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Experimental evidence for large dynamic effects on the plasmon dispersion of subwavelength metal
nanoparticle waveguides
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We present angle and frequency resolved optical extinctionmeasurements to determine the dispersion relation
of plasmon modes on Ag and Au nanoparticle chains with pitches down to 75 nm. The large splitting between
transverse and longitudinal modes and the band curvature are inconsistent with reported electrostatic near-field
models, and confirm that far-field retarded interactions areimportant, even forλ/5-sized structures. The data
imply that lower propagation losses, larger signal bandwidth and larger maximum group velocity then expected
can be achieved for wave vectors below the light line. We conclude that for the design of optical nanocircuits
coherent far-field couplings across the entire circuit needto be considered, even at subwavelength feature sizes.

A fundamental limit to the realization of sub-wavelength
(sub-λ) optical devices is that the interaction strength of
dielectric objects with light vanishes as the objects gets
smaller.1,2 Plasmonics may allow to overcome this inherent
limitation of dielectrics by packing the large polarizability of
free electron resonances into a small physical volume.2–4 In
this framework plasmon particle arrays have been proposed
as an ideal platform that combines the ease of controlled
nanofabrication with the prospects of creating, e.g., ultra-
small antennas to efficiently harvest, enhance and emit optical
power,5,6 as well as a toolkit for nanophotonic circuits.7 Thus
plasmon chains may act as sub-λ width waveguides, waveg-
uide bends, signal splitters, and filters.8–11 As a parallel devel-
opment, sub-λ arrays of scatterers with magnetic rather than
electric resonances have recently gained tremendous interest
for developing optical metamaterials.12

Pioneering experiments have focused on qualitative under-
standing of the resonance splitting and mode structure in plas-
mon particle clusters and arrays.10 The observed polarization-
dependent resonances in linear (1D) particle chains, for in-
stance, correlated well with trends anticipated from a sim-
ple near-field quasi-electrostatic model for the chain disper-
sion relation.9,11 This ‘quasistatic’ model, which is valid on
deep sub-λ length scales, also formed the basis for forecast-
ing the functionality of more complex structures, such as plas-
mon chain splitters and multiplexers.7,9,13Very recently, how-
ever, several groups have developed electrodynamic models
that predict large quantitative and qualitative deviations from
the quasistatic insights.14–18If these deviations indeed occur, a
redevelopment of general design rules for complex nanopho-
tonic circuits is required to include electrodynamic effects
even on small length scales.

Sofar, quantitative experiments to discriminate between
quasistatic and electrodynamic predictions at sub-λ spacings
have not been reported. In this Letter we present angle and
frequency resolved optical extinction experiments on many
arrays of Ag and Au nanoparticles at various particle sizes
and sub-λ pitches down toλ/5. Sub-λ plasmon arrays are
an interesting system to test for dynamic effects. Recently,
large modifications were predicted for the dispersion of modes
in 1D plasmon particle chains and, equivalently, in 1D mag-
netic split ring resonator arrays.19 For instance, the deviations
include a much largerk = 0 splitting between the longitu-

dinal and transverse modes, and a polariton splitting of the
transverse dispersion branch at the crossing with the vacuum
dispersion relation (light line).15–18 For sub-λ waveguiding
these models further imply a large increase in group veloc-
ity and decrease in propagation loss compared to electrostatic
predictions.17 The dispersion relations measured in our exper-
iment agree well with the recent electrodynamic models, and
deviate strongly from quasistatic predictions down to pitches
as small asλ/5. As a consequence we anticipate that design
proposals for sub-λ nano-optical circuits at currently realis-
tic sizes (∼ 50 nm pitch) can not be based on quasistatic
analysis,7 because coherences and coupling across the full
structure will dominate the optical performance.

We determine the nanoparticle chain dispersion relation
above the light line by far-field extinction measurements
on Ag and Au nanoparticle arrays prepared on glass using
electron-beam lithography. After physical vapor deposition
of Ag or Au and resist liftoff, we obtained linear arrays of
particles of 50 nm height, at pitches ofd = 75, 100, 120
and 150 nm and with radii varied betweenr = 25 and
55 nm, as determined by scanning electron microscopy (SEM,
cf. Fig. 1(A,B)). The estimated error in determiningr is 2 nm.
For each pitch the particle radii are belowr/d = 0.37.
We have fabricated square fields containing parallel particle
chains (chain length60 µm), with randomly varying inter-

FIG. 1. (A, B) Scanning electron micrographs of particle arrays on
glass withr = 25 nm,d = 75 nm (A, Au) andr = 25, d = 100 nm
(B, Ag). (C) Overview of the angle-dependent transmission setup. A
collimated beam illuminates a large sample area. The sampleangle is
varied. Light is collected from a small spot on the sample (collection
NA= 0.2).
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FIG. 2. (Color online) Transmission as a function of angle and wave-
length for longitudinal (A,B) and transverse polarization(C,D) for
Ag arrays withr = 45, d = 150 nm (A,C) andr = 30, d = 100 nm
(B,D). The color scale runs fromTmin = 0.65 in (A,C) andTmin =
0.80 in (B,D).

chain spacing (minimum 700 nm, mean 1µm). The large
inter-chain spacing ensures that coupling between chains is
negligible, while the random variation suppresses gratingef-
fects that occur for periodic arrangements. Finally, we spin-
coat the samples with a 100 nm layer of PMMA to ensure that
the particle chains are embedded in a homogeneous dielec-
tric environment. To determine the dispersion relation we use
a wavelength-resolved transmission setup (see Fig. 1(C)) in
which the sample is mounted on a rotation stage (axis per-
pendicular to the chains, along the PMMA/glass interface)
that gives access to incident angles fromθ = −60◦ to +60◦.
The chains are illuminated by a collimated white-light beam
(divergence∼ 5◦) from a fiber-coupled incandescent source,
which illuminates a large (mm-size) area on the sample. Us-
ing a pinhole on the transmission side, only the transmitted
intensity from a∼ 15 µm spot (associated∆k/k ∼ 0.09 (i.e.,
5◦)) on the sample is collected by a cooled Si-CCD coupled
spectrometer. The transmission is obtained by normalizing
the transmitted intensity to that recorded from an unpatterned
substrate at the same angle. Using a broadband polarizer, we
select the incoming polarization to be either transverse tothe
chains, or longitudinal (p-polarization). For nonzeroθ, the p-
polarization also acquires a field-component transverse tothe
chain.

Figure 2 shows transmission spectra for the full angular
range for Ag chains of pitch 150 nm, and radius 45 nm
(Fig 2(A,C)), and for a smaller pitch of 100 nm and radius
30 nm (Fig 2(B,D)). At normal incidence (θ = 0◦), a band of
extinction aroundλ = 500 nm for d = 150 nm (470 nm for
d = 100 nm) is observed for transverse polarization, and at
λ = 625 nm (550 nm ford = 100 nm) for longitudinal polar-
ization. The redshift of modes for larger particles is consistent
with the well-known single-particle resonance shift with par-
ticle size.2,20 The occurrence of two bands shifted to either
side of the single particle resonance is consistent with ear-
lier reports on theθ = 0◦ extinction of nanoparticle chains.10

Qualitatively this splitting corresponds to the excitation of col-

lective modes in the chain of dipole scatterers: the transverse
mode is blue shifted due to the antiparallel orientation of each
dipole with the field of its neighbors, while the longitudinal
mode is red shifted as each dipole is aligned with the field
of its neighbors. For increasing angle of incidence, the two
branches have opposite curvature, both shifting towards the
single particle resonance.

The spectral dependencies of the extinction branches evi-
dent in Fig. 2 are qualitatively consistent with both the qua-
sistatic model and full dynamic calculations for the dispersion
relation of plasmon chain excitations. In order to quantita-
tively compare the data with the two models, we determine the
transmission minima from a Gaussian fit to the transmission
spectrum (plotted in the frequency domain) for each angle. In
figure 3, we plot the resulting center frequencies taken from
Fig. 2(B,D) as a function of|k||| = 2π/λ sin(|θ|), i.e. the
wave vector component of the incident beam along the chain.
The measurements reach up tok|| = 0.86ω/c, or up to 60%
of the light line in the medium embedding the particles. To
appreciate the large width of the extinction resonances, the
bandwidth at1/e height of the fitted Gaussians is shaded in
the diagram. The typical1/e full width is 2500 cm−1 (∼ 60
nm). First, we compare to the generic quasistatic point-dipole
prediction for the nanoparticle chain dispersion relation:9–11

ω2 = ω2

0
[1 +

( r

d

)3
∞
∑

j=1

κT,L

cos(jkd)

j3
]. (1)

Hereω0 is the single-particle resonance frequency, andκT =
2 for transverse, andκL = −4 for longitudinal modes.21

We assume spherical particles withr/d taken from SEM data
to obtain the quasistatic prediction in Fig. 3 (dotted curves).
There are two striking discrepancies between the data and
the quasistatic model. First, the splitting at normal incidence
(k|| = 0) between the two branches is a factor two to three
larger in the data than in the quasistatic model. The qua-
sistatic model even falls outside the broad width of the ex-
tinction peaks. Secondly, the quasistatic model predicts that
the transverse and longitudinal branch cross atkd = 0.46π
independent ofr/d at a frequency equal to the single-particle
resonance. No sign of this crossing is observed in the data.
It seems surprising that such discrepancies between data and
the quasistatic model haven’t been noted in earlier studies.10

These studies focused onk = 0 only, without investigating
nonzero scattering angles. On the basis ofk = 0 data only,
one might assume that a larger splitting is due to an error in
r/d. For our data, this would imply an unlikely 40% error
in estimatingr/d. However, even if one would scaler/d to
match thek|| = 0 splitting, the quasistatic model would still
not be consistent with the full angle-dependent data set: the
presence of the band crossing atkd = 0.46π would impose
a much larger curvature of both bands than observed in our
data.

The fact that the quasistatic model does not describe the
data could be due to several approximations: The quasistatic
model ignores dynamic effects, multipole effects, the presence
of the PMMA-air interface, and particle anisotropy. Based
on Ref. 11 we conclude that multipole effects do not resolve
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FIG. 3. (Color online) Symbols: frequency (in cm−1 (left axis)
or eV (right axis)) of minimum transmission versus wave vector
for transverse and longitudinal polarization in Fig. 2(B,D), i.e. the
d = 100 nm, r = 30 nm Ag particles. Shaded areas: 1/e band-
width of the transmission minima. Straight lines: light lines in air
and in the embedding medium. Thick (thin) curves: dynamic (static)
prediction.

the discrepancy between the quasistatic model and our data:
multipole effects do not alter the quasistatic dispersion rela-
tion for r/d < 0.35, a criterion satisfied in our experiment
(r/d = 0.3 ± 0.02). For largerr/d multipole effects in fact
reduce the quasistatick = 0 splitting, and shift the band cross-
ing to even smaller wave vectors,11 inconsistent with the ab-
sence of a crossing in our data. To study the effect of the di-
electric interface, we have analyzed the quasistatic modelfor
dipoles near a dielectric interface using image dipole theory.1

Within this model the image dipoles have a weaker dipole mo-
ment by a factor(ǫm−1)/(ǫm+1) (with ǫm the embedding di-
electric constant) and are located at a distance of 150 nm, i.e.,
further than the array pitch. As a consequence the estimated
increase in splitting is less than 15%, i.e., much less than
the 2 to 3-fold enhancement in the experiment. Regarding
anisotropy, the particles for which data is reported in Fig.3 are
mildly oblate (height 50 nm and diameter 60 nm). Atθ = 0◦,
both polarizations used in the experiment are along equiva-
lent axes of the single-particle polarizability tensor, sothat an
enhanced splitting is not due to excitation of distinct single-
particle resonances. In addition, we calculated the polarizabil-
ity tensor (including dynamic depolarization shifts3,20). The
resonance relative to that of ar = 30 nm spherical parti-
cle is only shifted by 4 nm, and the on-resonance polariz-
ability along the long axes is in fact 10% smaller. Within
the quasistatic model, particle anisotropy is hence expected
to reduce the splitting, rather than explaining the observed en-
hancement.

Having excluded that modifications to the quasistatic model
due to multipole effects, interface corrections or particle
anisotropy can explain the dispersion relation observed inthe
experiment, we now compare the data to a full electrodynamic
point-dipole model17 that includes Ohmic damping, radia-
tion damping, and depolarization shifts in the single-particle
polarizability20, as well as all terms in the dipole field. Within
this model the dispersion relation has recently been calculated
perturbatively15, and self-consistently for finite16 and infinite
arrays.17,18 Using a dielectric model for silver that is a mod-
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FIG. 4. (Color online) Symbols: Relative splitting betweentrans-
verse and longitudinal branch atk = 0 versusr/d for several pitches
d as indicated for Ag and Au arrays. Black curve: quasistatic pre-
diction for Ag arrays. Colored curves: dynamic predictionsfor
d = 75 nm (Ag, dashed) andd = 150 nm (Ag, dotted). Multipole
effects set in beyond the dashed vertical.11

ified Drude fit22 to tabulated data,23 and takingr andd from
SEM observations, we plot the self-consistent infinite array
model as solid curves in Fig. 3. This model predicts a band
splitting atk = 0 that is approximately twice the splitting in
the quasistatic model for the same geometrical parameters,as
well as a band curvature for wave vectors away fromk = 0
that is in much better agreement with the experimental data.
Keeping in mind that the dynamic model has no adjustable
parameters, the reasonable correspondence with the data isa
strong indication that retardation effects and far-field coupling
are indeed determining the dispersion relation ford = 100 nm
silver nanoparticle chains. The remaining deviation from the
dynamic model may yet again be due to the small particle
anisotropy, the PMMA-air interface, or multipole effects14 the
influence of which is much more difficult to estimate quanti-
tatively for electrodynamic rather than quasistatic models.

Based on the data in Figs. 2, 3 we conclude that the large
splitting between the transverse and longitudinal branch at
normal incidence compared to the quasistatic prediction isa
good indicator for the relevance of far-field effects. Figure 4
shows the measured relative splitting∆ω/ω for many com-
binations of particle radiusr and pitchd plotted againstr/d,
both for Ag and Au particle arrays. In the quasistatic limit,
the splitting is simply proportional to(r/d)3 (see Eq. (1)).
In the dynamic model, the splitting depends onr andd sepa-
rately as is clear from the dynamic predictions for the small-
est (d = 75 nm) and largest (d = 150 nm) pitch used in
our experiments (dashed/dotted in Fig. 4). Figure 4 demon-
strates that for Ag particles the splitting is generally a factor
∼ 2 larger than quasistatic theory predicts, in agreement with
the dynamic model. For Au particles, the difference is not as
large, which may explain why previous studies did not resolve
deviations from quasistatic theory.10 Still, the observed split-
tings for Au systematically exceed the quasistatic prediction.
We attribute this smaller effect for gold to the much lower
albedo (≤ 20% for r = 25 nm Au, compared to∼ 80% for
Ag).2 Since low-albedo particles radiate less strongly, far-field
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corrections to the dispersion relation will be less important.
In conclusion, the experiment reported in this Letter shows

that the dispersion relation for plasmon modes on sub-λ metal
chains is strongly modified by far-field interactions, even for
pitches as small asd = 75 nm or ∼ λ/5. This experi-
ment thus confirms recent models15–18 that overturn the qua-
sistatic view on plasmon chains.9,11 The next challenge is to
address wave vectors below the light line, for which propaga-
tion distances up to 5–10µm at group velocities around0.3c
are feasible.17 These propagation distances far exceed initial
estimates, which were based on the damping rate of single
particles.9,10 Below the light line, the damping rate is strongly
reduced since far-field destructive interference suppresses all
radiative loss. It will be a challenge to excite these wave vec-
tors selectively: local excitation,e.g. at a waveguide entrance,
will excite wave vectors both below and above the light line.
Recent simulations confirm that retardation effects are very
important for local excitation of finite sub-λ plasmon chains,
giving rise to a complex and strongly frequency dependent
response.5 However, interpretation in terms of superpositions
of modes above and below the light line is nontrivial, since

depending on the excitation either the dispersion relationfor
realk and complexω, or for complexk with realω applies,
as discussed in Ref. 17. As the complexity is increased to in-
clude 2D clusters, we expect far-field effects to become even
stronger.14 Therefore, our work implies that an essentially
quasistatic electric circuit-design approach7 to nanophotonics
is only applicable to structures of total size below∼ 50 nm,
i.e., a scale at which fabrication of several coupled compo-
nents is extremely challenging. Sub-λ photonic structures at
the current fabrication limit will always require a fully elec-
trodynamic optimization of the coherent coupling between all
building blocks: far-field interference is key to optimize the
functionality and reduce the loss.

We thank L. Kuipers for loan of equipment and H.A. At-
water for fruitful discussions. This work is part of the re-
search program of the “Stichting voor Fundamenteel Onder-
zoek der Materie (FOM),” which is financially supported by
the “Nederlandse Organisatie voor Wetenschappelijk Onder-
zoek (NWO)”. It was also supported by “NanoNed”, a nan-
otechnology program funded by the Dutch Ministry of Eco-
nomic Affairs.

∗ f.koenderink@amolf.nl
1 J. D. Jackson,Classical electrodynamics (Wiley, New York,

1975).
2 C. F. Bohren and D. R. Huffman,Absorption and scattering of

light by small particles (Wiley, New York, 1983).
3 K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys.

Chem. B107, 668 (2003).
4 For a review, see W. L. Barnes, A. Dereux, and T. W. Ebbesen,

Nature424, 824 (2003).
5 J. V. Hernández, L. D. Noordam, and F. Robicheaux, J. Phys.

Chem. B109, 15808 (2005)
6 R. de Waele, A.F. Koenderink, and A. Polman, Nano Lett7, 2004

(2007).
7 N. Engheta, A. Salandrino, and A. Alù, Phys. Rev. Lett.95,
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