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On the subwavelength structure of the evanescent field of an optical Bloch wave
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We have measured the three-dimensional distribution of the evanescent field above a nanophotonic
structure, a photonic crystal waveguide. The periodic structure of the photonic crystal causes the
propagating waves to be governed by Bloch’s theorem: they are composed of multiple wavevectors
or harmonics. The Bloch character of the light has a profound influence on its evanescent field. We
found, by measuring the field with phase-sensitive near-field microscopy, that the evanescent field
of the composite Bloch wave decays non-exponentially as a function of height. Even the individual
Bloch harmonics, having only a single wavevector, do not necessarily decay single-exponentially.
This effect has its origin in the intricate in-plane field distribution of each harmonic. The complex
decay leads to an evolution of the mode pattern as a function of the height above the structure.
Our experimental results are confirmed with calculations.

PACS numbers: 42.70.Qs, 42.82.Et, 68.37.Uv

Sir Isaac Newton was the first to report on the evanes-
cent field. He observed frustrated total internal reflection
and concluded from his measurements that the evanes-
cent field extends approximately “ten hundred thou-
sandth Part of an Inch” (25 nm) [1]. The evanescent
field is exploited for a broad range of applications, rang-
ing from coupling of light in and out of structures [2] to
two-dimensional Bose-Einstein condensation [3], strong
coupling [4], sensing [5], subwavelength focusing [6] and
microscopy [7].

The school book example of an evanescent wave is that
of total internal reflection at a planar interface from a
high dielectric constant (ε) to a low-ε material. Above
the interface (z > 0) the field decays according to

E(z, t) = E(0, t)eiz
√
εlow

ω2

c2
−k2
‖ , (1)

where the optical frequency is denoted as ω, c is the speed
of light in vacuum. For evanescent waves, the exponent is
real and negative resulting in an exponentially decaying
field away from the interface. The above equation holds
for flat planar interfaces but not only for total internal
reflection but also for, amongst others, light propagating
in thin slabs of material, or surface waves like surface
plasmon polaritons. The evanescent field of periodically
patterned surfaces may differ however.

An intriguing class of periodically structured optical
materials are photonic crystals, in which materials with
a high and a low ε are arranged in a lattice. The pe-
riodic structure greatly affects the propagating of light
[8–11]. Light in a photonic crystal, must obey Bloch’s
theorem, which dictates that the amplitude of a wave
must conform to the imposed periodicity [12]. The re-
sulting wavefunction ψ, simplified to one dimension, can
be described as

ψ(y) = uk(y) exp (iky), where uk(y) = uk(y + a). (2)
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FIG. 1: Portion of the dispersion relation of the photonic
crystal waveguide under investigation, obtained via 3D FDTD
simulations (solid squares). The solid lines are guides to the
eye. An excited Bloch mode at ω=0.298 has multiple wavevec-
tors (encircled intersections), spaced (2π/a) apart. The vac-
uum mode (or light line, ω = ck) is depicted with the dotted
line.

The above equation, with wavevector k and a periodic
amplitude modulation uk(y), with the same period (a) as
the lattice, can be rewritten as a Fourier series of plane
waves:

ψ(y) =
∑
m

am exp(i(k +m
2π
a

)y), where m ∈ Z, (3)

which describes that the individual plane waves that to-
gether make up the Bloch wave, the harmonics, each have
an amplitude am. Their wavevector is k plus an integer
(m) number of the reciprocal lattice period 2π/a. Based
on Eq. 2, one might naively expect an exponential decay
for the evanescent field, governed by the magnitude of
k‖ (= k) (see Eq. 1). The multiple harmonics in Eq. 3
however suggest that the decay is multi-exponential [13].

In this Letter, we have investigated the evanescent field
above a two-dimensional photonic crystal waveguide with
three-dimensional near-field microscopy. We will show
both with experiments and calculations that both the
Bloch nature of the guided light but also the confinement
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of light in a narrow waveguide, has a profound effect on
the evanescent field above the structure. We find a highly
complex decay behavior. As a result, also the field pat-
terns above the structure strongly evolve with height.

The photonic crystal structure we investigated, is a
200-nm thick air-bridge membrane of Si. In the mem-
brane, we etched a hexagonal lattice (period a = 456 nm)
of air holes (radius 140 nm). A single row of holes is not
perforated and acts as a waveguide. At each side of the
waveguide, 10 rows of holes provide ample confinement of
the light by the photonic bandgap [14]. At the outermost
row of holes, the energy of the field is reduced by 6 orders
of magnitude. The transmission loss due to fabrication
disorder is estimated to be a few dB/mm, which consti-
tutes a negligible loss at the length scales relevant for the
work presented here (< 100 µm). Figure 1 shows a por-
tion of the calculated dispersion relation of the waveguide
under investigation. The encircled intersections indicate
the wavevectors, each spaced 2π/a apart, that together
form the Bloch wave, that are excited at a specific opti-
cal frequency (ω=0.298, dotted line). Note that the non-
encircled set of intersections corresponds to the backward
propagating wave.

We measured the optical field above the structure with
a phase-sensitive near-field microscope [15]. By scanning
a metal-coated tapered optical fiber over the structure,
we obtain a map of the optical field above the structure.
By incorporating the scanning setup in a heterodyne in-
terferometer, we recover the electric (E-)field amplitude
and phase locally. The diameter of the probe aperture is
200 nm determines, on first approximation, the detection
area of 3.1 · 10−14 m2. The collected power by the probe
is expressed as a power density in units W/m2. Fig-
ure 2a shows the power density of the field, at ω=0.298
where the distance of the probe to the sample is kept
constant at 10 nm. The measurement clearly shows that
the light is confined to the waveguide, centered along the
line x = 2.6 µm.

By Fourier transforming the measured complex field
along the direction of the waveguide (y-direction), we re-
trieve the periodic components of the field: the wavevec-
tors ky [16]. Figure 2b shows the power spectrum ob-
tained by summing the square of the amplitude of the
Fourier transforms for all x values. In agreement with
the dispersion relation shown in Fig. 1, we find peaks
at ky = 0.68 ± m in normalized units of 2π/a, with m
being an integer. The asterisks in Fig. 2b indicate the
wavevectors of the wave reflected at the end facet of the
waveguide.

In order to recover the spatial distribution of each
Bloch harmonic, we applied a Fourier filter to the com-
plex field data underlying Fig. 2a. Figure 2c shows the
Fourier filtered data, with a Gaussian selection window
centered around ky = 0.68 and with a width of 0.02 (see
Fig. 2b). We define the harmonic with ky = 0.68 as the
fundamental Bloch harmonic with m = 0. The same fil-
ter is applied for the m = −1 harmonic (ky = −0.32), of
which the results are depicted in Fig. 2d. For the funda-
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FIG. 2: (a) Colorscale (logarithmic) image of the measured
power density distribution. The waveguide is centered along
the x = 2.6 µm line. (b) Power spectrum of the ky wavevec-
tors present in the structure, obtained via Fourier transform-
ing the complex phase-sensitive E-field distribution under-
lying (a). Two Bloch harmonics are visible (m = −1 and
m = 0) and two wavevectors of the reflected Bloch wave
(∗). The red line depicts the window of the Fourier filter
(not necessarily at ky = 0), used to extract the power den-
sity distribution of the fundamental and m = −1 harmonic,
respectively (c,d), obtained via Fourier filtering the complex
phase-sensitive E-field distribution underlying (a).

mental wavevector we find a similar distribution as in 2a:
the power density is highest in the center of the image,
around x = 2.6 µm. The power density distribution of
the m = −1 harmonic is however more extended into the
crystal region. We attribute this difference to the intri-
cate modal pattern of the composite Bloch wave, which
exhibits stronger amplitude variations towards the crys-
tal region, requiring the harmonics m 6= 0 to be stronger.

To determine the decay of the evanescent field above
the photonic crystal waveguide, we performed a series
of measurements, each with a different distance of the
probe to the sample z. Using the same Fourier filter-
ing procedure as describe above, we calculated the power
density for each height. We used appropriate Fourier fil-
tering (see above), to recover the power density for the
harmonics with m = −2, − 1, 0 and +1. Each of these
harmonics can have a different lateral power distribution
(the amplitudes am in Eq. 3 are allowed to depend on x).
We therefore integrated over the distribution perpendicu-
lar to the waveguide, to obtain the power per unit length
of waveguide. The result is depicted in Fig. 3, showing
the power as a function of height.

Perhaps surprisingly, the curves show that each har-
monic decays with a different slope as the height in-
creases, until the curves level off at a power per unit
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FIG. 3: Measured power in each of the Bloch harmonics as
a function of probe-sample height z for four harmonics (see
legend). Both the measurement results (solid dots) and the
3D FDTD results (circles) are shown. The grey lines indicate
the decay expected based on Eq. 1 and are offset for clarity.

length of ∼ 3 · 10−11 W/m, where the noise level of
the analysis is reached. The harmonics with the largest
wavevectors (m = −2 and m = +1), have the strongest
decay (kz ≈ 20i µm−1), whereas the harmonic with the
smallest wavevector (m = −1), decays very slowly as a
function of height (kz ≈ 2i µm−1). The ensemble of these
harmonics together form the Bloch wave, while the indi-
vidual harmonics are not a solution to Maxwell’s equa-
tions. Adding the harmonics of Fig. 3 yields a decay that
is dominated by the fundamental harmonic close to the
surface (z < 250 nm), but at larger distances (z > 500
nm), the m = −1 harmonic dominates. Obviously, the
Bloch wave itself, which is composed of these harmonics,
therefore does not exhibit a single exponential decay.

The differences in decay can be understood by consid-
ering Eq. 1, since each harmonic has a different wavevec-
tor k‖, the decay must consequently also differ. Since
the parallel wavevectors of the m = −2 and m = +1 har-
monic are much larger than the low-ε wavevector (air),
their decay is rapid. The m = −1 harmonic on the con-
trary, which has a wavevector very close to the vacuum
wavevector, decays much more slowly. The decays ex-
pected based on Eq. 1 are depicted with the solid lines,
but they do not fully describe the measured decays. In
particular, a strong deviation is found for the m = −1
harmonic: between 0 and 400 nm: the experimentally
found decay is much stronger than a single exponential
decay expected based on Eq. 1.

We have performed 3D finite-difference time-domain
(FDTD) simulations [17] to validate our experimen-
tal results and to confirm the deviation from a single-
exponential decay. We applied a similar Fourier analysis
to the FDTD data to resolve the individual Bloch har-
monics. The results are also depicted in Fig. 3. We
concluded from the comparison of the results that there
is qualitative agreement between FDTD results and ex-

periment. There are some differences in relative ampli-
tude between the harmonics, which we attribute to the
wavevector dependent coupling to the near-field probe
[18].

Key to the full understanding of the complex decay of
the Bloch harmonics and the composite Bloch wave are
the lateral modal profiles (perpendicular to the waveg-
uide direction) as a function of height. We have plotted
the experimental and simulated results for the funda-
mental harmonic in Figs. 4a and 4b, respectively, which
clearly are in good agreement. Note that the backward
propagating harmonics (asterisks in Fig. 2b) show the
same behavior. The evanescent field has nodes (arrows
in Fig. 4b), with fields with opposite signs on either side,
as is indicated by ‘+’ and ‘-’. On close examination, one
can observe that the field profile broadens as the height is
increased: the nodes in Figs. 4a and 4b shift outward as
the mode pattern changes as a function of height. This is
quite in contrast to what one would naively expect based
on Eqs. 1-3 as these equations predict only an amplitude
decrease, while the mode pattern does not change as a
function of height.

We observe even stronger pattern changes in the
evanescent field of the m = −1 harmonic (see Figs. 4e
and 4f), for both the experimental result and the FDTD
simulation. In both images, the modal pattern is more
complex than in Figs. 4a and 4b. In Fig. 4f, several
nodes are visible at a height of 200 nm. As the height is
increased, only a smooth profile without nodes remains
at a height of 1000 nm.

Both the observation of the changes in modal pat-
tern in the images in Figs. 4 as well as the non-single-
exponential decay of the m = −1 harmonic seen in Fig. 3
deviate from the single exponential decay suggested by a
naive interpretation of Eq. 1. The explanation for the de-
viations from this simple behavior lies in the lateral fields
of the harmonics. To build up these complex modal pat-
terns, a range of kx wavevectors is required. If the mag-
nitude of the kx wavevectors is comparable to or larger
than that of ky, they need to be taken into account when
calculating the decay or the modal pattern of the evanes-
cent field. By substituting

√
k2
x + k2

y for k‖ in Eq. 1 we
obtain

E(z, t) = E(0, t)eiz
√
εlow

ω2

c2
−k2

x−k2
y . (4)

The kx wavevectors that make up the lateral patterns
are calculated by Fourier transforming the fields and are
depicted in Figs. 4c and 4g for the fundamental and m =
−1 harmonic, respectively. In both figures, the higher kx
values vanish most rapidly as the height increases. Due
to the broad range of kx wavevectors, the decay of even
a single Bloch harmonic is not a single exponent, but a
multi-exponential decay. We demonstrated the validity
of the above argumentation by calculating the field decay
and the resulting change in the field pattern as a function
of height, using only the experimental data at z = 10 nm
as a starting point. The result is presented in Figs. 4d
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FIG. 4: (a,b) Power density distribution of the fundamen-
tal harmonic as a function of height, measured (a) and from
FDTD simulation (b). (c) Amplitude of kx wavevectors ob-
tained via Fourier transformation of the lateral field at heights
indicated by the arrows in (a), normalized to the amplitude
at kx = 0. (d) Calculated power density distribution by in-
cluding the decay of kx wavevectors (see Eq. 4), using the
measurements at 10 nm as a starting point. (e-h) Same as
(a-d) for the m = −1 Bloch harmonic.

and h, which clearly shows excellent agreement with both
the full 3D experimental data (Figs. 4a,e) as well as with
the 3D FDTD simulation data (Figs. 4b,f).

In conclusion, we have investigated the decay and pat-
tern changes of the evanescent field above a photonic
crystal waveguide. Two effects were found that influ-
ence the subwavelength pattern and decay of the field.
First, the Bloch nature of the propagating mode, which
creates an ensemble of wavevectors (ky), each with their
own decay constants, plays an important role. Secondly,
the strong confinement of the light in the narrow waveg-
uide plus the intricate lateral mode profile resulting from
the neighboring photonic crystal lattice, requires a broad
range of wavevectors (kx) perpendicular to the direction
of propagation. The influence of the wavevectors in the
x direction results in strong changes of the modal pat-
tern as a function of height above the photonic crystal
waveguide, which were found in both near-field experi-
ments and 3D FDTD simulations. The lateral extent of
the crystal beside the waveguide, 10 rows in the experi-
ment and 7 rows in the simulations, was sufficient not to
influence the the in-plane wavevectors. We expect that if
only 4 rows or less would be used, the ky and kx wavevec-
tors would differ significantly, which would therefore also
affect the subwavelength structure of the evanescent field
above the waveguide.

Both the measurements and the simulations show that
nanostructured optical materials can have rich evanes-
cent field patterns. This property may be exploited by
engineering the geometry such that a specific (subwave-
length) evanescent field pattern is obtained, by tuning
the kx wavevectors. This may, for example, be exploited
in optical trapping or manipulation of nanoparticles or
Bose-Einstein condensates. Promising results have al-
ready been demonstrated for tuning of the ky wavevec-
tors in so-called dispersion engineering in photonic crys-
tal waveguides [19, 20].
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