are removed from
by dilution.

Rapidly growing bacteria contain multiple replication forks in their chromosome.
Therefore, it seems reasonable to assume that more than one copy of the operator is
present in the system. We assume here that the number of operators, averaged over the
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cell cycle, is NO = 3 [107]. We neglect the possibility of multiple copies of the lambda
genome being integrated in tandem into the host chromosome [108].

The concentration of free RNA polymerase in the cell is set to 30 nM [109] and it
is kept constant during the simulations. The average bacterial volume is assumed to be
2µm3 [53].

4.3 Methods
The system we are investigating involves 190 reactions, listed in Appendix E, and an
analytical solution is not a feasible strategy. Moreover, approximating the dynamics us-
ing macroscopic rate equations would have strong effects on the dynamics of spontaneous
switching events (as shown in Chapter 3, which are typically driven by fluctuations in sys-
tems out of equilibrium. The reaction set will therefore be simulated using the Stochastic
Simulation Algorithm (SSA) which propagates the system according to the chemical mas-
ter equation [35], described in Section 1.6.1.

As the system is subjected to fluctuations in this simulation scheme, we expect spon-
taneous transitions to happen between the two stable states. However, especially for the
lysogenic to lytic switching, these transitions are extremely rare, and therefore they can
not be efficiently sampled by our SSA. To measure the switching rate, the Forward Flux
Sampling method, described in Section 1.6.4, will be used.

In the field of soft condensed matter physics a number of simulation schemes have
been developed in recent years, which make it possible to zoom in on the rare events them-
selves [110, 111, 112, 113, 114, 115, 116, 117, 118, 119]. However, these schemes require
knowledge of the phase space density. For systems that are in equilibrium—systems that
obey detailed balance and microscopic reversibility—the phase space density is known: it
is given by the Boltzmann distribution. In contrast, for systems that are out of equilibrium,
the phase space density is usually not known. Hence, the application of most numerical
techniques for simulating rare events is limited to equilibrium systems, and thus is not
applicable to the case we are investigating. However, the Forward Flux Sampling (FFS)
technique [42, 43, 44], which has recently been developed, makes it possible to compute
rate constants in both equilibrium and non-equilibrium systems with stochastic dynam-
ics, Furthermore, FFS allows for sampling of the transition path ensemble. Even with
FFS, measuring the switching rate for our model remains a challenging task that can be
achieved only with very long serial simulations. The original FFS code was parallelised
with MPI and the load was distributed over several processors. A parallel version of the
kinetic Monte Carlo code was also written.

The SSA is an event-driven scheme, and quickly becomes inefficient when some of
the reactions occur with very high frequency, either due to a large number of reactant
molecules or to a fast reaction rate. In our reaction set, dimerisation of transcription fac-
tors meets these conditions: most of the computational effort in our simulations is devoted
to these “fast” reactions. “Slow” events, like binding of a protein to DNA, are selected
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only rarely. Our previous study of a model genetic switch [49], developed in Chapter 2
shows that dimerisation does not affect the switching pathways in phase space signifi-
cantly, and has a limited impact on the rate of the transitions between the two stable states
when kf > kprodVcell, as this is the case for our model. It would therefore be useful to
integrate the dimerisation reactions out, using some of the approximations available in
the literature [120, 68, 34, 31] and tested in Chapter 3, and simulate a coarse-grained
version of the model. We must be careful, however, that the approximation we choose
does not effect the dynamical behaviour of the system, i.e. that the new coarse-grained
scheme correctly reproduces the dynamical properties of the original network. In Chap-
ter 3, we have studied how the equilibrium and dynamic properties of a model genetic
switch change when it is coarse-grained according to several alternative approximation
methods. We found that fast dimerisation equilibria can be safely integrated out, provided
that the effective rate constants of the slow reactions are obtained by solving the Master
Equation for dimerisation, thus properly incorporating fluctuations in the monomer-dimer
equilibrium. In analogy with Chapter 3, we substitute the original molecules cI, cI2, cro
and cro2, with new, fictitious, “slow” species cItot=cI+2cI2 and crotot=cro+2cro2, whose
number does not change with the fast dimerisation reactions. We then write a new reaction
set, where the fast reactions are eliminated and the slow reactions are rewritten in terms of
the slow variables. We solve the dimerisation Master Equation for fixed values of the slow
species, to obtain the probability distributions p(cI|cItot) and p(cro|crotot), which can be
used to compute averages of the fast variables, e.g. 〈cI〉cItot and 〈cI2〉cItot , as described in
Appendix A. Finally, the effective rates for the new slow reactions are obtained in terms
of these averages.

4.4 Results
We simulate first the full reaction set using the SSA. In these simulations, we can follow
the dynamical evolution of the system from a given initial condition to the closest stable
steady state in phase space. We expect the system to be bistable, namely to show one
stable state rich in cI and another one rich in cro. We first check the existence of these
hypothesised stable states, starting from suitable initial conditions. The system should
display fluctuations around the fixed points and spontaneous transitions to the other basin
should be extremely rare, especially when the system resides in the lysogenic state. In
order to visualise the steady states, we choose a simple, one-dimensional, order parameter
λ for the system, defined as the difference between the total number of cI molecules and
the total number of cro molecules present at a given time [42]. The same order parameter
will be used for our FFS simulations. We have seen in Chapter 2 that this order parameter
in fact corresponds quite closely to the committor function for the transition.

We initially prepare the system with a large number of cI molecules and no cro, as
if the host were in the lysogenic state. The situation is maintained throughout the whole
simulation (Figure 4.2, left panel), corresponding to a simulated time of several hours: the
cI concentration fluctuates around 250 nM, while cro is tightly repressed. When the initial
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Figure 4.2: Time evolution of the total number of cI and cro molecules in the system,
showing the bistability of the system. Left panel: the system is prepared in the lysogenic
state with 250nM of cI. The concentration of the majority species settles around the same
value, while the concentration of the minority species remains close to zero. Right panel:
a similar situation is observed for the lytic state, where cro is found in an average concen-
tration of 180nM. Occasional production events of the minority species are immediately
repressed by the reaction network.

condition is set to 150 nM cro and no cI (lytic state), we see the system fluctuating around
a stable state rich in cro, with an average concentration of about 180 nM, as shown in the
right panel of Figure 4.2. This time, however, the spikes in the concentration of the mi-
nority species are more frequent and have a higher intensity, which could indicate a lower
stability of this steady state. In both cases, the concentration of the minority species starts
to increase from time to time, but it almost immediately decays back to zero: stochastic
fluctuations give rise to sporadic production events, but the genetic network exerts tight
control and forces the system back to the original steady state. We ran the system in the
lysogenic state over a simulated period of 10 days and did not record any spontaneous
switching events. This situation is compatible with the experimental observations of [87].
Unlike [53, 86], the average concentrations of cI and cro in the two stable states were not
imposed in the model, but arose from the stochastic simulation itself. The compatibil-
ity with the data measured in [91, 53, 121] provides validation of the model. Ref. [87],
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however, shows a strongly varying cI concentration in the lysogen, in the range of 80-300
nM.

In the simulations of Figure 4.2, 99.97% of the computational time is spent on simu-
lating the dimerisation reactions. We proceed then to the elimination of these reactions,
as indicated in Section 4.3. This resulted in a gain in speed of about a factor 100 for this
system, and the trajectories of the resulting coarse-grained system are statistically indis-
tinguishable from those shown in Figure 4.2. This shows that not only the steady state
behaviour, but also the fluctuations in the total number of molecules are preserved when
the dimerisation reactions are integrated out.

Having found the two stable states, we can now measure the spontaneous switching
rate with the Forward Flux Sampling method. Data reported in [87] suggest that the lytic
state is much less stable than the lysogenic. We therefore expect to measure a lysogenic-
to-lytic switching rate that is much lower than the rate of the reverse process. The FFS
simulation is performed on the original full reaction set, using the order parameter λ de-
fined above. In the steady states, the minority species is practically absent, so we defined
the lysogenic steady state to be the region of phase space where λ ≥ 480, correspond-
ing to [cItot] > 240nM (in the absence of cro), and the lytic state state the region where
λ ≤−300, corresponding to [crotot] > 150nM (in absence of cI).

The simulations of the original reaction set are extremely slow, and only a small num-
ber of points (30-70) per FFS interface can be afforded on a standard computer. Under
these conditions, the switching rate we measure has a large error bar, about the size of
the mean. This means that we cannot determine whether or not our rates are lower than
the average. Hence, we are only able to provide a reliable upper bound for the switching
rates: klys→lyt ≤ 10−14s−1 ≈ 10−11 per generation per cell, and klyt→lys ≤ 10−5s−1 ≈ 10−2

per generation per cell. No previous model of the bacteriophage λ switch has been able
to predict a switching rate compatible with the experimentally measured value, which is
less than 2 · 10−9 per generation per cell [84]. As we reported in Section 4.1, the rate
of spontaneous switching is lower than the rate of spontaneous mutation in the genome.
Therefore, the experiments of Ref. [87] observe a number of spontaneous flipping events
which yield a rate higher than what has been reported. However, sequencing the DNA
of the cells that have undergone a spontaneous flip shows that about 99% of these events
were triggered by a mutation in the DNA which decreased the stability of the lysogen
state, and were not classified as “genuine”. Spontaneous switching events due to a rare
burst in production of RecA (the protein that induces the switching to the lytic state upon
DNA damage by cleaving the cI dimers) are avoided in Ref. [84] by working with recA-
lysogens.

Previous models assumed equilibrated dimerisation and TF binding to the operator,
and overestimated the switching rate by several orders of magnitude. Conversely, our
model fully accounts for stochastic fluctuations and predicts a rate which is compatible
with the experimental measurements. The lytic to lysogenic rate is hard to measure, be-
cause once the virus enters the lytic pathway, it quickly destroys the host. However, in
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im- mutants (also known as “anti-immune” cells) the cro gene is disconnected from the
lytic machinery, and cro protein can accumulate without interfering with growth and divi-
sion of the host. Experiments performed by Calef et al. [108] show that 0.1-1% of these
mutant cells switch to the lysogenic state over 5-10 generations, providing evidence of a
reverse transition with a much higher rate. To our knowledge, these, together with [122]
and [123], are the only experimental measurements of the rate of the lytic to lysogenic
transition, and they are in qualitative agreement with our findings.

Encouraged by these preliminary results, we ran FFS simulations on the coarse-grained
reaction set, substantially increasing the number of points collected at each interface.
This led to more accurate results, within the previous upper bounds: klys→lyt = 2.2±0.2 ·
10−15s−1 ≈ 5 · 10−12 per generation per cell, and klyt→lys = 2.3± 0.310−7s−1 ≈ 5 · 10−4

per generation per cell. The agreement between these two FFS results suggests that the
fluctuations introduced by the dimerisation of transcription factors are not essential in the
switching process, confirming the legitimacy of the coarse-grained approach. Our model
of the simple OR operator then produces two stable states, one of which has only a tiny
probability of spontaneously switching to the other state.

In Ref. [84], some mutant phages were constructed experimentally, in which the bind-
ing site motif on the operator was modified. In particular, the usual sequence of binding
sites in the operator, OR123, was mutated to either OR121 or OR323. These variants maintain
the same qualitative behaviour (stable lysogens, prophage induction upon DNA damage
by UV light) as the wild-type phage. However, the spontaneous switching rate from the
lysogenic to the lytic state is about one order of magnitude higher for the mutant OR121
and more than two orders of magnitudes higher for OR323. Notably, in the simulation
model [53], the stability of OR323 cannot be reconciled with the stability of the wild type
phage.

We have implemented these mutant patterns of binding sites in our chemical model.
Again, the simulation of the coarse-grained reaction set without dimerisation reactions
gives results which are statistically indistinguishable from those obtained with the origi-
nal reaction set. We find that the OR121 mutant shows a bistable behaviour qualitatively
similar to that of the wild type, with several quantitative differences: in a lysogen, the
concentration of cI is only 60nM; the concentration of cro is almost zero, but displays
frequent and vigorous bursts, indicating stronger fluctuations, as it can be seen in the left
panel of Figure 4.3. Moreover, the stability of the lytic state appears to be reduced: after
a few hours of simulation time, the system always switches to the lysogenic state (Fig-
ure 4.3, right panel). The switch appears then to be less stable than for the wild-type.
This qualitative observation is confirmed by computation of the spontaneous switching
rate with FFS: klys→lyt = (4.4± 0.4) · 10−11s−1 ≈ 9 · 10−8 per generation per cell, sev-
eral orders of magnitude higher than in the wild type. The switching rate for the reverse
transition is (4.8±0.1) ·10−5s−1 ≈ 10−2 per generation per cell.

In general, our analysis of the OR121 mutant is in qualitative agreement with the ex-
perimental results of Ref. [84]. However, we cannot obtain similarly good agreement

83



4 The bacteriophage λ genetic switch

Figure 4.3: Time evolution of the total number of cI and cro molecules in the system,
for the mutant phage OR121, whose behaviour is experimentally analysed in Ref. [84].
Compared with the wild type (Figure 4.2), the concentration of cI in the lysogenic state is
lower (left panel). This, together with the looser repression of cro, indicates a decreased
stability of the lysogenic state. In the right panel the system was prepared in the lytic state,
and after few hours a transition to the lysogenic state occurred. We never observed similar
event when simulating the wild type phage over a comparable time scale. Therefore, we
conclude that the stability of the lytic state is decreased in this mutant. These findings are
compatible with those in Ref. [84].

for the OR323 mutant: our model predicts a completely unstable lysogenic state. As it is
depicted in Figure 4.4, when the system is prepared with many cI and no cro, it imme-
diately switches to a state rich in cro (about 100 nM) which appears to be very stable.
The monostability of the system is caused by the properties of the binding site OR3: it
displays both the highest and the lowest affinities found in the OR operator, binding cro
very strongly (∆G=−13.4kcal/mol) and cI very weakly (∆G=−9.5kcal/mol [81]). The
weak promoter PRM is then tightly repressed by a the presence of cro dimers, and a single
large fluctuation is enough to exit the lysogenic state.
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Figure 4.4: Time evolution of the total number of cI and cro molecules in the system,
for the mutant phage OR323, whose behaviour is experimentally analysed in Ref. [84].
The lysogenic state is not stable in our model: when the system is prepared with a high
concentration of cI, it immediately switches to a state rich in cro, which is sustained for
long time. The experiments of Ref. [84] indicate that this mutant shows the same bistable
behaviour as the wild type (although the switching rate is even higher than in the OR121
mutant), a property that we can not reproduce with our model.

4.5 Macromolecular Crowding
Most of the reaction constants available in the literature have been obtained in vitro. The
highly dilute conditions in a test tube prevent interactions between the solute molecules
and approach “ideal” conditions. Conversely, the in vivo environment is notably different–
in particular, many large molecules are present which may interact with the reactants
[124]. Even though these interactions are mostly nonspecific, e.g. due to excluded vol-
ume effects, the high macromolecular concentration of a living cell (up to 400 g/l [124])
is likely to make the conditions very different from ideal. The average interaction of a
species i with the other molecules in the cell can be described as a non-ideal contribu-
tion to the chemical potential µnon−id

i = kT lnγi. This extra term arises from interactions
between solutes molecules, and must be added to the usual expression for the chemical
potential in ideal conditions: µid

i = µ0
i +kT lnci, where ci is the (normalized) concentration

of species i. Denoting γi the activity coefficient of species i, its thermodynamic activity
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can be defined as ai = γici. If the conditions are ideal, γi =1 for all species; when solute
molecules interact repulsively, γi > 1 (it costs more work than in ideal conditions to insert
a molecule of species i), whereas if the interactions are attractive, γi < 1. Equilibrium
constants are strictly speaking defined in terms of activities [95], which can be approxi-
mated to concentrations only when conditions are close to ideality. For instance, for the
simple reaction A + B 
 C, the relation between the equilibrium constant of a reaction
and the free energy change of the system becomes:

Keq =
aC

aAaB
=

γC
γAγB

cC
cAcB

= γ exp
(

−∆G
RT

)

= γ Kvitro
eq , (4.2)

where γ is the ratio between the activity coefficients of the products and the reactants.
In this case, γ > 1 means that the non-ideal environment shifts the reaction equilibrium
towards the products (with respect to the ideal case), whereas γ < 1 indicates a shift
towards the reactants.

According to [125], the interactions between macromolecules in the cell are mostly
non-specific, that is, they do not depend on structural details, but only on general macro-
molecular properties, like charge or volume. We assume that the interactions between
molecules are due solely to excluded volume. In this case, the system minimises its
free energy by favouring reactions which reduce the total excluded volume [126]. This
effect results in a depletion interaction between reactants, due to the crowding agents.
The reactants tend to collapse into more compact structures. In particular, for association-
dissociation equilibrium, the bound state experiences a “caging” effect which keeps the re-
actants together, lowering the dissociation rate and shifting the equilibrium of the dimeri-
sation reaction [127]. Supposing that in vitro experiments only measure Kvitro

eq , we model
this effect by setting γ > 1 in Eq. (4.2). We keep the diffusion-limited association rate,
and use Eq. (4.2) to compute the dissociation rate.

Furthermore, the crowded environment affects some dynamical properties of molecules
in the cell, namely their diffusive motion. Intuitively, diffusing in a crowded environment
is harder than in a dilute solution: the motion of several tracers has been measured in vitro
for different concentrations of crowding agents, showing that the particles continue to dif-
fuse, but with a diffusion coefficient which decreases exponentially with the concentration
of crowding agents [128]. The estimated macromolecular density inside a living cell is
200-400g/l: assuming an analogous behavior to what measured in Ref. [128], diffusion
coefficients are reduced by a factor 3-30. In order to account for this effect in our model,
we modify the diffusion-rate association rate kass =4πDL of reacting species accordingly
to the assumed macromolecular density. Diffusion constants of proteins have been mea-
sured in vivo in E. coli [93, 129, 130] by means of FRAP (Fluorescence Recovery After
Photobleaching) techniques [131] to be between 0.4 and 10 µ2/s. We note however that
most of these works report widely varying data: it is not clear if this is to be attributed to
limitations in the experimental techniques or to real variations in the diffusion coefficients
across different cells. We decided then to scale the diffusion coefficients in our model as
a function of the cellular macromolecular density, according to the results of Ref. [128].
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The values we obtain are always comprised within the error bars of the experimental
studies [93, 129, 130].

In summary, the crowded environment of the cell influences chemical reactions in two
distinct ways: by reducing the diffusion-limited association rate, and by shifting the equi-
libria of association-dissociation reactions towards the bound products, which have lower
excluded volume.

We have investigated the effects on our model of bacteriophage λ when we include
macromolecular crowding using the procedure described above. It is not easy, however, to
quantify a precise γ coefficient for all the bimolecular reactions considered in the model.
In principle, γ can differ between reactions. For instance, while cI and cro molecules are
both average sized proteins for E. coli, with a weight of a few tens of kDa, RNA poly-
merase is a much bigger molecule (about 400kDa). However, crowding effects depend
mostly on the linear dimension of a molecule, and the difference in radius between these
two species approximately scales with the cubic root of the mass, yielding comparable di-
mensions. For simplicity, we assume that RNAp and transcription factors are equally af-
fected by macromolecular crowding. Moreover, while it is obvious that crowding favours
the formation of oligomers, for protein-DNA associations the situation is less intuitive.
The difference in excluded volume between the bound complex, and the bare DNA and
an unbound molecule is not easy to compute, due to the details of the interactions (the
case of RNAp is instructive: the molecule “grabs” the DNA and the excluded volume of
the bound complex is only marginally different from that of the reactants). Moreover,
these reactions happen within the bacterial nucleoid, where the high concentration of nu-
cleic acids forms a dense polymer mesh, which is thought to exacerbate crowding effects.
Furthermore, experimental data reveals that, in highly crowded conditions, the binding
equilibrium constant for DNA replication proteins to phage T4 DNA is strongly increased
[127]. We make then a drastic assumption, in supposing that the effect of crowding on
DNA-protein complexes is the same as for protein-protein complexes. This rough approx-
imation can be justified given the uncertainty already present in some of the parameters
in this Section, and bearing in mind that our main aim is to investigate the qualitative
effects of crowding on the model system, rather than to try to determine exact quantities.
Because of these approximations, the switching rates measured for γ > 1 must be taken
cum grano salis.

We proceed then by repeating the approach of Section 4.4 for several values of γ,
and try to detect trends in the switching rate; all the simulations are performed on the
coarse-grained reaction set, where dimerisation reactions are integrated out. As a first
attempt, we apply the SSA to the system at γ = 10 (corresponding to a macromolecular
concentration of about 200 g/l [124]). The simulation reveals decreased stability of the
lytic state (Figure 4.5): after about 10 hours, we observe a spontaneous transition to the
lysogenic state (we never observed such an event for the wild type system at γ=1). We
systematically investigate the effect of increasing γ on the switching rates, and the results
are collected in Figure 4.6. For each case, we first run an SSA simulation to define the

87



4 The bacteriophage λ genetic switch

Figure 4.5: Time evolution of the total number of cI and cro molecules in the system for
γ=10 (corresponding to a macromolecular concentration of about 200 g/l [124]). We ob-
serve a spontaneous transition from the lytic to the lysogenic state, suggesting decreased
stability of the former.

boundaries of the lytic and lysogenic states; we then design a suitable set of FFS interfaces
and compute the spontaneous switching rates. For increasing γ, the lysogenic-to-lytic rate
shows a minimum before increasing again around γ=10 (Figure 4.6, panel A), while the
reverse rate tends to increase with γ (Figure 4.6, panel B). We conclude that a crowded
environment has the overall effect of increasing the stability of the lysogenic state and
decreasing the stability of the lytic state. This effect is more pronounced for the lytic
state, but it never change the rates by more than two of orders of magnitude.

It is interesting to investigate the effect of crowding on the Little mutants discussed
in Section 4.4: for the OR121 mutant, crowding leads again to an increased stability of
the lysogenic state, together with a loss of stability of the lytic state. For γ=5, switching
rates are comparable with the ideal case (klys→lyt =(7±1) ·10−11s−1 and klyt→lys =(4.6±
0.1) · 10−5s−1), but already at γ = 10, the system is able to reside in the lytic state for
a few hours at most, before switching to the lysogenic state. We are not aware of any
measurement of the stability of the lytic state or any experiment conducted in presence of
crowding agents for an im- OR121 mutant, so we are not able to check this prediction of the
model. On the other hand, the increased stability of the lysogenic state due to crowding
has a more interesting effect on the OR323 mutant: on increasing γ, the lysogenic state
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Figure 4.6: Switching rates computed with FFS, for several activity coefficients, reflect-
ing increasing crowding in the cell (γ=1: ideal conditions, γ=25: macromolecular con-
centration ∼300g/l). The lysogenic-to-lytic switching rate (panel A) shows a minimum
for λ=5, while the reverse rate (panel B) increases steeply for low γ, and then and reaches
a plateau. Macromolecular crowding can change the switching rates by 1-2 orders of mag-
nitude.

gradually becomes stable (for γ=10, klys→lyt =(2.2±0.1) ·10−6s−1 and klyt→lys =(6.2±
0.2) · 10−6s−1), while the lytic state loses its stability around γ = 25. This observation
suggests that the data in [84] can be explained within a single model, if we suppose that
the effects of the cellular environment are compatible with a global activity coefficient of
γ > 10.

We account for crowding here in a very crude way, yet, nevertheless, we are able to
observe a trend common to the wild type and two mutant phages, namely that the crowded
in vivo conditions tend to stabilise the lysogenic state and could be partly responsible for
its exceptional stability.

4.6 DNA looping
Recently, the role of another operator on the phage λ genome has been found to be very
important for the stability of the switch [90, 132]. This operator, known as OL, is located
2400 bp away on the λ genome, and appears to be very similar to OR, with an analogous
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pattern of binding sites for cI and cro dimers. Only one promoter, PL, is found in the OL
region. This overlaps with the binding site OL1, and is thus prone to blocking by a bound
cI dimer. PL lies ahead of the n gene, which codes for a late lytic protein. The long dis-
tance between the two operators has led to the long-lived assumption that it plays a role as
an unimportant auxiliary operator in the stability of the switch. However, it has recently
been reported that mutants defective in OL have considerably more cI in the lysogenic
state [90, 91]. As a consequence, these mutants cannot reliably switch to lysis when the
bacterial DNA is damaged. A recent paper [92] points out the possibility of a DNA loop
being formed between the two operators, stabilised by the formation of a cI octamer, as
depicted in Figure 4.7. This octamer would involve pairs of cI dimers already bound to the
sites OR1,OR2 and OL1,OL2, interacting through their C-termini (usually called “heads”),
which could “lock” the DNA, increasing the stability of the lysogenic state. Once the
loop has formed, the weak association of a cI dimer to OR1 and the consequent autore-
pression of the cI gene would be helped by the close presence of OL3. This last site has a
much higher affinity for cI than OR3 and thus a higher probability of binding a cI dimer.
A cooperative interaction can arise between the heads of an OL3-bound dimer and a free
dimer, to make a tetramer and increase the local concentration of cI, thus facilitating the
binding of the second dimer to OR3. It has to be noted that the formation of cI octamers
has been observed in vitro, but only at cI concentrations much higher than those found in
a cell [133], suggesting that the DNA could play an important role by locally increasing
the cI concentration.

In order to include the effects of looping in our stochastic model, we extended the
reaction set to include binding of cI and cro dimers to OL. The free energies for these
reactions, as reported in [92], show that OL binds cI tighter than OR. Furthermore, we
considered all the possible ways of forming the loop starting from different operator states
(i.e. we added all the reactions coupling 2 operators whose binding sites 1 and 2 are
occupied by cI dimers). Ref. [92] estimates free energies for the cooperative interactions
that lead to the formation of cI tetramers and octamers. However, we prefer to model the
loop formation in a slightly different manner: we consider the loop to be formed by an
equilibrium fluctuation of the DNA, and stabilised by the octameric bond, whose energy
has been measured in vitro.

We are then left with estimating the typical association and dissociation times of the
loop. We begin by realising that the DNA reaches its looped state due to a conformational
change and that acts as a scaffold for the cI complex formation. We therefore treat the loop
formation as a first order process. On the length scale of the loop, the DNA is completely
floppy (2400bp correspond to about 15 persistence lengths) and the elastic bending en-
ergy is thus completely negligible. Furthermore, we assume that the two ends of the loop
come into contact due to an equilibrium fluctuation of the DNA polymer. Subsequently,
the interaction between the heads of the cI tetramers bound to OR and OL can quickly
lock the loop. In analogy with our treatment of TF-DNA association, we neglect the time
it takes for the bond to be formed: in this scheme, the mean association time of the loop
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Figure 4.7: Figure taken from [92], describing the DNA looping interactions between
OR and OL. The cartoon depicts the cI-DNA complexes at OL and OR on the λ genome
and their effect on gene transcription as the cI concentration increases. cI dimers first
bind cooperatively to OR1, OR2, and OL1, OL2, switching off the cro and n genes, and
forming two tetramers connected by the heads of the proteins (B). A fluctuation of the
DNA configuration can bring the heads of the tetramers together, where they can bind and
lock the DNA in the looped state (C). At high cI concentrations, a dimer bound to OL3
can guide a second dimer to OR3, thus repressing the cI gene (D).

is equal to the mean relaxation time of a polymer whose ends have been in brought as
close as the loop width, which can be computed analytically [134]. For a loop length
L0 =2400bp≈800nm, persistence length lp =150bp=50nm, DNA thickness d =2.5nm,
and cellular friction coefficient η=0.005 Pa·s, the typical association time is of the order
of tens of seconds. Finally, we model the dissociation process as an escape from a poten-
tial well whose depth is set by the binding free energy of the octamer: as the DNA is not
“pulling” on the loop, the dissociation time depends only on the strength of the interac-
tion between the two tetramers bound to the two operators: tdiss =t0

diss exp(−∆Goct/KBT ),
where t0

diss can be estimated as the mean escape time for two diffusing particles initially
in contact: t0

diss =L2/D. For ∆Goct =−9.1kcal/mol, L=10nm, D = 5µm2/s, t0
diss =3.3µs,

and tdiss ≈10s. These last values come from an estimate, and a number of factors could
significantly change the parameter values. Nevertheless, we believe that these rates are
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not too far from the right order of magnitude, and that they provide us with a starting point
for our simulations.

When we include looping in our model, the number of reactions in our scheme in-
creases to 401 and the simulations are consequently much slower. Brute-force simulations
show that the stability of both the lysogenic and lytic states is maintained, as depicted in
Figure 4.8. The formation of the loop enhances the negative autoregulation of cI, and
lowers its concentration in the lysogenic state to about 80nM. Clearly, the more cI or
cro molecules a cell accumulates in a steady state, the more difficult it will be to get
rid of them (keeping all the other parameters constant) and spontaneously switch to the
other steady state. However, maintaining a high number of proteins in a cell costs en-
ergy: although producing few more hundreds of them is not a heavy burden for an E.
Coli, Ref. [135] reports that, in the case of the lac system, bacterial cells can evolve to-
wards optimal protein levels, differing only by few percents to initial levels. It is then
likely that even the levels of phage λ protein are the result of an optimization process,
and the looping could then potentially be exploited to increase the stability of the lyso-
genic steady states without increasing the concentrations of the regulating proteins. We
expect the lysogenic-to-lytic switching rate to decrease as an consequence of the stabi-
lization induced by the DNA loop. However, the increased complexity of the reaction
set significantly slows down the simulations, and, even with coarse-graining of dimerisa-
tion reactions, we could only measure an upper bound for the lysogenic-to-lytic switching
rate: klys→lyt < 10−21s−1 ≈ 10−18 per generation per cell. The reverse switching process
is facilitated because the cI concentration in stable state is lower, and it takes a smaller ef-
fort to be reached. We measure a reverse switching rate of (1.8±0.1) ·10−5s−1, a couple
of orders of magnitude lower than the result obtained without looping.

Finally, we include macromolecular crowding effects in the model with looping by
varying the coefficient γ. These simulations are again extremely computationally de-
manding, and only upper bounds can be computed for the most important switching rate.
The results are collected in Figure 4.9. Unfortunately, our data allow only limited quan-
titative conclusions about the influence of looping on the switching rate. In comparison
with Figure 4.6, the stability of the lysogenic state is certainly not decreased, and there are
indications that it could on the contrary be increased, as we expect. Especially for γ=1,
the lysogenic state shows a much higher stability. The reverse rate is 2 orders of magni-
tude higher for γ=1, and slightly increased for higher concentrations of crowding agents
(we should not forget that, for high γ, the stability of the lytic state is always marginal).

4.7 Discussion
In this Chapter, we have designed a chemical model of the core genetic network govern-
ing the bacteriophage λ genetic switch, and we have solved it numerically at the level of
the chemical master equation. Including stochasticity in the model is crucial, as we have
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Figure 4.8: Time evolution of the total number of cI and cro molecules in the system
accounting for DNA looping. Compared to Figure 4.2, the system is still bistable, with
occasional production events of the minority species immediately repressed by the reac-
tion network. The concentration of cI in the lysogenic steady state is lower, as the loop
brings together binding sites OR1 and OL1, favouring the negative autoregulation of the cI
gene.

seen in Chapter 2 for a model switch (loosely inspired by this biological system). Bacte-
riophage λ has been studied extensively over the last 60 years, and contributed greatly to
the birth of a new branch of science, today known as molecular biology. The amount of
data collected during this large stretch of time probably makes bacteriophage λ one of the
best-characterized systems in biology. This wealth of data make it possible to construct a
quantitative, detailed model of the system without being forced to guess a large number
of parameters. The reaction set which we have written only describes the dynamics of one
operator (two in the case of looping) within the λ genome. Despite OR being universally
recognized as the core of the biochemical network underlying the switch, many other pro-
teins come into play in other phases of the phage life cycle, and interact with the basic
switch network. We did not consider the initial infection of the host by the phage, nor
the process of prophage induction (the induced switching from the lysogenic to the lytic
state), nor the insertion of the phage genome into the E. coli chromosome, nor any other
behaviour of the phage, many of which have received great attention in the literature. Our
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Figure 4.9: Switching rates computed with FFS, for several activity coefficients, for the
model with DNA looping. The simulations are computationally demanding, and the re-
sults for the rate of spontaneous switching allow only for limited comparison with Fig-
ure 4.6. We observe the larger differences for γ = 1, where the DNA loop strongly in-
creases the stability of the lysogenic state, and increases the stability of the lytic state by
about two orders of magnitude.

choice of the reaction network was then based on the “classical” interpretation of the ge-
netic switch. Recent studies challenge this interpretation and suggest that the role of cro
is less relevant in the switching process. In [121] it is argued that cro is needed to repress
PRM only when the phage has already committed to the lysogenic pathway. In [90, 136]
this analysis is completed focussing on the role of cro during prophage induction. More-
over, a new wave of papers, aiming at a more quantitative understanding of the system
is becoming available, together with a number of recent reviews, confirming a renewed
interest in this system [137, 138, 139].

We have emphasized throughout this Chapter that the differences between in vivo and
in vitro conditions are notable, and, typically, underappreciated. We acknowledge that it is
not an easy task to account for the cellular environment: it is virtually impossible to model
all the essential features that differentiate a cell from a test tube. We focussed our atten-
tion here on the fact that such an environment is crowded, namely that it is tightly packed
with macromolecules and other cellular structures. These crowding agents mainly exert a
nonspecific repulsive interaction (due to excluded volume effects) on the proteins, “push-
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ing” them together and favouring associated protein-protein and protein-DNA states. We
build the consequences of crowding into our model by assuming a slower diffusion of
the proteins, and by shifting reaction equilibria towards the aggregated state. This last
result is obtained by modifying a simple parameter γ, defined as a combination of the
activity coefficients of the participating species in a reaction. For γ values compatible
with concentration of 250-300g/l we find that all the experimental data on the sponta-
neous switching rate can be reconciled to our model. We consider this a success, and a
confirmation of the importance of the role that is played by the cellular environment.

Clearly, this oversimplified approach to modelling the in vivo conditions does not
address other features that could play an important role. In particular, the issue of proteins
binding nonspecifically to DNA has recently been raised in the context of bacteriophage
λ: according to the model in [140, 141], about the 90% of cI and 50% of the cro in the cell
is nonspecifically bound to DNA at physiological concentrations. This would imply that
the number of available molecules in the cytoplasm would be much lower than that which
we have considered. However, these studies assume that the whole genome is covered
with potential binding sites, and do not account for other proteins which could possibly
be nonspecifically bound. Moreover, there is evidence that histone-like proteins that bind
nonspecifically to DNA could further reduce the regions of bacterial DNA where proteins
can bind [142, 143].

The shape and dynamics of bacterial DNA is another much debated subject: the
biopolymer is confined in the bacterial cell, whose typical linear dimensions are much
smaller than the radius of gyration of the DNA. Histone-like proteins can help the bac-
terium to pack the genetic material, compacting it into the nucleoid. Another viewpoint
is, however, present in the literature: in [144], an experiment in which crowding agents
are added to an expanded E. coli genome suggests that depletion forces alone are strong
enough to cause the formation of the compact nucleoid. The formation of the nucleoid
can then be interpreted as a phase separation of superhelical DNA in a suspension of pro-
teins, as computed theoretically in [145]. General agreement in this area has not yet been
achieved, and therefore all models of the properties of DNA must rely on some hypothe-
sis. Finally, supercoiling of DNA could also influence its physical properties. DNA loops
span generally only a small fraction of the genome length, yet they can nevertheless be
influenced by the issues we briefly discussed above. DNA looping is nowadays thought to
occur quite frequently: the DNA acts as a scaffold and, by enhancing the local concentra-
tions of specific proteins, can drive the association of complexes which would form only
at much higher concentrations in vitro [132, 146, 147]. We have modelled the DNA in our
loop as a short stretch of DNA as a worm-like chain, without considering effects due to
the presence of histone-like proteins, specific kinks or DNA-bending proteins. Crowding
was crudely accounted for through an increased cytoplasmic viscosity. The results we
obtained seem to indicate that the OR—OL loop could lead to increased stability of the
lysogenic state. Although this is only a preliminary result, it points in the right direction
and could act as a basis for a more detailed model, including detailed modelling of DNA
dynamics in the regulatory properties of a genetic network.
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Chapter 5

A Brownian Dynamics Algorithm for
Reaction-Diffusion systems

Fiet uti nusquam possit consistere finis
effugiumque fugae prolatet copia semper

Titus Lucretius Carus

Brownian Dynamics algorithms are widely used for simulating soft-matter and bio-
chemical systems. Recently, they have been applied to the simulation of coarse-grained
models of cellular networks in simple organisms like bacteria. In these systems, compo-
nents move by diffusion, and can react with one another upon contact. However, when
reactions are incorporated into a Brownian Dynamics algorithm, attention must be paid
to avoid violation of the detailed-balance rule, which could include systematic errors in
the simulation. In this Chapter, we present a Brownian Dynamics algorithm for reaction-
diffusion systems which rigorously obeys the detailed-balance rule. After subjecting our
algorithm to stringent tests on elementary systems, we apply it to the simulation of a
“push-pull” network in which two antagonistic enzymes covalently modify a substrate.
Our results highlight that the diffusive behaviour of the reacting species can strongly re-
duce the gain of the response curve of this network.
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5.1 Introduction
Computer simulations are essential tools for understanding the behavior of biological
systems and biochemical reactions. Among the numerous techniques used in these fields,
Molecular Dynamics and Brownian Dynamics (BD) have played a role of fundamental
importance. While the former is more rigorous and detailed, it is not, however, able to
reach long time scales, because of the smallness of the time steps required for a correct
simulation. Conversely, the latter accounts for the faster solvent dynamics at a mean-
field level: the solvent is treated implicitly, and the solute molecules experience a ran-
dom displacement, as a net result of the huge amount of fast collisions with the solvent
molecules. BD is thus able to use longer time steps and achieve longer simulation times.
The first BD algorithm was introduced by Ermak and McCammon [148] and has been
widely used to study the behavior of protein-protein association in atomic-detailed sim-
ulations [149, 150, 151, 152, 153, 154]. In particular, in the case of diffusion-limited
chemical reactions, the method of Northrup and Erickson [155] provided a way to de-
scribe the encounter complex first formed by the two reactants, before the subsequent,
short-distance rearrangements bring the molecules in the final associated state. Effects
of crowding [156] and competition of other charged molecules with substrate molecules
binding an enzyme [157] were also considered.

More recently, the evidence that biomolecules move in prokaryotic cells primarily
by diffusion has suggested that biological systems can be modelled as reaction-diffusion
systems, and that Brownian Dynamics could be a useful tool in this field. In these simula-
tions, molecules are often coarse-grained to the level of simple geometrical objects (typ-
ically spheres), that can react with other chemical species in a confined geometry. The
reaction partners can either propagate diffusively or be immobilised in special locations
(as for instance, interfaces representing external and intracellular membranes). Within
this simplified version of the cell, simulation times can be brought up to physiological
time scales. Many stochastic simulators for biochemical reactions have recently been de-
veloped [158, 159, 160, 161, 162, 39, 163]. Some of them account for individual particles
in space and make use of BD or BD-like algorithms for their propagation: Ref. [160] uses
a BD version specialised in simulating reactions between free-diffusing ligands and sta-
tionary surface receptors, while Ref. [159] numerically solves the Smoluchowski model
of diffusion-limited reactions.

These stochastic simulators have been applied also to biochemical networks. These
networks are composed by proteins and DNA that chemically and physically interact with
each other, and allow a cell to detect and respond to changes in its environment. Stochastic
computation methods are usually required to study biochemical networks, as they are
generally prone to fluctuations. The origin of fluctuations can be temporal, i.e. rooted
in the intrinsic stochasticity of chemical reactions and in the stochastic distribution of
the reaction times. However, when reactions are diffusion-limited, the position of the
reactants can introduce a further source of fluctuations, having a spatial origin. When the
diffusion constants of particles are low, spatial fluctuations can dominate the behaviour of
the network. While temporal fluctuations can be accounted for by describing the system
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with its Master Equation (see Section 1.5.3) and solving it with the Stochastic Simulation
Algorithm described in Section 1.6.1, spatial fluctuations are ignored in this approach,
which assumes that the system is well-stirred. A Brownian Dynamics algorithm is able
to bridge the gap and correctly account for both sources of fluctuations, thus unravelling
effects that have a purely spatial origin.

In a reaction-diffusion Brownian Dynamics scheme, associations between molecules,
in a coarse-grained description, must be introduced carefully: the detailed-balance rule
must strictly be obeyed in order to avoid introducing systematic errors in the simulation.
A critical analysis of second-order reaction mechanisms in BD must thus be addressed.
Usually, in simulation packages based on BD, a reaction is supposed to happen when a
move brings two reactants to an overlap; in [160] the reaction rate is used to compute
a probability of reaction, but the determination of this probability is not reported. In
[159] reaction rates are translated into binding and unbinding radii, setting the distance
of association and dissociation events to the center of mass of the two particles, which is
rather unphysical.

In this Chapter, we present a Brownian Dynamics algorithm which rigorously obeys
detailed balance and is thus able to reproduce equilibrium properties of a reaction-diffusion
system. In Section 5.2, we derive our algorithm on the basis of the statistical mechanics
of chemical reactions. The algorithm will be subjected to stringent tests in Section 5.3:
besides equilibrium properties, we test also how well the algorithm reproduces the dy-
namical behavior of the system, for different values of the time step. A comparison with
a stochastic algorithm that does not account for spatial fluctuations of particles is also
presented. Finally, in Section 5.4 we show an illustrative application of our algorithm to
a simple coarse-grained model of a chemical species subjected to the action of two en-
zymes, operating in opposite directions (the so-called “push-pull” model system) [164].
The BD algorithm allows us to assess the effect of both spatial and temporal fluctuations
in reducing the gain of the response of the system.

5.2 Methods
5.2.1 System
Despite its wide use, few Brownian Dynamics algorithms take proper care of the detailed-
balance rule when treating second-order reactions. When two reaction partners come into
close physical proximity, they can react with a probability related to the reaction rate k.
It is common practice to evaluate this probability only when a diffusive move has led the
two particles to (a partial) spatial overlap. However, in the case of a reversible reaction,
when the two reactants dissociate, the products are usually positioned at contact, or in
close proximity [159]. The dissociation move must be chosen such that the whole algo-
rithm does obey detailed balance, otherwise the equilibrium properties of the system will
not be correctly reproduced. An intuitive explanation is as follows: suppose that a particle
jumps from a position x to a new position overlapping with a reaction partner, and a reac-
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tive event is accepted. According to the standard procedure, the reverse move will never
bring the reactive particle back to its initial position x, thus violating the detailed-balance
rule. Alternatively, one can consider positioning the dissociated particle exactly at the ini-
tial position it has reacted from. This is not completely correct either, as such a procedure
introduces an angular bias which violates the hypothesis of angular isotropy of the two
dissociating species. In this Chapter, we introduce a new method of treating second-order
reactions in a Brownian Dynamics simulation, which rigorously obeys detailed balance
and reproduces satisfactorily the dynamical properties of the system, when the time steps
are small enough.

We begin by considering the elementary reaction:

A+B 
 C (kf,kb), (5.1)

where kf is the forward rate for the association of molecules A and B, and kb the backward
rate for dissociation. This is the basic building block of our simulation scheme, and we
will therefore study it in detail. First, we evaluate the partition function for the system,
while later we extend our derivation to account for the particles’ positions in space.

Let NA,NB,NC be the number of A, B and C molecules and V the volume of the system.
The partition function of the system can be written as the following sum of terms in the
canonical ensemble:

Z = ∑
{N}

Z(NA,NB,NC), (5.2)

where {N} denotes all possible combinations of {NA,NB,NC} . The choice of the canoni-
cal ensemble is motivated by the assumption that the cell is a closed system that does not
exchange particles with the environment.

Let us consider the case where {A,B,C} are ideal particles in a volume V , except for
the fact, of course, that A and B can form C.
The partition function Z for {NA,NB,NC} particles is then:

Z(NA,NB,NC) =
qNA

A qNB
B qNC

C
NA!NB!NC! (5.3)

=
qNA

A,cmqNB
B,cmqNC

C,cm(V/Λ3)NA+NB+NC

NA!NB!NC! ,

where qA,cm accounts for the internal degrees of freedom of the particle, relative to its
center of mass (so that qA=qid

A qA,cm), qid
A =V/Λ3 is the partition function for a molecule in

an ideal gas, Λ=h/(2πmkBT )1/2 is the thermal wavelength, and the factor 1/(NA!) comes
from indistinguishability of particles. The probability that the system has {NA,NB,NC}
molecules, P(NA,NB,NC), can be written as:

P(NA,NB,NC) = Z(NA,NB,NC)/Z. (5.4)
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Let us now consider the transition from {NA,NB,NC} to {NA − 1,NB − 1,NC + 1}
molecules. The ratio between the probability of being in the state after and before the
transition, is easily computed:

P(NA −1,NB −1,NC +1)

P(NA,NB,NC)
=

NANB
NC +1

Λ3

V
qC,cm

qA,cmqB,cm

=
NANB
NC +1

Keq
V

=
NANB
NC +1

1
V

kf
kb

. (5.5)

Using the detailed balance rule [165], we can now determine the transition probability to
be used in a Monte Carlo scheme, in which the system is considered to be well-stirred,
and space is not present:

PunboundPu→b = PboundPb→u, (5.6)

where Punbound is the probability of being in the state {NA,NB,NC}, Pu→b is the probability
of a transition from {NA,NB,NC} to {NA−1,NB−1,NC +1}, Pb→u is the probability of the
reverse move, and Pbound is the probability of being in the state {NA −1,NB −1,NC +1}.
Eq (5.5) and the detailed balance rule lead to:

Pu→b =
kf
V NANB and Pb→u = kb(NC +1). (5.7)

In the previous derivation, we did not specify the positions of the particles in the
volume V . However, Brownian Dynamics algorithms propagate particles in space and
time: reactions happen between molecules at specific coordinates in space. We need
therefore to compute a quantity analogous to (5.5), where the locations of particles are
made explicit.

Let us now consider the probability P(rNA
A ,rNB

B ,rNC
C ;{NA,NB,NC}) that the system has

(NA,NB,NC) molecules and that these molecules are located at positions {r1
A, · · · ,rNA

A },
{r1

B, · · · ,rNB
B }, {r1

C, · · · ,rNC
C }. Applying the Bayes’ rule, this probability is given by

P(rNA
A ,rNB

B ,rNC
C ;{NA,NB,NC}) = (5.8)

PN(NA,NB,NC)P (rNA
A ,rNB

B ,rNC
C |{NA,NB,NC}), (5.9)

where P is the conditional probability that the given number {NA,NB,NC} of molecules
occupy those particular positions. The conditional probability is nothing but the probabil-
ity of finding {NA,NB,NC} indistinguishable ideal particles in a volume V :

P (rNA
A ,rNB

B ,rNC
C |{NA,NB,NC}) =

NA!NB!NC!
V NA+NB+NC

. (5.10)
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Hence, we have that

P(rNA
A ,rNB

B ,rNC
C ;{NA,NB,NC}) =

qNA
A,cmqNB

B,cmqNC
C,cm

Z
1

Λ3(NA+NB+NC)
(5.11)

and

P(rNA−1
A ,rNB−1

B ,rNC+1
C ;{NA −1,NB −1,NC +1})

P(rNA
A ,rNB

B ,rNC
C ;{NA,NB,NC})

=
qC,cm

qA,cmqB,cm
Λ3. (5.12)

We focus on the following setup: a particle A and a particle B, freely diffusing in a box
of volume V with diffusion coefficients DA,DB respectively. Particles have finite radii,
RA,RB, respectively and can not interpenetrate. The analysis above still holds, with the
condition of replacing everywhere the volume of the box V with the accessible volume
for the A and the B particle, V ∗ = V − 4

3π(RA +RB)3.
We consider an elementary reaction: setting NA = 1,NB = 1,NC = 0, equation (5.11) be-
comes:

P(rC;0,0,1)

P(rA,rB;1,1,0)
=

qC,cm
qA,cmqB,cm

Λ3 = Keq =
kf
kb

. (5.13)

In Eq. (5.13) we have used the chemical definition of equilibrium constant and its macro-
scopic relation to the forward and backward reaction rates. Relations (5.7) or (5.13) must
be obeyed by a correct, rigorous simulation scheme.

5.2.2 Simulation scheme
We describe now a Brownian Dynamics scheme, in continuous space, for the setup de-
scribed at the end of the previous Section.

We can assume without loss of generality, that DA = 0, i.e. that the A particle does
not diffuse in the simulation box. It is then convenient to position it at the center of the
box. The single B particle moves by free diffusion with coefficient DB ≡ D. At every
simulation step, the system is propagated by a fixed time ∆t.

In the absence of the A particle, the motion of the B particle is simply described by the
Einstein equation:

∂
∂t p(r′, t +∆t|r, t) = D∇2 p(r′, t +∆t|r, t), (5.14)

where p(r′, t +∆t|r, t) is the probability of finding the particle at position r′ at time t +∆t,
given that it was at r at time t.
We know with certainty the position of the particle at the initial time. We also know that
at time t +∆t the probability of finding the particle in space vanishes as we move far away
from the initial position r. We can then formulate the following boundary conditions for
Eq. (5.14):

p(r′, t +∆t|r, t) = δ(r′− r), (5.15)
p(|r′| → ∞, t +∆t|r, t) = 0. (5.16)
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The solution of (5.14) with conditions (5.15) and (5.16) is Gaussian, whose variance is
proportional to ∆t:

p(r′, t +∆t|r, t) =
1

(2 ·2D∆t)3/2 exp
{

(r′− r)2

2 ·2D∆t

}

. (5.17)

This time-dependent probability distribution can be used to generate new positions for the
B particle at every time step ∆t [83].

When we consider the presence of the particle A in the box, a reaction can occur with
the B particle. In our scheme, in order for a reaction to happen, the two particles have to
come into contact, i.e. they must overlap. However, this is not a sufficient condition: many
effects, as for instance an unfavorable contact angle between the two molecules or a high
reaction barrier, could impede the progress of the reactive event. From a coarse-grained
point of view, we consider then a probability Pacc, f of accepting a reaction, given that the
two particles overlap. Clearly, this quantity must be related to the intrinsic reaction rate at
contact kf. In analogy with a Monte Carlo scheme, we can similarly define the probability
of generating a move that leads to a possible reaction, that is to an overlap: Pgen, f(r). This
quantity can be computed analytically: let us consider the single particle A held fixed
in a center of a large box, whose edges lie far enough to be neglected in the following
derivation. Using a polar reference frame whose origin coincides with the center of the A
sphere, we can compute the probability that a B particle initially at position r is displaced
to a position r′ ∈ Σ, where Σ is the excluded volume for B (a sphere, centered in the origin,
with radius R = RA +RB):

p(r → Σ) =
Z R

0
r′2dr′

Z π

0
sinθdθ

Z 2π

0
dϕ p(r′, t +∆t|r, t) ≡ g(r,∆t). (5.18)

The function g can be computed analytically, is radially symmetric and depends on the
Brownian Dynamics time step ∆t. Details are given in Appendix D. We will not indicate
anymore the dependence of various quantities on ∆t, since this parameter is kept constant
during the whole simulation. We set then Pgen, f(r)= g(r)Ω(θ,ϕ), where Ω(θ,ϕ) is the
uniform angular distribution on the sphere.

The detailed balance rule between the bound and unbound states imposes

Punbound(r)Pgen, f(r)Pacc, f = PboundPgen,bPacc,b, (5.19)

where Punbound is the probability of being in the unbound (that is NC = 0) state, Pgen,b
is the probability of generating a move leading to a backward reaction (association) and
Pacc,b the probability of accepting such a move. Combining this last relation with (5.13),
we obtain a relation between the generation and acceptance of a move and its reverse
counterpart:

Pbound
Punbound(r)

=
kf
kb

=
Pgen, f(r)Pacc, f
Pgen,b Pacc,b

. (5.20)
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Using Eqs. (5.18) and (5.20) we can now fix all the remaining probabilities. Dissociation
events are first-order reactions. Assuming that events may happen with a constant prob-
ability per unit time yields a Poissonian distribution of waiting times between reactions:
P(t) = kb exp{−kbt}. The probability that the reaction has not happened at time t is then
S(t) = −R t

0 P(t ′)dt ′ = exp{−kbt}. If we choose time steps ∆t such that ∆t � 1/kb, the
probability that an event happens within ∆t is just kb∆t. This can be used to determine the
acceptance probability of a dissociation reaction: Pacc,b = kb∆t.

Once we have determined that a dissociation event has happened, we must set a new
position for the B particle in the reaction box. To generate the reverse move, we choose
the same distribution g(r) we have obtained before, with the proper normalisation. In fact,
the probability of starting at position r in space and landing on the A particle integrates to
a volume much smaller than the volume V of the system, for small values of ∆t:

Z ∞

R
dr

Z

dΩ Ω(θ,ϕ)g(r,∆t)r2 = 4πI(∆t) �V, (5.21)

where Ω(θ,ϕ) is the uniform angular distribution on the sphere and I =
R ∞

R g(r)r2dr.
When evaluating the position of the dissociating particle, we already know that a dis-
sociation has happened; the distribution g(r) must now be normalised to one: Pgen,b =

1
4πI g(r)Ω(θ,ϕ). If a trial dissociation move leads to an overlap, then this move should be
rejected.

Using detailed balance (5.20), we can now obtain the desired acceptance probability
for the forward move:

Pacc,f =
Pbound

Punbound

Pgen,b
Pgen,f

Pacc,b

=
kf
kb

g(r)Ω(θ,ϕ)dr
g(r)Ω(θ,ϕ)dr4πI kb∆t

=
kf∆t
4πI . (5.22)

We have determined all the quantities we need, and we can proceed to show our BD al-
gorithm.

5.2.3 Algorithm outline
Let us consider a system with M particles of type B and one particle of type A, held fixed
at the center of box of volume V . For convenience, we choose as initial state the situation
in which there is no bound state C.

1. Generate an initial position for the B particles in the available volume.

2. Select randomly one of the particles among species B and C.
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3. (a) If the particle is type B, generate a new position according to a gaussian
distribution with zero mean and standard deviation

√
2D∆t: xnew = xold +

N(0,
√

2D∆t), where ∆t the Brownian Dynamics time step.
(b) If the displacement move leads to an overlap of the B particle with A, that is

if |rA − rB| < RA + RB, attempt a reaction according to a probability Pacc, f =
kf∆t/(4πI).

(c) If the trial reaction move is accepted, remove the B particle from the box, and
substitute the A particle with a C. This new particle is not diffusing in the box,
as A.

(d) If the trial reaction move is rejected, put the B particle back to its original
position.

4. (a) If the particle is type C, try a backward reaction with probability Pacc,b = kb∆t.
(b) If the trial reaction move is accepted, substitute the C particle with an A par-

ticle, create a new B particle whose radial position is drawn from the nor-
malised distribution g(r) and the angular position from the uniform distribu-
tion Ω(θ,ϕ). If this leads to an overlap with another B particle, then reject the
move.

(c) If the trial reaction move is rejected, keep the identities and positions of parti-
cles.

5. Repeat step 2. and 3. or 4. M times, then increase the simulation time by ∆t.

Keeping particle A and C fixed could mimic for example a system where one reactant
is anchored to some rigid scaffold. A relevant biological example is the binding of proteins
to DNA in a bacterial cell, particle A representing a binding site on the DNA, typically in
proximity of some gene. In this case, the motion of A is only related to the fluctuations of
the polymer, which happen on time scales much longer than the diffusion of proteins in
the bacterial cytoplasm, and can therefore be neglected. The scheme could be extended
to the situation in which the A particle also moves, or cases with more reactants.

5.3 Tests
In this Section we check the BD scheme against a series of testing procedures. As the
algorithm that we have described obeys detailed balance, equilibrium quantities, such as
the average time spent in the bound state, must be correctly reproduced. A BD algorithm
cannot resolve the dynamics of a system at time scales below the time step ∆t used in the
simulations. However, dynamical quantities on long time scales should be reproduced,
provided that the time step is not too large. In the case of two particles, we investigate
then whether our BD algorithm correctly reproduces the survival probability [166] of a B
particle, and its probability distribution in time and space. Finally, we compare the distri-
bution of the association times with that obtained with a non-spatial stochastic simulation.
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We believe that these are stringent tests and are sufficient to validate the correctness of the
BD scheme introduced in the previous Section.

5.3.1 Irreversible Reactions

We begin by simulating the irreversible reaction A+B kf−→C, within the following setup:
a single particle A is held fixed in an unbounded system, and a single particle B is posi-
tioned on a spherical surface at an initial distance r0 from A, with a random angle. The
particles have the same radius RA =RB =R/2. We run the algorithm for a time tsim and
we record the final radial position of the particle B. In the case that a reactive event hap-
pens before tsim, we stop the run. We repeat the run for a large number of times, and
we collect the final positions of the B particle in a histogram, divided by the fraction of
B particles which have survived until the final time. Such a histogram should reproduce
the irreversible probability distribution pirr(r, tsim|r0,0). This quantity has been calculated
analytically for 2 ideal particles [167], and represents the probability of finding the two
particles at time tsim separated by a distance r, given an initial separation of r0 at t0=0. We
note that this probability distribution is not normalised: the integral over space of pirr is
nothing but the survival probability of the particle, that is the probability that the particle
has not reacted at the final time. Formally:

Z ∞

R
pirr(r, t|r0)r2 dr = Sirr(t|r0). (5.23)

We are thus able to simultaneously test our algorithm twice: comparing the analytical
curve with the profile of our histogram, and the area of the histogram with the analytical
value of the survival probability.

Results are collected in Figure 5.1: we simulate the irreversible reaction for 4 different
simulation times, from tsim = 10−4τ to tsim = 10−1τ, where τ = R2/D is the natural time
scale of the system. Particles are initially positioned at contact: r0 =R. We see that, with
a time step 10−4 times smaller than tsim, the analytical curves perfectly overlap with the
numerical data. This means that both the shape and the area of the irreversible probability
is captured by our algorithm. For the largest tsim, we used a time step of 10−6τ.

The fate of the particle is most probably decided within the first time steps of the
simulation. For tsim =10−4τ, we checked then whether the algorithm could yield a correct
distribution for different values of tstep, as shown in the Inset of Figure 5.1. As expected,
the agreement for very small time steps is optimal, and it tends to slightly worsen when
the time step grows. The Inset shows that the survival probability of the system is mildly
underestimated when the time steps are a significant fraction of tsim. The dynamics of
the system, in the case of an irreversible reaction is then correctly reproduced by the BD
algorithm, provided that the time step is not too large.
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5.3.2 Reversible Reactions
We extend now the dynamical test performed above to the case of the reversible reaction
A + B

kf


kb

C. Even for this system, an analytical result is derived in [167], providing an-

other radial probability distribution: prev(r, tsim|r0,0). In this test, we proceed similarly
as we did for the irreversible case, except that we do not stop the run after a reaction, but
we let the particle dissociate. At t = tsim we check whether the B particle is in the bound
state or in the unbound. In the last case we record the final position. The histogram of
final positions of the B particles will be normalised to the number of survivors at t = tsim,
which also yield an estimate for Srev(t|r0). Again, we decide to initialise the B particle
at contact r0 = R, so that a large number reactions and dissociations can happen within
tsim. With this choice, the test will provide a sound check for the dynamics of the system
as described by the BD algorithm. In Figure 5.2, we plot prev(r, tsim|r0,0) for 4 different
values of tsim, and again we find the BD algorithm to correctly reproduce both the shape
and the area of the analytical probability distribution. Similarly to Figure 5.1, we show in
the Inset prev, computed for tsim =10−4τ and different tstep. Even in this case, simulations
with large time steps slightly underestimate the survival probability.

The next tests will deal with a system with more than one B particles, all of them able
to bind to the single A particle. The B particles do not interact among themselves and
the system is placed in a box of volume V , endowed with reflecting walls. Particles B
and C do not interact among themselves, although they are not allowed to overlap. To
our knowledge, there are no analytical results for dynamical properties such as prev for a
many-body problem.

We can check whether equilibrium properties of the system, such as the probability
of being in the bound state C (pbound), are correctly reproduced by the BD algorithm.
Since we have designed the simulation scheme following detailed-balance prescriptions,
we should find perfect agreement with the theory, independent of the simulation time step.

The probability pbound can be evaluated by measuring the time when the C particle is
present in the system, with respect to the total simulation time. The mean field value for
this quantity can be obtained from the macroscopical rate equation in steady state:

pbound =
KeqNB

KeqNB +V ∗ , (5.24)

where Keq = kf/kb, and V ∗ = V − 4
3π(RA +RB)3.

We simulate the system with a varying number NB of B particles, with a fixed time
step tstep = 10−4τ. We choose Keq = V , so that pbound(NB = 1) = 0.5. The box is cubic
and measures (20R×20R×20R). Figure 5.3 compares the results of our simulations with
(5.24): we see a clear agreement between our simulations and the theoretical curve. We
performed a check against the “conventional” way of treating dissociations in Brownian
Dynamics algorithms: we positioned particles at contact after a reaction, that is, we con-
sidered a function g(r) = δ(r−R). This move does violate detailed balance and affects
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Figure 5.1: Radial probability distribution for an irreversible reaction. The four con-
tinuous lines represent the analytical solution of the problem and refer to different tsim.
Symbols correspond to simualations and were obtained with time steps tstep = 10−4tsim,
except for tsim =0.1τ where we used tstep =10−6τ (τ=R2/D, R=RA +RB). Particles were
initially positioned at contact: r0 =R. The intrinsic association constant is kf =1000R3/τ.
The numerical results are in perfect agreement with the analytical curves. In the Inset, we
plot the probability distribution for tsim =10−4τ for several time steps. For large values
of tstep, the BD algorithm deviates from the analytical line and mildly underestimates the
survival probability.

pbound, as shown in Inset A of Figure 5.3. The incorrect procedure overestimates the time
the particle spends in the bound state, especially for a low number of Bs. Finally, we
tested whether the equilibrium properties of the system do not depend on the chosen time
step. To this end, we compute pbound for NB =1 and different values of tstep. As illustrated
in the Inset B of Figure 5.3, we obtain a good agreement even for very large time steps,
where probably the dynamics of the system is not entirely natural. In these runs, we varied
kf in order to have Pacc, f = 0.1, and kb to have Keq =V , so that pbound = 0.5. Runs with
shorter time steps are computationally more intensive.

Finally, we compare our Brownian Dynamics algorithm with a Stochastic Simulation
Algorithm (SSA), based on a Kinetic Monte Carlo scheme that propagates the system ac-
cording to the solution of its chemical master equation [35], as described in Section 1.6.1.

108



5.3 Tests

Figure 5.2: Radial probability distribution for a reversible reaction. The four continuous
lines represent the analytical solution of the problem and refer to different tsim. Symbols
correspond to simulations and were obtained with time steps tstep =10−4tsim, r0 =R. The
association constant is kf = 1000R3/τ (τ = R2/D. R = RA + RB), while the dissociation
constant is set to kb =100τ−1. We observe agreement between the numerical results and
the analytical curves. In the Inset, the probability distribution for tsim =10−4τ is plotted
for several values of tstep. the BD algorithm deviates from the analytical line and mildly
underestimates the survival probability.

This scheme accounts only for the stochasticity arising from the fluctuations in the num-
ber of particles; spatial fluctuations due to the diffusive motion of particles are completely
neglected. The system is thus assumed to be well-stirred at all times. We consider the
reversible reaction A+B

ka


kd

C for NB =1: in the SSA, the association times follow a Pois-

son distribution, with mean 1/ka, where ka is the SSA forward rate. In the BD scheme,
the association of particles is governed by the rate kf, given that the particles are already
in contact (overlapping). In order to correctly compare the results with the SSA, we must
account also for the time a particle needs to reach its reaction partner. We set therefore
1/ka = 1/kf+1/kD [166], where kD =4πRD[B] is the Smoluchowski diffusion-limited as-
sociation constant. In other words, the mean association time in SSA is the sum of the
mean reaction time given the particles are overlapping and the mean time it takes for a
particle to diffuse to the target.
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Figure 5.3: Probability of having an A particle bound to a B particle, as a function of
the number of B particles. The time step is set to tstep =10−4τ (τ=R2/D, R=RA + RB),
the intrinsic association constant is kf =71R3/τ so that Pacc, f =0.1. kb is chosen so that
Keq = kf/kb =V (V = 8000R3) and therefore pbound(NB = 1)= 0.5. The numerical data
obtained with BD are in agreement with the mean-field values. The error bars of the
numerical results are smaller than the size of the circles. In Inset A, the simulations
are performed positioning dissociated particles at contact. This move violates detailed
balance and yield an incorrect pbound for low number of particles. In Inset B, pbound, for
NB = 1 is plotted against the time step used in the simulations. To keep Pacc, f =0.1, we
varied kf from 2242R3/τ (tstep =10−7τ) to 0.00026R3τ (tstep =10−1τ). As expected for an
equilibrium quantity, pbound does not depend on the chosen time step.

We collect the association times for a BD run with V = 64000R3,D = R2/τ, tstep =
10−4τ,kf = 100R3/τ,kd = 1000τ−1, and we compare it with an SSA run obtained in the
same conditions, apart for the modified association rate. Figure 5.4 compares the two dis-
tributions: the BD line shows a marked increase in the region of short association times
over the expected Poissonian distribution with mean ka, expected for the SSA. This effect
has a purely spatial origin and has been previously observed ([41, 168], and Chapter 6):
when particles dissociate in space, their distance is still very small, therefore the proba-
bility of an immediate rebinding in next few times steps is very high. Long association
times, in a BD simulation, are related to particles which have wandered diffusively in the
box, and have finally found the target. The distribution of such times is again exponential,
with a constant ka. This test indicates that the algorithm correctly propagates the system
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Figure 5.4: Distribution of association times, for the reaction A + B ↔ C, obtained with
the Brownian Dynamics algorithm (solid line) and with a Stochastic Simulation Algo-
rithm (dashed line) neglecting spatial effects. The data are obtained for V =64000R3,D=
R2/τ, tstep = 10−4τ,kf = 100R3/τ,kd = 1000τ−1 (τ = R2/D, R = RA + RB). Spatial simu-
lations account for immediate rebindings after a dissociation event, and show a higher
probability for short association times. The two curves decay exponentially to zero with
the same rate k−1

a = k−1
f +k−1

D .

in time (for tsim � tstep) and properly accounts for detailed balance.

5.4 Application: the push-pull model
In this Section, we show an illustrative application of the Brownian Dynamics scheme.
We consider a simple model system aimed, with notable oversimplifications, to represent
the dynamics of a substrate molecule S under the action of two antagonistic enzymes. The
model was first introduced in 1981 by Goldbeter et al. [164]. The two enzymes covalently
modify the substrates, as in the widely-found biological case of attachment/detachment
of phosphate groups to proteins. The first enzyme converts a substrate molecule into an
“active” state: bearing in mind the phosphorylation example, we call this active substrate
Sp and the enzyme K (kinase). A molecule in the active state Sp can be brought back
to the original state by reacting with the second enzyme, P (phosphatase). The model
is nicknamed “push-pull”, as the substrates are continuously switching between the two
states, while consuming energy. The reactions with the enzymes are described according
to Michaelis-Menten kinetics: the two reactants form first an intermediate bound state,

111



5 A Brownian Dynamics Algorithm for Reaction-Diffusion systems

which can lead either to a dissociation or to the release of a converted molecule. In [164],
the model is solved at the level of the Macroscopical Rate Equation at steady state, which
yields the average behavior of the system.

The push-pull model was originally introduced to show that such a system can dis-
play an ultrasensitive behavior (that is, a sensitivity curve steeper than the conventional
response showed by the Michaelis-Menten mechanism) without the need of introducing
cooperative interactions. More precisely, the interplay between two converter enzymes
operating in opposite directions on a target whose quantity is conserved can give rise to a
switch-like response in the steady-state fraction of modified molecules, when the conver-
sion rates k1 and k2 are varied. The requirement for such a sharp transition is the saturation
of the enzymes: the effective conversion rates then become independent on the number of
substrate molecules, thus attaining a quasi zero-order regime.

The above-mentioned analysis does not however account for any kind of fluctuations
that may arise from the low number of reactants, the stochastic behavior of the chemical
reactions, or the diffusion of the molecules in space. In [169], the same model is stud-
ied at the level of the chemical master equation, taking into account finite-size effects in
real systems, that is the discreteness and the low copy number of enzymes and substrate.
In order to achieve ultrasensitivity, the enzymes must be saturated, and therefore their
concentration is likely to be very low. Large fluctuations are then observed around their
average behavior: the authors show that the results obtained with a mesoscopic approach
reduce to those of the macroscopic analysis of [164] only when the number of molecules
is sufficiently large. If this is not the case, as it can easily happen in a bacterial cell
where some species are present only in few dozens of copies, the increased sensitivity of
the system is reduced, and the response is less steep than the macroscopic theory would
predict. This deviation can be easily understood when one realises that high sensitivity
corresponds to highly saturated enzymes. In this regime, the reaction rates do not depend
on the number of substrate molecules (hence the name “zeroth-order ultrasensitivity”).
The system then performs a random walk in the number of S molecules and it is thus
subject to large fluctuations.

The system we consider for our simulations is defined by the following set of reac-
tions:

Reaction Rate
S +K 
 KS ka, kb (5.25a)

KS → K +Sp k1 (5.25b)
Sp +P 
 PSp ka, kb (5.25c)
PSp → P+S k2. (5.25d)

It will be simulated with the BD algorithm in a rectangular box of dimensions xbox =
20R,ybox =10R,zbox =10R, with a single kinase and phosphatase enzyme, held fixed at
distance ∆ on the central axis of the box, as depicted in Figure 5.5, which represents a
snapshot of the simulation for 50 total substrate molecules. The system is initially pre-
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Figure 5.5: Snapshot of the push-
pull system. The kinase and the
phosphatase molecule are marked
by the tag “K” or “P” respec-
tively, and are held fixed along
the main axis of the box. The
other spheres represent S and Sp
molecules, which are free to diffuse
in the box. The system is repre-
sented for NStot = 50 and a box of
20R×10R×10R.

pared with NStot particles, distributed in the two states according to the solution of the
macroscopical rate equation. In the following, we investigate the effect of fluctuations on
some properties of the system, and we compare the results obtained with the mean-field
and master equation approach. In particular, we focus on effects arising from the distri-
bution of reacting sites in space, which can not be captured even by the SSA described in
1.6.1.

We start by computing the sensitivity curve, i.e. the mean fraction of phosphorylated
substrate molecules 〈Sp〉/NStot as a function of k1/k2. We set 80 substrate molecules
in the simulation box, in order to meet the requirement NS �NK and NSp �NP. The
parameters governing the steepness of the sigmoid curves are K1 =(kb + k1)/(kf[S]) and
K2 =(kb + k2)/(kf[Sp]), where 1/kf = 1/ka + 1/kD. In all our simulations we set K1 =
K2 =KM. When KM � 1 the enzymes are totally saturated and the change in the fraction
of modified proteins is abrupt; on the other hand, when KM ≥ 1, the rise of the curve is
closer to the hyperbolic Michaelis-Menten shape.

Figure 5.6 shows the sensitivity curve, obtained with three different methods: with
the analytic macroscopic curve of [164], with SSA simulations as in [169] and with the
Brownian Dynamics algorithm. In the SSA runs, the forward rate was set to kf =(1/ka +
1/kD)−1, and the backward rate was accordingly renormalised: k′b = kb kf/ka. With this
rescaling, we lump the immediate rebindings happening in a spatial simulation into a
lower dissociation rate, as it was done in [168]. Since a converted particle must travel
to the other reaction site before being brought back to its initial state, we do not need to
renormalise k1 and k2. Panel A of Figure 5.6 shows the data for KM =1 and KM =0.01:
in the first case, the BD results (circles) show a mild deviation from the analytical curve,
while the SSA data closely coincide with it (diamonds). Instead, for KM =0.01, the BD
algorithm can not reach the steep response predicted at a macroscopical level, and even
the SSA displays a slightly lower sensitivity. We repeated the analysis for KM = 200
(data not shown) and in that case we found perfect agreement between the three sets of
data. In this last case both reactions are first-order regime, which means that their rates
are proportional to the number of substrate molecules. As a result, when this number
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changes, the rates of conversion in the opposite direction changes immediately. This
counteracts the modification and reduces the effect of fluctuations. Furthermore, we find
another deviation from the mean-field averages: panels B through E in Figure 5.6 show
the data obtained by decreasing the diffusion coefficient of the system, and keeping all
the other parameters fixed. In panel B, the associations of the substrate molecules to the
two enzymes are reaction-limited, because diffusion is very rapid; in this case, we find
a situation analogous to that shown in panel A, with SSA perfectly reproducing the data
and BD showing a mild deviation. However, when the diffusive motion slows down, the
associations become diffusion-limited (KM varies accordingly) and the BD results deviate
more and more from the mean-field line, whereas the agreement between the SSA results
and the mean-field analysis remains. These results demonstrate that slow diffusion can
strongly reduce the sensitivity of the system.

Figure 5.6 confirms and extends then what was found in [169]: the stochastic fluc-
tuations of the system dampen the ultrasensitivity, which could be obtained only in an
infinitely large, well-stirred system. In particular, diffusion of substrate molecules is a
seriously limiting factor, which can strongly reduce the sensitivity of system, bringing
it below the Michaelis-Menten curve. The discrepancy between the numerical data and
the macroscopic prediction drastically increases when spatial fluctuations are considered,
in particular when the diffusion of molecules is slow. The SSA, instead, deviates from
mean-field only when the system is in the ultrasensitive regime (low KM) and the number
of molecules present in the system is low. It however predicts a good agreement when KM
is high. Brownian Dynamics is able to show that, even in this last regime, the response
of the system can be much less sensitive if the species move slowly enough in space, i.e.
when the system is not well-stirred.

Brownian Dynamics allows us to directly measure spatial properties of the system,
such as the spatial density of particles. In Figure 5.7 the density of particles along the
main axis of the box is shown, for KM=0.2 and KM=0.01, corresponding to the substrate
molecules bound to the enzymes. The S particles spend on average more time closer to the
phosphatase enzyme, where they are produced, and less time close to the kinase enzyme,
where they are converted to Sp; however, since it is very probable to find an S molecule
bound to a kinase, we observe a high peak at the kinase location. The profile for Sp is
completely symmetric, as these simulations are obtained for k1 = k2. When the enzymes
are completely saturated (low KM), the fraction of time spent on the enzymes increases,
and the regions around the peaks experiences a stronger depletion on the respective sub-
strates.

5.5 Summary
Brownian Dynamics algorithms are widely-utilised techniques in the field of soft con-
densed matter and biochemistry. Recently, they have been applied to coarse-grained mod-
els of cellular processes, which can be viewed as reaction-diffusion systems. A prominent

114



5.5 Summary

0.01 0.1 1 10 100
k1/k2

0

0.2

0.4

0.6

0.8

1

<S
p>/

S to
t

KM = 0.01
KM = 1

0.01 0.1 1 10
k1/k2

0

0.2

0.4

0.6

0.8

1
D=0.1
KM=1.7

0.1 1 10 100
k1/k2

D=0.01
KM=10.7

0

0.2

0.4

0.6

0.8

1
D=10
KM=0.72

D=1
KM=0.81

AAAA D E

CB

Figure 5.6: Fraction of converted molecules as a function of k1/k2. A) The continuous
and dashed lines are obtained with Macroscopical Rate Equation, for KM=0.01 (full satu-
ration of enzymes) and KM =1 (first-order regime), respectively. The numerical solutions
of the master equation (SSA, diamonds) show a mild deviation only when the system dis-
plays an ultrasensitive behavior. Conversely, Brownian Dynamics simulations (circles),
do not yield a perfect agreement for KM =1, and markedly deviate from the ultrasensitive
line. Methods accounting for the stochastic behavior of the system show thus a reduction
in sensitivity for KM =0.01. B) to E) The system is simulated for a decreasing diffusion
coefficient. When the diffusion-limited regime is approached, BD simulations are not
able to reproduce the sensitivity predicted in the Michaelis-Menten kinetics. The SSA
results, instead, closely coincide with mean-field. Accounting for diffusion of substrate
molecules thus drastically reduces the sensitivity of the system, and yields a pronounced
deviation from mean-field results, even for high KM.
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Figure 5.7: The spatial density profiles for S, Sp (k1/k2 =1) show clear symmetric gra-
dients. Particles S (continuous line) tend to have a higher concentration around the phos-
phatase enzyme, where they are produced. However, as the enzymes are saturated, we
find a peak closer to the kinase enzyme, which is most the time bound to a S molecule.
The profile for Sp (dashed line) is completely symmetric. When the enzymes are com-
pletely saturated (KM = 0.01, thinner lines), they are more depleted in the proximity of
reaction sites, where they spend a longer amount of time.

example is represented by biochemical networks, which allow a cell to detect and respond
to changes in its environment. These networks are composed of proteins and DNA that
chemically and physically interact with each other, and are generally prone to fluctuations.
The main sources of these fluctuations can be of two different kinds. First, they can derive
from the intrinsic stochasticity of the reactive events, this effect being exacerbated by a
low number of molecules in the system. These “temporal” fluctuations are correctly cap-
tured even when the system is described at the level of the chemical master equation, and
simulated with the SSA algorithm described in Section 5.3. Second, they can be due to the
erratic behaviour of diffusing molecules, which causes the association-time distribution
to deviate from the poissonian form typical of well-stirred systems [41, 168]. Brownian
Dynamics algorithms are able to account for this second source of stochasticity,whereas
the SSA is not.

However, in order to avoid the introduction of systematic errors in the simulations, a
Brownian Dynamics algorithm must obey the detailed-balance rule. In case of second-
order reactions, this is not a trivial requirement. In this Chapter, we have designed a
Brownian Dynamics algorithm for reaction-diffusion systems which rigorously obeys de-
tailed balance. In Section 5.3 we have checked that our scheme is able to reproduce the
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equilibrium properties of an elementary system. Dynamic properties are also correctly
reproduced, provided that the time step of the simulation is small enough.

As an illustrative example, we have applied our BD scheme to a model representing
the dynamics of a substrate molecule subject to two antagonistic enzymes. This model
was previously analysed with deterministic methods [164], which revealed an ultrasen-
sitive behavior in the response of the system when the enzymes are fully saturated. A
study conducted at the level of the Chemical Master Equation [169], thus accounting
for the low copy number of the substrate molecules, highlighted that the ultrasensitiv-
ity predicted in Ref. [164] cannot be achieved when the concentration of the substrate
is very low. Temporal fluctuations limit then the sensitivity of the system. We repeated
the analysis of Ref. [169] simulating the system with the SSA, and confirmed their find-
ings. Furthermore, we have investigated the role of spatial fluctuations on the system with
BD simulations. Our analysis shows that the sensitivity of the response curve is further
reduced. In particular, when diffusion of particles is slow and the system is far from well-
stirred, spatial fluctuations are the dominant source of noise, and the reduction of the gain
is significant.
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Chapter 6

Spatial fluctuations of transcription
factors enhance noise in gene
expression

But I, being poor, have only my dreams;
I have spread my dreams under your feet.

Tread softly because you tread on my dreams.
William Butler Yeats

We study by Green’s Function Reaction Dynamics the effect of the diffusive motion of
repressor molecules on the noise in mRNA and protein levels for a gene that is under the
control of a repressor. We find that spatial fluctuations due to diffusion can drastically en-
hance the noise in gene expression. After dissociation from the operator, a repressor can
rapidly rebind to the DNA. Our results show that the rebinding trajectories are so short
that, on this time scale, the RNA polymerase (RNAP) cannot effectively compete with
the repressor for binding to the promoter. As a result, a dissociated repressor molecule
will on average rebind many times, before it eventually diffuses away. These rebindings
thus lower the effective dissociation rate, and this increases the noise in gene expres-
sion. Another consequence of the time scale separation between repressor rebinding and
RNAP association is that the effect of spatial fluctuations can be described by a well-
stirred, zero-dimensional, model by renormalising the reaction rates for repressor-DNA
(un) binding. Our results thus support the use of well-stirred, zero-dimensional models
for describing noise in gene expression. We also show that for a fixed repressor strength,
the noise due to diffusion can be minimised by increasing the number of repressors or
by decreasing the rate of the open complex formation. Lastly, our results emphasise that
power spectra are a highly useful tool for studying the propagation of noise through the
different stages of gene expression.
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6.1 Introduction
Cells process information from the outside and regulate their internal state by means of
proteins and DNA that chemically and physically interact with one another. These bio-
chemical networks are often highly stochastic, because in living cells the reactants of-
ten occur in small numbers [170, 171]. This is particularly important in gene expres-
sion [172, 173, 174, 17, 21, 175, 176, 177], where transcription factors are frequently
present in copy numbers as low as tens of molecules per cell. While it is generally be-
lieved that biochemical noise can be detrimental to cell function [175], it is increasingly
becoming recognised that noise can also be beneficial to the organism [176]. Under-
standing noise in gene expression is thus important for understanding cell function, and
this observation has recently stimulated much theoretical and experimental work in this
direction [175, 176, 177]. However, the theoretical analyses usually employ the zero-
dimensional chemical master equation [177, 31, 66], which is solved by the Stochas-
tic Simulation Algorithm described in Section 1.6.1. This approach takes into account
the discrete character of the reactants and the probabilistic nature of chemical reactions.
It does assume, however, that the cell is a ‘well-stirred’ reactor, in which the particles
are uniformly distributed in space at all times; the reaction rates only depend upon the
global concentrations of the reactants and not upon the spatial positions of the reactant
molecules. Yet, in order to react, reactants first have to move towards one another. They
do so by diffusion, or, in the case of eukaryotes, by a combination of diffusion and active
transport. Both processes are stochastic in nature and this could contribute to the noise in
the network. Here, we study by computer simulation the expression of a single gene that
is under the control of a repressor R in a spatially-resolved model. We find that at low
repressor concentration, i.e. [R] < 50nM, the noise in gene expression is dominated by
the noise arising from the diffusive motion of the repressor molecules. Our results thus
show that spatial fluctuations of the reactants can be an important source of noise in bio-
chemical networks. Our analysis also reveals that the effects of diffusion can nevertheless
be described by a well-stirred model, provided that the reaction rates of repressor-DNA
(un)binding are properly rescaled.

The simulations show that in gene expression significant fluctuations occur on both
short and long length and time scales. As expected from earlier work [109, 178, 18],
the fluctuations on long time scales are predominantly due to protein degradation; we
assume that proteins are degraded by dilution, which means that the half-time of this
process is on the order of an hour. Our results, however, also elucidate an important
process on much shorter length and time scales. It is associated with the competition
between the repressor and RNA polymerase (RNAP) for binding to the promoter. When
a repressor molecule dissociates from the DNA, it can rebind very rapidly: in our model,
which neglects 1-dimensional diffusion along the DNA, it can rebind on a time scale of
milliseconds, or less. This time scale is much shorter than that with which the RNAP binds
to the promoter, which is on the order of 0.01− 0.1 seconds. Hence, when a repressor
molecule has just dissociated, the probability that an RNAP molecule will bind before
the repressor molecule rebinds, is very small. This has two important consequences. The
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first is that a repressor molecule will on average rebind many times, before it eventually
diffuses away from the promoter and an RNAP molecule, or another repressor molecule,
can bind to the promoter. This decreases the effective dissociation rate, which introduces
long time scales fluctuations in transcription and therefore increases the noise in gene
expression.

The second consequence of the rapidity of the rebindings is that noise propagation
during gene expression can be described by a well-stirred, zero-dimensional, model. In
the commonly used zero-dimensional models, chemical reactions are separated by ex-
ponentially distributed waiting times. In a spatially-resolved model, the distribution of
repressor-DNA association times deviates markedly from Poisson statistics. While at
long time scales the distribution is exponential, at short time scales it is algebraic, due to
the diffusive nature of the rebinding trajectories. However, these repressor rebindings are
so fast, that they do not significantly affect the dynamics of RNAP-DNA association; the
latter is only affected by the repressor-DNA (un)binding dynamics at longer time scales,
which obey Poisson statistics. The reason that the effect of spatial fluctuations on noise
in gene expression can be described by a zero-dimensional model is thus a separation of
time scales. In fact, it is conceivable that in a more realistic model of gene expression,
which includes 1-dimensional sliding along the DNA, the time scale of repressor rebind-
ing is not separated from that of the RNAP dynamics. Under these conditions, the effect
of spatial fluctuations might be detected in the statistics of mRNA production. However,
as we discuss in the Discussion and Outlook Section, the noise strength (variance) of the
mRNA level can probably still be described by a zero-dimensional model, because the
time scale of the spatial fluctuations, even in those more refined models, is expected to be
still shorter than the typical life time of an mRNA molecule.

Since fluctuations in the rate of gene expression span orders of magnitude in length
and time scales, the simulation technique should be sufficiently detailed to resolve the
events at short length and time scales, yet also efficient enough to access the long length
and time scales. Recently, several simulation techniques have been developed for the
stochastic modeling of reaction-diffusion systems [38, 39]. These techniques, however,
do not satisfy both criteria: they either describe the system in a coarse-grained way, i.e.
on the level of local concentrations rather than single particles [38, 39], or are too slow to
accurately model the dynamics on the long time scales [159]. Our simulations have been
made possible via the use of our recently developed Green’s Function Reaction Dynamics
(GFRD) algorithm, described in Section 1.6.3 and in Refs. [40, 41]. GFRD is an event
driven algorithm that uses Green’s functions to combine in one step the propagation of
the particles in space with the reactions between them. The event-driven nature of the
algorithm makes it particularly useful for problems, such as gene expression, in which
the events are distributed over a wide range of length and time scales: the algorithm
takes small steps when the reactants are close to each other – such as when a repressor
molecule has just dissociated from the DNA – while it takes large jumps in time and space
when the molecules are far apart from each other – like when the repressor molecule has
eventually diffused away from the promoter. The event-driven nature of GFRD makes
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it orders of magnitude more efficient than brute-force particle-based algorithms [41] and
this has allowed us to simulate gene expression on the relevant biological time scale of
hours.

Several publications [179, 180, 52, 181, 182, 183, 184, 185, 186] have discussed the
effect of fluctuations in the binding of transcription factors to their site on the DNA (called
operator) on the noise in gene expression. Most of these models are relatively simple, ig-
noring, for instance, production of mRNA [52, 182, 183, 186, 181]. Moreover, all these
studies, with the exception of [181, 185], ignore the role of the spatial fluctuations of
the transcription factors. Our aim is to study gene expression in a biologically meaning-
ful model. We have therefore constructed a rather detailed model, although we will also
use minimal models that can be studied analytically, in order to interpret the simulation
results. The full model, which is described in the next Section, contains the diffusive mo-
tion of repressor molecules, open complex formation, promoter clearance, transcription
elongation and translation [65].

In Section 6.4, we discuss the simulation results for both the noise in mRNA and in
protein level. The results reveal that for [R] < 50nM, the noise in the spatially-resolved
model can be more than five times larger than the noise in the well-stirred model. We
also show that a cell could minimise the effect of spatial fluctuations, either by tuning the
open complex formation rate or by changing the number of repressors and their affinity
for the binding site on the DNA. In Section 6.5, we elucidate the origin of the enhanced
noise in the spatially resolved model. In the subsequent Section, we show that in the
model employed here the effect of spatial fluctuations can be quantitatively described by
a well-stirred model in which the reaction rates for repressor binding and unbinding are
appropriately renormalised; however, as alluded to above, and as we will discuss in more
detail in the last Section, we expect that in a more refined model the effect of diffusion will
be more complex, impeding such a simplified description. In Section 6.7, we discuss how
the operator state fluctuations propagate through the different stages of gene expression
using power spectra for the operator state, the elongation complex, the mRNA and the
protein. The results show that these power spectra are highly useful for unraveling the
dynamics of gene expression. We hope that this stimulates experimentalists to measure
power spectra of not only mRNA and protein levels [30], but also of the dynamics of
transcription initiation and elongation using e.g. magnetic tweezers [187]. As we argue
in the last Section, such experiments should make it possible to determine the importance
of spatial fluctuations for the dynamics of gene expression.

6.2 Model
6.2.1 Diffusive motion of repressors
We explicitly simulate the diffusive motion of the repressor molecules in space. However,
since the experiments of Riggs et al. [188] and the theoretical work of Berg, Winter,
and Von Hippel [189], it is well known that proteins could find their target sites via a
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combination of 1D sliding along the DNA and 3D diffusion through the cytoplasm –
“hopping” or “jumping” from one site on the DNA to another. This mechanism could
speed up the search process and make it faster than the rate at which particles find their
target by free 3D diffusion; this rate is given by k=4πσD3[R], where σ is the interaction
radius, which is on the order of a protein diameter or DNA diameter, D3 is the diffusion
constant of the protein in the cytoplasm, and [R] is the concentration of the (repressor)
protein. However, while it is clear that the mechanism of 3D diffusion and 1D sliding
could potentially speed up the search process, whether this mechanism in living cells
indeed drastically reduces the search time is still under debate [190]. In this context, it is
instructive to discuss the two main results of recent studies on this topic [191, 192, 193,
190, 194, 195]. The first is that the mean search time τ is given by [195]

τ ∼ L
λ

[

λ2

D1
+

r2

D3

]

, (6.1)

where L is the total length of the DNA, λ is the average distance over which the protein
slides along the DNA before it dissociates, D1 is the diffusion constant for sliding, r is the
typical mesh size in the nucleoid (the characteristic distance between two segments on the
DNA [195]), and D3 is the diffusion constant in the cytoplasm. This formula has a clear
interpretation [195]: λ2/D1 is the sliding time, r2/D3 is the time spent on 3D diffusion,
the sum of these terms is thus the time to perform one round of sliding and diffusion, and
L/λ is the total number of rounds needed to find the target. The other principal result is
that the search time is minimised when the sliding distance λ is

λ =

√

D1
D3

r. (6.2)

Under these conditions, a protein spends equal amounts of time on 3D diffusion and 1D
sliding (a protein is thus half of the time bound to the DNA). Eq. (6.2) is a useful result,
because it shows that the average sliding distance λ depends upon the ratio of diffusion
constants and on the typical mesh size in the nucleoid. If we now assume that D1 and D3
are equal (which is not obvious given that proteins bind relatively strongly to DNA – D1
could thus very well be much smaller than D3) and if we take the mesh size to be given
by r ∼

√

v/L [195], where v ≈ 1µm3 is the volume of an E. coli cell and L ≈ 103µm, we
find that λ is in the order of 10nm (30 bp). This corresponds to the typical diameter of a
protein or DNA double helix and is thus not very large. Interestingly, recent experiments
seem to confirm this: experiments from Halford et al. on restriction enzymes (EcoRV and
BbcCI) with a series of DNA substrates with two target sites and varying lengths of DNA
between the two sites, suggest that under the in vivo conditions, sliding is indeed limited
to relatively short distances, i.e. to distances less than 50 bp (≈ 16nm) [196, 197].

Now, it should be realised that on length scales beyond the sliding length, the motion
is essentially 3D diffusion: the sliding/hopping mechanism corresponds to 3D diffusion
with a jump distance given by the sliding distance [191]. Moreover, since the sliding
distance is only on the order of a particle diameter, as discussed above, we have therefore
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decided to model the motion of the repressor molecules as 3D diffusion. But it should
be remembered that on length scales shorter than 10−30nm, this approach is not correct.
As we discuss in the Discussion Section, this might have significant implications for the
importance of spatial fluctuations for the noise in gene expression.

6.2.2 Transcription and Translation
Most repressors bind to a site that (partially) overlaps with the core promoter – the binding
site of the RNA polymerase (RNAP). When a repressor molecule is bound to its operator
site, it prevents RNAP from binding to the promoter, thereby switching off gene expres-
sion. Only in the absence of a repressor on the operator site, can RNAP bind to the
promoter and initiate transcription and translation, ultimately resulting in the production
of a protein. We model this by the following reaction network:

O+R
kfR
�
kbR

OR (6.3)

O
kfRp
�
kbRp

ORp (6.4)

ORp →
kOC

ORp∗ (6.5)

ORp∗ →
tclear

T +O (6.6)

T →
telon

M (6.7)

M →
kdm

/0 (6.8)

M →
kribo

M +Mribo (6.9)

Mribo →
ttrans

P (6.10)

P →
kdp

/0 (6.11)

Eqs. (6.3) and (6.4) describe the competition between the binding of the repressor R
and the RNAP molecules Rp to the promoter (O is the operator site). In our simulation we
fix the binding site O in the center of a container with volume V =1µm3, comparable to
the volume of a single E. coli cell. We simulate both the operator site O and the repressor
molecules as spherical particles with diameter σ = 10nm. The operator site O is sur-
rounded by NR repressor molecules that move by free 3D diffusion (see previous Section)
with an effective diffusion constant D=1µm2s−1, as has been reported for proteins of a
similar size [93]. The intrinsic forward rate kfR=6 ·109M−1s−1 for the repressor particles
R at contact is estimated from the Maxwell-Boltzmann distribution [40]. The backward
rate kbR depends on the interaction between the DNA binding site of the repressor and
the operator site on the DNA and varies greatly between different operons, with stronger
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repressors having a lower kbR. In our simulations, we vary kbR between 1−0.01 s−1, as
discussed in more detail below. The concentration of RNAP is much higher than that of
the repressor [198]. Because of this we treat the RNAP as distributed homogeneously
within the cell and we do not to take diffusion of RNAP into account explicitly. Instead,
RNAP associates with the promoter with a diffusion-limited rate kfRp = 4πσD[Rp]. In
our simulations, the concentration of free RNAP is [Rp]=0.5µM [198], leading to a for-
ward rate kfRp = 38s−1. Finally, the backward rate kbRp = 0.5 is determined such that
Keq =4πσD/kbRp =1.4 ·109M−1 [80].

Transcription initiation is described by Eqs. (6.5) and (6.6). Before productive syn-
thesis of RNA occurs, first the RNAP in the RNAP-promoter complex ORp unwinds
approximately one turn of the promoter DNA to form the open complex ORp∗. The open
complex formation rate kOC has been measured to be on the order of 0.3− 3s−1 [187].
We approximate open complex formation as an irreversible reaction. Some experiments
find this step to be weakly reversible [187]. However, adding a backward reaction to the
model did not change the dynamics of the system in a qualitative way, as long as the
backward rate is smaller than kOC, which is in agreement with experimental results. Af-
ter open complex formation, RNAP must first escape the promoter region before another
RNAP or repressor can bind. Since elongation occurs at a rate of 50−100 nucleotides per
second and between 30− 60 nucleotides must be cleared by RNAP before the promoter
is accessible, a waiting time of tclear = 1s is required before another binding can occur.
Since promoter clearance consists of many individual elongation events that obey Pois-
son statistics individually, we model the step as one with a fixed time delay tclear, not as a
Poisson process with rate 1/tclear.

Eqs. (6.7)-(6.11) describe the dynamics of mRNA and protein numbers. After clear-
ing the promoter region, RNAP starts elongation of the transcript T . As for clearance, the
elongation step is modeled as a process with a fixed time delay telon =30s, corresponding
to an elongation rate of 50−100 nucleotides per second [199] and a 1500 bp gene. When
an mRNA M is formed, it can degrade with a rate kdm. Here, the mRNA degradation rate
is determined by fixing the average mRNA concentration in the unrepressed state, as de-
scribed below. Furthermore, an mRNA molecule can form an mRNA-ribosome complex
Mribo and start translation. We assume that b = 5 proteins are produced on average from
a single mRNA molecule [21], so that the start of translation occurs at a rate kribo =b kdm.
Assuming a translation speed of about 50 nucleotides/s [107], after a fixed time delay
ttrans =30s a protein P is produced. The mRNA is available for ribosome binding imme-
diately after the start of translation. Due to the delay in protein production, M can start to
be degraded, while the mRNA-ribosome complex Mribo is still present; M thus represents
the mRNA leader region rather than the entire mRNA molecule. Finally, the protein P
degrades at a rate kdp, which is determined by the requirement that the average protein
concentration in the unrepressed state has a desired value, as we describe now.

We vary the free parameters in the reaction network described in Eqs. (6.3)-(6.11) –
NR, kbR, kdm, kdp – in the following way: first, we choose the concentration of mRNA and
protein in the absence of repressor molecules. In this case, tuning of the concentrations
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is most straightforward by adjustment of the mRNA and protein decay rates kdm and kdp.
For the above reaction network one can show that the average mRNA number NMand
protein number NP is given by

NM =
K4K1V

K2NR +V (1+K1(1+K3))
, (6.12)

NP = K5NM, (6.13)

where K1 = kfRp/(kbRp + kOC), K2 = kfR/kbR, K3 = kOCtclear, K4 = kOC/kdm and K5 =
kribo/kdp are equilibrium constants, V is the volume of the cell and NR is the total number
of repressors. The unrepressed state corresponds to NR = 0. In our simulations, we fix
the mRNA and protein numbers in the unrepressed state at NM = 50 and NP = 2 · 105.
The mRNA and protein decay rates then follow straightforwardly from Eqs. (6.12) and
(6.13): the mRNA degradation rate is kdm =0.019s−1 [200] and the protein degradation
rate is kdp =2.4×10−4s−1; the latter corresponds to protein degradation by dilution with
a doubling time of around 1h.

Next, we determine by what factor these concentrations should decrease in the re-
pressed state. This can be done by changing the number of repressors NR and the repres-
sor backward rate kbR. We define the repression level f as the transcription initiation rate
in the absence of repressors, divided by the initiation rate in the repressed state [146]. For
a repression level f , the concentration of mRNA and proteins in the repressed state is a
fraction 1/ f of the concentration in the unrepressed state and it follows that

NR
kbR

= ( f −1)
V (1+K1(1+K3))

kfR
. (6.14)

Thus, a fixed repression level f does not specify a unique combination of NR and
kbR: increasing the number of repressors twofold, while also increasing the repressor
backward rate by the same factor, gives the same repression level. This means that the
cell can control mRNA and protein levels in the repressed state either by having a large
number of repressors that stay on the DNA for a short time or by having a small number
of repressors, possibly even one, that stay on the DNA for a long time. Even though it
is conceivable that the latter is preferable for economic reasons, there is no difference
between the two extremes in terms of the average gene expression. In our simulations, we
vary NR and kbR, but use a fixed repression level f =100. Consequently, in the repressed
state, on average NM =0.5 and NP = 200.

Lastly, we would like to emphasise that, while all reaction rates were, as much as
possible, taken from experiments, it should be realised that the measured rates might not
be very precise. However, we believe that this does not affect the main conclusions of our
work.
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6.3 Simulation Technique
We simulate the above reaction network using Green’s Function Reaction Dynamics
(GFRD) [40, 41]. GFRD is an event-driven algorithm, which combines in one step the
propagation of the particles in space with the reactions between them. The main idea is to
determine at each iteration of the simulation, a maximum time step, such that only single
particles or pairs of particles have to be considered. For these particles, the Smoluchowski
equation [201] can be solved exactly using Green’s functions. For each single particle,
the Green’s function is just the Gaussian distribution function p1(r, t|r0, t0), which yields
the probability that, given that the particle is at point r0 at time t0, it is at position r at a
later time t. For each pair of particles, two Green’s functions are obtained: one for their
center-of-mass, and one for their inter-particle vector r; the latter, p2(r, t|r0, t0), yields
the probability that the inter-particle vector r0 at time t0 becomes r at a later time t. Im-
portantly, the inter-particle Green’s function does not only take into account the diffusion
of the particles, but also the reactions between them. This makes it possible to derive
for each pair of particles the propensity function q(t|r0), which yields the probability that
the pair will react for the first time at time t, given that the particles were separated by a
distance r0 initially. The propensity functions, then, can be used to set up an event-driven
algorithm, quite analogous to kinetic Monte Carlo algorithms for zero-dimensional mas-
ter equations, such as the Gillespie algorithm [35] (see Section 1.6.1). The event-driven
nature allows GFRD to make large jumps in time and space when the particles are far
apart from each other, making it up to five orders of magnitude more efficient than brute-
force Brownian Dynamics. For details of the algorithm, in particular on how the Green’s
functions and the propensity functions are derived, we refer to Refs. [40, 41].

As discussed above, only the operator site O and the repressor particles R are simu-
lated in space. All other reactions are assumed to occur homogeneously within the cell
and are simulated according to the well-stirred model [35] or with fixed time delays for
reaction steps involving elongation. A few modifications with respect to the algorithm
described in [40, 41] are implemented to improve simulation efficiency. First, we neglect
excluded volume interactions between repressor particles mutually, as the concentration
of repressor is very low. This means that the only potential reaction pairs we consider are
operator-repressor pairs. Secondly, we use periodic boundary conditions instead of a re-
flecting boundary, which leads to a larger average time step. As the operator site O is both
small compared to the volume of the cell and is far removed from the cell boundary, this
has no effect on the dynamics of the system. Moreover, when the reaction times drawn
by GFRD are exceedingly small, the Green’s Function for the pairs of particles become
hard to evaluate numerically. In this case, we prefer to break down this reaction time
in 104 substeps and run the Brownian Dynamics algorithm described in Chapter 5 on the
system. Finally, as the repressor backward rate kbR is rather small, the operator site can be
occupied by a repressor for a time long compared to the average simulation time step. If
the repressor is bound to the operator site longer than a time L2/6D, where L is the length
of the sides of our container, the other repressor molecules diffuse on average from one
side of the box to the other. Consequently, when the repressor eventually dissociates from
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6 Spatial fluctuations of transcription factors enhance noise in gene expression

the operator site, the other repressor molecules have lost all memory of their positions at
the time of repressor binding. Here, when a repressor will dissociate after a time longer
than L2/6D, we do not propagate the other repressors with GFRD, but we only update the
master equation and fixed delay reactions. We update the positions of the free repressors
at the moment that the operator site becomes accessible again, by assigning each free re-
pressor molecule a random position in the container; the dissociated repressor is put at
contact with the operator site. We see no noticeable difference between this scheme and
results obtained by the full GFRD algorithm described in Refs. [40, 41] and Section 1.6.3.

In order to obtain accurate statistics, especially for notoriously difficult quantities such
as noise and power spectra, very long simulations were performed. A total number of 24
simulations were performed, one for each combination of parameter values (NR, kOC). A
single simulation took on average 24 hrs of CPU time on a Pentium IV 3.0GHz processor.

6.4 Simulation results: dynamics and noise
To study the effect of spatial fluctuations on the repression of genes, we simulate the
reaction network described in Eqs. (6.3-6.11) both by GFRD, thus explicitly taking into
account the diffusive motion of the repressor particles, and according to the well-stirred
model, where the repressor particles are assumed to be homogeneously distributed in
space and the dynamics depends only on the concentration of repressor. In Figure 6.1
we show the behaviour of mRNA and protein numbers for a system with open complex
formation rate kOC = 30s−1 and with varying numbers of repressors NR. We keep the
repression factor fixed at f =100 so that with increasing NR the repressor backward rate
kbR is also increased, i.e. repressor particles are bound to the DNA for a shorter time.

It is clear from Figure 6.1 that there is a dramatic difference between the behaviour of
mRNA and protein numbers between the GFRD simulation and the well-stirred model.
When spatial fluctuations of the repressor molecules are included, mRNA is no longer
produced in a continuous fashion, but instead in sharp, discontinuous bursts during which
the mRNA level can reach levels comparing to those of the unrepressed state. These
bursts in mRNA production consequently lead to peaks in protein number. As the protein
decay rate is much lower than that of mRNA, these peaks are followed by periods of
exponential decay over the course of hours. Due to these fluctuations, protein numbers
often reach levels of around 5− 10% of the protein levels in the unrepressed state. In
contrast, in the absence of repressor diffusion, the fluctuations around the average protein
number are much lower. For both cases, however, the average behaviour is identical: even
though the dynamics is very different, we always find that on average 〈NmRNA〉 = 0.5 and
〈NP〉 = 200. Also, in all cases the fluctuations in mRNA number are larger than those in
protein number. This means that the translation step functions as a low-pass filter to the
repressor signal.

When we increase the number of repressors NR and change kbR in such a way that
the repression level f remains constant, we find that both for GFRD and the well-stirred
model the fluctuations in mRNA and protein number decrease. In the absence of spatial
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GFRD
WS

GFRD
WS

Figure 6.1: Dynamics of mRNA and protein numbers in the repressed state for different
number of repressors NR. The number of mRNA and protein molecules is shown for sim-
ulations with GFRD (black line) and according to the zero-dimensional master equation,
the well-stirred model (WS, gray line). In the GFRD simulation, diffusion of repressor
particles is explicitly included. (a) and (b) NR=5. (c) and (d) NR=20. (e) and (f) NR=80.
In general, there is a dramatic difference in dynamics due to the spatial fluctuations of
the repressor molecules. This difference becomes more pronounced as the number of
repressors decreases. However, we find that in all cases 〈NM〉 = 0.5 and 〈NP〉 = 200,
on average. The rate of open complex formation kOC =30s−1 and, when NR varies, the
repression strength is kept constant at f =100 by changing kbR (see Eq. (6.14)) .
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6 Spatial fluctuations of transcription factors enhance noise in gene expression

fluctuations this effect is minor, but for GFRD this decrease is sharp: for large number of
repressors, the burst in mRNA become both weaker and more frequent. This in turn leads
to smaller peaks and shorter periods of exponential decay in protein numbers. In fact, as
NR is increased both approaches converge to the same behaviour. At around NR ≈ 100,
the dynamics of the protein number is similar for the well-stirred model and the spatially
resolved model. The same happens for mRNA number when NR ≈ 500.

In Figure 6.2, we quantify the noise in mRNA and protein number, defined as standard
deviation divided by the mean, while we change the number of repressors NR. As we keep
the amount of repression fixed at f = 100, we simultaneously vary the backward rate
kbR according to Eq. (6.14). When all parameters are the same, the noise for the GFRD
simulation, including the diffusive motion of the repressors, is always larger than the noise
for the well-stirred model, where the diffusive motion is ignored. In both cases, the noise
decreases when the number of repressors is increased and the repressor backward rate
becomes larger. This is consistent with the mRNA and protein tracks shown in Figure 6.1.
We also investigated the effect of changing the open complex formation rate kOC. In
nature, this rate can be tuned by changing the base pair composition of the promoter
region on the DNA. When we change kOC, we change the mRNA decay rate kdm so that
the average mRNA and protein concentrations remain unchanged (see Section 6.2.2). We
find that when kOC is lowered, the fluctuations in mRNA and protein levels are sharply
reduced. When kOC is much larger than the RNAP backward rate kbRp =0.5s−1, almost
every RNAP binding to the promoter DNA will result in transcription of an mRNA. For
kOC smaller than kbRp, RNAP binding will lead to transcription only infrequently. As a
consequence, the operator filters out part of the fluctuations in RNAP binding due to the
diffusive motion of the repressor particles, leading to the decrease in noise observed in
Figure 6.2. This shows that the open complex formation rate plays a considerable role in
controlling noise in gene expression.

6.5 Simulations results: operator binding
To understand how the diffusive motion of repressor molecules leads to increased fluctu-
ations in mRNA and protein numbers, it is useful to look in some detail at the dynamics
of repressor-DNA binding. In Figure 6.3A, we show the OR bias for both GFRD and the
well-stirred model. The OR bias is a moving time average over OR(t) with a 50s time
window and should be interpreted as the fraction of time the operator site was bound by
repressor particles over the last 50 seconds. The results we show here are for NR = 5
repressors and a repression factor f = 2. At this repression factor, kbR is such that the
repressor molecules are bound to the operator only fifty percent of the time, making it
easier to visualise the operator dynamics than in the case of f =100 as used above.

The OR bias for the well-stirred model fluctuates around the average value 〈OR〉= 0.5,
indicating that on the timescale of 50s several binding and unbinding events occur, in
agreement with kbR =1.26s−1 for f =2. On the other hand, when including spatial fluctu-
ations, the OR bias switches between periods in which repressors are bound to the DNA
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Figure 6.2: Noise in (a) mRNA number and (b) protein number as a function of the
number of repressors NR and for constant repression factor f = 100. Data obtained by
GFRD simulation is shown for kOC = 0.3(◦),3(�) and 30(∗)s−1. Noise levels for the
well-stirred model (WS) are shown as grey lines and those for the well-stirred model with
reaction rates renormalised according to Eqs. (6.16) and (6.17) (the renormalised well-
stirred (RWS) model) are shown as black lines, both for kOC =0.3 (solid lines), 3 (dashed
lines) and 30 (dotted lines) s−1. Only when the reaction rates are properly renormalised
does the noise in the well-stirred model agree well with the noise in the GFRD simula-
tions, which include the effect of diffusion. (Insets) Noise levels as a function of kOC for
NR =5. Symbols indicate results for GFRD and lines are results for the chemical master
equation with renormalised reaction rates (RWS model).

continuously and periods in which the repressors are virtually absent, both on timescales
much longer than the 50s time window. How is it possible that repressors are bound to the
operator site for times much longer than the timescale set by the dissociation rate from the
DNA? The answer to that question can be found in Figures 6.3B and C, where a time trace
is shown of the operator occupancy by the repressor for both GFRD and the well-stirred
model. The time trace for the simulation of the well-stirred model in Figure 6.3C shows a
familiar picture: binding and dissociation of the repressor from the operator occurs irreg-
ularly, the time between events given by Poisson distributions. The time trace for GFRD
in Figure 6.3B looks rather different. Here, in general a dissociation event is followed
by a rebinding very rapidly. Only occasionally does a dissociation result in the operator
being unbound by repressors for a longer time. When this happens, repressors stay away
from the operator for a time much longer than the typical time separating binding events
in Figure 6.3C. These series of rapid rebindings followed by periods of prolonged absence
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Figure 6.3: Dynamics of repressor binding for a repression factor of f =2 and NR=5. (a)
The OR-bias for GFRD (black line) and the well-stirred model (gray line). The OR-bias
is defined as the fraction of time a repressor is bound to the operator site in the last 50
seconds. When the diffusive motion of repressor molecules is included (black line), the
OR-bias switches between periods where repressors are continuously bound to or absent
from the DNA for long times. (b) and (c) Time trace of the occupancy of the operator site
by repressor molecules. When OR=1 a repressor is bound to the operator site and OR=0
indicates either a free operator site or one with RNAP bound. For the GFRD simulations,
an initial binding is followed by several rapid rebindings, whereas for the well-stirred
model binding and rebinding is much more unstructured. Note that here, for reasons of
clarity, f =2 instead of f =100 as used in the text and Figures 6.1 and 6.2.

from the operator result in the aberrant OR bias shown in Figure 6.3A.
The occurrence of rapid rebindings is intimately related to the nature of diffusion.

When diffusion and the positions of the reactants are ignored all dynamics is based only
on the average concentration of the reactants. As a consequence, when in this approach a
repressor dissociates from the operator site, the probability of rebinding depends only on
the concentration of repressor in the cell. On the level of actual positions of the reactants,
this amounts to placing the repressor at a random position in the container. The situation
is very different for the GFRD approach, where the positions of the reactants are taken
into account. After a dissociation from the operator site, the repressor particle is placed
at contact with the operator site. Because of the close proximity of the repressor to its
binding site, it has a high probability of rapidly rebinding to, and only a small probability
of diffusing away from, the binding site. At the same time, when the repressor eventually
diffuses away from the operator site, the probability that the same, or more likely, another
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repressor diffuses to and binds the operator site is much smaller than the probability of
binding in the well-stirred model, as will be shown quantitatively in Section 6.6. This
results in the behaviour observed in Figure 6.3B.

It can now be understood that the bursts in mRNA production correspond to the pro-
longed absence of repressor from the operator site compared to the well-stirred model.
Especially for low repressor concentrations, these periods of absence can be long enough
that the concentration of mRNA reaches values comparable to those in the unrepressed
state for brief periods of time. When a repressor binds to the operator site, due to the
rapid rebindings it will remain bound effectively for a time much longer than the mRNA
lifetime, leading to long periods where mRNA is absent in the cell. This shows that under
these conditions spatial fluctuations and not stochastic chemical kinetics are the dominant
contribution to the noise in mRNA and protein numbers in the repressed state.

6.6 Two-step kinetic scheme
In the current model, the average repressor concentration profile is uniform. It is therefore
natural to investigate to what extent the effect of diffusion on the repressor dynamics
can be described by a zero-dimensional, well-stirred, model, via the following two-step
kinetic scheme [202, 203]:

O+R
k+

�
k−

O · · ·R
ka
�
kd

OR. (6.15)

The first step in Eq. (6.15) describes the diffusion of repressor to the operator site result-
ing in the encounter complex O · · ·R, with the rates k+ and k− depending on the diffusion
coefficient D and the size of the particles. The next step describes the subsequent binding
of repressor to the DNA. In this case the rates are related to the microscopic rates defined
in Eq. (6.3). When the encounter complex is assumed to be in steady state, the two-step
kinetic scheme can be mapped onto the reaction described in Eq. (6.3), but with effective
rate constants k′f R = k+ka/(k− + ka) and k′bR = k−kd/(k− + ka) [202]. The two-step ki-
netic scheme should yield the same average concentrations as the scheme in Eq. (6.3), so
that the equilibrium constant K = ka/kd = k′f R/k′bR = k f R/kbR, where kfR and kbR are the
reaction rates defined in Eq. (6.3).

It is possible to express the effective rate constants k′fR and k′bR in terms of the micro-
scopic rate constants kfR and kbR. For the setup used here, where a single operator O is
surrounded by a homogeneous distribution of repressor R, the rate k+ follows from the
solution of the steady state diffusion equation with a reactive boundary condition with rate
k = ka at contact [201, 203] and is given by the diffusion-limited reaction rate kD = 4πσD.
The rates k− and ka depend on the exact definition of the encounter complex O · · ·R. It
is natural to identify the rate kd with the intrinsic dissociation rate kbR, thus kd = kbR.
From these expressions for k+ and kd and the requirement that the equilibrium constant
should remain unchanged, one finds that ka/k− = k f R/kD. Using this result one obtains
k′f R = kDk f R/(kD + k f R) and k′bR = kDkbR/(kD + k f R).
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These renormalised rate constants have a clear interpretation. For the effective forward
rate it follows, for instance, that: 1/k′f R = 1/kD + 1/k f R: that is, on average, the time
required for repressor binding is given by the time needed to diffuse towards the operator
plus the time for a reaction to occur when the repressor is in contact with the operator site
[203]. The effective backward rate has a similar interpretation. The probability that after
dissociation the repressor diffuses away from the operator site and never returns is given
by Sirr(t → ∞|σ), where Sirr(t,r0) is the irreversible survival probability for two reacting
particles [204]. Using that Sirr(t → ∞|σ) = kD/(k f R + kD), the expression for k′bR can be
written as k′bR = kbRSirr(t →∞|σ): that is, the effective dissociation rate is the microscopic
dissociation rate multiplied by the probability that after dissociation the repressor escapes
from the operator site [203].

For diffusion limited reactions, such as the reaction considered here, we have that
k f R � kD. Now, the renormalised rate constants reduce to:

k′f R = kD, (6.16)
k′bR = kDkbR/k f R. (6.17)

In Figure 6.2, we compare the noise profiles for the GFRD algorithm with those obtained
by a simulation of the well-stirred model, where instead of the microscopic rates k f R and
k f B we use the renormalised rates from Eqs. (6.16) and (6.17). Surprisingly, we find com-
plete agreement. One of the main reasons why this is unexpected, is that for the master
equation the time between events is Poisson-distributed, whereas after a dissociation the
time to the next rebinding is distributed according to a power-law distribution when dif-
fusion is taken into account [204]. The reason that this power-law behaviour of rebinding
times does not influence the noise profile, is that the time scale of rapid rebinding is much
shorter than any of the other relevant time scales in the network. Specifically, rebinding
times are so short that the probability that an RNAP will bind before a rebinding event
occurs is negligible. As a consequence, the transcription network is not at all influenced
by the brief period the operator site is accessible before rebinding: for the transcription
machinery the series of consecutive rebindings, albeit distributed algebraically in time
individually, is perceived as a single event. And on much longer time scales, when a re-
pressor diffuses in from the bulk towards the operator site, the distribution of arrival times
is expected to be Poissonian, because on these time scales the repressors are distributed
homogeneously in the bulk. This is succinctly summarised in Figure 6.4, which shows the
distribution of association times. It is seen that at short time scales, the association events
are algebraically distributed in time – these arise from the rapid rebindings – while at long
time scales, they are distributed exponentially in time. For comparison, we also show the
distribution of the repressor-DNA association times in the well-stirred model, with appro-
priately renormalised rate constants for repressor (un)binding (Eqs. (6.16) and (6.17)). As
expected, the number of association events is much smaller at short time scales, but fol-
lows the same distribution as that of the spatially resolved model at long time scales. As
described quantitatively in Section 6.7.2, the rate constant for the exponential relaxation
is given not only by the diffusion-limited rate of repressor-DNA association, but also by
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the RNAP promoter occupancy.
It is possible to reinterpret the effective rate constants in Eq. (6.16) and (6.17) in the

language of rapid rebindings. The probability p that a rebind will occur after a dissociation
from the DNA is given by p = 1−S∞, where St =Sirr(t,r0 = σ). The probability that n
consecutive rebindings occur before the repressor diffuses away from the operator site is
then given by pn = (1−S∞)nS∞. From this follows that the average number of rebindings
is NRB =(1−S∞)/S∞. Using again that S∞ = kD/(k f R + kD), we find that NRB = k f R/kD.
Combining this with Eqs. (6.16) and (6.17), we get:

k′f R = k f R/NRB, (6.18)
k′bR = kbR/NRB. (6.19)

In words, after an initial binding the repressor spends NRB times longer on the DNA than
expected on the basis of the microscopic backward rate, as it rebinds on average NRB
times. Because the average occupancy should not change, the forward rate should be
renormalised in the same way. In conclusion, in this model the effects of diffusion can be
properly described by a well-stirred model when the reaction rates are renormalised by
the average number of rebindings.

6.7 Power Spectra
In this Section, we study how the noise due to the stochastic dynamics of the repressor
molecules propagates through the different steps of gene expression for both the spatially
resolved model and the well-stirred model, as it was sketched in Section 1.6.1. This anal-
ysis will also provide further insight into why the well-stirred model with renormalised
rate constants for the (un)binding of the repressor molecules works so well.

In biochemical networks, the noise in the output signal depends upon the noise in the
biochemical reactions that constitute the network, the so-called intrinsic noise, and on the
noise in the input signal, called extrinsic noise [17, 19, 205, 178, 120, 206]. In our case,
the output signal is the protein concentration, while the input signal is provided by the
repressor concentration. The intrinsic noise arises from the biochemical reactions that
constitute the transcription and translation steps. Moreover, we consider the noise in the
protein concentration that is due to the (un)binding of the RNAP to (from) the DNA to be
part of the intrinsic noise. The extrinsic noise is provided by the fluctuations in the binding
of the repressor to the operator, i.e. in the state OR. Since the total repressor concentration,
[RT] = [R]+ [OR], is constant, the extrinsic noise is also given by the fluctuations in the
concentration of unbound repressor.

The noise properties of biochemical networks are most clearly elucidated via the
power spectra of the time traces of the copy numbers of the components. Recently, we
have shown that if the fluctuations in the input signal are uncorrelated with the noise in
the biochemical reactions that constitute the processing network, the power spectrum of
the output signal is given by [206]

SP(ω) = Sint(ω)+g(ω)Sext(ω). (6.20)
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Figure 6.4: Distribution of repressor-DNA association times for the spatially resolved
model (GFRD, solid line) and for the well-stirred, zero-dimensional model in which the
rate constants for repressor-DNA (un)binding are given by the intrinsic (un)binding rates
divided by the number of repressor rebindings in the absence of RNAP (see Eqs. (6.18)
and (6.19)) – the renormalised well-stirred model (RWS, dashed line). It is seen that for
the spatially resolved model, at short times the distribution follows a power-law, while
at long times it is exponential. Moreover, at long times, the distribution of the spatially
resolved model (GFRD) follows that of the renormalised well-stirred model (RWS). To a
good approximation, the relaxation rate at long times in both the spatially resolved model
and in the renormalised well-stirred model is given by k′f R[RT][O]′, where k′f R is the effec-
tive repressor association rate (see Eq. (6.18)), [RT] is the total repressor concentration,
and [O]′ is the probability that the promoter is not occupied by RNAP, given that it is not
occupied by repressor (see Eq. (6.28)). The dip in the distribution at t ≈ 0.1−1.0s−1 is
due to the competition with the RNAP for binding to the promoter. The model parameters
are f = 100, kOC = 30s−1, NR = 5.
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Here, SP(ω) is the power spectrum of the output signal, the protein concentration. The
spectrum Sint(ω) denotes the intrinsic noise of the processing network; it is defined as the
noise in the output signal in the absence of noise in the input signal. Here, the intrinsic
noise is due to the biochemical reactions of transcription and translation. The spectrum
Sext(ω) is the power spectrum of the input signal, which, in this case, is given by the
noise in the concentration of unbound repressor: Sext(ω)= SR(ω); because the total re-
pressor concentration is constant this power spectrum is also directly related to that of the
repressor-bound state of the operator, SOR(ω). The function g(ω) is a transfer function,
which indicates how fluctuations in the input signal are transmitted towards the output
signal. If the extrinsic noise is uncorrelated with the intrinsic noise, then g(ω) is an intrin-
sic quantity that only depends upon properties of the processing network, and not upon
properties of the incoming signal [206]. However, for the network studied here, the noise
in the input signal is not uncorrelated with the intrinsic noise [206]. As we have shown
recently, this means that Eq. (6.20) is not strictly valid [206]; the extrinsic contribution to
the power spectrum of the output signal can no longer be factorised into a function that
only depends upon intrinsic properties of the network, g(ω), and one that only depends
upon the input signal, Sext(ω). This relation is nevertheless highly instructive. Indeed,
Eq. (6.20) could be interpreted as a heuristic definition of the transfer function g(ω).

The diffusive motion of the repressor molecules impede an analytical evaluation of the
power spectrum for the extrinsic noise. Moreover, while power spectra can be calculated
analytically for linear reaction networks [34], the delays in transcription resulting from
promoter clearance and elongation, preclude the derivation of an analytical expression for
the power spectrum of the intrinsic noise. We have therefore obtained the power spectra
SP(ω), Sext(ω), and Sint(ω), directly from the time traces of the copy numbers. The power
spectrum of a component X is given by SX(ω) = 〈|X̃(ω)|2〉, where X̃(ω) is the Fourier
Transform of the concentration X(t) of component X. Conventional FFT algorithms are
not convenient for computing the power spectra, because our signals vary over a wide
range of time scales. We therefore adopted a novel and efficient procedure, which is
described in Appendix C. This procedure should prove useful for computing the power
spectra of time traces of copy numbers of species in biochemical networks, as obtained
by Kinetic Monte Carlo simulations.

As indicated above, the intrinsic noise, Sin(ω), is defined as the noise in the output
signal in the absence of fluctuations in the input signal. In order to determine the intrin-
sic contribution to the noise in the protein concentration, we discarded the (un)binding
reaction of the repressor to the DNA (Eq. (6.3)), while rescaling the rate kbRp for the dis-
sociation reaction of the RNAP from the DNA (Eq. (6.4)) in such a way that the average
concentration of the protein P remains unchanged. This eliminates the extrinsic noise
arising from the repressor dynamics, thereby allowing us to obtain the intrinsic noise of
the reactions in Eqs. (6.4-6.11). The rescaled backward rate k∗bRp is given by

k∗bRp = kbRp(1+K2NR/V )+ kOCK2/V (6.21)

where K2 = kfR/kbR.
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6 Spatial fluctuations of transcription factors enhance noise in gene expression

For the interpretation of the power spectra of the mRNA and protein concentration, as
discussed below, it is instructive to recall the power spectrum of a linear birth-and-death
process,

/0 k→ A µ→ /0, (6.22)

with rate constants k and µ. For the interpretation of the spectra of repressor binding to
the DNA, it is useful to recall the spectrum of a two-state model,

O
k1
�
k2

O∗, (6.23)

with rate constants k1 and k2. For both models, the power spectrum is a Lorentzian func-
tion of the form [31]:

S(ω) =
2σ2µ

µ2 +ω2 . (6.24)

For the birth-and-death process, the variance in the concentration of A, σ2, is k/µ, while
for the two state system, the variance σ2 in the occupancy n is n(1− n); the decay rate
in the two-state model is µ = k1 + k2. The corner frequency µ (in both models) yields the
time scale on which fluctuations relax back to steady state. We also note that the noise
strength σ2 is given by the integral of the power spectrum S(ω): σ2=1/(2π)

R ∞
−∞ dωS(ω).

The noise strength is thus dominated by those frequencies at which the power spectrum is
largest.

In the next Subsection, we discuss the effect of spatial fluctuations on the noise in
gene expression and explain why a well-stirred model with renormalised rate constants
for repressor (un)binding can capture its effect. In the subsequent Section, we discuss
how the noise is propagated through the different stages of gene expression.

6.7.1 Spatial Fluctuations
In Figure 6.5, we show the power spectra for the input and output signals, for both the
spatially resolved model and the well-stirred model with renormalised rate constants for
repressor (un)binding (see previous Section). We recall that the output signal is the pro-
tein concentration, while the input signal is the concentration of unbound repressor (the
extrinsic noise). Figure 6.5 also shows the power spectrum of the intrinsic noise. This is
the noise in the protein concentration (the output signal), when the noise in the input sig-
nal resulting from the repressor dynamics has been eliminated by the procedure outlined
above. The power spectra have been obtained in a parameter regime where the diffusing
repressors have a large effect on the noise: kOC =30s−1, NR =5 (see Figure 6.2).

Figure 6.5 shows that the power spectrum of the protein concentration in the spatially
resolved model is identical to that in the well-stirred model for the entire range of frequen-
cies observed. This confirms the observation in Section 6.6 that the effect of the spatial
fluctuations of the repressor molecules on the noise in the protein concentration can by
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Figure 6.5: Power spectra of the repressor and protein concentrations for f = 100,
kOC = 30s−1, NR = 5. Data are shown both for the renormalised well-stirred model (RWS)
with reaction rates renormalised according to Eqs. (6.16-6.17), and for GFRD, taking into
account the spatial fluctuations of the repressor molecules explicitly. Also shown is the
power spectrum of the intrinsic noise, which is the power spectrum of the protein concen-
tration in the absence of fluctuations in the repressor concentration (extrinsic noise). For
large ω, the repressor spectrum (extrinsic noise) differs between the well-stirred and the
spatially resolved model. However, this difference does not appear in the power spectra
of the protein concentration. The inset shows the frequency-dependent gain g(ω) (see
Eq. (6.20)).

described by a well-stirred model in which the reaction rates for repressor (un)binding to
the DNA are properly renormalised.

Figure 6.5 also elucidates the reason why a well-stirred model with properly renor-
malised rate constants for repressor (un)binding can successfully describe the effect of the
diffusive motion of the repressor molecules on the noise in gene expression. It is seen that
the repressor spectrum for the renormalised well-stirred model is accurately described
by a Lorentzian function with a corner frequency µ = 0.02s−1 (see also Eq. (6.24)), as
expected for the dynamics of repressor (un)binding dynamics (see next Section). The
repressor spectrum of the spatially resolved model fully overlaps with that of the well-
stirred model up to a frequency of ω ≈ 106s−1, but for higher frequencies it shows a clear
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6 Spatial fluctuations of transcription factors enhance noise in gene expression

deviation from the ω−2 behaviour. This deviation is caused by the diffusive motion of
the repressor molecules. Indeed, the deviation occurs at frequencies comparable to the
inverse of the typical time scale for rapid rebindings (∼ µs). However, this difference
between the spectrum of the repressor dynamics in the spatially resolved model and that
in the well-stirred model does not lead to a difference in the noise strength of the protein
concentrations of the two respective models (see Figure 6.2), for two reasons: 1) the dif-
ference only occurs at high frequencies, i.e. in a frequency regime where the fluctuations
only marginally contribute to the noise strength (the difference in area under the curves
of the repressor power spectra for the two models is less than 5%); 2) the repressor fluc-
tuations in this frequency range are filtered out by the processing network of transcription
and translation; as a result of this, the effect of the small difference in area under the
curves of the repressor power spectra for the two models is reduced even further. The fil-
tering properties of the processing network are illustrated in the inset of Figure 6.5, which
shows the transfer function g(ω) as obtained from g(ω) = (SP(ω)−Sint(ω))/Sext(ω) (see
Eq. (6.20)). Clearly, the transfer function rapidly decreases as the frequency increases.
This shows that the processing network of transcription and translation acts as a low-pass
filter, rejecting the high frequency noise in the repressor dynamics that originates from
the rapid rebindings.

The only effect of the repressor rebindings on the noise in gene expression is thus
that it lowers the effective dissociation rate (and association rate), as explained in the
previous Section. As compared to the well-stirred model with the unrenormalised rate
constants for repressor (un)binding, this decreases the corner frequency µ in the repressor
power spectrum (see Figure 6.6), but increases the power at low frequencies – recall that
for a two-state model, which relaxes mono-exponentially, the power spectrum at zero
frequency is S(ω = 0) = 2σ2/µ, which thus increases as the relaxation rate µ = k1 + k2
decreases as a result of the slower binding and unbinding of repressor (see Eq. (6.24)).
The higher power in the repressor spectrum at low frequencies for the spatially resolved
model and for the well-stirred model with the renormalised rate constants, as compared to
that for the well-stirred model with the unrenormalised rate constants, is not filtered by the
processing network of transcription and translation and thus manifests itself in the power
spectrum of the protein concentration. Spatial fluctuations of gene regulatory proteins
thus increase the noise in gene expression by increasing the power of the input signal at
low frequencies.

6.7.2 Noise propagation
In Figure 6.7 we show how fluctuations in the input signal arising from the dynamics
of repressor binding and unbinding, are propagated through the different stages of gene
expression. In Figure 6.7(a) we illustrate how the noise in the repressor concentration
(the extrinsic noise) is transferred to the level of transcription. The Figure shows for
both the spatially resolved model and for the well-stirred model with renormalised rate
constants for repressor (un)binding, the power spectrum of the repressor concentration
and the spectrum of the concentration of the elongation complex, defined as [ORp∗]+[T ].
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6.7 Power Spectra

It is clear from Figure 6.7(a) that already at the level of the elongation complex, the high-
frequency noise due to the rapid rebindings is filtered. Transcription can thus already be
described by a well-stirred model with properly renormalised rate constants for repressor
(un)binding to (from) the DNA.

OR
k2
�
k1

O
k3
�
k4

ORp′. (6.25)

The power spectrum of the elongation complex exhibits two corner frequencies, one
around ω+ ≈ 40s−1 and another one at ω− ≈ 0.02s−1. These two corner frequencies
arise from the competition between repressor and RNAP for binding to the promoter.
To elucidate this, we have plotted in the inset the power spectrum for RNAP bound to
the promoter, thus the power spectrum for [ORp] + [ORp∗]. It is seen that this power
spectrum has the same two corner frequencies as that of the elongation complex, showing
that their dynamics is dominated by the same processes – repressor binding and RNAP
binding to the promoter. These two corner frequencies can be estimated analytically by
considering the reactions in Eqs. (6.3-6.6) as a three-state system, in which repressor
and RNAP compete for binding to the promoter: Here, ORp′ = ORp+ORp∗, where ORp
denotes the RNAP bound to the promoter in the closed complex and ORp∗ denotes RNAP
bound to the promoter in the open complex. The rate constant k1 denotes the rate at which
a repressor binds to the promoter; it is given by k1=k′f R[RT], where k′f R is the renormalised
association rate (see Eq. (6.16)). The rate constant k2 denotes the renormalised rate for
repressor unbinding, k2 = k′bR (see Eq. (6.17)); k3 =k f Rp denotes the rate at which RNAP
binds to the promoter. The rate constant k4 is the rate at which the RNAP leaves the
promoter. Since the promoter can become accessible for the binding of another RNAP
or repressor by either the dissociation of RNAP from the closed complex or by forming
the open complex and then clearing the promoter, this rate is given by k4 = kbRp +(k−1

OC+
tclear)

−1. If promoter clearance would be neglected, then, indeed, k4 = kbRp + kOC.
The power spectrum of the RNAP dynamics in Eq. (6.25) can be calculated analyti-

cally and is given by a sum of two Lorentzians:

SORp′(ω) =
Aω−

ω2
− +ω2 +

Bω+

ω2
+ +ω2 , (6.26)

where A and B are coefficients. The corner frequencies ω− and ω+ are given by ω± =
(k±

√
k2 −4h)/2, where k = ∑i ki and h = k1k4 +k2(k3 +k4). The dynamics of repressor

binding and unbinding is much slower than that of RNAP binding and unbinding, meaning
that k1,k2 � k3,k4. This allows us to approximate the corner frequencies as ω+ = k3 +
k4 and ω− = k2 + k1k4/(k3 + k4). This yields the following expressions for the corner
frequencies:

ω+ = k f Rp + kbRp +(k−1
OC + tclear)

−1 (6.27)
ω− = k′bR + k′f R[RT][O]′. (6.28)

Here, [O]′ ≡ k4/(k3 + k4) is the conditional probability that the promoter is not occupied
by the RNAP, given that it is not occupied by repressor; it is given by the occupancy of the
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Figure 6.6: The power spectra for the well-stirred model with unrenormalised rate con-
stants (WS) and for the well-stirred model with renormalised rate constants for repressor
(un)binding to (from) the DNA (RWS). The intrinsic noise of gene expression is the same
for both models. The extrinsic noise, arising from the repressor dynamics, is, however,
markedly different. The repressor spectrum for the well-stirred model with renormalised
rate constants has lower corner frequency, but, more importantly, also a higher power at
low frequencies. The increased power at low frequencies is not filtered by the processing
network and increases the noise in gene expression. For parameter values, see Figure 6.5.

promoter by RNAP in the absence of any repressor molecules in the system. We can now
see that the highest corner frequency, ω+, describes the fast dynamics of RNAP binding
to, and clearing from, the promoter and that the other corner frequency, ω−, represents
the slow dynamics of repressor (un)binding to the DNA in the presence of the fast RNAP
bindings to the promoter; the lower corner frequency, ω−, is also the corner frequency in
the repressor spectrum of the renormalised well-stirred model (see Figures 6.5 and 6.6). In
Figure 6.7(a) we plot the power spectrum SORp′(ω) as predicted by the three-state model
(Eq. (6.26); with fitted coefficients A and B) on top of the power spectrum obtained from
the simulations and find excellent agreement. We also show the power spectra when we
neglect the delay due to promoter clearance. As expected, in the absence of the delay due
to promoter clearance, the lower corner frequency, ω−, and, to a smaller extent, the higher
corner frequency, ω+, are shifted to higher frequencies.

142



6.7 Power Spectra

1e-16

1e-08

1

1e+08
S

(ω
)

0.0001 0.01 1 100 10000 1e+06 1e+08 1e+10

Complex - RWS

Repressor - RWS

Complex - GFRD

Repressor - GFRD

0.0001

0.01

1

100

10000

0.0001 0.01 1 100 10000

RNAp
RNAp - no delay

0.0001 0.01 1 100

ω (s
-1

)

mRNA - RWS
Protein - RWS
Protein - Intrinsic

0.0001

1

10000

1e+08

1e+12

0.0001 0.01 1 100

ω (s
-1

)

Complex - RWS

mRNA - RWS
mRNA - Intrinsic

(a)

(b) (c)

ω− ω+

Figure 6.7: Comparison of the power spectra at different stages of gene expression. (a)
Power spectrum for repressor concentration and for the elongation complex ORp∗ + T ,
both for the well-stirred model with renormalised rate constants (RWS) and for GFRD.
Repressor power spectra show a difference between the spatially resolved model and the
well-stirred model at high frequencies, due to the diffusion of the repressor molecules.
The power spectra for the elongation complexes coincide for the well-stirred and the spa-
tially resolved model. The power spectrum of the elongation complex shows a series
of peaks and valleys due to the presence of fixed delays in the dynamics of the elonga-
tion complex. (inset) Power spectrum of RNAP dynamics (ORp + OR∗

p). Shown are the
power spectra in the presence and absence of fixed delays in the RNAP dynamics. Due
to the competition between RNAP and repressor for binding to the promoter, the power
spectrum is described by a sum of two Lorentzians. (b) Power spectra of the elongation
complex and mRNA. Peaks due to the delays in RNAP dynamics are still present in the
mRNA dynamics. For high frequencies, the mRNA dynamics is well described by a linear
birth-and-death process. (c) Spectra of mRNA and protein. The slow protein dynamics
filters out all the peaks resulting from the delays in the RNAP dynamics. The only dif-
ference between the full spectrum of the output signal and that of the intrinsic noise is an
increased noise at low frequencies, due to the repressor dynamics For parameter values,
see Figure 6.5.
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6 Spatial fluctuations of transcription factors enhance noise in gene expression

The power spectrum of the elongation complex in Figure 6.7(a) contains information
that is not easily observed in the time domain and could as a result be helpful in the
interpretation of the results. It is seen that there are two series of peaks. Those are
associated with the two processes with fixed time delays. The first process is the promoter
clearance, which takes a fixed time tclear. Indeed, the first peak in the corresponding
series of peaks in the power spectrum of the elongation complex, is at ω≈2π/(tclear)=
6.3s−1; the other peaks in the series are the higher harmonics that naturally arise for
processes with fixed time delays. The second process is the transcript elongation process.
After the elongation complex has been formed, it takes a fixed time tclear + telon before the
full transcript is formed and the RNAP dissociates from the DNA; the first valley of the
corresponding series of peaks/valleys is, indeed, at ω≈2π/(tclear + telon)=0.2s−1. While
the frequency 2π/tclear yields, to a good approximation, the rate at which the elongation
complex signal increases, the frequency 2π/(tclear + telon) corresponds to the frequency
at which the elongation complex signal decreases; this explains why the shapes of the
respective series of peaks and valleys are reciprocal. Lastly, the reason that both peaks
and valleys are broadened is that the delay in the formation of the elongation complex is
not fully deterministic: the duration of the delay is not only determined by the promoter
clearance time, which, indeed, is fixed, but also by the time it takes for another RNAP to
bind the DNA and then form the open complex – in the absence of repressor, the average
frequency at which an elongation complex is formed is given by 2π/(k−1

fRp + k−1
OC + tclear)

(see also Eqs. (6.4- 6.6)). Both RNAP binding and open complex formation are modeled
as Poisson processes, and this leads to a distribution of delay times for the formation of
the elongation complex.

For completeness, in Figure 6.7(b) and (c), we examine how the noise in the dynamics
of the elongation complex propagates to the level of mRNA and protein dynamics. In
Figure 6.7(b), we compare the full power spectrum of the mRNA concentration with that
of the elongation complex – the input signal (extrinsic noise) for the mRNA signal –
and that of the intrinsic noise of the mRNA signal; to compute the intrinsic noise, we
have modeled the mRNA dynamics as a birth-and-death process (see Eq. (6.22)) with a
production rate as given by the average production rate for the full system in Eqs. (6.3-
6.11). As expected, for higher frequencies (ω > 0.1s−1), the full spectrum of mRNA
overlaps almost fully with that of the intrinsic noise, although some traces of the input
signal (the elongation complex) are still apparent in this high frequency regime; these
are the peaks at ω ≈ 6.3s−1 corresponding to promoter clearance. At lower frequencies
(ω < 0.1s−1), the noise in the mRNA signal is dominated by the extrinsic noise, which is
the noise in the elongation complex (the input signal). Indeed, both the spectrum of the
elongation complex and that of mRNA have a corner frequency at ω−, which, as discussed
above, arises from the slow repressor (un)binding to the DNA in the presence of the fast
DNA-(un)binding kinetics of RNAP.

Figure 6.7(c) shows how the noise in the mRNA concentration is propagated to that
in the protein concentration. Again, at higher frequencies, the spectrum of the protein
concentration coincides with that of the intrinsic noise of protein synthesis, which, as
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above for mRNA, has been computed by modeling protein production as a birth-and-
death process; note also that the remnants of operator clearance (the peaks in the spectrum
at ω ≈ 6.3s−1) have been filtered by the slow protein dynamics. Only for frequencies
smaller than ω ≈ 0.1s−1, does the extrinsic noise – the noise in the mRNA concentration
– strongly contribute to the noise in the protein concentration. A careful inspection of
the protein spectrum shows that it has a “corner” at ω−, which arises from the repressor
DNA-(un)binding dynamics (the extrinsic noise), and one, albeit much less visible, at
ω ≈ kdp = 2×10−4s−1, which is due to the intrinsic dynamics of protein degradation.

6.8 Discussion and Outlook
Our analysis reveals that at high frequencies both mRNA and protein synthesis are well
described by a linear birth-and-death model. In this frequency regime, the effect of spatial
fluctuations, originating from the rapid repressor rebindings, is completely filtered by the
slow dynamics of transcription and translation. These rebindings do, however, decrease
the effective rate at which the repressor molecules associate with, and dissociate from,
the promoter. This increases the intensity of the extrinsic (repressor) noise in the low
frequency regime. Moreover, the low-frequency fluctuations in the repressor binding do
propagate through the different stages of gene expression. In particular, they lead to sharp
bursts in the production of mRNA and protein. These bursts increase the noise intensity
at the lower frequencies in the noise spectrum of mRNA and protein. And since the noise
strength σ2 is dominated by fluctuations in the low-frequency regime, spatial fluctuations
ultimately strongly increase the noise in mRNA and protein concentration.

Recently, experiments have been performed, in which the synthesis of individual
mRNA transcripts [207] and individual protein molecules [208] could be detected. The
systems in these studies were very similar to that studied here: a gene under the control
of a (Lac) repressor. These studies unambiguously demonstrated that mRNA produc-
tion [207] and protein synthesis can occur in bursts [208]. Of particular interest is the
pulsatile transcription, which has been observed in experiments by Golding et al. [207]
and in our simulations, but not in the experiments of Yu et al. [208]. We therefore address
the question whether our analysis on transcription initiation in Section 6.7.2 can reconcile
these observations. Transcription occurs in bursts if a) the operator is mostly in the re-
pressed state, meaning that the repression strength f must be large; b) when the operator
is in the derepressed state, more than one transcript is formed; this means that transcrip-
tion initiation must be sufficiently fast as compared to repression-DNA association (see
also Eq. (6.25)). In our simulations and in the Lac system studied by Yu et al. [208], the
repression strength is indeed large, f ≈ 100. With a typical in vivo repressor concentration
of [RT] ≈ 20nM (NR = 10), the average repressor-DNA association rate, in the presence
of RNAP, is k′fR[RT][O]′ ≈ 0.1s−1 (see the reaction scheme in Eq. (6.25)). The rate of
open complex formation of the lac promoter has been measured to be on the order of
0.1s−1 [187]. Hence, in the Lac system approximately one mRNA molecule is produced
per gene expression event. This is consistent with the observations of Yu et al. [208, 209].
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The observed burst-like protein production in these experiments is indeed due to the fact
that more than one protein is formed from one mRNA transcript [208, 210, 21]. The re-
pression strength, open complex formation rate, and repressor-DNA (un)binding rates for
the system studied by Golding et al. are not known in similar detail [207], but, clearly, the
observed pulsatile production of mRNA must mean that the repressor-DNA association
rate is sufficiently slow as compared to the open complex formation rate.

The spatial fluctuations due to diffusion of the repressor molecules could have signifi-
cant implications for the functioning of gene regulatory networks. Under some conditions,
it might be crucial that the protein number is not only low on average, but remains low
at all times. For instance, if the protein itself functions as a transcription factor, it might
by accident induce the expression of another gene, when, due to a fluctuation, its concen-
tration crosses a particular activation threshold. Thus, not all combinations of repressor
copy number NR and repressor backward rate kbR that obey Eq. (6.14) and thus have the
same average repression strength, are necessarily equivalent in terms of function when
diffusion is taken into account. If the fluctuations in the repressed state need to be small,
then the cell could increase the number of repressors and decrease the binding affinity to
the operator site, such that the repressor molecules stay bound to the DNA only briefly.
Alternatively, the cell could minimise the effect of fluctuations by reducing the rate at
which the open complex is formed by RNAP – our analysis shows that the process of
open complex formation can act as a strong low-pass filter.

The rapid rebindings observed in our simulations are a general phenomenon. How-
ever, the requirement for a specific orientation of the reactants could reduce the intrinsic
association rate, and therefore limit the number of rebindings. In order to account for this
effect, the GFRD scheme could be extended to explicitly include molecule orientations
[41]. Alternatively, one could treat reorientations at a mean-field level, computing the
the mean time the protein takes to find the right orientation and renormalise the associ-
ation rate at contact ka accordingly: we leave a quantitative study for future work. We
now address the question of when the effect of spatial fluctuations due to diffusion can
be described by a well-stirred model in which the association and dissociation rates are
renormalised. In the current problem, the rebinding time for a dissociated repressor is
exceedingly short. As a consequence, the probability that a RNAP binds to the promoter
during this time, is vanishingly small. This is precisely the reason that the effective disso-
ciation rate is simply the bare dissociation rate divided by the number of rebindings (see
Eq. (6.18)); the effective association rate is renormalised accordingly, because the equilib-
rium constant should remain unchanged (see Eq. (6.19)). The success of the renormalised
well-stirred model is thus a result of the strong separation of time scales – the time scale
of repressor rebinding is well separated from that of RNAP binding. In fact, because of
this strong separation of time scales, one could argue that the states, in which a repressor
has just dissociated from the operator, should not be counted as unrepressed states, but
rather as states that belong to the ensemble of microscopic states that together form the
mesoscopic repressed state.

The separation of time scales also makes it possible to account for the effect of spatial
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fluctuations by renormalising the association and dissociation rates in other cases. For
instance, we have simulated a system in which repression occurs in a cooperative manner
(data not shown). In this system, the repressor backward rate is smaller when two repres-
sors are bound to the operator than when a single repressor is bound. However, when
one of the two repressors dissociates, its rebinding time is so short that the probability for
the other repressor to dissociate in the mean time, is negligible for reasonable values of
cooperativity. As a result, the effect of spatial fluctuations can be described by a well-
stirred model with properly renormalised reaction rates. We have also studied a system in
which the expression of a gene is not under the control of a repressor, but rather under the
control of an activator. In this system, too, diffusion of the transcription factors leads to
an enhancement of noise in gene expression through a similar mechanism.

Do these observations imply that the effect of spatial fluctuations can always be de-
scribed by a well-stirred model? In the system studied here, the ligand (repressor) molecules
bind to a single site. We expect that the effect of spatial fluctuations becomes more intri-
cate when the number of binding sites for a particular ligand increases – the binding of
the ligand to the different sites closely located in the cell will then exhibit correlations.
This could be important when the ligand binds to receptors that occur in dense clusters, as
in bacterial chemotaxis [211, 212] and in the immune response [213]. In gene regulatory
networks this effect could also be significant. Recently, we have shown that in E. coli,
pairs of co-regulated genes – genes that are controlled by a common transcription factor –
tend to lie exceedingly close to each other on the genome [77]: their promoter regions are
often separated by a distance shorter than a few hundred base pairs. It is conceivable that
spatial fluctuations of the transcription factors introduce correlations between the noise in
the expression of these pairs of co-regulated genes. This study also revealed that pairs of
genes that regulate each other, often lie close together, again suggesting that the diffusive
motion of transcription factors could be important for the functioning of gene regulatory
networks [77].

Even in the case of a single gene, the effect of spatial fluctuations is expected to
be more complicated than that reported here. First and foremost, in this study we have
assumed that the repressor, RNAP and ribosome molecules diffuse freely through the cy-
toplasm. This is likely to be a gross assumption. In fact, it has recently been observed in
Bacillus subtilis that RNAP resides principally inside the nucleoid, while ribosomes are
localised almost exclusively outside the nucleoid [214], suggesting that transcription and
translation occur in separate spatial domains. Moreover, we have modeled the operator as
a spherical site. However, as mentioned in Section 6.2.1, transcription factors are believed
to find their operator site via a combination of free 3D diffusion and 1D sliding along the
DNA. While on length scales longer than the sliding distance this process is indeed essen-
tially 3D diffusion, on length and time scales shorter than the sliding distance and sliding
time, respectively, the dynamics is more complicated. We expect that sliding could have
two important effects. First, it will increase the number of rebindings – the probability
that in 1D a random walker returns to the origin is one, while in 3D there is a finite prob-
ability that it will escape and never return. Secondly, sliding is expected to also increase
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the duration of the rebindings, especially when diffusion along the DNA is much slower
than diffusion in the cytoplasm. It is thus likely that with sliding, the non-exponential re-
laxation of the operator state, arising from the rebindings, shifts to lower frequencies (see
Figure 6.5). Indeed, it is conceivable that with sliding, a dissociated repressor molecule
can compete with RNAP for binding to the promoter. Under these conditions, the effect
of spatial fluctuations might be detected experimentally in the statistics of the synthesis
of the individual mRNA molecules, which could be useful for unraveling the mechanism
and dynamics of transcription initiation. Importantly, we nevertheless expect that even
under these conditions, the mRNA noise strength (variance) can be described by a zero-
dimensional model, because the life time of the mRNA molecules, setting the time scale
for time averaging, is probably still longer than the duration of the rebinding trajecto-
ries. However, the effective rate constant for repressor-DNA dissociation might no longer
simply be given by the bare dissociation rate divided by the number of rebindings in the
absence of RNAP. Indeed, it will depend upon the spatial fluctuations of the repressor
molecules and their interplay with the RNAP-DNA association dynamics in a non-trivial
manner, and deriving it would probably require a spatially resolved model. We leave this
for future work.

Finally, we address the question whether spatial fluctuations, and, more in particular,
the rebindings, could be studied experimentally. Interestingly, recent biochemical data on
the restriction enzyme EcoRV suggests that after an initial dissociation, 10-100 rebind-
ings occur before the enzyme escapes into the bulk solution [196, 197], in good agreement
with the average number of rebindings calculated in Section 6.6. However, in our gene
expression model, the rebinding times are so short that it would seem difficult to probe the
repressor rebindings directly in an experiment. In fact, reaction rates measured biochem-
ically will probably already be corrected for according to Eqs. (6.16) and (6.17). Sliding
along the DNA, however, may extend the rebinding times to accessible experimental time
scales. Moreover, recent experiments suggest that the motion of proteins in the nucleoid
might be sub-diffusive, which would increase the importance of the rebindings [215].
Recently, magnetic tweezer experiments on a mechanically stretched, supercoiled, single
DNA have made it possible to study the kinetics of the open complex formation and pro-
moter clearance [187]. Performing these experiments in vitro on a promoter that is under
the control of a repressor, seems a promising approach for studying the effect of spatial
fluctuations due to the diffusive motion of transcription factors on the dynamics of gene
expression.
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Appendix A

Solving the dimerisation Master
Equation

Following the approach described in [68], the Master Equation for the reaction X +X 


X2, with rate constants kf for association and kb for dissociation, with system volume
V , and given a total number or monomers+dimers nXT , where nXT = nX + 2nX2 , is the
following:

∂
∂t p(nX2 |nXT ) = kb(nX2 +1) p(nX2 +1|nXT )− (A.1)
[

kf(nXT −2nX2)(nXT −2nX2 −1)

2V + kbnX2

]

p(nX2 |nXT )+

kf(nXT −2nX2 +2)(nXT −2nX2 +1)

2V p(nX2 −1|nXT )

Eq. (A.1) can be solved numerically in steady state (starting from an initial guess nX2 =
0), to obtain the exact probability distribution for the number of dimers nX2 , for a given
total number nXT of monomers+dimers. The probability distribution for the monomer
number can be trivially obtained from the dimer distribution noting that p(nX |nXT ) =
nXT − 2p(nX2 |nXT ). Eq. (A.1) is solved for a range of values of nXT ; results are stored
in look-up tables, which are later used to compute effective propensities for the coarse-
grained simulations.
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Appendix B

Solving the operator binding Master
Equation

In the EO approach, instead of solving the macroscopic rate equation for operator binding,
one can solve the corresponding chemical Master Equation. However, as the operator
states can be present only in copy number 0 or 1, the state space is extremely limited, and
the solution of the Master Equation coincide with the solution for the rate equation.

The Master Equation for reactions (3.1b) is the following:

∂
∂t p(nA2 ,nB2) = (B.1)

− p(nA2 ,nB2)(konnOnA2 + konnOnB2)

− p(nA2 ,nB2)(koffnOA2 + koffnOB2

+ p(nA2 −1,nB2)koff(nOA2 +1)

+ p(nA2 ,nB2 −1)koff(nOB2 +1)

+ p(nA2 +1,nB2)kon(nO +1)(nA2 −1)

+ p(nA2 ,nB2 +1)kon(nO +1)(nB2 −1).

Only three states are possible: (O=1,A2,B2), (OA2=1,A2−1,B2) and (OB2=1,A2,B2−
1). This limited choice greatly simplifies Eq. (B.1):

p(nA2 ,nB2)kon(nA2+nA2) = (B.2)
p(nA2−1,nB2)koff+p(nA2,nB2−1)koff,

p(nA2 ,nB2−1) = p(nA2 ,nB2)konnB2 ,

p(nA2−1,nB2) = p(nA2 ,nB2)konnA2 .
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The solutions of Eq. (B.2) can be easily computed:

〈nO〉ME
Â2,B̂2

= p(nA2 ,nB2) =
1

1+(Kb
D)−1(nA2 +nB2)

, (B.3)

〈nOA2〉ME
Â2,B̂2

= p(nA2−1,nB2) =
(Kb

D)−1nA2

1+(Kb
D)−1(nA2 +nB2)

,

〈nOB2〉RE
Â2,B̂2

= p(nA2 ,nB2−1) =
(Kb

D)−1nB2

1+(Kb
D)−1(nA2 +nB2)

.

152



Appendix C

Computing Power Spectra

The power spectrum of the time trace of the copy number X(t) of a species X can be
efficiently computed by exploiting the fact that in between the times tk the signal X(t) is
constant. The Fourier Transform SX(ω) of X(t) is

X̃(ω) =
Z

X(t)e−iωtdt = ∑
k

Z tk

tk−1
Xke−iωtdt. (C.1)

As X(t) is constant within every interval {tk−1, tk}, the integration can easily be per-
formed:

X̃(ω) = ∑
k

Xk
1

−iω(e−iωtk − e−iωtk−1). (C.2)

Shifting up by one the index j in the second part of the sum, we obtain:

X̃(ω) =
1
iω ∑

k
(Xk+1 −Xk)(e−iωtk). (C.3)

The real and imaginary parts of the Fourier Transform are thus:

ℜ[X̃(ω)] =
1
ω ∑

k
δk(sinωtk) (C.4)

ℑ[X̃(ω)] =
1
ω ∑

k
δk(cosωtk), (C.5)

where we have defined δk = Xk+1 − Xk. The Power spectrum SX(ω) = ℜ[X̃(ω)]
2
+

ℑ[X̃(ω)]
2 is thus given by

SX(ω) =

(

1
ω ∑

k
δk cos(ωtk)

)2

+

(

1
ω ∑

k
δk sin(ωtk)

)2

. (C.6)

The Fourier Transforms were computed at 10000 logarithmically spaced angular fre-
quencies starting from ωmin = 10 ·2π/T , where T is the total length of the signal. Power
spectra obtained according to Eq. (C.6) were filtered with a box average over 20 neigh-
boring points.
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Appendix D

Derivation of g(r)

To compute the integral of equation (5.18):

g(r) =
1

(πσ2)3/2

Z R

0
r′2dr′

Z π

0
sinθdθ

Z 2π

0
dϕ exp

(

−r′2 −2rr′ + r2

σ2

)

, (D.1)

where σ2 = 4D∆t.
Elementary methods can now be used: integration over the angular variables yields

g(r) =
1√
πσ2

exp
(

−r2/σ2)

r

Z R

0

[

exp
(

−r′2 −2rr′
σ2

)

− exp
(

−r′2 +2rr′
σ2

)]

r′ dr′.
(D.2)

Finally, integrating over r′ gives

g(r) =
σ√
π

1
2r

[

exp
(

−(r +R)2

σ2

)

− exp
(

−(r−R)2

σ2

)]

+ (D.3)

+
1
2

[

erf
(−r+R

σ

)

− erf
(−r

σ

)

+ erf
(

r+R
σ

)

− erf
( r

σ

)

]

,

where
erf(x) =

2√
π

Z x

0
et2/2dt.
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Appendix E

Reaction set for the bacteriophage λ
model

Here we list the reactions used in the basic model for the bacteriophage λ genetic switch in
Chapter 4. OXYZ represents the main operator, with molecule X bound to OR3, molecule
Y bound to OR2 and molecule Z bound to OR1. {X,Y,Z}={0,C,R,Rp}, where 0 represents
a free binding site, R a cI dimer, C a cro dimer, and Rp an RNA polymerase molecule.
This last molecule binds either to OR3 or to OR1 and OR2 together. McI and Mcro stand,
respectively, for cI and cro mRNAs.

cI + cI 
 cI2 cro + cro 
 cro2
O000 + cI2 
 OR00 O000 + cI2 
 O0R0
O000 + cI2 
 O00R O000 + cro2 
 OC00
O000 + cro2 
 O0C0 O000 + cro2 
 O00C
O000 + Rp 
 ORp00 O000 + Rp 
 O0Rp
OR00 + cI2 
 ORR0 OR00 + cI2 
 OROR
OR00 + cro2 
 ORC0 OR00 + cro2 
 OR0C
OR00 + Rp 
 ORRp O0R0 + cI2 
 ORR0
O0R0 + cI2 
 O0RR O0R0 + cro2 
 OCR0
O0R0 + cro2 
 O0RC O0R0 + Rp 
 ORpR0
O00R + cI2 
 OROR O00R + cI2 
 O0RR
O00R + cro2 
 OC0R O00R + cro2 
 OOCR
O00R + Rp 
 ORp0R OC00 + cI2 
 OCR0
OC00 + cI2 
 OC0R OC00 + cro2 
 OCC0
OC00 + cro2 
 OC0C OC00 + Rp 
 OCRp
O0C0 + cI2 
 ORC0 O0C0 + cI2 
 O0CR
O0C0 + cro2 
 OCC0 O0C0 + cro2 
 O0CC
O0C0 + Rp 
 ORpC0 O00C + cI2 
 OR0C
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O00C + cI2 
 O0RC O00C + cro2 
 OC0C
O00C + cro2 
 O0CC O00C + Rp 
 ORp0C
ORp00 + cI2 
 ORpR0 ORp00 + cI2 
 ORp0R
ORp00 + cro2 
 ORpC0 ORp00 + cro2 
 ORp0C
ORp00 + Rp 
 ORpRp O0Rp + cI2 
 ORRp
O0Rp + cro2 
 OCRp O0Rp + Rp 
 ORpRp
ORR0 + cI2 
 ORRR ORR0 + cro2 
 ORRC
OROR + cI2 
 ORRR OROR + cro2 
 ORCR
O0RR + cI2 
 ORRR O0RR + cro2 
 OCRR
O0RR + Rp 
 ORpRR ORC0 + cI2 
 ORCR
ORC0 + cro2 
 ORCC OR0C + cI2 
 ORRC
OR0C + cro2 
 ORCC OCR0 + cI2 
 OCRR
OCR0 + cro2 
 OCRC OC0R + cI2 
 OCRR
OC0R + cro2 
 OCCR O0CR + cI2 
 ORCR
O0CR + cro2 
 OCCR O0RC + cI2 
 ORRC
O0RC + cro2 
 OCRC O0RC + Rp 
 ORpRC
OCC0 + cI2 
 OCCR OCC0 + cro2 
 OCCC
OC0C + cI2 
 OCRC OC0C + cro2 
 OCCC
O0CC + cI2 
 ORCC O0CC + cro2 
 OCCC
O0CC + Rp 
 ORpCC ORpR0 + cI2 
 ORpRR
ORpR0 + cro2 
 ORpRC ORp0R + cI2 
 ORpRR
ORp0R + cro2 
 ORpCR ORpC0 + cI2 
 ORpCR
ORpC0 + cro2 
 ORpCC ORp0C + cI2 
 ORpRC
ORp0C + cro2 
 ORpCC
ORp00 → O000 + Rp + McI ORpR0 → O0R0 + Rp + McI
ORp0R → O00R + Rp + McI ORpC0 → O0C0 + Rp + McI
ORp0C → O00C + Rp + McI ORpRR → O0RR + Rp + McI
ORpCR → O0CR + Rp + McI ORpRC → O0RC + Rp + McI
ORpCC → O0CC + Rp + McI ORpRp → O0Rp + Rp + McI
O0Rp → O000 + Rp + Mcro ORRp → OR00 + Rp + Mcro
OCRp → OC00 + Rp + Mcro ORpRp → ORp00 + Rp + Mcro
McI → McI + cI Mcro → Mcro + cro
McI → 0 Mcro → 0
cI → 0 cro → 0
cI2 → 0 cro2 → 0
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Summary

Si el Señor Todopoderoso me hubiera consultado
ante de embarcarse en la Creación,

le habria recomendado algo más simple.
(Attributed to) Alfonso X (Alfonso el sabio)

Even the simplest forms of life must able to detect changes in the environment, adapt
to new conditions and take decisions to optimize their survival. Bacteria, small organisms
typically composed of a single prokaryotic cell, carry out these tasks by means of net-
works of biomolecules that interact chemically and physically. Some genes are used by a
cell only under some particular conditions. The networks of protein-protein and protein-
DNA interactions regulating the expression of genes in a cell called genetic networks.
Genetic networks are found in all living cells. However, bacterial genetic networks are
often much less complex than their equivalent in eukaryotic cells, and therefore stand out
as an ideal starting point for investigating their behavior. The functioning of the networks
must in general be very precise to avoid potentially lethal mistakes. Nevertheless, some
bacterial genetic networks operate with very low concentrations of reactants, and are thus
exposed to a strong molecular noise, which can in principle hamper the functioning of the
network, and lead to less precise responses.

This Thesis investigates the effect of fluctuations on small genetic networks, by means
of numerical methods. The analysis aims to highlight general properties of these net-
works, stemming from simple physicochemical assumptions (i.e. proteins move in a bac-
terial cell primarily by diffusion). In order to pursue this goal, coarse-grained stochastic
models are simulated up to physiological time scales, neglecting the molecular details of
the reactants. It has to be noted that most commonly-used soft matter numerical tech-
niques are either not able to properly assess the effect of all the sources of fluctuations,
or they are not efficient enough to guarantee a proper sampling of the interesting events.
Therefore, in this Thesis, novel numerical techniques, partially developed by the author,
are exploited.
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In Chapter 1, a history of genetics is presented, with particular emphasis on the his-
torical evolution of the relevant questions that pushed the scientific research ahead. To
introduce the rest of the thesis, emphasis is put on the concept and mechanisms of gene
regulation: some proteins can help the cell to modulate the expression of genes and turn
them off when they are not needed. Recently, the regulatory relations between proteins
and genes have been schematised in the form of networks, made of nodes and links. A
statistical analysis of the genetic regulatory network for the bacterium E. coli reveals that
some particular subgraphs are greatly overrepresented with respect to a randomised ver-
sion of the same network. These subgraphs, indicated as motifs, have been found to
carry specific functional roles. The molecules arranged in some of the motifs are present
in concentrations as low as in the nanomolar range, which corresponds to a handful of
molecules per bacterial cell. The biochemical reactions undergone by these molecules
display then a stochastic behavior, due to the erratic behavior of the reactants and from
the intrinsic randomness in the reactive events. Standard numerical techniques are not
able to efficiently deal with both sources of fluctuations at the same time. In this Thesis,
the Green’s Function Reaction Dynamics (GFRD) technique is used to assess effects of
spatial fluctuations on the dynamics of a gene under the control of a repressor, which can
be considered the simplest possible motif. Moreover, if one is interested in characterising
some rare event, the sampling cannot be done efficiently without some special algorithm,
which in our case needs to apply to systems out of equilibrium. In this work, the novel
Forward Flux Sampling (FFS) method is used to sample rare events in a model genetic
switch and in a model of the bacteriophage λ genetic switch.

In Chapter 2, the dynamics of a model exclusive genetic switch is investigated. This
simple genetic network has two deterministic stable states, and it can spontaneously flip
from one to the other by means of stochastic fluctuations. The switch is formed by two
divergently-transcribed genes under the control of the same DNA sequence (the opera-
tor). Each gene product can dimerise and bind to the operator to shut the other gene
down. The switch is then characterised by three sets of reactions: birth/death of proteins,
protein-protein interactions (dimerisations) and protein-DNA interactions (operator bind-
ing). The switching events are both rare and fast compared to the mean residence times
in the stable states, and FFS is used to sample them efficiently. The switching rate is
computed, and its variations as a function of the rate of protein-protein and protein-DNA
reactions are characterised. Interestingly, the switching rate decreases if the time scales
of fluctuations in DNA binding reactions become shorter, whereas it increases if the time
scales of fluctuations in protein-protein interactions become shorter. This difference can
be understood if the switching rate is factorised by a kinetic prefactor times the probability
of being on the surface dividing the two basins of attraction, in analogy with equilibrium
systems. It is shown that varying the dimerisation rates changes only the first contribution,
while varying the operator binding rates change both factors. This result is elucidated by
a sampling of the switching pathways as a function of several order parameters: changing
the rate of DNA binding can drastically change the location of the switching paths, while
varying the rate of dimerisation does not change the path locations, but only affects the
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speed these paths are travelled.
The model switch displays fluctuations on several time scales. When some of the re-

actions become very fast, the simulation of the system becomes increasingly inefficient. It
would therefore be desirable to integrate out some fast degrees of freedom of the switch,
while preserving its equilibrium and dynamical properties. In Chapter 3, several dy-
namical coarse-graining techniques are applied to the model genetic switch described in
Chapter 2. Protein-protein and protein-DNA reactions are integrated out either singularly
or together, with techniques solving either the macroscopic rate equation or the chemi-
cal master equation of the system. All these techniques work well when reproducing the
steady-state probability distribution of the switch. However, the macroscopic approach
always leads to the wrong result when computing the fluctuation-driven switching rate
(obtained with FFS): the switch works with a low number of molecules, and a mean-field
treatment leads to large errors. Therefore, only protein-protein interaction can be safely
integrated out, using a master equation-based approach; fluctuations in protein-DNA re-
actions are essential to achieve the transition and can not be removed.

In Chapter 4, we use the results of the previous Chapters to compute the spontaneous
switching rate of a real biological system: the bacteriophage λ. This virus infects the
bacterium E. coli and can enter one of two alternative stable states: it either integrates its
genome on the host chromosome and stays dormant for many host generations (lysogenic
pathway), or it replicates as much as possible, killing the host and releasing the progeny
(lytic pathway). Since the system is subject to molecular noise, spontaneous transitions
between the states should be expected. However, the spontaneous switching rate from
the lysogenic state is extremely low, for reasons that have not been yet understood. Sev-
eral modelling attempts, based on equilibrium assumptions, have computed this rate and
overestimated the measured value by several order of magnitudes. Phage λ being one of
the best characterised systems in molecular biology, the large quantity of available data is
exploited to build a fully stochastic model of the core genetic network keeping the system
in either of the two mutually excluding pathways. With FFS, a spontaneous switching
rate of ∼ 10−15s−1, that is ∼ 10−12 per generation per cell is measured. This result is
compatible with experimental measurements, which provide an upper bound of ∼ 10−9

per generation per cell. Furthermore, the effects of macromolecular crowding within the
cell are investigated: the caging effect around bound complexes could significantly shift
chemical equilibria as measured in vitro, and increase the stability of the lysogenic state.
Finally, a DNA loop, able to mechanically “lock” the lysogenic state has recently been
observed. The model is extended to incorporate these additional features, to show that the
spontaneous switching rate decreases by several orders of magnitude.

Brownian Dynamics algorithms are used to simulate chemical and biological systems
in time and space. However, when reactions are included, a violation of the detailed bal-
ance rule could introduce systematic errors in the simulation. Chapter 5 describes a Brow-
nian Dynamics algorithm which rigorously obeys detailed balance. Stringent tests reveal
that the algorithm is able to reproduce the equilibrium properties of a simple reaction-
diffusion system, and its dynamics for small enough time steps. The algorithm is applied
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to a “push-pull” network where two antagonistic enzymes covalently modify a substrate.
The diffusion of the reactants can strongly reduce the gain of the response curve for this
network.

The diffusive behavior of regulating molecules can strongly increase the noise in pro-
tein production. In Chapter 6, the effects of spatial fluctuations of a repressor molecule
on the regulation of a gene are investigated with the GFRD scheme. This method is able
to highlight a purely spatial effect: the possibility of multiple fast rebindings of the re-
pressor molecule due to the proximity to its reaction site after dissociation. Therefore,
the repressor turns the gene on and off on time scales much longer than its reaction rates
would suggest. As a result, the noise in gene expression is substantially increased when
the repressor is found at low concentrations. However, the time scales of these rebind-
ings are so short that an RNA polymerase cannot effectively initiate the transcription of
the gene during the time between two consecutive rebindings. This time scale separation
between the repressor rebindings and RNA polymerase associations can be exploited to
account for the effects of spatial fluctuations via a simulation in which space is absent,
but reaction rates are suitably renormalised. Finally, a frequency analysis of the system
highlights how the slow dynamics of proteins makes the network behave like a low-pass
filter.
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Sintesi

È una Via Crucis.

Questo libretto illustra e certifica il lavoro da me svolto durante il mio dottorato al-
l’Istituto di Fisica Atomica e Molecolare (AMOLF) di Amsterdam. Essendo la comunità
scientifica (e ormai il mondo tutto intero) obbligata ad utilizzare la lingua di Albione,
o qualche sua grezza storpiatura, per comprendersi senza ambiguità, esso è quasi in-
teramente redatto in lingua inglese. Fortunatamente, la magnanimità dell’Università di
Amsterdam permette ai suoi pupilli di dedicare qualche pagina nella lingua materna del
candidato dottore ad un riassunto dei contenuti di tale libretto.

Tutti noi conosciamo qualche coppia di fratelli gemelli. Qualcuno di noi si sarà im-
battuto in alcune di tali coppie i cui elementi presentano un’impressionante somiglianza
fisica. In questo caso i gemelli sono detti omozigoti: nella parte più intima di ogni singola
cellula di ambedue le persone è conservata e custodita gelosamente una copia, identica,
di una lunga molecola a doppia spirale, stivata con cura come un microscopico gomito-
lo: l’acido deossiribonucleico, comunemente noto come DNA. Eppure, vi sarà capitato
di parlare con le mamme di tali fratelli gemelli, le quali invariabilmente ripeteranno: “di
carattere, non potrebbero essere più diversi!”. Ad un’analisi minuziosa, inoltre, piccole
differenze fra i due germani risulteranno presto evidenti, tanto da renderli perfettamente
distinguibili ad un occhio allenato. Come sono possibili queste differenze, morfologiche o
più sottili, se l’informazione contenuta nei due ovuli fecondati era esattamente la stessa al
momento del concepimento? C’è quindi qualcos’altro che regola e dirige la formazione
del feto e successivamente della persona umana oltre al DNA? Questo è uno dei tipici
problemi della genetica moderna, e non richiede l’invocazione della presenza di Dio per
essere risolto, ma solo molta pazienza, creatività, tempo, e un laboratorio ben finanziato,
dotato di apparecchiature moderne.

Molti lettori si ricorderanno che mi sono laureato in Fisica; qualcuno si ricorderà
perfino di avermi sentito parlare di mercati finanziari nel periodo della mia tesi di laurea.
Ebbene, cosa c’entrano adesso i gemelli, il DNA, la genetica? C’entrano, c’entrano. An-
cor prima di iniziare a studiare Fisica, mi venne ricordato come una delle qualità peculiari
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del fisico fosse la sua duttilità. Si impara la struttura degli atomi e dei cristalli, la Mec-
canica Quantistica e quella Statistica, ma quello che più resta è la capacità di affrontare
e risolvere con mentalità analitica e quantitativa problemi complessi, misurarsi ed esplo-
rare realtà ignote, gestire rapidamente grandi quantità di dati e conoscenze. Per questo,
molti bravi fisici fanno una brillante carriera in campi quali la consulenza, la finanza o la
gestione aziendale. Nel mio caso, però, l’analogia è più profonda. Da sempre mi sono
interessato agli effetti che le fluttuazioni possono avere sul comportamento di un sistema,
sia esso appartenente alla tradizionale termodinamica, oppure ad altre diramazioni della
scienza: l’andamento di un mercato finanziario, per esempio, oppure l’interno di una cel-
lula. Il movimento della polvere di farina sull’acqua, l’andamento irregolare di un’azione
in Borsa, il rumore di fondo di una radio, sono tutti effetti di fenomeni interessati da
fluttuazioni: la parola “rumore” ne è spesso considerata un sinonimo dagli addetti ai la-
vori. Tali fluttuazioni sono parzialmente responsabili della diversità di organismi dotati
di un identico corredo genetico, come i gemelli omozigoti. Nonostante il loro carattere
intrinsecamente aleatorio, tali fluttuazioni possono essere caratterizzate statisticamente,
cioè calcolando le loro proprietà medie e le loro deviazioni da tali medie. Questa intera
Tesi rigurgita di probablità, loro distribuzioni e proprietà. Le tecniche utilizzate per ana-
lizzare queste fluttuazioni sono molteplici, e si avvalgono di calcoli analitici (quelli che
si fanno con carta e penna), oppure di simulazioni al calcolatore, dove un codice di pro-
grammazione viene “fatto girare” per ore ed ore (spesso per giorni o settimane) su una o
più macchine, simulando così il comportamento di un sistema complesso le cui equazioni
sono troppo difficili da risolvere “a mano”. In questa Tesi, ho prevalentemente utilizzato
tecniche del secondo tipo.

Per entrare ora più propriamente nel vivo della mia Tesi, sono costretto ad introdurre
qualche essenziale concetto di biologia molecolare. Le tecniche della mia ricerca, infat-
ti, sono sì derivate dalla fisica, ma l’oggetto è biologico; la intima fusione di questi due
punti di vista è alla base della disciplina all’interno della quale la mia ricerca si colloca:
la biofisica. Tutti sappiamo che alcune regioni del DNA sono chiamate geni, i portatori
dell’informazione genetica. In generale, non si sa con precisione dove tali geni siano loca-
lizzati sulla doppia elica; di certo si sa che tali pezzi di DNA contengono l’informazione
che serve alle cellule per sintetizzare le nostre proteine. Tali proteine ci permettono di
costruire il nostro corpo, organizzarlo in strutture più complesse come cellule, tessuti e
organi, ed espletare tutte le funzioni vitali. È interessante notare come nella specie umana
i geni, e quindi le proteine, siano circa 30000 e rappresentino solo l’1% del DNA. La fun-
zione dell’altro 99% non è al momento conosciuta. Ognuno di noi produce una versione
“personalizzata” delle proprie 30000 proteine, riflettendo la nostra diversità di persone
umane. Tuttavia, esse risultano estremamente simili da individuo ad individuo, allo stes-
so modo in cui ogni essere umano ha due braccia, due gambe, una testa, e così via. Il
prossimo concetto fondamentale è che non tutte le cellule hanno sempre bisogno di tutte
le proteine possibili. Visto che la loro produzione ha un costo, una cellula si sforzerà
di evitare di produrre le proteine che non servono. Chiaramente, alcune proteine legate
ad attività “di base” come la produzione di energia o la duplicazione del DNA verranno
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espresse in tutte le cellule; tuttavia, è altresì evidente che le proteine di cui ha bisogno
una cellula neuronale saranno in gran parte diverse da quelle necessarie per il corretto
sviluppo di una cellula di un muscolo, o della pelle. Si stima che nella specie umana circa
la metà delle nostre proteine siano utilizzate solo durante lo sviluppo embrionale, e mai
più utilizzate durante la nostra vita extrauterina.

Si evidenzia quindi la necessità di regolare l’espressione dei geni e dunque la pro-
duzione delle proteine. Ogni cellula utilizza diverse strategie, tutte volte al conseguimento
di tale obiettivo. E qui le cose iniziano a farsi complicate. La regolazione genetica negli
organismi superiori, come i mammiferi, si avvale di meccanismi estremamente complessi
e interdipendenti, il cui studio non può essere condotto prescindendo dal contesto in cui
la cellula vive, e sui quali si conosce molto poco (è questa infatti una delle ragioni della
nostra relativa ignoranza e impotenza di fronte ai casi di tumore). Sfoderando un affilato
rasoio di Ockham, operiamo dunque un radicale taglio alla complessità dell’organismo
la cui regolazione genetica vogliamo studiare. Dagli organismi superiori scendiamo ad
esseri più semplici come i comuni lombrichi, giù giù fino a forme di vita microscopiche
composte da una sola cellula, come il lievito di birra, fino ad arrestarci ai più semplici
organismi autonomi conosciuti: i batteri. Anch’essi formati da un’unica cellula, essa è
però di un tipo particolarmente semplice, detto procariote, mancante cioè di molti degli
apparati e compartimenti presenti nelle cellule superiori, o eucarioti, presenti nel nostro
corpo. I batteri sono piccoli (nel punto alla fine di questa frase se ne possono contare
fino a mezzo milione) e relativamente rudimentali, nondimeno costituiscono una delle più
robuste forme di vita, in grado di sopravvivere in qualsiasi condizione ambientale. È sor-
prendente apprendere che nel nostro organismo, ci sono all’incirca 10 volte più batteri,
appartenenti a circa 200 specie diverse, che cellule umane; tuttavia, essendo i primi così
piccoli e leggeri, non riescono a far pesare eccessivamente la loro preponderanza. In ques-
ta Tesi, quando parleremo di batteri, ci riferiremo costantemente alla specie di gran lunga
più popolare nella comunità scientifica, dato il suo prestarsi paziente ad ogni tipo di tor-
tura in laboratorio: il batterio Escherichia coli, che vive abbondante nel nostro intestino,
produce alcune vitamine, e ci aiuta a completare la digestione.

Anche i batteri hanno bisogno di regolare i loro geni; il modo in cui li regolano è
però molto più semplice che nelle cellule eucarioti: generalmente il batterio produce una
proteina che si lega al DNA in corrispondenza dell’inizio del gene, e lo blocca. L’azione
di bloccaggio è puramente meccanica: la produzione di un gene inizia con l’arrivo di
una grossa molecola, chiamata RNA polimerasi, che apre la doppia elica e scorre come
una cerniera, creando una copia del gene. Se una proteina blocca fisicamente l’inizio
del gene, questo processo non può avvenire, e la proteina codificata nel gene non viene
espressa. Oltre a questo semplice meccanismo, molti altri sono possibili. Quasi tutti
coinvolgono l’utilizzo di proteine (codificate quindi anch’esse da qualche parte sul DNA)
per regolare l’espressione di altre proteine. Questo insieme di relazioni di regolazione tra
geni e proteine può essere visualizzato come una rete, un grafico dotato di punti e frecce
che li collegano. Nella mia Tesi, ho analizzato in grande dettaglio alcuni componenti
essenziali di queste reti: è infatti dimostrato che, almeno per i batteri, l’elevato livello di
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complessità delle reti è ottenuto con la ripetizione di alcune sottoreti semplici dette motivi,
collegati fra di loro in architetture via via più complicate, esattamente come succede in un
circuito elettrico, dove elementi come resistenze, condensatori, induttanze e amplificatori
sono combinati per ottenere radio, motori, o altri dispositivi elettrici o elettronici.

Chiudendo il circolo aperto qualche pagina fa, durante il mio Dottorato, mi sono in-
teressato in particolare di come le fluttuazioni possano interferire con il funzionamento
di queste “reti genetiche”, che deve essere il più possibile preciso, pena lo sviluppo di
comportamenti aberranti e spesso la morte del batterio. È importante capire che queste
fluttuazioni possono avere origini diverse: gran parte della Tesi è dedicata a capire quali
di queste fluttuazioni siano importanti e quali no per il funzionamento di alcuni motivi. Le
proteine a cui siamo interessati si muovono nella cellula per diffusione, esattamente come
fanno le particelle colorate di una goccia di vino rosso in un bicchiere d’acqua. Il moto
disordinato delle proteine, è una di tali sorgenti di rumore; la loro presenza, spesso, in un
numero infimo, inasprisce questo ed altri effetti, amplificando le deviazioni del sistema
rispetto al suo comportamento medio. Nel Capitolo 6 di questa Tesi, l’importanza del
comportamento diffusivo di proteine regolatrici è accuratamente quantificato, rivelandosi
la principale fonte di fluttuazioni nel sistema. Per ottenere questo risultato, ho utilizzato
un algoritmo nuovo, che ho contribuito a sviluppare, chiamato Green’s Function Reaction
Dynamics. Tale metodo, estremamente complicato, permette di risolvere tutta una serie
di problemi tecnici utilizzando la soluzione analitica del problema di reazione-diffusione
per una coppia di particelle, e assicurandosi che un problema di qualsiasi grado di com-
plicazione venga ridotto ad una somma di problemi a uno e due corpi. Un algoritmo più
tradizionale, detto di Dinamica Browniana, viene spesso usato per risolvere problemi di
reazione-diffusione. Tuttavia, come è dimostrato nel Capitolo 5, una frettolosa imple-
mentazione di tale schema può condurre a errori sistematici, inficiando il risultato delle
simulazioni. Per ottenere risultati corretti, bisogna prestare molta attenzione a non violare
la regola del bilancio dettagliato nei casi di reazioni reversibili. Nel Capitolo 5 ho indica-
to una semplice ricetta per evitare tali errori, ottenendo così un algoritmo rigorosamente
corretto anche se non particolarmente efficiente.

Il Capitolo 1 ha la funzione di introdurre, spero godibilmente, la storia della genetica,
l’evoluzione delle questioni scientifiche che hanno diretto lo sviluppo di questo campo a
partire da Darwin fino a giorni nostri, il concetto di regolazione genetica che ho cercato
rudimentalmente di rivisitare in queste pagine, l’oggetto della Tesi (le reti genetiche) e
una rassegna dei principali metodi, vecchi e nuovi, utilizzati da me e dagli altri addetti ai
lavori per studiare i sistemi biochimici soggetti a fluttuazioni. I Capitoli 2 e 3 sono invece
un crescendo di risultati su un altro importante elemento costituente le reti di regolazione
genetica nei batteri: l’interruttore genetico. Esso funziona in maniera esattamente analoga
ad un interruttore elettrico: commuta stabilmente tra due stati alternativi (acceso/spento).
Gli stati di cui parliamo in questo contesto si riferiscono ai livelli di due diverse proteine,
che possono essere, rispettivamente, alto per la prima e basso per la seconda, o viceversa,
ma mai entrambi alti o bassi. Fisicamente, tale meccanismo è ottenuto giustapponendo
due geni sul DNA e inserendo una regione di regolazione in comune fra di loro. Le
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fluttuazioni presenti nel sistema inducono transizioni spontanee fra i due stati, esattamente
come una pallina posta in una terrina da insalata che vibri vigorosamente, prima o poi
ne esce. Il mio lavoro in questo caso è stato quello di caratterizzare esattamente quali
fluttuazioni sono responsabili per queste transizioni spontanee, e in quale misura; come
esattamente avvengano i processi di transizione; quale sia la frequenza delle transizioni e
come essa cambi al variare delle condizioni del sistema. Siccome tali transizione sono sia
rare sia molto rapide, per caratterizzarle adeguatamente, ho utilizzato un altro algoritmo
originale, che ho contribuito a sviluppare, chiamato Forward Flux Sampling.

Tutto questo corpo di conoscenze che ho accumulato su un semplice modello di inter-
ruttore genetico sono state sfruttate, nel Capitolo 4, per dare l’assalto alla modellizzazione
di un famigerato sistema reale: il batteriofago λ. Tale organismo è un virus infettante, tan-
to per cambiare, il batterio E. coli, ed utilizza un interruttore genetico per scegliere quale
comportamento tenere una volta penetrato all’interno di una cellula batterica. Il virus può
infatti moltiplicarsi enormemente e distruggere l’organismo ospite, oppure può inserire il
DNA virale in quello dell’ospite, e rimanere quiescente per molte generazioni, diffonden-
dosi nella popolazione batterica, pronto a distruggere il proprio ospite quando esso speri-
menti una situazione di stress. Il fago λ è ben noto alla comunità dei biologi molecolari,
poiché proprio studiandolo sono nati il concetto di regolazione genetica e una buona parte
della biologia molecolare moderna. La grande quantità di esperimenti condotti sul fago
hanno portato ad una sua caratterizzazione estremamente accurata, ben oltre gli standard
di un generico sistema biologico. Tuttavia rimane ancora misteriosa una delle proprietà
di tale semplice organismo: l’estrema stabilità del suo stato quiescente, altrimenti detto
lisogenico. Diversi modelli hanno cercato di stimare la frequenza di transizione spontanea
dell’interruttore del fago, ma sono tutti giunti ad una sovrastima, errata per diversi ordini
di grandezza. Nondimeno, tali modelli si reggono tutti su qualche ipotesi di equilibrio chi-
mico per alcune reazioni coinvolte nella regolazione dell’interruttore: assumere equilibrio
significa rimuovere fluttuazioni, e il nostro lavoro preliminare ci ha portati a concludere
che alcuni tipi di fluttuazioni non possono essere rimosse dal sistema senza snaturarne il
comportamento dinamico. Abbiamo quindi creato un modello completamente stocasti-
co, che ci ha permesso di ottenere una frequenza di transizioni spontanee finalmente nei
limiti dell’evidenza sperimentale (anch’essa, in verità, molto difficile da ottenere e ripro-
durre). Infine, abbiamo cercato di quantificare quali possano essere gli effetti di altre due
condizioni che potrebbero ulteriormente stabilizzare lo stato quiescente del virus: l’affol-
lamento dello spazio intracellulare e un anello del DNA. Il primo contributo si riferisce
alla grande quantità di macromolecole racchiuse dalla membrana cellulare, che rendono
lo spazio intracellulare molto diverso da una soluzione diluita. La presenza di tutti questi
agenti affollanti aspecifici creerebbe una pressione efficace che favorirebbe il mantenersi
di stati legati attraverso un “ingabbiamento” dei loro componenti, prevenendone la pos-
sibilità di una “fuga”. Nel nostro modello, tale effetto è incluso attraverso un adeguato
spostamento degli equilibri chimici dovuto a questa interazione da volume escluso. L’al-
tra condizione deriva dalla presenza di un altro sito di regolazione del sistema, situato a
grande distanza sul DNA dai geni dell’interruttore: ad esso, proteine regolatrici si pos-
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sono legare, e interagire con il sito principale di regolazione piegando il DNA ad anello
(in realtà tale analogia visiva non è del tutto appropriata, dato che alle scale di lunghezza
che stiamo considerando, il DNA è completamente flessibile e assomiglia più as un piatto
di spaghetti che ad un anello di gomma). L’anello di DNA sigillerebbe lo stato quiescente
e contribuirebbe quindi alla sua grande stabilità. Nonostante la scarsezza di dati sul sito
ausiliario di regolazione, abbiamo incorporato l’anello nel nostro modello mediante una
serie di stime fisiche, e verificato che esso contribuisce a diminuire la frequenza di tran-
sizione spontanea di svariati ordini di grandezza.

Alcuni motivi presenti nelle reti genetiche batteriche sono dunque soggetti a forti flut-
tuazioni, radicate nell interazioni fisiche e chimiche fra le molecole biologiche che le
costituiscono. La mia analisi ha svelato che alcuni di tali motivi adottano strategie per fil-
trare questo rumore, in particolare quello ad alta frequenza, sfruttando la vita media delle
proteine (che è nell’ordine delle ore) come tempo di integrazione. Tuttavia, nel caso degli
interruttori genetici, le fluttuazioni, e in particolare quelle presenti nell’interazione tra
proteine regolatrici e DNA, possono, controintuitivamente, conferire maggiore stabilità
al sistema, e prevenire transizioni spontanee tra stati stazionari.
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Samenvatting

Zelfs de meest eenvoudige levensvormen moeten veranderingen in hun omgeving kun-
nen waarnemen, zich kunnen aanpassen aan nieuwe omstandigheden en beslissingen ne-
men die hun overlevingskansen maximaliseren. Bacteriën, kleine organismen die typ-
isch bestaan uit een enkele prokaryotische cel, doen dit door middel van netwerken van
biomoleculen die onderling zowel chemische als fysische wisselwerkingen hebben. Som-
mige genen worden door de cel alleen onder bepaalde omstandigheden gebruikt. De
netwerken van eiwit-eiwit- en eiwit-DNA-interacties die de expressie van genen in een
cel reguleren heten genetische netwerken. Genetische netwerken komen voor in alle lev-
ende cellen, maar bacteriële genetische netwerken zijn vaak veel minder complex dan
hun tegenhangers in eukaryotische cellen, en vormen daarom een ideaal startpunt om
het gedrag van deze netwerken te onderzoeken. De netwerken moeten zeer nauwkeurig
functioneren om mogelijk fatale vergissingen te voorkomen. Desondanks opereren som-
mige bacteriële netwerken met zeer lage concentraties van reactanten waardoor zij wor-
den blootgesteld aan sterke moleculaire ruis, wat in principe kan interfereren met het
functioneren van het netwerk.

Dit proefschrift onderzoekt het effect van fluctuaties op kleine genetische netwerken,
gebruik makend van numerieke methoden. De analyse tracht algemene eigenschappen
van deze netwerken te benadrukken, uitgaande van eenvoudige fysisch-chemische aan-
names (bijvoorbeeld dat eiwitten in een bacteriële cel voornamelijk bewegen door middel
van diffusie). Met dit doel worden vereenvoudigde stochastische modellen gesimuleerd
tot op fysiologische tijdsschalen, onder verwaarlozing van de moleculaire details van de
reactanten. Er moet opgemerkt worden dat de gebruikelijke numerieke methoden uit het
veld van de zachte materie ofwel niet in staat zijn om de effecten van alle bronnen van
fluctuaties te bepalen, ofwel niet efficiënt genoeg zijn om een goed sample van de inter-
essante gebeurtenissen te produceren. Om deze reden worden in dit proefschrift nieuwe
numerieke methoden toegepast, die mede door de auteur zijn ontwikkeld.

In hoofdstuk 1 wordt een korte geschiedenis van de genetica gepresenteerd, met een
bijzondere nadruk op de historische evolutie van de relevante vragen die hebben bijgedra-
gen aan de vooruitgang van het wetenschappelijke onderzoek. Ter introductie van de rest
van dit proefschrift wordt de nadruk gelegd op het concept en de mechanismes van gen-
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regulatie: sommige eiwitten kunnen de cel helpen bij het reguleren van de expressie van
genen en deze uitschakelen wanneer ze niet nodig zijn. Recentelijk zijn de regulerende
interacties tussen eiwitten en genen geschematiseerd in de vorm van netwerken, opge-
bouwd uit knooppunten en verbindingen. Een statistische analyse van het genetische reg-
ulatienetwerk van de bacterie E. coli heeft aan het licht gebracht dat bepaalde subgrafen
in hoge mate oververtegenwoordigd zijn in vergelijking met een willekeurig verbonden
versie van hetzelfde netwerk. Deze subgrafen, die worden aangeduid als motieven, bli-
jken specifieke functies te hebben. De concentraties van de moleculen die in sommige
van deze motieven voorkomen, zijn van de orde van een nanomolair, wat overeenkomt
met een handvol moleculen per bacteriële cel. De biochemische interacties tussen deze
moleculen zijn dus stochastisch van aard, vanwege de onvoorspelbare bewegingen van
de reactanten en de intrinsieke willekeurigheid van de reacties. De gangbare numerieke
methoden zijn niet in staat om beide soorten fluctuaties tegelijkertijd op een efficiënte
wijze te simuleren. In dit proefschrift wordt de Greense-functiereactiedynamicamethode
(GFRD) gebruikt om de effecten te meten die ruimtelijke fluctuaties hebben op de dynam-
ica van een gen onder controle van een repressor, wat als het meest eenvoudige motief kan
worden beschouwd. Bovendien, wanneer men geïnteresseerd is in het karakteriseren van
een zeldzame gebeurtenis, kan het samplen niet worden gedaan zonder een speciaal al-
goritme, dat in dit geval ook geldig moet zijn voor systemen buiten evenwicht. In dit
werk wordt een nieuwe methode met de naam Forward Flux Sampling (FFS) gebruikt om
zeldzame gebeurtenissen te samplen in een typische genetische schakelaar en een model
van de genetische schakelaar van bacteriofaag λ.

In hoofdstuk 2 wordt de dynamica van een typische genetische schakelaar onderzocht.
Dit eenvoudige genetische netwerk heeft twee deterministisch stabiele toestanden en het
kan spontaan schakelen tussen deze toestanden door middel van stochastische fluctuaties.
De schakelaar wordt gevormd door twee genen die divergent getranscribeerd worden en
via dezelfde DNA-sequentie worden aangestuurd (de operator). Elk van beide genpro-
ducten kan een dimeer vormen en in die vorm aan de operator binden om het andere
gen te onderdrukken. De schakelaar wordt dus gekarakteriseerd door drie typen reacties:
de geboorte en sterfte van eiwitten, eiwit-eiwit-interacties (dimerisatie) en eiwit-DNA-
interacties (het binden aan de operator). De schakelaar schakelt zelden, en doet dat snel
in vergelijking met de gemiddelde verblijfstijd in een van de stabiele toestanden, dus
wordt FFS gebruikt om ze efficiënt te samplen. De schakelfrequentie wordt berekend,
en de variatie daarvan als functie van de frequenties van de eiwit-eiwit- en eitwit-DNA-
reacties wordt gekarakteriseerd. Opvallend is dat de schakelfrequentie afneemt als de
tijdschaal van de fluctuaties in DNA-bindingsreacties afneemt, terwijl de schakelfrequen-
tie juist toeneemt als de tijdschaal van de fluctuaties van eiwit-eiwitreacties korter wordt.
Dit verschil kan worden verklaard als de schakelfrequentie wordt gefactoriseerd in een
kinetische voorfactor maal de waarschijnlijkheid om zich bovenop de “barrière” tussen
de twee aantrekkende bassins te bevinden, analoog aan systemen in evenwicht. Er wordt
aangetoond dat het variëren van de dimerisatiefrequenties alleen de eerste bijdrage ve-
randert, terwijl het variëren van de operatorbindingsfrequentie beide factoren beïnvloedt.
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Dit resultaat wordt verhelderd door middel van het samplen van de transitiepaden als een
functie van verscheidene ordeparameters: het veranderen van de DNA-bindingsfrequentie
kan de ligging van deze schakelpaden drastisch beïnvloeden, terwijl het variëren van de
dimerisatiefrequentie geen effect heeft op de ligging van de paden, maar slechts op de
snelheid waarmee deze paden worden afgelegd.

De modelschakelaar vertoont fluctuaties op verschillende tijdschalen. Naarmate de
reactiesnelheden toenemen, neemt de simulatie-efficiëntie af. Het is daarom aantrekke-
lijk om enkele vrijheidsgraden van de schakelaar uit te integreren, onder behoud van
de evenwichts- en dynamische eigenschappen. In hoofdstuk 3 worden verscheidene dy-
namische simplificatietechnieken toegepast op de genetische modelschakelaar zoals be-
schreven in hoofdstuk 2. Eiwit-eiwit and eiwit-DNA-reacties zijn ofwel afzonderlijk
ofwel gezamenlijk uitgeïntegreerd, door middel van technieken die respectievelijk de
macroscopische frequentievergelijkingen en de chemische master equation oplossen. Al
deze technieken werken goed om de steady-state waarschijnlijkheidsverdeling van de
schakelaar te reproduceren. Helaas leidt de macroscopische aanpak altijd tot een verkeerd
resultaat bij het berekenen van de fluctuatie-gedreven schakelfrequentie (bepaald met
FFS): de schakelaar werkt met een zeer klein aantal moleculen, waardoor een gemiddelde-
veldbenadering tot grote fouten leidt. Om deze reden kan alleen de eiwit-eiwitinteractie
veilig uitgeïntegreerd worden, met een aanpak die gebaseerd is op de master equation;
schommelingen in eiwit-DNA-reacties zijn essentieel voor het bereiken van de transitie
en kunnen niet verwijderd worden.

In hoofstuk 4 gebruiken we de resultaten van de voorgaande hoofdstukken om de
spontane schakelfrequentie van een echt biologisch systeem te berekenen: bacteriofaag λ.
Dit is een virus dat de bacterie E. coli infecteert en zich vervolgens in een van twee sta-
biele toestanden kan bevinden: ofwel het integreert zijn genoom in het chromosoom van
de gastcel en blijft gedurende vele generaties in deze slapende toestand (lysogeen), of het
reproduceert zich zo vaak mogelijk, waardoor de gastcel sterft en het nageslacht vrijkomt
(lytisch). Omdat het systeem onderhevig is aan moleculaire ruis, verwacht men spon-
tane transities tussen de beide toestanden. In de praktijk is de spontane schakelfrequentie
vanuit de lysogene toestand echter zeer laag, om nog onbekende redenen. Verschillende
modelleerpogingen, gebaseerd op evenwichtsaannames, hebben deze frequentie berekend
en de gemeten waarden met enkele ordes van grootte overschat. Omdat bacteriofaag λ een
van de best gekarakteriseerde systemen in de biologie is, hebben we de grote hoeveel-
heid beschikbare data gebruikt om een volledig stochastisch model te construeren van het
basale genetische netwerk dat het systeem in een van de twee toestanden houdt. Met be-
hulp van FFS is een spontane schakelfrequentie van ∼10−15s−1, dat wil zeggen ∼10−12

per generatie per cel, gemeten, in overeenstemming met experimentele waarnemingen.
Bovendien zijn de effecten van macromoleculaire crowding binnen de cel onderzocht:
het effect van kooivorming rondom gebonden complexen kan belangrijke verschuivingen
veroorzaken in in vitro metingen van chemische evenwichten en kan de stabiliteit van
de lysogene toestand vergroten. Tenslotte is onlangs een DNA-ring waargenomen, die
in staat is om op mechanische wijze de lysogene toestand te “bevriezen”. Het model is
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uitgebreid met deze additionele eigenschappen, waardoor de spontane schakelfrequentie
wederom met enkele ordes van grootte afneemt, maar nog steeds niet strijdig is met de
experimentele waarnemingen.

Brownse-Dynamica-algoritmes worden gebruikt om chemische en biologische syste-
men te simuleren in de ruimte en tijd. Zodra er echter reacties in worden opgenomen,
kan een schending van de detailed-balanceregel ertoe leiden dat er systematische fouten
ontstaan in de simulatie. In hoofdstuk 5 wordt een Brownse-Dynamica-algoritme be-
schreven dat wel strikt voldoet aan de detailed-balanceregel. Rigoreuze tests tonen aan
dat het algoritme in staat is om de evenwichtseigenschappen van een simpel reactie-
diffusiesysteem te reproduceren en, voor tijdstappen die klein genoeg zijn, ook de dy-
namica. Het algoritme wordt toegepast op een “push-pull”-netwerk waarin twee antag-
onistische enzymen een substraat op covalente wijze modificeren. De diffusie van de
reactanten kan de steilheid van de responscurve van dit netwerk sterk verminderen.

Het diffusieve gedrag van regulerende moleculen kan de ruis in eiwitproductie in be-
langrijke mate versterken. In hoofdstuk 6 worden de effecten van een repressormole-
cuul op de regulatie van een gen onderzocht met behulp van GFRD. Deze methode is
in staat om een zuiver ruimtelijk effect aan te tonen: de mogelijkheid van een repres-
sormolecuul om meermaals snel achter elkaar te binden vanwege zijn nabijheid tot de
reactielocatie na dissociatie. Door dit effect schakelt de repressor het gen aan en uit op
tijdsschalen die veel langer zijn dan verwacht op basis van de reactiefrequenties. Dit
heeft tot gevolg dat de ruis in genexpressie substantieel verhoogd wordt als de repres-
sor in lage concentraties aanwezig is. De tijd tussen twee van dergelijke opeenvolgende
bindingsmomenten is echter zo kort dat een RNA-polymerase effectief niet in staat is om
de transcriptie te initiëren. Het verschil in tijdschalen tussen de repressor-herbindingen
en de RNA-polymerase-associatie verklaart dat de ruimtelijke effecten kunnen worden
verdisconteerd in een simulatie waarin de ruimte afwezig is, maar de reactieconstanten
op passende wijzen zijn gerenormaliseerd. Tenslotte laat een frequentieanalyse van het
systeem zien dat de langzame eiwit-dynamica ervoor zorgt dat het netwerk zich gedraagt
als een laagfrequente filter.
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In viaggio

Caelum, non animum mutant
qui trans mare currunt

Quintus Horatius Flaccus

Un Dottorato è un lungo viaggio. Si parte leggeri, pieni di entusiasmo e curiosità. Si visitano
luoghi nuovi, si incontrano persone intelligenti e arroganti, umili e ambiziose. Si inizia a lavorare
e si scopre che l’attività di ricerca ha bisogno di almeno dieci volte più tempo di quanto avessimo
pensato. A metà strada, come in ogni cammino, il traguardo sembra lontanissimo, l’entusiasmo si
spegne, i progressi fatti sembrano quasi inesistenti, e una domanda si ripresenta ogni notte prima di
addormentarsi, come dipinta sul soffitto: “chi me l’ha fatto fare?”. Poi, d’improvviso, la meta ap-
pare all’orizzonte, la prima scintilla di luce si accende in fondo ad un tunnel che sembrava infinito,
finalmente gli sforzi producono risultati, e allora è tutto un affrettarsi a finire, controllare, scrivere,
fare i conti con il tempo che resta; l’entusiasmo, più maturo, ritorna, le ore di lavoro aumentano
e, alla fine, si concretizzano in un libretto come questo. Nel mio caso, il viaggio è stato anche
fisico, mi ha portato a convivere e sopravvivere in una realtà molto più aliena di quanto avessi
immaginato, a conoscere culture e tradizioni diverse, e a stemperare le mie robuste radici italiche
in abitudini e modi di fare stranieri. Tutto questo non sarebbe stato possibile senza la presenza
di moltissime persone, con cui ho vissuto innumerevoli momenti indimenticabili, che mi hanno
aiutato e sostenuto in questi ultimi anni. Cercherò qui di ringraziarle, e mi scuso fin d’ora se, dato
il loro numero, non potrò citare tutti coloro che hanno contribuito a rasserenare una mia giornata
con un sorriso inaspettato.

First of all, I should thank my supervisor, Pieter Rein. The impression he made on me the
very first time I met him at the Vrije Universiteit (the “spilungone simpatico”, for those who
have my first emails) was one of the elements who brought me on this side of the Alps. In four
years we learned to know each other, acknowledge our differences, and find a pretty way to work
together. His legendary enthousiasm and stamina conveyed to me a profound, genuine passion
for science, and his humanity and comprehension during the disease of my father alleviated my
troubles relieving me from work pressure when I could not have born it.

The second word goes to my promoter, Daan. After having developped a rough expander for
his unbelievably sharp remarks, I started enjoying the scientific part of our conversations, besides

185



the witty, interesting chats goading the curiosity of the whole corridor. I will value and remember
his availability, together with his support and help with the final part of my PhD.

This Thesis would not be there without the help of three more persons who encouraged me
during the most difficult moments, and filled me with new energies and enthousiasm, in differ-
ent ways. Ass. Prof. Angelo Cacciuto, che mi ha accolto ad Amsterdam e mi ha insegnato
quanto la comunità scientifica possa essere variegata. La sua limpida visione scientifica, e i
suoi innumerevoli consigli pratici sono stati preziosi per il mio dottorato. Le serate passate a
cucinare, suonare la chitarra, vedere film e celebrare Bacco insieme, oltre ad aver creato e cemen-
tato un’amicizia che dura inalterata, sono fra i momenti che ricordo con più felicità durante la
mia permanenza olandese. Grazie. The second person is Dr. Rosalind Allen: our collaboration
started almost as a joke, from a student frustrated by the lack of results in his main project; the
fruits of our joint efforts now span more than half of this Thesis. Our empathy created, at least
from my part, a perfect work relationship, where targets were set and reached together, paying
attention to the scientific quality of research, but also to needs of the person. I can not thank her
enough for the possibility she gave me to visit her group in Edinburgh, thus introducing me to a
country I immediately loved, and for the time and patience she always had with me. The third is
Dr. Sorin Tănase-Nicola, who solved a countless number of analytical problems for me, flooded
me with interesting papers, and helped me understanding basic concepts of Physics I should have
already known. His enthousiasm and conviviality during summerschools contributed to add fun
and laughter to the science part of our friendship. Mult’umesc foarte mult.

AMOLF is a big family: I want to thank all the overloop dwellers, whose offices were al-
ways open to my bugging: science, procrastination (is there a neat boundary between the two?),
organisation of events, and funny stories to cheer each other up when things did not work were
the subjects of our conversations. Everyone played a role in the AMOLF comedy, and it would be
too long to fill the wall of fame with all those that have left in last years. I will quickly mention
Iorgos “Gino” Boulougouris and his generosity and humanity, Josep “Rocco” Pamies Corominas
and his shoes, Fabrizio Capuani and his family, Ivan Coluzza and his hospitality, Marco Cosentino
Lagomarsino and his style, Donna Beatrice Marino and her good heart, Fabiana Diotallevai and
her laziness (grazie per la bella esperienza di semiconvivenza, che mi porterò sempre dentro), Olga
Katsibiri and her smiles, Behnaz Bozorgui and her (and her mother’s) food, Simon Tindemans and
his spirit (bedankt voor het samenvatting!), Christian Tischer and his face, Tatiana Schmatko and
her frenchness, Franca Fraternali and her sunny moods, Frank Poelwijk and Laura Munteanu who
prevented me feeling alone when I was staying late, Bianca Mladek and her wordiness and gen-
tleness, Yuri and Nadya and their generosity, and all the others. A special mention to the persons
who were so unlucky to share the office with me, being therefore exposed to all my mood swings,
italian conversations, allergies to drafts and temperatures below 25 degrees: Rhoda Hawkins and
Chantal Valeriani. Quasi cinque anni di convivenza negli stessi dieci metri quadri non si scordano
facilmente. Se siamo arrivati insieme a questo traguardo, lo dobbiamo anche alle nostre chiac-
chierate, al nostro insultarci gentile e ai nostri scherzi. Visto che ancora parliamo e siamo in buoni
rapporti sinceri, deduco che, alla fine, abbiamo fatto un buon lavoro.

Outside AMOLF, I had the luck to get to know and collaborate with the VU gang, who always
seemed to me an energetic and outgoing bunch of smart guys. In particular, I had an extremely
fruitful and enjoyable collaboration with Dr. Jeroen van Zon, who extended far beyond office hours
and eventually ended in a stable friendship, which I hope it can be the base for future scientific
collaborations. Among the others, I should mention Dr. Bram van den Broek, who welcomed me
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during my interview five years ago, brought me for the first time in a café in town, and kept in
touch during my whole PhD, gratifying me with his appreciation of my italian cuisine.

Vivere in terra straniera è interessante e stimolante, ma talvolta non facile. Poter contare su
un gruppo di persone con cui poter ricreare l’aria di casa è un grosso regalo per un emigrante.
Ringrazio quindi la comunità italiana di Amsterdam che mi ha accolto e con cui ho passato serate
piacevoli e divertenti. Vorrei ringraziare in particolare i miei colleghi vecchi e nuovi, Enrico Conti
e Andrea Baldi e la sua famiglia.

Living in Amsterdam is a unique opportunity to get to know people from all over the world,
and few times random encounters tenaciously evolve towards friendships. I want to thank all
the people that decided to go beyond the standard formal conversations I quickly get annoyed
about, took their risk by uncovering their hidden sides, and invested time into building a high-
quality relationship with me: Salina, het begon allemaal met een pastacompetitie in Groningen
en we hebben later in Amsterdam samen een hoop lol gehad, Lynn, for her oper heart and mind,
and her invitation to Kolkata, Miriam, una chica pequeña y mediterránea con quién compartí una
hermosa vacación y muchas otras emociones, Eve and Magdalene, that taught me once more
one can be an intelligent and sensitive person without being too serious, and happy without any
money, Maryam, for her uncontenible enthousiasm towards any new challenge in Life, and for her
compassion during the disease of my father, Eduardo, para su amistad y su actitud fiestera, Flora
pour sa patience avec mes retards et toutes les soirées passées au cinéma, regardant des films que
parfois aucun autre aurait supporté.

The most memorable experience during my PhD was surely spending a total of three months
in Scotland, working with Dr. Rosalind Allen at the University of Edinburgh, within the High
Performance Computing european framework. I always loved to bring fresh new air into my lungs
after having breathed the same one for long tim: when I realized it came from wild mountains
crashing into the sea, my spirit had a jump, and I started loving that land. My stay became even
more pleasant when I got to know the people in room 4305, and those who were living in War-
render Park Crescent: with them, I had the occasion to explore a new world and have interesting
conversations during meals. I want to thank Gladys and her enthousiasm for nightlife: I am happy
the exchange of music and films led to a stable friendship–thanks for the hospitality in Barcelona!
The flawless organisation of the stay was possible only because of the work of Catherine Inglis,
who, besides her brilliant administrative work, gave me tips and tricks to visit her country. Davide
Marenduzzo was extremely helpful in the construction of the model of DNA looping in the phage
λ system. I have great memories of music fridays held at Kate’s place (thanks thanks!), of italian
cooking sessions with Lucio, Federica, Maria, Giacomo and Simone, and of fun time with Rowan,
Daniëlle and the others. Finally, this Thesis would probably have never seen an end without the
help of Susie, who, after having given me a warm welcome in her land and fascinated me with
stories of wilderness, made me think a lot of her views on life and human relationship, and listened
to my endless, repeated rants during my writing time. Móran taing, leannan!

One of the reasons I chose this job was the opportunity to couple it with my passion for
travelling and getting to know new people. During my PhD, I had the occasion to attend several
conferences and summerschools, and I was so lucky I managed to bring back home from each
of them, besides the scientific enrichment, some firm friendships. I wish to thank the people
who are still in touch with me, and have followed the evolution of my PhD: Olienka, gracias
por los momentos que pasamos juntos en Montreal y por la hospitaliad en Alicante, Pia, for her
restless enthousiasm, her patience and her true feelings, Maria for her company in Denmark, and
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the solar spirit she irradiated, Matthias for his sympathy and gentleness, and for hooking me up
with Giovanna. Thanks to the fellows who were with me in Boulder and allowed me to have
so many fantastic warm nights and wonderful hikes in the Rocky Mountains: tough and sweet
Corinne, Peter, Megan (especially when drunk), Martin, Thierry, Aleksandra (“I don’t need to be
cool anymore”–I really wish we will work together once). A very special thank to Katarina, I don’t
know what I would have done without you when my father passed; I will treasure your sympathy
forever: hvala lepa, ljubim te puno.

Prima di partire, i miei primi 25 anni mi hanno regalato persone che hanno saputo essermi
così fedeli da non perdermi di vista quando sono emigrato. Non mi stancherò mai di ringraziarli
per il loro sforzo volto ad incontrarmi nelle mie (sempre troppo) brevi permanenze sul suolo
italico. Crescere insieme cementa le amicizie oltre ogni immaginazione: con Marcello, Valerio,
Piermauro (e la sua famiglia), oltre alle sincere chiacchierate, siamo persino riusciti a creare il
progetto Orobiehiking e il suo sito web: speriamo che siano rose, e che fioriscano. Dalla sella
della sua bici, Ombretta non mi ha mai lasciato andare in fuga, ma mi ha sempre ripreso quando
mi allontanavo. Altre volte, è il destino ad intervernire: dopo l’incontro di Bologna, so che non mi
potrò mai liberare della famiglia Bartolucci; e meno male.

Anche la mia avventura universitaria e collegiale a Pavia mi ha portato a conoscere persone
con le quali un sorriso e una pacca sulla spalla basta ad aggiornarsi dopo anni di silenzio: Ciccio,
che mi ha ospitato in Zambia e mi viene a trovare fedelmente in ogni angolo del mondo la scienza
mi porti, gli amicidelparadiso e tutte le loro amorose, che Dio li benedica tutti! Danila e Paola,
la vicinanza del cuore e la poesia nelle parole di Chiara, la sorpresa di riincontrare persone come
Anna, rivangare un’amicizia e scoprire che lavorare ad un progetto comune può essere incredi-
bilmente stimolante. Il fatto che io e Linda ancora ci parliamo e viviamo esperienze ed emozioni
insieme è poi qualcosa di completamente inspiegabile per qualsiasi mente razionale. Forse siamo
semplicemente “strani”, come tutti ci hanno sempre considerati. Comunque, a lei il mio grazie più
grande perché c’è sempre stata, e ho sempre saputo di poter contare su di lei.

Infine, un grazie alla mia Famiglia, che, diversa, composita, avvolgente e bergamasca, non si
può scrivere senza la lettera maiuscola. La nuvola di affetto nella quale mi sono sempre sentito
circondato al mio ritorno, il rispetto per scelte e capigliature che non hanno riscontri nel resto del
parentado, e la commovente vicinanza e disponibilità nei giorni più difficili degli ultimi tempi,
mi hanno fatto rendere conto di quanto sia fortunato, e di quanto il nostro clan sia diverso dalle
famiglie nucleari moderne. Un grazie quindi a mamma Franca e a papà Luigi, e a tutta la massa di
zii, cugini e parenti.

Alla soglia dei trent’anni, mi sento di rinnovare il messaggio scritto cinque anni fa alla fine
della mia tesi di Laurea: un grazie a coloro che ancora credono nei sogni, perché mi hanno sempre
convinto che non esistono scelte obbligate nella nostre vite, se abbiamo la forza di buttarci e
cambiare; e alle montagne, che con la loro severità continuano ad insegnarci il significato dei
sacrifici e delle gioie vere.
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Universitario di Studi Superiori (IUSS), being selected together with 40 other pupils of his age
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graduated in Physics in 2002, summa cum laude, with a Masters thesis on the use of neural net-
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Diploma the same year.

After a brief experience as a PhD student at the University of Pavia, in 2003 he decided to
become an expatriat and dedicate all his scientific efforts to biophysics, joining the group of Dr.
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As a PhD student there, he enjoyed the international atmosphere of the city and the research on
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an High Performance Computing travel grant to join the group of Dr. Rosalind Allen in Edinburgh,
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