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1 Prologue

“Why study cellulose, why is it important? ”
I think that this question perfectly summarizes what most of you must have thought reading
the title of this thesis. And, probably, it is the same thing I wondered the moment I was offered
a PhD position on this subject. What I can tell you for sure is that now, after four years of
research on this theme, I realize how fundamental is the role of this biopolymer in nature, and
how beautiful are the several mysteries still shrouded around it.

The topics I shall discuss in this thesis, though being related, are quite different. For this
reason, I have structured the present work so that each chapter has its own introductory section,
and can be read independently from the others. As a bonus for the reader, I have decided
to start with a discussion on some general aspects of cellulose, setting up a comprehensive
framework that allows an easier reading of the following chapters.

Let’s start saying that, if you think about it carefully, it is easy to understand that cellulose
is all around us: we wear it, eat it, build with it, print on it, burn it. But yet, who even thinks
about it, or knows what it is?
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2 Introduction

2.1 What is cellulose?

Cellulose is the most abundant macromolecule on earth (1), with an estimated 180 billion tons
produced annually. A great deal of the world’s economy depends directly upon it: this polysac-
charide is the major constituent of cotton (over 94%) and wood (over 50%), which together
are the basic resources for all cellulose-based products such as paper, textiles, construction
materials, as well as such cellulose derivatives as cellophane and rayon.

Chemically, cellulose appears simple: it is a linear polymer of β-(1,4) glucose, where every
two adjacent glucose molecules are linked together in opposite orientations (Fig. 2.1a). Cel-
lobiose, which consists of a pair of glucose residues rotated of 180◦ with respect to each other,
is thus the repeating structural unit of cellulose. The linkage pattern and the flat conformation
of the glucan rings confer a ribbon-like shape and semi-rigid properties to the polymer, and
this particular molecular structure enables the cellulose molecules to crystallize into rigid rods
called microfibrils (CMFs) (Fig. 2.1b). This crystalline, microfibrillar form, allows cellulose
to play its structural role in nature.

Figure 2.1: a) Chemical structure of a single cellulose chain. b) Crystalline cellulose microfib-
ril (CMF)

Most of the cellulose is made by vascular plants, but its synthesis also occurs in the algae, in
the slime mold Dictyostelium, in a number of bacterial species, and in tunicates in the animal
kingdom. Photosynthetic microbes, the first in the vast food chain, also represent an important
resource for cellulose production in nature: without these organisms all animal life in the
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2 Introduction

oceans would cease to exist. Land plants assemble cellulose from glucose, which is created in
the living plant cell through photosynthesis. In the oceans, most of the cellulose is produced
by unicellular plankton or algae using the same type of carbon dioxide fixation found in the
photosynthesis of vascular plants.

2.2 Different types of cellulose

Cellulose is a remarkable structure, and depending on the sources from which it is obtained, its
physical properties, such as the degree of crystallinity and the molecular weight, may be highly
variable. There are crystalline and noncrystalline forms of cellulose: the first one is character-
ized by a tensile strength greater than steel, and it can be found as cellulose I or cellulose II
(Fig. 2.2). Both of these two allomorphs can be directly synthesized in nature; however, cellu-
lose I is by far the most prevalent, and no eukaryotic cells are known to abundantly synthesize
cellulose II in vivo. Surprisingly, the cellulose I allomorph is a thermodynamically metastable
form (2), and can be converted directly to cellulose II with treatment of a high concentration
of sodium hydroxide (NaOH), a process called mercerization; however, cellulose II cannot be
directly converted to cellulose I.

• Cellulose I
In nature, and in most of all plants, cellulose is generally produced as crystalline cellu-
lose I (Fig. 2.2a/c and Fig. 2.3b), in which the glucan chains are parallel to each other
(3; 4) and are packed side by side to form CMFs that are typically 3nm thick, but which
can reach widths of 60nm in certain algae. There are two known suballomorphs of
cellulose I: Ia and Ib (5; 6). These two forms differ with respect to their molecular
conformation, hydrogen bonding and crystal packing, but can usually coexist together
within a given CMF, whose physical properties will be dependent on the ratio of these
two suballomorphs. Cellulose from some algae and bacteria is found to be Ia rich, while
cellulose from cotton wood is Ib rich (7). The tunicates, the only animal to produce
cellulose (8), appear to synthesize almost exclusively cellulose Ib.

• Cellulose II
A few organisms produce crystalline cellulose II (Fig. 2.2b/d) naturally. This form is
generally synthesized by mutants of Acetobacter Xylinum (9), a bacterium that normally
produces cellulose I. The glucan chains arrangement in cellulose II has been proposed
to be antiparallel (Fig. 2.3c), and this disposition may take place as a result of chain
folding during synthesis (9). An additional hydrogen bond per glucan chain residue in
cellulose II makes this allomorph be the most thermodynamically stable form. Cellulose
I which has undergone mercerization is cellulose II: however, chain folding has not been
demonstrated in this type of cellulose II. Understanding the structure of cellulose II
derived from mercerized products is one of the remaining issue about cellulose structure
to be elucidated.

• Non-crystalline cellulose
Apart from the crystalline states, cellulose also occurs in non-crystalline states, and
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2 Introduction

this form has been observed to be present along with the cellulose I crystallites in some
CMFs. A new form of derived cellulose, referred to as nematic ordered cellulose (NOC),
is obtained by dissolving native cellulose and reprecipitating it in a unique manner to
form a distinctive structure (10) highly ordered yet not crystalline: films obtained from
this type of cellulose exhibit properties different from conventional cellulose films. In
the majority of cases, cellulose modified after synthesis has properties not found in the
native cellulose that is obtained from living organisms.

Figure 2.2: Images of (a) cellulose I and (b) cellulose II specimen. Projections of the 3d struc-
ture of (c) cellulose Ib and (d) cellulose II

2.3 Biogenesis of Cellulose I

As mentioned in the previous section, the most common natural allomorph of cellulose is
cellulose I. Since in this thesis we will be mostly concerned with this type of cellulose, in the
following we recall the basic concepts related to the biogenesis of this polymer.

Cellulose I consists of crystalline CMFs in which the glucan chains are parallel and ex-
tended. The substrate for cellulose synthesis is UDP-glucose, which is channeled through the
cellulose synthase complex (CSC) and transformed into linear chains of glucose residues (see
Chapter 4 for details). The CSCs are multiparticulate enzymes, that are usually found in the
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2 Introduction

membranes of cells (plants, algae and bacteria), and which contain a number of catalytic sites
each putatively polymerizing a single glucan chain. Surveying all the different type of existing
CSCs in nature (see Chapter 3 for details), it is believed that the mechanism of polymerization
is conserved in all these enzymes: cellulose is synthesized processively, with the growing end
of the glucan chain (the non-reducing end) tightly associated with the catalytic region of the
CSC.

Figure 2.3: b) Parallel and c) antiparallel arrangement of a) cellulose chains

This description indicates that there are two main levels of organization of cellulose (11):
first, glucose molecules have to be synthesized and linked into a long chain (polymerization);
second, many cellulose polymers coalesce together to form the CMF (crystallization). The
size, shape and degree of crystalline perfection is largely due to the geometrical positioning
of the catalytic sites within the enzyme complex (see Chapter 3 and Chapter 4 for details).
Because of these hierarchical levels of cellulose organization, it is most appropriate to refer to
cellulose biogenesis rather than simply biosynthesis.

2.3.1 Polymerization and Crystallization

Recently, a lot of work has been done in order to produce the in vitro synthesis of cellulose
I. One of the reasons that have made these experiments so intriguing and so difficult, is that
cellulose I is only a metastable state (2): thus, in vitro systems must be mimicking in some way
the conditions favoured not only for β-(1,4) linked polymerization, but also for crystallization
into a less stable state. Cellulose biogenesis is a hierarchical process, with polymerization
and crystallization being two distinct, but not completely separated, events (11), linked in
such a way to influence each other: the parallel arrangement of the glucan chains in the CMF
requires in fact the newly synthesized polymers to align with each other and lock into a specific
crystal structure (cellulose I), otherwise they would fold into the more thermodynamically
stable cellulose II, or simply exist as non-crystalline cellulose. The coordinated synthesis of a
large number of glucan chains from ordered sites present in the CSC, allows these polymers
to be positioned adjacent to each other before they crystallize.

The main proof that polymerization and crystallization are coupled processes in cellulose
biogenesis comes from studies on Acetobacter Xylinum: in this cellulose producing bac-

6



2 Introduction

terium, it has been seen that an optical brightener, Calcofluor White ST (11), inhibits the
crystallization preventing the formation of the cellulose CMFs. Interestingly enough, this re-
sults in an increase in the rate of cellulose polymerization by an amount that varies between 2
and 4 times the control rate. This could indicate that the time required for the glucan chains
to crystallize limits the rate at which polymerization proceeds. In any case, it demonstrates a
clear inter-dependence between these two processes.

Figure 2.4: Scheme for the two-step crystallization process of the CMF: first, glucan chain
coalesce in a monomolecular layer via Van der Waals forces; then the glucan sheets
crystallize together through Hydrogen bonding to form a CMF.

Even if crystallization occurs soon after the glucan chains have been extruded from the cell,
it does not happen instantaneously: the glucan chains in fact are able to form ordered (but
non-crystalline) bundles, by binding to external agents after synthesis, suggesting stages in
the process of crystallization itself (12). Based on studies with A. Xylinum and incorporat-
ing results from molecular modelling, Cousins and Brown (13; 14) have proposed a two-step
model for cellulose I crystallization (Fig. 2.4): first, glucan chains assemble as a monomolec-
ular glucan chain sheet using Van der Waals forces; secondly, the short-lived glucan sheets
associates with adjacent sheets via H-bonding to produce the crystalline cellulose I CMF.

The formation of glucan chain sheets as primary event in microfibril formation is experi-
mentally supported by the fact that, as already remarked, in vivo assembly of cellulose in A.
Xylinum can be interrupted by the addition of Calcofluor White (12): this dye has a prefer-
ential affinity for H-bonding to the glucan sheets, and, once bound to them, it prevents the
induction of the second stage of cellulose crystallization to form the cellulose I CMF.

2.4 The role of cellulose in Nature

Now that we know something more about the structure and biogenesis of cellulose, we can
start focusing on the role that this polymer plays in nature. Cellulose is not only an essential
product for our everyday life, being the major constituent of paper, wood, and textiles. As we
will learn in this section, in fact, this biopolymer serves a more fundamental function, since
it is one of the major storage point of solar energy and atmospheric CO2 in organic form that
we can use.
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2 Introduction

Let’s start from the beginning: as previously said in this chapter, cellulose is made up of
glucose, which is a primary product of photosynthesis. This process, that can be illustrated as
follows

6H2O+6CO2 + light energy−→ C6H12O6 +6O2

essentially converts light energy in chemical energy, producing a molecule of glucose plus six
of oxygen starting from water, carbon dioxide (CO2), and light. Through the process of photo-
synthesis, green plants absorb solar energy and remove CO2 from the atmosphere to produce
sugars. Plants and animals burn these carbohydrates (and other products derived from them)
through respiration, the reverse of photosynthesis, a process that releases the energy contained
in sugars for use in metabolism, and renders the carbohydrate fuel back to carbon dioxide.
Together, respiration and decomposition (respiration that consumes organic matter mostly by
bacteria and fungi) return the biologically fixed carbon back to the atmosphere. This vast in-
terplay between the CO2 of the atmosphere and its "fixation" via photosynthesis into organic
products, among which cellulose is the most abundant, is called “carbon cycle”(Fig. 2.5).

In addition to the natural fluxes of carbon through the Earth system, human activities, par-
ticularly fossil fuel burning and deforestation, are also releasing carbon dioxide into the atmo-
sphere. When we mine coal and extract oil from the Earth’s crust, and then burn these fossil
fuels for transportation, heating, cooking, electricity, and manufacturing, we are effectively
moving carbon more rapidly into the atmosphere than is being removed naturally through
the sedimentation of carbon, ultimately causing the concentration of atmospheric CO2 to in-
crease. Moreover, by clearing forests to support agriculture, we are transferring carbon from
living biomass into the atmosphere (dry wood is about 50 percent carbon). The result is that
humans are adding ever-increasing amounts of extra carbon dioxide into the atmosphere. Be-
cause of this, atmospheric CO2 concentrations are higher today than they have been over the
last half-million years or longer. This emerging problem could have immense consequences
if the CO2 content continues to rise: the global warming cycle, affected by the emergence of
the industrial age, is in fact closely related to this issue.

In this context, the role of cellulose within the global carbon cycle is fundamental: cellulose
can be thought of as a giant carbon "sink" that fixes the atmospheric CO2 in organic form.
Most of the organic compounds that are formed as a result of CO2 fixation in the bodies of
photosynthetic organisms are ultimately broken down and released back into the atmosphere
or water. However, certain carbon-containing compounds, such as cellulose, are more resistant
to breakdown than others, and carbon incorporation into cellulose remains in the product for
a rather lengthy time, sometimes for thousands of years. This makes clear the importance that
this biopolymer has not only in our everyday’s life, but also, and most of all, on large time
scale events, through the balancing of CO2 levels over long time periods.

A possible solution to the extra CO2 amounts in the atmosphere would be to reverse the
conversion process by increasing photosynthesis, which results in the trapping of more carbon
dioxide. It is straightforward to understand that a good way to accomplish this task is to
enhance the production of cellulose, developing organisms that are able to synthesize this
polymer more efficiently and in improved forms. It is also clear that in order to do that, we
need to know more about the mechanisms that control and regulate cellulose production in
different organisms.
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2 Introduction

Figure 2.5: The carbon Cycle on earth: the numbers show the total amount of stored carbon
(black) and the annual carbon fluxes (gray)

2.5 This Thesis

In this context this thesis can be thought of as an attempt to gather together and elucidate
a number of open biological problems concerning the synthesis, crystallization and self-
organization of cellulose. Using theoretical methods coupled to simulation techniques, we
analyze the mechanism at the basis of cellulose biosynthesis by focusing on two of the most
important cellulose producing entities: plant cells and Acetobacter bacteria. The first three
chapters of this thesis (3-5) will be therefore related to different issues concerning cellulose
biosynthesis in plant cells, while the last chapter will deal with cellulose production in Aceto-
bacter cells.

We start in Chapter 3 proposing a mechanism for the the self-assembly of the cellulose
synthase complex (CSC) in higher plants. At present, rather little is know about the internal
structure of this protein, as well as about the molecular mechanism that regulates its forma-
tion. This enzyme, named also hexagonal rosette, is a transmembrane complex thought to be
composed of 36 subunits, the CESA proteins. Using experimental evidences and results from
mutants analysis, it is possible to obtain information on the mutual and specific interactions
between the CESA. The knowledge of this interaction scheme allows the formulation of a
dynamical model, which we will subsequently implement in a MonteCarlo simulation, that is
able to reproduce the processive assembly of the final hexagonal complex.

After having studied the formation of the CSC, we pursue presenting a biophysical model
that explains the force generating mechanism underlying the propulsion of this enzyme. While
polymerizing the cellulose microfibrils (CMFs), the CSC walks through the plasma membrane
of plant cells. Early theories assumed the CSC to be linked by motor proteins to the cortical
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2 Introduction

microtubules, supposed to act as rails to guide its motion. In Chapter 4 we present an alter-
native model for the propulsion of the CSC: we show how the growth of the cellulose CMFs
against the membrane causes an accumulation of elastic energy: the energy release, controlled
by thermal fluctuations, happens in the form of unidirectional force and propels the CSC
through the membrane. Our model is able to provide an estimate for the velocity of the CSC
as a function of the other relevant parameters of the system (bending energies, temperature
and polymerization rate constants) that is very close to the experimental value.

We go on investigating in Chapter 5 the process involved in cell wall deposition: depending
on the orientation of the CMFs in the plant cell wall, one can obtain very regular and different
textures, among which the helicoidal pattern is the most striking one. A fundamental and
fascinating question is how the CMFs become oriented during the deposition at the plasma
membrane. The current textbook explanation for this phenomenon is again a guidance system
mediated by cortical microtubules. However, too many contradictions are known for this to
be a universal mechanism, notably in the case of helicoidal arrangements, which occur in
many situations. Our aim in this Chapter is to use geometrical considerations to formulate a
mathematical model for the spatio-temporal evolution of the orientation of the CMFs in the
cell wall. We show how the solutions of our model can generate a great variety of textures,
including the helicoidal one. Moreover, we show that our solutions are robust against different
perturbations and noise effects, suggesting that this mechanism can be considered a strong and
successful tool for the explanation of a great variety of cell wall textures.

Finally, in Chapter 6, we focus our attention on Acetobacter bacteria. These rod-shaped
organisms live at the air-liquid interface and swim while producing a long and flat cellulose
ribbon. The ribbon is composed by cellulose CMFs that are synthesized by a row of catalytic
sites positioned along the long axis of the cell. Once polymerized, the CMFs cooperatively
bend and become oriented along the axis of the bacterium. The aim of this Chapter is to
explain such orientation mechanism, by the means of theoretical and numerical techniques.
Our goal is to correlate this phenomenon with a hydrodynamic effect due to the interactions
between the cellulose chains and the fluid in which they are immersed. To demonstrate that
this can actually be the case, in the second part of the Chapter we implement a Brownian Dy-
namics simulation which explicitly reproduces the bacterial motion together with the cellulose
orientation mechanism.

With this work we hope to contribute in elucidating some key questions, both regarding the
cell biology of plants as well as concerning the physics of interacting filaments and complex
macromolecular assemblies.
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3 The Cellulose Synthase Complex

The universal distribution of cellulose among prokaryotic and eukaryotic organisms attests to
its ancient evolutionary history. This polysaccharide is in fact synthesized by all land plants, a
number of bacterial species, many groups of algae, the slime mold Dictyostelium and tunicates
in the animal kingdom. It is an extracellular polymer, and with the exception of bacteria and
tunicates, it is generally the main component of the cell-wall, a rigid shell that surrounds the
cell. The diverse function that cellulose plays in different groups of organisms is reflected by
the particular structure of the polymerizing enzyme, the cellulose synthase complex (CSC), in
each of the different species. Even though specific features are found in CSCs from different
organisms, it is believed that the catalytic region is conserved in all these enzymes.

The goal of this chapter is to provide a comprehensive view of the structure and the features
of the CSC in different organisms. To do this, we first illustrate examples of CSCs in various
species. Then we narrow our attention to plants, analyzing in detail the structure and the
chemical composition of the CSC in this case. Finally, we build a model that elucidates
the assembly of this enzyme in plants, algae and bacteria, and which suggests how a unique
mechanism may be responsible for the formation of this multiform protein complex at least in
these three species.

3.1 A bit of history...

One of the great enigmas in plant biology is the biosynthesis of cellulose. During the past
50 years, the site of cellulose synthesis has been investigated intensively, but until few years
ago there had been no direct proof for the presence of the multimeric enzyme complex whose
existence had been postulated by Preston in 1964 (15). According to Preston’s theory, the
“Ordered Granule Hypothesis”, an array of catalytic subunits forming the cellulose synthase,
would function together to synthesize glucan chains that would then self-assemble to form a
cellulose microfibril (CMF). In the 1960s, with the advent of the freeze fracture technique, ca-
pable of revealing replicas of the interior of membrane surfaces, investigators began to notice
highly ordered, multiparticulate protein subunits in association with cell membranes. In 1976
Preston’s vision was realized as being most likely true with the first successful application of
freeze fracture on the membrane of the fresh water alga “Oocystis apiculata” (Fig. 3.1a) that
led to the imaging of ordered structures at the tip of the CMFs.

These structures were linear multimeric arrays, termed “linear terminal complexes” (linear
TCs), and consisted of three rows of subunit particles. The complexes were intimately as-
sociated with the CMFs, as clearly evidenced by impressions of the cellulose fibrils on the
E-fracture face of the plasma membrane. Subsequently, in 1980, a different arrangement was
found for the cellulose enzyme (16), a cluster of six particles associated with CMF’s imprints

11



3 The Cellulose Synthase Complex

in the P-fracture face of the plasma membrane of corn root cells (Fig. 3.1b). Due to the regular
hexagonal arrangement of its six transmembrane subunits these particles were named “rosette
TCs”. Although already identified for several decades, the definite biochemical proof that
these structures indeed are the location of the cellulose synthases in vascular plants, was only
provided in 1999 (17). Eventually the rosettes have been found to be exclusive for all land
plant cellulose assembly, including mosses, ferns, liveworts and certain green alga.

In the following we will use for the cellulose TCs (linear or rosette) the most general nomen-
clature “cellulose synthase complex” (CSC).

3.2 The diversity of CSCs: shape and arrangement

In general, CSCs are observed as particle arrays by freeze-fracture electron microscopy. At
present, four distinct types of CSC packing are known: single linear rows, multiple linear rows
resulting in a rectangular CSC, single rosette composed of six particles subunits and clusters of
rosettes. Linearly arranged CSCs in single or multiple rows are observed in bacteria, tunicates
and some algae (18; 19; 20). Considerable variations in the linear CSCs are found in the
number of subunits as well as the arrangements of subunits. Hexagonal structures with six-
fold symmetry are observed in mosses, ferns, algae and vascular plants (21; 22; 23) and their
morphology is conserved between species more than any other structure. Clusters of rosettes
are found in algae such as Micrasterias Denticulata.

Figure 3.1: CSCs in Oocystis (left) and Zea Mais (right)

3.2.1 Algae

Since 1976, CSCs have been found in more than 14 algal genera, and presently a distinct pat-
tern of CSC’s structure is beginning to emerge. The differentiation of CSCs is great among
the algae: a single row of particles is observed in brown algae (20) and some red algae. Multi-
ple rows are found in algae with wide microfibrils, glaucophycean algae (24), some red algae
(25), chlorophycean and ulvophycean green algae (26). Diagonal rows of particles, as shown
in Fig. 3.2a, are observed in the xanthophycean algae such as Vaucheria hamata (27; 28).

12



3 The Cellulose Synthase Complex

In contrast to linear CSCs, some species of algae show rosette CSCs which appear identical
to those in vascular plants. All embryophytes, the Zygnematales, the Coleochateles and the
Charales, which are thought to be the closest relatives of land plants, (23) have six particles
rosette, except for Coleochaete Scutata, which has a unique CSC consisting of eight particles.
Differently from any other alga, the Micrasterias Denticulata shows the typical rosette CSC
only during primary wall synthesis. During secondary wall synthesis in fact the single rosettes
aggregate forming hexagonally ordered complexes (Fig. 3.2b) that result in synthesis of bands
of thicker microfibrils (29).

Figure 3.2: CSCs in Vaucheria (left) and Micrasterias Denticulata (right)

3.2.2 Bacteria

Among the prokaryotes, the purple bacteria are thought to be the most advanced (30), being
considered as progenitors of mitochondria in the eukaryotic cell (31). Interestingly, many
genera in this group synthesize cellulose. The best known examples are various species of
Acetobacter, Rhizobium and Agrobacterium (32; 33). Among these, Acetobacter Xylinum is
a model system for the understanding of cellulose biosynthesis from the aspects of molecular
genetics and biochemistry: it produces massive amounts of cellulose, which is secreted not as
a cell wall polymer like in eukaryotes, but as an extracellular pellicle (for more information
on Acetobacter Xylinum go to Chapter 6). In all purple bacteria the site of cellulose synthesis
is a linear row of particles parallel to the longitudinal axis of the cell (18).

In addition to this bacterial group, also Escherichia Coli, Klebsiella Pneumoniae, Salmonella
(34) and Sarcina Ventriculi (35) produce cellulose.

13



3 The Cellulose Synthase Complex

Figure 3.3: Linear CSCs in Acetobacter (left). Linear (a,b,c) and multiple linear CSCs (d,e,f)
in Dictyostelium (right).

3.2.3 Amoebae

Cellular slime molds are a simple group of eukaryotic organisms located at the base of the
phylogenetic tree. They diverged from the animal lineage after the split from plants, but
before fungi. The species Dictyostelium Discoideum grows as free- living amoebae in the litter
stratum, feeding on bacteria. Once the food supply is exhausted, Dictyostelium Discoideum
undergoes a complex developmental cycle in which about 10.000-50.000 individual amoebae
aggregate in the face of starvation, and differentiate. At the beginning the amoebae organize
in a multicellular body, the mould, that soon starts elongating forming a migratory slug which
behaves as a single organism. During development, Dictyostelium cells produce a number
of cellulose-based structural elements: an example is the extracellular matrix, comprised of
proteins and cellulose, synthesized by Dictyostelium slugs around themselves.

CSCs in Dictyostelium Discoideum (36; 37) are unlike any so far found among eukaryotic
cells (Fig. 3.3). They appear to consist of a single linear row of about 12 particles in motile
prestalk cells, with an arrangement somewhat similar to the one found in Acetobacter. How-
ever, when the prestalk cell turns into the stalk tube and stops moving, the single linear CSCs
collapse until multiple linear CSCs form, creating cluster up to 48 particles. This is one of the
most important example of how cell motility regulates two modes of cellulose synthesis.

3.2.4 Animals

Tunicates, small marine invertebrates that are abundant worldwide, are the only animals able
to perform cellulose biosynthesis (19; 38). The most familiar tunicates are the sea squirts, or
Ascidians, cylindrical or globular animals usually found attached to rocks, shells, pilings, or
boat bottoms. In the Ascidians, cellulose is a product of the epidermis and is incorporated into
a thick outer coat known as the tunic, for which the tunicates are named. The tunic surrounds
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the surface of the animal’s soft body to protect it against predators, it is often transparent or
translucent and varies in consistency from gelatinous to leathery. The structure of CSCs in
Tunicates was categorized at first to the linear type (21). However, the CSCs of most of the
Ascidians have a unique feature as compared with other types of linear CSCs that have been
found in bacteria, algae and slime molds. They are composed of two kinds of membrane
particles (Fig. 3.4): small subunits (7.2 nm) corresponding to the cellulose synthases, and
large particles (14.5 nm in diameter) surrounding the synthase complexes. It is not clear,
however, whether this feature of “double CSCs” is universal in all Ascidians or not.

Figure 3.4: CSCs in Tunicates

3.3 Cellulose CSCs in higher plants

Interestingly, among the vascular plants only the rosette CSC (Fig. 3.5) has been found.
Thus, algal ancestors with rosette CSCs have assumed additional importance with respect
to understanding the evolution of land plants. The rosette CSC was first described by Muller
and Brown in 1980 in Zea mays (16). In vascular plants, like mosses and ferns, gymnosperms
and angiosperms (39), this enzyme appears as a protein complex with a six-fold symmetry and
a diameter of 25nm.

The genes that encode the catalytic subunits of cellulose synthase are called CESA genes.
They were first identified at the molecular level in the cellulose producing bacteria Acetobacter
and Agrobacterium (review in (22)). From the sequences of these enzymes, motifs character-
istic of cellulose synthase have subsequently been recognized. In the late 1990 the first CESAs
of a plant were identified trough molecular and genetic studies (40; 41). Presently the most
information is known about the Arabidopsis Thaliana CESA gene family, the AtCESA, since
the Arabidopsis genome is fully sequenced. In this model plant the CESA family contains at
least ten genes, which are expressed in different tissues and cell types. Sequence data indicate
that the CESA gene family is as large, or larger, in other plants species.
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Figure 3.5: Rosette CSCs in the plasma membrane of a vascular plant

3.3.1 CESA proteins: localization and function

CESA proteins, the CESAs gene products, have been localized to the rosette CSCs in the
plasma membrane of plant cells by immunocytochemistry (17). The smallest subunits that are
visible by electron microscopy, and that constitute the six lobes of the rosette, are thought to
consist of six CESA proteins. Consequently, the total number of CESA subunits forming the
rosette is believed to be 36. As cellulose is a major component of all higher plants cell wall,
CESA proteins are expressed in all cell types of the plant. However, the various members of
the family in each species are differentially expressed in tissue types.

3.3.2 Isoforms: really identical?

The 10 CESA genes contained in Arabidopsis are named AtCesA1-10 (42). It is currently
unclear why plants contain so many AtCESA genes. The observation that these genes have
overlapping expression patterns may mean that they are functionally redundant and thus play
identical roles in cellulose biosynthesis. However, phylogenetic analyses tend to group CESA
proteins known to be involved in primary wall formation separately from those involved in
secondary wall formation, indicating that CESA may not be functionally analogous. This
hypothesis also relates to the additional question of how many different CESA isoforms are
required for cellulose production within a cell.

If all the CESA were functionally entirely identical, they would be randomly assembled into
rosettes. Therefore a mutation in each of the components could be likely to affect the ability
of the rosettes to function normally, leading in any case to a reduced cellulose production.
Furthermore, if these isoforms were interchangeable, then the total CESA pool size should be
the limiting factor in cellulose production, rather then the amount of each CESA isoform.

Interestingly, growing evidence from genetic experiments and gene-expression analysis in-
dicate that only mutations in some of the CESAs have an effect in cellulose synthesis. Further-
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more, it has been shown that in some cases one CESA isoform cannot effectively compensate
for the loss of another. This strongly suggests that the presence of some of the isoforms is crit-
ical for cellulose synthesis, and argues a case for non-random incorporation of CESA proteins
into rosettes.

3.3.3 Mutants

There are a number of mutants currently known in plant cellulose synthase genes. Here we list
the most important mutations in Arabidopsis Thaliana (for simplicity we will omit the gene’s
prefix At-).
The rsw1 temperature-sensitive mutation in CESA1, when grown at the non-permissive tem-
perature, causes a specific reduction in cellulose synthesis in primary cell wall, the accumu-
lation of non-crystalline β(1,4) glucan, disassembly of cellulose synthase, and widespread
morphological abnormalities (41).
In addition to rsw1, mutations in CESA6 gene results in a deficiency in cellulose in primary
cell wall. This suggest that both CESA1 and CESA6 are required for cellulose synthesis in the
primary cell wall.
The irx3 (irregular xylem3) point mutation in CESA7 shows a defect in secondary cell wall
formation in xylem. As a result, the irx3 mutant have weakened walls and collapse upon them-
selves (43; 44). The irx1 point mutation in CESA8 is a member of the same family of mutants
as irx3, and causes a reduced production of cellulose in secondary wall.
Not to be confused with irx is ixr1 (isoxaben resistance). There are two mutants alleles, ixr1-1
and ixr1-2 that confer resistance to the cellulose biosynthesis inhibitor isoxaben. Both alleles
are point mutations in the CESA3 gene, suggesting that this gene may also be required for
primary wall cellulose synthesis. Another mutation that confers resistance to isoxaben is ixr2,
a point mutation in the CESA6 gene.
Recently a novel mutant, irx5, has been discovered, which has severely reduced secondary
cell wall cellulose. This phenotype is caused by a mutation of the CESA4 gene.
Finally, procuste1 is one of a class of mutants that show decreased elongation and increased
radial expansion in hypocotyls in Arabidopsis. Procuste1 is mutation a in the CESA6 gene,
the same gene as ixr2.

3.4 Rosette structure

The assembly of CESA subunits into hexamers is still not well understood. However, the data
on mutants shown above suggest that there are two different non-overlapping sets, each com-
posed at least by three CESA proteins, which are responsible for the formation of an operative
cellulose-synthesizing complex. The triplet CESA4, CESA7 and CESA8 (whose mutation
corresponds respectively to the irx5, irx3, and irx1 mutants) is required to correctly assemble
the cellulose rosette in the secondary cell wall (45); on the other hand, CESA1, CESA3 and
CESA6 (corresponding to the ixr1, ixr2 and rsw1 mutants) are needed for the synthesis of the
primary wall (41; 46). This hypothesis is consistent with the idea that CESA proteins are not
functionally redundant but, rather, play distinct roles in the cellulose biosynthesis mechanism.
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Understanding how three CESAs interact to form a functional rosette CSC is essential for a
proper comprehension of how single β(1,4) chains of glucose are synthesized, and how these
chains become organized into crystalline microfibrils. So far there are two main models pro-
posed for the architecture of the rosette: the first one is based on the hypothesized CESAs
interactions in primary cell wall, while the second one makes use of the known experimental
evidences in secondary cell wall extracts.

3.4.1 Model for CESAs interactions in primary cell wall

Based on the experimental results concerning the isoxaben resistance of ixr mutants, Robert et
al.(46) have proposed for the cellulose synthase in primary wall the model shown in Fig.(3.6a).
As said in the previous paragraph, the triplet CESA1, CESA3 and CESA6 is thought to be
required for cellulose synthesis in primary wall. Alterations in both CESA3 and CESA6 genes
produce the isoxaben-resistant mutants ixr1 and ixr2. However, no ixr mutant has been found
found associated with alterations in CESA1 gene. A possible interpretation for the existence
of two non-redundant resistance loci in the rosette, is that the herbicide directly or indirectly
recognizes a binding site associated with a complex containing both CESA3 and CESA6, but
not CESA1. Moreover, studies on cotton show that CESA proteins have the capacity to form
homo dimers through their N-terminal ring-finger domain. Together these data support the
model shown in Fig. 3.6a. In this picture, each globule contains 3 homodimers of distinct
CESA isoforms: CESA3 and CESA6 form an isoxaben-sensitive complex, so that mutations
in both these proteins can provide resistance to isoxaben, while mutations in CESA1 do not
cause such resistance.

Figure 3.6: (a) Model for CESAs interactions in primary cell wall. (b) Interactions between
CESA1 and CESA3 homodimers. (c) Interactions between two CESA1 subunits

Even if this model is able to explain the resistance to isoxaben in a consistent way, it doesn’t
resolve the self-assembly of the rosette from a dynamical point of view. The formation of the
multiparticulate enzyme is a very complex procedure, in which nothing can be left at random.
Since the 6 globules are supposed to be identical, it is straightforward to believe that the first
step in the formation of the whole complex is the assembly of the single globule. However,
in this context, there is nothing that assures the correct formation of the globule. To better
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understand this last point, let’s focus on the interactions between the CESA1- and CESA3-
homodimers: in order to bind to each other these dimers must share some binding loci, for
example the binding arms shown in Fig. 3.6b. However, for symmetry reason, the proteins
that form each of the dimers (the two CESA1 and the two CESA3) must be identical to each
other. As you can see form Fig. 3.6c, this is clearly impossible. It is therefore very hard
to understand how the three homodimers can interact in the right way to form a functional
globule, and subsequently a functional rosette.

3.4.2 Model for CESAs interactions in secondary cell wall

The model for the architecture of the rosette in secondary cell wall has been originally pro-
posed by Scheible in 2001. In this section we first examine in detail the experimental evidences
that led to the formulation of this model. Then, based on these results, we build an interaction
scheme for the CESAs proteins in secondary cell wall extract. Finally, we implement these in-
teractions in a dynamical model, which we demonstrate to be able to reproduce the processive
assembly of the cellulose synthase complex.

Figure 3.7: (a) Rosette CSC. (b) Model for CESAs interactions in secondary cell wall

3.4.2.1 Experimental evidence

Immunoprecipitation and co-localization studies carried out on secondary cell wall extracts
(45; 47) have shown that CESA8, CESA7 and CESA4 are expressed in exactly the same cells
at the same time. In addition, stems from irx1, irx3 and irx5 mutated plants all contain approx-
imately a third of wild-type cellulose levels, suggesting that CESA4, CESA7 and CESA8 are
equally important in cellulose synthesis. Consistent with this suggestion, experiments have
demonstrated that the three isoforms are all coimmunoprecipitated in wild type cells by us-
ing antibodies specific to CESA8. Identical results were obtained when antibodies specific to
either CESA4 or CESA7 were used. These findings indicate that the three proteins associate
and are all part of the same multimeric complex.

In order to determine the interactions of two of the subunits when the third component of
the complex is not present, experiments on mutant backgrounds were realized. Interestingly,
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they demonstrate that in solubilized extracts from irx5-1 plants, in which there is no detectable
CESA4 protein, CESA8 is no longer precipitated by the anti-CESA7 antibody. At the same
time, in these types of cells, CESA7 is no longer detectable in the proteins precipitated by the
anti-CESA8 antibody. To check the validity of the experiment, control tests were conducted:
they clearly indicate that CESA8 and CESA7 are both present in the irx5-1 extracts.

Another analysis was performed using a mutated form of CESA8 (in irx1-1 plants). In irx1-
1 extracts, antibodies specifically recognizing CESA7 and CESA4 were able to coprecipitate
CESA8, in a manner identical to that seen in wild-type. Thus, the presence of a mutated form
of CESA8 did not affect the interactions of the three proteins. This suggests that CESA8 may
differ from CESA4 in that it is not required for assembly of the other two subunits.

3.4.2.2 Rosette self-assembly in secondary wall: the model

If we consider the rosette assembly purely from a theoretical perspective, at least two dif-
ferent types of interactions can be envisaged, one between CESA proteins within a rosette
subunit and one between rosette subunits. For symmetry reasons, we consider the six lobes
of the rosette being structurally identical. As said before, each of the lobes is thought to be
composed of 6 CESAs, that have to assemble in a highly ordered manner to make a full size
complex. Assuming the spatial extent of the three different CESAs to be comparable, we
argue an hexagonal arrangement of the six proteins within each rosette subunit.

This disposition implies that the CESAs should have at least two binding sites positioned
at 120◦ one from each other (Fig 3.9). On the other hand, each of the lobes is itself a subunit
of the hexagonal rosette, and therefore it also should have two binding sites positioned a 120◦

one from each other. This is possible only if at least one of the three CESA types possess a
third binding sites that links two of the rosette lobes (Fig. 3.8a). Therefore, there must be
at least two isoforms, one with 2 binding sites and one with 3 binding sites, for the correct
assembly of the rosette to occur. What, then, is the role of the third isoform discussed in the
previous section?

Figure 3.8: (a) In order to form the hexagonal rosette the lobes must have two binding sites
positioned at 120◦ one from each other. (b)Possible model for the structure of the
single lobe

As already said, interactions between CESA7 and CESA8 are below the limits of detection
in secondary wall extracts in absence of CESA4. This strongly suggests the idea that CESA8
and CESA7 are not directly connected, and that CESA4 acts like a linker between the other
two. One possibility then would be the one shown in Fig. 3.8b: in this picture the blue
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particles, which we will call “linkers” (LNK) from now on, represent the CESA4 proteins; the
green spheres with three binding sites (BS3) could be exclusively the CESA7 or the CESA8,
and the red subunits (BS2) would correspond to the third component of the system. This
scheme is consistent with the mutant analysis discussed in the last section: in normal cells in
fact, CESA7 and CESA8 (BS3 and BS2) are linked through CESA4 (LNK) and manage to
coimmunoprecipitate. If LNK is removed, however, like it happens with CESA4 in the irx5-1
plant cells, BS2 and BS3 particles are no more connected and behave independently.

Based on these considerations, Doblin proposed for the rosette CSC the structure shown in
Fig. 3.7b (48; 49). In this model the CESAs are represented as spherical particles that interact
with each other through oriented binding-arms. As illustrated in Fig. 3.9, each of these three
particle has specific interactions. In particular, LNK can bind with BS3 as well as BS2, BS2
can bind only to LNK and BS3 can bind with itself as well as with LNK.

Figure 3.9: Scheme of CESAs interactions

3.5 How does a rosette assemble? Monte Carlo answers...

In order to demonstrate that the interaction scheme displayed in Fig. 3.9 is actually able to
resolve the self-assembly of the rosette, we have performed a Monte Carlo simulation. The
Monte Carlo scheme consists of a series of stochastic transitions between different system
configurations, all satisfying the imposed constraints. In our simulation each Monte Carlo
step involves the displacement (translation or rotation) of a randomly chosen particle. The
simulation starts with all the particles, of diameter σ, positioned at the vertexes of a grid, in
a planar box with reflecting boundary conditions. Since the CESAs particles are thought to
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assemble in the plasma membrane, we have performed our simulation in a two-dimensional
space.

The probability of a given move depends on the energy difference between two successive
configurations, i.e. the trial move is accepted with a probability

P(Ei → E f ) = min[1,e−β(E f−Ei)]

where E f and Ei are respectively the energies of the final and initial system state. This rule
satisfies the detailed balance condition that ensures the correct sampling of the equilibrium
phase space. After the trial move has been carried out, three situations can occur: 1) the
particle has moved over another particle, in which case the move is rejected because we are
supposing hard-core interactions among the spheres; 2) the particle has moved over a free
spot; 3) the particle has bound to another particle.

Since the interactions are very specific and orientation-dependent, the “binding event” can
happen only if: a) the interaction rules of Fig. 3.9 are satisfied; b) the distance d between the
two particles is σ < d < 1.2 σ; c) their binding arms are correctly co-aligned. Each binding
event corresponds to a decrease in the total energy of the system of a quantity that depends on
the specific interaction, as discussed in Table 3.1.

Figure 3.10: Active (a) and inactive lobes (b-c)

The rules described in Fig. 3.9, although being extremely specific, allow for the formation
of three types of rosette subunits (Fig. 3.10): the ones with all the three types of particle
forming the ring (we will call these “active lobes”), and the ones with only two type of subunits
(LNK-BS2 and LNK-BS3 “inactive lobes”). Since we know that the rosette CSC contains at
least three types of particles, and since we have assumed the identical structure of the six
lobes, to prevent the formation of “faulty” rosettes we have to impose that only active lobes
can associate to form the final hexagonal product. Moreover, we also require the BS3-BS3
binding event between two rosette subunits, to occur only when both of the rings are already
completely formed. The closure of the rosette-ring prior to the complete formation of the
lobes, in fact, is an obstacle to the correct assembly of the rosette itself.

Interaction Binding Energy
BS2 ⇔ LNK ε2,L
BS3 ⇔ BS3 ε3,3
BS3 ⇔ LNK ε3,L

Table 3.1: Binding energies for CESAs interactions
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Figure 3.11: Six successive frames of the Monte Carlo simulation
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3.5.1 The simulation

Here we present the results of our simulation. The total number of particles in the system is
144, and the initial ratio of the three system’s components is exactly the one needed for the
correct assembly of 4 single rosettes.

Fig. 3.11 shows six snapshots of the simulation. During the first stages of aggregation, the
CESAs undergo brownian motion and start to interact forming dimers and trimers of subunits.
Subsequently the first rosette subunits begin to emerge (Fig. 3.11b-c), and some of them
rapidly aggregate with each other forming two- three-lobes structures (Fig. 3.11d-e). These
structures then bind together and the rosette is finally formed (Fig. 3.11f).

Looking carefully at the images we can see that the trimers which are initially formed are
mostly LNK-BS2-LNK (blue-red-blue) type. This specific pre-aggregation event is essential
for the correct formation of active lobes, and strictly depends on the choice of the binding
energies. By setting conveniently the energies ratios in such a way to have ε2,L >> ε3,L (see
Table 3), it is possible to favour the LNK-BS2-LNK linking with respect to the LNK-BS3-
LNK one, and increase in this way its stability. Once these main LNK-BS2-LNK trimers
are created, the six lobes can correctly complete their self-assembly. Fig. 3.11b shows some
lobes already formed in a pool of subunits. Interestingly, together with correctly assembled
lobes, here we can note also the presence of LNK-BS3 inactive complexes, i.e. lobes in which
the BS2 subunit is missing. Even if the interaction rules of Fig. 3.9 in principle allow for
this anomalous binding to happen, their occurring is rare due to the low stability of these
complexes.

3.5.1.1 Need of a chaperone?

For the correct assembly of the rosette to happen we had to make two main assumptions: only
a) active and b) completed lobes can associate to form the hexagon. However, these conditions
are not sufficient to ensure the formation of an intact rosette. The BS3-BS3 binding site in fact
should be blocked in some manner for a ring rather than a linear array to be assembled.

Figure 3.12: The presence of a chaperone could be necessary for the choice of the ring (a) or
the zig-zag (b) configuration

We can understand this point more easily looking at the Fig.(3.12): once two active lobes
are completely formed and thus ready to interact, they can bind to each other in two different
ways. In the first mode (Fig. 3.12a), that we call the “ring” configuration, the lobes interact in
such a way that the BS2 particles are always on the same side. This arrangement is necessary
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3 The Cellulose Synthase Complex

for the correct formation of the hexagon ring (Fig. 3.7). In the “zig-zag” configuration the
lobes interact in such a way that the red particles are always on opposite sides. Interestingly,
this arrangement is not inconsequential, but it brings to the assembly of linear complexes very
similar in structure at the ones found in some algae and bacteria (Fig. 3.14).

The task of selecting one of the BS3-BS3 binding modes could be performed by chaperones.
The chaperone is a molecular complex that aids in the folding of a protein and prevents it from
taking conformations that would be inactive. In this case one or more chaperones would have
to act like switches, choosing between the linear and the zig-zag configurations depending on
the final CSCs structure that has to form.

3.5.2 What about Micrasterias?

As pointed out in the previous section, the alga Micrasterias Denticulata shows during sec-
ondary wall synthesis a very particular CSCs arrangement: the single rosette aggregate form-
ing clusters with an hexagonal structure (Fig. 3.13). We can question whether this kind of
structure can be explained with the same interaction rules used for the rosette CSC and the
linear CSC. Well, as shown in Fig. 3.13, this is actually possible.

Figure 3.13: (a) Hexagonal clusters of rosettes in the secondary cell wall of Micrasterias; (b-c)
Model for rosette’s interactions

What we need for the formation of the hexagonal cluster of rosettes is a simple ingredient: a
long-range interaction among BS2 particles. Suppose that the BS2 particles, instead of having
the two binding sites described in Fig. 3.9, possess three binding arms. Two of them are
short-range, and allow for connections with only blue particles, as previously discussed. The
third one, instead, is long-range, and links two BS2 subunits, belonging to different rosettes,
in such a way that their distance is a certain length L. As shown in Fig. 3.13, the presence
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3 The Cellulose Synthase Complex

Figure 3.14: Linear CSCs in Acetobacter, real image (a) and model structure (b)

of this new link makes possible the construction of hexagonal clusters, very similar to those
present in secondary cell wall of Micrasterias (Fig. 3.13).

It has to be noted that in principle also the LNK-BS3 inactive lobes could interact forming
hexagonal structures in a manner similar to the rosette’s cluster. However, in this case, the
two-particles lobe would interact with each other always via short-range links, and the final
structure of this aggregation process would be an homogeneous hexagonal pattern, different
from the one observed in real algae.

3.6 Conclusions

In this chapter we described a model for the self-assembly of the cellulose rosette CSC in
secondary cell wall of plant cell. Our model, besides documenting in detail all the steps
involved in the rosette CSC’s building, is also able to explain the formation of linear CSCs as
well as clusters of rosettes. Nevertheless, our model does not adequately explain how rosette
assembly would occur in cells in which there are apparently less than three CesA isoforms
expressed. Clearly, further characterization of rosette components and their interactions, as
well as the unequivocal identification of which CesA proteins are assembled into a rosette in
a particular cell-type, is required before any conclusions can be drawn as to the merits of this
model.
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4 A polymerization driven molecular
motor

In plant cells, cellulose occupies a dominant place being the major component of the cell wall,
an extracellular assembly that acts like an external skeleton and which constitutes the prin-
cipal feature distinguishing plants from animals. The cell wall derives its robust mechanical
properties from its ingenious construction (for a detailed description of the cell wall architec-
ture go to Chapter 5): it consists of stacks of thin lamellae (50), all deposited parallel to the
plasma membrane, that are formed by long and mostly crystalline aligned cellulose microfib-
rils (CMFs) embedded in a matrix of polysaccharide “packing” material (51; 52). The CMFs,
which represent the structural unit of the cell wall, are constituted by bundles of glucan chains
that are synthesized and extruded from the plasma membrane by a moving transmembrane
protein complex (go to Chapter 3 for details), the rosette CSC (Fig. 4.1).

Figure 4.1: Electron micrographs from freeze-fracture preparations of plant cell walls showing
a so called terminal-complex, the imprint of a cellulose synthase complex (CSC),
with an attached cellulose microfibril (CMF) in the exoplasmatic face of the plas-
mamembrane (left panel), a so-called particle rosette, the outward facing side of
the CSC, within a characteristic depression of the plasmamembrane (right panel,
scale bar is 100nm) and a close-up of the particle rosette with is typical six sided
symmetry (inset in right panel)

The aim of this chapter is to explain the mechanism at the basis of CSC motility in plant
cell. We show how the concept of a brownian polymerization ratchet, originally proposed by
Peskin et al. to explain force production by growing polymeric filaments such as microtubules
(53; 54), can also serve as a basis for describing CSC propulsion in the plasma membrane of
plant cells. However, we argue that obtaining a full understanding also requires taking into
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account the geometry of the deposition process, the additional driving force provided by the
crystallization of the cellulose, and finally the role of the elastic energy stored in the nascent
microfibril as well as in the deformable plasma membrane.

4.1 Functioning of the CSC

The assembly of the CSC occurs in the interior of the cell, presumably in the endoplasmic
reticulum and in the Golgi apparatus. Current estimates of the diameter of the CSC on the en-
doplasmic side are in the range of 40 – 60 nm (55), making the CSC one of the largest protein
complexes so far observed. Once assembled, the complex is then transported to the plasma
membrane for activation and cellulose synthesis. Since most of the structure of the CSC is
deeply embedded in the cytoplasm of the cell, EM images of freeze fracture preparations of
the P-face of plant membranes are only able to show a small fraction of the structural unit.
What these pictures reveal is a characteristic structure of six hexagonally arranged particles
forming a ring, or “rosette” (56; 16), with diameter of approximately 25 nm (Fig.4.1). At the
locus of the rosette, a depression on the P-side of the membrane (Fig. 4.1b) can be seen to
associate with a bulge on the E-side, from which the growing tip of a CMF departs (Fig. 4.1a
and Fig. 4.2a).

Figure 4.2: (a) Cartoon representing the rosette and the CMF in the double layered plasma
membrane; (b) Cartoon of the 36 glucan chains emerging from the rosette

The current view about cellulose synthesis in plant cells (go to chap. 2 for further reading),
is that each of the six lobes of the CSC in turn consists of six cellulose synthases, each of them
polymerizing a single glucan chain using UDP-glucose as a substrate (22) . These individual
chains are then assembled into the CMF, which by implication consists of 6× 6 = 36 chains
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(Fig. 4.2b), consistent with the known crystal structure and the measured cross-section of
approximately 3.5 nm (22; 57). Since the cell wall is deposited from the inside out, and
since the CSC is bound to the membrane, the deposition of new CMFs has to take place in the
limited space between the outer surface of the fluid plasmamembrane and the earlier deposited
rigid cell wall. For this process to work it had to be assumed that the CSC would have to move
in the plane of the membrane (58), leaving behind a CMF in its track. The latter hypothesis
has now finally been confirmed (59).

Although the idea that the CSC moves was widely accepted, the question of the origin of
this movement has so far received less attention. Obvious candidates for the required force
production are motor proteins, molecular chemical energy transducers that are involved in
many different biological tasks (60; 53). Examples are processive molecular motors such as
kinesin, that can transport organelles and vesicles using cytoskeletal elements as tracks, or
non-processive motors such as myosins that deliver the power strokes for muscle contraction,
both using ATP as fuel. Indeed, one of the early theories (61) assumed the CSC to be linked
by a motor protein to a cortical microtubule, that then acted as a rail to guide the motion. An-
other proposal (62) had the cortical microtubules acting as force producers themselves, which
by setting up a shear flow in the membrane provide a motive force to the CSC. Later, it was
realized that in principle the energy released by the glucose polymerization process could by
itself be sufficient to propel the CSC (63). In addition, it was shown that preventing CMF
crystallization through Calcofluor treatment led to a thickening of the cell wall, suggesting
a dysfunctional dispersion of the CSC along the membrane (35). This observations put in
correlation the movement of the CSC with the CMF’s polymerization and crystallization pro-
cesses, but to date a detailed mechanistic explanation of how the CSC’s motion is achieved
was lacking.

In this chapter we develop an explicit biophysical model to explain CSC motility. Be-
fore digging into the details of the model, however, we need to recover the basic mechanism
through which, in a cellular environment, work can be produced from chemical energy: the
Brownian Polymerization Ratchet.

4.2 The Browian Polymerization Ratchet

At the size scale of a cell or a protein assembly within a cell, Brownian motion plays a funda-
mental role. Thermal collisions constantly batter cellular components, and cells have learned
to exploit some of this random motion and convert it in a directed way. In the last 15 years,
different physical models have been proposed for how chemo-mechanical energy transduction
is carried out at the microscopic level by filament polymerization (54; 64). These models,
called Brownian Polymerization Ratchets (BPRs), are variations on the theme of the ’Brow-
nian ratchet’, whose name comes from the hypothetical perpetual motion machine proposed
by Feynman (65). Feynman’s ratchet shows how random thermal motion can be harnessed
with the help of an external energy source such as a temperature gradient (the details of this
machine are reported in Appendix C). Even if large temperature gradients are essentially im-
possible to maintain over small cellular distances, Feynman’s concept of the Brownian ratchet
can be readily extended to other energy sources, such as electric fields and non-equilibrium
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chemical reactions that are available to cells (66).
Brownian ratchets of all sorts share three basic characteristics. First, there is a discrete step

or event that defines the steps of the ratchet: a potential of some kind with periodic energy
minima in space or time. Second, there is random thermal motion in some component of the
system, providing variability somewhere so that the machinery can move both forward and
backward. Third, critically, there is an energetic asymmetry, either in the periodic potential
or in some other potential, that creates a preferred direction for the cycle to turn. In most in-
teresting biological cases, the asymmetry is provided by a non-equilibrium chemical reaction.
In our case, this non-equilibrium reaction is a polymerization process where the attachment
event is much more frequent the the detachment one.

Figure 4.3: The polymerization ratchet.(a) Energies of the bound and unbound state. (b) The
elongation process

In the brief introduction on the BPR that follows, we will describe how thermal fluctua-
tions manage in transducing the chemical energy into directed motion. To achieve our aim,
we divide the conversion process in two steps: first, we show how chemical energy can be
extracted from a polymerizing filament; then, we explain how thermal fluctuations succeed in
transforming this chemical energy into mechanical energy, and hence into work.

4.2.1 Extracting the chemical energy

The chemical energy that is transduced into mechanical pushing force by filament polymer-
ization, is stored in the difference ∆G in chemical potential (Gibbs free energy) between the
free monomer form and the polymer form of a protein subunit (Fig. 4.3a)(67). In general,
filament polymerization can be thought of as a simple bi-molecular binding reaction, where
a free subunit binds to the end of a polymer formed by n subunits to generate a filament of
length n+1 (Fig. 4.3b). The transition rate between the free and the bound state is determined
by the energy barrier ∆G∗ (Fig. 4.3a). If the free energy of the bound state is equal to the
free energy of the subunits in the free state, then ∆G = 0, and kon = ko f f . Filament elongation
proceeds spontaneously whenever the free energy of the subunit in solution is greater than the
free energy of the subunit in the polymer. Whenever there is excess free energy ∆G liberated
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from a chemical reaction, it can in principle be harnessed and converted into another form of
energy.

There are two main physical models that describe how the ∆G available from spontaneous
polymerization can be used to provide a pushing mechanical force (54; 64). In both, the
discrete step corresponds to the addition of a single protein subunit to a filament tip. In both,
the energetic asymmetry is provided by the difference in free energy between the free- and
bound- state for the monomer. The difference between the two lies in where the thermal
motion comes into the system (Fig. 4.4).

Figure 4.4: The two models for BPR: (a) rigid filaments and (b) semi-flexible filaments

4.2.2 BPR for rigid filaments

The first model, proposed by Peskin et al. in 1993 (54), envisions a simple filament, fixed
at one end, that encounters a diffusing load which is being pushed by a force F against its
other tip (Fig. 4.5). As the load bounces around by thermal motion, it attempts to move
both backward and forward. Backward diffusion is inhibited by the presence of the filament.
Forward diffusion, though limited by the pushing force, is allowed, and every so often the
excursion distance is sufficiently large that a new protein subunit can intercalate between the
filament tip and the load, ratcheting the position of the object one step further. For the filament
to add a new monomer, the load must be pushed forward by a distance δ that corresponds to
the size of the protein subunit, and thus, an amount of work W = F δ has to be done against
the pushing load.

This physical model allows calculation of the speed at which an object can be pushed by
a polymerizing filament. In particular, if we indicate by k0

on and k0
o f f the free attachment

and detachment rates of monomers (corresponding to the situation in which the polymer does
not have any pushing force nor load at its tip), we simply have for the free-growing case an
expression for the polymerization velocity that reads like:

v0 = δ(k0
on− k0

o f f ). (4.1)
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Figure 4.5: Details of the BPR for rigid filaments

How do things change in presence of an obstacle? Since the load is being pushed against
the polymer, the probability P(x > δ) of having the gap wider than the subunit size is lim-
iting the polymerization rate. This implies obvious corrections to be made for the effective
polymerization rate in presence of a load, which becomes:

kon = k0
onP(x > δ). (4.2)

However, the model of Peskin et al. predicts no change for the de-polymerization rate, i.e.
ko f f = k0

o f f . In principle, a load can have an effect on the de-polymerization as well: however,
understanding how this change come into action is beyond the aim of our presentation of the
brownian polymerization ratchet model and we will not delve into unnecessary details.

Putting together Eq. (4.1) and Eq. (4.2) we finally obtain that the new polymerization
velocity in presence of a load becomes

v = δ(k0
onP(x > δ)− ko f f ) (4.3)

where, to consistently solve the equation, one needs to evaluate the probability P(x > δ) (54).
Regardless of its specific expression, however, we can argue that it must depend on the diffu-
sion coefficient D of the moving load and on the magnitude F of the pushing force.

4.2.3 BPR for semiflexible filaments

The simple model discussed above is a very useful starting point for understanding how the
BPR works. But much like the original perpetual motion machine imagined by Feynman,
it ignores the fact that thermal motion must affect all components in the system, i.e., in this
case, the filament as well as the load. In most biological situations, the load can be much
larger than the filament, and thermal bending of the polymer is much more likely to open a
monomer-sized gap between the filament and the load than is diffusion of the whole load.

Based on that idea, Mogilner and Oster described a revised elastic Brownian ratchet model
in 1996 (64), where the load is considered to be stationary, and the filament is subject to
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bending (Fig. 4.4b). In this case the polymerization velocity has an expression that is similar
to the one found in the previous model, i.e.

v = δcos(θ)[k0
onP(θ,F)− k0

o f f ] (4.4)

where now P(θ,F) indicates the probability that a gap of width x > δcos(θ) is opened between
the tip of the filament and the load that is being pushed with a force F (Fig. 4.6).

Figure 4.6: Details of BPR for semiflexible filaments

The relationship between force, velocity, and angle with this more realistic model is quite
complex, and must be computed numerically (64). However, here we can say that the proba-
bility P(θ,F) is predicted to depend on the stiffness (Young’s modulus) of the filament and on
the angle between the filament and the load, and does not depend on the diffusion coefficient
of the load object like in the previous model. Mogilner and Oster derived the velocities in four
limiting cases where filaments are stiff or flexible, and the load force is high or low.

4.3 Modelling the movement of CSC

The two different models described in the previous sections are not mutually exclusive. In
reality, it is possible that both elastic bending of the filaments and thermal motion of the
load object can cooperate to open up the gap that allows addition of a subunit to the growing
filament.

In this section, we are going to build such a more complex mechanism to explain the force
generating system underlying the locomotion of the CSC. To achieve this task, we develop
our approach in three steps: first, we formulate a model that integrates the relevant physical
components to obtain a heuristic explanation for the propulsion process; in the next step, we
simplify the model into a form that allows analytical predictions to be made and show that
we can reproduce the experimentally measured value for the CSC speed; in the final step, we
implement this model in a stochastic simulation, providing a proof of principle of the proposed
mechanism.
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Figure 4.7: Schematic representation of the mechanical cycle in our model of CSC propulsion,
illustrated for the case of a single CMF. From top to bottom: Step 1: the filament
and the membrane are in thermal equilibrium. Step 2: due to fluctuations of the
filament and/or the membrane, a gap of sufficient size is opened allowing a new
monomer to be added to the filament. Step 3: the increase in length of the fila-
ment causes an accumulation of elastic energy in the system, which generates a
force on the tip of the filament. Step 4: the accumulated energy is released in a
unidirectional motion of the tip of the filament, which is attached to the CSC. Step
5: the filament has effectively advanced by one monomer unit and equilibrium is
restored, allowing the cycle to repeat itself.

4.3.1 The model

The mechanical cycle we propose is responsible for CSC propulsion is illustrated in a schematic
fashion in Fig. 4.7. We model the CSC as a planar, membrane-bound object. On the side of the
object facing away from the cell a regular array of cellulose polymers is extruded. We model
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these polymers as inextensible semiflexible chains of beads. The configuration of these poly-
mers is constrained by three factors. The first is their attachment to the CSC itself. Here we
assume that this attachment not only fixes the location of the polymer tips, but also specifies
the orientation of their first bonds to be perpendicular to the plane of the CSC. The latter as-
sumption is consistent with the hypothesis that the chains emerge from narrow channels in the
complex. The second constraining factor is the confining influence of the already deposited
cell wall, which we model as an impenetrable barrier. The final constraint arises from the fact
that the polymers are at their other ends all linked up into a nascent CMF, which on this scale
is an effectively rigid linear structure constrained to lie in the plane of the membrane.

Because the polymers have a finite resistance to bending, the combination of geometrical
constraints imposed on them implies that they are in a non-relaxed conformation, resulting in
forces acting on their attachment points. At the loci where the polymers emerge from the CSC
these forces will typically have both a perpendicular component and an in-plane component.
The perpendicular component has two effects: (i) it acts as a barrier for the polymerization
process, thus influencing the rate of addition of new monomers, and (ii) it contributes to a net
force which pushes the CSC downward, counteracted by an elastic response of the membrane.
The latter effect is consistent with the membrane-indentations that are seen in some freeze-
fracture images of the CSC (68) (See also Fig.4.1). Note that we disregard the possibility that
the CSC “tilts” with respect to the global membrane orientation, as the energetic cost of such
short length-scale deformations of the membrane is probably appreciable.

The resultant of all the in-plane force components due to the individual polymers is the
net force that drives the linear motion of the CSC. Energy is injected into this system by the
polymerization- as well as the crystallization process, as both will tend to increase the stress
in the polymers. The energy is dissipated by the work the CSC as a whole performs against
the frictional forces it experiences. We stress the fact that thermal fluctuations, which are
a dominant effect at the relevant molecular scale, play a crucial role in the whole process,
making possible the opening of a gap big enough for the insertion of a new polymer subunit.
It is these fluctuations which allow the system to cross (and also to re-cross) the energetic
barriers associated with the mechanical constraints imposed on the polymerization process.
Like in the BPRs models discussed in the previous sections, it is the rectification of these
fluctuations that allow the system to convert chemical energy into directed motion.

4.3.2 Analytical treatment

Now that we have illustrated how the proposed mechanism manages in pushing the CSC
through the membrane, we undertake to strip the model to its bare essentials, focusing on
a single growing polymer constrained to a 2D planar geometry interacting with an 3D elastic
membrane. In this simplified setting, whose projection on a vertical plane is already illus-
trated in Fig. 4.7, the model can be solved exactly, allowing the polymerization velocity to be
determined.

In our analytical picture the chain is modeled as a semiflexible filament with a persistence
length ξ f significantly larger than the typical dimensions of the region where the filament is
bent. The membrane is fixed at its edges to a rigid frame of size Ω = l2, and its equilibrium po-
sition is taken to coincide with the hard top wall which represents the already extant cell wall.
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We neglect the spatial extent of the CSC, which is now simply represented by the constraint
on the verticality of the first bond of the polymer.

We first investigate the equilibrium configuration of the polymer. The active part of the
filament can be considered as an elastic rod clamped at one end horizontally to a rigid part,
representing the crystallized CMF, and vertically at the tip by the CSC. In order to minimize
its elastic energy under the given constraints, such a rod adopts an quarter arc of circle config-
uration. Recalling that the elastic energy of a semiflexible polymer can be written as

E =
J f

2

Z L

0

ds
R2(s)

(4.5)

where R(s) is the local curvature radius and J f is the bending modulus of the filament, we
obtain that the equilibrium shape of the polymer is a quarter arc of circle of length π

2 z f , with
energy E f (z) = πJ f /4z f , where z f is the vertical distance of the filament tip to the wall. The
geometry of this situation is schematically depicted in Fig. 4.8. In the following we will
consider the polymer so stiff to always maintain the definite shape of arc of crcle: thermal
fluctuations have the only effect to modify its radius of curvature z f .

The force the tip of the filament exerts on the supporting membrane is

Ff (z f ) =−
dE f (z f )

dz f
=

πJ f

4
1
z2

f
. (4.6)

Figure 4.8: Schematic cross-sectional drawing of the geometry employed in the analytical
model.

In response to this force the membrane will deform by flattening out as much as possible,
generating a counter-force on the tip of the polymer. In order to obtain this opposing force
Fm(zm), being zm the vertical displacement from the equilibrium configuration of the mem-
brane, we follow the method of Daniels et al. (69), first calculating the partition function for
the fluctuations of a membrane described by the energy functional (4.20), that is constrained
such that its midpoint can not come closer than a distance z from its unconstrained equilibrium
location. Assuming that we are in a regime where the fluctuations of the membrane around its
equilibrium position, which scale as ∆ = (βAγ)−

1
2 , are small compared to the amplitude z of
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the induced deformation, we can neglect the presence of the rigid wall in z = 0 and extend the
relevant integrations over all the possible membrane conformations.

The partition function is then given by

Qm(z) = exp(−βAγz2), (4.7)

where β = (kBT )−1 and A = 2π/[log(1+ γΩ

Jmπ2 )] , with Ω = l2 the area of the membrane frame,
γ the surface tension and Jm the bending modulus. We assume throughout that the size of the
frame is large enough such that all physical results obtained are insensitive to the shape of
the frame. When the membrane is constrained such that the midpoint can not be above the
location zm, as is the case when an impinging filament is present, it can only explore those
configurations where its midpoint is located at positions z ≥ zm. The force the membrane
exerts on the filament is thus given by

Fm(zm) =−∂Fm(zm)
∂zm

(4.8)

where the free energy is given by

Fm(zm) =−β
−1 log

1
Λ

Z
∞

zm

dzQm(z) (4.9)

with Λ an irrelevant constant added for dimensional purposes. In case zm � ∆, the force is
approximately linear in the displacement and given by

Fm(zm)'−2 A γ zm ≡−km zm (4.10)

which defines the spring constant km.
Balancing the two opposing forces Ff and Fm yields the equilibrium position for the filament

tip and the membrane midpoint

zeq =
1
2

(
πJ f

Aγ

) 1
3

. (4.11)

To study the fluctuations around this equilibrium position, and assuming that these are small
with respect to z f itself, we linearize the force Ff around zeq yielding

Ff (z f )'
πJ f

2z3
eq

(
z f −

3
2

zeq

)
≡−k f

(
z f − z(0)

f

)
(4.12)

with the effective spring constant given by k f = −4Aγ and the effective rest length of the
spring by z(0)

f = 3
2zeq.

This procedure maps our model conceptually onto a system of two brownian linear springs
acting in opposite directions, the polymer downward and the membrane upward. These springs
are connected to a thermostat and are coupled by the constraint that the tip of neither spring
may pass the other since the polymer and the membrane cannot interpenetrate (see Fig. 4.9),
i.e. zm− z f ≥ 0. To determine the velocity of polymerization we then need to evaluate the
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Figure 4.9: The effective model of two coupled springs the analytical model maps onto.

probability that a gap, larger than the monomer size δ, is opened between the filament tip and
the membrane midpoint.

Like in the BPRs discussed in the previous sections, thermal fluctuations represent a key
element in this process, being the source that allows the system to open such a gap. The
dynamics of the growing polymer, assuming a reversible polymerization reaction, is governed
by the balance between the rate of addition and the rate of removal of monomers. In the case
that the timescale of the thermal fluctuations is fast compared to the polymerization kinetics,
the polymerization speed is given by (54) Eq. (4.3), where now the size of the gap between
the filament tip and the membrane is identified by the coordinate Z = zm− z f . It then follows
that:

v = δ(K0
onP(Z > δ)−Ko f f ) (4.13)

where we recall that Kon and Koff are the bare rates of monomer addition and removal re-
spectively, and P(Z > δ) the probability that the gap of length Z is larger than the monomer
size. For the effective two-spring system we derived above, the probability distribution for the
tip-membrane gap can be evaluated exactly. Recalling that the probability distribution for a
one-dimensional harmonic oscillator in a thermal bath is given by

Posc(z) =

√
βk
2π

exp
{
−1

2
βk(z− z(0))2

}
(4.14)

we can determine the probability for a gap of given size Z > 0 from

P(Z) =
Z

∞

−∞

dzm

Z
∞

−∞

dz f Posc
m (zm)Posc

f (z f )δ
(
(zm− z f )−Z

)
(4.15)

where, as before, we have freely extended the upper limit of the integrations boundaries to +∞

since the product (Posc
m Posc

f ) is significantly different from zero only in a small region around
Z = 0;. Performing these integrations yields

P(Z) =
e−

1
2 βk̄(Z+z(0)

f )2

R
∞

0 dZ′e−
1
2 βk̄(Z′+z(0)

f )2
(4.16)
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where the effective spring constant of the coupled system is given by k̄ = kmk f /(km + k f ). In
order to assess the validity of the approximations made in deriving the analytical model, we
compare the prediction of the gap distribution in Eq. (4.16) with the results we obtain from
sampling of a one-filament version of the full stochastic model that will be presented in section
4.3.3. The results are presented in Fig. 4.10 and show a perfect agreement.

Eq. (4.16) in turns allows the explicit evaluation of the probability that the gap is larger than
the monomer size

P(Z > δ) =
Z

∞

δ

dZ′P(Z′) =
1+ erf

(√
1
2βk̄ (z(0)

f −δ)
)

1+ erf
(√

1
2βk̄ z(0)

f

) (4.17)

where erf(x) is the error function, z(0)
f the equilibrium position of the linearized polymer-

spring, k̄ an effective spring constant and β = 1/kBT the standard inverse temperature. Taken
together, Eqs. (4.13) and (4.17) allow the polymerization velocity, which equals the velocity
of motion of the CSC, to be determined as a function of all the relevant parameters. Deferring
the numerical estimate of this velocity to the next section, we remark that we can readily
deduce that the polymerization velocity increases with increasing temperature and decreases
with increasing stiffness of the system, caused either by increased stiffness of the filaments or
the membrane. Interestingly the former consideration is backed up with experimental evidence
(unpublished data, Brown lab).

4.3.2.1 Results

We can now employ the results obtained through this analytical approach to estimate the ve-
locity of the CSC. In this attempt we are of course limited by the availability of quantitative
estimates of the relevant parameters.

We first consider the bending modulus of the effective filament, arguably the least well
determined parameter. Using crystallographic data we can provide an upper and a lower bound
to the value of J f as the Young’s modulus Y of cellulose is known to vary between 5 GPa for the
amorphous state and 150 GPa for the crystalline state (70). We can, however, extract a more
appropriate estimate from the depth of the observed indentation of the plasma membrane at the
locus of the CSC, which provides an estimate for the equilibrium value of the filament tip to
wall distance zeq. Through the use of relation Eq. (4.11) we can then determine J f = 8 Aγz3

eq/π.
For typical values of the membrane surface tension γ = 5×10−5 N/m, the membrane bending
modulus Jm = 2× 10−20 Nm, an indentation depth of zeq = 100 nm and size of the relevant
membrane patch l≈ 300 nm, we find J f = 2.5×10−25 Pa m4. Taking the radius of the effective
filament to be r = 1/2 diameter of CMF = 2nm, we obtain an estimate of Y = 4J f /(πr4) =
20 Gpa, which falls squarely between the bounds mentioned above. We have to keep in mind
that, even if the structure of the CMF is almost perfectly crystalline, at the moment of the
extrusion from the CSC the glucan chain aggregates are in a non-crystallized phase. Thus the
effective Young’s modulus of the aggregate is much lower that the one of a cellulose crystal.

For the polymerization rate we use the value of free polymerization of cellulose achieved by
the bacterium Acetobacter, the so-called vinegar bacterium that lives at the water-air interface

39



4 A polymerization driven molecular motor

Figure 4.10: The gap probability P(Z) as determined from the analytical model (solid) line,
compared to the distribution sampled from a a one-filament stochastic simulation
(histogram). The inset is a semi-logarithmic plot that shows how well the tail of
the distribution is reproduced.

and propels itself by forces derived from cellulose synthesis (go to Chapter 4 for further de-
tails). Strictly speaking, these experiments determine the net rate Kon−Ko f f , but we assume
that the off-rate for these almost irreversible chemical bonding processes is negligible. We
therefore take Kon ' 100 s−1 (71; 11) and we neglect the effects of spontaneous depolymer-
ization setting Koff = 0. The final parameter necessary is the size of the monomer, which is
equal to the size of a glucose subunit, making δ' 0.5 nm.

With these ingredients we can now estimate the speed of the CSC to be

vp = δ Kon P(Z > δ)' 4.5×10−9m/s. (4.18)

This number compares favourably to the measured average speed vp' 5.8×10−9m/s observed
by the Somerville group (59). We can also compare our results to the estimate of Hirai et
al. (72) who observed Calcofluor stained CMFs growing from membrane fragments isolated
from Tobacco BY-2 protoplasts. Their estimated elongation rate of vextract

b = 1.03×10−8m/s is
higher than that observed in vivo, presumably due to the absence of the spatial constraint of an
existing cell wall, which lowers the counter-force experienced by the polymerization process.
Nevertheless, given the inevitable effects of friction with surrounding aqueous medium this
value is still lower than that which we would estimate for totally unobstructed deposition, in
which case P(Z > δ) = 1 and we obtain vfree

p = 5 ×10−8 m/s.
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4 A polymerization driven molecular motor

4.3.3 Stochastic simulation

We now implement the conceptual model presented in sect. 4.3.1 in terms of a stochastic
simulation. In the following, even though the simulated systems are discretized for numer-
ical purposes, we will express their Hamiltonians in the continuum limit. The Monte Carlo
scheme used in the stochastic simulation consists of a series of stochastic transitions between
different system configurations, all satisfying the imposed constraints. The probability of a
given transition depends on the energy difference between the two successive configurations
and satisfies the detailed balance condition that ensures the correct sampling of the equilibrium
phase space.

For simplicity we consider a CSC producing 6 effective filaments (EFs), each representing
6 cellulose chains. This simplification is consistent with the mechanism proposed by Cousins
et al. (13) in which the approximately 36 cellulose strands that emerge from the CSC are first
assembled into 6 glucan chain aggregates, which subsequently coalesce crystallizing into a
CMF. The EFs are modelled as bead-chains with a bending potential governing the relative
orientation of pairs of neighboring bonds. Each filament is represented as a discrete linear
chain of N f spherical beads of diameter σ that are rigidly connected by bonds of fixed length
δ = σ. The length of each chain is thus l fi = N fiσ, where the subscript i = (1..6) refers to
the i-th filament. The angular bending potential between two subsequent bonds in the chain
is given by U(θ) = J f [1− cos(θ)], where θ is the angle and J f is the bending constant that
determines the stiffness of the filament.

The already extant cell wall is taken to be a rigid wall located at z = 0, into which the
beads are not allowed to enter. The EFs emerge from six hexagonally arranged channels
representing the CSC. The first monomer-monomer bond (tip) of each filament is constrained
to be perpendicular to the plane of the CSC (i.e. is oriented along the vertical axis of the
laboratory frame) while the last monomer-monomer bond (tail) is parallel to the horizontal
axis. Because of the morphology of the CSC, the tips of the filaments are also constrained to
be located at the vertexes of a regular hexagon, with edge-length Rhex = 6σ. In addition, the
beads on different chains have a short range attractive interaction allowing them to crystallize
into a compact arrangement.

The individual filaments can be described by inextensible space curves r(s), where s is the
arc-length parameter. The constraint of inextensibility implies that d

dsr(s) = 0, so that the

local curvature of a filament is given by κ(s) =
∣∣∣ d2

ds2 r(s)
∣∣∣. In the absence of the constraints, the

Hamiltonian for the full bundle of 6 filaments is then given by

H bundle
p =

1
2

J f

6

∑
i=1

Z l fi

0
dsiκi(si)− εσ

−2
∑

1≤i< j≤6

Z l fi

0
dsi

Z l f j

0
ds j θ

(√
2σ−

∣∣ri(si)− r j(s j)
∣∣)

(4.19)
where the binding energy ε is attributed to each pair of monomers on different filaments that
are closer than the attraction radius

√
2σ.

The whole construct (EF+hexagon) interacts with a fluid membrane modelled as a dynam-
ically reconfigurable squared network of beads and springs. The liquid bilayer is represented
as a l× l grid of N2

m point particles of size σ that are capable of moving only in the verti-
cal direction. The edges of the membrane are kept fixed at z = 0. The Hamiltonian for the
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membrane is described by the Helfrich functional (73)

Hm =
Z (Jm

2
(∇2h)2 +

γ

2
(∇h)2

)
dxdy (4.20)

where h is the local vertical distance with respect to the equilibrium position, Jm the bending
modulus, γ the surface tension contribution and the integration runs over the area of the mem-
brane. This Hamiltonian is the base-model to describe lipid bilayers, since such membranes
are fluid in their lateral direction but resistant to stretching forces due to the hydrophobic ef-
fect. In this model we neglect the internal pressure P of the cell, since it has been shown that
it makes only a trivial contribution (74).

The fact that the tips of the EFs cannot penetrate the membrane, couples the EFs energeti-
cally to the membrane. Starting from an initial condition in which the end of one of the chains
is clamped, the simulation now proceeds as follows. An attempt is made to move one of the
particles in the system (either a chain or a membrane bead). The proposed movement is ac-
cepted with a probability proportional to the Boltzmann weight of the associated change in
energy of the whole system (including the energies associated with various constraints). This
procedure is then repeated for several sweeps over all the particles in the system. This stan-
dard Metropolis Monte Carlo scheme allows the system to equilibrate its state to the current
lengths of the individuals EFs. After this equilibration step, the gap between the tips of the
EFs and the membrane is monitored for all the EFs. If this gap is larger than the size of a
chain bead, a new bead is added at the tip, preserving the perpendicular orientation of the first
bond. The system is then allowed to equilibrate again, and the whole cycle is repeated. Note
that this algorithm is a microscopic implementation of a Brownian ratchet, in the case that the
fluctuations are fast compared to the polymerization rate.

4.3.3.1 Results

The results of our simulation show that after initial effects have died down, a stationary regime
is reached in which the CSC moves with a statistically stationary velocity in a direction dic-
tated by the essentially straight CMF produced. This shows that indeed, the polymerization
and crystallization processes, both exothermic, coupled by thermal fluctuations to the mem-
brane and the partially flexible chains as energy transducers, are sufficient to obtain the di-
rected motion of the synthase.

Fig. 4.11 shows four snapshots of our simulation at successive times. We note that although
the trajectory of the CSC is approximately linear, the complex itself undergoes a rotation
during its motion. This is caused by the helical nature of the crystalline structure of our
pseudo-CMF, which is a natural consequence of the maximization of the binding energy. In-
triguingly, cellulose microfibrils have also been observed experimentally to "twist" (75; 76),
an effect generally attributed to the chirality of the planar glucan chains, which spontaneously
“twist” to relieve the strain built around the oxygen bridge that holds the glucan together. Clear
evidence of this phenomenon is given by the twisted cellulose ribbon produced by the Aceto-
bacter, whose cells move undergoing a continuous rotation on their longitudinal axis: this is
caused by the relieving of the stress induced by the non-linear crystallization of the nascent
glucan chains during the biogenesis of the CMF (18). Also clearly visible in the side views of
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Fig. 4.11 is the marked indentation of the membrane at the locus of CSC, over an area several
times the area of the complex itself. This indentation is a consequence of the forces generated
by the bent EFs, and has been observed experimentally (see Fig. 4.1 and (68)), and as such
provides direct evidence in favour of our model.

4.4 Conclusions

The model proposed for the mechanism of the CSC propulsion in this chapter achieves three
goals. First of all, on a conceptual level it provides an explicit and physically consistent
heuristic for understanding CSC motion. Secondly, the analytical approach, which abstracts
the model to its bare essentials, allows the observable result of the mechanism, i.e. the velocity
of motion of the CSC, to be quantified in terms of the underlying physico-chemical parameters.
Finally, our stochastic simulations, albeit simplified with respect to reality, provide a proof of
principle of this mechanism. The fundamental assumption of the model, i.e. the microscopic
fluctuations occur on timescale fast compared to that of the motion of the CSC, justifies the
use of the coarse graining that underlies the analytical approach: this manages in replacing the
many individual microscopic degrees of freedom with a small number of effective ones.

We contend that the biophysical model presented here provides a solid basis for understand-
ing the propulsion of an individual CSC . Moreover, it gives an estimate for the polymerization
velocity of the CMF that is consistent with the observed speed of the CSC within the uncer-
tainty imposed by the approximations used. This opens the way for considering the much
more challenging problem of understanding the full dynamics of cell wall deposition, which
involves the simultaneous and apparently highly coordinated deposition of many CMFs. In-
deed, the question of the origin of the highly regular CMF textures found in secondary cell
walls is still actively debated. Whilst the textbook explanation involves the guidance of CSCs
by ordered arrays of cortical microtubules (77), there is also a body of evidence against this
idea, and a few models have been suggested that rely more strongly on the physical inter-
actions between the CSCs and the CMFs they produce (see e.g (78; 79)). Clearly, all these
approaches will benefit from a fuller understanding of the motive processes of the CSC in
interaction with its direct environment.
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Figure 4.11: Snapshots at four different time points in a stochastic simulation of the motion
of a six filament CSC. Note the rotation of the complex, induced by the helical
nature of the crystalline arrangement in the CMF.
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5 Modeling the architecture of the plant
cell wall

As already pointed out in Chapter 4, plants found their structural stability on extra-cytoplasmic
walls (cell wall) created by the cell. The rigidity of the cell wall serves a dual purpose: it pro-
tects the cell mechanically from the environment and provides a framework to support the
turgor pressure which allows plants to raise themselves against gravity. The specific solution
adopted by nature to obtain the required rigidity seems to be nearly universal (51): long cel-
lulose microfibrils (CMFs), deposited in lamellar structures (80) and synthesized by protein
complexes (CSCs) embedded in the plasma membrane (go to Chapter 4 for details). How the
plant cell organizes these ordered textures around itself, creating its own protective environ-
ment, is a fascinating question. In this chapter we propose a geometrical mechanism for the
orientation of the CMFs in the plasma membrane of plant cells. Our model explains the gen-
esis of the complicated helicoidal texture and shows that the cell has intrinsic, versatile tools
for creating a variety of textures.

Figure 5.1: (a-b) EM images of the inner-side of the cell wall of a root hair of Equisetum
Hymale showing the last three deposited lamellae; (c) Cartoon representing the
arches typically observed in helicoidal cell walls

5.1 Genesis of the cell wall

Cell walls are made by apposition of new material from the side of the plasma membrane.
This material is contained in Golgi vesicles that deliver their content into the existing cell wall
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5 Modeling the architecture of the plant cell wall

after fusing with the plasma membrane. It is possible to distinguish two types of cell wall,
depending on the developmental stage of the cell. The primary cell wall is deposited while the
cell is still growing, and typically has a more disordered structure, with relatively short CMFs
occurring with a random orientation distribution. The secondary cell wall, on the other hand,
is deposited after the cell has stopped growing, or, in the case of tip growing cells such as root
hairs, in the non expanding part of it.

The building blocks of plant cell walls are lamellae that are one-microfibril thick. Typi-
cally, secondary cell walls have surprisingly regular textures, with a constant orientation of
the CMFs within each lamella. The global architecture of the cell is determined by the dis-
tribution of CMF orientation both between lamellae and with respect to the cell axis (81).
The most striking of cell wall textures is the helicoidal wall, which is formed by lamellae in
which the orientation of the CMFs changes by a constant angle from lamella to neighbouring
lamella. This can be observed in surface preparations (Fig. 5.1.a) and gives rise to a charac-
teristic pattern of arches in oblique sections (Fig. 5.1.b and 5.1.c) (82). Other wall textures are
the axial, the transverse, the crossed-polylammelate, the helical, and the random wall textures,
illustrated in Fig. 5.2, and combinations of these textures.

Figure 5.2: A collection of various ordered cell walls textures

Although the textures of plant cell walls have been the object of intense research effort,
the question of the origin of these wall architectures still remains unanswered. There are two
major schools of thought on the subject, one that believes that the structures arise from liquid
crystalline self-organization (83) supposed to take place in a developmental phase prior to the
final “setting” of the wall, i.e. an equilibrium effect, and one that adheres to the view that
the structures are determined by the sequential growth-process of the CMFs itself (84), i.e. a
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mechanical, non-equilibrium effect. This latter school has to come to grips with two questions:
since the growth history determines the structure, one needs to know (i) how the CMFs are
actually created and (ii) how the cell can manipulate the orientations of the CMFs during
(or after) their creation so as to result in the observed structures. On the first question a fair
amount of consensus has been reached: CMFs are synthesized by so called particle rosettes
(41) that are embedded in the cell plasma membrane and move pushed by the polymerization
and crystallization forces (for a detailed explanation of this motion mechanism go to Chapter
4).

The second question is harder to answer. Several mechanisms for CMF orientation have
been proposed of which guidance by cortical microtubules (85) is widely accepted for grow-
ing cells, but seems to be ruled out for walls deposited in non-elongating cells, where CMF
orientations are not correlated to the microtubule arrangement (86)(81). Because these walls
are nevertheless highly organized this mechanism cannot be considered a unique explanation
for the observed structures.

A few years back, on the basis of extensive observations on the cell wall structure of Eq-
uisetum Hymale root hairs, Emons (87) put forward a theory based on the novel idea that
fibril orientation is due to the restricted geometry in which the deposition process is taking
place. This geometry is restricted in three ways. Firstly, the rosettes can only move inside
the plasma membrane which limits their field of motion to that of the geometry of the 2d
cell membrane. Secondly, the space in which the fibrils are deposited is extremely limited as
they are apposed during formation against already formed primary or secondary wall material.
Thirdly, it is observed that the average distance between adjacent CMFs within a lamella is a
constant, independent of their orientation. It seems that the available space for deposition is
optimally exploited, i.e. the fibrils (plus their adherent matrix material) are packed as densely
as possible. Based on these observations, and on the idea that the long, cylindrically shaped,
Equisetum Hymale root hairs can be mathematically represented by a perfect cylinder with
radius R, Emons proposed the mechanism described in the next section.

Figure 5.3: Cartoon illustrating the geometrical rule Eq. 5.1 by showing the path of N CMFs
of effective width d on the unrolled cylindrical surface
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5.2 The close-packing hypothesis

Consider a number N of rosettes in the plasma membrane simultaneously depositing fibrils
with an effective width d (being d the width of the CMF plus adherent matrix material) at
a certain position along the cell. It is assumed that the direction of motion of the rosettes is
distal to proximal (tip-to-base), henceforth simply denoted as the ”plus-” and ”minus end”
respectively . The deposited microfibrils left in the wake of the rosettes are apposed outside of
the cylindrical plasma membrane on the inside of the already deposited wall material. Because
this wall is deposited in a non-elongating tube, the once deposited CMFs remain in place, do
not reorient, and therefore simply “record” the trajectory of the rosettes. Using the principle
that the CMFs plus adherent matrix material pack as densely as possible, one arrives at a
relation between the angle α a rosette trajectory makes with the tangent to any circular cross
section of the cylinder that intersects this trajectory, and the number of CMFs being deposited.

sinα =
Nd
2πR

(5.1)

This relation is most easily understood by unrolling the cylinder (Fig. 5.3).
This geometrical rule implies a coupling between the orientation of the newly deposited

fibrils and the number of them that is being deposited, which by definition equals the number
of active rosettes that are depositing them. Such a coupling provides the cell with a mechanism
for manipulating the CMF orientations by controlling the number of active rosettes and/or the
amount of wall matrix. Of course, for a given cell radius R, there is a maximum number of
CMFs of effective width d that can be simultaneously deposited. This maximum is given by

N∗ =
2πR

d
(5.2)

corresponding to the fully axial deposition orientation of α = π/2 radians.

5.3 The Geomodel

Based on the geometrical rule Eq. (5.1), some years ago Mulder et al. proposed a model
that translated the close-packing hypothesis into a dynamical mathematical process (88). The
model, which in the following will be denoted as Geomodel, describes the spatio-temporal
dynamics of co-moving rosettes on the surface of cylindrical cells, and, provided some strict
assumptions, is able to reproduce a great a variety of textures observed e.g. in Equisetum
Hymale root hairs during development, including the helicoidal pattern (Fig. 5.4).

The aim of the present chapter is to test the robustness of this model under the relaxation
of some of its main postulations. To achieve this task, we will proceed in the following way:
we start with a general overview that provides a simple heuristic explanation of the dynamical
process. Subsequently, we analyze in detail the basic ingredients necessary for the formulation
of the space-time evolution equation proposed by Mulder et al.. Finally, we start constructing
“variations” on the model, loosening some of the strict conditions imposed, and demonstrating
that its solutions are still stable despite the introduction of such perturbations.
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5.3.1 Insertion domains

The fundamental assumption at the basis of the Geomodel, is that creation of rosettes occurs in
localized, but mobile, regions of the cell, which are called insertion domains (IDs). At present,
there is some evidence for the spatial modulation of the rosette density, coming from plasma
membrane surface preparations. However, to obtain a cell wall texture where the local angle
of CMF deposition varies from lamella to lamella (e.g. the helicoidal wall), one must also
assume that the rosette density is modulated in time. The concept of mobile IDs provides a
mechanism to achieve the necessary modulation, both in space and in time. Each ID is thought
to consist of active Golgi-bodies that produce Golgi vesicles. The vesicles, that carry rosettes
in their membranes and contain cell wall matrix, are then incorporated into the cell plasma
membrane by exocytosis, the usual membrane fusion mechanism.

The IDs are assumed to move with a constant velocity v in the plus (distal) direction. It is
possible to envisage two mechanisms for the motion of the IDs: 1) The motion could be due
to physical movement of patches of active Golgi bodies, caused e.g. by transport along the
cytoskeleton; 2) The local activation of rosette insertion, by immobile Golgi bodies, could be
switched on or off by travelling excitatory waves. One possible candidate are calcium waves,
as Ca2+ is known to be involved in exocytosis (89). Such a mechanism also neatly provides
for a train of IDs, which, as it will be shown later on, is necessary to describe cell wall textures
that consist of repetitions of a basic structural motif e.g. the ’arches’ of the helicoidal wall.
Very recently such travelling chemical waves have been visualized directly for the first time in
elongated cells (90).

5.3.2 Heuristic Mechanism

With the definition of the ID, it is now possible to give a complete picture of the life-cycle
of a rosette according to the Geomodel. Rosettes, once inserted into the plasma membrane,
travel towards the minus-end of the cell, i.e. in the direction opposite to that of the ID motion,
leaving a CMF in their wake. The life cycle is illustrated in Fig.5.5a.

Consider what happens in the cell: at a given moment t a small number of rosettes is intro-
duced into the plasma membrane. Once delivered, the complexes start producing the CMFs,
which, given their small amount N, initially are deposited nearly transverse to the cylinder
(α ∼ 0). At a next moment t ′ more rosettes are introduced into the plasma membrane, inside
a domain which itself is moving in the direction of the cell tip. Some of the newly created
rosettes encounter those already produced at t, causing a local increase of the angle of deposi-
tion α. Repeating this process, whereby earlier created rosettes encounter newly created ones
along their trajectories, one can imagine successive lamellae being created with steadily in-
creasing value of the angle α, the hallmark of the helicoidal structure. For a helicoidal pattern
to be formed the angle should now continue to increase beyond α = π/2 to eventually reach
α = π, when a full helix twist has been completed. This development is allowed for by the
geometric rule Eq. (5.1), provided the number of rosettes decreases from the maximum value
as soon as it is reached. Here the finite lifetime of the rosettes (or equivalently the finite length
of the CMFs ) comes into play as a mechanism for decreasing the number of active rosettes
(or equivalently the number of CMFs being simultaneously deposited).
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Figure 5.4: Two views of the helicoidal solution obtained in the geomodel representing: (a)
three generations of CMFs co-deposited within the same ID at different times and
locations; (b) three sets of CMFs originated at equally spaced time intervals at the
same position within an ID

The process described above calls for individual CMFs to change their orientation continu-
ously. The key point of the geometrical theory is the coupling of the rosette trajectories (and
hence the orientation of the deposited CMFs) to the local number of active rosettes. This pro-
vides the cell with a route to manipulate the cell wall structure by creating controlled local
variations of the number of active rosettes. It also gives a new interpretation to the lamel-
lar structures observed in cell sections: lamellae are formed by stretches of CMFs deposited
at different moments in time and different locations along the cell that happen to share the
same orientation, rather than by a specific collection of CMFs that have a constant orientation
throughout. In the new picture an individual CMF actually participates in many lamellae as its
orientation changes during its deposition history. This relationship between individual CMFs
and the resultant lamellar structure is depicted schematically in Fig. 5.5b. Actual sections only
provide a local view of the structure and are therefore unable to reveal the global structure.

On the basis of this simple explanation, it is now possible to conduct a more detailed anal-
ysis on the evolution equation for the local density of rosettes as described in the Geomodel,
by looking in turn at the creation, subsequent motion and final de-activation of rosettes.

5.3.3 Implementation of the dynamics

As stated in the introduction, the Geomodel is confined to cylindrical cells: the cell plasma
membrane is thus chosen to be a perfect cylinder with radius R. Points on the cell are char-

50



5 Modeling the architecture of the plant cell wall

Figure 5.5: The life cycle of the rosette on the cylindrical cell surface

acterized by a coordinate z along the cell axis and an azimuthal angle ψ around the cell axis.
The length of the cell is assumed to be infinite, an approximation justified for root hairs like
those of Equisetum Hymale whose length can be order of a few mm’s, whereas their diameter
is of the order of a few tens of µm’s. The ”minus-end” and the ”plus-end” of the cell are
located respectively at z =−∞ and at z = ∞. The source of the underlying polarity that allows
this distinction (obvious in the case of tip-growing cells) is not specified. The thickness of
the individual CMFs, equal to the amount by which the tube radius decreases per deposited
lamella, is neglected. This approximation is allowed at least for the initial stages of secondary
cell wall formation, when in Equisetum hyemale root hairs the radius is still in the order of
20 µn, whilst the thickness of a CMF is ≈ 4 nm (91). At a later stage of its development the
radius of the plasma membrane can have shrunk considerably because of previous deposition.
This leads to a changeover in cell wall texture (50), process that is successfully predicted by
the Geomodel (88).

The maximum number of CMFs that can be simultaneously deposited is taken to be large,
i.e. N∗� 1, reasonable since the width d of a CMF+adherent matrix material is also in the nm
range. This condition allows to treat the number N as an essentially continuous variable. As it
is assumed that CMFs are deposited uniformly along the circumference of the cell, and the cell
itself is cylindrically symmetric, the local number of active rosettes N(t,z) at a given position
z along the cell at time t, is the fundamental dynamical variable of the geomodel, rather than
the locations of all individual rosettes. This quantity is defined as follows. We identify each
active rosette by a label r ∈ R (t), being the set of active rosettes at time t. The location of a
given active rosette is specified through its coordinates (zr(t),ψr(t)). The set of locally active
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rosettes is then defined through

R (t,z) =
{

r ∈ R (t)|z− 1
2

δz < zr(t) < z+
1
2

δz
}

(5.3)

where δz is an infinitesimal averaging interval. The local number of active rosettes is then
simply given by N(t,z) = |R (t,z)|.

In the following we will adopt the slightly imprecise, but more convenient, nomenclature,
(local) rosette density for N(t,z), and we will use the word “particle” as a synonym for rosette.

5.3.3.1 Motion of rosettes

We now consider the influence that, according to the geomodel, the motion of the individual
rosette has on the evolution of the rosette density N(t,z). We assume for the moment that the
absolute value of the velocity of a moving particle is equal to a constant w. The equation of
motion for the position of a rosette along the cell is obtained by applying the geometrical rule
Eq. (5.1) locally

żr(t) =−wsinαr(t) =− wd
2πR

N(t,zr(t)) =−w
N(t,zr(t))

N∗
(5.4)

where the minus sign is the consequence of our assumption of plus-to-minus end motion of the
rosettes. For the moment we disregard all processes that increase or decrease the total number
of particles. Consider the set of locally active rosettes R (t,z). By definition all particles in
this set have axial velocity żr∈R (t,z)(t) = − wd

2πRN(t,z). A time interval δz
w � ∆t � 1 later all

rosettes in R (t,z) will thus have moved over a distance ∆z =− wd
2πRN(t,z)∆t +O

(
∆t2) so that

R (t,z) ' R (t + ∆t,z− wd
2πRN(t,z)∆t), or equivalently N(t,z) ' N(t + ∆t,z− wd

2πRN(t,z)∆t).
Expanding the right hand side to first order in ∆t then yields the following quasi-linear PDE
describing the conserved evolution of the rosette density

∂N(t,z)
∂t

− wd
2πR

N(t,z)
∂N(t,z)

∂z
= 0. (5.5)

5.3.3.2 Constructing the complete evolution equation

The left hand side of Eq. (5.5) represents the ”kinematical” part that describes the motion
of the rosettes with an axial speed proportional to their density. However, if we also want
to allow for creation and de-activation of rosettes, we have to add in the equation a further
“dynamical” term to take into account the sources of change of the rosette density. This is
done by introducing at the right hand side of Eq. (5.5) a birth rate function f (t,z) and a de-
activation rate function f †(t,z), that, for the moment, we leave in the most general form. The
final evolution equation for the rosette density then becomes:

∂N(t,z)
∂t

− wd
2πR

N(t,z)
∂N(t,z)

∂z
= f (t,z)− f †(t,z). (5.6)
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This PDE is the core of the geomodel: from the solutions of this equation it is possible to
obtain the trajectories of the rosettes on the cell membrane, and consequently the patterns
emerging from the orientation of the deposited CMFs.

In order to consistently solve Eq. (5.6), one needs to specify the exact mathematical form
of the birth and death rate functions f (t,z) and f †(t,z). For what concerns the first one, since
there is a maximum allowed number of active rosettes, given by Eq. (5.2), one must allow
for the existence of a feedback mechanism that controls the rate at which active rosettes are
created, so as to preclude this maximum from being surpassed. The choice of a specific rate
function f (t,z), is then guided by a few operational requirements: (i) it should depend only on
the local density (ii) it allows the maximum density to be reached from zero in a finite time t∗
(iii) it does not allow the maximum density to be surpassed.

Figure 5.6: Birth rate function adopted in the geomodel for different values of γ

Moreover, as stated in the previous section, creation of rosettes must occur only in specific
regions on the cell, the IDs, that move themselves with a velocity v. Therefore, the general
form of the birth rate function will be:

f (t,z) = g(z− vt)h(t,z)

where h(t,z) is a local production rate that has to satisfy the three requirements discussed
above, while g(z− vt) is a modulating function that depends on the specific choice of the ID
shape: typically it is peaked around z = vt and vanishes outside a domain characterized by a
width l.

The production rate function that was chosen in the Geomodel reads like:

h(t,z) =
N∗

t∗(1− γ)

(
1− N(t,z)

N∗

)γ

θ(N∗−N(t,z)) (5.7)

where t∗ is the time necessary to build up to the maximum density N∗, 0 ≤ γ < 1/2 is a
parameter that determines the shape of the production rate of particles, and θ(x) is a standard
Heavyside step function. The particular situation γ = 0 describes the limiting case of a constant
rate with an infinitely sharp cut-off (Fig. 5.6).

53



5 Modeling the architecture of the plant cell wall

For what concerns the shape of the ID, the geomodel assumes it to be simply a cylindrical
region along the cell, so that

g(z− vt) = θ(vt + z(0)− z) θ(z− (vt + z(0)− l))

where l is the length of the ID and z(0) is the location of its front (plus-end) at t = 0.
The final form of the birth rate function then becomes:

f (t,z) =
N∗

t∗(1− γ)

(
1− N(t,z)

N∗

)γ

θ(N∗−N(t,z))× (5.8)

θ(vt + z(0)− z) θ(z− (vt + z(0)− l)). (5.9)

Fig. 5.7 shows the behaviour of f (t,z) along the cell in the particular case in which γ = 0. In
order to consistently describe repetitive wall textures, the model needs also to assume that a
whole train of IDs can be present along the cell. To decouple the contributions of the individual
IDs, which are labeled with successive integers according to their arrangement, we simply
have to require that zi(0)− zi+1(0) > l, for all i.

Figure 5.7: Square wave ID (birth rate function for γ = 0)

Regarding the deactivation of rosettes, the Geomodel consider them to have a constant finite
lifetime t†. The rate at which they are deactivated at time t and position z therefore depends
on the number of rosettes (if any) created at t− t† that reach the location z at time t. The de-
activation rate at (t,z) than equals the creation rate at (t− t†,z†(t,z)), where we have indicated
by z†(t,z)) the position that a virtual rosette should have had in order to arrive at z at time t.
Therefore,

f †(t,z) = f (t− t†,z†(t,z)). (5.10)

5.3.3.3 Dimensionless Equation

To solve Eq. (5.6) with the activation rate given in Eq. (5.9), it is convenient to introduce a
set of dimensionless variables and constants into the model. This is done by adopting t∗, wt∗
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and N∗ as our units of time, length and density respectively. We are left then with the reduced
independent time, space and density variables

τ =
t
t∗

ζ =
z

wt∗
ν =

N
N∗

. (5.11)

The dimensionless parameters of the model are therefore

λ = l/(wt∗) β = v/w τ
† = t†/t∗ (5.12)

and the evolution equation (5.6) becomes

∂ν(τ,ζ)
∂τ

−ν(τ,ζ)
∂ν(τ,ζ)

∂ζ
= φ(τ,ζ)−φ

†(τ,ζ) (5.13)

where

φ(τ,ζ) =
(1−ν(τ,ζ))γ

1− γ
Θ(1−ν(τ,ζ))Θ(βτ−ζ)Θ(ζ− (βτ−λ)) (5.14)

and
φ

†(τ,ζ) = φ(τ− τ
†,ζ†(τ,ζ)).

We will return to the problem of self consistently determining ζ†(τ,ζ)) when we construct the
solutions of the evolution equation using the method of characteristics.

5.3.3.4 Method of solution

In order to solve Eq. (5.13) we apply the method of characteristics. The details of this method
of solution are reported in Appendix. Since we wish to study the solutions of the evolution
equation in absence of any transient or boundary related effects, we assume that cell wall
deposition has started sufficiently long ago that all transient effects have died down: we are
essentially in a steady state in which IDs from a long train are passing the origin (middle of
the cell) at regular intervals. The zero of our timescale is now arbitrarily chosen such that at
τ = 0, the front of a new ID is located at ζ = 0. The rosettes created in this ID will for τ > 0
start spinning CMFs that will contribute to a new lamella being deposited in the regime ζ > 0.

The equations for the characteristics, which are parametrized by the variable s and identified
by the initial value parameter p, follow directly from Eq. (5.13)

dτ(s; p)
ds

= 1 (5.15)

dζ(s; p)
ds

= −ν(s; p) (5.16)

dν(s; p)
ds

= φ(s; p)−φ
†(s; p) (5.17)

with initial conditions

τ(0; p) = 0 (5.18)
ζ(0; p) = p (5.19)
ν(0, p) = 0. (5.20)
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From the trivial equation Eq. (5.15), it is possible to directly eliminate the parameter s in
favour of the time τ, and we will do so in the following. We first note that Eq. (5.16) is just the
dimensionless form of the original equation Eq. (5.4) describing the motion along the cell of
a single rosette. The full path over the cell surface of the rosette can therefore be reconstructed
by considering the extended characteristics~σ(τ; p)= (ρcosψ(τ; p),ρsinψ(τ; p),ζ(τ; p)), where
the dimensionless cell radius is given by ρ = R/wt∗. The equation of motion for the azimuthal
angle ψ(τ; p) is readily derived from the constancy of the speed w of the rosette, which in
dimensionless form becomes

d~σ(τ; p)
dτ

· d~σ(τ; p)
dτ

= ρ
2
(

dψ(τ; p)
dτ

)2

+
(

dζ(τ; p)
dτ

)2

= 1. (5.21)

Combining with Eq. (5.16), yields

ρ
dψ(τ; p)

dτ
=
(
1−ν

2(τ; p)
) 1

2 (5.22)

showing how ψ(τ; p) can be obtained from the characteristics. Since the track of a rosette
completely determines the configuration (position and orientation) of a CMF being deposited,
any arc of length τ† along the extended characteristic can now be identified with an actual
CMF.

5.3.3.5 The helicoidal solution

Before describing in detail the mathematical conditions that lead to the occurrence of the
helicoidal solution, we first recall how the helicoidal texture looks like: a transverse section
of the cell wall shows an increasing orientation of the CMFs, starting form the transverse
one (α = 0), then reaching the axial direction (α = π/2)) and eventually completing a full
turn (α = π). This geometrical description can be explained in terms of the solution of the
equation, since we know that the characteristic can be identified with a CMF strand.

For example, the fact that the CMF must cross the value α = π/2 means that the density
must reach its maximum value ν = 1. Moreover, since in a helicoidal pattern no significant
patches of purely axial orientation occur, the density must immediately decrease again after
the maximum has been reached, implying that from that point on no more rosettes may be
created and only deactivation may occur. This condition has two main consequences: on one
hand it immediately fixes the rosette lifetime, which has to be equal to the time to build up to
the maximum density, which is in fact our unit of time, so that τ† = 1; on the other hand, the
fact that for τ > τ† = 1 only deactivation occurs implies that the characteristic has to cross the
bottom of the domain exactly when τ = 1.

On the basis of the above discussion we can therefore divide the evolution along the char-
acteristic in two main phases:

Phase I 0≤ τ < τ† = 1 (only creation of rosettes occurs)
Phase II 1≤ τ < τd (only de-activation of rosettes occurs)

where we have indicated by τd the time at which deactivation of rosettes stops.
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We now construct the solution along a generic characteristic, labelled, for sake of simplicity,
by the initial value parameter p = 0. In the first phase creation of rosette occurs at the rate
given by Eq. (5.14), and de-activation is absent. The resultant equations (5.16) and (5.17) can
be easily integrated to give:

νI(τ) = 1− (1− τ)
1

1−γ (5.23)

ζI(τ) = −τ+
1− γ

2− γ
(1− (1− τ))

2−γ

1−γ . (5.24)

Having obtained this solution, we are now in position to determine the constraints that have
to be satisfied in order for the helicoidal solution to exist. First of all, the characteristic has to
cross the bottom of the ID as soon as the maximum density is reached (i.e. when τ = 1): this
implies that ζI(1) = β−λ, yielding to the condition

λ = β+
1

2− γ
(5.25)

that links the size of the ID to its speed along the cell. Moreover, we also know that the last
rosettes created are the ones which were born just before the exit from the ID, i.e. the time
τ = 1. Since these rosettes are the last to be deactivated, and they have a fixed lifetime τ† = 1,
we have to respect the further condition τd = 1+ τ† = 2.

In the second phase of the evolution equation, only deactivation takes place, and the density
satisfies the equation:

dνII

dτ
=−(1−νI(τ−1))γ

1− γ
(5.26)

that again is easily integrated to yield

νII(τ) = (2− τ)
1

1−γ (5.27)

ζII(τ) = −1+
1− γ

2− γ
(2− τ)

2−γ

1−γ . (5.28)

Putting together Eq. 5.24 and Eq. 5.28 one obtains the final helicoidal solution shown in Fig.
5.8. As one can see, during the “creation phase” the characteristic passes through a regime in
which ν(τ) increases and ζτ decreases. However, after a time τ = 1 the second phase begins,
ζ(τ) continues to decrease but the density ν(τ) goes back to zero. As already said, from the
behaviour of ν(τ) it is also possible to extract information on the angle of deposition α(τ):
in fact from Eq. (5.4) it follows that α(τ) = arcsin[ν(τ)]. One thing that should be noted,
however, is that in order to consistently interpret the decrease of the density away from the
maximum as an increase of the angle α(τ),the inverse of the post-maximum density has to be
chosen as:

α(τ) = π− arcsin[ν(τ)] τ > τ
†. (5.29)

Plotting the solutions for α(τ) one obtains the behaviour shown in Fig. 5.9: as expected, the
angle of deposition is continuously increasing, form o to π. To better visualize the helicoidal
solution, we can plot also the extended characteristic ψ(τ) on the surface of the cylinder: Fig.
5.4 shows this solution for values of the parameter γ = 0 and β = 0.5.
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Figure 5.8: ζ(τ) and ν(τ): the original helicoidal solution

Figure 5.9: Solution for α(τ) as found in the geomodel

5.4 Testing the robustness of the Geomodel

Solving Eq. (5.6) with the activation and de-activation rate functions discussed in the previous
sections, led to solutions that were able to reproduce a number of variety of textures, including
the helicoidal pattern as just demonstrated. Our goal in this section is to check whether the
same solutions still hold when some of the main assumptions of the model are loosened. This
is essential, because one of the biggest limitations of the Geomodel is the non-complete flexi-
bility of its underlying requirements. We therefore need to consider to which extent the theory
presented in the model is actually able to deal with real life uncertainties. In the following we
are going to “perturb” the postulations at the basis of the Geomodel in three different ways:
1) we change the shape of the ID, passing from the homogeneous cylindrical cell segment to a
more complex, modulated in space, production wave; 2) we allow for a non fixed distribution
of the life time of the rosettes; 2) we introduce fluctuations in the birth rate, constructing a
new geometrical mechanism that allows for the maximum number N∗ of simultaneously de-
posited rosettes to be surpassed. In all these three cases we demonstrate that the solutions of
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the geomodel are still stable and that the helicoidal pattern can be obtained as well.

5.4.1 The Triangular birth rate function

We start analyzing the effect that a spatially inhomogeneous birth rate has on the solutions of
the Geomodel. Consider a constant production rate

h(t,z) =
f∗
l

Θ(N∗−N(t,z)) (5.30)

associated with a triangular modulating function

g(z− vt) = (vt− z)Θ(vt− z) Θ(z+ l− vt)+(z− vt +2l)Θ(vt− l− z) Θ(z− vt +2l).

The final birth rate function then becomes:

f (t,z) =

{
f∗
l (vt− z) Θ(N∗−N(t,z)) if vt− l < z < vt,
f∗
l (z− vt +2l) Θ(N∗−N(t,z)) if vt−2l < z < vt− l.

and its behaviour is depicted schematically in Fig. 5.10. Here the ID has a total length 2l and
travels towards the cell plus end with a constant velocity v. The rosettes have a finite life-time
t† and their rate of creation is not uniform along the domain but reaches its maximum value
f ∗ whenever z = vt− l (provided of course that N(t,z) < N∗).

Figure 5.10: Triangular local rate of production

In order solve Eq. (5.6) with this new activation rate, we again non-dimensionalize adopting
t∗ = N∗/ f∗, wt∗ and N∗ as our units of time, length and density respectively. With these new
parameter the shape of the birth rate is described by the function

φ(τ,ζ) =

{
1
λ

(βτ−ζ) Θ(1−ν(τ,ζ)) if βτ−λ < ζ < βτ,
1
λ

(ζ−βτ+2λ) Θ(1−ν(τ,ζ)) if βτ−2λ < ζ < βτ−λ.

where again
φ

†(τ,ζ) = φ(τ− τ
†,ζ†(τ,ζ)).
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5.4.1.1 Helicoidal texture

We start studying the solution along a characteristic labelled by the initial value parameter p =
0. For the considerations carried out previously, we know that in order to have the helicoidal
solution, deactivation of rosettes has to begin exactly when creation stops, because the angle
of deposition α has to decrease as soon as its maximum value π/2 is reached. This implies that
the maximum number of active rosettes must be reached as soon as the characteristic crosses
the bottom of the ID. The evolution along the characteristic can be divided in four phases:

Phase I 0≤ τ < τ1 (passage of first region of triangular domain - negative slope)
Phase II τ1 ≤ τ < τ2 (passage of second region triangular domain - positive slope)
Phase III τ2 ≤ τ < τ1 + τ2 (death of rosette born during Phase I)
Phase IV τ1 + τ2 ≤ τ < 2τ2 (death of rosette born during Phase II)

Phase I and II: In the first phase creation of rosettes is due to the passage of the first region
of the triangular domain, and deactivation is absent. The governing equations are therefore:

dζI

dτ
= −νI(τ) (5.31)

dνI

dτ
=

1
λ
(βτ−ζI(τ)) (5.32)

with initial conditions

ζI(0) = 0 (5.33)
νI(0) = 0. (5.34)

The above system is easily integrated and gives

ζI(τ) = β

(
τ−

√
λ sinh

[
τ√
λ

])
(5.35)

This solution is valid until a time τ1 =
√

λ asinh
[√

λ

β

]
, where the variable τ1 satisfies the

condition ζI(τ1) = βτ1−λ. At this time, in fact, the characteristic ζI(τ) crosses the region of
the triangular domain with a negative slope. In this second phase deactivation is still absent,
and the equations read like:

dζII

dτ
= −νII(τ) (5.36)

dνII

dτ
=

1
λ
(2λ−βτ+ζII(τ)) (5.37)

with initial conditions:

ζII(τ1) = ζI(τ1) (5.38)
νII(τ1) = νI(τ1). (5.39)
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These equations are again easily integrated and we obtain:

ζII(τ) =−2λ+βτ+λcos[g(τ)]−

√
λ(1+

λ

β2 )βsin[g(τ)] (5.40)

where

g(τ) =
(

τ√
λ
− arccsch

[
β√
λ

])
.

At this point we can determine the conditions that have to be satisfied to obtain the he-
licoidal solution. First of all, we know that the characteristic crosses the bottom of the
triangular ID when ζII(τ2) = βτ2 − 2λ. This identifies the time τ2, that results to be τ2 =
√

λ

(
arccos

[√
λ+β2

2λ+β2

]
+ arccsch

(
β√
λ

))
. As already discussed, in order for the helicoidal so-

lution to exist, we require the characteristic to exit from the ID exactly when the maximum
density is reached. This means that νII(τ2) =−ζ′II(τ2)≡ 1, yielding to the condition:

λ = β+
1
2

(5.41)

that links the size of the ID to its speed along the cell. It has to be noted that this relation is
equal to the one found in the Geomodel (Eq. 5.25) for the squared ID (γ = 0), with the only
difference that in this case the total length of the domain is 2λ instead of λ.

Phases III and IV: In the third phase only deactivation of rosettes can take place, because
the characteristic is already out of the ID. Since the density must immediately decrease again
after the maximum has been reached, the lifetime of a rosette has to be equal to the time at
which creation stops. That means that

τ
† = τ2 (5.42)

and the equations for the characteristics read like:

dζIII

dτ
= −νIII(τ) (5.43)

dνIII

dτ
= −1

λ
[β(τ− τ2)−ζI(τ− τ2)] (5.44)

for 0 < τ− τ2 < τ1, and:

dζIV

dτ
= −νIV(τ) (5.45)

dνIV

dτ
= −1

λ
[2λ−β(τ− τ2)+ζII(τ− τ2)] (5.46)

for τ1 < τ− τ2 < τ2.
The initial conditions are respectively:

ζIII(τ2) = ζII(τ2) (5.47)
νIII(τ2) = νII(τ2) (5.48)
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and

ζIV(τ1 + τ2) = ζIII(τ1 + τ2) (5.49)
νIV(τ1 + τ2) = νIII(τ1 + τ2). (5.50)

Solving the first equation we obtain:

ζIII(τ) =−2λ− (τ− τ2)
√

2λ+β2 +βτ2 +
√

λ βsinh
[

τ− τ2√
λ

]
(5.51)

while for the second equation:

ζIV(τ) = βτ2− (τ− τ2)
√

2λ+β2−
√

λ(λ+β2)cos[h(λ,β)]+ arcsin[h(λ,β)] (5.52)

−λsin
[

2g(τ)− τ√
λ

+ arcsin[h(λ,β)]
]

(5.53)

where h(λ,β) =
√

λ+β2

2λ+β2 .

5.4.1.2 Visualization of solutions

The complete characteristic is obtained summing up the contributions of the four solutions
just found, each defined only in its particular time range, as discussed in the previous section.
We have therefore:

ζ(τ) = ζI(τ)+ζII(τ)+ζIII(τ)+ζIV(τ) (5.54)

Again, from the behaviour of ζ(τ) we can extract information on the density ν(τ) and on the
angle of deposition α(τ). From Eq. (5.16) in fact we have that ν(τ) =−ζ′(τ), while from Eq.
(5.4) it follows that α(τ) = arcsin[ν(τ)].

Figure 5.11: ζ(τ) and ν(τ) for the “triangular ID” case

Fig. 5.11 and Fig. 5.12 show the behaviour of the three relevant quantities ζ(τ), ν(τ) and
α(τ). The pictures illustrate that the “triangular ID” case discussed in this section reproduces
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well the helicoidal solution examined in the Geomodel: once assumed the post maximum
solution to be

α(τ) = π− arcsin[ν(τ)] τ > τ2.

we have that the angle of deposition α(t) in fact is continuously increasing until the value
α = π.

Figure 5.12: α(t) for the “triangular ID” case

5.4.2 Aging

The next step to test the robustness of the geomodel is to allow for a non-constant life time
of the rosettes. In order to do this, we need to introduce the concept of “age”: let therefore
n(µ;z, t)dµ denote the number of synthases of age µ per unit length at position z at time t.
From this definition it follows that

N (z, t) =
Z

∞

0
dµ n(µ;z, t) (5.55)

is the total number of synthases per unit length at position z and time t. Our goal in this section
is to build up a structured population version of the evolution equation for the rosette density
and to resume the same solutions already found in the Geomodel.

5.4.2.1 The evolution equation

We begin recovering Eq. (5.5) starting from the dynamics of this new variable. In the absence
of “birth” and “death” processes the equation of motion for n(µ;z, t) can be derived as follows:
in a small time interval dt the sub population n(µ;z, t) ages by dt and moves down the cell
over a distance dz =− wd

2πRN (z, t)dt, as already discussed in section 5.3.3.1. Hence

n
(

µ+dt;z− wd
2πR

N (z, t)dt, t +dt
)

= n(µ;z, t) . (5.56)
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Expanding the left hand side then yields

∂n(µ;z, t)
∂µ

− wd
2πR

N (z, t)
∂n(µ;z, t)

∂z
+

∂n(µ;z, t)
∂t

= 0 (5.57)

and integrating over µ leads us to Eq. (5.5):

− wd
2πR

N (z, t)
∂N (z, t)

∂z
+

∂N (z, t)
∂t

= 0 (5.58)

were we have used the fact that n(0;z, t) = 0 as no new synthases are produced (the birth rate
is zero) and n(∞;z, t) = 0 for finite t.

We now turn to the problem of determining the spatio-temporal evolution equation for
n(µ; t,z). Consider for the moment non-moving synthases (w = 0), and new synthase pro-
duction occurring at a fixed location z0 by a function f (N (t,z0)). For µ > 0 we have

n(µ+dt; t +dt,z0) = n(µ; t,z0) (5.59)

so that
∂n(µ; t,z0)

∂µ
+

∂n(µ; t,z0)
∂t

= 0 (5.60)

which is solved by an arbitrary function n(µ; t,z0) = n̄(t−µ,z0) . Now consider what happens
for µ = 0: the number of rosettes of age µ = 0 in z0 is equal, by definition, to the number of
rosettes created in z0 by the local rate of production f (N(t)). This implies that:

n(0; t,z0) = f (N (t,z0)) = n̄(t,z0) (5.61)

and hence
n(µ; t,z0) = f (N (t−µ,z0)) (5.62)

We now generalize to the case in which new synthase production takes place not only at a
fixed location z0, but within an insertion domain (ID), that in itself moves with a velocity v.
The local rate of production is then described by a function

n(0;z, t) = F (z, t,N(z, t)) = g(z− vt) f (N (z, t)) (5.63)

where, as said in the previous section, g(z) depends upon the specific choice of the ID shape.
Finally, we turn to the “de-activation” processes. With the definition of the new variable

n(µ; t,z), it is now possible to allow for death rates that depend on the age µ of the rosettes.
We assume, therefore, that synthases are deactivated at a generic rate r (µ). The full equation
becomes

∂n(µ;z, t)
∂µ

− wd
2πR

N (z, t)
∂n(µ;z, t)

∂z
+

∂n(µ;z, t)
∂t

=−r (µ)n(µ;z, t) (5.64)

n(0;z, t) = F (z, t,N (z, t)) . (5.65)

Looking at this equation it is possible to note that, differently from what we have seen in the
previous section, the birth rate function n(0;z, t) doesn’t appear anymore in the right hand
side of the evolution equation. Rather, it plays the role of a boundary condition that has to be
specified to consistently solve the equation. We will return to this point in the next section.
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5.4.2.2 Example: the Poissonian Decay

To better elucidate the meaning of the new evolution equation, we start focusing our attention
on a quite simple example. Let r (µ) be a Poissonian decay rate, i.e. r (µ) = −µ−1

† . Here µ†
is a constant that represents the average time after which the number of rosettes significantly
decreases, independently from the specific age of the particles. We are going to couple this
decay process with the standard “square wave” ID and constant production rate (Eq. 5.9), so
that the full equation becomes

∂n(µ;z, t)
∂µ

− wd
2πR

N (z, t)
∂n(µ;z, t)

∂z
+

∂n(µ;z, t)
∂t

=− 1
µ†

n(µ;z, t) (5.66)

n(0;z, t) =
N∗

t∗
θ(vt− z)θ(l− (vt− z))θ(N∗−N (z, t)) (5.67)

where t∗ is the time necessary to build up to the maximum density. As the death rate does not
depend on age we can integrate over µ to obtain

∂N (z, t)
∂t

− wd
2πR

N (z, t)
∂N (z, t)

∂z
= f∗θ(vt− z)θ(l− (vt− z))θ(N∗−N (z, t))− 1

µ†
N (z, t)

(5.68)
so that we are back to the evolution equation for our original variable N(t,z): as one can see,
this equation is just a specific case of Eq. (5.6) with a non-constant life time of the rosettes. If
we non-dimensionalize by setting

τ =
t
t∗

ζ =
z

wt∗
ν =

N
N∗

we then obtain the final equation

∂ν(ζ,τ)
∂τ

−ν(ζ,τ)
∂ν(ζ,τ)

∂ζ
= θ(βτ−ζ)θ(λ− (βτ−ζ))θ(1−ν(ζ,τ))− 1

ϕ†
ν(ζ,τ) (5.69)

where
β =

v
w

λ =
l

wt∗
ϕ† =

µ†

t∗
.

We now follow the procedures described in Appendix to obtain the solution along a character-
istic specified by the initial data

ζ(0; p) = p (5.70)
ν(0; p) = 0. (5.71)

Along the characteristics we have the coupled equations

dζ(τ; p)
dτ

=−ν(τ; p) (5.72)

dν(τ; p)
dτ

= θ(βτ−ζ(τ; p))θ(λ− (βτ−ζ(τ; p)))θ(1−ν(τ; p))− 1
ϕ†

ν(τ; p) . (5.73)
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Without loss of generality we can choose p = 0 and drop the label. Since the Poissonian decay
rate affects on an equal footing old and young rosettes, creation and deactivation are no more
decoupled processes, and can coexist at the same time. Therefore, the equation for the density
is

dν(τ)
dτ

= 1− 1
ϕ†

ν(τ) (5.74)

with solution
ν(τ) = ϕ†

(
1− e

− τ

ϕ†

)
. (5.75)

In order to consider helicoidal-like solution we require that the maximum density is reached in
a finite time. This determines the parameter ϕ∗ by imposing ν(ϕ∗) = 1, condition that brings
us

ϕ∗ = ϕ† ln
ϕ†

ϕ†−1
ϕ† > 1. (5.76)

We can also readily integrate the position equation yielding

ζ(τ) = ϕ†

(
ϕ†

(
1− e

− τ

ϕ†

)
− τ

)
. (5.77)

The helicoidal solution also requires that the characteristic crosses the bottom of the ID exactly
at the point where the maximum density is reached. This implies that ζ(ϕ∗) = βϕ∗−λ so that

λ = ϕ†

(
(β−ϕ†) ln

ϕ†

ϕ†−1
−1
)

(5.78)

After the passage of the ID only deactivation can occur. The post maximum solution is then
obtained from

dν(τ)
dτ

=− 1
ϕ†

ν(τ) , ν(ϕ∗) = 1 (5.79)

with solution
ν(τ) = e

− τ−ϕ∗
ϕ† (5.80)

so that

ζ(τ) = ζ(ϕ∗)−ϕ†

(
1− e

− τ−ϕ∗
ϕ†

)
. (5.81)

Fig. 5.13 shows the behaviour of ζ(τ) and ν(τ) for the Poissonian decay problem. Note
that in this case, even if the helicoidal solution can be still achieved, the density goes to zero
exponentially without vanishing in a finite time.

5.4.2.3 General solution

We now go back to Eq. (5.64) and search for a general solution that is independent from the
particular form of the death rate. First we restate the full equation in dimensionless form:

∂n(ϕ;ζ,τ)
∂ϕ

−ν(ζ,τ)
∂n(ϕ;ζ,τ)

∂ζ
+

∂n(ϕ;ζ,τ)
∂τ

=−r (ϕ)n(ϕ;ζ,τ) (5.82)

n(0;ζ,τ) = F (ζ,τ,ν(ζ,τ)) . (5.83)
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Figure 5.13: ν(t)and ζ(t) for the Poissonian case

We then consider characteristics for this equation labelled by a space-time point
(
ζ̄, τ̄
)
. Along

this characteristic the evolution of the age distribution is given by

dn
(
ϕ; ζ̄, τ̄

)
dϕ

=−r (ϕ)n
(
ϕ; ζ̄, t̄

)
(5.84)

n
(
0; ζ̄, τ̄

)
= F

(
ζ̄, τ̄,ν

(
ζ̄, τ̄
))

(5.85)

with formal solution

n
(
ϕ; ζ̄, τ̄

)
= F

(
ζ̄, τ̄,ν

(
ζ̄, τ̄
))

e−
R ϕ

0 dϕ′r(ϕ′). (5.86)

Note that
dτ
(
ϕ; ζ̄, τ̄

)
dϕ

= 1 (5.87)

that implies

τ
(
ϕ; ζ̄, τ̄

)
= ϕ+ τ̄. (5.88)

To get at the full dynamics of the problem, we need to consider the evolution of the total
number of synthases along the characteristics. We do this by integrating Eq. (5.64) over ϕ to
obtain

∂ν(ζ,τ)
∂τ

−ν(ζ,τ)
∂ν(ζ,τ)

∂ζ
= F (ζ,τ,ν(ζ,τ))−

Z
∞

0
dϕr (ϕ)n(ϕ;ζ,τ) . (5.89)

From either Eq. (5.64) or Eq. (5.89) we find

dζ
(
τ; ζ̄, τ̄

)
dτ

=−ν
(
τ; ζ̄, t̄

)
(5.90)
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so that along the characteristic we have

dν
(
τ; ζ̄, τ̄

)
dτ

= F
(
ζ
(
τ; ζ̄, τ̄

)
,τ,ν

(
ζ
(
τ; ζ̄, τ̄

)
,τ
))
−

Z
∞

0
dϕr (ϕ)n

(
ϕ;ζ

(
τ−ϕ; ζ̄, τ̄

)
,τ−ϕ

)
= F

(
ζ
(
τ; ζ̄, τ̄

)
,τ,ν

(
ζ
(
τ; ζ̄, τ̄

)
,τ
))

−
Z

∞

0
dϕr (ϕ)F

(
ζ
(
τ−ϕ; ζ̄, τ̄

)
,τ−ϕ,ν

(
τ−ϕ; ζ̄, τ̄

))
e−

R ϕ

0 dϕ′r(ϕ′) (5.91)

which is a functional delay equation.
If

r (ϕ) =
{

0 0≤ ϕ < ϕ†
∞ ϕ≥ ϕ†

(5.92)

then

dν
(
τ; ζ̄, τ̄

)
dτ

= F
(
ζ
(
τ; ζ̄, τ̄

)
,τ,ν

(
ζ
(
τ; ζ̄, τ̄

)
,τ
))
−F

(
ζ
(
τ−ϕ†; ζ̄, τ̄

)
,τ−ϕ†,ν

(
τ−ϕ; ζ̄, τ̄

))
(5.93)

which is the original case considered in the geomodel.
The second term on the right hand side of Eq. (5.91) can also be partially integrated to yield

dν
(
τ; ζ̄, τ̄

)
dτ

=−
Z

∞

0
dϕe−

R ϕ

0 dϕ′r(ϕ′) d
dϕ

F
(
ζ
(
τ−ϕ; ζ̄, τ̄

)
,τ−ϕ,ν

(
τ−ϕ; ζ̄, τ̄

))
. (5.94)

The latter form is especially convenient when F is of the “square wave” constant production
rate type. In this case the derivative dF

dϕ
then is identically zero except at the switching points,

where it becomes a δ-function. Let us denote

R(ϕ) =
Z

ϕ

0
dϕ

′r
(
ϕ
′) . (5.95)

and consider the characteristic starting from ζ̄ = τ̄ = 0. In the pre-maximum density phase,
the solution must then obey

dν< (τ)
dτ

=
Z

∞

0
dϕe−R(ϕ)

δ(τ−ϕ) = e−R(τ) (5.96)

ν< (0) = 0 (5.97)

with solution

ν< (τ) =
Z

τ

0
dϕe−R(ϕ). (5.98)

Let τ1 be the time at which the maximum density is reached, so that

ν< (τ1) =
Z

τ1

0
dϕe−R(ϕ) = 1. (5.99)
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Assume also that at τ1 the helicoidal condition is met, so that production is fully cut off. Then
the post maximum equation is

dν> (τ)
dτ

=−
Z

∞

0
dϕe−R(ϕ) {−δ(τ−ϕ)+δ(τ−ϕ− τ1)}= e−R(τ)− e−R(τ−τ1) (5.100)

ν> (τ1) = 1 (5.101)

with solution

ν> (τ) = 1+
Z

τ

τ1

dϕ

{
e−R(ϕ)− e−R(ϕ−τ1)

}
. Inserting R(ϕ) = ϕ

ϕ†
and τ1 = ϕ† ln ϕ†

ϕ†−1
and some algebra retrieves the previously discussed

Poissonian case. Another special case is R(ϕ) = 0 for ϕ ≤ 1 and R(ϕ) = ∞ for ϕ > 1 (the
helicoidal γ = 0 case of the original model). Here we recover

ν< (τ) = τ (5.102)

and
ν> (τ) = 2− τ (5.103)

which essentially are the results Eqs. (5.23) and (5.27) presented before.

5.4.3 Effect of fluctuations

Another way to test the robustness of the Geomodel, is to verify the validity of its solutions in
presence of fluctuations of the birth rate of rosettes. From now on, we will then assume that
the local production rate of particles is described by a function

G(t,z) = h(t,z)+η(t,z) (5.104)

where h(t,z) is a deterministic production rate, like for example the ones discussed in Eq.
(5.7) or Eq. (5.30), and η(t,z) represents the effect of fluctuations that can locally increase or
decrease the number of created rosettes.

5.4.3.1 Solving the problem of overcrowding

To fully take into account the effect of this randomness on the trajectories of the rosettes, and
therefore on the orientation of the deposited CMFs, we need to slightly modify one of the
main elements of the original Geomodel: we have to allow for the maximum local number N∗
of particles to be surpassed. The main consequence of the presence of a noise term in the birth
rate, in fact, is to provoke in some cases an overcrowding of the rosettes, whose number can
then increase beyond the maximum value N∗. The original geomodel would be inconsistent
with respect to such a perturbation: from Eq. (5.4) it is clear, in fact, that, if N(t,z) > N∗, the
axial speed ż(t) of a particle would be greater than its present absolute velocity w.
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To solve this inconsistency, we therefore need to assume that the velocity w of a particle is
no longer constant, but rather depends linearly on the number of active rosettes N(t,z) (Fig.
5.14a) according to the rule:

w[N(t,z)] = w0 [2− d
2πR

N(t,z)] = w0 [2− N(t,z)
N∗

]

where w0 represents the new velocity parameter. Consequently, following Eq. (5.4), the verti-
cal velocity of the rosette ż(t) has the expression:

ż(t) =−w[N(t)]sinα(t) =−w0
N(t)
N∗

[2− N(t)
N∗

].

If we non-dimensionalize in the usual way by setting

ν =
N
N∗

ζ =
z

w0t∗
λ =

l
w0t∗

β =
v

w0
τ =

t
t∗

where t∗ is the time necessary to build up to the maximum density, we then obtain that

ζ̇(τ) =−ν(τ)(2−ν(τ)). (5.105)

From this equation it follows that the absolute value of the axial speed ζ̇(τ) of a rosette,
reaches its maximum when ν = 1, and it is equal to 0 for ν = 0 , exactly as in the case in in
the original geomodel (Fig. 5.14b). However, in this case, the axial velocity is also defined
for values of ν > 1, and decreases again to 0 for ν = 2. The introduction of this new density-
dependent velocity w[ν(τ)] makes the model stable with respect to overcrowding of particles,
provided that the fluctuations beyond the value ν = 1 are relatively small.

Figure 5.14: w(ν) and ζ̇(ν)

From a biological point of view, the fact that the speed of the particles decrease as soon as
ν > 1 can be interpreted as follows: when the system is already close packed, the room avail-
able for the deposition of a further CMF is very limited, and the overcrowding can cause the
rosettes to slow down their motion until they find a suitable disposition to share the available
space.
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5.4.3.2 Deterministic case

First, to verify that the introduction of the new velocity w[ν(τ)] doesn’t affect the occurrence
of the helicoidal solution, we need to repeat the same mathematical procedure discussed in the
Geomodel, in order to determine the new trajectories of the rosettes along the cylinder. To do
this we start considering the deterministic case, i.e. we neglect for the moment the presence
of the noise term η(t,z) in Eq. (5.104) and look for the conditions that have to be satisfied for
the helicoidal pattern to be achieved. We choose as our birth rate function the one examined
in Eq. (5.7). Solving the equation of motion with the usual method of characteristics, after
some trivial calculations we find that the relations that have to be satisfied among the various
parameters of the system to obtain the helicoidal solution are:

τ∗ = τ
†

λ = β+2/3 (5.106)

where, as usual, τ† represents the rescaled life time of a rosette. Here we note that, while
the first relation corresponds exactly to the one found both in the Geomodel (88) and in the
triangular ID case (Eq. (5.42)), the second one is slightly different from the one obtained in
case of a constant w (Eq. (5.41)).

Plots of the behaviour of ζ(τ) and ν(τ) obtained solving the evolution equation are shown
in Fig. 5.15. We can see from the pictures that the helicoidal solution can be achieved also in
the density-dependent velocity case: ζ(τ) is continuously decreasing, while the density ν(τ),
starting from 0, reaches its maximum value ν = 1 and then decreases again.

Figure 5.15: Theoretical behaviour for ζ(τ) and ν(τ) in the velocity-dependent case

5.4.3.3 Simulating the fluctuations

We now want to test this new geometrical rule in presence of fluctuations of the birth rate. To
do so, we build a simple many-body simulation that reproduces the spatio-temporal dynamics
of the co-moving rosettes. The simulation is two-dimensional and it is limited to the surface of
a cylinder, so that the position of a particle is identified by its coordinate z(t) along the axis of
the cylinder and its azimuthal angle ψ(t). The rosettes are represented as point particles with
an effective range of interaction d. However, we have to keep in mind that this interaction
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range is defined only on the z direction, i.e. particles at the same quote zR are always interact-
ing independently from their azimuthal angle ψ(t) and from the radius R of the cylinder. The
rosettes have a fixed life-time t†, and once they are created they start moving downward along
the cylinder with an axial speed that depends on the local number of neighbouring particles
present in that moment within their range of interaction. When the rosettes reach their maxi-
mum life time, they die and are automatically removed from the system. The ID is a region of
length l that moves in the “plus” direction (positive direction of z-axis) with a velocity v. Once
l, v, and t† are fixed, the parameter w0 is chosen in such a way to satisfy the second relation
shown in Eq. 5.106. The ID is discretized in m small sections of size ∆z, so that l = m∆z. For
sake of simplicity we set also ∆z = d, in such a way that all the particles present in a single
slice ∆z become automatically interacting particles.

Figure 5.16: ζ(τ) and ν(τ) in the fluctuating case: the characteristic (red line) in each picture
is the average of the 20 different curves (black lines) in the same plot

At each time step of the simulation two different events happen one after the other:

1. First creation of new rosettes occurs: a number G of new particles in inserted in each
of the m sections of the domain (provided that the maximum number N∗ is not reached
within that section). Note that, in this case, the number G is no more a constant, but
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can vary between Gm = h−η and GM = h + η randomly, where h is a fixed number
of particles and η is an integer that represents the amplitude of the noise. During this
”birth phase” the motion of all the particles is frozen

2. After the birth’s event, the number of local neighbours of each of the particles is counted,
and all the rosettes (still alive) are moved with an axial speed that satisfies the Eq.
(5.105). To compute the number of neighbouring rosettes, only the particles that are
within a range ∆z are counted.

5.4.3.4 Plotting the results

Since the simulation explicitly implements the dynamics of the particles, the information pro-
vided by its output is limited to the real trajectories of the rosettes along the cylinder. Thus, in
order to compare the data provided by the the simulation with the theoretical behaviour found
in the previous section, we need to translate these trajectories into a more appropriate quantity.
As already said, any arc of length τ† along the characteristic defined in Eq. (5.16) can be iden-
tified with the trajectory of a rosette. Thus, it should be possible to construct the characteristic
plotting one after the other the temporal evolution of the z-coordinate of the rosettes along the
cylinder.

Figure 5.17: Comparison between ζ(τ) and ν(τ) in the fluctuating and deterministic case: the
red dots represent the simulation, the solid line is the deterministic theoretical
curve.

To do so, we need to divide the trajectories of all the rosettes in categories, each of them
being identified by the different number of neighbouring particles at the moment of the birth
of the rosette itself. As an example, Fig. 5.16 shows a typical output of the simulation: here,
in Fig. 5.16a you can see the rescaled trajectories of N = 20 particles which, at the moment
of their birth, had no other particles in their interaction range. As you can see, the coordinate
ζ(τ) starts slowly decreasing (the rosettes were alone at the beginning, so that ν(0) ' 0) and
bends more and more as time goes by. Averaging over these 20 trajectories brings us to the
red line shown in the same figure: for what has been said before, this average corresponds to
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the first part of the theoretical characteristic. Let’s now consider the case of rosettes that were
born with a number N∗ of neighbouring particles in their interaction range. In this case, as
you can see from Fig. 5.16b ,the trajectories start very bent (the maximum number N∗ in fact
corresponds to a value ν(0) = 1) and slowly decrease in time.

The same procedure can be applied for ν(τ): in this case, to plot the temporal behaviour of
this quantity, it is sufficient to count the number of particles that a rosette encounters along
this trajectory. As an example, Fig. 5.16c-d show the temporal evolution of the number of
particles encountered by N = 20 different rosettes, in case in which they had 0 (Fig. 5.16c) or
N∗ (Fig. 5.16d) neighbouring particles in their interaction range at the moment of their birth.

Plotting these averages (conveniently rescaled) for all the categories one after the other, it
is then possible to construct the theoretical characteristics, both for ν(τ) and for ζ(τ). Fig.
5.17 shows the comparison between the theoretical results and the output of the simulation: as
you can see there is a good agreement between the data: the presence of fluctuations doesn’t
prevent the helicoidal pattern of CMFs from occurring.

5.5 Conclusions

In this chapter we have illustrated and improved the model for cell wall deposition, proposed
by Mulder et al. (88), aimed at understanding the regularity of the cellulose pattern in the wall
of plant cells. This dynamical geometrical model is based on a phenomenological equation of
motion of the rosettes on the cell surface, and takes into account the global geometrical and
packing constraints imposed on the deposited CMFs. In this chapter we were able to validate
the robustness of this model against a number of different perturbations and noise effects
(different shapes of production waves, generic life-time distribution of rosettes, fluctuations
of local birth events), demonstrating that the described mechanism can be considered a strong
and successful tool in explaining and predicting the occurring of helicoidal textures in the cell
wall of a wide variety of plant species and cell types.
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Acetobacter is a bacterium commonly found in alcoholic beverages, vinegar, cider, fruits,
flowers, and even soil. It is an organism of particular importance because it is used in the
commercial production of vinegar, having the ability to convert alcohol (ethanol) to acetic
acid in the presence of air. More familiarly, cultures of this bacterium (Fig. 6.1a) correspond
to the substance known as “vinegar plant” or “mother” (Fig. 6.2b), used for vinegar brewing in
the old days in Europe. Cultured in pure conditions, the "vinegar mother" has been identified
for the first time by Brown (92; 93) to be mainly composed of cell-wall cellulose from its
chemical composition and reactivity. This revelation has made Acetobacter one of the most
prolific cellulose-producing organisms.

In this Chapter we will investigate the cellulose deposition process of a particular species
of Acetobacter, A. Xylinum. We will show how the peculiar motion this bacterium exhibits
during the polymerization process can be correlated to an hydrodynamic effect between the
cellulose chains and the fluid in which they are immersed. Moreover, in the final part of the
Chapter, we implement a Brownian Dynamic Simulation that reproduces the main features of
this bacterial motion.

Figure 6.1: a) Bacterial cultures and b) Cellulose pellicle forming at the air-liquid interface of
the culture medium

6.1 Making cellulose from vinegar?

The cellulose mat associated with the production of vinegar, as well as of the fermented tea
“Kombucha Tea” (94), and of the food product “Nata de Coco” (95), has been observed and
used for centuries, before being isolated and formerly recognized as secondary metabolite of
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the bacterium Acetobacter. Described by Louis Pasteur as “a sort of moist skin, swollen,
gelatinous and slippery” substance, this cellulose product has started drawing a scientific
interest only when microscopic observations disclosed bacteria distributed throughout the ma-
trix.

Although the solid portion in the gel-like substance is less than one percent by weight, it
is almost pure cellulose free of lignin, pectin and hemicellulose as well as other biogenic
products, which are associated with plant-derived cellulose. This pure cellulose mat can be
cleaned and dried, and the product used for many applications. One of the unique features
of the bacterial cellulose membrane is that it is very strong in the dried state, and it can hold
hundreds of times its own weight in water. This great absorptivity and mechanical strength,
together with the high crystallinity, constitute three of the main features of microbial cellulose.

Figure 6.2: a) Matrix of interwoven ribbons and b) Vinegar mother

The reason why Acetobacter generate cellulose has long been a puzzle for biologists. One
hypothesis is that these aerobic bacteria produce a pellicle to maintain their position close to
the oxygen-rich surface of the culture solution (96; 97). Another theory assumes that the bac-
teria generate cellulose to guard themselves from ultraviolet radiation (98). Another opinion
is that they use it to construct a “cage” in which they confine themselves to protect themselves
from enemies, whereas nutrients can be still supplied by diffusion (99).

6.2 Acetobacter Xylinum

Acetobacter Xylinum is a particular species of Acetobacter. This rod-shaped, motile, non-
photosynthetic organism, can be simply grown in a shallow tray with a culture medium such
as coconut juice, sugarcane juice, vinegar, and fermented beverage (100; 101). Starting from
these materials, it can procure glucose, sugar and other organic substrates and convert them
into pure cellulose. A. Xylinum is nature’s most prolific cellulose-producing bacterium: a
typical single cell can convert up to 108 glucose molecules per hour into cellulose. Since about
a million cells can be packed into a large liquid droplet, the amount of cellulose produced by
a culture of these bacteria during few hours can be substantial.
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Under the classic cultivation conditions, A. Xylinum produces cellulose in form of a flat
ribbon that is deposited parallel to the longitudinal axis of the bacterium (Fig. 6.3 and Fig.
6.4). The matrix of the bacterial interwoven ribbons (Fig. 6.2a) constitutes the gelatinous
cellulose pellicle previously discussed. The cellulose network forms as a sheet floating on
the the air-liquid interface of the culture medium (Fig. 6.1b). As the pellicle grows, it is
pushed down the medium, since new cellulose crystallizes predominantly on the top surface
of the pellicle. For this reason, while the kinetics is initially limited by oxygen, as the pellicle
thickens the kinetics become limited by substrate diffusion through the pellicle.

Trying to elucidate the biosynthetic pathway of cellulose in plants has motivated most early
microbial cellulose research. As an extra-cellular, over producer of this polysaccharide, A.
Xylinum has been a useful tool in clarifying the mechanism of cellulose production. Cellu-
lose biogenesis in A. Xylinum occurs between the outer lipopolysaccharide membrane and the
inner cytoplasm membrane. Freeze fracture EM images show that the cellulose-synthesizing
complexes are linearly arranged along the longitudinal axis of the bacterial rods, over most of
the length of the bacteria (Fig.6.3). We will refer to this array as a linear Cellulose Synthase
Complex (linear CSC), and each particle that composes it will be named a CSC subunit (Fig.
3.3a, Chap. 3). The particular arrangement of the enzyme complexes in the cell body serves
to determine the native hierarchical aggregation of the polymer chains into the final crystalline
product, as will be shown in the next section.

The subunits, within the bacterial envelope, have an average diameter of 10-12 nm, and
associate with pores of smaller size (3.5 nm) on the surface of the bacterium, to spin out
glucan chains from the cell. The number of particles and pores per unit length is almost
constant (average 3.8 pores/particles per 100 nm), and their absolute number varies between
12 in dividing cells and 70 in elongating non-dividing cells.

Figure 6.3: Cartoon representing the hierarchical assembly of the ribbon

6.2.1 The Ribbon assembly

The mechanism of formation as well as the structure of the bacterial cellulose product has been
studied extensively in recent decades. The top of the hierarchy is represented by a long ribbon
of cellulose (>10 µm) which extends parallel to the longitudinal axis of the cell (Fig. 6.4).
The ribbon has an average width of 40-60nm (71) , and it is made up of cellulose microfibrils
(CMFs) forming bundles that lie side by side organized in layers. The CMFs have a diameter
of about 3.5 nm, and are believed to be the result of the aggregation of several mini-crystals,

77



6 Acetobacter: a case study

each being the product of a single CSC subunit. The 6-15 glucan chains that form a mini-
crystal are polymerized by an equal number of catalytic sites within the CSC subunit.

In an attempt to determine the relationship between polymerization and crystallization of
β-(1,4) glucan chains into cellulose CMFs, and subsequently into the ribbon, Calcofluor White
ST and Carboxymethylcellulose (CMC) were added to active cultures of A. Xylinum (12; 102).
The additives affected ribbon formation at different stages, but in all cases they stopped the
assembly of the final ribbon product. In the presence of CMC, normal fasciation of microfibril
bundles was prevented. Instead of forming the typical flat ribbon, glucan chains aggregated in
intertwining, separate bundles of cellulose microfibrils. On the other hand, Calcofluor White
ST, an industrial brightener, inhibited the crystallization of individual CMFs , while accelerat-
ing the polymerization process up to 4 times the control rate. The conclusion of these experi-
ments was that the cellulose ribbon in A. Xylinum is formed by a cell directed, self-assembly
process. In addition, these results demonstrate that polymerization and crystallization are cou-
pled, consecutive processes, and that the rate of crystallization determines the rate at which
polymerization proceeds.

Figure 6.4: (a) and (b): the cellulose ribbon produced by A. Xylinum. c) Enlargement showing
the twisting of the ribbon

6.2.2 The Band structure

In contrast to the ribbon assembly, under some particular cultivation conditions (103; 104)
A. Xylinum is able to generate another crystalline structure, the so called “band” (Fig. 6.5a).
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Differently from the ribbon, in which the CMF are oriented parallel to each other, the band-
like assemblies are composed by crystallites of cellulose II type, which display an anti-parallel
arrangement of the fibers. Diffraction studies have shown that the band consists of strand-like
cellulose entities, each of which is extruded through a catalytic particle perpendicularly to the
long axis of the bacterial cell. A putative folded-chain structure leading to antiparallel chain
packing is the one displayed in Fig. 6.5b: a bundle composed of approximately 10-16 parallel
glucan chains extruded from a single CSC subunit, self-organizes in a monomolecular sheet,
and folds upon itself in an accordeon-like fashion to generate a cellulose strand.

Figure 6.5: (a)The band structure produced by A. Xylinum. (b) Putative folding mechanism

The band structure can be obtained with several methods: some mutant strains exclusively
produce the band assembly; on the other hand, wild-type strains of A. Xylinum can produce
the band at high viscosity of the liquid medium, or when the temperature of incubation is
dropped at 4◦C. Presently the reason that makes the bacterium switch between these two types
of cellulose structure is shrouded in mystery.

6.3 Motion of A. Xylinum

Brown and coworkers first described the movement of Acetobacter in relation to cellulose
biosynthesis in 1976 (18). They found that the stationary cell movement rate of 2.0 mm per
min at 25◦C corresponds with the actual synthesis and extrusion of CMF. The motion is due
to an inverse force derived from secretion of crystalline CMFs by the bacterium: when the
bacterium moves in a certain direction, the flat ribbon generated by the CMFs crystallization
is simultaneously oriented in the same direction of motion. This is not the first example of
such a process: in Chapter 3 we have shown how a rosette CSC, the cellulose synthase in
plants, exploits the energy derived from cellulose polymerization to travel along the plasma
membrane of plant cells while producing the CMF.

During its movement, A. Xylinum performs a continuous rotation about its longitudinal axis.
Electron Micrograph images show that the cellulose ribbon is twisted, with a constant pitch
of about 700nm (Fig. 6.4c). This twisting is probably a consequence of the intrinsic chirality

79



6 Acetobacter: a case study

of the planar glucan chains, that constitute the building blocks of the cellulose CMFs. Such
chains tend spontaneously to “twist”, to relieve the strain built around the oxygen bridge that
connects the successive glucan units together. The stress generated during the crystallization
of the twisted glucan chains is released by the rotation of the bacterium during its movement.

Many questions arise on how actually the glucan chains extruded from the CSC subunits
manage to hierarchically assemble so quickly into a cellulose ribbon, despite the big distance
that separates their catalytic subunits on the cell surface. One single chain in fact has an aver-
age lateral size of 0.5 nm. A mini-crystal, the bundle of glucan strands extruded from a single
CSC subunit, has a diameter of few nanometers. The CSC subunits on the longitudinal axis
of the bacterial rod are separated by a distance of about 25-30nm. Given these numbers, it is
reasonable to believe that the mini-crystals have to undergo some kind of brownian motion,
while elongating, before having the possibility to “find” each other, and then coalesce crystal-
lizing into a CMF. The same reasoning can be applied for the aggregation of CMFs to form
the ribbon. Again, since the size of a CMF is about 3.5nm, these fibers have to explore the
environment for quite a while before being able to meet and crystallize.

Even more interesting, is the issue of how the CMFs manage to collectively orient and
bend in the same direction, to form a structure that runs parallel to the cell surface. To better
understand this last point, let’s suppose for a moment that after some initial transient, the
CMFs have elongated enough to encounter each other and crystallize. The most natural way
in which fibers expelled perpendicularly to the bacterium axis would aggregate, is the one
showed in Fig. 6.6a . Yet, what A. Xylinum produces, is something completely different and
counter-intuitive (Fig. 6.6b): at some point, in fact, during the aggregation process, the fibers
coordinate and bend all together in the same direction, perpendicular to the row of the catalytic
sites. This coordination phenomenon, as said previously, must occur before crystallization
happens. As a consequence, the bacterium is pushed unidirectionally by the polymerizing
fibers and propels parallel to the deposited ribbon.

Figure 6.6: The motion mechanism of A. Xylinum: instead of moving perpendicularly with
respect to his long axis (a), the bacterium prefers to walk parallel to the deposited
cellulose ribbon (b)

An analogy to illustrate the uncommon nature of this motion is the following: imagine a
raft which floats on the sea surface and which possesses a series of motors attached only to
one of its sides. Now imagine to simultaneously turn on all the motors, and guess in which
direction the raft will move. Perpendicular to the row of motors, simply. Maybe the raft
won’t go completely straight, but still it will tend, on average, to have a unidirectional velocity
perpendicular to the row of motors.
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What happens in A. Xylinum is exactly the opposite: once the bacterium starts producing
the cellulose chains from the linear CSC, the polymerization force pushes it parallel, and not
perpendicular, to the long axis of the cell.

Figure 6.7: a) Possible arrangement of the catalytic sites within the bacterial envelope. b)
Folding mechanism that generates the cellulose “bands”

In principle, this kind of motion could be explained if the CSC subunits behaved like inter-
nal channels with a fixed, non-perpendicular orientation with respect to the long axis of the
bacterium, as showed in Fig. 6.7a. In this way the mini crystals would be extruded from the
cell directly in the right orientation to form the ribbon, and the crystallization would proceed
more easily. Nevertheless, as mentioned in section 2, it has been shown that A. Xylinum, un-
der some particular cultivation conditions (103; 104), can produce another crystalline structure
besides the ribbon, the so called “band”. In order to form the folded state that characterizes
this structure, the site of extrusion can’t have a fixed orientation, but rather should be able to
pivot, to guide and orient the deposition of the cellulose strand and make it fold on itself (Fig.
6.7b).

These data demonstrate that what governs the right assembly of the ribbon is a mechanism
that must be independent from the orientation of the catalytic sites. Such mechanism should be
capable of breaking the symmetry of the system, coordinating all the filaments extruded from
the cell to bend in the right direction and form the final structure. In the following, we will
show that this symmetry-breaking effect can be simply caused by “hydrodynamic buckling” of
the elongating filaments themselves, a process similar to the Euler Buckling instability, which
we will recall in the next section.

6.3.1 Euler Buckling: a simple explanation

The Euler Buckling instability was the first studied example of bifurcation phenomena, and
in itself involves a spontaneous symmetry breaking. In 1744, the Swiss mathematician Leon-
hard Euler, derived a formula which shows that there is a critical load for the buckling of a
slender column. With any smaller load, the column remains straight and supports it. With
any larger load, the least disturbance causes the column to bend sideways with an indefinitely
large displacement, i.e. it “buckles”. A column, of course, is simply a common example of a
compressional element, like beams, rods, and also filaments.

To better understand this well known phenomenon, let’s consider the simple case sketched
in Fig. 6.8. In this situation, a beam that would normally be straight, is hinged at one end (red
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Figure 6.8: Euler buckling instability

dot in the figure), and is held in its bent shape by a force of magnitude F , that pushes on the
other end of the rod. Let the deflection of the rod from the straight line to be y(x), where x is
the distance from the end where the force is applied. The bending moment M(x) at the point
P in the figure, is simply the force F multiplied by the moment arm, i.e. M(x) = Fy(x).

The bending moment is related to the curvature of the bent shape by the “beam equation”,
which states that

Y I
R(x)

= M(x) = Fy(x)

Here Y is Young’s modulus, I is the moment of inertia of area of the cross-section of the beam,
and R(x) is the radius of curvature of the bent rod. For small deflections, the second derivative
is the reciprocal of the radius of curvature, so we can take 1/R(x) =−d2y/d2x (the minus sign
because the curvature is downward), and we get

d2y
d2x

=− F
Y I

y(x) (6.1)

which is just the differential equation of a sine wave. The interpretation of this result is that,
for small deflections, the curve of such a bent beam is a sine curve. Since the ends of the rod
are nodes of the sine wave, the ”wavelenght” λ must satisfies the relation

λ =
2L
n

with n = 1,2,3.... If the bending is small, the distance L between the ends is just twice the
unbent length of the rod. So the equation for the curve is

y(x) = Asin(πnx/L)

Taking the second derivative, we get

d2y
d2x

=−n2π2

L2 y (6.2)

Comparing this to Eq. 6.1, and putting n=1, we can see that the minimal force to bend the rod
is

Fc =
π2Y I

L2
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Note that for small bending the force is independent of the bending displacement y(x).
We have, then, the following result physically: Fc, often called “Euler force”, is the force

above which the beam is unstable and suddenly bends a large amount, buckling. It is found
from practice that this theory gives good results for columns and filaments that are more than
30 times longer than wide. As one can clearly see, Fc is proportional to 1/L2, so the sup-
porting capacity of a column decreases rapidly with an increase in length. Moreover, looking
at the equation for the bending moment M(x), it is possible to see that M(x) increases with
the displacement y(x), meaning that any buckling merely encourages further buckling. This
explains why such failure is catastrophic.

6.4 Hydrodynamic Buckling

Of course, everything discussed above is valid only for small bending of the beam. When
the displacement gets large the approximation 1/R(x) = −d2y/d2x is no more valid. To find
the force necessary to bend the rod for a large deformation of the beam, we should proceed
in a more detailed and correct way, taking into account the complete energy functional of the
rod. This more general description is also useful because it allows us to derive the buckling
phenomenon for different systems, for example for a filament immersed in a viscous liquid
like in the case of Acetobacter cellulose chains.

Our aim in this section is to derive the mathematical conditions that determine the buckling
transition for a semiflexible filament which is moving in a fluid with a velocity v. Our idea is
that the elongation of the cellulose chain from the bacterial catalytic site is able to generate,
when the chain approaches a critical length Lc, an instability similar to the one described by
Euler for the bending of columns. However, in this case, differently from Euler buckling, there
is no constant force pushing the end of the filament. Rather, what determines the buckling
instability, is the viscous drag that the fluid exerts on the elongating filament itself.

To understand this concept more easily, remember that to make a rod of length L move in a
fluid of viscosity η with a tangential velocity v‖, it is necessary to apply a pushing force equal
to:

F = v‖ξ‖L

where, according to the slender-body theory (105), the tangential friction coefficient, ξ‖ =
2πη/[ln(2L)− 0.5]. As you can see from this formula, the greater the length of the rod L,
bigger the force you have to apply to maintain the velocity v‖. Imagine now a filament that is
elongating in a viscous medium with a constant velocity, like, for example, a cellulose chain
being polymerized by A. Xylinum. At the beginning the filament is very short, and the resisting
friction force it experiences is very small. However, when the length reaches a certain critical
value Lc, the viscous force is so big to hydrodynamically “buckle” the filament, in the same
way as was discussed previously for the Euler instability.

In the following paragraphs we mathematically derive this critical length, and we demon-
strate that the hydrodynamic buckling can serve as an explanation for the breaking of sym-
metry that occurs during the polymerization process of A. Xylinum, and also as a basic phe-
nomenon to understand the longitudinal motion of this bacterium .
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Figure 6.9: Hydrodynamic buckling

6.4.1 Energy functional

The functional governing the internal energy of a semiflexible filament of fixed length L has
the following expression:

G =
Z L

0

[
k
2

ψ̇
2 +

Λ(s)
2

ṙ2
]

ds (6.3)

where we have indicated with k its bending modulus. In this picture the shape of the filament
is described by the coordinates r(s) and ψ(s) as functions of the arc length s, where r(s) is
the vector that points to s and ψ(s) is the angle between the filament tangent t(s) and the
x-axis (Fig. 6.9). The first term in the functional corresponds to the usual elastic energy
of the filament, while in the second term Λ(s) is a Lagrange multiplier used to enforce the
incompressibility constraint ṙ2 = 1, which ensures that s is the arc length. For simplicity in
the following we will consider only planar deformations.

In order to derive the buckling dynamics for a semiflexible filament immersed in a fluid, we
have to determine the variation δG with respect to δr. Recalling the following relations:

ṙ = t (6.4)
ṫ = ψ̇ n (6.5)
ṅ = −ψ̇ t (6.6)

where n is the filament normal (Fig. 6.9), we finally arrive at the expression (106):

δG
δr

= ∂s[k ψ̈ n− τ t] (6.7)

where τ = (Λ+k ψ̈2) plays the role of a physical tension. The variation δG has contributions at
the boundaries (that come from the integrations by parts) that can be interpreted as externally
applied forces F and torques T acting at the ends.

In s = 0

F(0) = kψ̈ n− τ t
T (0) = −kψ̇
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while in s = L

F(L) = −kψ̈ n+ τ t
T (L) = kψ̇.

These value will be fixed by the initial conditions of the problem.

6.4.2 Dynamic equations

Now that we have the expression for the functional derivative δG
δr , we can focus on the dy-

namics of an elastic filament immersed in a low Reynolds number fluid. In fluid mechanics
the Reynolds number Re=ρvl/η, is the ratio of inertial forces (vρ) to viscous forces (η/l) and
is used to determine whether a flow is laminar or turbulent. Here v is the fluid velocity, ρ is
the fluid density, η the fluid viscosity and l is a characteristic length of the system. Laminar
flow occurs at low Reynolds numbers (Re < 2100), where viscous forces are dominant, and
is characterized by smooth, constant fluid motion. Turbulent flow, on the other hand, occurs
at high Reynolds numbers (Re> 4000) and is dominated by inertial forces, producing vertexes
and other flow fluctuations.

If we are interested in studying the dynamics of biological filaments, we are concerned
nearly always with the low Reynolds number regime. In fact, because of their size and typical
velocities, inertia is essentially irrelevant for these kind of systems. It is thus possible to use a
simplified description for the filament dynamics, namely through an over-damped (negligible
mass) equation of motion, that can be written as:

(∂tr−v) =−

(
1

ξ⊥
nn+

1
ξ‖

tt

)
· δG

δr
. (6.8)

Here, ∂tr is the local velocity of the polymer, and v is any background velocity that may be
present in the problem. Following slender-body theory, the effect of the surrounding fluid is
taken as a drag force that is proportional and opposite to the local velocity. This is anisotropic
due to the elongated shape of the filament. We therefore require two different local friction
coefficients, ξ‖ and ξ⊥, for tangential and normal motion, respectively: ξ‖ is associated with
the projector tt along the tangent vector t, while ξ⊥ corresponds to the projector nn and acts
along the normal vector n. Each of these coefficients (per unit length) is intended to be con-
stant, i.e. in the following we will neglect their weak logarithmic dependence on the length L
of the filament.

In order to study the hydrodynamic buckling for a semiflexible filament of fixed length L,
we start by focusing on an initially straight polymer that is anchored with one end in x = L.
We then may consider either forcing the filament by longitudinally moving the anchor with
a negative velocity v = −v êx), or moving the fluid relative to the polymer with a positive
velocity, v = v êx. In the following, for sake of simplicity, we are going to solve the Eq. 6.8
with the boundary conditions referred to the latter case. However, the equivalence of the two
systems will be provided by the comparison of the theoretical results with the simulations that
will be presented later on.
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Substituting the expression for δG/δr found in the previous section we have:

∂tr =
n

ξ⊥
(−k

...
ψ + ψ̇τ)+

t
ξ‖

(kψ̈ψ̇+ τ̇)+v. (6.9)

The tension τ is determined by the constraint of incompressibility ∂tt2 = 2t · ∂tt = 0. This
condition leads to a differential equation for the tension profile (106):

τ̈−
ξ‖
ξ⊥

ψ̇
2
τ =−k∂s(ψ̇ψ̈)− k

ξ‖
ξ⊥

ψ̇
...
ψ + ψ̇v⊥− v̇‖. (6.10)

where v‖ and v⊥ are the component of the fluid velocity along the tangential and normal
direction, respectively.

6.4.3 Linearized equation

Let’s consider the case of a filament of length L initially lying along the horizontal axis and
hinged in x = L. Let’s assume that the velocity of the fluid runs along the x-axis too, i.e.
v = v êx, as depicted in Fig. 6.9. At the linear order, for small deviation from a horizontal line,
s' x, t̂' êx, n̂'−êy, ψ̇ = ÿ, and we can rewrite the Eqs. 6.9 and 6.10 as:

ξ⊥∂ty = (−k
....y + τ ÿ)

ξ‖∂tx = (τ̇+ v ξ‖)

and
τ̈ = 0 (6.11)

Since the filament is hinged in x = L we have ∂ty(L) = ∂tx(L) = 0, from which it follows that
τ̇(L) = −v ξ‖ . This result, together with eq.(6.11), leads to τ̇(x) = −v ξ‖. Now we look at
the boundary conditions at the free end. Since there are no external forces acting in x = 0, we
find from eq. (6.8) that (F(0) · êx) =−τ(0) = 0, that leads us to the expression for the tension
behaviour along the filament, τ(x) = −v ξ‖ x. Substituting this result in eq. (6.11) we finally
obtain:

ξ⊥∂ty = (−k
....y − v ξ‖ x ÿ) (6.12)

This is the simplest linearized expression we will work on. As we intuitively expect,
y(x, t) ≡ 0 ∀x, t is clearly a trivial solution of this equation, corresponding to the completely
stiff horizontal configuration of the filament. This solution is however stable only for small
values of v. In fact, as in normal buckling phenomena, when the critical force acting on the
free end of the filament exceeds a critical values Fc, the filament buckles. In our case, as al-
ready said, the force is due to the viscous drag, and consequently it increases as the length L of
the filament or the fluid velocity v increase. For a filament of fixed length L, at a certain critical
velocity vc the viscous force becomes so strong to buckle the rod. This case corresponds to a
non-trivial solution for y(x, t).

86



6 Acetobacter: a case study

6.4.3.1 Stationary solution

It is possible to compute the exact buckling length searching for a stationary solution of equa-
tion (6.12). Setting the lhs equal to zero and introducing the new coordinate z = (

vξ‖
k )1/3x,

equation (6.12) reads simply as:
−

....y − z ÿ = 0 (6.13)

We are going to solve this fourth order derivative equation with the following boundary con-
ditions:

y(0) = y(l) = ÿ(0) = ÿ(l) = 0 (6.14)

where l = (
vξ‖
k )1/3L . The first two conditions set the positions of the first and last point

of the filament: basically, requiring no vertical displacement to occur at both ends, we are
constraining the first and last point of the rod to slide onto a horizontal guard-rail. Therefore
the buckling transition will change the shape of the filaments as shown in Fig. 6.8. On the
other hand, the third and the fourth boundary conditions assure that there are no torques acting
on the ends of the rod, i.e. the filament is free to pivot around them. With the change of
coordinates the velocity v has disappeared, so from now on, instead of focusing on the critical
velocity vc, we shift our attention to the critical buckling length lc. Our aim is to search for
those values of lc that, for a constant velocity v of the surrounding fluid, bring to a non-trivial
solution of equation (6.13). In order to do that, we first solve with Mathematica eq. (6.13)
with only two boundary conditions, the first and the third. We are then left with a solution that
looks like:

y(z) = c1 f (z)+ c2 g(z) (6.15)

where c1 and c2 are constants to be determined by mean of the other two boundary conditions.
In this way we obtain a linear system in c1 and c2 that can be solved exactly. The first non-
trivial solution is obtained for a value of lc = 2.66. Our estimate for the critical hydrodynamic
buckling length Lc for a filament subjected to a tangential low Reynolds number fluid, with
velocity v, is thus:

Lc = 2.66

(
k

vξ‖

)1/3

(6.16)

.

6.4.3.2 Linear stability

Another approach to study the hydrodynamic buckling transition, is to look at the linear
stability of eq. (6.12). To do so, we assume the solution to be an oscillatory function
y(x, t) = A(t) eiqx and we search for those values of the wave number q that yields to an
unstable solution. A more rigorous argument would be to consider a perturbation which is not
a sinusoidal wave but an eigen function of the linear operator. However, this is beyond the aim
of this section and we will not delve into unnecessary details.

With the substitution we obtain:

∂tA eiqx =
1

ξ⊥
(−k q4A eiqx + v ξ‖ x q2A eiqx) (6.17)
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Setting ω(q) =−kq4 + vξ‖xq2 and cancelling the exponential we are left with the expression:

∂tA = ω(q) A (6.18)

which has a solution
A(t) = A(0) eω(q)t (6.19)

This solution in stable and converges to zero only for negative values of ω(q) Therefore, we

can say that the filament buckles whenever ω(q) > 0, i.e. q2 <
v ξ‖ x

k . For a filament of length
L with both ends fixed in y = 0, the allowed wave numbers are only the ones that satisfy the
relation q = nπ/L, with n being an integer. This means that the filament buckles whenever

L2 >
π2k

v ξ‖ x
(6.20)

where since we are interested in the first non-trivial solution we have put n = 1. The expression
(6.20) is a bit nasty since it depends on the unknown quantity x. To get rid of it we repeat
the same procedure described at the beginning of this section, for the symmetric case of our
problem, the one in which we have the filament hinged in x = 0 and subjected to a fluid
velocity v =−v êx. For symmetry considerations we have to find the same buckling length Lc.
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Figure 6.10: Buckling transitions for different values of the bending parameter k

Doing all the calculations for the symmetric case we finally arrive at a similar expression,
except for the fact that instead of x we have now (L−x). This implies that in this case ω(q) > 0
whenever L2 > π2k

v ξ‖ (L−x) .
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Since the two expression have to be satisfied at the same time, the only possibility is to take
x = (L− x) = L/2. This bring us to the final result:

Lc = (2π
2)1/3

(
k

vξ‖

) 1
3

= 2.7

(
k

vξ‖

) 1
3

(6.21)

which is consistent with the result (6.16) obtained in the previous section.

6.4.4 Simulating the hydrodynamic buckling

To further check the correctness of our theoretic results, we have implemented a numerical
simulation that reproduces the hydrodynamic buckling of a semiflexible filament which moves
in a low Reynolds number fluid with a tangential velocity v. Besides confirming the expected
values for the buckling lengths found previously , this simple numerical scheme serves also
as a basis for the more complex many-body simulation, which will be presented in the next
section.

Figure 6.11: Theoretical (Eqs. 6.16 and 6.21 ) versus simulations results

In the simulation we have used a particle model to solve Eq. (6.8) numerically, using an
approach similar to Molecular Dynamics (MD), the so called “Brownian Dynamics” (BD)
technique. The BD simulation technique is a mesoscopic method in which explicit solvent
molecules are replaced by a stochastic force. The technique takes advantage of the fact that
there is a large separation in time scales between the rapid motion of solvent molecules and the
more sluggish motion of polymers or colloids. At the core of a BD simulation is a stochastic
differential equation which is integrated forward in time to create trajectories of molecules.
The details of the algorithm are described in Appendix B.
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In our model, time is discretized and the filament is described as a set of n particles of diam-
eter σ rigidly connected by n−1 links. The stochastic force, that depends on the temperature
T , is the source of fluctuations that makes the buckling transition possible. In fact, in absence
of any noise (T = 0), a straight filament pushed along its longitudinal direction won’t buckle at
all in a numerical simulation, because there would be no transversal components of the force
to bend it. The role of the stochastic force is thus to introduce the small fluctuations necessary
to break the symmetry. However, in order to compare the numerical results to the theory, we
have performed the simulations with T → 0. This also makes an accurate evaluation of the
buckling lengths easier, because the data are less noisy and the transitions more pronounced.

We consider a filament of fixed length L = nσ, initially lying along the horizontal direction,
that is longitudinally moving with a constant velocity v in a low Reynolds number fluid. Fol-
lowing the boundary conditions given by Eq. (6.14), both ends of the filament are constrained
to slide on a horizontal guide rail and they can’t experience any vertical displacement. In
addition, the ends of the filaments are not clamped, i.e. there are no torques acting on them.

We define our order parameter ψ = d/L, as the ratio of the distance 0 < d < L between the
ends, and the contour length L of the filament. At the beginning of the simulation the rod is
straight, i.e. ψ = 1. Then the filament is pushed in the fluid with a velocity v for a time t until
it reaches a stationary configuration. If the filament is very short, or very stiff, then the order
parameter of the stationary configuration remains always around the value ψ' 1. For greater
filament lengths L, or a smaller bending constant k, the rod buckles, and the order parameter
ψ → 0. In Fig. 6.10, each curve shows the result of a single run of simulations, in which
we have measured the value of the order parameter ψ as a function of the filament length L,
with the stiffness k, the velocity v and the viscosity η of the fluid kept constant. The critical
buckling length Lc is identified as the last value of L for which ψ = 1. Repeating the same
run of simulations for different values of the bending parameter k, we obtain all the curves
displayed in Fig. 6.10.

The buckling transition is very pronounced: the value of the order parameter drops very
sharply form 1 to 0. If we plot the critical lengths versus the bending parameter k, we can
compare the simulation with the theoretically predicted behaviour of the previous sections
(Fig. 6.11). As one can clearly see, the agreement is excellent.

6.4.5 Discussion on results

The persistence length Lp of a single cellulose chain in aqueous solution has been estimated
by MD simulations (107), which provide an upper limit of Lp = 14.5±1nm. The persistence
length is related to the bending modulus k by the relation Lp = k/KBT , and at room tem-
perature this corresponds to a value of k = 5.6 10−29Nm2. The parallel drag coefficient of a
filament, neglecting the weak logarithmic dependence on its length, is ξ‖ ' 2πη, where η is
the viscosity of the medium in which the filament is dipped. In our case we have η = 1cP
(viscosity of water) so that ξ‖ ' 6.2 10−3cP. We put the velocity at which the filament is
dipped into the medium equal to the polymerization velocity of cellulose, v = 12 10−8m/s.
Substituting these values in the Eq. 6.16, we find that the buckling length at which a poly-
merizing cellulose chain is bent is Lc ' 1.1 10−6m. If we repeat the same procedure for the
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non-crystallized bundle of n = 10 glucan chains extruded form a single CSC subunit, we find
a critical length of Lbundle

c = 2.66 [(10k)/(vξ‖)]1/3 = 2.4 10−6m.
According to these results, an elongating cellulose chain extruded from the bacterium buck-

les when its length is already of the order of microns. If this was true, it should be possible to
observe a terminal structure (of the order of µm) pending at the end of each ribbon structure.
This band-structure would correspond to the part of fibers expelled perpendicularly from the
bacterium before the buckling transition had taken place (Fig. 6.17). Interestingly enough,
some experiments show that this is actually the case: as noted by Brown (18), and as shown
in Fig. 6.12, in some case it is possible to see “lateral projections” attached at the end of the
ribbon. However, these projections have an extension of the order of hundreds of nanometers,
i.e. much smaller than our expected buckling length.

Figure 6.12: Lateral projection at the end of the cellulose ribbon

A possible explanation for this inconsistency is that we have carried out our theory for a
single filament, while we know that Acetobacter polymerizes many cellulose strands. As we
will learn form the next sections, the influence caused by the presence of many filaments on
the “real” buckling length could be crucial. Moreover, it is also probable that the size of the
band documented by Brown is smaller than the theoretical one, because of the crystallization
effects. In fact, once the ribbon starts to form, it is possible that the crystallization process
creates a sort of “zipping” effect, that manages in transforming part of the already deposited
band structure into the ribbon one. Last, we have to keep in mind that the theoretical buckling
length strictly depends on the polymerization velocity of the cellulose strands. It is reasonable
to believe that at the moment of extrusion, the elongation velocity would be much higher than
the final “stationary”: this would imply that the time necessary for the chains to associate and
crystallize could limit the rate of polymerization.

6.4.6 Is this enough?

Now that we have identified a possible mechanism capable of breaking the symmetry in the
polymerization process of A. Xylinum, we have to face another problem. Let’s recall, in fact,
that the bacterium produces tens of CMFs, i.e. hundreds of cellulose chains. Each of these
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chains, according to our results, experiences hydrodynamic buckling, and after a certain criti-
cal length bends in a particular direction. If the chains were completely independent, the bend-
ing directions would be different from chain to chain, since there is no preferred orientation
for the buckling transition. In a 3-dimensional environment, this means that the probability
that the filaments encounter each other and then crystallize forming the ordered ribbon, would
be almost zero.

Figure 6.13: Possible shapes of the 3d-cuboidal body depending on the ratio on the drag coef-
ficients

This consideration brings us to the conclusion that the simple buckling instability it is not
enough to explain the formation of the ribbon and the longitudinal motion of the bacterium.
What we are still missing, is a mechanism which is able to coordinate the bending transition
of all the filaments, in order to orient them in the same direction for the correct assembly of
the ribbon to be achieved.

Figure 6.14: Model for the catalytic sites on the bacterial surface

In the next part of this chapter, we would like to demonstrate, through the results of a
BD simulation, that this role is automatically performed in the system by what are called the
“hydrodynamic interactions” (HI) among filaments. HI are a general effect concerning objects
immersed in a solvent. They are due to the perturbation of the fluid motion induced by the
presence of bodies in the solvent. This perturbation depends only on the distance between the
objects in the fluid, and has big repercussions on the motion of the bodies themselves. In the
next section we will examine this effect in detail, through the building of a many-body BD
simulation, which clearly elucidates how the hydrodynamic coupling is able to coordinate the
buckling transitions of the elongating filaments.
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6.5 Coupling filaments by hydrodynamics: a BD simulation

To fully explore the motion mechanism of A. Xylinum, together with the coordination process
of the elongating strands, we need to simultaneously take into account: 1) the dynamics of
many filaments; 2) the presence of the bacterium itself. We do this with a rather complex BD
simulation. The details of this computational method are discussed in Appendix B.

Figure 6.15: The Load and Fire mechanism

Figure 6.16: The final direction of motion of the bacterium depends on the magnitude and the
direction of the pushing forces exerted by the filaments

The simulation is focused on two main objects: the elongating filaments and the bacterium.
The bacterium is modeled as a 3d-cuboidal body, endowed with a linear array of catalytic sites
anchored along the middle-line of one of its lateral surfaces (Fig. 6.14a). The catalytic sites
are surface-bound, non-motile objects, and correspond to the loci where the polymerization
and elongation of filaments occur. The number of catalytic subunits coincides with the number
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of filaments. We model these polymers as inextensible semiflexible chains of beads, which
are connected to the bacterium through the catalytic sites (Fig. 6.14b).

In the simulation, what determines the shape of the 3d-cuboidal body are the drag coef-
ficients ξbact

‖ and ξbact
⊥ , respectively along the directions that run parallel and perpendicular

to the line which joints the catalytic sites. In our treatment we assume that the drag coeffi-
cients corresponding to the two perpendicular directions are equal, and we will refer to them
as ξbact

⊥ . Depending on the value of the ratio ξbact
‖ /ξbact

⊥ , one can have the three different situ-
ations shown in Fig. 6.13. Given the elongated shape of A. Xylinum, in the next sections will
mainly focus on the case in which ξbact

‖ < ξbact
⊥ .

Another clarification we need to make is that the bacterium is modeled as a “passive” body.
This means that the bacterial movement can occur only as a reaction to the motion and elonga-
tion of the filaments, as will be explained in the next section. On the other hand, the polymers
are “active” objects: the Brownian Dynamics algorithm governing their motion, in fact, takes
into account the thermal fluctuations of the environment as well as the interaction effects due
to their reciprocal presence in the fluid. The dynamics of the polymers, coupled to the elonga-
tion process, is thus the only motor of the bacterium.

Before focusing on the mechanism involved in the filament-elongation process, we need
to better understand the role of the catalytic sites: as already said, their main purpose is to
connect the filaments with the bacterium. However, the catalytic units are not modeled as
real complex objects, but rather they accomplish their task simply by fixing the equilibrium
position of the tips of the filaments. In particular, in the simulation, the catalytic sites are
surface bound clamps, whose extremity is separated from the bacterial surface by a distance
x0 (Fig. 6.14b). The clamps are connected with the polymers via harmonic forces: the first
bead of each filament lies in a potential well centered at the extremity of the corresponding
catalytic site. As shown in Fig. 6.15, this implies that the system (filaments+bacterium) is
in equilibrium only when the position of the tip of each polymer exactly coincides with the
location of its complementary catalytic site.

Our simulation is able to consistently model the motion of a body immersed in a fluid and
pushed by the polymerization forces of elongating polymers. To explain how filaments can
elongate while remaining strongly tethered to the motile surface, and how their growth is able
to generate a motile force, we have used a minimal version of the mechanochemical model
Lock, Load and Fire proposed by Dickinson et al. for actin polymerization. Since in our
simulation we neglect, for sake of simplicity, the chemical details of the original model, we
will refer to our elongation mechanism as the “Load and Fire”.

6.5.1 Load and Fire

The Load and Fire model entails two main steps: 1) loading of a new polymer bead in the
back of the catalytic site; 2) subsequent firing of the loaded bead outside of the catalytic site
and shifting of the filament’s tip. For a better comprehension of the Load and Fire model it is
sufficient to look at Fig. 6.15. In the following we will focus on the dynamics of one single
filament, since the same reasoning can be done for all of the N bacterial strands. We assume
the polymerization event to occur with a fixed rate kon.
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The reaction begins with the filament in its equilibrium configuration (Fig. 6.15a), with its
first bead at a distance x0 from the bacterial surface. As soon as the polymer starts feeling
the thermal fluctuations, the brownian motion that it experiences changes its position, thus
displacing the filament from the straight horizontal configuration. After a time 1/kon the first
step of the polymerization process happens: a new bead, schematically represented in the
cartoon by the additional light-blue monomer, is moved to the back of the catalytic unit and it
is subsequently attached to the tip of the filament (Fig. 6.15b). The new bead is always added
at the growing tip along the direction defined by the second and third bead of the polymer,
as shown in Fig. 6.15b/c. Once the attachment event is carried out, the second elongation’s
step occurs: due to the harmonic constraint between filament and clamp, the new polymer’s
tip is suddenly strongly attracted (fired) to its natural equilibrium position, i.e. the location of
the catalytic site (Fig. 6.15c). This firing process has two main consequences: on one side
it causes the filament to elongate and move onward; on the other one, by the action-reaction
principle, it provokes the displacement of the catalytic site itself, thus pushing the bacterium
backward (remember that the catalytic unit is bacterium-bound). As a result, the reciprocal
movement of the bacterium and the filament, occurring as a consequence of the harmonic
constraint, happens in the direction defined by the orientation of the filament’s tip in that
particular moment. When the first bead reaches the location of the catalytic site, equilibrium
is finally restored, and the elongation process can start again (Fig. 6.15d).

One thing we should comment on, is the magnitude of the pushing force. The presence
of the harmonic coupling makes it depend only upon the distance between polymer’s tip and
clamp. Therefore, both the direction and the magnitude of the force are related to the instan-
taneous configurations of the polymers. If the elongation event occurs when the filament is
in a “stretched” configuration (Fig. 6.16b), i.e. with its first bead external with respect to the
clamp, the attachment event will place the new bead very close to its equilibrium position, and
the magnitude of the restoring force will be small. On the other hand, if the polymerization
event happens when the filament is in a “compressed” configuration (Fig. 6.16a), i.e. with its
first bead internal with respect to the catalytic extremity, then the new monomer will find itself
far away from its equilibrium position. The magnitude of the restoring force, consequently,
will be very big.

Moreover, we have to keep in mind that we are dealing with N different filaments, and this
makes the full-scale situation a bit more complicated than the one depicted in Fig. 6.15. Each
of the polymers in fact will push the bacterium along the direction defined, in that moment,
by the orientation of its tip. The total force, acting on the center of mass of the body, will thus
be an average of the N different orientation of the pushing filaments. Fig. 6.16 shows the very
simple case of a body propelled by two polymerizing filaments: each elongation event makes
the body move in the direction defined by the vectorial sum of the two polymerization forces.

6.5.2 Brownian motion and Hydrodynamic interactions

So far we have treated the N filaments like independent entities. However, this is not com-
pletely correct. Even if there are no external fields or potential to couple the motion of the
filaments, this doesn’t mean that the polymers are completely independent. In fact, the fluid in
which the polymer are immersed, works silently as a coupling factor to correlate their move-
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ment.
Imagine to have a body pushed by one single polymerizing filament. The thermal fluctua-

tions that this filament experiences, make it explore the phase space isotropically. This means
that the probability to find the polymer’s tip oriented in a certain direction is exactly equal
to the probability to find it oriented in the opposite direction. Given that, it is reasonable
to believe that on average, one single filament will push the bacterium along the direction
perpendicular to the catalytic surface.

How do things change when there are more than one polymerizing chain? Well, in absence
of interactions among filaments, the situation wouldn’t change a lot. Again, on average each
of the filaments will push the body perpendicular to the longitudinal axis of the cell. The total
force acting on the center of mass of the bacterium will then be the sum of N horizontal forces,
and will be horizontal itself. This means that in absence of interactions among filaments, the
motion of a body propelled by polymerizing forces is always perpendicular to the longitudinal
axis of the cell, just like intuition suggests (Fig. 6.6).

How then do we explain the motion of A. Xylinum? Well, what really happens in this
case, is that even in absence of external interactions, like Coulomb or Van der Waals, the
polymers can strongly influence each other just with their presence, through what are called
the “Hydrodynamic interactions”. Particles, or polymers, immersed in a fluid, excite long-
ranged flows as they move, and similarly move in response to fluid motion. By generating and
reacting to a fluid’s local velocity, the particles experience hydrodynamic interactions with
each other, that can strongly influence their motion even at relatively large separations.

In this particular case, hydrodynamic interactions couple the elongation process of the N
filaments. As a result, after an initial transient, the arrangement and the motion of the N
polymers begins to be synchronous, and the directions of the N polymerization forces become
parallel to each other. Interestingly, this correlation process is so strong that it can coordinate
the buckling transition of the filaments, to break the symmetry of the system and make the
bacterium propel in the longitudinal direction. We will describe in detail this phenomenon in
the next section.

6.5.3 Results

Fig. 6.17 shows 6 frames of our Brownian Dynamics simulation. The simulation starts with
N = 10 newborn filaments normal to the catalytic surface of the bacterium (Fig.6.17a). Ini-
tially, all the strands have the same very short length, and the line that connects the tips of
the polymers exactly coincides with the row of the catalytic sites. The system is therefore in
equilibrium.

When the simulation is turned on, the filaments start to experience the brownian motion
caused by thermal fluctuations, thus shifting from their original equilibrium position. Since
the first bead of each polymer is harmonically constrained to the catalytic sites, and hence
to the bacterium, the motion of the polymers will have repercussion on the bacterial config-
uration (Fig.6.17b). With a rate kon, each polymer elongates according to the Load and Fire
model, and while elongating it pushes the bacterium in the direction identified by the instan-
taneous orientation of its tip. As you can see from Fig. 6.17, as long as the polymers are
very short, they remain all perpendicular to the catalytic surface, pushing the bacterium in the
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Figure 6.17: Six frames of our simulation: after an initial directed motion, the polymerizing
fibers bend due to the hydrodynamic buckling and push the bacterium parallel
with respect to his long axis 97
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transversal direction. However, as soon as they reach the critical buckling length, they start
bending, deviating from the perpendicular direction (Fig.6.17c/d) . Surprisingly, the Hydro-
dynamic Interactions among the filaments are so strong to coordinate the buckling transition
of all the strands. As a result, the filaments start bending in the same direction, pushing the
bacterium cooperatively (Fig.6.17e/f). Because of the constraint of impenetrability between
the bacterium and the chains, the filaments end up with their tip parallel to the long axis of the
bacterial body. In this configuration, the bacterium is unidirectionally pushed parallel to his
long axis, exactly like in Fig. 6.6b.

In particular, if we indicate by M the mass of the bacterium, by m the mass of the polymer’s
bead, by ni the number of beads of the i-th polymer and by N the total number of polymers,
for the action-reaction principle we have that:

Fbact = M ·ab = Ff il =
N

∑
i=1

Fi = m
N

∑
i=1

niai (6.22)

At the beginning the polymers are very short, i.e. M >> m∑
N
i=1 ni, and the movement of

the bacterium is very limited compared to the motion of the filaments. However, when the
fibers become long enough, then M ' m∑

N
i=1 ni, and the movement of the bacterium becomes

appreciable.

Figure 6.18: Distances covered by the three coordinated (x,y and z) of the center of mass of
the bacterium. The lines (solid and dashed) are the linear fit.
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6.5.4 Measuring the velocity of the bacterium

In the previous section we have shown how the hydrodynamic effect can make the filaments
cooperate to push the bacterium along its longitudinal axis. Now we want to investigate to
which extent the number of the polymerized strands influences the velocity of the bacterium.
At first, let’s focus on a simple case, only 2 elongating filaments. Fig. 6.18 shows the distances
covered by the center of mass of the bacterium along the three main directions, x, y and z:
here x and y define the plane of movement of the bacterium, y corresponding to the direction
parallel to the long axis of the cell. As you can see from the figure, at the beginning of
the simulation the bacterium moves mainly transversely, remaining in the same y− and z−
position. However, after a certain time, suddenly it begins to turn, the slope of the x−curve
starts diminishing while the one related to the y−coordinate increases. For symmetry reasons,
on average the distances covered along the z-directions remains always very small.

Figure 6.19: Longitudinal velocity of the bacterium for different numbers of polymerized fil-
aments

To measure the velocity of the bacterium along these three directions it is sufficient to
calculate the derivative of the curves. As you can see from Fig. 6.18, the bacterium seems to
move linearly, with a well defined velocity. However, we expect that at larger times its velocity
is no longer constant: as it can be seen from Eq. 6.22, the force acting on the bacterium
increases with the total filament’s mass, and so its velocity.

Measuring the longitudinal velocities for various simulations each with a different number
of filaments, we obtain the plot shown in Fig. 6.19. As intuition expects, the velocity of the
bacterium increases if the number of the polymerizing filaments rises up.
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6.6 Conclusions

In this Chapter we have focused our attention on the bacterium A. Xylinum, a cellulose pro-
ducing organism that lives in the air-liquid interface and that exhibits a very peculiar motion
during the cellulose deposition process. We have shown how the symmetry breaking effect
occurring during the bacterial movement is caused by a hydrodynamic coupling between the
polymerized cellulose filaments and the liquid in which they are immersed. To further prove
our theory, in the second part of the Chapter we have implemented a Brownian Dynamics
simulation that is able to consistently model the motion of a body immersed in a fluid and
pushed by the polymerization forces of elongating polymers. Our numerical simulation has
proved the existence of a symmetry-breaking transition happening during the bacterial motion,
and the correlation between the velocity of the bacterium and the number and length of the
polymerized filaments. This suggests the possibility of a quantitative comparison with future
experiments.
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7.1 Appendix A: The Method of Characteristics

The method of characteristics allows to solve the initial value problem for general linear and
quasi-linear first order partial differential equations (PDEs). Consider the first order PDE

a(x, t,u)
∂u(x, t)

∂x
+b(x, t,u)

∂u(x, t)
∂t

+ c(x, t,u) = 0 (7.1)

in the two variables (x, t), along with the initial condition

u(x,0) = f (x). (7.2)

The goal of the method of characteristics is to solve the given PDE by finding curves in the
x− t plane that reduce the equation to a simple ODE.
In general, any curve in the x− t plane can be expressed in parametric form as:{

x = x(s)
t = t(s)

(7.3)

where the variable s gives a measure of the distance along the curve. In order to label different
curves in the x− t plane we need to introduce the parameter p such that{

x(s = 0) = p
t(s = 0) = 0.

(7.4)

The variable p thus identifies the initial point of the curve and it is constant along it. This
procedure allows us to change the coordinates from (x, t) to (p,s). In this new coordinate
system the PDE becomes an ordinary differential equation (ODE) along the generic curve
{[x(s), t(s)] : 0 < s < ∞}, that is called the characteristic curve or just the characteristic.

How do we find the characteristic curves given a generic PDE? Notice that if we choose
dx
ds

= a(x, t,u)

dt
ds

= b(x, t,u)
(7.5)

then we have
du
ds

=
dx
ds

∂u
∂x

+
dt
ds

∂u
∂t

= a(x, t,u)
∂u
∂x

+b(x, t,u)
∂u
∂t

(7.6)
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and along the characteristic curves, the PDE transforms into the ODE

du
ds

+ c(x(s), t(s),u(x(s), t(s))) = 0. (7.7)

with initial condition

u(s = 0) = u(x(s = 0), t(s = 0)) = u(p,0) = f (p). (7.8)

Eq. 7.5 will be referred to as the characteristic equations. Assuming that we can solve the
ODE 7.7, means that u(x(s), t(s)) is known everywhere along this curve, i.e. along the curve
(x(s), t(s)) defined by a specific choice of the parameter p. Another choice of p gives another
curve and therefore another solution of u. In this manner, u can be evaluated at any point P
in the x− t plane by choosing the curve, identified by p, that passes through this point, and
taking the correct value of s, the distance along the curve. Hence, we can evaluate u(x, t).

7.1.1 General Strategy

The general strategy for applying the method of characteristics to a PDE of the form 7.1 is:

1. Solve the three coupled ODEs: 

dx
ds

= a(x, t,u)

dt
ds

= b(x, t,u)

du
ds

= c(x, t,u)

(7.9)

finding the constants of integration by setting
x(0) = p
t(0) = 0
u(0) = f (p)

(7.10)

2. This provides us with the transformation from (x, t) to (p,s){
x = x(p,s)
t = t(p,s)

(7.11)

and yields a solution for u(x, t) in terms of (s, p). Now that we have a solution u(p,s)
we solve for s and p in terms of x and t (using the results of step 1) and substitute these
values in u(p,s) to get the solution to the original PDE as u(x, t).
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7.2 Appendix B: Brownian Dynamics

The Brownian Dynamics (BD) simulation technique (108; 109) is a mesoscopic method in
which explicit solvent molecules are replaced instead by a stochastic force. The technique
takes advantage of the fact that there is a large separation in time scales between the rapid
motion of solvent molecules and the more sluggish motion of polymers or colloids. The ability
to coarse-grain out these fast modes of the solvent allows one to simulate much larger time
scales than in a molecular dynamics simulation. At the core of a BD simulation is a stochastic
differential equation which is integrated forward in time to create trajectories of molecules.
Time enters naturally into the scheme allowing for the study of the temporal evolution and
dynamics of complex fluids (e.g. polymers, large proteins, DNA molecules and colloidal
solutions). Hydrodynamic and body forces, such as magnetic or electric fields, can be added
in a straightforward way. BD simulations are particularly well suited to studying the structure
and rheology of complex fluids in hydrodynamic flows and other non-equilibrium situations.
In the next sections we begin by recovering the theoretical governing stochastic equation, and
subsequently we discretize it and implement it in a BD algorithm.

7.2.1 The Langevin Equation

The BD method is used to describe the dynamics of particles, usually colloids or macro-
molecules, that undergo Brownian motion in a viscous solvent. Because of their small mass,
inertia is essentially irrelevant for these particles, and it is often neglected in the equation of
motion. From Newton’s Second Law, Ftot = ma, we see that the neglect of inertia means that
the total force acting on the particle is always approximately zero. This force is generally com-
posed of three terms: a drag force Fd , representing the effect of the viscous solvent through
which the particle is moving; a Brownian force FB due to the random collisions of the solvent
with the particle; and a last contribution Fnh that includes all the other non-hydrodynamic
forces that can be present in the system, such as external body forces, spring forces, and ex-
cluded volume interactions.
For what has just been said, we therefore have that for the particle i:

Ftot
i = Fd

i +FB
i +Fnh

i ' 0. (7.12)

Let’s start considering the case of N non-interacting particles in a fluid. In creeping flows
(flows with no inertia) and in absence of hydrodynamic interactions (free-draining case), the
drag force is taken as the Stokes drag on a sphere

Fd
i =−ζ

(
dri

dt

)
(7.13)

where ζ = (6πηa), being a the radius of the particle and η the viscosity of the fluid, is the drag
coefficient. The differential equation governing the motion of the particle then becomes

dri

dt
=

1
ζ
(Fnh

i ({r j})+FB
i (t)) (7.14)
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and is commonly called the Langevin equation. Note that in this relation the non-hydrodynamic
force depends on the set of all particle positions {r j}, while the hydrodynamic drag is taken
as a constant for all the particles. Eq. (7.14) is a stochastic differential equation, because
the Brownian force that act on the particle is extracted from a random distribution. In order
for the dynamics to satisfy the fluctuation-dissipation theorem, the expectation values of the
Brownian force must be

< FB
i (t) > = 0 (7.15)

< FB
i (t)FB

j (t
′) > = 2kBT ζδi jδ(t− t ′)I (7.16)

where kB is the Boltzmann’s constant, T is the absolute temperature, δi j is the Kronecker delta,
δ(t− t ′) is the Dirac delta function, and I is the unit second-order tensor. Recalling now the
Einstein relation

D =
kbT

ζ
(7.17)

that relates the thermal motion of the particle, characterized by the diffusion coefficient D,
with its response to an external force, we can rewrite the Langevin Equation Eq. (7.14) in the
more convenient form:

dri

dt
=

D
kbT

Fnh
i ({r j})+

√
2D ξi(t) (7.18)

where ξi(t) is a vector with components extracted from a Gaussian distribution, with average
and variance

< ξi(t) > = 0 (7.19)
< ξi(t)ξ j(t ′) > = δi jδ(t− t ′)I. (7.20)

Eqs. (7.14), (7.15) and (7.16) are equivalent to the Fokker-Plank equation description, which
is a diffusion equation for the phase-space probability density (110).

7.2.2 Adding Hydrodynamic Interactions

Although the Langevin dynamics correctly describes the behaviour of a single particle (or
equivalently of N non-interacting particles) immersed in a fluid, it doesn’t take into account
the effect caused in the solvent by the presence of other molecules. As a particle moves
along its trajectory, in fact, it exerts a force on the fluid which changes the velocity field from
its undisturbed value. The disturbance velocity changes in its turn the viscous drag force
exerted on the other particles. These interaction effects, mediated by the solvent, are called
hydrodynamic interactions (HI). As a result, the diffusion coefficient of the particles is no
longer a constant (Eq. 7.17), but becomes a configuration-dependent tensor, which will be
denoted by Di j(ri,r j) (110).

The HI are included in the BD through the use of an interaction tensor Ti j, related to the
diffusion tensor Di j by the expression

Di j(ri,r j) = kBT Ti j(ri,r j) (7.21)
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where the indexes refer to particles i and j. Two interaction tensors are generally used to
describe the hydrodynamic interactions between particles: the Oseen Tensor (111) and the
Rotne-Prager-Yamakawa tensor (RPY) (112). The first one, whose expression reads like

TOseen
i j =


δi j
ζ

if i = j

1
8πηri j

(
I+ ri jri j

r2
i j

)
if i 6= j.

is the most known and used. However, it results in a non-positive-definite diffusion tensor if
particle separations are comparable to the particle radius a. To regularize the singularity in
ri j = 0, it is possible to use the RPY tensor,

TRPY
i j =


δi j
ζ

if i = j

1
8πηri j

[(
I+ ri jri j

r2
i j

)
+ 2a2

r2
i j

(
I
3 −

ri jri j

r2
i j

)]
if i 6= j.

which modifies the small separation behaviour such that the diffusion tensor is always positive-
definite. In analogy with Eq. (7.18), the stochastic differential equation including HI then
becomes

dri

dt
=

1
kBT

N

∑
j=1

Di j(ri,r j) ·Fnh
j ({rk})+

√
2

N

∑
j=1

Bi j({rk}) ·ξ j(t) (7.22)

where, again, the ξ j are random vectors with expectation values given by Eqs. (7.19) and
(7.20). The weighting factors Bi j that appear in Eq. (7.22) must be calculated from the
diffusion tensor in order to satisfy the fluctuation-dissipation theorem

Di j(ri,r j) =
N

∑
p=1

Bip({rk}) ·BT
jp({rk}). (7.23)

This relation can be inverted to calculate the Bi j by Cholesky decomposition. However, a
more efficient method has been developed and implemented in BD simulations (108; 109),
and will be shown in the next section.

7.2.3 Simulation technique

A BD simulation is performed by integrating the governing stochastic differential equation,
(Eq. 7.22), forward in time: the trajectories of the particles in the configuration space are
calculated numerically, and are composed of successive displacements each taken over a short
time step ∆t. Numerical accuracy limits the maximum size of the time step, requiring it to
be sufficiently short so that the force on the particles and the gradient of the diffusion tensor
are essentially constant during ∆t. The stochastic nature of Eq. (7.22) implies that one has to
produce many independent trajectories, that will be subsequently averaged together, to obtain
the time-evolution of an ensemble-averaged observable.
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To simulate the diffusion of N identical interacting Brownian particles, we have to rewrite
the displacement equation (7.22) in its discretized form as

ri = r0
i +

1
kbT

N

∑
j=1

D0
i j ·F0

j ∆t +Ri(∆t) (7.24)

where the subscript 0 indicates that the variable has to be evaluated at the beginning of the
time-step, the term F0

j includes all the non-hydrodynamic forces acting on the particle j (for
convenience we have dropped the superscript nh), and Ri(∆t) represents the effect of the Brow-
nian force. The Ri vectors are configuration-dependent, and are composed of Gaussian random
numbers such that their average and variance are given by

< Ri(∆t) > = 0 (7.25)
< Ri(∆t)R j(∆t) > = 2D0

i j∆t. (7.26)

To determine the components of these vectors without inverting Eq. (7.23), we should proceed
in the following way (108; 109): let R denote the 3N×1 column vector obtained by stacking
the N Ri column vectors (3×1) on top of each other. Then we can write

R = σ ·X (7.27)

where σ is a configuration dependent 3N × 3N matrix and X is a 3N × 1 column vector of
normally distributed Gaussian random numbers

< Xm > = 0 (7.28)
< XmXn > = 2δmn∆t (7.29)

obtained from a random number generator. If we let Q denote the symmetric 3N×3N super-
matrix constructed form the Di j matrices in the following manner

Q =


D11 D12 ... D1N
D21 D22 ... D2N
... ... ... ...

DN1 DN2 ... DNN


then the elements of σ are simply given by

σmm =

(
Qmm−

m−1

∑
k=1

σ
2
mk

)1/2

(7.30)

σmn =

(
Qmn−∑

n−1
k=1 σmkσnk

)
σnn

. (7.31)
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7.3 Appendix C: Feynman’s Brownian Ratchet

Feynman imagined a box full of gas that encloses an axle with vanes on it. Thermal motion
of the gas molecules results in random bombardment of the vanes, causing the axle to turn in
a jiggly way in both directions. Next, he imagined to hook the axle up to a toothed wheel,
a ratchet, that can turn freely in one direction but whose backward rotation is prevented by a
pawl on a spring that catches on the asymmetric teeth (Fig. 7.1). Now, when the axle tries to
jiggle in one direction, the direction permitted by the ratchet, it turns freely, but when it tries
to jiggle in the other direction, it is stopped. Step by step, the axle turns only one way, even
though the thermal motion of the gas is random and undirected. In this way, thermal motion
of the gas molecules in the box could be used to generate useful work such as lifting a weight
attached to the axle, a clear violation of the second law of thermodynamics.

Figure 7.1: The Feynman’s Brownian Ratchet

Of course the machine does not actually work under these conditions. The trick lies in
ignoring the fact that thermal motion affects all parts of the system, the ratchet and pawl as
well as the vanes. At a temperature where collisions with the vanes are sufficiently energetic
to turn the ratchet step by step, the pawl is also jiggling around, and every so often the pawl
will bounce out of its nook, allowing the ratchet to rotate backwards. If everything is at the
same temperature, the number of forward steps will be balanced on average by the number
of backward slips. But, Feynman’s machine will work to turn primarily in one direction if
the vanes and the ratchet are at different temperatures. If the vanes are hotter than the ratchet
and pawl, the machine will turn forward and could indeed lift a weight, transducing the energy
stored in the temperature gradient into mechanical force. If the ratchet and pawl are hotter than
the vanes, the machine will turn backwards, but can still generate force. Feynman’s example
was designed to demonstrate that geometrical asymmetry, no matter how cleverly devised,
cannot be used to generate force from thermal motion in the absence of an external source of
energy (here, the external energy source is used to maintain the temperature gradient). But
if such an external energy source is available, random thermal motion can be harnessed for
unidirectional motion.
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Summary

This thesis deals with many different biological problems concerning cellulose biosynthesis.
Cellulose is made by all plants, and therefore it is probably the most abundant organic com-
pound on Earth. Aside from being the primary building material for plants, this biopolymer is
of great economic importance globally because it is the major constituent of cotton (over 94%)
and wood (over 50%). Moreover, according to how it is treated, cellulose can be used to make
paper, film, explosives, and plastics, in addition to having many other industrial uses. The
paper in this book, for example, contains cellulose, as do some of the clothes we are wearing.

In addition to higher plants, cellulose is synthesized by a number of bacterial species, algae,
lower eukaryotes (tunicates), and the slime mold Dictyostelium. The function of cellulose
in these different groups of organisms reflects the diverse role associated with this simple
structural polysaccharide. Whereas it is possible for some organisms, specifically bacteria, to
survive in absence of cellulose synthesis, it may not be true for most vascular plant cells. As
such, the importance of cellulose in the life of a plant cannot be overemphasized since it not
only provides the necessary strength to resist the turgor pressure in plant cells, but also has a
distinct role in maintaining the size, shape and differentiation of most plant cells.

The aim of this thesis is to investigate, by mean of theoretical methods, coupled to simula-
tion techniques, the polymerization, crystallization, and self-organization mechanism of this
universal distributed polysaccharide, in different biological systems.

We start in Chapter 2 with a general description of the chemical and mechanical features
of the cellulose microfibrils (CMFs), the crystalline form of cellulose in nature. After a brief
overview on the biogenesis of the CMFs in the plant cells we proceed focusing on two of the
most important cellulose producer entities: the plant cells and the Acetobacter cells.

The first part of the thesis, therefore, is concerned with all the aspects related to cellulose
biosynthesis in the cell-wall of plant cells. We begin in Chapter 3 with a detailed investigation
on the self-assembly mechanism of the Cellulose Synthase Complex (CSC) in higher plants,
the hexagonal Rosette CSC: based on the known experimental evidences regarding the internal
structure of this protein, we are able to build a theoretical scheme to characterize the interac-
tions among the CSC subunits; then, by mean of a Monte Carlo algorithm, we implement this
interaction scheme in a simulation that document step by step the formation of the hexagonal
enzyme. Our model is able to explain the assembly of many types of CSCs, like the hexagonal
Rosettes of plants as well as the linear CSCs present in bacteria and the clusters that form in
the cell wall of some algae.

After having clarified the formation of the Rosette CSC structure, we shift our attention
to its motion in the plasma membrane of plant cell. In Chapter 4 we present a biophysical
model that unravels the force generating mechanism underlying the propulsion of the Rosette
CSC: the model identifies polymerization and crystallization as driving forces, and elucidates
the role of polymer flexibility and membrane elasticity as force transducers. On the basis of
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our model and appropriate values for the relevant physical constants, we obtain a theoretical
estimate for the velocity of the CSC that is in agreement with the experimental value. To have
a proof a principle of the proposed mechanism, we have also developed a stochastic simulation
that reproduces the movement of the Rosette CSC in the fluid membrane of the plant cell.

The last issue related to plant cells cellulose is the formulation of a mathematical model to
analyze the building of cell wall architecture (Chapter 5). The highly regular textures observed
in cell walls reflect the spatial organization of the cellulose CMFs. Based on a geometrical
hypothesis proposed earlier, we formulate a model that describes the space-time evolution
of the density of Rosette CSCs in the plasma membrane of plant cell. The trajectories of
the Rosettes are assumed to be governed by an optimal packing constraint of the CMFs that
couples the direction of motion to the density of the CSCs. Our model is based on a relatively
small numbers of variables that can be tuned to obtain most of the cell wall textures that have
been found experimentally. Moreover, we demonstrate that it is also robust against a number
of perturbations and noise effects.

The second part of the thesis is focused on the cellulose-producing Acetobacter cells, which
live at the air-liquid interface and which exhibit a peculiar motion during the cellulose poly-
merization process. The mechanism of formation as well as the structure of the bacterial
cellulose has been studied extensively in recent decades. The cellulose product appears as a
long ribbon, composed of many CMFs, which extends parallel to the longitudinal axis of the
cell, and which is synthesized by a linear array of particles placed along the axis of the bac-
terial rod. Goal of this chapter (Chapter 6) is to correlate the peculiar motion of Acetobacter
with an hydrodynamic effect caused by the interactions between the cellulose CMFs and the
fluid in which they are immersed. To further assess the correctness of our model, in the last
part of the thesis we implement a Brownian Dynamics simulation that is able to reproduce the
main features of this particular bacterial motion.
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Samenvatting

Dit proefschrift behandelt verschillende biologische aspecten van de biosynthese van cellu-
lose. Cellulose wordt door alle planten gemaakt en is daardoor waarschijnlijk het meest
voorkomende organische polymeer op aarde. Naast een van de belangrijkste bouwstoffen
van planten, is dit polymeer ook wereldwijd van groot economisch belang omdat het een be-
langrijke component van katoen (meer dan 94%) en van hout (meer dan 50%) is. Bovendien
kan cellulose, afhankelijk van hoe het behandeld wordt, gebruikt worden voor het maken van
papier, film, explosieven en plastics, naast nog veel andere industriÃ«le toepassingen. Het
papier waarop dit boek gedrukt is, en veel van de kleren die wij dragen, bevatten dan ook veel
cellulose.

Naast de hogere planten, produceren ook enkele bacteriesoorten, algen, lagere eukaryoten
zoals tunicaten en de slijmschimmel Dictyostelium cellulose. De uiteenlopende functies van
cellulose in deze verschillende groepen van organismen, geeft de de heel verschillende rollen
aan die dit simpele structurele polysaccheride kan spelen. Daar waar sommige organismen
echter kunnen overleven zonder cellulose te produceren, geldt dit niet voor de vaatplanten. Als
zodanig kan de rol van cellulose voor het leven van planten dan ook niet overschat worden,
aangezien het de benodigde mechanische sterkte levert, die het mogelijk maakt dat planten-
cellen de turgordruk weerstaan, en bovendien een belangrijke rol speelt bij het bepalen van de
vorm, de omvang en de differentiatie van van de meeste plantencellen.

Het doel van dit proefschrift is om met behulp van theoretische beschouwingen gekoppeld
aan computersimulaties de polymerisatie, de kristallisatie en de zelforganisatie principes van
dit zo universeel verbreide polysacchride te onderzoeken in verschillende biologische syste-
men.

We starten in hoofdstuk 2 met een algemene beschrijving van de chemische en mechanische
eigenschappen van Cellulose Microfibrillen (CMFs), de kristallijne vorm waarin het in de
natuur voorkomt. Na een kort overzicht van de biogenese van de CMFs, richten wij ons
op de twee meest prominente cellulose producerende organismen, planten en Acetobacter
bacteriÃ«n.

Het eerste deel van het proefschrift gaat daarom over alle aspecten van de biosynthese van
cellulose in de celwanden van planten. We starten in hoofdstuk 3 met een gedetailleerde
beschrijving van het zelfassemblage proces van het Cellulose Synthase Complex (CSC) in
hogere planten, het hexagonale eiwitcomplex dat ook wel “Rosette” wordt genoemd. Gebaseerd
op de bestaande experimentele aanwijzingen omtrent de interne structuur van dit eiwitcom-
plex, zijn we in staat een theoretisch model op te stellen voor de interacties tussen de subeen-
heden van het CSC. Vervolgens implementeren we deze interacties in een Monte Carlo sim-
ulatie, die de stap voor stap assemblage van het hexagonale enzymcomplex in beeld brengt.
Ons model is in staat om de constructie van veel verschillende types van CSCs te beschrijven,
niet alleen de hexagonale Rosettes zoals die in planten worden gevonden, maar ook the lin-
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eaire CSCs van sommige bacteriesoorten en de clusters zoals die in de celwand van sommige
algen voorkomen.

Na de vorming van de structuur van het Rosette CSC te hebben opgehelderd, richten wij ons
op zijn beweging in het plasmamembraan van de cel. In hoofdstuk 4 presenteren wij een biofy-
sisch model dat het krachten productie mechanisme dat ten grondslag ligt aan de voortstuwing
van het Rosette CSC ontrafelt. Het model identificeert de polymerisatie en de kristallisatie van
de cellulose as drijvende krachten, en geeft opheldering over de rol van polymeerflexibiliteit
en membraan elasticiteit in het overbrengen van deze krachten. Op basis van ons model en de
waarden van de relevante fysische constanten geven wij een schatting van de snelheid van het
CSC die in goede overeenstemming is met de experimentele waarde. Om het principe achter
ons model verder te testen, ontwikkelden we een stochastische simulatie die de beweging van
het CSC in het membraan van de plantencel reproduceert.

Het laatste thema rond cellulose in planten cellen, is een mathematisch model voor het
beschrijven van de bouw van de architectuur van planten celwanden (hoofdstuk 5). De zeer
regelmatige texturen van planten celwanden, reflecteert de ruimtelijke organisatie van de CMFs.
Gebaseerd op een eerder geformuleerde geometrische hypothese, stellen wij een model op dat
de ruimte-tijd evolutie van de dichtheid van Rosette CSCs in het plasmamembraan beschrijft.
De baenen van de CSCs worden bepaald door een optimale pakkingvoorwaarde die de be-
wegingsrichting koppelt aan de dichtheid van de CSCs. Het model heeft slechts een beperkt
aantal parameters, die zo gekozen kunnen worden dat de meest van de experimenteel gevon-
den celwand texturen gereproduceerd worden. We laten bovendien zien dat het model robuust
is tegen een aantal verstoringen en de effecten van ruis.

Het tweede deel van het proefschrift richt zich op de cellulose producerende Acebacter
cellen, bacteriÃ«n die leven aan het lucht-water grensvlak en die een merkwaardige beweging
vertonen gedurende het cellulose polymerisatieproces. Het vormingsproces en de structuur
van is intensief bestudeerd de afgelopen decennia. Het cellulose product verschijnt als een
langgerekt lint, samengesteld uit vele CMFs, dat zich strekt in de richting parallel aan de
lange as van de cel, en dat gesynthetiseerd wordt door een lineaire reeks van deeltjes langs de
as van de staafvormige bacterie. Het doel van hoofdstuk 6 is om het bewegingsmechanisme
van Acetobacter in verband te brengen met een hydrodynamisch effect dat ontstaat door de
wisselwerking van de CMFs en het vloeibare medium waarin zij ondergedompeld zijn. Om de
juistheid van dit principe te testen, implementeren wij in het laatste deel van het proefschrift
een Brownse Dynamica simulatie, die in staat blijkt de voornaamste kenmerken van deze
aparte vorm van bacteriÃ«le voortbeweging te reproduceren.
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Note added in proof

We are grateful to a member of the reading committee,prof. dr. R. M. Brown Jr, an acknowl-
edged world expert on cellulose, who has alerted us to a number of omissions of literature
citations in the text as well as references to figures used from the literature in the thesis. Un-
fortunately, for technical reasons we were not able to redress these in time for submission. We
apologize to any readers that justifiably feel that we have not been comprehensive enough in
our referencing and figure attributions, and we assure them that we will address these issues
as fully as possible in future publications.
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