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ABSTRACT Many proteins can switch from one conformation to another under the influence of an external driving force, such as
the binding to a specific substrate. Using a simple lattice model we show that it is feasible to design protein-like lattice proteins that
can have two different conformations, depending on whether or not they are bound to a substrate. We give three different ex-
amples of such substrate-induced refolding. In addition, we have explored substrate-induced folding of lattice proteins that do not
fold when free in solution. We show that such proteins can bind with the same high specificity as prefolded protein, but have a
considerably lower binding free energy. In this way proteins can bind to a substrate in a way that is highly specific, yet reversible.

INTRODUCTION

Proteins can change their conformation when exposed to dif-

ferent environments. The simplest example of this phenom-

enon is the protein folding or unfolding that can be induced

by a change in temperature, pressure, or solvent conditions.

In addition, there are many examples of proteins that undergo

a transition from one ordered structure to another under the

influence of an external agent. Motor proteins (1–3) are an

example of this class of proteins. The structural transforma-

tion in motor proteins is driven by the chemical reaction with

a molecular fuel (often ATP). However, there are also pro-

teins that undergo structural rearrangements when they bind

reversibly and selectively to a particular substrate. The sub-

strate acts as a switch to activate or deactivate some function

of the protein. A particularly interesting class of proteins are

those that are disordered in solution but fold when brought

into contact with a substrate. Such ‘‘natively unfolded’’ or

‘‘intrinsically unstructured’’ proteins are known to play a

key role in many cell regulatory processes and it has been

argued that the ability to fold upon binding provides high

specificity coupled with low affinity to the binding process

(4). Schoemaker et al. (5) have proposed that such a mecha-

nism could considerably speed up the binding of a protein to

its target substrate. This hypothesis, called ‘‘fly-casting’’,

has been tested for several models (6–8). Clearly, the ability

to fold or refold upon binding to a substrate puts severe con-

straints on the amino-acid residue sequence of the protein, as

it must be compatible with one stable structure in the absence

of the substrate, yet must refold to another structure when

bound to the substrate. In this article, we explore the design

of protein-like lattice polymers that can refold upon binding

to a substrate. In addition, we show that it is possible to

design lattice proteins that are disordered (natively unfolded)

in solution, but fold when in contact with a specific substrate.

As fully atomistic simulations of the design process would,

at this stage, be prohibitively expensive, we use a lattice

model for hetero-polymers that, although simple, exhibits

many of the features of proteins. The interaction between the

monomeric units (‘‘residues’’) of the lattice proteins are

described by the interaction matrix proposed by Miyazawa

and Jernigan (9). The substrate is constructed from the same

set of monomeric units as the protein, and the interactions

between the protein and substrate are therefore also given by

the parameters of Miyazawa and Jernigan (9). The same

‘‘toy’’ protein model was used by Borovinskiy and Grosberg

(10) who studied the design of a simple molecular motor.

The aim of our study is twofold: first we wish to investi-

gate under what conditions the substrate can induce a confor-

mational change of the protein from the native state in solution

to a different native state in the bound condition. Secondly,

we investigate under what conditions a substrate can induce

the folding of a protein that is unfolded in solution.

As the results of such simulations might depend on the

specific sequence of the designed protein and substrate, we

repeat the calculations for four different protein-substrate

pairs.

The remainder of this paper is organized as follows: after a

brief review of the simulation techniques (details are given in

the Appendix), we present the simulations of the binding of

our model proteins to the substrates. We conclude with a dis-

cussion of some of the implications of these simulations.

METHODS

The system that we consider consists of a lattice protein that is free to move

inside a finite box. The substrates are small, rigid, objects built from residue-

like units. The conformational energy of the system is given by

E ¼ Eintra 1 Einter ¼ +
NC

i

+
NC

j6¼i

CijSij 1 +
NS

j9

Cij9Sij9

" #
; (1)
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where the indices i and j run over the residues of the protein (NC), while

j9 runs over the elements of the substrate (NS), C is the contact matrix, de-

fined as

C ¼ 1 if i neighbor of j

0 otherwise;

�
(2)

while S is the interaction matrix. For S we use the 20 3 20 matrix determined

by Miyazawa and Jernigan (9) on the basis of the observed frequency of

contacts between each pair of amino acids.

Sequence design

A given lattice polymer can form a large number of compact conformations,

each one of them characterized by a different contact map. Through its con-

tact map, the energy of the polymer depends on its conformation (see Eq.1).

The density of states as a function of energy determines a conformational

entropy S(E). The mean-field approximation for this conformational entropy

is (11)

SðEÞ ¼ N logg � E
2

2Ns
2

B

if E . Ec

0 if E # Ec

;

8<
: (3)

where N is the number of monomers in the chain, sB is the standard

deviation of the interaction matrix, and g is the coordination number for

fully compact structures on the lattice. In the definition of the entropy the

constant
ffiffiffiffiffiffiffiffiffi
ps2

B

p
is ignored as explained by Derrida (11). The lower root of

the equation S(E)¼ 0 is denoted by Ec. It is given by Ec¼�NsB ð2loggÞ1=2
.

The ‘‘native state’’ corresponds to the lowest energy conformation for a

given sequence. The energy of the native state is lower than Ec. If the native

state is nondegenerate, this lowest-energy conformation has zero entropy,

which leads to the well-known funnel-shape free-energy landscape (12). The

width of the distribution of energies of the nonnative states depends on the

heterogeneity of the lattice protein. A limiting case is the homopolymer where

all compact conformations with the same overall shape have the same energy.

Obviously, such a homopolymer does not have a unique native state. Hetero-

geneity is essential for the designability of specific native structures.

There are several ways to ‘‘design’’ the sequence of lattice proteins such

that they fold into a specific, predetermined conformation. We reported one

such strategy in Coluzza et al. (13). This method is briefly reviewed in the

Appendix. Sequences are generated by minimizing the energy of the target

configuration(s) and, at the same time, by maximizing the number of letter

permutations to increase the sequence heterogeneity. In this study we use

this scheme to design a protein-substrate system. In particular, we design our

lattice proteins such that they have different native states in solution and

when in contact with the substrate. A similar approach can be used to design

a residue sequence that will fold in different structures when bound (Fig.

1 (1, 3, and 5)) and unbound (Fig. 1 (2, 4, and 6)) (see Appendix). Once the

best sequences are chosen according to our design scheme, we can proceed

to test if the desired folding properties have been achieved and then to com-

pute the free-energy landscape associated with the binding process. Note

FIGURE 1 Spatial arrangement of the chain in the

structures used to explore configurational changes induced

by the binding. The conformation on the left corresponds

to the native structure in solution. In contact with a

substrate, the model protein folds into the structure shown

on the right. In particular, the free and bound native

structures of sequence A (Table 1) are denoted by 1 and 2,

respectively. Similarly the free (bound) native structures

of sequences B and C are denoted by 3 (4) and 5 (6),

respectively.
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that to get good ‘‘refolding’’, we did not need to control explicitly the free-

energy landscape for refolding, as was done in Borovinskiy and Grosberg

(10).

Folding

To study the folding of a particular model protein, we use a Monte Carlo

simulation with four basic moves: corner-flip, crankshaft, branch rotation,

and center of mass translation. The corner-flip involves a rotation of 180� of

a given particle about the line joining its neighbors along the chain. The

crankshaft move, is a rotation by 90� of two consecutive particles. A branch

rotation is a turn, around a randomly chosen pivot particle, of the whole sec-

tion starting from the pivot particle and going to the end of the chain. With

these moves we expect to have a good balance between collective and local

moves.

During the simulation we measure the free energy as function of three

order parameters. The first is the conformational energy (Eq. 1) of the chain.

The second is the number of native contacts Q in a given conformation,

which is a commonly used order parameter in the study of protein folding.

However, as we are considering also a model with two native structures, it is

better to define as an order parameter the difference in the number of con-

tacts that are ‘‘native’’ to the two target structures (e.g., 1 and 2) i.e.,

Q2ðCÞ ¼ +
N

i,j

½Cð1Þij Cij � C
ð2Þ
ij Cij�; (4)

where C
ð1Þ
ij and C

ð2Þ
ij are the contact maps of the two target structures, and Cij

is the contact map of the instantaneous configuration. To be more precise: as

we consider two distinct native states (1 and 2), we assign a value 11 to

every contact that belongs to structure 1 and a value �1 to every native con-

tact of structure 2. Contacts that appear in both 1 and 2 do not contribute to

this order parameter. It is important to notice that some of the native contacts

can correspond to intramolecular interaction. To quantify binding it is useful

to use a third order parameter QS that measures the number of contacts

between the protein and the substrate regardless of whether they are native or

not.

The free energy, as a function of an order parameter Q (Eq. 4) is defined

by

FðQÞ ¼ �kT ln½PðQÞ�; (5)

where FðQÞ is the free energy of the state with order parameter Q and PðQÞ
is the equilibrium probability to observe conformations with order parameter

Q. In a simulation, we determine PðQÞ by accumulating a histogram of the

number of conformations as a function of the order parameter Q. Direct

(brute force) calculation of this histogram is not very efficient as the system

is often trapped in local minima, especially at low temperatures. To solve

this sampling problem, we employ Virtual-Move Parallel Tempering (VMPT)

(14) a parallel-tempering algorithm based on the sampling of rejected states

(13,15).

The VMPT scheme is particularly useful for the study of conformational

changes induced by a substrate, as the lowest free-energy state of the free

protein will become a relatively high free-energy state after binding to the

substrate. For more details about the VMPT scheme, we refer the reader to

Coluzza and Frenkel (14).

RESULTS

To study the influence of a substrate on the equilibrium proper-

ties of our model protein we considered three different con-

formational changes induced by substrates of different sizes.

In Fig. 1 we show the target structures between which the

transitions occur: 1 5 2, 3 5 4, and 5 5 6. Because the same

procedure is applied in every case, we focus our explanation

on the conformational change from structure 1 (Fig. 1, left) to

structure 2 (Fig. 1, right). Following the procedure explained

in section 2 we optimize the conformational energy of the

chain in both structure 1 (see Fig. 1, left) and 2 (see Fig. 1, right).
After eight simulations with different random numbers, each

of the order of 109 steps long, we collect all the sequences with

the lowest energy for the two structures. In Table 1 we show the

sequences selected for the different conformational changes.

The study of the folding mediated by binding to a sub-

strate is done by considering the equilibrium properties of the

protein in Fig. 2. Following the procedure explained in the

Appendix we designed the protein in the bound state with

different percentages of ‘‘random’’ amino-acid residues rang-

ing from 0% to 60%. The results are a group of sequences

D0-D60. The effect of randomly chosen residues is to intro-

duce noise in the design process, which the other amino acids

have to compensate for during the optimization. When the

noise exceeds a certain threshold, the interactions between

the residues in the chain are insufficient to stabilize the native

structure. However, the native conformation is favored when

the chain is brought into contact with the substrate.

Free-energy calculations

As a first check, we verified that the generated sequences do

indeed fold into the respective target structure according to

whether or not they are bound to the substrate. We start with

a random coil not touching the substrate. In Fig. 3, A–C, we

plot the free energy of sequence A,B,C, respectively, as

function of the number of native contacts Q (Eq. 4) at the

temperature of T ¼ 0.1. In each plot we distinguish between

conformations that do and do not touch the substrate. A

common feature of the three proteins is that they fold into the

designed structure that corresponds to the bound state. For

example, for sequence A, the equilibrium conformation in

the bound state corresponds to structure 1 (Q2 ¼ 18), while

the unbound state is most stable in structure 2 (Q2 ¼ �12).

Similar behavior is observed for sequences B and C, de-

signed to undergo the refolding transitions 3 5 4 and 5 5 6,

TABLE 1 Sequences generated for the test structures (Fig. 1)

R H F S Y T R R G M D D R C W V C D A C V M C T P H W L E Y N K I L E N P K I M E Q R K W G E D P K F A E Q N K I M S Q Sequence A

L E A S P S K I R E G Y P G R T R D F Y W C K D L E C M N C K I L E C N W C K I R E C M H F R D P D F Y W C K Q V E C M N C

K V V A T G Q H Q H
Sequence B

P R D G L W G R D Q P R D F M I F R D Y M K D C L W C K E W N K E C M I C R E N N K D C L W C K E N M K E C M I C K E W

F K D C L W C K E F N K E C M I C R E N P R Q F M I G H Q H H H P G L V T S T Y A V V A A V T S Y Y P S Q A H V G S T Q
Sequence C

Each letter represents a different amino acid (9). The letters in bold are the amino acids of the substrate.
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respectively. In other words, our design algorithm allows us

to generate lattice proteins that undergo a major conforma-

tional change upon binding to a substrate. Although these

results are limited to simple lattice proteins, this qualitative

behavior should also be present in more realistic protein

models.

To investigate the temperature dependence of the different

conformational changes, we raise the temperature until we

reach a regime where the native unbound state is in equilib-

rium with the native bound configuration. For all cases it is

possible to reach a temperature where the protein detaches

from the surface without denaturing the protein. However,

this is not always the case in real proteins. In fact, it is well

known experimentally (16) that random domains of proteins

can fold into well-defined structures upon binding.

Let us consider in more detail the case of protein D (Fig. 2)

that folds when it binds to a substrate. In Fig. 4, A and B, we

plot the free energy of the free and bound states, respectively,

of sequences D as function of the number of native contacts

Q (Eq. 4). It is important to remember that the order param-

eter Q measures the number of native contacts with respect to

only one reference structure. Above a certain threshold of

‘‘randomness’’ (30%) the unbound chain no longer has a

stable native conformation. Yet, in the bound state, the protein

still folds. We found that, even for 60% randomness, bound

proteins can still fold. Although the details of the compe-

tition between randomness-induced disorder and substrate-

induced order depend on the size of the substrate and the

protein, these results do show that proteins that are disor-

dered in solution, can become ordered (and hence functional)

under the influence of a substrate. Moreover, all the se-

quences show a strong specificity in the binding; this can be

seen in the plots of the free-energy landscape as a function of

both Q and Qs (supplemental Fig. S2, Supplementary Ma-

terial). For the extremes D0 and D60 the surface has a funnel

shape that indicates a strong preference for specific binding

(15).

Proteins that fold under the influence of a substrate have

interesting binding properties. In particular, their binding

constants depend very strongly on temperature. Intuitively,

the reason for this dependence is easy to understand: the

strength of binding is determined by exp(�Df/kBT), where Df
is the difference in free energy of a molecule in contact with

the substrate and in solution. This free-energy difference

FIGURE 2 Spatial arrangement of the protein of the protein-substrate

system used to study the binding-induced folding process. In purple we have

represented the protein whereas the red spheres constitute a substrate frozen

in the middle of the simulation box.

FIGURE 3 Plots of the free energy FðQÞ of the different sequences as a

function of the number of native contacts Q2 (Eq. 4), at T¼ 0.10. States that

touch the substrate (A) have been plotted separately from those that do not

(B). The curve corresponding to the touching states is longer, because in the

definition of the order parameter we take into account also the native con-

tacts with the substrate. All data were obtained with a combined parallel tem-

pering and umbrella sampling simulation.
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contains an energetic and an entropic contribution. When a

molecule folds upon binding to the substrate, there is a large

entropy loss Ds associated with the binding process. To

obtain a given binding strength, this entropy loss must be

compensated by a correspondingly large gain in De/kBT,

where De is the energy gain upon binding. The binding

strength itself provides no direct information about the entropic

and energetic contributions to Df. However, the temperature

dependence of exp(�Df/kBT) is determined exclusively by

the binding energy. As De must be large for chains that fold

upon binding, the substrate-binding constant for such chains

tends to be much more sensitive to temperature than that of

chains that are also folded in solution. Within the context of

our lattice model, this phenomenon can be studied in some

detail.

In particular, we can compute the free-energy difference

between a protein that is bound to a substrate and a protein

that is in solution. In the free energy of the latter, we do not

include the translational contribution (as it depends on the

simulation-box size). If we define Qb as the partition sum of

FIGURE 4 Plots of the free energy FðQÞ of sequences

D0–D60 (0–60% of random amino acids) as a function of

the number of native contacts Q (Eq.4), at T ¼ 0.10. States

that touch the substrate are plotted separately (A) from

those that do not (B). The curve corresponding to the

touching states is longer, because in the definition of the

order parameter we take into account also the native

contacts with the substrate. We have further divided the

curves according to percentage of random amino acids in

the sequence. On top we plotted the folding free energies

for sequences with ,30% of random residues. The curves

show that proteins free in solution fold only when the

number of random amino acids is below the threshold,

whereas all sequences fold when they are bound to the

substrate. All data were obtained with a combined parallel

tempering and umbrella sampling simulation.
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all protein conformations that have at least on contact to the

substrate, and Qf as the partition sum of a ‘‘free’’ protein in

the bulk (the distance between the protein and the substrate is

such that no contacts are possible), then we can define Df [

�kBT ln(Qb/Qf). If we assume that the number density rf of

proteins in solution is so low that we can ignore interactions

between different proteins, then we can relate the concen-

tration-dependence of Xb, the fraction of substrates that are

bound to a protein, to the binding free energy Df:

Xb ¼
rf expð�Df =kBTÞ

1 1 rf expð�Df =kBTÞ: (6)

In Fig. 5 we show the temperature dependence of the

binding strength (determined by exp(�bDf) [ Qb/Qf) be-

tween the bound and the free native state for protein D, as a

function of the degree of randomness. In the figure we com-

pare the binding strength both for the situation where the

internal degrees of freedom of the protein are ‘‘frozen’’ in

the native structure and for the fully flexible case (for which

the protein is disordered in solution). The open diamonds

denote the result for the artificially stabilized native structure:

it exhibits perfect Arrhenius behavior. Our choice of the tem-

perature scale ensures that all curves connecting the dia-

monds collapse. The open circles denote the results for the

fully flexible proteins. As can be seen from the figure, the

binding strength at constant Eb/kBT is now strongly reduced

compared to the case of the rigid proteins: the greater the

disorder, the lower the binding strength. However, the slopes

of the curves are approximately the same as before. This

indicates that the binding energy, which determines the slope

of the Arrhenius plot, is the same as in the rigid case. This

result illustrates that this simple model allows us to vary the

specificity with which proteins bind to a substrate without

changing the binding strength itself.

This is presumably an important advantage of proteins that

fold upon binding: it makes it possible to have very strong

energetic interactions, without causing the protein to bind

irreversibly (4).

There can be several reasons why a large binding strength

is useful: one is simply to make the binding strength strongly

temperature dependent. The other is to make the binding

highly specific (using a large number of ‘‘bonds’’ at the bind-

ing site) without causing the protein to stick irreversibly to

the substrate. Finally, there is also the possibility that a single

natively unfolded protein can fold into different ordered

structures, depending on the nature of the substrate. We did

not explore this scenario. One can envisage also the opposite

case where a protein gets more disordered upon binding to a

substrate. In that case, the binding energy could be made

lower without decreasing the binding strength. Such a

strategy might be useful for binding processes that should be

relatively insensitive to temperature. We have not explored

this latter scenario.

APPENDIX: DESIGN ALGORITHM

The basic design moves are single point mutations. As in the conventional

Metropolis scheme, the acceptance of trial moves depends on the ratio of the

Boltzmann weights at temperature T of the new and old states. However, if

this were the only criterion, there would be a tendency to generate homo-

polymer chains with a low energy, rather than chains that fold selectively

into the desired target structure. To ensure the necessary heterogeneity, we

impose the following additional acceptance criterion

Pacc ¼ min 1;
N

new

P

Nold

P

� �kTp

( )
;

where Tp is an arbitrary parameter that plays the role of a temperature, and

NP is the number of permutations that are possible for a given set of amino

acids. NP is given by the multinomial expression

FIGURE 5 The binding strength of a protein is deter-

mined by the ratio Qb/Qf (see text). In this figure, we show

the temperature dependence of this ratio as a function of

the degree of randomness of the protein. When the protein

is frozen in its native state (diamonds), the conformational

entropy does not change upon unbinding. The frozen pro-

teins (diamonds) bind at a higher temperature than proteins

that disorder upon unbinding (circles) or, equivalently, at a

fixed (reduced) temperature, proteins that fold upon bind-

ing are less strongly bound than ordered proteins with the

same binding strength. Note that each sequence D has a

different binding energy Eb (plotted in the inset). To facil-

itate comparison of the different curves, we express the

temperature in units Eb/kBT.
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Np ¼
N!

n1!n2!n3! . . .
; (7)

where N is the total number of monomers and n1, n2, etc. are the number of

amino acids of type 1,2, . . . . While sampling the sequence space with a

Monte Carlo scheme, we keep the temperature (TP) associated with this

quantity high. In doing so we generate a heterogeneous composition of

amino acids. A large amino-acid alphabet helps to reduce the degeneracy of

the ground state, and so mimic the folding behavior of a real system. During

a Monte Carlo run of several million cycles, a large number of distinct

sequences are generated. The sequence S* with the lowest energy is assumed

to be the best candidate to fold into the native state.

ENative ¼ +CijS
�
ij: (8)

We found that, for these chain lengths (60–80), the set of values TP ¼
f15; 16; . . . 24g and T ¼ 1/20 yielded good sequences, in the sense that the

native state that was both stable and nondegenerate.

A similar approach can be used to design a sequence that will fold into

different conformations when bound and unbound. To achieve this, we start

with an arbitrary initial sequence. The design program then randomly changes

the sequence of amino acids and accepts or rejects the trial move according

to the following acceptance rules:

P
acc

1 ¼ min 1; e
�DEB

kT

n o

P
acc

2 ¼ min 1; e
�DEU

kT

n o
;

where EB and EU are the conformational energy of the bound state and the

unbound state, respectively. The next objective is to design a protein that

folds to a native structure only when bound to a substrate. To create such a

protein we start from a configuration where the protein is bound to the

substrate as in Fig. 2. We then design the sequence of amino acids of the

chain and of the substrate using the same scheme as in references (13,17,18),

with the extra condition that a certain number of amino acids will be ignored

in the mutation moves, or in other words they will remain random. In this

way the intramolecular contact alone will not be strong enough to keep the

protein in native state, but it will need the intermolecular bonds with the

substrate.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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