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The Baxter limit of adhesive spheres1 is often deemed an
unphysical model for liquids due to the thermodynamic
metastability of its disordered phases with respect to crystal
formation.2,3 In this note we use basic free energy consider-
ations to suggest conditions under which the disordered
phases are actually stable with respect to the solid for narrow
attractive interactions down to the Baxter limit. Possible re-
alizations are then briefly discussed.

We consider the original Baxter adhesive sphere model,
i.e., a three-dimensional �except where explicitly mentioned�
square-well fluid with well depth � and well width �, where
the hard-core diameter is set to unity for convenience. The
second virial coefficient is then B2� /B2�

HS=1− �1/4��, where
B2�

HS=2� /3 is the hard-sphere �HS� value. The stickiness � is
a temperaturelike quantity defined as

�−1 � 12�e�/kBT �1�

for adhesive spheres and as

�−1 = 4��1 + ��3 − 1��e�/kBT − 1� �2�

for finite-width square wells,4 where kB is Boltzmann’s con-
stant and T is the temperature.

The gas-liquid critical point of sticky spheres �and, to a
good approximation, all fluids with a narrow, isotropic
attraction5� occurs at �c�0.11.6 How about freezing? At low
temperatures, the density of the gas coexisting with the solid
is very low, �g�1, while at high temperatures, the freezing
density is that of hard spheres. Typically, the freezing curve
moves rather abruptly, but continuously, from one limit to
the other. We estimate � where this happens and compare it
with the known �c.

6

To obtain the crossover temperature where the vapor
pressure starts to increase, we equate the chemical potential
� of the coexisting phases. For the fluid, we use an ideal gas
�we check this approximation later�, while we treat the crys-
tal as a collection of uncorrelated cells each with free volume
v f. Although this last approximation is rather crude com-
pared to what is usually used in similar systems,9 for narrow
square-well potentials at low temperatures, it is not unrea-
sonable. We also assume the volume per particle v to be
much smaller in the crystal than in the gas, so the difference
	���g

−1. This gives

	�

kBT
� −

Z�

2kBT
− ln �g� f − 1, �3�

where Z is the coordination number of the crystal. Note that
when 	�=0, kBTcoex/Z� is the only temperature term; thus,
to a first approximation changing the coordination number of

the solid rescales linearly the coexistence temperature.
Following Sear,2 we take � f ��� /2�d for narrow square

wells in d dimensions, so Eq. �3� can be used to calculate the
gas-solid phase coexistence directly,

kBTcoex

�
=

− Z/2

ln �g��/2�d + 1
. �4�

This is compared with published numerical results of Z=12
narrow square-well phase diagrams in Fig. 1. At low �g,
there is fairly good agreement between this crude treatment
and the Monte Carlo simulations. Results for Z=4 also quali-
tatively agree with this picture.10

As a last consistency check, we examine in what regime
corrections to 	���g

−1 are small. The next order terms are
the crystal’s finite volume, which is of O�1�, and the fluid’s
second virial coefficient B2�. Using Eq. �4� as a mean-field-
like closure for � /Tcoex gives

B2�
coex

B2
HS � 1 − 3��e�/Tcoex − 1� � 1 − 3��� 8

e�3�g
	2/Z

− 1
 ,

�5�

which for Z
6 leaves an O��g
−2/Z� correction. At low densi-

ties, the contributing factors are both much less than �g
−1 and

have opposite signs, so they amount to an error in Tcoex of
less than a few percent for narrow well widths. This level of
precision is sufficient for the sake of our argument. It also
stays clear of the dense-fluid regime, where the cell treatment

FIG. 1. Gas-solid coexistence line from Eq. �4� for square-well interactions
with Z=12 and �=0.25, 0.15, and 0.03, from top to bottom. Simulation
results for the first two cases are included for comparison �Refs. 7 and 8�.
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is known to break down and lead to a nonphysical liquid-
liquid critical point.11

In the Baxter �→0 limit, we use the stickness from Eq.
�1� to rewrite Eq. �4� as

1 = − ln�2−d�g�d−Z/2� 1

12�coex
	Z/2
 . �6�

For Z�2d, �d−Z/2 diverges, while at freezing the right-hand
side of Eq. �6� should be O�1�. If we fix the density of the
gas at a small but finite value, it follows that �coex→�—i.e.,
the fluid freezes well above �c�0.11. Conversely, when Z

2d, �coex=0, so the triple point also lies on the �=0 axis.
The interesting case is the marginal situation Z=2d, where
we obtain a nontrivial fixed crossover �coex. Indeed, for d
=3, the crossover �coex increases by less than 15% as � varies
from 0.25 down to the Baxter limit, which is small relative to
the divergence obtained for Z�2d. Also, in this case Eq. �6�
reduces to

�coex =
�e�g�1/3

24
. �7�

Using �g=0.1 as a reference point, we obtain a crossover
�coex�0.03, which is well below �c for the isotropic case, as
shown in Fig. 2. The gas-liquid critical point is thus stable
with respect to the crystal.

Simple cubic crystals, among others, as well as isostatic
solids fulfill the Z=2d condition for all d. Though the analy-
sis presented above is not specific to solid crystalline forms,
it does require the solid phase to be mechanically stable for
the cell treatment to be valid. Besides, if the solid considered
is not the thermodynamic ground state, its metastability
ought to be sufficiently long-lived to allow for the vapor
pressure to equilibrate. Monodisperse, isotropically adhesive
spheres invariably crystallize in Z=12 phases, but if either
the spheres are polydisperse or if the interaction is patchy, a
lower Z can be obtained. In the adhesive limit, even infini-
tesimally polydisperse solids thermodynamically
fractionate,2 which results in Z�12. However, this is kineti-
cally nearly impossible and therefore of little experimental
relevance. Instead, an isostatic polydisperse metastable crys-
tal would leave �c stable with respect to the gas-solid coex-
istence. For patchy adhesive spheres, Z is precisely con-
trolled. Though �c also varies with Z,12 the reduced surface
coverage is unlikely to be sufficient to bring it below �coex.

In conclusion, if one manages to reduce the bonding of
the solid phase down to Z�2d, the high density fluid re-
mains stable with respect to the solid down to the Baxter
limit. Based on rough but reasonable estimates, the three-
dimensional gas-liquid critical point would then also be
stable with respect to crystallization. Furthermore, this
scheme might be realizable both experimentally and through
simulation.
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FIG. 2. Sketch of the three-dimensional Baxter phase diagram following
Ref. 6 for the isotropic gas-liquid binodal �dashed line� and this work for the
gas-solid coexistence curves �solid lines�. The gas-solid coexistence is found
at high � for Z�6 and at very low � for Z
6, while it follows Eq. �7� for
Z=6. Coexistence curves of gas with solid for ��0.1 and gas with liquid
for �
0.1 are drawn for schematic purposes only.
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