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Chapter 1

Introduction

1.1. Photonic crystals

1.1.1. Nanophotonics

The early 19" century witnessed an industrial revolution regarding the use
of mechanical energy for use in various labor intensive industries, most no-
tably textile fabrication. Similarly, semiconductors contributed much to the
way of life in the late 20" century, by making large-scale computing power
and ubiquitous mobile communication accessible. The 215 century has been
hailed as an era in which light is harnessed to solve some of mankind’s most
pressing problems. Nanophotonics is a branch of physics that has inter-
faces with solar cell research, optical computing, telecommunications and
many more disciplines. At the very heart of nanophotonics lies the abil-
ity to control light with intricate nanostructures, such as metal-hole arrays,
negative-index materials, nanowires, and random and ordered photonic ma-
terials [1-5]. Prominent feats that can be achieved are converting light into
material waves and back again to light [6], strongly confining light and slow-
ing it down [7], and molding the flow of light [8], which can be achieved with
photonic crystals.

1.1.2. What is a photonic crystal ?

For a structure to be called a photonic crystal, is has to meet three require-
ments. First, the crystal must have a spatially varying dielectric constant
that varies periodically with a period of the order of a wavelength of light.
Second, the amplitude of this spatially varying dielectric constant is required
to be large, of the order unity. Third, the absorption in the structure has to
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Chapter 1. Introduction

be limited in order to allow for multiple light scattering. Therefore, metals
and certain semiconductors are unsuitable ingredients in photonic crystals,
for despite their high real dielectric constant, the absorption is appreciable
at optical frequencies. In atomic crystals such as quartz, the dielectric con-
stant changes on length scales comparable to short wavelengths in the X-ray
range. However, at these frequencies the amplitude is less than 1074, and
therefore atomic crystals are hardly photonic. In order to achieve sufficient
dielectric contrast then, photonic crystals are always composite structures.
Finally, the first requirement discards all disordered systems such as milk,
foam, and clouds.

1.1.3. Shall | compare thee to a semiconductor ?

When these conditions are fulfilled, photonic crystals are said to act as semi-
conductors for light [9]. When the wavelength of the incoming light matches
a lattice spacing of the crystal, the waves are reflected by interference, and
collectively give rise to a Bragg peak, also known from X-ray diffraction [10].
The width of the Bragg peak is proportional to the difference in dielectric
constant Ae. This wide Bragg peak is dubbed stopband, as its prevents a
finite bandwidth of light to propagate in the direction normal to the lattice
planes. Surprisingly, the width of a stopband was determined already in
1887 by Lord Rayleigh, albeit for one dimensional laminar structures [11].
In analogy, the width of the electronic bandgap in a semiconductor is equal
to the potential difference seen by the electrons, and so the potential seen
by light can be related to Ae. For a judicious choice of crystallographic
structure, and a sufficiently high dielectric contrast, a photonic bandgap
can be obtained, a region of frequencies for which light propagation is com-
pletely inhibited [12; 13]. Photonic bandgap materials are widely pursued
in the community [14; 15]. For these structures, the density of optical states
(DOS) vanishes and spontaneous emission is forbidden [16]. While partial
modification of spontaneous emission has been demonstrated for 2 and 3D
photonic crystals [17-20], complete inhibition by a 3D bandgap crystal is a
much awaited feat in the scientific community.

However, photonic crystals differ from semiconductors in three important
respects: Because photons are bosons, they are not subject to the Pauli ex-
clusion principle. Any number of photons can occupy each available mode.
Therefore, photons have no Fermi energy. Second, the total number of elec-
trons is conserved in any low-energy process (< 0.5 MeV), while this is not
the case for photons. Therefore, absorption and non-linear processes become
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1.1. Photonic crystals

Figure 1.1.: (a) Schematic representation of Bragg diffraction from the [111] lattice
planes of an fcc crystal in real space. When the wave incident with angle 6 and
of wavelength )\ in vacuum scatters from a family of planes with spacing dpy;, the
scattered waves interfere constructively when the path difference (dashed lines)
equals a multiple of the wavelength. (b) Reciprocal space representation of Bragg
diffraction. When the incoming wave with wavevector ki, and the scattered wave
with wavevector kot obey kKout —kin = G, where G is reciprocal lattice vector, then
Bragg diffraction occurs. The Ewald sphere and a cross-section of the Brillouin zone
of an fcc crystal have also been drawn.

important when dealing with photons. Third, while the depth of the electron
potential is given by a combination of the Coulomb field of the atoms and the
electrons’ kinetic energy [21], the photons’ potential is proportional to the
square of their frequency [22; 23]. Therefore, a photon with a low frequency
will be subject to a negligible potential, whereas a low-energy electron is al-
ways trapped. In other words, the long wavelength associated with the low
frequency is much longer than any period of the structure. Caution must
therefore be exercised in comparing photonic crystals to semiconductors.

1.1.4. Bragg diffraction in photonic crystals

Bragg diffraction is central to this Thesis, and we shall elaborate two com-
mon representations of Bragg diffraction, both of which shall be used. Figure
1.1(a) represents Bragg scattering from the [111] planes of a face-centered
cubic (fcc) photonic crystal in real space [21]. Electromagnetic waves with
wavelength A\ are incident under an angle # on an fcc photonic crystal. The
waves scatter from successive planes with spacing dpx;. When any multi-
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Chapter 1. Introduction

ple of the wavelength equals the path difference between two lattice planes,
the waves will interfere constructively. We have drawn the reciprocal space
representation of the same situation in figure 1.1(b). A wave with wavevec-
tor ki, is incident from the origin of the Brillouin zone, and scatters to a
wavevector kqut. To compare to the previous picture, |kiy| = |kout| = 27/A.
The von Laue condition requires that kot — kin = Gy for constructive
interference, where Gpy; is a reciprocal lattice vector, |27/ Gpii| = dpr;. We
see that kout — ki is indeed a reciprocal lattice vector, namely Gi1;. Bragg
diffraction thus occurs for |kiy| = |kout| = 7/dpki-

For photonic crystals, Bragg’s law has to be corrected for the change in
wavelength the waves undergo in the photonic crystal [24]. Then, Bragg’s
law reads

A= 2dhklneff COS(@), (1.1)

where neg = Ve = \/¢e1 + (1 — ¢)e is an effective refractive index. Here, ¢
is the volume fraction of the material of dielectric constant €1, and €5 is the
dielectric constant of the second material.

The difference between €1 and e gives rise to stopgaps, frequency ranges
which forbid propagation of light in a given direction. This forbidden propa-
gation can best be represented in a band diagram, which shows the dispersion
relation between the wavevector k and the frequency w.! In figure 1.2(a),
we plot such a dispersion relation in the direction I' — L, shown in figure
1.1(b). At low frequencies, the dispersion relation is w = kc/neg, where ¢
is the celerity of light in free space. Close to the Bragg condition k = 7 /d
however, the dispersion relation opens up, and no frequencies exist in the
frequency interval Aw around wgy, where wy is the frequency corresponding
to A\ (see equation 1.1), wg = me/(dneg) at normal incidence. The relative
magnitude of the gap width can be estimated from following argumentation
[8]: At normal incidence, A = 2dppneg. At this wavelength, the incoming
and scattered wave interfere constructively, and two standing waves form.
One of these waves has antinodes in the low index material, while the field
extrema of the other wave are located primarily in the high index material.
There are now two standing waves with wavevector ki, = —kgut at two dif-
ferent refractive indices. Therefore, these standing waves will have different
frequencies. The width of the gap will be related to the difference e — €1,
and the relative width to (e2 —€1)/+/€. Using diffraction theory [25], one can

"We will denote peaks in reflectivity spectra by stopbands, while the gaps in associated
with certain directions are of the bandstructure are stopgaps.
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1.1. Photonic crystals

derive [26]

Aw - ‘61

— €
5= 2l . (1.2)

wo

where fg,,, is the first Fourier component associated with the spatial dis-
tribution of Ae. The width of the stopband provides an experimentally
accessible gauge for the crystal’s photonic strength S [27]. We conclude that
photonic crystals strongly modify the propagation of light, and especially so
for frequencies around the stopgap.

Because of the modes’ difference in relative antinode position, the phase
velocity, or structural refractive index ck /w will be markedly different at both
edges of the gap. We have plotted the structural refractive index n of a pho-
tonic crystal in figure 1.2(b). For better visibility, neg has been subtracted
from the real part n’. Outside the gap, the change in structural index is 0.
At the red edge of the gap however, the index increases, in agreement with
the onset of the dielectric standing wave. Throughout the gap, k = G/2, but
the frequency increases. At the blue edge of the gap, n’ — neg is negative,
but recovers to 0 at large positive detunings. Experimental evidence of mod-
ified structural index has been demonstrated by analysis of the resonances
of Fabry-Pérot fringes close to a stopband [28; 29]. The imaginary part n”
describes the removal of energy from the incident beam. Already in 1914,
Darwin noted that the energy removal by an atomic crystal was around 100
higher than that expected from ’true absorption of the crystal’ [30]. At
the gap center, n” is maximum, and it vanishes at the gap edges. A beam
transmitted through a photonic crystal will thus be most attenuated at the
gap center, while outside the gap, there is no attenuation. The behavior of
both n’ and n” is strongly reminiscent of resonances. In analogy with the
strength of an atomic resonance, the strength and therefore the width of
this resonance has been associated with the polarizability per unit volume
27; 31].

In the case of a photonic crystal, the polarizability is caused by structural
properties. High material polarizabilities can be achieved by resonant sin-
gle atoms. Indeed, there has been considerable interest to form a photonic
crystal from highly polarizable atoms, see e.g. [32]. Here it was shown that
a bandgap opens for atoms with a sufficiently high resonator strength com-
bined with a high filling fraction in the lattice. Resonant atoms in photonic
crystals will be discussed in detail in Chapter 6.
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Figure 1.2.: (a) Dispersion relation for a SiOs opal, calculated in the I'— L direction.
The air mode and dielectric mode are given by o and e, respectively. (b) Structural
real and imaginary refractive index of a photonic crystal.

1.1.5. Fabrication of photonic crystals

Even in the initial proposal of photonic crystals, Yablonovitch suggested
that ’further material development’ would be necessary before 'the benefits
[of photonic crystals| are fully felt’ [16]. Indeed, is has proven challenging
to fabricate periodic structures with um sized periods, while maintaining a
sufficiently index contrast. After Yablonovitch’s proposal to use fcc crystals,
research suggested that fcc crystals would have no bandgap [12; 33; 34].
Sozuer et at. later demonstrated that fcc crystals could have a bandgap
in the range of 2°¢ order diffraction [13]. This crystal would consist of air
spheres in a high dielectric background with a refractive index contrast in
excess of m = 2.8.

Ho et al. proposed that a diamond symmetry is eligible for a photonic
bandgap [12]. The bandgap was predicted to occur at lower refractive index
contrast of only m = 2.0 for fcc. The first bandgap crystal was fabricated by
mechanically drilling holes into a high-dielectric (n” = 3.6) to form a crystal
with a diamond symmetry [35]. The bandgap was in the microwave region
owing to the large dimensions of the holes. Other crystals possessing dia-
mond symmetry are the woodpile crystals [36; 37], where pairs of dielectric
rods are stacked upon one another orthogonally, the (n+2)th layer being
offset by half a period to the nth layer. Recently, several authors succeeded
in downscaling the rods from cm to sub um, yielding bandgaplike behavior
in the near infrared at telecom wavelengths [15; 38]. A SEM image of such a
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1.1. Photonic crystals

woodpile photonic crystal can be seen in figure 1.3(a). Inverse woodpiles are
shown figure 1.3(d): here, cylinders were etched and milled into a crystalline
silicon substrate [39].

A popular method to fabricate fcec photonic crystals is to have polystyrene
or silica colloids suspended in a liquid self-assemble to form opals by letting
the suspension evaporate [40-42]. A scanning electron microscopy (SEM)
image is shown in figure 1.3(b). Originally, large 2D arrays had been fabri-
cated in a similar manner by [43]. Thick crystals can be made by sedimen-
tation [24; 44], although disorder combined with the large length scales in
these thick crystals limits the optical quality, evidenced by the disappearance
of Fabry-Pérot fringes in reflection or transmission. These self-assembled
opals have an fcc structure, evidenced by small angle X-ray diffraction [45],
and their (111) surface is oriented towards the substrate surface. Opals are
amenable to inversion with precursors of high-dielectric semiconductors [46],
and thus bandgap crystals can be formed [47; 48].

Molecular Beam Epitaxy (MBE) has proven a popular method for fabricat-
ing Bragg stacks, as well as 1- and 2D microcavities, i.e., cavities embedded
in photonic crystals [49; 50]. The Bragg stacks consist of ITI-IV semiconduc-
tors, often GaAs and AlAs. Here, pieces of ultrapure gallium and arsenic are
heated until they start sublimating. In ultrahigh vacuum, the atoms diffuse
to a GaAs substrate where they condense and react to form crystalline GaAs,
owing to the low flow rate. For the AlAs layers, aluminium is used. The
layer thickness can be controlled to less than a monolayer, and so the GaAs
and AlAs layers can be made of variable thickness, which is opportune for
the growth of microcavities. These planar microcavities can be etched to mi-
cropillars, structures of high-Q factors (@ = 150000) owing to the additional
lateral confinement [51]. Figure 1.3(c) shows such a micropillar.

1.1.6. External probes of real photonic crystals

In this section, we will briefly discuss ways to measure optical properties of
real photonic crystals from the outside. Internal probes form a fascinating
subject in itself [17; 52; 53], but will not be studied here. In contrast, re-
flectivity is a well suited method for probing the bandstructure of photonic
crystals externally [54]. A focussed broad- or narrowband beam is incident
on the sample under a given angle, and the irradiance of spectral distribu-
tion of the reflected beam is measured. Reflectivity can give access to the
bandstructure by associating peaks in the measured spectrum [29; 54-57],
although care has to be exercised in identifying reflectivity peaks with gaps:
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Chapter 1. Introduction

Figure 1.3.: Scanning electron microscopy images of different photonic crystals. (a)
Top view of a woodpile photonic crystal [38] used in the measurements presented in
Chapter 5. (b) Top view of a thin SiOy opal, Chapter 6. (c¢) GaAs/AlAs micropillar,
A/4 Bragg stacks sandwiching a cavity. (d) Inverse woodpile, cylinders milled and
etched into crystalline Si. Images courtesy of Léon Woldering (a), Yoanna-Reine
Nowicki-Bringuier (c), and R. Willem Tjerkstra (d). The scale bar represents 2 pm.

while every gap in the bandstructure gives rise to a reflectivity peak, not
every peak is due to a gap.

In the absence of disorder, the height of the reflectivity peak due to a
stopgap depends on both photonic strength and crystal thickness L. The
length scale associated with the photonic strength is the Bragg length Lp,
the length over which the transmitted beam has decayed to 1/e of its original

value [26],

A

Ideally, the reflectivity is then given by
R=1—exp(—L/Lp). (1.4)

Since this thesis shall be concerned with induced changes in optical proper-
ties of photonic crystals, there is a need to justify why reflectivity is so well
suited. We give two reasons:

1. In real photonic crystals, the ideal Bragg length is modified by dis-
order [58—-60]. While the transmissivity depends on all lattice planes,
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1.2. Optical resonances in photonic crystals

reflectivity depends mostly on the first Lp/dpk planes. Because the
disorder length /ey is by definition much longer than Lp, but not nec-
essarily smaller than L, the reflectivity peaks will be less subject to
disorder, evidenced in peak broadening and general smearing out of
spectral features. Hence transmission studies intending on measuring
the stopband width are only useful if foyy > L. The modulation depth
and thus the gradient d7'/dw of transmissivity at the edge of peaks is
thus reduced with respect to those of reflectivity peaks. The reduced
modulation depth also diminishes the change in transmissivity due to
induced changes in the photonic crystal. Therefore, reflectivity is also
better suited than transmissivity to probe the change in optical prop-
erties. If one does want to measure changes in transmission due to the
changes in optical properties of one of the composites, Sigalas et al.
recommended studying thin crystals if these are extincting [61].

2. Many real photonic crystals are fabricated on substrates. Reflectivity
of thick photonic crystals with L > Lp will be insensitive to scattering
and absorption of the substrate, in contrast to transmissivity.

From these two arguments we conclude that reflectivity measurements sensi-
tively probe changes in photonic crystals’ optical properties. However, trans-
missivity studies have proven useful in studying photonic crystals’ diffusive
properties [56], and served as a basis for the first bandstructure measure-
ments [62; 63]. Other external reflecting probing methods, such as near field
microscopy, are not appropriate for our purposes [64].

1.2. Optical resonances in photonic crystals

Resonances ares widely pursued in optics, because they allow the propaga-
tion of light to be modified [65], and even for it to be trapped [66]. As a
result, the dispersion relation for light is modified compared to free space
propagation. An example of resonant and dispersive behavior is apparent in
the photonic gap in fig. 1.2(a). In this section, we shall discuss what effect
various kinds of resonances have on the optical properties of the photonic
crystal. We consider three kinds of resonances: a., free carrier resonances, b.
bound electron resonances, i.e., atomic resonances, and c. cavity resonances.
For all these cases, we will show how the Bragg resonance is modified, and
will present the change in dispersion.
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Chapter 1. Introduction

1.2.1. Free carriers
General properties of free carriers in semiconductors

The well-known Drude model relates the motion of free electrons to the
induced refractive index [21]. One of its great successes lies in the excellent
experimental agreement of metals’ electrical conductivity with frequency. In
the Drude model, the motion of an electron due an applied electric field
is randomized after an elastic collision. The time between these collisions
is referred to as the Drude damping time 7p. The resonance condition
is governed the density dependent restoring force of the ions in the lattic
[67]. The Drude model can be extended to account for holes, and can then
describe optical properties of photoexcited free carriers in semiconductors
[68]. The total refractive index of the excited semiconductor is a sum of the
contribution due to bound electrons and that of the free carriers. However,
it should be realized that the the initial transient of a dense electron-hole
plasma’s behavior is complex and is actively being studied [69-71].

The timescales of the generation and the recombination is short: the gen-
eration is largely limited by the pump pulse duration, while the recombina-
tion time depends on surface and bulk properties, and varies from ps to us.
Because of the fast timescales, the term switching is appropriate.

Another important property of carriers in semiconductors is that both
the carrier generation cross-section and their dielectric response are strongly
frequency dependent [72; 73]. Therefore, degenerate switching, in which the
probe beam is the same as the pump beam [74; 75|, will have profoundly
different effects from non-degenerate switching. To allow for greater flexi-
bility, we have chosen an experimental setup which uses two independently
tunable lasers. Therefore, degenerate switching that is notably used for
vertical-cavity light-emitting diodes and saturable absorbers will not be dis-
cussed [76; 77].

What is switched ?

We can distinguish three different implementations of switching. Each in-
stance employs generation of free carriers in semiconductors, but the desired
outcome is entirely different. The first use of ultrafast free carrier genera-
tion was to switch the propagation of light, by changing the transmission or
reflection of an incident beam. Already in 1979, Gibbs et al. succeeded in
switching a GaAs Fabry-Pérot cavity, and suggested using it as an optical
modulator [78]. The recombination times were downscaled by 9 orders of
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1.2. Optical resonances in photonic crystals

magnitude 10 years later [79]. The advent of high-Q) resonators has lowered
the power requirement of the pump pulse to achieve any given change in
transmittance (see, e.g., [80]). Recently, propagation switching of high-Q
circular resonators was achieved [81; 82], and dynamic pulse delaying was
shown [66]. In Chapter 3 we will provide experimental evidence for propa-
gation switching via cavity resonances in microcavities. The second, most
heralded implementation is the change in DOS, which might ultimately lead
to ultrafast modification of spontaneous emission rates [83]. Here, four re-
quirements are discussed: (i), a large change in n’ with (ii) concomitant low
n”, (iii) the short timescale in which the switch should take place, and (iv)
the spatial homogeneity of the carrier distribution. Surprisingly, the lack of
homogeneity leads to non-adiabatic dynamics of light, predicted by [84] and
demonstrated by [85]. In Chapter 5, we will experimentally derive a non-
degenerate homogeneity relation which has importance for DOS switching.
The third instance is to investigate how electromagnetic fields respond to
quickly changing dielectric surroundings. Recent demonstrations of band-
width changes [86; 87] and adiabatic and non-adiabatic response of pulses
in cavities [88] have been achieved. In Chapter 4, we experimentally study
the electromagnetic field that is subject to a fast changing cavity resonance.

Dispersion of free carriers and the effect on the photonic gap

Free carriers give rise to a dispersion as shown in figure 1.4(b). At low
frequencies, the magnitude of both n’ and n” is large, but they decay with
the square and cube of the detuning, respectively. The restoring force exerted
by the ions on the free carriers causes a resonant frequency of the plasma,
the plasma frequency. Above this frequency, the index is largely real. In
figure 1.4(a), the dispersion relation for the unswitched photonic crystal is
shown (see figure 1.2(a)). The switched refractive index causes both the
Bragg diffraction condition and the photonic strength to be modified, and
causes both wy and Aw to change. A decrease in the high index material
Nhigh blue shifts the Bragg condition (eq. 1.1), and simultaneously narrows
the gap. The largest change in reflectivity will be evident at the red edge of
the gap. This relation can be generalized: for a change in ny;gn, the largest
change in reflectivity will be observed at frequencies corresponding to the
dielectric mode, whereas the largest change in reflectivity will be observed at
the air mode for a change in nj.,. Switching is wont to exclusively generating
carriers in the low bandgap material, as selective excitation in the high gap
material is impossible by optical means. From Moss’ rule, which empirically
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Figure 1.4.: (a) Dispersion relation for an unswitched photonic crystal (solid curve),
and a photonic crystal with free carriers in the backbone (dashed curve). Both the
stopgap frequency and the stopgap width change due to the presence of free carriers.
(b) Change in real (An’) and imaginary part (An'') of the material refractive index
of free carriers relative to the structural refractive index of the unswitched crystal.
The carrier density was set to N = 1-10%® m~3, corresponding to a plasma frequency
of 0.16 in wa/(2mc).

relates the bandgap to n'~* [89], we therefore conclude that we always modify
the high index material, and large reflectivity changes will always be observed
at the red edge.

1.2.2. Atomic resonances

A different implementation of a resonance in a photonic crystal is a narrow
resonance of atoms. Atomic resonances can give rise to drastically altered
propagation conditions [65]. The atoms have bound outer electrons, which
behave very much like a mass on a spring: while the elongation is in phase
with the driving field below resonance, the elongation leads the driving field
above resonance. It is the interplay between this phase change and extinction
of the incident wave that gives rise to refraction. This seemingly simple
model proposed by H. A. Lorentz at the eve of 20" century captures most
of the essential physics of many everyday optical phenomena [90]. Consider
for example a prism: Upon irradiation with white light, the light separates
into its different color components, an experiment famously performed by
Newton. This separation takes place because each color component has a
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1.2. Optical resonances in photonic crystals

different velocity, and will thus propagate under a different angle according to
Snell’s law. Rainbows work in very much the same way. The dispersion also
dictates the sub unity dielectric constant of all materials at X-ray frequencies.

In contrast to Drude electrons, the bound electrons are usually subject
to a much larger restoring force, and thus have a higher resonance, and in
our case in the near infrared. The second difference to the Drude electron is
that the width of the resonance is given by radiative damping, although at
higher vapor densities collision broadening becomes dominant. In our case
the width is only 6-107° that of the stopgap width. The third distinction is
that the change in the refractive index takes place in the low index material.
Therefore, the changing n’ will change the reflectivity most when the atomic
resonance is at the blue edge of a stopgap. The fourth dissimilarity is that
the Drude dispersion induces a negative refractive index change with respect
to a high n background, whereas the atomic resonance can cause both n’ > 1
orn’ < 1.

Figure 1.5(b) shows the real and imaginary parts of an atomic resonance.
The resonance width has been grossly enlarged for enhanced visibility. At
the red edge of the resonance, n’ > 1. Using the simple dispersion relation
w = kc/neg, an increasing n’ must be met by an increased k for any given
w. The change in reflectivity caused by such a dispersive and absorptive
medium in a photonic crystal is complex, and shall be dealt with in Chapter
6.

1.2.3. Cauvities

While the previous two sections discussed alteration of the Bragg resonance
by material dispersion, this section shows how defects engineered into oth-
erwise periodic photonic crystals modify the structural dispersion [16]. A
cavity is a defect with a size comparable to the wavelength of visible light.
Such cavity - photonic crystal systems (microcavities) have attracted con-
siderable interest because of their high Q factors combined with low mode
volumes, giving rise to high Purcell factors. Indeed, these microcavities have
been shown to modify spontaneous emission [20; 91]. High field enhance-
ments in the cavity have been predicted to amplify non-linear effects [92].
It is perhaps not surprising that cavity-atom systems have been subject to
much interest [93].

Under given conditions, this microcavity structure supports a mode in the
stopgap, see figure 1.6(a). This mode is characterized by a quality factor @,
and its resonance w.. We can draw the parallel between a damped simple
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Figure 1.5.: (a) Schematic dispersion relation in the presence of a photonic vapor,
whose resonance is just blue of the stopgap. At the red edge of the resonance, n’
has increased above unity (see (b)), and the dispersion relation gives a higher k
for a given w. At the blue edge of the resonance, n' is below unity and k is lower.
(b) Material complex refractive index n of an atomic vapor, whose resonance is at
higher frequencies than the stopgap.

harmonic oscillator (SHO) and the cavity: both can store energy, and the
energy leakage is inversely proportional to ). The storage of energy results
from the resonant recirculation, which is sustained for a time Teay = Q/we,
the cavity dwell time. The existing mode implies perfect transmission at the
cavity resonance w., or vanishing reflectance. The delay caused by recircula-
tion, and the frequency dependent transmission can be expressed in terms of
the change in structural refractive index, see figure 1.6(b). At resonance, n”
vanishes, implying a high transmission. The real part n’ has a large deriva-
tive dn’/dw, implying a low group velocity dw/dk = ¢/(n + wdn/dw), or a
long pulse delay. We conclude that the inclusion of a defect in a photonic
crystal influences the spectral and temporal response of the entire crystal.

1.3. This thesis

In this thesis, we experimentally demonstrate effects of all three resonances
in various photonic crystals.

e In Chapter 2, we present the experimental setup that was used to
demonstrate all-optical switching of microcavities and woodpile pho-
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Figure 1.6.: (a) Schematic dispersion relation of a cavity in a photonic crystal. The
cavity creates a mode in the stopgap of the dispersion relation. (b) The change in
the structural complex real and imaginary index to that of a bare photonic crystal.
The complex refractive index has been calculated for a finite Fabry-Pérot étalon
from a relation given by [94].

tonic crystals. Although short, Chapter 2 is a prerequisite in compre-
hending our results presented in Chapters 3-5.

e Chapter 3 contains an experimental study of ultrafast all-optical switch-
ing of a microcavity resonance by several linewidths by free carrier exci-
tation. We are able to infer the dynamic cavity resonance from broad-
band time-resolved measurements, and interpret the dynamic cavity
resonance from the extended Drude model. Frequency-resolved mea-
surements give insight into broadening mechanisms.

e In Chapter 4, we investigate the behavior of a pulse that has been
trapped in a cavity from frequency resolved measurement, and whose
resonance changes upon incidence of a pump pulse. With a physically
intuitive model, spectral features are elucidated.

e Research on switching 3D photonic bandgap crystals is performed in
Chapter 5. We identify two different switching regimes, in picosecond
and in femtosecond timescales. The former regime is caused by caused
by free carriers and can be interpreted with a Drude model, the latter is
analysed in terms of two competing instantaneous effects. These two
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effects have ramifications on non-degenerate switching homogeneity,
and ultimately on instantaneous DOS switching.

Chapter 6 describes first-ever measurements of an atomic vapor, of
Cs, in an opal. The high strength of the atomic transition is shown
to strongly modify the opal’s reflectivity. Results are interpreted in
terms of a modified transfer-matrix model, taking into account both
the dispersion and the absorption of the atoms.



Chapter 2

Experimental setup and alignment

We describe an ultrafast two-color pump-probe setup [95; 96], which we use
to study semiconductor photonic structures (Chapters 3-5). In particular, we
show how background free differential reflectivity spectra can be measured.
We discuss both time-resolved broadband and frequency resolved detection.

2.1. Pump and probe beams

Figure 2.1 shows a schematic representation of our experimental setup. It
consists of a regeneratively amplified Ti:Saph laser (Spectra Physics Hurri-
cane) which drives two independently tunable optical parametric amplifiers
(OPAs, Topas) with a repetition rate of Q., = 1 kHz. The frequency of
both OPAs are computer controlled and have a continuously tunable output
frequency between 0.44 and 2.4 eV. If we assume a Gaussian profile, the
pulse duration is 7p = 140 £ 10 fs (measured at Epyyp = 0.95 eV),! and the
spectral width AE/Ey = 1.33% [98]. Transform limited pulses would have
a duration of 7p = 110 fs, and thus the pulses are nearly transform limited.
The delay stage is computer controlled and can introduce a path difference
of 40 cm to the probe, corresponding to a time delay of 1.3 ns, much longer
than typical recombination times in laminar structures or polysilicon, two
structures we perform measurements on. The resolution is 10 fs, and thus
much higher than the pulse durations. The pump is focussed onto the sample
under an angle of # = 15° by an achromatic lens of NA=0.01.

'7p denotes the FWHM of the pulse intensity, see e.g. [97], and was measured in an
autocorrelator.
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Figure 2.1.: Schematic drawing of setup. The pump and probe OPA’s (TOPAS)
are driven by a Hurricane (not shown) emitting 120 fs pulses. The pump pulses
are delayed via a delay stage. After the pulses pass through a chopper, both probe
and the pump pulses are separately monitored by diodes. The pulses are focussed
onto the sample via achromatic lenses, and the irradiance of the reflected probe
pulses are measured via an InGaAs diode R. The intensities of each monitored
and reflected pulse is sampled and held by a boxcar averager, which offers the
integrated irradiance to a PC, which stores every single pulse for later evaluation.
In the frequency resolved setup, we replaced the diode R with a spectrometer which
we operated in free-running mode, and thus not connected to the boxcar. Figure

lightly adapted from T. G. Euser [95].
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2.1. Pump and probe beams

Figure 2.2: Measured pump beam
focus diameters (2r, full width

200 i . i . i at half maximum, FWHM) vs.
= ] —_ f— pump frequency (B) compared to
= 175- 31 A i the diffraction limited focus size of
8 ] < :}f e a Gaussian beam (dashed curve).
§ 150 TN rr% e O Inset: The diameters were de-
S +\ i 2 AXO[-nQ]m] 0.2 termined by measuring the pump
S 1254 ‘*\\ R} | reflectance (shown for Epymp =
I | = measured \\\\\* 0.62 eV) of a cleaved Si wafer
E 1004 _calculated . [~~. scanned through the focus (B, left

05 06 0.7 0.8 scale) and fitting the derivative
Pump frequency [eV] (O, right scale) to a Gaussian

(dashed curve, right scale).

The peak irradiance for a focussed Gaussian pulse is given by

4v/1n 2G

NP (2.1)
T2r4Tp

I pump —

where r is the irradiance radius in the waist, and G the energy of the pulse.
Because r depends on the pump frequency Fpyump, the irradiance will depend
on pump frequency. It is therefore important to measure the pump radius,
so that the irradiance can be derived. In figure 2.2, we show the measured
pump diameters 2r at the focus for several pump frequencies. The diameters
were obtained by measuring the reflected irradiance of the pump beam as a
sharp-edged Si wafer is scanned through the focus (see inset). The reflected
irradiance is the integral of the light distribution in the focus, and is an
error function for a Gaussian beam. We therefore fitted the derivative of
the measured irradiance to a Gaussian, from which the widths are readily
obtained (see inset). The resulting diameters are compared to the diffraction
limited diameter under an angle of § = 15°, and excellent agreement is
obtained.

The probe beam is normally incident § = 0° on the sample, and is focused
to a Gaussian spot of 32 pm FWHM (at Epobe = 1.24 €V) at a small angular
divergence NA = 0.02. Because of the smaller probe focus with respect to
that of the pump, only the flat part of the pump focus is probed, resulting in
good lateral homogeneity. The reflectivity was calibrated by referencing to a
gold mirror. To avoid carrier generation by the probe, we verified during all
experiments that the probe pulses on the sample were ten times less intense
than the pump pulses.
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Chapter 2. Experimental setup and alignment

2.2. Broadband detection

We have performed two sets of experiments that differ through their detec-
tion schemes. In chapters 3-5 we will elaborate which of the measurement
schemes best fits the relevant purpose. In the first scheme, we measured
both the reflected probe as well as the pump and probe irradiance monitors
with InGaAs diode detectors. To reduce the noise caused by the low probe
powers, and the possible background caused by scattered pump light, a ver-
satile measurement scheme was developed to subtract the pump background
from the probe signal, and to compensate for possible pulse-to-pulse varia-
tions in the output of our laser [95; 96]. The pump and probe beams were
aligned in the same horizontal plane, but mirrored around the rotation axis
of the chopper, see figure 2.3. The chopper was synchronized to the repeti-
tion rate (2¢p of the Hurricane, but the rotation speed was so that only two
consecutive pump or probe pulses may pass the chopper, while the following
two pump or probe pulses are blocked. Because additionally the horizontal
position of the beams is mirrored by the chopper axis, the train of pump and
probe pulses is phase shifted by 7. At the focus, four permutations of pump
and probe beam occur: In (a), both the pump and the probe pulse pass the
chopper. A time 1/, later, the chopper blades block the pump pulse, but
pass the probe pulse (b). No pulse may pass in (c¢) (opposite to (a)), while
(d) is the opposite to (b): only the probe passes. The linear (unpumped)
reflectance is given by R"P = J"P — Jﬁg, where J"P is the detector signal at R
when the chopper is in position (d), while Jgg is the signal at R at chopper
position (c). To compensate probe pulse fluctuations, R"P is then ratioed
by the background-corrected probe monitor signals M"P, measured when
the chopper is at position (d) and (c). In a similar manner, the non-linear
(pumped) reflectance can be determined to be RP = JP — J, pg, where JP and

Jgg are the signals measured on R at chopper positions (a) and (b), respec-
tively, and is also ratioed by the corresponding probe monitor signals. This
process obviously requires the three detectors to store all four signals during
4/Qyep. When this happens, the differential reflectivity AR/R corrected for
background and fluctuations can thus be determined by

AR _ R°/MP — R"™/M"P
R ~ R /N[

(2.2)

To further increase the signal to noise ratio, we typically average over 1000
pulses, or 250 data points. In order to more precisely analyse data, all sig-
nals from the three detectors are stored while measuring. Before measuring
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2.2. Broadband detection

Figure 2.3: Detection scheme of the
broadband detection:  both the
pump and the probe pulses are syn-
chronized to the chopper, and ar-
rive simultaneously. The rotation
rate is a quarter of the repetition
rate. Then, all four permutations of
pump or probe are incident on the
sample. (a) Both pump and probe
pass the chopper. (b) 1/Q,ep later,

Pum@robe @
d
@ the chopper blades block the probe

@
the differential reflectivity, we separately measured the reflectance of a gold
mirror for all probe frequencies, and verified that the reflectivity obtained
agreed well to that measured independently with a cw setup.

We measured both the reflected probe as well as the pump and probe
irradiance monitors with InGaAs diode detectors. A boxcar averager, syn-
chronized to the pulse trigger, integrates and holds the detected signal before
being read out by a digital to analogue converter (DAC). The signal .J offered

to the DAC card by the boxcar, neglecting electronic amplification factors,
is equal to the magnitude of the time- and space integrated Poynting vector

S,
tint/2 1nt/2
JZ?TRQ/ S|dt = S22 ()2at
_tint/2 mt/2 /’LO
WRQQ/E—OE/ (exp(—4ln2t2/7(2;))2dt
o 2 J oo
5 [€o T TPF%
= — 2.
N o\ 2m@) 1 (23)

where the electric field F (¢) reflected by a perfect mirror onto the detector
can be separated in a Gaussian envelope F (t) of FWHM 7 and amplitude £
multiplied by an sinusoidal component with a carrier frequency wp in rad/s.?

pulse, but pass the pump pulse. (c)
Both pump and probe are blocked.
(d) Only the probe passes. Figure
courtesy of T. G. Euser.

Q

?This Slowly Varying Envelope Approximation (SVEA, see, e.g. [97]) can be applied to
pulses where 7p >> 1/wo, and where wy does not change over 7p, i.e., for bandwidth
limited pulses. For pulses whose envelope is broadened by interaction with a cavity,
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The squared oscillating term can be then integrated separately and yields
1/2, and the time integration can be taken to infinity because tiy >> 7p.
Since the integration time of the boxcar (tj,y ~ 150 ns) is much longer
than any probe interaction time, the dynamics of the sample is essentially
integrated over. The beam is collimated and has radius R. ¢y and pg denote
the permittivity and permeability of free space, respectively.

2.3. Frequency-resolved detection

In a second set of experiments, we made use of the large probe bandwidth and
we resolved spectral features with a spectrometer. Theses narrow spectral
features occurred in the microcavity samples discussed in Chapters 3 and
4, see, e.g, figure 3.5. We accomplish this with a spectrograph PI/Acton
SP-2558, using a 1024 channel InGaAs line detector (OMA-V), yielding a
resolution of 0.12 meV at 1.24 eV. The diode array is kept at a temperature
of 100K to reduce dark counts, measured to be 350 adu/(s pixel)), which is
then only 1 % of the counts due to probe pulses of several nJ. The dynamic
reflectivity was determined by referencing the reflectance to a gold mirror.
Even though the effective repetition period (€ep/2 = 1/500 Hz) of the
laser is equal to the minimum exposure time of the detector electronics (2
ms), the OMA-V was operated in free running mode, with an integration
time set to 1s, as no additional useful information was expected in single
shot measurements. The measured spectra thus consist of 1s-500Hz = 500
pulses. The observed spectrum, again without amplification and conversion
factors, is a Fourier Transform of F (¢):

2

J(w) = mR*(epe) , (2.4)

/ dtf (t)e™!

—00

where c is the celerity of light in free space. A pulse travelling in a medium of
changing refractive index can attain frequency components whose amplitude
are higher than when the pulse commenced its travel. In that case, the
ratio of the reflected pulse to a reference pulse, the transient reflectivity,
J(w)sample/J (W)ret may exceed unity for some Epyope.

the analytic expression obtained (eq. 2.3) is not valid, but the approximation of the
integration limits does not change.

3The probe interaction time is either 7p or @ /wo, whichever is greater, and is in the 100
fs to 1 ps range.
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Chapter 3

Dynamical ultrafast all-optical switching of planar GaAs/AlAs
photonic microcavities

3.1. Introduction

There is generally a great interest to store photons in a small volume. This
feat can be achieved in solid state structures with tiny cavities, with dimen-
sions of the order of the wavelength of light. Light is so strongly confined
in such cavities that large electric field enhancements occur. This field en-
hancement notably leads to large modifications of the emission rate of an
elementary light source embedded inside a cavity [91; 99]. It is highly desir-
able, both from fundamental and applied viewpoints, to switch the optical
properties of cavities on ultrafast time scales [66; 100; 101]. This ultrafast
switching of cavities will allow the catching or releasing of photons, changing
the frequency and bandwidth of confined photons, and even the switching-
on or -off of light sources [83; 84; 86; 102; 103]. It is therefore important
to systematically study the dynamic behavior of switched cavities. Surpris-
ingly, such studies are scarce. Recently, Almeida et al. studied relaxation at
two frequencies for a large 10 micron diameter Si ring resonator, revealing
decay times of 0.45 ns [81]. Here, we use broadband tunable femtosecond
pump-probe reflectivity to study the dynamics of planar thin A-microcavities
made from III-V semiconductors, an important class of solid-state cavities
that are notably used in vertical-cavity surface-emitting lasers [76].

3.2. Experimental setup: sample and linear reflectivity

The experimental setup has been described in Chapter 2. Our sample con-
sists of a GaAs A-cavity with a thickness of 275.1 + 0.1 nm. The layer is
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sandwiched between two Bragg stacks consisting of 12 and 16 pairs of /4
thick layers of nominally pure GaAs or AlAs. The microcavity is supported
by GaAs substrate of thickness 200 4+ 20pum. The sample, made by Y.-R.
Nowicki-Bringuier using the molecular beam epitaxy facilities of the CEA,
Grenoble, is grown at 550°C to optimize the optical quality (see section
3.3.1). For experiments outside the present scope the sample was doped
with 101%m ™2 InGaAs/GaAs quantum dots, which hardly influence our ex-
periment.! The sample’s dimensions were 2-y = 11 mm -2 mm. Continuous-
wave (cw) reflectivity was measured with a Fourier-Transform spectrometer
(BioRad FTS-6000, resolution 0.25 meV) and a supercontinuum white light
source (Fianium) [54] focussed onto the sample with a microscope objective
NA = 0.12.

3.3. Results: dynamic cavity resonance

3.3.1. Linear reflectivity

Figure 3.1 shows a cw reflectivity spectrum of the planar photonic microcav-
ity at normal incidence. The high peak between 1.192 and 1.376 eV is due
to the stopgap of the Bragg stacks. The stopband has a broad width AE
= 184 meV, or 14.3% relative bandwidth, which confirms the high photonic
strength. At both the blue and the red side of the stopgap we observe Fabry-
Pérot fringes. The Fabry-Pérot fringe at 1.15 eV exceeding 100 % is due to
some chromatic abberation in the focus. Near E.,, = 1.279 eV we observe a
sharp resonance caused by the A-cavity in the structure (see inset): when the
cavity thickness is K\/2 (K is an integer), the cavity acts as a Fabry-Pérot
étalon and a standing wave of wavelength A = he/n/ Epyope forms in the cav-
ity [107] (Planck’s constant is h and the real part of the refractive index is n').

The resonance has a linewidth Agfoas = 1.7 meV, corresponding to a quality
factor QE° =7 50.2 A transfer matrix (TM) calculation including the dis-

!The maximum unsaturated unbroadened refractive index change of the dots amounts to
only 10™®, while the absorption at resonance is less than 50 cm™'. Here, we modeled
the QDs as Lorentz oscillators with an oscillator strength of f = 10, a height of 7 nm
[104], and a FWHM width at 300K of I' = 10 meV [105]. Interband absorption was
comparable to our calculated intraband absorption for our probe frequencies [106].

*The definition of the quality factor @ of a damped oscillator is 27 (Energy
stored)/(Energy loss per cycle). Ecay/Q is the FWHM of its intensity frequency re-
sponse, and also the intensity decay constant. The spectral width of the reflectivity
trough of a microcavity is related to Ecay/Q, but not necessarily equal to it. In the
following we will denote observables derived from the width of the reflectivity by the
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persion and absorption [108; 109] of GaAs and the dispersion of AlAs [110]
reproduces the experimental resonance, stopband, and Fabry-Pérot fringes
well. The only free parameters in the model were the thicknesses of the
GaAs (dgaas = 68.78 2 0.03 nm) and AlAs (dajas = 81.90 + 0.03 nm). The
() calculated from the TM model Qﬁ?}& is 1714, which is more than twice the
measured value. The main reasons for the discrepancy are spatially varying
resonances and wavevector spreading due to a finite NA (see below).

For different positions on the sample, both the resonance and the width
changed, while the relative width remained constant. The cavity resonance
varied smoothly in z-direction over 50 meV, with a gradient of dE.,,/dx =
m = 4.55 meV/mm. The lineshape due to spatially varying resonances is
different for every position. Thus, this lineshape is inhomogeneously broad-
ened. Homogeneous broadening results from wavevector spreading, and is
the same for every sample position. The inhomogeneous lineshape Iinhom is
given by

r T Al "2
_ Jo f—ﬁz dpdRInom (E — Eeay (6, R))r? cos?(¢)e ! (2)72

firnon () /2 41n(2) B2 )
for ffﬂ/z dpdRr? cos?(0)e” n(2) 7y
and
' ffmax dIL(E — F', A)e_“n(z)% tan(0) sec?(6)
hm Ihom(E) B tan2 (6 . (31)
@0 —41n(2) (9)

faemax dfe tan” (0max) tan(f) sec(6)

Here, the homogeneous lineshape I}, depends on three factors: a., the an-
gle dependent intrinsic Lorentzian resonance L(E — E’()),A) of FWHM
width A and resonance E'(0) = Ecay/ cos(f), b. the maximum angle 6.«
subtended by the focussed beam at the focus, and c. the intensity distribu-
tion of the probe beam at the lens. This intensity distribution is modeled
as a Gaussian of FWHM tan(fax). Only a small part of the intensity dis-
tribution is focussed through the lens as the beam has been collimated by
a diaphragm. The inhomogeneous lineshape is the homogeneous lineshape
integrated over the focus of radius r. The integration is over radius R and
azimuthal angle ¢, and is weighted by the intensity distribution in the focus,
assumed to be a Gaussian of FWHM r.

subscript w, unswitched by the subscript 0, and measured/calculated with the super-
script meas/calc, respectively.
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Figure 3.1.: Continuous wave reflectivity spectrum (open circles) at normal incidence

of sample with a resolution of 0.25 meV. The resonance of the \-cavity (Qf;;egs =

750) can clearly be seen at E.., = 1.279 eV (see inset). The solid curve is a transfer
matrix calculation that includes the dispersion and absorption of GaAs and AlAs.

For A = Ecay/ anlc and an external NA=0.12 (internal NA=0.12/n.g =
0.038), the width from Iy, is 2 meV, or a Q = 621. Inhomogeneous broad-
ening yields ) = 606, reasonably close to Q" = 750. Inhomogeneous
broadening is thus negligible for the estimated beam radius of » = 50um and
for high NA. For an experiment NA=0.02/n.g, the @, from homogeneous
width is Q = 1612, while the inhomogeneous broadening ),, = 1389, also
close to Q§° = 1242 (fig. 3.5). For this configuration, the spatial distribu-
tion of resonances is much more important, just as for larger focus radii (e.g.
r = 0.1 cm): the angular spread of wavevectors is negligible, @Q,, yielding
135 and 133 for NA=0.02/netx and NA=0.12/n.g, respectively. We conclude
that our model gives a good estimation of the observed linewidths, and that
therefore the different linewidths observed in the two different setups are
due to a combination of wavevector spreading and, to a lesser extent, spa-
tially changing resonance conditions. Because ;" depends on these two
factors, in the following all relative changes will be stated with respect to

oS = 1242.

w,0
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3.3.2. Dynamic reflectivity

We dynamically probe the excited cavity by time-resolved pump-probe re-
flectivity. The consistency of our data is verified in 5 experimental runs.
Near pump and probe coincidence (i.e, probe delay At = 0 fs), the differen-
tial reflectivity at the unswitched cavity resonance briefly decreases during
an interval Aty = 218 £ 5 fs full width at half minimum (FWHM), see
figure 3.2a. This value agrees well with v/27p = 200 & 15 fs for the cross-
correlation of the pump and probe pulses, which signals an instantaneous
non-linear process. Figure 3.2a shows an increase of reflectivity at longer
probe delays. This is the result of the excited free carriers [111; 112] that
decrease the index and thereby blueshift the cavity resonance. After about
50 ps, the changes in differential reflectivity have nearly vanished due to the
recombination of the free carriers. Decay constants for probe frequencies
much outside the cavity resonance yielded a factor ~ 2 shorter decay times.
While other authors have limited their studies to either the reflectivity at
two frequencies [66; 78-82; 113] or to the reflectivity at two probe delays
[102], we probe at all frequencies and delays which allows us to extract the
dynamic cavity resonance, and to assess effects of dynamic broadening.

To dynamically track the cavity resonance, we have measured the time-
resolved differential reflectivity for a large spectral range, see fig. 3.2b. The
data clearly demonstrate the free carrier induced blue shift: the differential
reflectivity increases at high frequencies and decreases at low frequencies.
From the data we have extracted the time-dependent cavity resonance.?
Between 0 and 7on = 6 ps, the cavity resonance quickly shifts to higher
frequencies. The maximum shift is AFE.,, = 4.8 meV, corresponding to
4.7 times the unswitched linewidth A{*°® (cf. figure 3.1). Subsequently,
the frequency of the resonance returns to the unswitched case with a time

3We have derived the wavelength of the cavity resonance by using the identity

d(AR/R) 1 dR(At,v) dRo(v)
— CELY)  R(AL )2\
dv Ro(v)? Ro(v) dv R(Atv) dv
where Ro(v) is the unswitched reflectivity, R(At, v) is the switched reflectivity at delay

At, and v is a shorthand for Eprope. Setting %f’y)

extremal condition for the cavity resonance, we obtain

= 0, which is the necessary

d(AR(At,v)/Ro(v)) L R(At,v) dRo(V)‘

0= dv Ro(v)? dv

Thus, the dynamic resonance wavelength is completely determined by the experimental
data.
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Figure 3.2.: (a) Differential reflectivity versus probe delay at a wavelength close to
the cavity resonance measured at a different sample position than the cw reflectivity
(figure 3.1). The time resolution is 2 ps. Close to At = 0 ps we took an additional
scan at high time resolution (30 fs), which shows a trough with a width of ~ \/27p
around At = 0 fs, indicative of instantaneous probe absorption. (b) Differential
reflectivity versus probe delay and frequency (resolution: 6.4 meV). At At > 100
fs, AR/R increases (decreases) at the blue (red) edge of the cavity, indicating a
blue shift of the stopband and resonance. The extracted cavity resonances (B) are
connected by a guide to the eye (solid curve). The pump and probe intensities are
Ipump = 180 £ 18 GWem™? and Iprobe = 7+ 2 GWem™ 2, respectively.

constant Topp of 57 4+ 2 ps.

To investigate the dynamic behavior of the cavity in more detail, we plot
in figure 3.3 the differential reflectivity versus frequency at selected delays.
When the probe pulse arrives before the pump pulse (At = —2 ps), AR/R
is slightly negative, but shows some spectral features. Since the probe pulse
takes a time 2dneg/c = 2 - 200 - 10~ %m-ngaas/c = 4.7 ps to pass through the
sample twice, the probe meets the incoming pump pulse on reflection from
the rear side of the substrate [95]. The bandwidth of the probe however now
matches the linewidth of the cold cavity. Since the cavity resonance has now
shifted with respect to the unswitched cavity resonance, only the blue wing of
the probe spectrum may pass through the microcavity. A model taking into
account the probe spectrum, the switched and unswitched cavity resonance
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Figure 3.3.: Differential reflectivity versus probe frequency for selected probe delays.
The curves are transfer matrix calculations, the vertical bars indicate the frequencies
of the cavity resonance.

and linewidth excellently reproduces the observed features. However, all
combinations of free carrier absorption and rear reflection coefficient yielded
a differential reflectivity spectrum whose magnitude was two orders higher
than the observed one, and whose spectral position was red shifted by 15
meV with respect to the measured spectrum (not shown). From this analysis
we conclude that the dynamics of a narrowband probe pulse being subjected
to a rapidly changing refractive index may be more subtle than assumed. At
pump and probe coincidence, the differential reflectivity has decreased and
reveals a broad minimum. The decreased reflectivity is attributed to non-
degenerate two-photon absorption, since the sum of the pump and probe
frequency Erotar = 1.99 eV is much above the optical bandgap of GaAs
(1.44 eV). At At > 0 ps, the differential reflectivity acquires a dispersive
shape, typical for the shift of a resonance. Until At = 6 ps, the amplitude
of the dispersive differential reflectivity increases in magnitude, due to the
cavity’s resonance shift, indicated by the bars in figure 3.3. By interpreting
the measured differential reflectivity at 6 ps with a TM calculation that
includes an extended Drude model to account for the excited carriers (see
below), we obtain a carrier density of N = 1.22 x 101 cm=3.4

4From this density we infer a degenerate two-photon absorption coefficient of 8 = 0.43 +
0.09 cmGW ™1,
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3.3.3. Dynamic carrier density and refractive index

A quantitative analysis requires a mapping from the dynamic complex re-
fractive index n to N. For free electrons, this mapping is provided by the
well-known Drude model [68]. Here, difference in n due to free carrier dis-
persion can be approximated as

2 2
An = An + Ain” = ——L 5 + i i : (3.2)
2nowg QWSTDTLI

where w% = Ne?/meeg is the plasma frequency squared in (rad/s)? and e
and m, are the charge and mass of an electron, ng = ngaas, and 7p the
Drude damping time. Equation 3.2 is valid for (wrp)~! << 1, which is the
case for our probe frequencies and damping times.

However, the Drude model must be extended to correct for several limita-
tions. First, since we excite both electrons and holes, both their masses in the
energy bands must be included in the model. The mass m. is thus replaced
with their effective optical mass m*.> Second, the electrons are not amenable
to polarization within dephasing time 75, and so will not exhibit Drude dis-
persion. Moreover, the electrons will first relax within the conduction band
by emission of LO-phonons. During this time we clearly see a dynamic blue
shift of the cavity resonance. Using the Drude model before 7o, = 6 ps is
therefore unphysical, where 7o, compares favorably to literature [72; 76].
Third, as soon as the carriers have dephased and thermalized, the relation
between N and n” is essentially governed by a constant momentum relax-
ation time, the Drude damping time 7p, which is the mean free time before
an elastic collision. For low carrier densities (N < 10?2 m~3) this assump-
tion is correct, as electrons scatter with phonons at a rate I'e_pp ~ 1/250
fs [115] (see below). At higher densities, the trajectory of carriers is addi-
tionally influenced by the Coulomb field of others, and the scattering rate
I'.. = YN'/P | D being the dimensionality of the system [70; 116]. We found
best agreement for a proportionality constant v = 10° m/s, which is be-
tween the values quoted by [70] and [117] obtained for bulk GaAs. Finally,
while the Drude model accounts for the absorption due to excited electron
transitions within one conduction band (intraband transitions), it does not
account for transitions between bands (interband transitions). From [118],
we extrapolated the corresponding absorption cross-section to be 5.6 - 10723

m?.

®The effective optical mass m* = mimj,/(mi 4+ m}), where the superscript * denotes the
mass in the bandstructure. Values from [114]
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We fitted the differential reflectivity from the TM model including the
extended Drude model to our measured data for probe delays At > 6 ps
with one free parameter, N (figure 3.4(a)). After the maximum density of
N = 1.22 x 10" cm™3 at At = 6 ps, the carrier density decreases with
an exponential time constant of 57 & 2 ps due to recombination. This re-
combination time is an important parameter in switching applications, e.g.
modulators, as it determines the maximum switching rate between state
‘on’ and ’off’. If we assume that the recombination has ceased at 100 ps,
the switching rate is 1/100 ps = 10 GHz, one order of magnitude faster than
previously reported [81], but comparable to [100], where ion implantation
was used to reduce the recombination time in Si, albeit at the cost of a de-
graded cavity linewidth. The maximum switching rates of microcavities may
further be tenfold increased [119] by growing samples with a larger number
of recombination centers at the GaAs/AlAs interfaces.

From the free carrier density N and the extended Drude model, we have
also calculated the time-dependent real (n’) and imaginary (n”) parts of
the refractive index of the GaAs layers (figure 3.4(b) and (c)). The real
part mostly determines the shift of the resonance wavelength, whereas the
imaginary part allows to assess possible changes of the quality factor @Q,,.
The real part decreases by Ang, . = —0.025 £ 0.003, or 0.7%, correspond-
ing to 4.5 + 0.5 meV, or 4.4 + 0.5 linewidth shift, in agreement with the
4.7 linewidth shift determined previously. The imaginary part increases
to ng,as = 0.71 x 1073 due to the free carriers, before returning to the
unswitched value. From the maximum value of n” at 6 ps, we estimate from
a TM calculation that Q‘{Ualg is 0.6 times the unswitched cavity Q.

Near At = 0 fs, the imaginary index is briefly as large as n” = 1.6 &+
0.3 x 1072, corresponding to a decrease of Qfﬂa’loc to 7.7% of its original
value. Here, n” was obtained by fitting a TM calculation with a complex
n to the measured differential reflectivity (figure 3.3), and corresponds to a
non-degenerate two-photon absorption coefficient for GaAs of G195 = 17+ 3
cmGW ™!, in agreement with 312 = 10 cmGW ! derived from ref. [120].
While this period of relatively high absorption lasts rather briefly, it is rec-
ommended to keep the sum of the probe and pump frequencies below the
optical bandgap of the constituent materials or to reduce the pump fluence.
In the next section, we will measure the linewidth dynamically.
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Figure 3.4.: (a) Carrier density versus probe delay as obtained from the differential
reflectivity using the extended Drude model at delays of 6 ps and longer. We have
fitted a single exponential (dashed curve) to the carrier density with Topp = 57 + 2
ps. (b) Change in real part n’ and (c) imaginary part n” of the refractive index n
calculated with the extended Drude model and the carrier density.

3.4. Results: Dynamic linewidth

3.4.1. Linear reflectivity

The large probe bandwidth relative to the cavity linewidth offers the possi-
bility of directly resolving both the switched as well as the unswitched cavity
resonance. Figure 3.5 shows the reflected spectrum of the microcavity mea-
sured with our OPA, along with a reference spectrum. The Gaussian shaped
reference has a width of 17.2 meV, or 1.35 % relative width, in excellent
agreement to the 1.33 % measured previously [98]. The width of the cavity
resonance is Ag* = 1.03 meV centered at 1.2783 eV, or Qy§® = 1242.
Compared to our previous measurement (figure 3.1), the quality factor is
nearly 50% higher. The seeming disagreement is partially because this setup
had a lower NA=0.02 compared to an NA=0.12 for the cw reflectivity (cf.
section 3.3.1). An improved beam collimation also agrees with the deeper
transmission minimum of 12% with respect to 30% in figure 3.1, explained
by the reduced wavevector spreading.

A slight misorientation of the reference gold mirror caused a reference
spectrum of around twice the expected magnitude, which, while it causes a

possible decrease in modulation depth, does not affect the Q5" [49]. Since

44



3.4. Results: Dynamic linewidth

O
@]

T .
Gold Reference £
Microcavity

000X
0 O 0 ooy

OXPEL 8

QX

Q ="1242

1.26 1.28
Frequency [eV]

1.30

Figure 3.5: Reflected
irradiance  averaged
over 500 probe pulses
from a gold mirror [J
and from the micro-
cavity . The QyF*
is 1242 The gold
reference has been
scaled by a factor
1/2, and the fine
Fabry-Pérot  fringes
have been removed
by high-frequency
filtering (see section

4.3).

the reflectivity at the far edges of the cavity resonance was earlier measured
to be near 100 % (see figure 3.1), we can correct for this misorientation
as done in figure 3.5 without fearing a modified Q}F®. In addition, the
probe spectra varied in width by 1.3 meV during our measurement, which
we correlate with slowly varying laser power oscillations. The varying probe
spectra caused the baseline of the reflectivity to fluctuate, and in addition
to exhibit some varying slant. To reduce these effects, we averaged over
500 pulses. Finally, a thin window in front of the line detector gave rise to
fine Fabry-Pérot fringes, which we removed by high-frequency filtering. We

describe in detail how the data is processed in section 4.3.

3.4.2. Dynamic linewidth

Figure 3.6a shows reflectivity of the probe at different probe delays. To verify
that heating effects and irreversible damage was not occurring at our pump
intensities of Ipymp = 219 £ 22 GWem ™2 and pump frequencies Epump =
0.73 eV, we averaged switched and unswitched spectra by halving the pump
repetition rate, and operating the spectrometer in free-running mode for
the duration of 1 s. The resulting spectra are thus averages of switched
and unswitched cavity resonances, with 1 s -0.25 kHz = 250 spectra each.
Because the switched and unswitched spectra are taken in turn, separated
by a time interval of only Qr_ello, both spectra were taken under the same
experimental conditions. The unswitched cavity resonance is clearly seen at
1.2783 eV. The width of the unswitched cavity resonance does not increase
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Figure 3.6.: (a) Transient reflectivity spectra J(w)/Jief(w) of averaged switched and
cold cavity vs. probe delay, corrected for varying pump intensities and Fabry-Pérot
fringes due to window in front of line detector. The switched cavity resonances (R)
are plotted with the half maxima of the red and blue edge (O and ) of the cold
and switched cavities. While the pumped cavity shifts by 8.5 cold linewidths, there
is no effect of heating or irreversible damage visible in the cold cavity. (b) Two
cross-sections of (a), at At = 8 ps, and At = 58 ps, where the arrows indicate the
resonances of the switched cavity. The pump and probe intensities are Ipymp =
219+ 22 GWem™? and Ipyobe = 7+ 2 GWem ™2

in the slightest, as shown by the half maxima (open squares). We therefore
conclude that there are no permanent damage or heating effects. The second
trough emerging at 1.287 eV at At = 6 ps is the switched cavity resonance.

At positive probe delays the cavity shifts by as much as 8.7 meV, or 8.5 cold
cavity linewidths, and decays with a 1/e time constant of 7,4 = 38 ps (black
curve), although the agreement to an exponential is only moderate, and this
decay time is around 20 ps shorter than determined previously. We will
revisit the non-exponential and faster decay time shortly. To compare the
magnitude of shift to figure 3.2, we find that the ratio of frequency differences
between the switched and cold cavity resonance is 8.5 meV /4.8 meV = 1.8
times higher. The largerQShift is mostly due to the higher pump irradiance
by a factor 2L=22CTRAR_ — 199 + (.17, leading to a 1.22% = 1.49 + 0.35
larger shift. This is in good agreement to the measured factor 1.8. We thus
conclude that the shift is compatible to excitation by two-photon absorption.

In figure 3.6b, we examine the reflectivity at two probe delays more closely.
At the red edge of the switched cavity resonance we observe a reflectivity
above that of the unpumped resonance. We will discuss this feature in
Chapter 4. Moreover, the switched cavity resonance is not symmetric: its
gradient at the red edge is substantially lower than at the red edge.
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Figure 3.7.: Observed A™°* (R) vs. probe delay from figure 3.6 with a guide to the
eye (solid curve). On the right scale the corresponding QQ%*5. The linewidth of the
unpumped cavity resonance is shown by [].

To quantify the broadening, the dynamic A™* is plotted against probe
delay (figure 3.7). At negative probe delays, A™ is 1.03 meV before in-
creasing by a factor of 2.9 to 3 meV at At = 6 ps. At At = 100 ps, the
linewidth has decreased to its original value. We note that probing the dy-
namic cavity resonance at all At at two distinct frequencies, or probing at
all frequencies at a few At as previously done in literature is insufficient
to resolve these subtle dynamics. Moreover, broadening has hitherto been
overlooked in literature. This neglect is surprising as the modulation depth,
crucial to the performance of switching applications, depends critically on
the amount of induced broadening.

Before interpreting the nonexponential decay and the assymmetric dy-
namic cavity resonance, we plot the relative linewidth versus the shift in
cold linewidths (figure 3.8, open squares). For small shifts AFE..,/Ag < 2.5,
the broadening is AF*°®/A7* < 10%. For larger shifts, the A™ de-
grades rapidly, but has a point of inflection at ~ 4A E.,, /AF* after which
the decrease progresses less rapidly. We have calculated the expected rela-
tive decrease Q¢21¢/ qua}g with the same extended Drude model as previously
(solid line), also showing the expected broadening using the carrier density
from figure 3.4. The agreement is moderate, the calculated relation yielding
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calc

larger broadening for AFE.,, / A()’w < 3, but lower broadening at larger shifts.
We can partially resolve the apparent disagreement by two additional cal-
culations. First, because of the high recombination velocity S7 at the AlAs
on GaAs [121], but especially for the GaAs on AlAs interfaces (S2) [122],
the carrier concentration gradient will be higher in the direction of the beam
propagation than normal to it. Due to Fick’s law, which relates the carrier
gradient to the diffusion constant, the diffusion in the beam direction will
be greatly enhanced compared to the directions normal to it. The carriers
effectively move in one dimension. This is in contrast to refs. [70; 117] who
studied bulk GaAs for their measurement. The diffusion is one dimensional
and 1/7p is related to N, not N'/3 (see section 3.3.3). In figure 3.8 we have
plotted the relative decrease in gualoc vs. relative linewidth by calculating
1/7p = Te_ph + 7N, where v/ = 2-10712m3/s (dashed curve).® The agree-
ment of the 1D diffusion model to our data is better. Both an onset of a
plateau and the point of inflection are reproduced. The dominance of dif-
fusion in beam direction is also proposed as the explanation why the decay
time for probe frequencies close to the cavity resonance is so much longer.
In the cavity, and at probe frequencies corresponding to the cavity reso-
nance, the probe field is strongly enhanced, which it preferentially probes.
For one-dimensional diffusion, the total decay rate can be written as [121]

1/mtot = 1/mr+1/7nvr+ (S1+ 52)/d,or
d
Ttot pre (3.3)
T (54 5

where 7r and Tnygr are the radiative and non-radiative recombination rates
in the bulk GaAs, respectively, and d the thickness of the A\ cavity. Using
an internal efficiency of > 20% [121], and a radiative decay constant of
2-10710 m3/s [123], we find that the first term in the denominator is 2 to
3 orders of magnitude higher than the second for 1m/s< (S 4+ S2) < 100
m/s [121]. While these values give a relative increase of only 1% for a four
times thicker layer, the surface recombination velocities and bulk decay rates
should be determined before conclusive evidence is presented. In conclusion,
we have showed that the measured decay rate grows with layer thickness, in
agreement to the data.

Second, the resonance is additionally broadened due to the finite shift
accrued in the pulse interaction time. This can be seen in figure 3.6(a), where
the minima of the dynamic cavity resonance are not centered between the

In the absence of literature values, we normalize 7' to v at 10*°m 3.
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half maxima, but weighted to the unswitched resonance, the frequency the
cavity resonance is relaxing to. For short probe delays, the interaction time is
short, as the resonance has broadened due to free carrier absorption, but the
cavity resonance velocity is large. At longer probe delays, the situation has
reversed: the velocity has become negligible, but the interaction time is close
to its unswitched value. The measured linewidth is thus a combination of the
two effects. Calculations taking into account both the interaction time from
the inverse linewidth derived above and the velocity from the derivative of
the dynamic cavity resonance however were unable to reproduce the observed
features. We thus conclude that while one dimensional electron diffusion is
partially responsible for the plateau-like behavior in fig. 3.8, a simple model
taking into account the frequency change of the resonance within the pulse
interaction time does not further improve the agreement. Here, a more
precise knowledge of the pulse interaction time might provide more insight.

The dependence of lineshape on pulse interaction time and resonance ve-
locity is also the reason why the dynamic resonance lineshape is asymmetric
and why the decay seems nonexponential: the lineshape seems to consists
of several instantaneous troughs, each shifted by an infinitesimal amount in
frequency, but weighted with the remaining irradiance in the cavity by an
exponential. This new lineshape gives rise to a trough between E.,, at the
begin of the shift and E.,, + § when the exponential vanishes. The minima
thus depend on the velocity, initial lineshape and interaction time, and can-
not be identified with one given At. Therefore, the minima cannot be fitted
with an exponential dependent on our At.

For future switching applications it is necessary that the broadening be
limited, where the limitation is given by the required modulation contrast.
In this context it would be useful to investigate experimentally what the
broadening vs. shifting relation is for cavities of arbitrary (). Initial calcula-
tions on TM models have indicated that high ) cavities are less susceptible
to broadening for any given relative shift.

3.5. Conclusions and recommendations

In summary, we present unprecedented frequency-resolved dynamic behav-
ior of a cavity resonance, with femtosecond resolution. Our experiments
were optimized for spatially homogeneous switching by two-photon excita-
tion. This feature facilitates a physical interpretation of the free carrier
effects with an extended Drude model, including both the carrier density
dependent Drude damping time and interband absorption. At pump and
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probe coincidence, we observe a strong decrease in reflectivity which we as-
cribe to non-degenerate two-photon absorption. In this case, we infer from a
Transfer-Matrix model that Q¢ decreases by a factor 12.9. When the free
carriers have thermalized (At = 6 ps), the greatest observed shift is as high
as 4.8 meV, or 4.7 cold cavity linewidths.

By additionally spectrally resolving the reflected probe pulses, both the
shifted cavity resonance as well as its lineshape can be determined. At
shifts of up to 8.7 meV, or 8.5 cavity linewidths, the resonance broadens
by up to a factor 2.9, the width being a combination of absorption due to
free carrier absorption and the finite probe pulse duration coupled with the
velocity of the dynamic resonance. We show that this broadening remains
< 10% for shifts of up to 2 linewidths. While literature often focusses on
on/off switching obtained by measuring transmittance of a narrowband light
source at the unpumped cavity resonance, we show for the first time that
broadening due to free carrier absorption may intrinsically limit performance
of this switching scheme if shifts in excess of 2 linewidths are desired. A
Transfer-Matrix model coupled with the extended Drude model is used to
estimate the cavity resonance broadening vs. shift. When movement of
carriers is one dimensional, as is shown to be the case, the model yields
good agreement, which can further be improved by closer inspection and
optimization of parameters. Additional preliminary calculations indicate
that cavities of greater quality are less susceptible to broadening for any
given shift in cold linewidths.

For further analysis it seems essential to understand the relation between
the dynamic width of the resonance and its dwell time. Not only might
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knowledge of this relationship elucidate apparent discrepancies between the-
ory and measurement, but it would enable the tailoring of cavities to match
the needs of certain time-resolved experiments. Determination of () is espe-
cially significant for strongly switched cavities, in which the linewidth is not
only affected by free carrier absorption, but also by the finite recombina-
tion velocity in addition to the finite probe duration. Determination of the
intrinsic linewidth is complicated by finite NA, surface roughness, spatial
distribution and finite absorption in the GaAs even well below the bandgap.
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Chapter 4

Dynamics of light in an ultrafast switched cavity

4.1. Introduction

Cavities are photonic structures which can strongly confine light. Photonic
crystals hosting cavities are of special interest, as not only can high quality
factors (@) be achieved in these cavities [124], but also small mode volumes
V', which is advantageous for high Purcell factors [99]. The @ factor, de-
scribing the measure of a mode’s time duration to store energy, originates
from mechanical oscillators. Cavities have been hailed as means to control
emission of light [91], to emit single photons [125], to enhance light-matter
interaction [92], and to trap and release photons [83; 86]. For cavities to
be useful in applications such as optical modulators [78; 80; 113] or wave-
length converters [82], it is necessary to switch them on ultrafast time scales.
While switching of cavities has often been demonstrated [81; 100; 126], the
dynamics of light during the switching process has scarcely been described
analytically. This scarceness of theory is surprising, as switching cavities
has been viewed in analogy with a simple system such as a resonant guitar
string, which is made to change its resonance by dynamically changing the
length of the string [84; 103]. Bret et al. not only succeeded in changing
the bandwidth of a captured pulse in a macroscopic cavity, but described
the process theoretically [86]. A similar experiment was later performed on
a micrometer scale [87]. Yacomotti et al. mathematically described spec-
tral features observed in reflection when a pump pulse switches a cavity
containing a probe pulse [88]. While finite difference time domain (FDTD)
calculations have produced results that match experiments well [103] or pre-
dict results later to be verified experimentally [84; 85|, they do not provide
physical insight on the underlying phenomena. In this chapter, we will show
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pump-probe experiments performed on a planar microcavity at both nega-
tive and positive probe delays, and present a physical model which explains
many of the observed results.

4.2. Experimental setup and linear reflectivity

The sample and experimental setup have been described in detail in the
previous chapter, in which the detection is frequency resolved. Figure 3.5
shows the spectrum of a probe pulse reflected from a gold mirror. The
spectral width of 17.2 meV, or 1.35% corresponds excellently to the relative
width of 1.33% measured on a different occasion with an alternative spec-
trometer. For a Fourier-limited Gaussian pulse, the pulse duration should
be 7p = 210.441/(0.0133wy,) = 106 fs, where wy, is the carrier frequency of
the laser of wy, = 1.95 - 10! in rad/s. Comparing the Fourier-limited pulse
duration to the measured duration of 140+ 10 fs, we conclude that the pulse
has some chirp.

In the same figure, we also show the spectrum of a probe pulse reflected
by the microcavity. The deep trough at Ey = 1.2783 €V is due to the cavity
resonance, which has a FWHM width of A§*** = 1.03 meV, or a quality
factor estimated from the spectral width of Fy/Afe* = Qp§° = 1242.
From this @) value, the 1/e intensity cavity time (or photon dwell time 7,y )
is given by Q) /wg = 640 fs, where wy is the cavity resonance in units of rad/s.

4.3. Data processing

In most of our pump-probe switching experiments, we measure the reflected
pulse’s spectrum for both positive as well as negative probe delays, averaged
over switched and unswitched spectra. For details see section 3.4.2. The
averaging serves to verify that no degradation was occurring, as would im-
mediately be visible by the changed unswitched cavity lineshape. Figure 4.1
shows such an averaged spectrum divided by a reference. We observe fast
oscillations of a period 0.33 meV, which we attribute to Fabry-Pérot fringes
originating from the thin window in front of the line detector. The oscilla-
tions are removed by smoothing with an FFT filter removing all frequency
components greater than 1/(0.36 meV). We verified that the modulation
depth of the cavity resonance was not affected. Moreover, at frequencies
outside of the cavity resonance, the transient reflectivity is close to 50 %,
and exhibits a slight slant, which changed in time. The sub-unity reflectivity
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Figure 4.1.: Raw spectra of an averaged switched and unswitched cavity resonance
at probe delays of At = —1 ps and At = 18 ps, divided by a reference. The slant is
due to the laser frequency and irradiance varying in time, while the sub-unit offset is
caused by a slight misalignment. The slant is numerically corrected for by dividing
through a straight line (dashed line), the fine oscillations of period 0.33 meV were
removed by high-frequency filtering.

is attributed to a slightly misaligned reference mirror. The changing slant
is due to long-term laser carrier frequency oscillations of 1 meV, which were
coupled to irradiance fluctuations. The change in carrier frequency can be
observed in figure 3.5: upon close inspection of the reference spectra’s red
and blue tails, a minute blue shift with respect to the cavity spectrum can
be observed. The slant is corrected for by ratioing the measured spectrum
to a straight line that is drawn through the spectra outside the cavity reso-
nance (see figure 4.1). We had previously measured linear reflectivity with
a broad-band Fourier-Transform Interferometer, and had confirmed on nu-
merous occasions that the sample’s reflectivity was close to 100 % outside
the cavity resonance (see, e.g., fig. 1 in the previous chapter).

4.4. Negative probe delay

Figure 4.2(a) shows the differential reflectivity as a function of probe delay
and frequency. Around FE,,,cqv = 1.279 €V, which is the cavity resonance
for this measurement, we observe a large positive differential reflectivity at
negative probe delays, while at either side of the resonance slightly negative
AR/R can be observed. These spectral features can only be explained by
a broadening of the switched cavity resonance before the incidence of the
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probe. We speculate that the reason for this broadening lies in the probe
pulse reflecting from the sample’s rear side, and encountering the altered
cavity lineshape, which is the result of the pump having arrived in the mean
time. Similar behavior has also been encountered in the previous chapter.
As from At = —0.5 ps, the additional large negative AR/R at the blue edge
of the cavity resonance indicates that the carriers created by the leading edge
of the pump pulses are probed by the trailing edge of the probe pulses, which
results in a shift of 0.7 meV, or around 0.7 cold cavity linewidths. At coin-
cidence, the cavity resonance is estimated to shift in excess of 2 cold cavity
linewidths. Most markedly however, are the presence of fringes which occur
on either side of the cavity resonance. With decreasing negative probe delay,
they fan out until they diverge and disappear at coincidence. To investigate
the fringes further, we have plotted the transient reflectivity in figure 4.2(b),
averaged over switched and unswitched spectra. The unswitched cavity reso-
nance in this measurement is F.,, = 1.2783 eV, and otherwise experimental
conditions are equal to previously. For At = —2.1 ps, the unswitched cavity
resonance can be observed at Ey = 1.2783 eV. At either side, fringes are
observed with a spacing of 2.0 meV. With increasing At, these oscillations
become more widely spaced. The fanning out of the fringes in fig. 4.2(a) thus
corresponds to an increasing period of the fringe spacing. At At = —0.1 ps,
the onset of the switched cavity resonance can clearly be observed at 1.2818
eV. At this stage, the modulation depth of the unswitched cavity has de-
creased by a factor 1.4. For large positive probe delays, the modulation
depth decreases by a factor 2 as it is sharing spectrometer counts with the
switched cavity.

The change in fringe spacing with probe delay is plotted in figure 4.3.
While the fringe spacing increases only slightly from 2.4 meV from At = —3
ps to -2 ps, the fringe spacing increasing rapidly for smaller negative probe
delays, and finally seems to diverge at coincidence. A naive interpretation of
the fringes is that Fabry-Pérot fringes form. At large negative probe delays,
the spacing of 2.4 meV corresponds to an optical thickness of around 150
pm, just less than the substrate thickness. At At = —0.5 ps, the apparent
thickness would have had to have decreased to only 25 pm if the Fabry-Pérot
interferences were truly the cause of the observed fringes. Since such a large
physical change is absurd, we conclude that the formation of the fringes is
not due to Fabry-Pérot fringes of any possible layers.
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Figure 4.2.: (a) Differential reflectivity at negative probe delays. The signal is not
averaged over pumped and unpumped spectra. The dynamic range of the plot
has been limited to enhance the visibility of the fringes. (b) Averaged switched
and unswitched spectra divided by a reference. The spectra have successively been
offset by 20 % points from bottom to top with decreasing negative probe delay:
At = —2.1 ps, -1.1 ps, -0.8 ps, -0.5 ps, -0.1 ps. The pump and probe intensities are
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Figure 4.3.: Fringe spacing versus probe delay.
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4.4.1. The intuitive model

Before giving a mathematical description of the spectra, we will give an
intuitive explanation of the physics behind the observed effect [127], see
figure 4.4(a) - (d). A probe pulse is incident on an empty cavity at time
t1 (4.4(a)). At time t9, most of the probe gets reflected by the microcavity
(b). In the frequency domain, this large reflection is caused by the large
probe bandwidth, which greatly exceeds that of the resonance. Still, light
resonant with the cavity resonance will recirculate inside the cavity. At
a time t3, the pump is incident. At this time the refractive index of the
GaAs starts to decrease because of the thermalizing free carriers, thereby
reducing the contrast in the Bragg stacks. Not only does the change in
index give rise to a shifting resonance, but the surrounding Bragg stacks
become less reflecting, and thus more transmitting (c). Therefore, the field
in the switched cavity will leak out fast, on timescales which are much shorter
than 7.,y (d). This quickly leaking field can be considered as a pulse. We
thus have two consecutive pulses of light separated in time by At¢. The first
directly reflected pulse has a duration 7p, while the shape of the second pulse
is a function of the time-dependent dwell-time at the frequency of the probe
field due to the shifting cavity resonance. The Fourier Transform of two
pulses separated by At yields two oscillating frequency components, which
beat with a period 1/At, similar to what we observe. The amplitude of this
beating depends on the shape and duration of the two pulses.

4.5. Positive probe delay

Figure 4.5(a) shows the transient reflectivity vs. probe delay, where the
spectra have been averaged over switched and unswitched. The unswitched
resonance sits at Fy = 1.2783 eV. At coincidence, the switched cavity res-
onance F,,(t) starts demerging from the unswitched resonance and blue
shifts in a time 0 < At < 7o = 3 ps to Fy by 11.7 meV, or 11 cold
linewidths. During this time the resonance broadens to 6.3 meV, or by a
factor 6 with respect to the unswitched cavity. Most notably however, the
magnitude of the transient reflectivity in the spectral range 1.28 to 1.285 eV
is clearly in excess of unity. In figure 4.5(b), we have plotted several spectra
at positive probe delays. At At = 0.9 ps, the resonance is very broad, but
shows no sign of enhanced reflectivity. As soon as the cavity resonance has
ceased blue shifting, however, we observe a transient reflectivity of 115% for
At = 7.9 ps. This value translates to 130% if we correct for the averaging.
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Figure 4.4: Cartoon illustrat-
ing the origin of fringes at
(a) negative probe delays. In
t1 (a), a probe pulse is inci-
dent on the cavity at t1. (b)
Because of the probe’s much
larger bandwidth compared
to that of the cavity, most
of the probe gets reflected at
ta. (c) A short pump pulse
changes the resonance condi-
tions at time t3, and field in
the cavity starts leaking. (d)
At time t4, there are now
two consecutive pulses: the
directly reflected pulse and
the released pulse from the
cavity, separated by At, the
pump-probe delay. Together,
the pulses yield fringes in a
Fourier Transform.

«— At

With increasing probe delay, the magnitude of the enhancement decreases,
and cannot be observed for At > 40 ps. The raw spectra, i.e., not corrected
for our experimental conditions, display clear peaks blue of the unswitched
cavity resonance, see figure 4.1. We therefore conclude that the excess re-
flectivity is no artifact of the data processing. The transient reflectivity in
excess of 100 % does not necessarily contradict energy conservation, as the
spectral density of the field in the shifting cavity might change due to the
transient refractive index. For At > 7,,, the resonance decays with an expo-
nential time constant 7,4 = 57 & 2 ps to its unswitched value due to carrier
recombination (see fig. 3.6(a)). The unswitched cavity resonance retains its
original width of Ay = 1.03 meV, confirming that no degradation is taking
place.

4.6. Physical mass and string model

Our goal is to understand quantitatively the observed phenomena, that is,
the fringes at negative probe delays, and the reflectivity in excess of unity
of positive probe delays. To this end, we model the cavity and the Bragg
stacks as a mass m suspended by a spring with a constant k(t), the mass
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Figure 4.5.: (a) Transient reflectivity at positive probe delays, averaged over
switched and unswitched spectra. (b) Transient reflectivity spectra at three dif-
ferent probe delays.

being sandwiched by two attenuators, see figure 4.6. The latter attenuate
the elongation of two attached strings of tension force ¢ and unit mass p to
the mass and back again by a factor f(¢). A transverse wave of elongation in
the y-direction A;(x,t) travelling in the z-direction is incident from the left
and drives the mass which as consequence has an elongation y(¢). The wave
in the model is identified with the incident probe beam, the mass suspended
by the spring with the cavity, and the attenuators are identified with the
surrounding Bragg stacks. At the position of the mass, z = 0, and we define
A;j(x =0,t) = A;(0,t) = A;(t). Only a fraction f(t) of the driving force F(t)
exerted by the incoming wave is passed on to the mass and vice versa. This
force Fy(t) is equal to

Fa(t) = 2f(t)o(0/0x) Ai(t) = 2f (t)o/c(9/0t) Ai(t), (4.1)

where the wave’s speed is ¢ = y/o/p. Damping of the mass occurs via the
force exerted on the string. This force is

E,(t) = 2£2(t)o/c(9/0t)y (1), (4.2)

where one factor f(t)c=1(9/0t)y(t) is the x-derivative of the amplitude, the
other factor f(t)o is the force exerted on the string. Damping due to the
mirrors is thus 2I',.(t) = 2f2(t)o /c.

Intrinsic damping in our experiment due to, e.g., out of plane scattering or
absorption has not been taken into account for two reasons: first, we showed
in Chapter 3 that @, is close to @, limited by wavevector spreading for the
NA of our system, and therefore intrinsic scattering in the unswitched case

60



4.7. Results: mass and spring

c, |

- >
X

Figure 4.6.: The mass and spring model employed to calculate the reflected ampli-
tude of a cavity changing its resonance in time.

is below the experimental error. Second, in the switched case, the transmis-
sion through the Bragg layers is increased by decreasing the refractive index
contrast. Since the transmission goes with the exponent of the dielectric dif-
ference, even very small changes in the difference can change f(t) by several
orders of magnitude. In order to sustain the hypothesis that the resonance
width is largely determined by the Bragg stacks’ index contrast, and not by
the free carrier absorption in the cavity, we performed Transfer Matrix cal-
culations. These calculations show that the linewidth due to switching the
Bragg stacks only is very close to the linewidth obtained for switching both
the cavity and the stacks. Therefore, free carrier absorption in the cavity
can be neglected.

The equation of motion can then be written as follows,

(0% /O)Y () + 20, (1)(9/01)Y (1) + wew ()Y (t) = VTn(£)(9/0t) As(t), (4.3)

where we have set I', = f(t)%0/c, and y(t (t)\/o/c. At x = 0, the
sum of the incident and the scaled reﬂected wave f (t)A,(t) is equal to y(t),
or A.(t) = VT, Y(t) — A;(t). In comparison to our experiments, we can
identify the optical irradiance J(w) in equation 6 in Chapter 2 with J(w) =
| [70 Ar(t) exp(iwt)dt|.

4.7. Results: mass and spring
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Figure 4.7.: Static amplitude reflection coefficient A, and probe spectrum calculated
from the mass and spring model.

4.7.1. Static case

We solved equation 4.3 numerically by driving the mass with the derivative
of a non-chirped Gaussian pulse with carrier of frequency w; and a FWHM
e = V27p. Both the resonance and the linewidth are set to the unswitched
cavity resonance and width, respectively. Care must be exercised with I',.(¢):
equation 4.3 can be written as & + avyz + w%az = 0, which has an intensity
FWHM of ay. We thus identify 2I',.(t) with A™®*. Figure 4.7 shows the
probe and amplitude reflection spectra. Both spectra have been normalized
to the maximum value of the probe. At the resonance A, shows a pronounced
trough which extends to 0, limited by the frequency resolution of the data.
The width of this trough is 0.7 meV, which translates to a calculated width
of v/2-0.7 meV = 1 meV, in excellent agreement to A, From the good
agreement of the model to the static measurement we conclude that the
model serves as a good basis for further calculations.

4.7.2. Dynamic case

For a few salient time delays, we solve equation 4.3. As dynamic resonance
and linewidth we strictly use measured parameters as extracted from the
lineshapes at positive probe delays (see fig. 4.5). We emphasize that we have
no free parameters. Figure 4.8(b) shows the calculated transient reflectivity.
At At = —2 ps, we observe fringes at the blue edge of the unshifted cavity
with a spacing of 2.1 £ 0.2 meV, corresponding to a time delay of 1.96 + 0.2
ps. The fringe spacings are plotted for all calculated time delays in figure
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Figure 4.8.: (a) Measured transient reflectivity as in figs. 4.5 and 4.2. (b) Calculated
spectra. All spectra have been offset by 40 % for enhanced clarity.

4.3, and are found to agree excellently both with the inverse probe delay
and the measurements. The magnitude of the fringes clearly exceeds unity,
a feature that is supported by our measurements. At At = —1 ps, the
maximum fringe height has decreased. The shifted trough of the switched
cavity can already clearly be identified at 1.28 eV. For a positive probe delay
of At = 10 ps, the unswitched and switched troughs have now separated,
and the whole spectrum is below unity reflectivity. In contrast, figure 4.8(a)
shows the measurements as shown in figs. 4.5(b) and 4.2(b). While there is
similarity in the fringe spacings and the resonance positions, the exact shape
of the spectra show marked differences. For example, no enhancement can
be observed at positive probe delays, and the fringes cannot be observed at
the red side of the unswitched cavity resonance. The following section will
give some possible reasons why the model is unable to produce some of the
observed features.

4.8. Delimitations

In this section we will discuss some limitations of the mass and spring model,
and analyze what physical phenomena could lead to the discrepancy of the
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model with respect to the measurements. While the period of the fringes at
negative probe delays is equal to the inverse of the delay of the pump pulse
to the probe pulse, their amplitude properties depend on the two pulses’
frequency distribution. As an example, two Gaussian pulses of field FWHM
duration 7¢ centered around frequencies wi and ws incident at time ¢; and to
respectively, give rise to beats in frequency space with a period of 1/(t2 —1t1),
but additionally damped by a Gaussian centered at wa, = (w1 + we)/2 and
FWHM width of (81n(2)/7p). It is thus clear that minimum damping should
occur at w,y, or that the fringe amplitude at the blue edge of the unswitched
cavity is higher than at the red side. For chirped pulses as in this experiment,
however, this relation is not generally valid, and the fringe amplitude may
take any form.

A second unknown are the instantaneous values of Ec,y(t) and I',.(¢). This
issue has been discussed in section 3.4.2. The measured cavity resonance and
width will be a function of the resonance velocity dEcay(t)/dt. A compari-
son between the E,y(t) and I',(¢) inserted into the model and the dynamic
resonance and width from the model showed that the latter had a noticeably
smaller gradient. This observation sustains our hypothesis that the instan-
taneous and measured resonance and width deviate from one another. In
future, this deviation could be removed by repeatedly solving equation 4.3,
iterating the given E,,(t) and T',.(t) so that the resulting resonance and
widths match the measurements.

A third factor is the possibly different carrier recombination times in the A
cavity and in the Bragg stacks, which might lead to a carrier inhomogeneity
(see Chapter 3, section 3.4.2), for which interesting spectral features have
been predicted [84] and measured [85]. This inhomogeneity is not amenable
to inclusion into our simple mass and spring model, but could be modeled
in a finite difference time domain calculation.

We conclude that the mass and spring model gives insight into the phys-
ical mechanisms of cavity switching, reproducing most measured results.
Experimental unknowns such as chirp, exact resonances and widths, and in-
homogeneity prevent us from fully understanding the underlying switching
mechanisms. More information on the precise experimental configuration is
necessary before a further analysis can be done.

4.9. Conclusions and recommendations

Spectrally resolved measurements have been performed on switched cavi-
ties, for both negative as well as positive time delays. For the first time we
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present an intuitive model of photonic switching, which exploits the anal-
ogy with a mechanical oscillator, and quantitatively describes the measured
spectra while giving physical insight into the switching process. At negative
probe delays spectral fringes were observed which are caused by two pulses
interfering with one another, the first one being the pulse reflected from the
cavity, the second being a trapped pulse released from the cavity on arrival
of the pump pulse. The fringe spacing is shown to scale as 1/At, and agrees
excellently to our proposed model. At positive probe delays, the cavity res-
onance shifts by 11 linewidths within 3 ps, and broadens by a factor 6 in
the same time which is well described by our model. At the red edge of the
switched cavity, we observe transient reflectivities of up to 31%. While the
enhanced reflectivity cannot be understood from our model, we note that
several unknown parameters are yet to be analyzed.
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Chapter 5

Femtosecond versus picosecond switching of Si woodpile
photonic crystals

5.1. Introduction

The interest to optically switch photonic structures has recently been gath-
ering momentum due to the inherent rapidity of the process. While the
switching speed of conventional transistors is ultimately limited by heat dis-
sipation, no such limitation is known for optical systems in the absence of
absorption. Often, the dispersion of photo-induced free carriers is exploited
to induce ultrafast changes in the photonic structure’s optical properties.
Then, propagation switching, optical modulation, trapping and releasing
photons, frequency- and bandwidth conversion, and even ultrafast switching
of the density of states is possible [81-83; 86; 103].

Free carrier switching has many advantages to other sorts of switching.
First, the carriers are generated within ps, allowing for potentially high rep-
etition rates [128]. Indeed, currently many efforts are devoted to decreasing
the timescales of switching in polycrystalline silicon, achievable through im-
planting additional recombination centers such as ions [100; 113; 129]. In
contrast, molecular reorientation in liquid crystals responsible for changes
in refractive indices gives rise to timescales of three to six orders of magni-
tude slower [130-132], rendering them useless in ultrafast devices. Thermal
and mechanical tuning suffer the same fate [84; 102]. Second, generation is
possible all-optically, and is so amenable to be performed by on-chip diode
lasers. Third, the induced refractive index change is large compared other
techniques. To compare, the only other switching technique of compara-
ble speed is the optical Kerr effect, which has non-linear coefficients orders
magnitude lower [133—135]. Finally, the change can scale linearly or quadrat-
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ically, depending on the relative frequency of the pump pulse to the switched
semiconductor. Therefore, large dynamic ranges can be achieved with only
small irradiance changes.

Recently, several authors [136-138] have claimed to have experimental
evidence of the Kerr non-linearity. The reasoning in all cases is the instan-
taneous nature of the effect, with a decrease in reflectivity or transmission
coinciding with the cross-correlation of the pump and probe pulses [137]. The
duration of the pump and probe pulses is then the limitation to potential
repetition rates, instead of the recombination times of the free carriers. Kerr
switching could increase the repetition rate from GHz to THz. Large mea-
sured values of ng, the nonlinear refractive index, could spark new interest in
Kerr-switching. Indeed, a high Kerr nonlinearity of ny = 1.4-1072 cm?GW !
was inferred based on the instantaneous transmission change [137]. This is
around 2 orders of magnitude higher than the value determined via a z-scan
[133; 139] on bulk Si. In this Chapter, we will critically evaluate optical pro-
cesses at both instantaneous (fs) as well as ps timescales. At coincidence,
we will show that two competing processes change the optical properties as
witnessed from reflectivity measurements. From these two processes, we de-
duce non-degenerate figure of merit (NFOM), which has wide implications
for fs switching, extending to DOS switching and ultimately to the dynamic
control of spontaneous emission.

5.2. Experimental setup and sample

We have discussed the experimental setup and procedure in detail in Chap-
ter 2. Figure 5.1 shows a high resolution scanning electron micrograph of
the photonic woodpile structure made by Jim Fleming at Sandia National
Laboratories [38]. It consists of 5 layers of polysilicon rods (n’ = 3.45)
stacked orthogonally upon one another, the n-th layer shifted by half an
interrod distance with respect to the (n+2)th layer. This structure gives
rise to a diamond symmetry, for which a first-order band gap is predicted
[12]. The dimensions of the rods were chosen so as to aim the center the
band gap around telecom frequencies (Eree = 0.735 €V). The E-field of the
probe beam is polarized along the [110] direction of the crystal, that is, per-
pendicular to the first row of rods. The last row of rods is supported by a
70 nm thick SiN layer of refractive index ~ 2. At our probe wavelengths
the SiN layer is optically thin, and is not expected to influence reflectivity
measurements.

The sample has been characterized extensively elsewhere [95; 140]. Over
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Figure 5.1.: High resolution scanning electron micrographs of the surface normal to
[001] of a Si woodpile crystal at domain D4. The width and thickness of each rod
is 175 + 10nm and 155 + 10nm, respectively.

the sample, the mutual alignment of the rods differs. These differences are
spatially separated, and allow the sample to be divided into 16 domains,
which we denote by A1l through D4 in analogy to a chessboard. Here, we
perform measurements on both Al and D4, and are thus able to validate our
results for different sample conditions. The symmetry of D4 is face centered
orthorhombic, while A1 is body centered orthorhombic.

5.3. Linear reflectivity

Figure 5.2 shows a linear reflectivity spectrum of the woodpile photonic
crystal. The high peak centered at EFy = 0.9 eV corresponds to the I' — X
stopgap in the band structure, which is part of the 3D photonic band gap
of Si woodpile photonic crystals [36; 96; 141]. The maximum reflectivity of
95 + 2% and the broad width of AE = 0.46 eV FWHM (full width at half
maximum) confirm the strong interaction of the crystal with light [27]. We
note that the large relative width of 47% is the largest measured for any
photonic crystal so far. From the width and Ej, we deduce a Bragg length
of Lp = 950 nm (equation 3 in the introduction), corresponding to 1.2 unit
cells. In contrast, other 3D structures with a lower photonic strength have
much higher Lp: TiO, inverse opals, for example, have Lp ~ 4um, while
PS opals have L ~ 8um and SiO2 opals Ly ~ 9um estimated from the
bandstructure [26]. The high photonic strength also causes the steep edges
of the peak, which we will in first instance probe at the blue edge of the
stopband. At these frequencies, all induced changes in optical properties
of the Si backbone will show a large change in reflectivity, important for

69



Chapter 5. Femtosecond versus picosecond switching of Si woodpile photonic
crystals

Wavelength [um]

252 15 1
100- -
S
b ]
= 90- -
46 ]
o
B
0.5 1.0 1.5

Probe Freciuency [eV]

Figure 5.2.: Linear reflectivity spectrum of the woodpile photonic crystal measured
normal to the [001] direction at a sample position D4 shown in figure 5.1. The
E-field is perpendicular to the first row of rods. The I' — X stopgap at 0.9 eV gives
rise to a high maximum reflectivity of 95 + 2% and has a broad relative width of
47%, indicating a high photonic strength. At high frequencies > 1.2 eV, the spectral
features are attributed to Fabry-Pérot-type fringes. The pump frequencies (shaded
box) were tuned at the red edge through half the electronic band gap Eg = 1.12 eV
of silicon (vertical dashed line), and the probe frequencies at the blue edge of the
stopband. The dashed curve is a calculation with the Scalar Wave Approximation
in the region of interest.

switching applications. The probe frequencies (indicated by the shaded box)
span both the blue edge of the stopband as well as the fringes. These have
been assigned to Fabry-Pérot-type interferences [142], but the reflectivity
spectrum of woodpiles is still subject to debate [95; 140].

5.4. Switched reflectivity vs. delay at one probe
frequency

The pump frequencies Epymp were chosen as to tune through half the elec-
tronic band gap of silicon, where the gap is Fq = 1.12 eV. Both the Kerr
coefficient n9 as the degenerate two-photon absorption coefficient (31; have
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recently been shown to vary strongly in the vicinity of %EG [133-135; 143~
145].

On domain A1 we measured differential reflectivity AR/R vs. probe delay
At as a function of Epyyp (figure 5.3). At this sample position, the probe
frequency of Eprone = 1.13 €V corresponds to the foot of the blue stopband
edge. At positive probe delays At = 0.2 ps and at pump frequencies Epymp >
+Ec = 0.56 eV, we observe a large positive differential reflectivity (AR/R)rc
due to a blue shift of the photonic features. This shift is caused by a decrease
of the refractive index of of the polysilicon backbone that agrees well with a
Drude description of the excited free carriers [96]. When Epymp is reduced
to below %Eg, the dispersion vanishes, since no more free carriers can be
excited by a two-photon process.

Near coincidence, at At = 0 ps, a trough of magnitude (AR/R)coinc 18
observed. The width of this trough varies between 240 fs (Epymp = 0.52 €V)
and 160 fs (Epuymp = 0.62 eV). The expected cross-correlation duration for
two pulses of 7p = 140+ 10 fs is 7p - v/2 = 198 fs, in reasonable agreement to
the measured values. The variation with pump frequency is partially related
to the shorter pulse duration at higher frequencies which corresponds to a
wider spectral width of the pulse. As Epymp increases to above %Eg, the
magnitude of (AR/R)coinc grows until it saturates at Epymp = 0.62 €V, just
over %Eg.

5.5. Switched reflectivity vs. frequency

5.5.1. Reflectivity vs. frequency at coincidence

In order to investigate the precise nature of (AR/R)coinc, Wwe have measured
the differential reflectivity at coincidence for a range of probe frequencies
(figure 5.4(c)) on domain D4. With increasing Epump, the variation in the
data becomes stronger. The differential reflectivity becomes increasingly
negative with both increasing pump and probe frequency, indicating opti-
cal absorption. At 1.22 eV, a peak appears in the differential reflectivity
that corresponds to a red edge in the linear reflectivity (figure 5.4(a)) and
at 1.18 eV at trough appears which corresponds to a blue edge. These two
observations are indicative of a red shift of the photonic features. Therefore,
when pump and probe are coincident, two effects contribute to a negative
differential reflectivity at blue edges of photonic features: Non-linear disper-
sion, which we attribute to the electronic Kerr effect, and absorption. Since
the latter only occurs in the presence of the pump, we conclude that the
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Figure 5.3.: Differential reflectivity AR/ R versus probe delay At taken at different
pump frequencies Epyump and at probe frequency Eprobe = 1.13 €V, sample position
Al. At At = 0 ps, the pump and probe are coincident, and the differential reflectiv-
ity (AR/R)coinc decreases. At At =1 ps, the differential reflectivity (AR/R)rc has
increased due to the dispersion of the free carriers (FC). The peak pump irradiance
varies between Ipymp = 10 £ 1 GWem™2(Epymp = 0.516 eV) and Ipymp = 25 + 2
GWem™2(Epyump = 0.75 €V), and the probe irradiance was Ipobe = 3+2 GWem™2.

negative differential reflectivity is due to an instantaneous non-degenerate
two-photon process. This conclusion is consistent with the observation that
at higher probe frequencies, for any given pump frequency, the negative offset
increases. Recent work [136-138| has attributed the behavior at coincidence
to the Kerr effect, due to the lack of dispersive data. We for the first time
identify the different contributions at coincidence.

5.5.2. Reflectivity vs. frequency at At =1 ps

Figure 5.4(b) shows the differential reflectivity at one positive probe delay
of At =1 ps that is caused by free carriers. Because the data varies around
0, we conclude that the induced absorption is minimal. The peak at 1.2
eV corresponds to the blue edge of the linear reflectivity peak at 1.175 eV,
the two troughs at 1.23 eV and 1.16 eV corresponds to the red edges of the
reflectivity peaks at 1.175 and 1.25 eV, respectively. Therefore, the data is
consistent with a blue shift, or a decrease of the refractive index An’ as a
result of the free carriers.
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Figure 5.4: (a): Measured linear reflec-
tivity versus probe frequency (OJ) on do-
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eV).

5.5.3. Model: the extended scalar wave approximation

The optical properties of real woodpile photonic crystals are usually calcu-
lated with an exact modal method (EMM) [141]. For each layer in z, the
dielectric constant €(r) is expanded in Fourier series in x and y, perpendic-
ular to the z. The electric and magnetic fields can be calculated from the
vector wave equation. The solutions are then subject to boundary conditions
from the solutions in adjacent layers. In that way, the fields in the complete
structure can be calculated. It is different to a bandstructure calculation in
that the structure is finite in one direction. From the boundary conditions
at the first and the last layer, it is possible to calculate the reflectivity. The
EMM has been shown to agree reasonably well to reflectivity measurements
at frequencies up to the stopgap [95; 96; 142], but fails to reproduce mea-
surements at the blue edge of the stopgap. If we quantitatively want to
understand the magnitude of the induced changes, it is important for any
model to correctly reproduce the linear reflectivity first.

The Scalar Wave Approximation (SWA) turns the vector wave equation,
resulting from Maxwell’s equations, into a scalar equation, where the scalar
is in the beam direction z [146]. Because of the periodicity of the lattice,
both the real lattice spacings and the position dependent dielectric function
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€(z) can be transformed into Fourier Space, with Fourier Transforms G and
Ug respectively. For binary structures composed of materials of two different
dielectric constants, it can be shown that [26]

Ug = Aefg, G # 0, (5.1)

where Ace is the difference of the dielectric constants, and fg is the Fourier
Transform of the indicator function f(z), where €(z) = ¢; + Aef(z). By
satisfying field continuity of the two bands labelled k (incident) and k — G
(Bragg diffracted) at the two interfaces of the crystal, the transmission and
reflectivity can be determined.

Two remarks are at order: a. Despite evidence of polarization effects on
the reflectivity [142], the scalar wave approximation inherently cannot take
polarization into account. However, since the incident polarization does not
change during the experiment, the induced change in reflectivity can just
as well be modelled with a scalar equation. b. While EMM can correctly
include absorption by solving Maxwell’s equations with a complex € in any
one layer, the SWA uses an approximated two-band bandstructure, for which
modes can only exist in the absence of extinction. To nevertheless include
absorption, the reflectivity was reduced by a factor exp(—2L/l4,s), where
laps = 1/(2n'n’k). The factor of 2 in the exponent accounts for the beam
passing through the sample twice. This results in the magnitude of the
reflectivity over all the spectrum to decrease, while induced absorption, such
as non-degenerate absorption as in our case, normally causes the wvisibility
to decrease, due to the increasing breakdown in interference. In view of this
second point, the fitted values of n’ and n” must be regarded as qualitative.

We fit the linear reflectivity obtained by the scalar wave approximation
to the region given in fig. 5.4(a). The best agreement to the measured
reflectivity is obtained with G = 27/(393 nm) and Ugs = —0.8. Due to
the scalar nature of the model, we expect no correlation between the real
and fitted lattice constants. In the model, we included the dispersion and
absorption of p-Si (from [147], see fig. 5.5), and have taken bulk Si as the
substrate, neglecting the optically thin layer of SiN (n/ = 2,d = 70nm).
Since the optical features in the reflectivity spectrum are much broader than
the probe bandwidth, no convolution of the calculated spectrum with the
probe is necessary.
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5.5.4. Interpretation of spectra at coincidence

We match the calculated dispersive differential reflectivity to the strong sig-
nature of a redshift at Ep,one = 1.2 €V by fitting two independent parameters
An' = nalpymp and n” over the range 1.18 eV < Epyope < 1.23 €V by opti-
mizing for least squares. The differential reflectivity was obtained as follows:
using the G obtained previously from the fit to the linear spectrum, the Ug
was changed via the changed Ae (equation 5.1), and the switched reflectivity
spectrum was calculated from the new Ug. The reduced x?, i.e., the sum of
the squared differences divided by the degrees of freedom, was calculated to
be between 0.29 and 0.98. Error margins for the parameters were taken as
the values at which the least squares had changed by 10%.

Figure 5.4(c) shows the fits to two spectra obtained at two different Epyp.
The remarkable agreement of this approximate model with the data confirms
that the subtle interplay of non-linear dispersion as well as non-degenerate
absorption leads to the observed features. At frequencies lower than 1.2 eV,
the fitted curves tend to be lower than the measurements. Also, to the blue
of 1.2 eV, the calculated differential reflectivity is mostly higher than the
measurements. These deviations are due to our fit not taking into account
the non-degenerate nature of 12, but setting it to one value for all probe
frequencies.

Figure 5.5(a) and (b) shows the absorptive and dispersive part of the re-
fractive index, respectively, as returned from the fits. The value at Ep,ohe =
0.7 eV is excluded due to experimental artifact in that measurement. Fig-
ure 5.5(a) shows that the imaginary refractive index n” increases for pump
frequencies Epymp > 0.55 eV. Since we are working at pump-probe coinci-
dence, those frequencies correspond to a sum of pump and probe frequencies
Epump + Eprobe > 1.75 eV. Since these values are larger than the the opti-
cal gap of polycrystalline Si of 1.4 eV < Ey,y < 1.6 €V, depending on the
degree of polycrystallinity [148], it is clear that the simultaneous presence
of pump and probe photons induce optical absorption. From recent calcu-
lations [149], the N-photon process in a direct transition can be viewed as
a single-photon process with an energy gap rescaled to Eq /Ny, where Npp
is the number of photons. In other words, (Epuymp + Eprobe)/2 = E’ in the
two beam case, where E’ is a rescaled energy. Therefore, we can compare
the shape of our extracted non-degenerate absorption coefficient to the linear
absorption. We therefore also plot the linear absorption of p-Si (LPCVD,
processing temperature 545°C) similar to that used to make the woodpile
crystals [147]. The behavior of the linear absorption agrees reasonably with
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that of the non-degenerate absorption, supporting calculations from [149].
For our intensities, the non-degenerate absorption remains below the linear
absorption by a factor of 35. Pumping and/or probing at higher frequencies
causes the absorption to increase, as do higher pump intensities.

Higher probe intensities do not influence the magnitude of the nonde-
generate absorption: in the absence of linear absorption, as in our case,
the differential equation governing non-degenerate two photon absorption is
[150]

dIProbe
dz

The non-degenerate two-photon absorption coefficient 315 is related to n” as
Br2lpump = 2n”n’k. From equation 5.2 we see that higher probe intensities
do not increase absorption: The coefficient of —Ipyohe(z) is 2612 (Eprobe +
Epump)[Pump = esr, an effective absorption coeflicient. Higher probe inten-
sities merely lead to a higher absorbance, commensurate to the number of
absorbed photons.

The real part of the instantaneous change in n is plotted in figure 5.5(b).
At low pump frequencies of 0.52 eV, the change is 0.5 - 1073, while it more
than doubles at Epymp = 0.56 eV. At Epyyp = 0.62 eV, An' increases
only marginally. We compare our measurements to other recent degenerate
measurements of the nonlinear dispersion of bulk Si [133-135]. In order to be
able to make the comparison, we made use of the rescaling condition whose
validity is unknown for dispersion. We find excellent agreement to the latter,
but surprisingly the measurements of [133] are an order of magnitude higher,
despite being measured with the same technique. We also compare our
measured data to a relation for ny derived for direct-gap semiconductors [151]
multiplied by our pump irradiance Ipymp. The functional form agrees well
with our data. At higher probe frequencies, the theoretical relation differs
from the data of [134; 135]. A theory able to calculate the degenerate non-
linear properties of an indirect semiconductor such as silicon was recently
proposed [149] and was shown to agree well with degenerate nonlinearites

133].

= _2612(EPr0be7 EPump)IPumpIProbe (Z) (52)
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Figure 5.5.: (a): Imaginary refractive index (n”, ®) vs. pump frequency Epump
(lower axis) obtained by modeling our data (fig. 5.4) and upper abcissa is the
summed pump and probe frequencies Erota1. The right scale shows the correspond-
ing absorption coefficient. To compare to our effective o, we plot the absorption
coefficient for LPVCD p-Si () annealed at 545° C, similar to the backbone of our
woodpiles crystals. (b): Change in real refractive index An’ (left scale, B) vs. pump
frequency Epump from our non-degenerate measurements. We plot other recent de-
generate measurements for comparison: [ from [135] and O from [134]. Data from
[133] exceeds the scale by one order of magnitude. The theoretical relation predicted
by [151] is also shown (solid curve, right scale).
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5.5.5. Interpretation of ps switching

Using the same two-band model from section 5.5.3, we can also interpret
the picosecond free-carrier behavior. Therefore, the calculated differential
reflectivity can be fitted to (AR/R)pc by calculating the complex refractive
change according to the Drude model (figure 5.4(b)). For carrier densities
N < 10%® m~3, well above densities created in our experiments, N is given
by [73

N = [PumpTPB11 = (5.3)

2EPurnpe

where 311 is the degenerate two photon absorption coefficient. At our pump
frequencies, we can neglect linear absorption. Then, the change in dielectric
constant due to free carriers is

W123 . —1

e =——3 (1 —i(wrp)™), (5.4)
where w% = Ne?/m*¢g is the plasma frequency squared in (rad/s)? and e
and m* are the charge and effective optical mass of the carriers, and w the
probe frequency in rad/s. Equation 5.4 is valid for (wrp)~! << 1, which is
the case for our probe frequencies and damping times. For a given Ipymp
therefore, we can fit the differential reflectivity resulting from a changing 31,
to (AR/R)FC .

The 11 vs. Epump as returned from the fits is plotted in figure 5.6. We
find reduced x? values between 5 and 25. These values are higher than the
reduced x? from the fits at coincidence, mainly because of a shift in spectral
features of the calculated spectrum, a behavior which is not well understood.
As Epymp decreases to below %Eg, (11 vanishes, as expected. Increasing
Epymp to above 0.54 eV, there is a marked increase. At Epymp = 0.62 eV, 311
has increased to as much as 541 emGW 1. This value is considerably higher
than other published values [133-135], measured with the z-scan technique
on crystalline Si. For our sample however, values as high as 11 = 60 £+ 15
emGW ! have been reported [95]. Amorphous silicon formed by CVD has
very recently been shown to posses a higher non-linearity [152], in agreement
to our data.

We are now able to calculate some parameters describing the switching
quality. We find that the carrier induced absorption length /.,y = 123 +
50pm, much longer than Lp, confirming that the absorption is negligible in-
deed. The pump homogeneity length, another important parameter describ-
ing the spatial homogeneity of carriers, is fhom = 1/IpumpB11 = 44 £ 10pum,
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or 170£40L g at Epymp = 0.62 €V. This calculation highlights the advantage
of two-photon absorption to one-photon absorption [102; 136; 138] in which
absorption limits the pump homogeneity. In contrast, the absorption length
of the nondegenerate two-photon process is ~ 10um.

5.6. Reflectivity vs. pump frequency at coincidence

Having analyzed the reflectivity spectra at coincidence and at At = 1 ps,
we return to figure 5.3, where we had measured the differential reflectivity
vs. probe delay at only one probe frequency, but at many pump frequencies.
Experimental conditions had prevented us from taking more than 4 probe
frequency- and time-resolved spectra, mostly related to the long measure-
ment times. Having identified two competing processes at coincidence, we
can therefore now focus on the time-resolved differential reflectivity, which
we had measured at many pump frequencies. Figure 5.7 shows (AR/R)coinc
at different Epymp. Here, Ipymp has been corrected for three important
pump beam parameters: i., the increase in irradiance with increasing Epymp
because of the decreasing Gaussian focus (see 2.2); ii. the change in pump
irradiance due to the frequency dependent reflectivity of the pump, see figure
5.2; and iii. the measured 10% change in pump power over the frequency
range of the Topas. For i., (AR/R)coinc is assumed to vary quadratically
with Epuymp (fig. 2.2), assuming that (AR/R)coinc changes linearly with
Ipump [140]. For (ii), the pump reflectivity was treated as a Fresnel reflec-
tion and thus (AR/R)coinc Was linearly corrected with (1 — R(Epump)) in
b. Finally, in iii., we corrected (AR/R)coinc linearly with Ipymp. The two
highest corrections are by 80% (Epump = 0.52 V) and 34% (Epymp = 0.56
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eV), but otherwise the corrections are less than 20%.

In figure 5.7 we observe an increasing (AR/R)coinc With increasing Epymp
up to 0.62 eV, then a decrease until 0.69 eV before a subsequent increase.
With the analysis of the previous data (fig. 5.5), two important regimes can
now be identified: for Epymp < 0.69 €V (Erotal < 1.82 €V), (AR/R)coinc is
mostly governed by dispersion. For Epymp > 0.69 €V, (AR/R)coinc increases
again due to a combination of both dispersive (ns) as well as absorptive
parts (012)-

In the same figure 5.7, the differential reflectivity expected from the ex-
tended SWA is also plotted. Because this different reflectivity spectrum was
obtained on domain Al, we first have to apply the SWA to the linear reflec-
tivity from A1l (not shown). We obtain best agreement for G = 27/363um
and Us = —1.2. From the theoretical relation for a degenerate ns of a
direct bandgap semiconductor [151], (AR/R)coinc is readily obtained. We
note that a non-degenerate theory for indirect bandgap semiconductors is
not available. We therefore have to interpret the measurements with respect
to the theoretical relation cautiously. For Epymp < 0.7 eV, the shape of
the theoretical relation agrees excellently to our measurements. A strong
divergence from the data is found for Epyyp > 0.7 eV, or Erga > 1.83 eV.
We interpret this threshold frequency marking a transition from dispersive
behavior of (AR/R)coinc t0 an absorptive behavior.

To verify the consistency of the results of sections 5.5.1 and 5.5.2 with the
previous ones, both ne and 12 (figure 5.5) were inserted into the SWA, and
plotted in figure 5.7. Good agreement to the measured differential reflectivity
is found, from which we conclude that the extended SWA provides consistent
description of our various data, measured at different pump intensities and
on sample domains.

5.7. Non-degenerate instantaneous figure of merit

To quantify how useful a switching device is, it is instructive to consider a
figure of merit (FOM). Garmire proposed that the device length be longer
than the pump absorption length, for which the corresponding pump irra-
diance would induce a phase shift of 27 f. From this requirement a figure of
merit has been derived [153],

FOM(Epump) = f = 712//\511. (55)

For propagation switching, it is necessary that FOM= % The notion of a

FOM can be extended to include non-degenerate absorption. Not only is the
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Figure 5.7.: Differential reflectivity at coincidence (B, left scale) vs. pump fre-
quency extracted from figure 5.3 and corrected for pump beam parameters. We
have calculated the differential reflectivity expected from a non-linearly purely dis-
persive direct bandgap material [151] by inserting the theoretical relation for ns
into the SWA. We can clearly see the ’pure dispersive assumption’ is wrong as from
Epump = 0.69 €V, or Eroal = 1.82 eV. Extracted complex values of n (from figure
5.5) have been re-inserted into this model. Reasonable agreement to the measure-
ments B is found.

pump absorbed because it excites free carriers, but the probe is absorbed in
the presence of the pump. The nondegenerate FOM (NFOM) is then

n2(EPump)
NFOM (Ep uup: Eprobe) = -0
(Epump, Eprobe) APump (811 (Epump)) + B12(Epump, Eprobe) o0

From our measured data, the NFOM has been calculated as follows: no,
where ny = (Epump) has been derived from figure 5.5(b), where we have used
the functional form of ny(Epymp) from [151], but scaled it by a constant fac-
tor to match the magnitude of our data. A analytic form of 312 was derived
by fitting an exponential to linear absorption coefficient a(Epuymp + Eprobe)-
The exponential behavior of the linear absorption coefficient a with Epope
close to the gap region is well documented [154]. From a(Epump + Eprobe),
we deduce Bi12 = a(Epump + Eprobe)/2Ipump from equation 5.2. Finally,
an analytic expression for 11 (Epump) is obtained from the theoretical rela-
tion for 311 (Epump for direct bandgap semiconductors from [151], but again
scaled by one factor to match our measurements (fig. 5.6).

Figure 5.8 shows the NFOM for different Epymp and Eprobe. At summed
frequencies Eqotal = Epump + Eprobe, below the optical gap silicon (Emgta <

81



Chapter 5. Femtosecond versus picosecond switching of Si woodpile photonic
crystals

o o

o
o

Pump Frequency [eV]

o
oo

0 05 1.0 15 20
Probe frequency [eV]

Figure 5.8.: Nondegenerate Figure of Merit (NFOM) for instantaneous switching
vs. pump and probe frequency for silicon (see eq. 5.6). For Epymp < %Eg,
pump absorption is absent as we do not consider higher order photon absorption.
If in addition Ep,obe < Fopt (white area), the total absorption is 0 leading to
large NFOM outside of the scale of graph. Cross-sections of higher order photon
absorption are required to calculate the NFOM at Eprobe < Eopt and Epuymp <
%Eg. The horizontal line at Epym,p = 0.8 eV marks the region where ng(Epump) = 0
cm?GW—2, and so NFOM = 0. For Erota >> Eopt, the absorption length is shorter
than one wavelength (hatched area). The parameter space from our measurements
are bounded by the box (B), the only other measurement of ny on a Si based
photonic crystal is [137] (e)

Eopt), the non-degenerate two-photon absorption is small, tantamount to
a long probe absorption length, which is desired. If in addition Epymp <
1/2E¢, the pump absorption length becomes infinite. Higher order photon
absorption has to be considered to give a quantitative estimate of the NFOM
in this regime. Around Epump = 0.8 eV, ny crosses the abscissa and the
NFOM becomes 0. For all other frequencies, NFOM depends strongly on
both pump and probe frequencies. To achieve a high NFOM, it is advisable
for Erotal < Eopt and Epymp ~ %E(;. In that case, no is high, while 311 is
kept low, and thus pump homogeneity can be vouchsafed. Our measurements
have taken place in the parameter space indicated by the box. The only other
measurement of ny on a Si based photonic crystal is [137].

5.8. Conclusions and recommendations

We have switched a silicon woodpile photonic woodpile crystal optically by
both Kerr nonlinearities as well as optical free carrier injection. For the
latter we achieve refractive index changes of up to 0.1 % and changes in
reflectivity of up to AR = 1 %. At pump coincidence, we find that for
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Erota < 1.8 eV, the reflectivity changes are due to the Kerr nonlinearity. In
this case, the probe absorption length is limited by the pump power. For
FErotal > 1.8 €V, the reflectivity starts to be dominated by pump-assisted
absorption. For lower Eruta), it seems feasible to switch via the Kerr effect.
Spontaneously emitted photons from an emitter placed inside the crystal
are then amenable to switching. We have extended the figure of merit for
Kerr switching to include nondegenerate two-photon absorption. For Ti-
Saph lasers used in several previous experiments, (£ = 1.55 eV), the NFOM
is forbidding.

For future experiments, some technical issues are proposed. First, knowl-
edge of the linear optical properties of bulk p-Si is necessary if its nonlinear
properties are to be determined precisely. Neither Eqpt nor n’, n” were known
for this sample, so these were essentially unknown parameters inserted into
the extended SWA model. Furthermore, the degenerate and non-degenerate
non-linear optical properties of bulk p-Si should be measured. This facili-
tates comparison to the same properties measured on a photonic bandgap
crystal. Furthermore, we propose to validate the extended scalar wave model
to the exact modal method, where responses of nonlinearities are compared
at frequencies exhibiting similar spectral properties. Inspite of the difficul-
ties in analyzing non-degenerate optical properties of a photonic bandgap
crystal, we have measured a clear difference in response of Etya < Eopt
and Erotal > Eopt. This difference has ramifications on future experiments
on non-degenerate instantaneous switching photonic bandgap crystals. DOS
switching, and ultimately spontaneous emission switching is limited by the
magnitude of pump and emission frequencies.

To exploit Kerr switching, that is to maximize NFOM, following improve-
ments are proposed. In first instance it seems useful to pump and probe with
the same polarization. For collinear polarization, a factor 3 improvement is
predicted with respect to orthogonal polarization [155]. Furthermore, the
optical properties of the photonic crystal could be so tailored as to enhance
the field. Calculations by us on a 1D DBR have revealed that the field can
significantly be enhanced when pumping at either the red or blue stopgap
edge, while the position of the field maximum depends critically on the exact
pump frequency.

While a high-bandgap semiconductor will be less prone to non-degenerate
absorption, ny scales with E(_;g. The absorption can also be diminished by
a lower pump irradiance, which also goes at the expense of An = nolpymp.
We therefore conclude that many obstacles will have to be overcome before
Kerr switching can usefully be exploited.
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Chapter 6

Enhancement and reduction of an opal’'s photonic strength by
atomic dispersion

6.1. Introduction

6.1.1. Atoms in photonic crystals

The interplay between atomic and photonic resonances has recently lead to
a surge of interest in the quantum optics community. From Fermi’s golden
rule it can be calculated that the spontaneous emission rate of an atom is no
immutable property, but that it depends on the electromagnetic environment
[156; 157]. Decay properties of atoms have been studied near interfaces
[158], gratings [159], waveguides [160], fibers [161], and photonic crystals
[17; 19; 91]. Modification of the decay rate becomes especially prominent
when the atoms are in high-Q cavities [162; 163]: at nodes of the cavity,
the emission is enhanced by the Purcell factor [99], which depends on the
quality factor ) of the cavity. For very high-Q cavities, the atom and cavity
couple strongly, and the atom-cavity system like a pair of coupled oscillators
[164-168], evidenced by the avoided crossing of the two resonances.

Not only can the electromagnetic environment influence the decay rate
of the atoms, but under given circumstances the atoms can alter the pho-
tonic properties of the host medium such as a photonic crystal [169]. The
atom-photonic crystal system offers exciting prospects, such as creation of
new modes in the photonic crystal’s bandgap, induced transparency, non-
linearities and modified pulse propagation [61; 170; 171]. To achieve this, an
ensemble of many atoms have to be placed in the crystal. The relative dielec-
tric function e(w) = € (w) + €’ (w) of the atomic medium changes drastically
around a resonance, € (w) exceeding unity below resonance, and being below
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Figure 6.1.: Real (solid curve) and imaginary (dashed curve) Doppler-free electric
susceptibility (x = € — 1) of Cs vapor at a density of 7.1 -10'® m=3.

unity above the resonant frequency wy, see figure 6.1. To achieve €' (w) < 1,
the transitions must be isolate. The isolation is necessary as otherwise €' (w)
below resonance of the higher energy transition offsets the low € (w) above
resonance of the lower energy transition. To have €’(w) change considerably
over resonance, it is desirable for the atomic medium to be dense. Since
the imaginary part of ¢(w), associated to absorption, is related to the dis-
persion by the Kramers-Kronig relations [67], ¢/ (w) can differ considerably
from unity while ¢’(w) << 1 for a select frequency range outside resonance,
see figure 6.1. Thus, atomic systems have a large modulation of ¢(w) which
warrants a study of their effect on photonic systems.

Only a limited number of studies have been performed of infiltrating pho-
tonic crystals with resonant media. Infiltration of strongly absorbing dye
in a photonic crystal was achieved in [169], and liquid crystals have also
been proposed [131; 172]. The main disadvantage of dye is the low useful
concentration, as Forster energy transfer [173], which is proportional to the
density of dye, increases the homogeneous width [174]. The large inhomoge-
neous width of semiconductor quantum dots (e.g., 5% for CdSe [175]) at the
desired densities precludes large changes in € (w). To avoid inhomogeneous
width by atoms, a system was proposed by van Coevorden [32]: here, the
crystal consists of cold atoms in a lattice. A conceivable realization of this
was obtained in [176; 177], with a low lattice site occupancy of < 1%. A
bandgap is shown to open when the resonance wavelength equals the lattice
spacing, for one atom per lattice site, a condition experimentally achieved
recently [178], but where no photonic properties were probed.
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6.1.2. 33Cs - the ideal resonator

In this section we will elaborate what medium is eligible to be infiltrated
into a photonic crystal, and what its optical properties are. Consequently,
we will discuss what the limitations of the maximum possible change in
A€ (w)(= A€l ,.) are, after showing how €(w) can be derived from a simple
model. We chose to use a hot, dense vapor of %§3CS as a strongly polarizable
resonant medium, Cs being the most suited of all alkali metals. As with all
alkali metals, it has only one electron in the outer shell (state 625 /5). For
that reason, the transition from the ground state to the 6 P manifold (known
as the D transition) is strong. In particular, we look at the D; transitions of
133Cs, which consist of four isolated hyperfine hyperfine transitions (see fig.
6.2(a)). The long lifetime of the excited state gives rise to a narrow intrinsic
linewidth (I'g = 274.56 MHz), and thus large polarizability at resonance
[179-181]. In the ground state, the hyperfine splitting is 9.193 GHz, a well-
known transition which defines the unit of time [182].

The polarizability a(w) of a single atom at rest is given by (see, e.g.,
[183; 184])
e’ f 1

, 6.1
me wi — w? —i(wd/wd)T (6.1)

a(w) =

where 'y is the inverse lifetime of the excited state, e and m, the charge
and mass of the electron, and wy and w the resonance and frequency in
angular units, respectively. The absorption oscillator strength f relates the
strength of the Lorentz oscillator to a real electron in an atom subject to
finite transition probabilities. For small detunings, A = w — wy, and

e’ f

aw) ~ 2mewo(wp —w — il /2)’ (6.2)

where we have made use of the rotating wave approximation. An ensemble
of atoms at density N at rest has the relative dielectric function e¢(w) in mks
units

cw) = 14x
= 1+ Nfa(w)/e
B fw%g 1
= 2wy (wo —w) —il'/2 (6.5)
fw? —A , r/2
= 2w§ <A2 FTRE AT (F/2)2> ’ (6.6)
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where I' = I'g + I'p, I'y the width to due elastic and inelastic collisions,
w% = Ne? /egm, the square of the plasma frequency, and eq the permittivity
of vacuum. The maxima €,  and minima € . are at —I'/2 and +I'/2,
respectively. There can thus be a large change in € (w) in just one linewidth.
In contrast, the width of a SiOy photonic crystal stopgap at v = 11178 cm ™!
is around 612 cm~!, or 18.3 - 105 MHz, around 6 orders of magnitude larger
than the intrinsic linewidth of the Cs hyperfine D transitions.

At low temperatures (7' < 250°C), Doppler broadening limits the change
in €(w): an atom with a velocity v becomes excited when the excitation
frequency equals w = wy + k - v, where wy is the resonance at rest and k the
wavevector of the excitation beam. In any one dimension, the distribution of
velocities is Gaussian. The FWHM width Awp of this distribution is equal

to [185]
2 2RT In 2
Awp = jo,/ M“ , (6.7)

where M is the molar mass and R the universal gas constant. The inho-
mogeneous Doppler width is taken into account by convolving y(w) with
the Doppler velocity distribution. At ambient temperature, and at the D
transitions, the lineshape of Cs vapor is determined by Doppler broadening.

As an example for both Doppler as well as Doppler-free spectra [186], we
show transmission spectra of a monochromatic beam at frequencies around
the Dy line measured in a double-pass configuration through a 8 cm long Cs
ampule (figure 6.2(b)). The four troughs correspond to the four hyperfine
D levels. Zero detuning is chosen at a frequency 20 GHz below the lowest
energy transition (4 — 3’). Outside resonance, in the first pass, atoms
of a particular velocity class are excited and saturated, but the reflected
beam probes atoms of a different velocity class. Outside resonance thus
the double-pass spectrum will look similar to an unsaturated transmission
spectrum. At resonance, only those atoms are saturated for which k-v =0
holds. Then, the reflected beam is not absorbed, because the reflected beam
probes atoms of a same velocity class k-v = 0. Therefore, the centers of
all four transitions show maxima, as shown in the inset. While the Doppler
width of all four transitions is around 397 4+ 20 MHz, agreeing reasonably
well with the calculated value of 361 MHz, the saturation peak at resonance
has a width of 26 MHz, significantly higher than the expected 4.56 MHz.
The deviation stems from a combination of possible power broadening and
collision broadening.

We conclude that the large vapor pressure of Cs, its narrow intrinsic
linewidth, and its low sensitivity to Doppler broadening with temperature in
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Figure 6.2.: (a) Grotrian diagram of the hyperfine Dy transitions of Cs [187]. All
units in GHz. (b) Double-pass transmission through an ampule of **Cs at room
temperature. The 4 troughs correspond to the 4 Doppler broadened hyperfine D,
transitions. The peaks in the centers of the absorption troughs are the Doppler-free
resonances. Zero detuning is chosen at a frequency 20 GHz below the lowest energy
transition (4 — 3').

the temperature range of interest make it an ideal candidate for modifying
a photonic crystal’s optical properties.

6.1.3. Cs as a strongly photonic medium

In the following section, we discuss effects of collision broadening, which
become dominant at elevated temperatures and will be shown to ultimately
limit A€l ... The magnitude of the change in €¢’(w) in the Doppler-broadened
regime depends on the density: the highest vapor density is reached near a
liquid-vapor phase, i.e., above the melting temperature (T); = 28.44°C).
The vapor pressure in equilibrium is given by the Clausius-Clapeyron equa-
tion [188], and can be shown to vary as exp(—Lo/RT), where L is the
latent heat of vaporization and R is the universal gas constant. Since the
vapor pressure increases exponentially with temperature, large changes in
density can be obtained by comparatively small changes in 7', which seems

opportune for large changes in €' (w).
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T N wp/2m | T/21 | Laps at HM | A€’

K] | \®] | [MHZ] | [MHz] | [pm)]

300 | 0.0434 | 360.37 | 4.57 109350 2.44 -107°
370 | 9.20 400.21 | 5.68 577.12 471-1073
400 | 50.85 416.11 | 10.77 | 110.31 2.47 102
420 | 138.38 | 426.39 | 21.46 | 42.91 6.42 - 10~2
500 | 3344.90 | 465.23 | 413.05 | 4.41 0.70

Table 6.1.: This table shows optical parameters of interest of Cs vapor vs. temper-
ature T'. The density N has been calculated from a Langmuir-Taylor expansion of
the saturated Cs pressure [189], the Doppler width Awp /27 from equation 6.7 and
I’ from [190] using a oscillator strength f = 0.3438 [187]. The absorption length
laps at the half-maximum of the Doppler-broadened x(w) has been extracted from
the square root of a numerically generated dispersion curve from equation 6.6.

To compare, the saturated vapor pressure of Rb is 30-60 times lower, and
its melting temperature is 39.31° C [189]. Moreover, Rb has two stable iso-
topes, ®*Rb and 8"Rb,! which are not amenable to separation. Other alkali
metals’ vapor pressure is even lower, requiring prohibitively high tempera-
tures to attain the desired density.

Outside the Doppler-broadening regime, at high temperatures, the width
due to collision broadening exceeds that of Doppler broadening, see table
6.1. Here, an atom in the excited states interacts with a ground state atom.
A phase variation in the resonant transition is incurred, which gives rise
to new frequency components. Inelastic collisions transfer energy from the
upper state to the lower state, and thus quench the upper state population.
Since these mechanisms work on all atoms equally, it is a homogeneous
broadening. The width due to collision broadening is proportional to the
density N, and is described by a density-width constant of NT',/f = 27-0.3
em~3s71 for the Cs Dy [190].

We will now argue that the precise magnitude of Doppler broadening
governs the temperature at which the change from Doppler- to collision
broadened regime occurs. At the extrema of €' (w), €' (w) = 14 fw? /4wy (T +
['y). For atoms at rest, the obtainable strength asymptotically approaches a
maximum as from I'y = I'y, which is at N = 510" m—3, giving Ae’ = 0.47.
In a bulk vapor whose Doppler width is given by equation 6.7, that A€’ is not
obtained until a much higher density of N = 2.7 - 10?" m~3, corresponding
to T'= 200°C. A€, can thus be reached by operating outside the Doppler-

18TRb is not stable, but has a lifetime of a few billion years, and is thus effectively stable.
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broadened regime, i.e., by increasing the temperature and thus the vapor
pressure. In principle thus, Doppler broadening does not limit Ael ... A
precise estimation of Doppler broadening mechanisms in our situation is
thus essential if the correct temperature is to be chosen. The following
sections will show how Doppler broadening close to resonance can indeed be
reduced close to an interface, after some basic properties of reflection spectra
of vapors have been discussed.

Reflection of a vapor behind a glass interface

The reflectivity probed by a light beam passing from a dielectric with index
n¢ into an atomic vapor of refractive index n) (w) + in! (w) is given by [191]

(mw) — ? + w?(w)?

B) = @) T 12 1 2 (w)

: (6.8)

where m(w)+irk(w) = (n,(w)+in’(w))/ng. For low gas densities, or far from
resonance, x2(w) can be neglected, and m(w) can be expanded as mg+dm(w).
The resulting reflectivity is

(mo —1)2  26m(w)(mg — 1)

Rlw) = (mo + 1)2 (o + 1)

: (6.9)

where we have also assumed (mg+1) >> 2dm(w). For the above conditions,
the change in reflectivity of a vapor depends purely on dm(w). At high
densities however, especially at resonance, when n! (w) is apreciable, n! (w)
has a considerable influence on R(w): as seen in eq. 6.6, n)j(w) ~ 1+ $Im(x)
decreases as the detuning squared, while n(w) ~ 1+ JRe(x) decreases
linearly with detuning. While the tail in the wings is still indicative of
nl (w), the reflectivity close to resonance is modified strongly by nl (w = wp).

v
The extrema in R(w) are therefore not coincident with extrema in n, (w).

Selective reflection

An effect known as selective reflection [192; 193] essentially destroys Doppler
broadening at resonance. Atoms with a velocity component v} parallel to
the monochromatic beam must have suffered a collision with the wall, which
is most probably inelastic [194]. The phase of the transition has been scram-
bled, or the atoms have decayed to the ground state. In both cases they will
not be amenable to polarization for a maximum of 1/T'g = 35 ns (for an atom
on resonance). In that time it will have travelled around 10um, a sizeable
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195 200 205
Detuning [GHZ]

Figure 6.3.: Oblique (27 & 2°) reflection of the 4 — 3' transition of a moderatly hot
Cs vapor T = 70°C versus frequency. A sharp peak can be observed at 21 GHz,
indicated by the arrow. To compare, the Doppler-broadened (dashed curve) and
unbroadened (solid curve) lineshapes are also plotted. The theoretical curves have
been scaled and offset for clarity.

fraction of the absorption length of /1,5 = 55um at T' = 130°C. Atoms with
antiparallel velocity components also need time 35 ns to polarize with the
probe field. Thus atoms with large +v)| will hardly be probed, leading to a
narrowing of the spectral line. As an approximation, only atoms for which
laps > 0/T holds will be probed.

As an example, we have probed the reflection of hot vapor Cs over the Dq
transitions. The vapor is confined behind a glass interface. The monochro-
matic, scannable laser beam is incident at an angle of § = 16 4+2° (externally
2742°). The effect of the oblique angle is that the Doppler width is rebroad-
ened by Awpsin(f) [194]. The results are shown in figure 6.3. Just blue of
the resonance (21 GHz), we observe a sharp peak, while at larger blue de-
tunings, the peak considerably broadens. The reflection spectrum for a col-
lision broadened transition is calculated, with Doppler broadening (dashed
curve) and Doppler-broadening (solid curve). While the Doppler broadened
spectrum matches well at large detunings, close to resonance the measured
spectrum is much sharper. We conclude that boundaries effectively decrease
the width of the velocity distribution, although the effect of wall collisions
has not been included in our analysis. However, since the self-broadening
mean free path scales as N~ 3, but the wall collision mean free path scales
as N~1, wall collisions become negligible for higher densities. The decrease
of the effective velocity distribution may lower the temperature for which

A€, .. is reached.
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Figure 6.4.: Measured Width (FWHM) of the reflectance at 27° =2 of the hyperfine
4 — 3’ Dy transition of Cs vs. temperature at saturated vapor pressure. We
calculate the linewidth from the Lorentz model, convolved with a Gaussian of a
width corresponding to Doppler broadening (solid curve). The linewidth without
such an inhomogeneous broadening is shown by the dashed curve. Some raw data
is shown in figure 6.3.

Reflection at large detunings

In the last section we focussed on the narrowed spectral width close to reso-
nance due to selective reflection. In this section, the properties of R(w) far
from resonance are discussed, for which selective reflection is negligible. For
all temperatures, the widths as determined from the extrema of the reflec-
tivity spectra (fig. 6.3) are plotted in figure 6.4. We observe a slow increase
in width with temperature, in agreement with the square root increase ex-
pected from eq. 6.7 in the Doppler limited regime. To compare, the widths
expected from an exclusively Doppler broadened (dotted curve) or collision
broadened R(w) have also been plotted. At low temperatures, the width is
dominated by Doppler broadening. At T = 150° C, the effects of collision
broadening become significant, and at 250°, the width due to collisions has
overtaken the widths due to Doppler broadening, as expected.

From the last sections we conclude that for T' < 250° C, the change in €'(w)
over resonance is limited by Doppler broadening. Selective reflection reduces
Doppler broadening near resonance of atoms bounded by an interface, and
it has unknown consequences for a vapor in a photonic crystal.
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6.1.4. SiO, opals as photonic media

Having discussed requirements of the polarizable medium, we now turn to
the desirable properties of the photonic sample. The most important condi-
tion to be met is that the photonic media be chemically stable. While not
anticipated, it is deemed possible that the chemically highly active vapor
corrodes the samples at hand. If the sample’s chemical inertness to Cs can-
not be vouchsafed, the samples must be available inexpensively and quickly.
For this reason, strongly photonic 2 or 3D photonic crystals fabricated by
state-of-the-art processing techniques are not appropriate. 1D samples with
air as the main dielectric are not available, although porous Si crystals have
been proposed [195]. In contrast, thick and large photonic crystals made
from self-assembled colloids can be grown within a few days [40-42] and
can be inverted to achieve a higher air fraction [46]. Colloidal spheres are
usually well characterized and of low polydispersity (2 — 4% for SiOs mi-
crospheres). High quality opals can be grown from polystyrene, but the low
glass transition temperature of 100°C [189] is incompatible with the high
temperatures desired for a high Cs density. TiO, inverse opals were found
to corrode within a few hours of Cs contact. Because the experimental cell
in which the vapor was probed contained SiOy which appeared not to be
attacked for several days, we opted to use SiOs opals, layers grown on the
window substrate.

Optically, the most important condition is that the blue edge of a stopgap
of the photonic crystal be at the Cs D; resonance. Then, the change in the
vapor’s dielectric function will have large effects on the change in reflectivity
R(w), as the gradient of the reflectivity is highest at the edges of the stop-
band. While the antinodes of the probe’s electric field are preferentially in
the dielectric for probe frequencies near the red edge of the stopgap, high
electric fields are in the voids of an opal at the blue edge [8]. Therefore, SiOq
opals are desired whose stopgap is slightly red shifted with respect to the Cs
D resonance.

6.2. Experimental setup

6.2.1. Excitation of '23Cs

The resonances are probed by exciting the hyperfine transitions with ultra
narrowband single mode cw laser (MBR~110, Coherent), pumped by a fre-
quency doubled Nd:YAG (Verdi V-10). Once locked, the laser can scan over
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Figure 6.5.: Figure of experimental setup. The 1 W output of the linearly polar-
ized light from the narrowband tunable laser (MBR) gets attenuated by polarizing
beamsplitters (PBS) and a \/2 waveplate WP after being modulated by a chop-
per. The diode D5 monitors the power. The reflected light from the sample in the
heated experimental cell is picked up by the photomultiplier tube (PMT). For a fine
frequency reference, diode D1 measures the saturated absorption from a reference
ampule (see figure 6.2), while a coarse reference is performed by the wavemeter.
Light from a halogen lamp is used to measure the optical properties of the sample
in the experimental cell (for details of experimental cell, see fig. 6.6.). A vacuum
pump evacuates the tank to reduce air convection around all heated elements.

40 GHz and can thus excite all four transitions in one scan, and probe the
dispersion region. The 1 W linearly polarized beam is attenuated by two po-
larizing beamsplitters and a \/2 waveplate combination (Lens Optics, Ger-
many) after being amplitude modulated by a chopper (see figure 6.5). The
beam is focussed by an achromat (f=300 mm) under an angle of § = 274 2°
onto the experimental cell containing the vapor and the opal. The reflection
of the narrowband source is collected by a Hamamatsu R928 Photomulti-
plier tube (PMT). Note that the extremely small solid angle subtended by
the PMT at the viewport (2 ~ 1079 sr) essentially prevents fluorescence
being measured. The PMT’s photocurrent was measured by a phase sen-
sitive amplifier, where the time constant was chosen to be 7 = 30 ms, or
one sample period. While the coarse laser frequency was monitored by a
Burleigh WA-10L wavemeter (resolution: 0.1 em~!), the precise frequency
was measured with Doppler free spectroscopy (see figure 6.2). To verify
the photonic structure stayed intact, a much wider bandwidth is required:
broadband reflectivity was measured with a spatially-filtered halogen white
light source and a VIS-NIR 2048 channel spectrometer (Ocean Optics, USB
2000).
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6.2.2. Control of the vapor

The experimental setup is depicted in figure 6.6. The need for a high vapor
density required heating liquid Cs contained in the reservoir. Therefore, a
cell was designed in which Cs can be both be heated as well as spatially
confined. Heating was accomplished by two heating elements (Thermocoax)
brazed into the cylindrical reservoir at the top and the bottom. Upon open-
ing valve V7 (Swagelok SS-4BG-V51), hot Cs vapor diffuses into the experi-
mental cell, also heated by two heating elements. Because Cs reacts strongly
with both oxygen and water, the reservoir and experimental cell are kept un-
der vacuum (< 10pubar, detection limited by the low conductance (0.08 1/s)
of the valve and the thin tube [196]). To discard any moisture and oxygen,
the assembly was baked and evacuated at 150°C' by a Turbo-Molecular pump
(Pfeiffer Balzers TPH-170, pump speed 170 1/s) and a rotary valve pump
DUO-008 B (2 1/s) for at least 24 before admitting Cs. The assembly is
evacuated through valve V5. The heating to the desired temperature would
cause air convection around the experimental cell, were it not for the vac-
uum tank of volume = 0.037 m~3 in which the optical assembly consisting
of reservoir, valves, and experimental cell is mounted. Therefore, the tank
was kept under vacuum (1073 mbar) throughout. A second advantage of
the tank was that hazards due to possible leaks in the assembly are con-
tained. Also, the reduced pressure difference between the evacuated tank
and the experimental cell would reduce the flow rate into the experimen-
tal cell because of a possible leak. The experimental cell was leak tested
with a Balzers HLT-160 before every experimental run to verify that the
leak rate was < 107? mbar 1/s. A disadvantage of the tank was that once
the experiment was running, no adjustments could be made. At the end of
each experiment, a thin diffuse film was observed on the reflecting optics,
degrading the reflectivity. Both the reservoir and the experimental cell were
independently temperature controlled by a 2604 PID temperature controller.
The temperature was measured by ring J-type thermocouples. Heatingtape
was wound around the tubes and valves to prevent cold spots, which would
otherwise determine the vapor pressure of Cs. The experimental cell, valves
and tubes are kept at a temperature 30 — 50 K above that of the reservoir
to prevent condensation. In independently performed calibration runs we
found the time-constant of the thermal system to be 1h.

The experimental cell required particular attention, as it comes in con-
tact with both well characterized samples and aggressive Cs vapor [197].
After several experimental runs we found that viewports by Hositrad, The
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Figure 6.6.: The optical assembly including the experimental cell, two valves, and the
reservoir. The experimental cell is connected via valve V| to a reservoir containing
liquid Cs. At the other side valve Vs closes the experimental cell off from a vacuum

pump.

Netherlands, showed substantial cracks and leaks after having been in con-
tact with Cs for only a few hours, which we attributed to corrosion of the
Kovar metal-borosilicate glass seal. Viewports by VacGen, England showed
no such degradation over several days. Moreover, these viewports protruded
less into the tank, which enabled probing at a much larger angle. Oblique
probing was necessary for two reasons: first, it largely eschewed the 2 mm
thick window acting as a Fabry-Pérot étalon, with a fringe spacing of 1/(2-0.2
CINglass) = 1.7 cm ™!, or 50 GHz, just over the scan range of the laser. Sec-
ond, it blue shifted the reflectivity peaks of the opal to the Cs resonance,
using the angle as tuning parameter.

6.2.3. Samples
Initial experiments

In initial experiments, TiOy inverse opals were used as samples [46]. TiOq
has a large refractive index of 2.5 at A = 1um, giving rise to a high photonic
strength. Moreover, inverse opals have a low filling fraction which permits a
high density of Cs, around 3 times higher than that in opals. TiO inverse
opals can be grown with a thickness of several hundreds of lattice spacings,
giving rise to high reflectivities and they are thus sensitive to changes in
the vapor’s refractive index. In contact with Cs however, the inverse opals
degraded rapidly and were rendered unrecognizable. Moreover, the surface
roughness, estimated to be in the order of a several sphere diameters (¢ =
520 nm), permitted a finite thickness of vapor between the glass and the
opal, and caused the beam to be largely absorbed at resonance ({ups(T =
150°C") = 21pum), thus not probing the inverse opal.
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Sample preparation

To prevent surface roughness and an absorbing vapor under the sample, SiO9
opals were grown on the viewport windows themselves. A vial and viewports
are cleaned overnight in a solution of 30g NaOH, 30ml of ultra-pure water,
and 200ml of ethanol. All glassware is then rinsed first in water from a
Direct-Q system and then ethanol. The glassware is thoroughly dried in a
stream of nitrogen. A suspension of 0.1 - 0.5 % SiO4 colloids in ethanol
is placed in the dried vial. The viewport is inserted at an angle between
40° and 60° into the vial, which is heated in an oven to between 30°C' and
60°C'. Upon evaporation of the suspension, the colloids move towards the
area of fastest evaporation, which is the wetting (suspension) film, and get
deposited on the substrate. The structure of one such array is close packed.
As the evaporation proceeds, more and more of these arrays form on top of
each other until finally there is no suspension left and the growth stops [40].
Despite consistently scanning the parameter space in temperature, angle,
and colloid density, the opals on the viewports were of low quality, with a
reflectivity of 2 Rglass, Where Rglags is the reflectivity of viewport window.
Opals grown on microscope slides showed clearly defined peaks in excess
of 13 Rglass. From optical microscope images, the layer thickness was esti-
mated to be between 1 and 3 (111) lattice spacings. However, since greenish
opalescence was observed, we use the term opal for these thin structures.

Figure 6.7(a) shows the reflectivity spectrum of such an opal. In this
chapter only, reflectivity is measured with respect to Rglass of the viewport
window. Two broad peaks are observed at 10800 cm ™! and 18500 cm™!,
while the latter seems to be split into 3 separate peaks. While the origin
of the triple peak is not well understood, it has been observed elsewhere
[57]. The large width of 48 % is due to lack of periodicity in the beam
direction. At 11178 em ™!, the Cs D; resonance has been indicated (dashed
line), which is just blue of the first peak, as aimed for. The absence of Fabry-
Pérot fringes indicates that the fringes are averaged out due to disorder. The
bandstructure from L to U for a SiOy opal (n” = 1.45) has also been plotted
(b). The peak at 10800 cm~! corresponds well to the frequency expected
from the forbidden band. Only one of the small peaks within the broad
peak at 18500 cm™! corresponds well to the forbidden band. The second
peak is probably due to the presence of higher order gaps and bands to
which external light cannot couple.
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0 1 2 U L
Reflectivity R/Rglass

Figure 6.7.: (a) Reflectivity spectrum of the SiOy opal grown on the viewport with
respect to the reflectance of the viewport, probed at oblique incidence (27 + 2°,
internally 204:2°). The first peak at 10050 cm ™! can be identified with the first order
stopgap of a SiOy opal. The second reflectivity peak is probably due to flat bands
and higher order stopgaps to which external light cannot couple to. The vertical
dashed line indicates the resonance of the Cs D, transition. (b) Bandstructure from
X to U in the irreducible part of the Brillouin zone of an fcc crystal. The black bar
indicates the forbidden band at an internal angle of 20 4+ 2°.

6.3. Results and Discussion

6.3.1. Reflection at Cs resonances

In a typical measurement, spectra of the resonances were taken while sweep-
ing the laser frequency while the Cs density was controled by changing the
reservoir temperature. After evacuating both the vacuum tank and subse-
quently the optical assembly, the temperature of the reservoir was increased
to 100°C' after which it was increased by 10 — 20°C every hour. At the be-
ginning and at the end of every such ramp, a broadband reflection spectrum
was taken.

Figure 6.8(a) to (d) show the narrowband spectra at the end of each ramp.
The four hyperfine resonances can clearly be observed. Panel (a) shows a
spectrum for 7' = 100°C'. Its base reflectivity is around 0.065 Rgjass, or 0.26%.
At the 4 — 3’ transition, the measured spectrum shows a short tail with a
sizeable trough. Close to resonance, the reflectivity peaks strongly. With
increasing temperature (b), the peak becomes more pronounced, in contrast
to the trough, but its tail gets longer. Note also that the base reflectivity has
decreased to 0.013. At 140°C, only 10 K higher, the spectrum has changed
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dramatically (c): a trough after the first peak has appeared, the trough being
much below the baseline. The initial trough below resonance has completely
disappeared. The baseline has recovered to 0.02. In (d) (7' = 150°C), yet
another 10 K higher, another striking change occurs: the peak as seen in
(c) and (b) has now vanished and has completely given way to a marked
trough. The complete spectra is without any peaks, exactly the opposite
to (b). Moreover, the baseline has recovered even further to 0.05. We will
discuss the spectra after inspection of the broadband data.

6.3.2. Reflection of the opal

To understand why the lineshape, baseline and strength of the reflectivity
change with vapor temperature it is instructive to inspect the broadband
reflectivity spectra, see left set of panels in figure 6.9. At first contact with
Cs, even before spectra are observed, the first peak has shifted from 10800
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cm ™! to 9770 cm~! (9.5 %), while the second peak has shifted from 18500
ecm ™! to 16300 cm~! (12 %). With increasing vapor temperature, the first
peak shifts out of the spectrometer’s spectral range, but second peak can
still be traced. At a vapor temperature of T' = 130°C, the second reflectivity
peak has shifted to 14900 cm !, or 20%. At T > 140°C, the peaks cannot be
identified unambiguously. This is because the overall reflectivity decreases
with increasing temperature, and is attributed to the thin oily film which
settled on the reflecting optics in the tank during the experiment.

The shifting of the reflectivity peaks is attributed to the partial reduction
of the SiO2 colloids [198]. Since Cs is strongly caustic, it will reduce SiOqy
to SiO, [199], where x varies from 2 to 0, and its refractive index varies
between that of SiO9 (n” = 1.45) and that of Si (n” = 3.5) [200]. The peak is
thus expected to red shift according to Bragg’s law containing the average
refractive index (see eq. 1.1). If an outer shell of the colloids has completely
been reduced to Si, we estimate the reduced volume to be 18%, or a shell
thickness to be 9 nm. If a homogeneous reduction to SiO has taken place,
the colloids’ refractive index matches that of SiO well (ngijo =2.0£0.1). In
practice, there will be a mixture between SiO, and Si present in the colloids.

To compare to theory, a Transfer-Matrix calculation was performed on
a monolayer of colloids surrounded by an atomic vapor, and probed at an
angle of 27° (see Appendix A). In the right hand side of figure 6.9, a Transfer
Matrix calculation of a single layer of colloids is shown, where the probe
beam is incident at a similar angle in the experiment. Here, the colloids’
refractive index is changed as indicated, and is chosen to match the shifting
second peak on the left. For the reference spectrum, before contact with
Cs, the agreement is excellent (first row). Both the absolute reflectivity and
the spectral positions of the two peaks match well, although the calculated
second peak is at a higher frequency than that of the measured peak. This
is because the Transfer Matrix calculation cannot take into account the
bandstructure, whose bands give rise to the second peak. The D; resonance
is just blue of the first peak. On first contact with Cs, both the first and
second peak red shift (not shown). At T = 100°C, the second peak has
shifted to 9770 cm™', which is matched by the calculation for n’ = 1.95.
The D resonance is at the blue foot of the first order peak. At T"= 130°C,
the D; resonance is exactly in the trough between two peaks, obtained for
n’ = 2.0. As the temperature is increased even further, the second peak
shifts so that the D; resonance is to the red of the second peak, for which
an n’/ = 2.15 is needed.

Using the information obtained from the broadband spectra, we will dis-

101



Chapter 6. Enhancement and reduction of an opal’s photonic strength by
atomic dispersion

Measurement Theory
2/_/“'\ — 2
! \/\ \/1
20 eference n'=1.45 0
o — 0
o T=100"C n'=10955
@ 1
__g OMW N 0
3 T=130°C n'=20
= 1 5
& OMW 0
T =150°C n'=2.15
1 10
0000 15000 10000 15000 200%0

Wavenumber [cm™]

Figure 6.9.: Left side: Measured broadband reflectivity of the sample at different
temperatures. The second reflectivity peak red shifts with increasing temperature.
On first contact with of the opal with Cs, the peaks already red shift (not shown).
The D1 transition is marked by the vertical dashed line. Right side: Transfer-Matrix
calculation of a layer of SiO, colloids, where x decreases from 2 to 0, resulting in
an increasing effective refractive index n'.

cuss the effects of a polarizable medium inside a photonic structure, whose
reflectivity peak shifts due to a changing refractive index. We identify 4
characteristic cases:

1. An atomic resonance at the center of the reflectivity peak will lead to
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following behavior, as detected by a reflected beam. Since the gradient
of the reflectivity peak at its maximum is small, the induced shift by the
change in real n) will have only little effect on measured reflectivity.
Also, because An! is small, the effect on the photonic strength will
be marginal. The imaginary part of n, however will cause remove the
constructive interference, and thus an increase in n] will cause a trough
at resonance.

. When the resonance of the vapor is at the blue edge of the reflectivity

peak, an increase in n), from unity (below resonance) will cause the
stopgap to red shift for that frequency. A red shift at the blue edge
of a peak lowers reflectivity. Above resonance, the opposite happens,
as n,, is below unity. The change in n) over resonance thus results in
an anticorrelated reflection. At resonance, n! will increase absorption,
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Figure 6.10.: Left set of panels: Measured narrowband reflection spectra of the
4 — 3" and 4 — 4’ transitions (from fig. 6.8). The exact resonances are marked
by the dashed lines. Right: spectra calculated with an extended Transfer-Matrix
model including the absorption and dispersion of Cs.

and thus destroy the destructive interference, thereby increasing the
reflectivity.

3. For a resonance exactly at the trough between the two reflectivity
peaks, only the change in n! will have an effect on the reflectivity,
just as in the 15 case. The gradient of the opal’s reflectivity vanishes,
and any change in n} will, while shifting the reflectivity peaks, result
in no change in R(w). The increase in n will destroy destructive
interference, thus showing a peak at resonance.

4. At the red edge of the second peak, the increase in n,, below resonance
will red shift the peak, with the result this time that the reflectiv-
ity rises, while the R(w) decreases for n, < 1 above resonance. The
measured reflectivity has positive correlation with n). The effect of
increase in n! depends on whether the resonance is at the foot of the
opal reflectivity peak or close to the summit: in the former case, de-
structive interference is removed, while in the latter case, constructive
interference is removed.

In figure 6.10, right hand side, we show the same Transfer-Matrix calcu-
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lations as in figure 6.9, in the vicinity of the Cs resonances. For comparison,
the left hand side shows the measurements as in figure 6.8. The dielectric
function of the atomic vapor €;(w) is calculated from equations 6.6, 6.7, and
6.8. In figure 6.10(a), the Cs resonance is at the blue foot of the first re-
flectivity peak. Referring to our explanation above, the change in n! over
the Cs resonance will cause the measured narrowband reflectivity to move
anticorrelated with n/,, while n! causes them to be positive due to removal
of destructive interference. These features are clearly observed: the shal-
low dip below resonance followed by a peak above resonance. When the
Cs resonance is exactly in between the two broad reflectivity peaks (b), the
Transfer-Matrix calculations show that while the change in R(w) due to
n)(w) is immaterial, R(w) is predominantly influenced by n!(w), and two
large peaks are observed close to the Cs resonance. When the Cs resonance
is at the red foot of the second reflectivity peak (c), the calculations reveal
peaks in R(w) below resonance, and troughs above resonance. R(w) is now
positively correlated with n!(w). For even further shifts, when the Cs reso-
nance is at the red edge of the second reflectivity peak, two marked troughs
are observed at resonance, attributed to the sensitivity of R(w) on nl(w).
The calculations agree with the measurements in three important respects:
first, the lineshapes show the same features. For example, the trough below
resonance (a) turns into a long tail (b). At higher temperatures, in (c),
the initial trough has turned into a peak, which is followed by a trough.
This trough becomes dominant, so much so that the initial peak disappears,
and the spectrum only consists of troughs (d). Second, the baseline decreases
from (a) to (b), and increases from (c) to (d). Third, the peaks have inverted
in (d) relative to (b). From the good agreement we conclude that a strongly
dispersive vapor inside a photonic structure has been probed. Our calcula-
tions differ in only one aspect from the measurement, this being the relative
position of the exact resonance to the observed extrema. This discrepancy
is attributed to pressure shift caused by remnant N5 in the reservoir, which
had not been evacuated prior to the experiment. From [201], the shift due
to a Ny buffer gas is -10.97 MHz/mbar, requiring a partial pressure of 27.3
mbar. This is in excellent agreement with the pressure deduced from later
measuring the evacuated pressure during evacuation, yielding 27 4+ 10 mbar.

6.4. Conclusions and recommendations

Experiments of a hot vapor in a SiOy photonic opal have been performed.
We note that this is the first time ever evidence of sub-unity refractive in-
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dex in a photonic structure. The reflectivity peaks shifts in excess of 20%
during the experiment, which is attributed to the reduction of the silica to
SiO,. This shift changes the relative frequency of the Cs D; transition to the
photonic features. During this time, the resonances change their strength,
off-resonance reflectivity, and shape. A transfer-matrix calculation includ-
ing the dispersion and absorption of two of the hyperfine transitions give
excellent agreement to all observed features. We therefore conclude that the
probed vapor was in the opal. Moreover, from the agreement we deduce that
n,, must have been less than unity for probe frequencies above resonance.

In the future, it is desirable to assert even more control over experimental
conditions. The aggressive hot Cs vapor necessitated a number of precau-
tions that indeed were taken. However, the leak due to corrosion of the
copper gaskets in the reservoir was observed only late on, and will have to
be prevented in the future. The leaks lead to a shift of the resonances. Mea-
surement in a leak tight system might shed light upon theoretically predicted
giant Lamb shifts [202]. Moreover, the film deposited on the reflecting optics
must be avoided to properly assess the bandstructure of the sample. This
could be achieved by means of a cold trap placed outside of the tank.

Although it was interesting to observe shifting reflectivity peaks, chemi-
cally inert (inverse) opals should be used. Al;O3 (alumina), which can be
used as a backbone for inverse opals [203], is reported to be more inert than
SiO9 [204]. To prevent optical absorption by the vapor of the probe beam,
a method is needed to fabricate the crystals directly on the glass viewport.

While not essential for our experiments, the role of selective reflection of
atoms in a photonic crystal should be studied, also to obtain information on
how many atoms contribute to the optical density. Other exciting prospects
include pulse delaying, see e.g. [205], performed on Cs vapor. A polarizable
medium in a photonic crystal supports a polariton [32; 170], for which the
wavenumber k strongly depends on n’. At the edges of the resonance, the
bands in the crystal bend due to the presence of the atoms’ dispersion. If
the resonance is chosen e.g. below the first order stopgap, then the group
velocity can greatly be decreased at these frequencies. Pulse delaying at the
band edges of a photonic structure without a polarizable medium has been
demonstrated elsewhere [173]. Finally, we propose to perform lifetime mea-
surements on dense Cs in a photonic crystal with a high photonic strength,
where strongly non-exponential decays have been predicted close to a band
gap [206].
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Appendix A

Derivation of the position dependent effective dielectric
constant of a colloid monolayer

We describe how the optical properties of a three dimensional structure can
be approximated by a one dimensional dielectric constant.

The colloids are placed on a silica substrate at z = —r. An incident plane
wave in the z direction sees the colloids’ dielectric areal density €(z) of the
dielectric function e(z,y, z) [207]

€(z) = 1/A/ dxdye(z,y, z), (A.1)
A
where €(z) can also be written in terms of the areal filling fraction

€(z) = f(2)e2 + (1 = f(2))er(w), (A.2)

where the subscripts 2 and 1 indicate the silica and the atomic vapor, re-
spectively. The dispersion of silica is not taken into account. For a colloid,
f(z) takes the form
T2 2

fz) =507 = ). (A3)
The factor mr?/(2r)? = /4 results from the normalization condition that
at z = 0, the areal fraction of a circle to its smallest encompassing square is
/4. f(z) can be quantized in to P slices, and the reflection and transmission
coefficients can be calculated via the usual method of matrices [191; 208].
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In dit proefschrift gaat het erom de optische eigenschappen van fotonische
kristallen te beinvloeden. In eerste instantie zal ik uitleggen wat fotonis-
che kristallen zijn, verderop zal ik erop ingaan wat precies met ’optische
eigenschappen’ bedoeld is en hoe ze beinvloed kunnen worden.

Iedereen weet wat kristallen zijn: vaste stoffen, die uit periodieke her-
haling van atomen of moleculen bestaan. De afstand tussen de atomen is
heel erg klein, ongeveer een nanometer. Een meter is een miljard, of duizend
miljoen nanometer lang. Typische kristallen zijn ijs, kwarts of zout. Fotonis-
che kristallen krijg je als de afstand tussen die atomen ongeveer duizend
keer groter is. In dat geval is de afstand vergelijkbaar met de golflengte
van zichtbaar licht, ongeveer 400 tot 800 nm. Meestal worden fotonische
kristallen dan ook niet van ’echte’ atomen gemaakt (het is nogal lastig om
echte atomen op hun plaats te houden), maar uit colloidale bolletjes. Fo-
tonische kristallen die uit bolletjes gemaakt zijn noemen wij opalen, omdat
ze er opaalachtig uitzien: afhankelijk van de kijkrichting blijken ze een an-
dere kleur te hebben.! Zo een opaal is in figuur A.1 te zien. Een andere
gebruikelijke manier om fotonische kristallen te maken is heel kleine stafjes
loodrecht op elkaar te stapelen. Dit soort kristal noemen we fotonisch hout-
stapel kristal. Natuurlijk bestaan noch opalen noch de houtstapels uit hout.

'Om precies te zijn, zeg je van perfekt periodieke structuren dat ze kleurenspel hebben
(engl. iridescence), en van periodiek structuren met wanorde dat ze opaalachtig zijn.
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Wit licht

Figure A.1.: Schema van een opaal fotonisch kristal. Als zo’n fotonisch kristal met
wit licht wordt verlicht, reflecteren bepaalde kleuren terug, in dit voorbeeld rood.
Ondere andere kijkhoeken reflecteren andere kleuren.

Gebruikelijke materialen zijn halfgeleiders, materialen die licht heel sterk
verstrooien. Het verstrooien (oftewel reflecteren) is ook noodzakelijk om het
kristal ook echt fotonisch te maken. Hoe sterker de halfgeleider verstrooit,
hoe sterker is het kristal fotonisch. De sterkte van de verstrooiing wordt
door de brekingsindex bepaald. Hoe groter het verschil in de brekingsindex,
hoe meer kleuren kunnen het kristal niet in, maar worden volledig terugge-
strooid, zie figuur A.1. Dit frequentiegebied noemen we een stopband, en is
een indicator voor de fotonische sterkte. Als de brekingsindex heel hoog is,
ontstaat er een bandkloof, licht van bepaalde kleur kan dan in geen enkel
richting propageren.

Fotonische kristallen zijn heel interessant en worden al ruim 20 jaar inten-
sief onderzocht. Ze bieden een manier om licht op de nanoschaal te sturen.
In dit proefschrift echter laten we op verschillende manieren de brekingsindex
veranderen. Daardoor kun je de voortplanting van licht aktief beinvloeden.
Omdat fotonische kristallen heel gevoelig zijn voor veranderingen, lijkt het
bijzonder interessant om dit te bestuderen. Een heel bijzondere fotonische
kristal is een kristal met een gewenste defect, zie figuur A.2. Hierbij wordt
de periodiciteit van het rooster op een plaats expres onderbroken. Wat ver-
rassend is, is dat dit defekt de optische eigenschappen van het hele kristal
verandert. Door het onderbroken rooster mag ineens wel licht in een stop-
band propageren, echter in een nauw frequentiegebied. Dit defekt werkt
ook als trilholte: Het inkomende licht wordt een tijdje opgesloten. Als we
nu de brekingsindex op korte termijn wijzigen, op tijdschalen die evenredig
zijn met de opsloottijd, hebben we een heel interessant systeem. In hoofd-
stuk 3 laten we metingen zien hoe zich de trilholte in de tijd gedraagt. De
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Figure A.2.: Trilholte in een fotonisch kristal. Licht wordt een tijdje in de trilholte
opgesloten. Met behulp van een externe stimulus, zoals een korte pomp laser puls
(gesymboliseerd als een hamer) kunnen we het licht bevrijden.

brekingsindex wordt met behulp van een sterke pomp laser puls binnen 100
fs veranderd (in die tijd propageert licht 30 miljoenste meter in de vrije
ruimte). Met een tweede (probe) puls die net later komt kunnen we de fre-
quentie van de trilholte meten. In figuur A.3, linker kolom, kunnen we zien
wat er gebeurt: voor aankomst van de pomp gebeurt niets (a). Als de pomp
aankomt, gebeurt er in eerste instantie niets (b). Maar een korte tijd later,
worden de spiegels gedeeltelijk doorzichtig, en tegelijkertijd verandert de res-
onantie van de trilholte (c). Als je nog langer wacht herstelt het systeem
zich weer in de uitgangssituatie (d-f). Met onze experimentele apparatuur
kunnen we duidelijk en voor het allereerst zien hoe de frequentie van de
trilholte verandert.

In hoofdstuk 4 bekijken we het opgesloten licht zelf. Nu we weten hoe
zich de trilholte in de tijd gedraagt, willen we weten wat met het opgesloten
licht gebeurt. Dit doen we door de volgorde van de twee pulsen om te
draaien: de zwakke probe puls gaat eerst de trilholte in, pas een tijdje later
wordt de trilholte dan door de pomp puls geschakeld, zie figuur A.3, rechter
kolom. Als we met onze speciale meetapparatur hiernaar kijken, zien we
duidelijk hoe de opgesloten puls vrij wordt gelaten. Met behulp van een
fysische model bestaande uit een massa op een veer, kunnen we bijna alle
verschijnsel begrijpen.

Hoofdstuk 5 gaat het over het schakelen van fotonische bandkloof kristallen.
Deze zijn bijzonder interessant omdat ruim 20 jaar geleden voorspeld werd
dat een lichtbron binnen zo een kristal volledig wordt onderdrukt, als in een
kooi voor licht. Onze kristal is een silicium houtstapel kristal. Omdat sili-
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t{,-d( R

Figure A.3.: Schakeling van een trilholte in een fotonisch kristal. Linker kolom
(hoofdstuk 3): Voor aankomst van de pomp (gesymboliseerd door de hamer, net als
in figuur A.3) is de trilholte statisch (a). Bij aankomst van de pomp gebeurt er niet
veel (b), maar wel een korte tijd later: niet alleen verplaatst de resonantie, maar
ook de spiegels van de trilholte worden gedeeltelijk doorzichtig (c). De trilholte
herstelt zich weer in de uitgangssituatie, en de spiegels worden minder doorzichtig
(d-f). Rechte column (hoofdstuk 4): We bekijken een probe puls in een geschakelde
trilholte. In (a) is er geen pomp puls aanwezig. In (b) is de probe een tijdje
opgesloten geweest, en de pomp komt aan. Door de toegenomene doorzichtigheid
van de spiegels, kan de probe pulse ontwijken (b). In (c-f) wordt de trilholte herstelt,
maar de opgesloten puls is al lang ontsnapt.
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cium een hoge brekingsindex heeft en er een voordelige verdeling van silicium
is lucht is, heeft het houtstapel kristal een heel brede stopband. We hebben
een schema van z'n brede stopband in figuur A.4(a) getekend. Net als in het
vorig hoofdstuk doen we pomp-probe spectroscopie. Als de probe duidelijk
later komt dan de pomp (c), zien we dat stopband verandert van frequen-
tie naar het blauw. Het kristal verkleurt als het ware heel snel! Hoewel
spectaculair, was dit effect al eerder waargenomen. Echter, als de pomp en
probe tegelijk aankomen (b), nemen we waar dat enerzijds de probe enigzins
geabsorbeerd wordt en anderzijds schakelt de stopband naar het rode, dus
in de andere richting dan op langere probe vertragingen. Dit gezamenlijke
gedrag geeft aanleiding tot volgende interpretatie: het schakelen naar rode
komt door de tijdelijke, sterke elektrisch veld van het pomp, dat tijdens de
aanwezigheid van de pomp het brekingsindex verandert. De rood schakeling
is heel interessant omdat de tijdsduur daarvan alleen van de pomp athangt.
De schakelduratie kan dus in principe willekeurig snel gemaakt worden, gele-
gen voor ultiem snelle schakeltoepassingen. De aanwezigheid van absorptie
komt door het feit dat de pomp de absorptie van de probe "helpt’. Omdat
en roodschakeling en absorptie sterk van zowel pomp als ook probe frequen-
tie afhankelijk is, kunnen we door middel van een diagram aantonen voor
welke pomp en probe frequenties een groot roodschakel effect mogelijk met
minimale absorptie.

In het laatste hoofdstuk wijzigen we de brekingsindex van een fotonisch
kristal op een heel ander manier. Het doel is om uit te vinden of we de
fotonische sterkte kunnen verhogen door een ander medium met een resonant
gedrag in het kristal te brengen. In figuur A.5 zien we een schema van
een resonant medium in een fotonisch kristal en het effect hiervan. In de
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Figure A.5.: 'Schakelen’ van een opaal. Bovenste rij: (a) Schema van een invers
opaal. (b) Schema van een atomaire damp. (c) Atomaire damp in het kristal.
Onderse rij: (a) Effective brekingsindex van een fotonisch kristal uitgezet tegen
frequentie. (b) Brekingsindex van een atomaire damp. (c) Doordat de damp in het
kristal is, wordt het verschil tussen de brekingsindices verandert. Onder resonantie
(gestippeld lijn), is de fotonische sterkte lager, terwijl hij boven resonantie hoger is.

bovenste rij (a) zien we een invers opaal. Figuur A.5(b) laat een schema
zien van een atomaire damp, die we als resonant medium gebruiken. Als de
damp in het kristal is gediffundeerd, hebben we een situatie als in (c). In de
onderste rij zijn de verwachte effecten getekend: De effectieve brekingsindex
van het kristal is min of meer constant als functie van de frequentie en is
dus onafhankelijk van de kleur, zie (a). Voor de damp geldt dit niet (b):
het toont een dispersief gedrag. Als de damp in het kristal is, zien we dat
de fotonische sterkte van het kristal met atomaire damp per frequentie heel
erg verschillend is. Door het resonante gedrag van de atomen kunnen we de
sterkte en verhogen en verlagen. Inderdaad is het ons als eersten gelukt om
dit te bereiken. Als mogelijke vervolg experimenten stellen we voor om een
kristal te gebruiken dat net geen bandkloof heeft. Door het infiltreren van
een resonant medium maak je dan wel een bandkloof kristal bij een bepaalde
frequentie.

Kortom, in dit proefschrift hebben we drie verschillende manieren bestu-
deerd om fotonische kristallen te schakelen. In eerste instantie is ons onder-
zoek erop gericht geweest om de verschijnselen te begrijpen en dit is gro-
tendeels gelukt. Op grond van onze resultaten kan toch al met voorzichtige
optimisme worden gespeculeerd over nieuwe toepassingen: hierbij wordt in-
formatie gecodeerd als licht ultiem snel geschakeld en dus gemanipuleerd.
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plannen, het uitkijken naar nieuwe resultaten ("Wat is het doel?’). Bedankt
ook voor de ongedwongen, opgewekte sfeer die je in de groep verspreidt. Je
letterlijke vertalingen van het Nederlands naar diverse Europese talen (en
weer terug, met verrassende resultaten) zal ik nooit vergeten.

Ten tweede wil ik mijn co-promotor Allard bedanken. Bedankt voor de
vele instructieve discussies, de wilde ideeén (die helaas niet altijd haalbaar
waren), het zorgvuldig en gezamenlijk kijken naar data, en het grondig be-
spreken van experimentele en theoretische problemen. Ik dank je ook voor
jouw inzet in het meedenken en oplossen van theoretische vragen. Jouw bek-
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waamheid om binnen twee minuten probleemloos over Italiaanse bruggen-
bouw in de 18de eeuw te praten, uit te rekenen hoe ver een auto op een Snick-
ers rijdt, de geschiedenis achter de naamgeving van een onbekende formule
te vertellen, en daarbij tenminste twee woorden (waarvan één een Russische
wetenschapper) te gebruiken die ik niet kende, verbaasde me telkens weer.

Ad wil ik bedanken voor het zorgen voor een constructieve, discussie-rijke
sfeer in de groep. Bovendien waardeerde ik het zeer dat je er nooit moe van
werd onze presentaties kritisch te bekijken.

De groep waarin ik de afgelopen 4 1/2 jaar gewerkt heb heeft een heel
belangrijke rol gespeeld: In de groep konden plaatjes, data, mogelijkheden,
maar ook kritische opmerkingen altijd bediscussieerd worden. Daar ben
ik heel blij om. Toen ik begon waren er Peter Lodahl, Martijn, Karen,
Arie, Ivo (succes met je nieuwe baan, waar die ook is, en hou je verschei-
denheid bij!), Tom (wiens kookkunsten ik zeer gewaardeerd heb), Ivan (be-
dankt voor de leuke, Russisch-geinspireerde avonden met Vita, Nina en jou),
Boris (de supergoochelaar en gezellige kamergenoot), Lydia (die succesvol
haar passie voor chemie aan ons door heeft gegeven, zie ’Chemie is leuk!),
Karin, Floris (wiens interesse voor de Italiaanse Renaissance me geispireerd
heeft ook ernaar te kijken), Willem Tjerkstra ("Heb je nog iets leuks met
Linux gedaan?’), Léon 'MasterChief’ Woldering (wiens genuanceerde, sub-
tiele, ondersteunende en voorzichtige vragen naar het afmaken van mijn
proefschrift me bemoedigden - not!), Bas (bedankt voor je computer on-
dersteuning), Raymond (je hebt mijn muzieksmaak duurzaam beinvloed...),
Karen Munnink (bedankt voor je administratieve hulp) en Tijmen: Ik wens
je veel succes in Erlangen, bedankt voor je experimentele steun in de be-
gintijd op AMOLF, en voor vele inspirerende discussies! Dan kamen er in
de loop van de tijd Peter Zijlstra, Rob, Vitaly, prof. Valentin Freilikher,
Wouter, Frerik, Elbert, Timo, Hannie, Bernard Kaas (bedankt voor je uit-
leg over anisotrope diffusie. Ik zal 51/20 nooit vergeten en ook niet dat Ivan
de overloopkamer uitmoest omdat ’ie anders zou stikken van het lachen),
Bart Hiisken (bedankt voor het lenen van de spectrometer en het uitlij-
nen ervan! Qok voor gesprekken tussendoor over de uitdagingen van een
promotie). Cock, jouw praktische ondersteuning heb ik zeer gewaardeerd.
Pepijn, je experimentele en theoretische expertise heeft het Cs experiment
een heel stuk makkelijker gemaakt. Ik ben ervan overtuigt dat er nog iets
leuks bij uitkomt. Femius Koenderink wil ik bedanken voor het beschikbaar
stellen van zijn bandenstructuurprogramma 'HBand’, waarmee ik twee fig-
uren heb berekend. Klaus Boller wil ik bedanken voor het grondig bekijken
van mijn proefschrift, en zijn commentaren.
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In Amsterdam op het AMOLF kwam ik een heel ander stel mensen en
collega’s tegen: Alex (bedankt voor de fijne samenwerking! Succes met de
komende metingen! Het stelt me gerust dat de switchopstelling in vaardige
handen is), Merel (onontbeerlijk bij NM producties), Oscar Bok, Adriaan
Molenaar (ik ben onder de indruk dat je je passie voor het evangelie werke-
lijkheid hebt laten worden), Steven Kettelarij, Edwin en Iwert. In de Pho-
ton Scattering groep heb ik leren kennen Paolo, Sanli, Ramy, Otto, Pedro,
Timmo, Patrick, Frans, Bergin, Rob Troost. Het was heel leerzaam om
met jullie te discussiéren. Jord en Matteo, jullie waren twee fantastische
kamergenoten. Daan wil ik bedanken voor interessante discussies over alles,
en voor de spontane beslissing naar de zee te reizen! Bovendien wil ik Al-
bert, Piet, Roudy, Richard en Rutger bedanken voor het hartelijke welkom
op AMOLF, en voor de administratie die daar voor mij geregeld werd. Rob
Kemper wil ik bedanken voor zijn hulp met laser gerelateerde dingen. Cher
Jean-Michel et chere Yoanna, je voudrais vous remercier de la coopération
productive - mais cette these de doctorat n’est point la derniére correspon-
dence avec vous! Ook wil ik Huib Bakker bedanken voor de zeer inspirerende
discussies die tot een deel van hoofdstuk 4 hebben geleid.

In Enschede ben ik redelijk snel in de christelijke studentenvereniging
Agapé terecht gekomen. Ik wil de kringleden bedanken voor inspirerende
kringavonden. Teun, bedankt voor de leerzame en inspirerende discussies
over God. Ik waardeer het zeer dat je een van de paranimfen bent.

Als ich Steinfurt das erste Mal sah, war ich etwas verunsichert. Hier soll ich
hinziehen? Aber es hat sich als eine sehr gute Entscheidung herausgestellt.
Wir fiihlen uns in der Borghorst Gemeinde wohl wohl (das miinsterléndische
'wohl’), und haben dort viele Freunde gefunden. Danke, dass Ihr es uns so
einfach gemacht habt!

Tini und Ulf, auch Thr kommt nicht ungeschoren davon. Die Tatsache,
dass Thr auch in der Gegend seid, hat vieles einfacher gemacht - an dieser
Stelle danke ich Tini, dass ich doch das Flugzeug nach Cargese bekommen
habe! Danke fiir Eure Unterstiitzung in vielerlei Hinsicht. Tini - bald bist
Du auch soweit! Viel Erfolg noch!

Wenn ich an Hamburg denke, fallen mir spontan einige Freunde ein, die
mich und uns in dieser Zeit unterstiitzt haben: Achmed und Rebekka,
Wiebke (na gut - eigentlich tiberall auf der Welt!) und Rahel. Danke Euch!
Familie MacKenzie, auch Ihr habt zu dieser Dissertation beigetragen: Danke
fiir die Anteilnahme! Mum, thank you for supporting me in this. You’re spe-
cial. Dad, thanks for proofreading (and certainly not only that!), and that
you got me interested in science in the first place. Desweiteren will ich mich
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bei allen Lehrern bedanken, die meine Neugierde unterstiitzt haben.

Meine Stifle, was hast Du mitgefiebert. Ich dank Dir so sehr, dass Du
dran geblieben bist und dass Du mich so sehr unterstiitzt hast. Lass uns
gemeinsam weitergehen! Ich lieb Dich:

Ky

”In all these things we are more than conquerors through him who loved

2

us.

Rm. &8:37
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