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Position determination in biological systems is often achieved through protein concentration gradients. Measuring the
local concentration of such a protein with a spatially varying distribution allows the measurement of position within
the system. For these systems to work effectively, position determination must be robust to noise. Here, we calculate
fundamental limits to the precision of position determination by concentration gradients due to unavoidable
biochemical noise perturbing the gradients. We focus on gradient proteins with first-order reaction kinetics. Systems of
this type have been experimentally characterised in both developmental and cell biology settings. For a single
gradient we show that, through time-averaging, great precision potentially can be achieved even with very low protein
copy numbers. As a second example, we investigate the ability of a system with oppositely directed gradients to find
its centre. With this mechanism, positional precision close to the centre improves more slowly with increasing
averaging time, and so longer averaging times or higher copy numbers are required for high precision. For both single
and double gradients, we demonstrate the existence of optimal length scales for the gradients for which precision is
maximized, as well as analyze how precision depends on the size of the concentration-measuring apparatus. These
results provide fundamental constraints on the positional precision supplied by concentration gradients in various
contexts, including both in developmental biology and also within a single cell.
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Introduction

To determine position in a biological system, some
component within the system must have a nonuniform
spatial distribution. Often, this is achieved through the
formation of gradients of protein concentration. Typically,
a gradient forms when a protein is manufactured/injected
within a small region and subsequently spreads and decays
[1]. By measuring the local concentration, position relative to
the source can be determined. In developmental biology,
where such gradients are used to control patterns of gene
expression, gradient proteins are called morphogens. How-
ever, intracellular concentration gradients are also thought to
be important for organisation inside single cells.

For a gradient mechanism to be biologically viable,
position determination must be precise and therefore robust
to noise. Variability from one copy of the system to another
(e.g., from cell to cell or embryo to embryo) will certainly
compromise positional precision. Production and degrada-
tion rates can vary (e.g., due to different copy numbers of
transcription factors or proteases). The physical size of the
system will also vary, and this may affect proper positioning.
Most previous analyses of morphogen gradients have focused
on robustness to changes in these extrinsic factors [2–4]
between different copies of the system. However, there will
also be intrinsic noise affecting the gradient within a single
copy of the system, for example due to the unavoidably noisy
nature of the biochemical reactions involved. This dissection
of the fluctuations into extrinsic or intrinsic components
mirrors that introduced into the analysis of stochastic gene
expression [5–7]. However, here, intrinsic noise alters not
only the overall protein copy numbers (similar to [5]), but also
crucially the spatiotemporal protein distribution. Even if all
extrinsic variation could be eliminated, intrinsic biochemical

noise would still lead to a fundamental limit to the precision
of position determination, in a similar way to limits on the
precision of protein concentration measurement [8,9]. In this
paper, we therefore address the question of how precisely a
concentration gradient can specify positional information,
and calculate the limits on positional precision for a simple,
but biologically relevant, gradient formation mechanism with
first-order reaction kinetics.
Quantitative measurements, for example on the Bicoid–

Hunchback system in Drosophila [10], have shown that
remarkable positional precision can sometimes be obtained.
For this reason, understanding the fundamental limits to the
precision of concentration gradients is clearly an important
issue in developmental biology. Our results will be equally
relevant to gradients that form within single cells, where
protein copy numbers of a few thousand [11–13] will lead to
large density fluctuations. The properties of intracellular
protein gradients have been studied by Brown and Kholo-
denko [14]. Recently, a number of these gradients have been
observed experimentally in both prokaryotic and eukaryotic
systems. The bacterial virulence factor IcsA forms a polar
gradient on the cell membrane of Shigella flexneri [15]. MipZ in
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Caulobacter crescentus forms polar gradients to aid division site
selection [11]. In Bacillus subtilis, the MinCD complex also
forms polar gradients in order to direct division site selection
to the mid-plane of the cell [16,17]. In Escherichia coli, the
oscillatory dynamics of the Min proteins creates a time-
averaged gradient that directs cell division placement [18–24].
Using mechanisms of this sort, division site placement in
bacteria can achieve an impressive precision of 61% of the
cell length [25,26]. Cell division in eukaryotic cells is also
believed to be regulated by concentration gradients. For
example, in fission yeast, the protein Pom1p forms a cortical
concentration gradient emanating from a cell tip, thereby
restricting the cell division protein Mid1p to the cell centre
[27,28]. In eukaryotic cells, gradients of the Ran and HURP
proteins aid the formation of the mitotic spindle by biasing
microtubule growth toward the chromosomes [29–33]. Gra-
dients may also play a role in the localization of Cdc42
activation, thereby permitting a coupling between cell shape
and protein activation [34,35].

Suppose that a biological system needs to identify a
particular position along its length, such as the mid-plane
to ensure symmetrical cell division. As concrete examples,
MipZ and the MinCD complex act by displacing the essential
cell division protein FtsZ from the cell membrane. Since the
concentrations of MipZ/MinCD are higher near the cell poles,
FtsZ accumulates near the cell centre. Below some critical
threshold of MinCD or MipZ concentration, enough FtsZ will
presumably accumulate to form the division apparatus. The
locations where the concentration gradient crosses these
thresholds mark positions within the cell. In our analysis, we
simply postulate the existence of such well-defined critical
thresholds, where the gradient sharply switches a downstream
signal from on to off. Clearly, any real gradient cannot act as
such a sharp switch—in reality, a certain amount of smearing
is inevitable. Furthermore, there will be additional noise in
the process of actually measuring the concentration due both
to the binding of the gradient proteins to the receptor
molecules [8,9], and also to the downstream reactions that
process this incoming signal [5–7,36–38]. In general, the noise

of the output signal of a processing network can be written as
the sum of a contribution from the noise in the input signal
plus a contribution from the reactions that constitute the
processing network. We assume here that the detector and
the processing network are ideal and do not add any noise to
the gradient input signal. As a result, our calculated variation
constitutes a lower bound; any real gradient-signalling system
will inevitably have a lower precision.
We first considered a system with a single planar

morphogen source and linear degradation, thereby produc-
ing an exponentially decaying average concentration profile.
While this model is very simple, it remains biologically
relevant in both developmental and intracellular contexts.
Gradients of Bicoid in Drosophila and IcsA in Shigella have
been quantitatively measured and shown to fit this exponen-
tial decay profile on average to high accuracy [10,15]. We then
calculated the expected distribution of positions where a
noisy gradient crosses a concentration threshold. With typical
cellular copy numbers of a few thousand proteins, the system
would be unable to identify the correct threshold position
from a single measurement. To achieve reliable position
determination, the concentration must be averaged over
time. We show that by averaging measurements, a biological
system is able to achieve precision in position determination
of a few percent of the system size even with hundreds of
protein copies, a result we verified with computer simula-
tions. Furthermore, we find that the precision of position
determination is maximised when a particular choice of the
gradient decay length is made. We also show how the
precision depends on the detector size (i.e., the volume over
which the density measurement is made). For a 2-D gradient
(e.g., on a membrane), the precision possible after a certain
averaging time depends only very weakly on the detector size.
We relate all these results to experimental measurements of
gradients in Shigella and fission yeast.
We also considered the ability of gradients from two poles

to identify the centre of the system, as in the MipZ and
Pom1p gradients discussed above. Related designs have also
been proposed for the control of hunchback positioning in
Drosophila [3,4,39]. As before, we find that the precision of the
system can be optimised by a particular choice of the decay
length. However, if the threshold position is set at the system
centre, time-averaging improves precision more slowly than
in the single-source model. For subcellular gradients, we find
that a few thousand copies of the gradient proteins may
therefore be required for high precision. Our results strongly
constrain the possible concentrations of gradient proteins in
two gradient systems.

Results

Single-Gradient Model
We considered a protein gradient that is used to determine

a particular position along the length of a cylindrical system.
The system will have dimension d ¼ 2 if the gradient is
restricted to the membrane, or d¼ 3 if the gradient is in the
cytoplasm. We chose the x-axis along the long axis of the
system. Position in the remaining coordinates is denoted by
the vector y. For a membrane system, periodic boundary
conditions are appropriate in the y direction. Otherwise,
zero-flux boundaries are used throughout. The system length
is L, and the size of the system in the remaining directions is
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Author Summary

Many biological systems require precise positional information to
function correctly. Examples include positioning of the site of cell
division and determination of cell fate during embryonic develop-
ment. This positional information often is encoded in concentration
gradients. A specific protein is produced only within a small region,
and subsequently spreads into the surrounding space. This leads to
a spatial concentration gradient, with the highest protein concen-
tration near the source. By switching on a signal only where the local
concentration is above a certain threshold, this gradient can provide
positional information. However, intrinsic randomness in biochem-
ical reactions will lead to unavoidable fluctuations in the concen-
tration profile, which in turn will lead to fluctuations in the identified
position. We therefore investigated how precisely a noisy concen-
tration gradient can specify positional information. We found that
time-averaging of concentration measurements potentially allows
for great precision to be achieved even with remarkably low protein
copy numbers. We applied our results to a number of examples in
both cell and developmental biology, including positioning of the
site of cell division in bacteria and yeast, as well as gene expression
in the developing Drosophila embryo.

Intrinsic Noise in Protein Gradients



taken to be L? (so L? ¼ 2pr, where r is the system radius, for
the d ¼ 2 membrane case). A source on the x ¼ 0 plane
produces proteins at rate J per unit area, which then diffuse
with diffusion constant D, and are degraded uniformly at rate
l. Neglecting fluctuations, the protein concentration q(x,y,t)
is described by

@q
@t
¼ Dr2q� lqþ JdðxÞ: ð1Þ

If L � k ¼ (D/l)1/2, the characteristic decay length of the
gradient, we find that, at steady state, the density is

qðxÞ ¼ Jk
D
expð�x=kÞ: ð2Þ

Symmetry dictates that the average density is independent of
y. Gradients with the form of Equation 2 have been found to
accurately fit quantitatively measured concentration profiles
in both developmental [10] and subcellular [15] systems.

While we have outlined the model in terms of production
and degradation, Equation 1 could equally apply to other
mechanisms in which the active protein originates in a single
location, but deactivation occurs uniformly throughout the
system. The same equation would therefore describe a
protein that is phosphorylated by a polar-localised kinase
and dephosphorylated by a uniformly distributed phospha-
tase, or a protein that is activated by being injected into the
membrane at a pole and deactivated when it dissociates.
These biochemical details do not affect the behaviour of the
model.

We suppose that signalling is active where the local
gradient protein concentration is above some threshold
value, qT, and inactive otherwise. The average concentration
profile for a single gradient, Equation 2, suggests that the
system will be divided into a region 0 � x , xT where
signalling is active, and a region xT � x � L where signalling is
not active, with qT¼q(xT). However, noise in the local protein
concentration will cause this threshold position to fluctuate.
This noise may come from intrinsic fluctuations in the
diffusion, injection, and decay processes, or from extrinsic
factors that produce systematic changes in the boundary
position when comparing one copy of the system to another.
Here we consider only intrinsic biochemical fluctuations.

Protein production and degradation events were consid-
ered to be single-molecule reactions with a fixed probability
per unit time, and hence were Poisson processes. We also
assumed that the hopping of proteins in or out of a particular
region of space is governed by Poisson statistics, thereby
generating a diffusive process for molecular transport. Since
the system is linear, the instantaneous fluctuations in
molecular number, n, within a volume (Dx)d centred on the
position (x,y) should also obey Poisson statistics, with

hnðxÞ2i � hnðxÞi2 ¼ hnðxÞi: ð3Þ

In terms of protein density, this becomes

hðDqðxÞÞ2i ¼ hqðxÞ2i � hqðxÞi2 ¼ hqðxÞi
ðDxÞd

: ð4Þ

This relation can also be established using more elaborate
field theoretic techniques (see [40]). From this expression for
the variation in the density, we can compute the width of the
threshold position distribution by expanding the average
threshold position xT. To leading order, this width is given by

w0 ¼
DqðxTÞ
jhq9ðxTÞij

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

kD

JðDxÞd

s
expðxT=2kÞ; ð5Þ

where q9(xT) denotes the first derivative of the density at x ¼
xT.
Here we identify (Dx)d as the size of the region in which the

concentration is being measured. For subcellular gradients
involved in positional information, this volume is determined
by the size of an individual receptor or protein with which
the gradient protein interacts, an example being the
interaction between the MinCD and FtsZ proteins in B.
subtilis. The size of the detector, Dx, will then be on a
molecular scale. This conclusion still holds even if the
gradient proteins bind cooperatively to the ‘‘detection’’
protein/receptor due to the close physical proximity of the
bound molecules. In contrast, however, the cellular length
scale will be much larger, 1lm or bigger.
Throughout the following analysis we focus on subcellular

gradients. However, our model can equally be applied to
developmental biology, and we consider these systems further
in the Discussion. As concrete examples, we first consider the
IcsA polar gradient on the membrane of the rod-shaped
bacterium Shigella (L ’ 3 lm, L? ’ 3 lm) [15]. IcsA is
exported to the outer membrane at a single pole, after which
it diffuses and undergoes uniform proteolysis by the protease
IcsP, thereby forming an exponential gradient exactly as in
our model [15]. Outer membrane IcsA is then able to recruit
actin nucleation factors. However, a critical concentration of
IcsA is likely needed for actin nucleation: in this way a comet-
like actin tail is generated at only one cell pole, thereby
generating unidirectional motility of the pathogen. A cell will
typically have a few thousand copies of IcsA [12], forming a
gradient with k ’ 0.5 lm [15]. We take the detector size to be
Dx¼0.01 lm, consistent with an interaction between IcsA and
actin nucleation proteins. For diffusion on the cell mem-
brane, we take D ¼ 1 lm2s�1. On the membrane of a cell of
this size, there would be approximately LL?/(Dx)

2 ; 105

potential detector sites, many more than the typical copy
number. Even near to the source pole, detector sites will
typically be unoccupied. A detector region at a distance x ¼
0.5 lm from the highly occupied pole will have average
occupancy of ,n. ; 10�1. In the cytoplasm of a similarly
sized bacterium, the number of potential detector sites will be
;106, again much larger than the protein copy numbers
typically supported by bacteria.
Similar estimates can be made for single polar gradients in

fission yeast (L¼10 lm, L?¼6 lm), such as for Pom1p [27,28].
Here we assume a total of 2,000 protein copies (this
concentration has not yet been measured but this number
is plausible [28]). We also take D¼1 lm2s�1 and a decay length
of k ¼ 2 lm, parameters that are approximately consistent
with the Pom1p gradient imaged by Padte et al. [28]. We again
assume that Dx¼0.01 lm, corresponding to a molecular-sized
detector, as would be the case if the gradient protein
interacted with other membrane proteins (such as Mid1p)
[27,28]. The typical occupancy of a Dx ¼ 0.01 lm site is then
,n. ; 10�2 at x¼ 2 lm from the source.
As we have seen for both fission yeast and Shigella, average

detector site occupancies that are very much less than one
protein per site ensure that the threshold occupancy must
necessarily be less than one. Since most regions will be devoid
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of any copies of the protein, a single instantaneous measure-
ment of the protein density cannot give a good estimate of
the local average concentration. In addition, multiple
positions where the concentration crosses qT would be
observed simultaneously in such a measurement since the
concentration would be above the threshold everywhere
there is a protein molecule present, and below the threshold
where there is no protein molecule. To reliably determine the
average concentration profile, the system must therefore
integrate the measured concentration over time.

The noisy concentration profile provided by the gradient
protein forms the input signal that is then time-averaged by a
downstream signal-processing network. In general, the
mechanism for time-averaging is provided by the lifetimes
of the states in the processing network. For instance, in the
case of gene expression, fluctuations in the occupancy of the
promoter by a gene regulatory protein can be filtered by the
lifetime of the mRNA transcript, provided that lifetime is
much longer than the timescale of fluctuations in the
promoter occupancy [7,9]. Similarly, for subcellular gra-
dients, as in Shigella, fluctuations in the gradient can be
filtered by the lifetime of activated receptors/detector
proteins or their downstream products. Provided this time-
scale is much longer than the sub-millisecond timescale of the
gradient fluctuations, good time-averaging can then be
achieved. Importantly, the reactions in the downstream
network not only time-average the noise of the input signal,
but also add further noise to the signal [5–7,36–38]. Here, we
focus exclusively on noise in the concentration gradient and
do not model the downstream reactions explicitly, but simply
assume they are noiseless and model them with an effective
averaging time. In essence, we assume that the detector and
the network that process the gradient signal are ideal and do
not add further noise, and are thus able to time-average the
gradient signal in the best possible way. Our results thus
provide a lower bound to the output noise set by the
Poissonian fluctuations of the signalling molecules.

We suppose that averaging over a time interval s we can
take Ns ¼ s/sind independent measurements of the concen-
tration. In our ideal case, we then expect that the fluctuations
in the concentration would decrease according to Ns

�1/2.
Since the width varies linearly with Dq according to Equation
5, the width will also decrease as

wðsÞ;w0

ffiffiffiffiffiffiffi
sind
s

r
: ð6Þ

The timescale sind on which independent measurements can
be made is set in our ideal case solely by the reaction–
diffusion dynamics of the gradient proteins, as discussed in
Methods. For cellular parameter values, the typical reaction
timescale, 1/l, will be much longer than the typical timescale
for diffusion between detector sites, (Dx)2/D. Assuming a
molecular-sized detector, this latter timescale would be on
the order of 10�4 s, whereas effective protein lifetimes will
typically be seconds or longer. The Damkohler number for
the system, the ratio of the diffusive and reaction timescales,
would therefore be Da ; (Dx)2/k2 ; 10�4. Since Da � 1, the
averaging timescale is dominated by diffusive motion. In d¼3
we find sind ; (Dx)2/D. However, in d¼ 2, density correlations
decay away more slowly, leading to the appearance of
logarithmic corrections that are weakly dependent on the
parameters k and Dx. For long averaging times, s � 1/l, the

width determined from time-averaged measurements would
be

wðsÞ ¼ k2d
k
sJ

expðxT=kÞ ln
k2

ðDxÞ2

 !
þ a

 !" #1=2
ð7Þ

in d ¼ 2, and for d ¼ 3

wðsÞ ¼ k3d
k

sJðDxÞ expðxT=kÞ
� �1=2

; ð8Þ

where k2d, k3d, and a are constants.
As we have discussed above, Dx will be set by the

concentration detection mechanism. However, in a subcel-
lular context, Dx also sets the highest possible resolution of
the system. Once w ’ Dx, the cell cannot resolve the target
position with any higher precision. Equation 7 suggests that
in d ¼ 2, precision depends only very weakly on the detector
size, through the logarithmic correction factor. Reducing the
detector size would increase the number of independent
measurements made in a given averaging time. However,
since fewer proteins would be measured by each detector
over one averaging period, reducing Dx would therefore
increase the instantaneous density fluctuations. In d¼2, these
two effects largely cancel. Hence, even if we have over/
underestimated the detector volume, this will have little
effect on the precision of gradients in d¼ 2 dimensions, such
as IcsA in Shigella or Pom1p in fission yeast. In three
dimensions, however, w varies as (Dx)�1/2. Since increasing
Dx reduces w in both d ¼ 2 and d ¼ 3, an optimal strategy
would be to choose Dx to match the desired precision in
order to minimise the required averaging time.
Intriguingly, from Equations 7 and 8 we find that there

exists an optimal decay length such that precision is
maximised. This result can be understood as follows: for
fixed xT, and for k � xT, the value of j,q9(xT).j tends to a
constant J/D, independent of xT. However, as k increases,
,q(xT). increases and therefore the absolute size of the
fluctuations in the density also increases. Therefore, for large
and increasing values of k, w } ,q(xT)

1/2. / j,q9(xT).j must
be increasing. Now if k is smaller than xT and decreasing,
when computing the width } ,q(xT)

1/2. / j,q9(xT).j, the
presence of the square root means that the numerator
decreases much more slowly than the denominator. Hence,
the width must again increase as k is decreased for small k.
Combining these results for small and large k, the width must
have a minimum, optimum value as a function of k. This
occurs at k¼ xT in d¼ 3. In d¼ 2, the optimal decay length is
given approximately by

k ’ xT 1� 1
lnðxT=ðDxÞÞ

� �
; ð9Þ

in which we have retained the first-order logarithmic
correction.
To examine the biological impact of Equation 7 we again

considered the Pom1p membrane gradient in fission yeast
[27,28] using the parameters described earlier. Simulations of
this example system were performed as described in Methods,
with on average 100 proteins in the system. Figures 1A and 1B
show how the measured threshold position, �x, and width, w,
vary with averaging time. For long averaging times, the
simulation data gives excellent agreement with Equation 7,
with the constants k2d¼ 0.40 6 0.02 and a¼ 2.5 6 0.8. Figure
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1C shows the w ; s�1/2 behaviour predicted in Equation 7,
and Figure 1D confirms that the width has a minimum as a
function of k. The simulation results are consistent with the
position of the minimum predicted by Equation 9. Figure 1E
shows that the distribution of measured threshold positions is
Gaussian to a good approximation.

Since the averaging timescale sind in a subcellular system is
on the order of ;10�4 s, time-averaging over a period of
minutes can achieve great precision even with very few
copies of the gradient protein. With the parameter values
given above, Equation 7 predicts that the position xT¼ 2 lm
can be located to within 60.5 lm within an averaging time s
¼ 60 s even if the system contains on average only about 20

copies of the protein. A precision of 60.1 lm can be
achieved in the same averaging time with about 400 copies of
the protein, a remarkably high level of precision for such a
low concentration. In vivo Pom1p gradients may be formed
by a few thousand protein copies, allowing for even greater
precision.
However, we can see in Figure 1B that for averaging times

of less than about a second, the simulation results are not
consistent with Equation 7. In this regime both w and �x are
equal to k. As discussed above, at very short averaging times
the presence of a particle at any position will cause the time-
averaged concentration to be above qT at that point and
hence generally will generate a threshold crossing. The
probability distribution of threshold measurements, p(x), will
therefore follow the probability distribution of particles.
Assuming L � k, we have

pðxÞdx ¼ k�1expð�x=kÞdx: ð10Þ

The cell will on average estimate the threshold position to be

�x ¼
Z L

0
xpðxÞdx’ k; ð11Þ

and measurements will be distributed about this position with
variance

w2 ¼
Z L

0
ðx� �xÞ2pðxÞdx’ k2: ð12Þ

The system is therefore unable to resolve the correct
threshold position at these short timescales if this is different
from k.
Associated with the average concentration at the threshold

is a length scale, l ; qT
�1/d, the typical distance between

proteins at this position. The average time for a protein to
diffuse this distance will scale as l2 / D. In two dimensions, this
time is given by

s3 ;ðhqðxTÞiDÞ�1 ¼ ð JkÞ�1expðxT=kÞ: ð13Þ

Since s3 is the timescale on which a diffusing particle first
arrives at xT, if s � s3, there will generally be no particles
detected at xT in the averaging period. The system therefore
cannot reliably estimate the mean concentration at xT, and
hence cannot precisely identify the threshold position. For
averaging times much greater than s3, on average at least one
particle will be detected at xT. The time-averaged concen-
tration profile will then approach Equation 2, and �x will
approach xT. Hence s3 determines the crossover time
between the two observed regimes of constant w and w }

s�1/2. Figure 1F shows that the scaling in Equation 13 is also
reproduced in our simulations. For the parameter values
above, s3 ¼ 0.3 s, and for a more realistic copy number of
1,000, s3 ¼ 0.03 s. These timescales are extremely short
compared with cell-cycle timescales, but do nevertheless show
that some sort of time-averaging is probably essential: a single
instantaneous measurement is unlikely to provide precise
positional information. In fact, as we have seen, averaging
over much longer times (tens of seconds) may be necessary if
very high (1%) precision is required.
Simulations of the model in d ¼ 3 were also performed

(unpublished data). Similar behaviour was observed in this
case, and Equation 8 gave good agreement with the observed
width at long averaging times.

Figure 1. Single-Gradient Model in d ¼ 2

(A) Variation of the estimated threshold position with averaging time,
with xT ¼ 2 lm and k¼ 2 lm.
(B) Variation of the width as a function of averaging time.
(C) Data collapse of the width at large s for a range of parameter values.
Full line shows the prediction of Equation 7 with k2d¼ 0.40 and a¼ 2.5.
(D) w(s) as a function of decay length, with xT¼ 2 lm. Results for three
different averaging times are shown: 3, s¼ 10 s; circle, s¼ 15 s; andþ, s
¼ 22.5 s. The full line shows the prediction from Equation 7. At large k,
the simulation results deviate from the prediction since the assumption
that L � k is no longer valid.
(E) Plot of the probability distribution for measuring the threshold at
position x with an averaging time s¼ 45 s. The full line shows a normal
distribution.
(F) Scaling of the crossover time, s3, according to Equation 13.
In (A), (B), and (E), the standard parameter values given in the text were
used. In (C) and (F), * indicates the standard parameter values. For the
other datasets, one parameter value was changed as follows: open circle, D
¼0.5 lm2s�1; open square, J¼6.25 lm�1s�1;3, Dx¼0.02 lm; closed circle,
l¼1 s�1;þ, l¼0.11 s�1; open diamond, xT¼1 lm; and inverted triangle, xT

¼ 3 lm.
doi:10.1371/journal.pcbi.0030078.g001
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Oppositely Directed Gradients
To reliably locate the centre of a system, the mechanism

responsible must incorporate information about the overall
system size so that the identified position can scale correctly.
A single gradient characterised by a fixed decay length cannot
achieve this. We therefore examined a system where protein
gradients are produced by sources at both ends, and where
the central position is identified as a concentration mini-
mum.

We modified our earlier model by adding an additional
planar source at x ¼ L. This addition is appropriate for
modelling cell division inhibitors, such as MipZ in Caulobacter,
that are injected into the membrane near both cell poles.
However, our model would apply equally if the two sources
were of different repressor proteins (as may be the case in
fission yeast [27,28]), although we do assume that J, D, and l
are the same for both gradients. In this scenario, signalling
activity would be determined by the total concentration.
Without fluctuations, this would be described by

@q
@t
¼ Dr2q� lqþ JdðxÞ þ Jdðx� LÞ: ð14Þ

The steady-state solution is now

qðxÞ ¼ Jk
D
coshððx� L=2Þ=kÞ

sinhðL=2kÞ ; ð15Þ

which has the expected minimum at x¼ L/2.
We then supposed that the cell compares the concentration

to a threshold value corresponding to the minimum of the
average profile, qmin ¼ q(L/2) ¼ qT. Positions where the
concentration is at or below the threshold are identified as
being at the centre of the cell. While the average steady-state
density profile would never extend below qmin, fluctuations
ensure that the concentration in the region around the
centre spends a significant amount of time at or below the
threshold. Around point(s) where ,q(x). ¼ qT, noise in the
protein concentration would lead to a distribution of
threshold-crossing positions. We considered an expansion
of the density fluctuations about xT ¼ L/2, giving, to leading
order

DqðxTÞ ¼
1
2
jhq99ðxTÞijw2; ð16Þ

since any first-order term proportional to ,q9. vanishes at
xT ¼ L/2. The width is therefore given by

w2 ¼ 2DqðL=2Þ
hq99ðL=2Þi : ð17Þ

Substituting in Equation 15 gives

w0 ¼
4Dk3sinhðL=2kÞ

JðDxÞd

 !1=4

: ð18Þ

As in the single-gradient model, the typical occupancy of
the threshold region would be much less than one. For
example, if we take the parameter values considered
previously for the Pom1p gradient in fission yeast, with
2,000 protein copies, the average occupancy of a detector site
at x ¼ L/2 would be ,n(L/2). ; 10�3. We assume here that
Pom1p forms a gradient from both poles. In fact, it may only
form a single gradient, with another hitherto unidentified
protein forming the second polar gradient [27,28]. However,

as discussed earlier, this detail does not affect our calcu-
lations. As a second example, MipZ in Caulobacter (L¼ 2.5 lm,
L? ¼ 2 lm) is typically present at about 1,000 copies, and
forms two polar gradients with a decay length k ’ 0.25 lm
[11]. The average occupancy at the centre of this system
would be approximately ,n(L/2). ; 10�3. Averaging meas-
urements of the concentration over time is therefore
required in both cases to obtain precise positional informa-
tion. Since the width now goes as (Dq)1/2, as shown in
Equation 17, we expect

wðsÞ ¼ w0
sind
s

� �1=4

¼
~k2d

k3

sJ
sinhðL=2kÞ ln

k2

ðDxÞ2

 !
þ ~a

 !" #1=4
in d ¼ 2

~k3d
k3

sJðDxÞ sinhðL=2kÞ
� �1=4

in d ¼ 3

8>>>><
>>>>:

ð19Þ

where ~k2d , ~k3d , and ~a are constants. Averaging proceeds much
more slowly than previously, with a s�1/4 dependence. This
follows directly from the vanishing of the first derivative at
the average threshold position. In d ¼ 3, and for k � L,
Equation 19 predicts that w will be minimised when k ’ L/6 is
chosen. In d¼2, logarithmic corrections again alter this result
slightly, with the optimal decay length now occurring at

k ’
L
6

1� 1
3lnðL=6ðDxÞÞ

� �
; ð20Þ

in which we have included the leading logarithmic correction.
This optimal length scale arises for similar reasons as in the
single-gradient model. For the Pom1p gradient imaged by
Padte et al [28], the decay length is observed to be 1–1.5 lm,
comparable with this optimal decay length of about 1.5 lm
for a 10-lm cell.
We simulated our model in d ¼ 2 with representative

parameter values for fission yeast membrane gradients. We
used l ¼ 0.36 s�1, chosen to give k ¼ 1.67 lm, and J ¼ 6
lm�1s�1, giving, on average, 200 protein copies in total.
Figure 2 shows the results of these simulations. Again, we
observe two distinct regimes. At averaging times longer than
about a second, there is excellent agreement with Equation
19, as we can see in Figure 2C. Fitting to the simulation
results, we find ~k2d ¼ 0.63 6 0.02 and ~a¼ 2.5 6 1.0. Figure 2D
confirms the existence of the optimal decay length in our
simulations.
Since the width decays as s�1/4 for this system, longer

averaging times and/or higher protein copy numbers are
required than in the single-gradient model to achieve high
precision. Intrinsic biochemical noise may therefore strongly
constrain systems of this type. For the yeast-membrane
gradient considered above to achieve a precision of 65% of
the cell length after averaging for 1 min, about 800 protein
copies are required. Therefore, in the absence of any other
positioning mechanisms, the Pom1p gradient will require
;1,000 protein copies or more to precisely direct the
location of cell division. We estimate that the MipZ gradient
in Caulobacter, with 1,000 protein copies, would be able to
locate the cell centre to within 65% of L after approximately
s ¼ 2 s. However, since precision only improves as s�1/4,
averaging over s ¼ 20 min would be required for the same
system to achieve 61% accuracy.
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Discussion

Noise in biochemical processes within a cell will lead to
fluctuations in protein concentration gradients, and hence
also to variation in the position where these gradients cross a
particular threshold value. These fluctuations therefore place
a limit on the potential precision of position determination
mechanisms relying on concentration gradients alone. In
subcellular systems with protein copy numbers in the
thousands, this noise will be sufficiently large that position
cannot be determined reliably from a single measurement of
the density profile. To determine position to within a few
percent of the system length, a precision achieved by some
subcellular systems, the protein concentration must be
averaged over time. For a single subcellular membrane
gradient, we have seen that by averaging over a period of a
minute, excellent precision can potentially be achieved with
only a few hundred protein copies. This remarkable precision
is due to the sub-millisecond diffusive timescale on which
time-averaging occurs. Precise identification of the cell mid-
plane by gradients emanating from both poles requires
longer averaging times or higher copy numbers, since larger
fluctuations result from the vanishing first derivative of the
average concentration at the system centre. Intrinsic bio-
chemical noise may therefore be a strong constraint on
subcellular two-gradient positioning systems, dictating that
the copy numbers be sufficiently high to suppress fluctua-
tions.

So far we have focused almost exclusively on fluctuations in
subcellular gradients; however, our results are also applicable

to developmental biology, and we wish to comment briefly on
this application. Here, the appropriate length scales are
usually much longer, on the order of hundreds of micro-
meters in Drosophila. Moreover, the gradients affect patterns
of gene expression through the binding of gradient molecules
to DNA regulatory sequences inside individual nuclei. For
example, in Drosophila, where exponential gradients have
been quantitatively measured for Bicoid [10], Bicoid binds
cooperatively to hunchback regulatory DNA. In this case we
again expect molecular-scale effective measuring volumes,
with Dx ;0.01 lm as a reasonable order of magnitude. We
next assume purely Poisson statistics for the fluctuations: this
is a stronger assumption than for our earlier subcellular
gradients, as there will be additional complications arising,
for example, from the import/export of morphogens from
nuclear compartments. However, if diffusive noise is domi-
nant, then Poisson statistics would be retained, and we could
expect our earlier analysis to apply, although with one
important distinction. Instead of Dx setting the maximal
possible precision, this would now be set by the size of
individual nuclei (prior to cellularization), since we expect
relatively homogeneous gene expression within a single
nuclear volume. A single nucleus in Drosophila has a length
scale of about 10 lm, still much smaller than the decay length
of the gradient of k ;100 lm, allowing for high-precision
gene expression [10]. Using the Drosophila Bicoid gradient as
an example, we use L¼500 lm, L?¼100 lm, and estimate D¼
10 lm2s�1 and l¼ 10�3s�1, giving k¼ 100 lm, consistent with
experimental measurements [10]. Assuming a high copy
number of 107 per embryo (we are not aware of experimental
constraints on this figure) gives J ; 1 lm�2s�1. For a single
gradient in d¼ 3, we find that about a 5-min averaging time is
required to bring the error down to 61 nuclear length. For a
two-gradient model in d ¼ 3, longer averaging times on the
order of an hour are required to reduce the centre-finding
positional error to about 62 nuclear lengths. Since gene
expression may need to be controlled on shorter timescales
than this, other designs (e.g., using interacting gradients [3,4])
may be required for high-precision centre-finding (see also
below). The effects of the optimum gradient length scale will
also be interesting to probe in a developmental biology
context. However, our simple analysis may be complicated by
the multiple roles played by many morphogens: for example,
Bicoid not only activates hunchback, but it also helps to
regulate pair-rule genes, such as Even-skipped. Nevertheless, it
is interesting to note that the Bicoid gradient length scale k ;

100 lm [10] is not too far away from the L/6 optimum for a
two-gradient system, and in a single-gradient context will
offer maximal precision well into the anterior half of the
embryo.
Up to this point we have only considered systems with first-

order degradation. Morphogen gradients with nonlinear
decay have also been proposed [2]. This nonlinearity will
lead to non-Poissonian density fluctuations, which may
significantly change the observed behaviour. England and
Cardy [41] have previously calculated the response of a
gradient with nonlinear decay to one source of biochemical
noise, namely a fluctuating production rate. However, they
calculated the change to the average gradient, while fluctua-
tions about this average may also be important. It would
certainly be of interest to compare the performance of linear
and nonlinear degradation mechanisms in more detail.

Figure 2. Two-Gradient Model in d ¼ 2

(A) The mean threshold position fluctuates about L/2 due to the
symmetry of the system.
(B) Variation of the width w as a function of averaging time.
(C) Data collapse of the width as a function of averaging time, at long
times, for a range of parameter values. The full line shows Equation 19
with ~k2d¼0.63 and a~¼2.5. * indicates the standard parameter values. For
the other datasets, parameter values were changed as follows: open
circle, D¼0.5 lm2s�1; open square, J¼9 lm�1s�1; 3, Dx¼0.02 lm; closed
circle, l ¼ 1 s�1; þ, l ¼ 0.25 s�1; diamond, L ¼ 7.5 lm; and inverted
triangle, L ¼ 15 lm and Dx ¼ 0.02 lm.
(D) Plot of width as a function of decay length for averaging times: 3, s¼
30 s; open circle, s ¼ 45 s; and þ, s ¼ 60 s. The full line shows the
prediction from Equation 19.
doi:10.1371/journal.pcbi.0030078.g002
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Centre-finding mechanisms with interactions have also been
proposed [3,4]. In these models, position is determined from
the combined gradient of two proteins, which would be steep
around the system centre due to an interaction between the
two gradients. These mechanisms may therefore be able to
achieve greater precision for midpoint determination than
the noninteracting mechanism considered here.

Throughout this work we have assumed that the gradient
protein concentration fluctuates about a steady-state profile,
and hence averaging over a longer time will give a more
precise estimate of the average profile. For a subcellular
system, the steady-state gradient will develop over timescales
of less than about a minute, due to the micrometer length
scales involved. This timescale is short compared with the
cell-cycle time, which ranges from tens of minutes up to many
hours. For this reason we expect that subcellular gradients
will be in steady state, and therefore that our analysis will be
directly applicable. However, in developmental biology, the
effective lifetimes will likely be much longer, and the gradient
may take hours to fully reach steady state. Moreover, a
number of developmental biology systems are known to
respond to a morphogen gradient that has not reached steady
state [42–44]. A further complication is the possibility of
gradient formation by non-Fickian diffusion [45], where there
is no steady state at all. The model considered in this paper
does not take into account time-varying average gradients. If
the average gradient is evolving, a longer averaging period
will not necessarily lead to improved precision. Clearly, more
work will be required to understand how such dynamically
evolving systems are able to yield precise positional informa-
tion and filter out fluctuations. Nevertheless, we do note that
two-gradient systems of the kind analyzed here are naturally
able to locate the system centre even without being in steady
state, due to the symmetry of the system [3]. The positional
variations in such a non–steady-state scenario will not be the
same as calculated here, but our analysis does form a first step
toward the analysis of these more complex systems.

Methods

Calculation of sind. We have assumed in our analysis that during the
time-averaging process we are taking independent measurements at
intervals of sind. However, in both real biological systems and our
simulations, measurements can generally be taken at much shorter
intervals than this, leading to correlations between consecutive
measurements. For a series of correlated measurements taken at time
intervals dt over a period 0 � t � s, with s� dt, the expected error for
the time-averaged concentration at position x, (Dq(x,s))2, is given by [46]

ðDqðx; sÞÞ2 ¼ dt
s
ðDqðx; 0ÞÞ2 1þ 2

dt

Z s

0
1� t

s

� �
CðtÞdt

� �
; ð21Þ

where (Dq(x,0))2 is the variance of a single measurement,

ðDqðx; 0ÞÞ2 ¼ hqðx; 0Þ2i � hqðx; 0Þi2; ð22Þ

and C(t) is the normalized density correlation function,

CðtÞ ¼ hqðx; tÞqðx; 0Þi � hqðx; 0Þi
2

hqðx; 0Þ2i � hqðx; 0Þi2
: ð23Þ

We therefore define the timescale sind to be

sindðsÞ ¼ 2
Z s

0
1� t

s

� �
CðtÞdt; ð24Þ

and assuming sind � dt, we recover

Dqðx;sÞ ¼ Dqðx;0Þ sindðsÞ
s

� �1=2

: ð25Þ

For N independent measurements of the density, we would expect
the error to decline as N–1/2. For large enough values of sind(s), where
sind becomes independent of s, we can therefore interpret sind as the
time interval required for successive measurements to be inde-
pendent.

The next step of the calculation is to compute the correlation
function C(t) appropriate for our model. For pure diffusion, we
expect:

CðtÞ; 1 for t� ðDxÞ
2

D
ð26Þ

CðtÞ; ðDxÞ2

Dt

 !d=2

for t� ðDxÞ
2

D
: ð27Þ

On timescales t� (Dx)2/D, the system remains perfectly correlated, as
there has been insufficient time for particles to hop away to
neighbouring sites. However, for t � (Dx)2/D, an algebraically
decaying correlation function is found, characteristic of diffusion.
However, we also need to incorporate the effects of spontaneous
decay that occur independently of the diffusive motion. Adding decay
to the system simply alters the correlation functions by a multi-
plicative factor of exp(�lt). We now substitute this full form into the
definition of sind (Equation 24). In the biologically relevant limits
where s � (Dx)2/D and 1/l � (Dx)2/D, we find, for d¼ 2

sind ;
ðDxÞ2

D
ln

Ds

ðDxÞ2

 !
þ constant

 !
for ls� 1 ð28Þ

sind ;
ðDxÞ2

D
ln

k2

ðDxÞ2

 !
þ constant

 !
for ls� 1 : ð29Þ

In d ¼ 3, we find

sind ;
ðDxÞ2

D
: ð30Þ

For the parameter values considered in our simulations, we do not
observe the logarithmic s dependence in the width predicted by
Equation 28. In the single-gradient simulations, this is because at
short times s � s3, we enter the constant w ; k regime. For the
parameter values used, the transition from w ; k at s� s3 ’ 0.3 s to
the long-time behaviour (Equation 7) for s � 1/l ’ 4 s overwhelms
the small logarithmic effect. If the production rate J were increased
significantly, s3 } J�1 would be reduced and the ln(s) regime would
become accessible since the s3 and 1/l timescales would then become
better separated. However, even in this case, the logarithmic variation
in Equation 28 is intrinsically weak, and would likely have a negligible
effect in a biological context.

Simulations. Stochastic simulations were performed on a 2-D
square lattice with Nx ¼ L/dx sites in the x direction and Ny ¼ L?/dx
sites in the y direction, where dx¼ 0.01 lm is the lattice spacing. The
detector size Dx was normally set equal to dx except for cases where
the detector size was varied, in which case Dx was set to be a multiple
of dx. Zero-flux boundaries were implemented at x¼ 0 and x¼ L, and
a periodic boundary was used to connect y ¼ 0 with y ¼ L?. A fixed
time step, dt¼ 2.53 10�5 s, was chosen so that for the given diffusion
constant the total probability of diffusion out of a site in all
directions approached 1. However, a time step five times smaller was
also tested with no effect on any of the results. For each x ¼ 0 site,
particles were injected at each time step in a Poisson process with
mean j¼ Jdxdt. In the two-gradient model, particles were also added at
x ¼ L in an identical but uncorrelated process. Diffusion and decay
were also treated as Poisson processes, with hopping and decay
probabilities of Ddt/(dx)2 and ldt per particle, respectively. Simu-
lations were initialised with the mean number of particles in the
system, JL?/l for the one-gradient model or twice this value for the
two-gradient model, with a probability distribution that followed the
average density distribution.

The mean occupancy for each detector site was calculated over the
averaging period, s. For each site this mean occupancy was compared
with each neighbouring site. If one occupancy was above the
threshold and the other below, this boundary was identified as a
threshold-crossing position. This process was repeated for many
averaging periods, ranging from 105 repeats for short averaging times
to 500 repeats for very long averaging times, to generate a
distribution of crossing positions throughout the system. Threshold
crossings in both the x and y directions were observed. We found that
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the distributions as a function of x position of these two types of
crossing were the same. For each row of sites, x¼0 to x¼L at a fixed y,
the mean (‘‘measured threshold’’) and root-mean–squared deviation
(‘‘width’’) of the threshold distribution from many averaging periods
were calculated independently. In Figures 1 and 2, we plot the mean
of these two quantities across the different y values within the system,
with error bars of one standard deviation.

For the single-source model, the standard parameter values used in
the simulations were as follows: L¼ 10 lm, L?¼ 6 lm, D¼ 1 lm2s�1, l
¼ 0.25 s�1, J¼ 4.17 lm�1s�1, Dx¼ 0.01 lm, and xT¼ 2 lm. To generate
the data collapse in Figures 1C and 1F, simulations were also
performed with the following parameter values: D ¼ 0.5 lm2s�1; J ¼
6.25 lm�1s�1; Dx¼ 0.02 lm; l¼ 1 s�1; l¼ 0.11 s�1; xT¼ 1 lm and xT¼ 3
lm. For the two-source model, standard parameters were the same as
above except l¼0.36 s�1 and J¼6 lm�1s�1. In Figure 2C, data are also

shown with the following parameter values: D¼0.5 lm2s�1; l¼1 s�1; l
¼0.25 s�1; J¼9 lm�1s�1; Dx¼0.02 lm; L¼7.5 lm; L¼15 lm, and Dx¼
0.02 lm.
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