2007-10-01
Slow guided surface plasmons at telecom frequencies
Publication
Publication
Nature Photon. , Volume 1 p. 573- 576
The phenomenon of slow light is interesting not only from a fundamental physics standpoint, but also because it introduces the possibility of new applications in telecommunications. For a practical slow-light device, the important features are bandwidth, range of wavelength tunability and size, rather than the absolute slowdown factor achieved. Slow light can be achieved in three main ways: through quantum interference effects, which can slow the speed of light down to several metres per second, albeit within a very narrow bandwidth; by using photonic crystals, which are able to slow light over large bandwidths but with much smaller slowdown factors; and by using stimulated Brillouin or Raman scattering. Surface plasmon polaritons have the advantage that they can overcome the diffraction limit of light in a microchip-sized device. Increases in the propagation lengths of surface plasmon polaritons and the feasibility of all-optical wavelength tunability have been reported. Here we report the observation of slow, femtosecond surface-plasmon-polariton wavepackets. We show that a highly compact (55 microm length) plasmonic structure is able to achieve an effective slowdown factor of two over a 4 THz bandwidth. These results will increase the scope of photonic devices based on surface plasmon polaritons.
Additional Metadata | |
---|---|
doi.org/10.1038/nphoton.2007.174 | |
Nature Photon. | |
Sandtke, M., & Kuipers, K. (2007). Slow guided surface plasmons at telecom frequencies. Nat. Photonics, 1, 573–576. doi:10.1038/nphoton.2007.174 |