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There are more things in heaven and earth, Horatio,than are dreamt of in your philosophy.Prine Hamlet, Hamlet; William Shakespeare
IntrodutionOptimal behavior of natural systems is frequently enountered at all lev-els of everyday life, and thus has beome a major soure of inspiration forvarious �elds. The disipline of Natural Computing aims at developing om-putational tehniques that mimi olletive phenomena in nature that oftenexhibit exellent behavior in information proessing. Among a long list ofnatural omputing branhes, we are partiularly interested in the fasinat-ing �eld of Organi Evolution, and its omputational derivative, the so-alledEvolutionary Algorithms (EAs) �eld. By enoding an optimization probleminto an arti�ial biologial environment, EAs mimi ertain elements in theDarwinian dynamis and aim at obtaining highly-�t solutions in terms ofthe problem. A population of trial solutions undergo arti�ial variations andsurvive this simulation upon the riteria posed by the seletion mehanism.Analogously, it is suggested that this population would evolve into highly-�tsolutions of the optimization problem.The original goal of this work was to extend spei� variants of EAs,alled Evolution Strategies (ES), to subpopulations of trial solutions whihevolve in parallel to various solutions of the problem. This idea stems fromthe evolutionary onept of organi speiation. Essentially, the natural om-puting way of thinking is required here to further deepen into EvolutionaryBiology Theory, and attain reative solutions for the arti�ial population inlight of the desired speiation e�et. The so-alled nihing tehniques arethe extension of EAs to speiation forming multiple subpopulations. Theyhave been investigated sine the early days of EAs, mainly within the pop-ular variants of Geneti Algorithms (GAs). In addition to the theoretialhallenge to design suh tehniques, whih is well supported by the biologi-ally inspired motivation, there is a real-world inentive for this e�ort. Thedisipline of deision making, whih makes diret bene�t out of the adventof the global optimization �eld, poses the demand for the multipliity ofdi�erent optimal solutions. Ideally, those multiple solutions, as obtained bythe optimization routine, would have high diversity among eah other, andrepresent di�erent oneptual designs.Aiming at largely devoting this researh to nihing in ES, we were alsooriginally interested in applying our proposed algorithms to experimental op-timization. More spei�ally, we were aiming at appliations in the emerg-1



2 Introdutioning �eld of Quantum Control (QC). The latter o�ers an enormous variety ofhigh-dimensional ontinuous optimization problems, both at the theoretialas well as the experimental levels. In that respet, it is potentially a heavenlytestbed for Evolutionary optimization, and partiularly for nihing methods.This is due to some remarkable properties of QC landsapes, whih typiallypossess an in�nite number of optimal solutions, as proved by QC Theory.We thus �nd the ombination of researh on nihing and the appliation toQC landsapes very attrative. After being exposed to this overwhelmingtreasure of QC landsape rihness, we deided to devote an independent partof this dissertation to Quantum Control.Symbolially, this interdisiplinary study forms a losed natural omput-ing irle, where biologially-oriented investigation of organi evolution andspeiation helps to develop methods for solving appliations in Physis ingeneral, and in Quantum Control in partiular. By our rekoning, this sym-bolism is even further strengthened upon onsidering the stohasti natureof Evolutionary Algorithms; This proess an be thus onsidered as throw-ing die in order to solve Quantum Mehanis, sometimes referred to as thesiene of die.Thus, biologially inspired by organi evolution in general, and organispeiation in partiular, armed with the real-world inentive to obtain multi-ple optimal solutions for better deision making, we hereby begin our journeyfrom diversity in nature to oneptual designs in Quantum Control.This dissertation therefore onsists of two parts: Part I introdues anihing framework to a set of state-of-the-art ES algorithms, namely Deran-domized Evolution Strategies (DES), and fouses on testing the proposedalgorithms on arti�ial landsapes. Part II reviews the main aspets ofQuantum Control in the general ontext of global funtion optimization.It then presents the experimental observation of Derandomized ES as wellas the proposed nihing algorithms when applied to several QC systems,both at the laboratory and at the numerial simulations levels. As far aswe know, this is the �rst time that Quantum Control searh landsapes areomprehensively introdued to the ommunity of Computer Siene.Part I begins with presenting the algorithmi kernels of this study, De-randomized Evolution Strategies. This is done in Chapter 1 by providingthe reader with the essential terminology of global optimization, reviewingthe fundamentals of the ES �eld, and eventually introduing expliitly, indetail, the derandomized algorithms.Upon developing a nihing framework for Evolution Strategies, some pre-liminary topis had to be addressed. We properly introdue the real-worldinentive for nihing, namely the seletion of oneptual designs by the de-ision maker. Furthermore, we review elementary onepts of the Organi



Introdution 3Speiation Theory, disuss the ruial aspet of population diversity withinES, and �nally present a short overview of previously introdued nihingtehniques. Chapter 2 aims at addressing those topis, and therefore it on-stitutes an important preliminary study for the derivation of our nihingframework. Due to the highly interdisiplinary nature of the nihing re-searh, this hapter presents a partiularly high diversity of topis, whihare linked by nihing.In Chapter 3 we present our proposed framework of nihing within De-randomized ES. We desribe it in detail, and thereafter test it on a suite ofmultimodal arti�ial landsapes. We analyze the numerial observation, anddisuss the algorithmi performane.Chapter 4 extends the framework of Chapter 3 to self-adaptive nihe-shape approahes, for solving the so-alled nihe radius problem. This is animportant topi in the �eld of nihing, as it attempts to treat the hallengeof de�ning a generi basin of attration without a-priori knowledge on thelandsape.Another extension of our proposed nihing framework, this time to the�eld of Multi-Objetive Optimization, is introdued in Chapter 5. As thetwo �elds of nihing and multi-riterion optimization, orresponding to mul-timodal and multiobjetive problems, respetively, have many aspets inommon, we show the feasibility of utilizing our nihing framework in amulti-objetive approah. This onludes Part I of the thesis.The goal that Part II aims to ahieve is two-fold: Firstly, properly in-troduing the main optimization aspets of the Quantum Control �eld, andseondly, presenting our work on the optimization of a spei� QuantumControl problem, namely Dynami Moleular Alignment. We thus beginChapter 6 with a detailed review of Quantum Control Theory and Experi-ments. The review outlines fundamental onepts of Quantum Control The-ory, and mainly fouses on theorems onerning the ritial points of thelandsapes, as well as on landsape rihness and multipliity of optimal so-lutions. It then presents Quantum Control Experiments, and disusses ourexperimental setup for Part II.Chapter 7 desribes our investigation of two optimization problems orre-sponding to Quantum Control systems of Seond Harmoni Generation. Weondut experiments on these optimization problems, by means of numerialsimulations as well as laboratory experiments, by employing spei� Deran-domized ES variants. It is the only hapter where we report on real-worldlaboratory experiments, while the following hapters fous on numerial sim-ulations exlusively.Chapter 8 is devoted to the introdution of the rotational framework,the fundamental framework upon whih the Dynami Moleular Alignmentproblem is based. In that respet, this hapter an be onsidered as a gateway



4 Introdutionto our work on the alignment problem investigated in Chapter 9. Following adetailed Quantum Mehanial desription of the framework, Chapter 8 posesthe rotational population transfer optimization problem. It then presents ournumerial observation of the Derandomized ES employment to the problem,and �nalizes the hapter with applying our proposed nihing algorithms.Chapter 9 reports in detail on our work on the Dynami Moleular Align-ment, whih onstitutes the main appliation in our researh on Quan-tum Control landsapes. It desribes the alignment problem, and thenpresents various optimization approahes that we employed in addition to thestraightforward appliation of Derandomized ES. These approahes inludea speial parameterization method developed for this purpose, optimalityinvestigation of a simpli�ed variant, optimization subjet to a dynamiallyvarying environment, multi-objetive onsideration of the problem, and, �-nally, the appliation of nihing.We thereafter omplete this journey by summarizing our main resultsand by presenting promising diretions for future researh.A Tehnial Note Due to tehnial printing onsiderations, several plotsfrom various hapters are onentrated in Appendix A. In these partiularases, a plot is referred to in the text as Figure A.x.
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If it ould be demonstrated that any omplex organ existed,whih ould not possibly have been formed by numerous,suessive, slight modi�ations, my theory would absolutelybreak down.Charles Darwin
Chapter 1Evolution Strategies1.1 BakgroundThe paradigm of Evolutionary Computation (EC), whih is gleaned from themodel of organi evolution, studies populations of andidate solutions under-going variations and seletion, and aims at bene�ting from the olletive phe-nomena of their generational behavior. The term Evolutionary Algorithms(EAs) essentially refers to the olletion of suh generi methods, inspiredby the theory of natural evolution, that enode omplex problems into anarti�ial biologial environment, de�ne its geneti operators, and simulateits propagation in time. Motivated by the basi priniples of the Darwiniantheory, it is suggested that suh simulation would yield an optimal solutionfor the given problem.Evolutionary Algorithms [1℄ have three main streams, rooted either inthe United States or in Germany, during the 1960s: Evolutionary Program-ming (EP), founded by L. Fogel in San-Diego [2℄, Geneti Algorithms (GAs)founded by J. Holland in Ann Arbor [3, 4℄, and Evolution Strategies (ES),founded by P. Bienert, H.P. Shwefel and I. Rehenberg, three students tothat time at the Tehnial University of Berlin (see, e.g., [5, 6, 7℄).Evolution Strategies for global parameter optimization, the general frame-work of this study, is reviewed in this hapter. We start with laying out thebasi foundations and de�nitions.1.1.1 The Framework: Global OptimizationLet us introdue the elementary terminology of a ontinuous real-valued pa-rameter optimization problem [8℄. The following de�nition exludes disreteand mixed-integer problems. Given an objetive funtion, also alled thetarget funtion,

f : S ⊆ Rn → R, S 6= ∅7



8 Chapter 1. Evolution Strategieswhere S is the set of feasible solutions
S = {~x ∈ Rn | gj(~x) ≥ 0 ∀j ∈ {1, ..., q}} , gj(~x) : Rn → Rsubjet to q inequality onstraints gj(~x), the goal is to �nd a vetor ~x∗ ∈ Swhih satis�es

∀~x ∈ S : f(~x) ≥ f(~x∗) ≡ f∗ (1.1)Then, f∗ is de�ned as the global minimum and ~x∗ is the global minimumloation.Due to
min{f(~x)} = −max{−f(~x)},it is straightforward to onvert every minimization problem into a maximiza-tion problem. Thus, without loss of generality, we shall assume a minimiza-tion problem, unless spei�ed otherwise.A loal minimum f̂ = f(~̂x) is de�ned in the following manner:

∃ǫ > 0 ∀~x ∈ S :
∥

∥

∥
~x− ~̂x

∥

∥

∥
< ǫ⇒ f̂ ≤ f(~x)Unimodality vs. Multimodality A landsape is said to be unimodal ifit has only a single minimum, and multimodal otherwise. It is alled multi-global if there are several minima with equal funtion values as the globalminimum.Global Minimum in Pratie: Charaterization While there existsa general riterion for the automati identi�ation of a loal minimum,suh as the zero gradient riterion, in pratie there is no equivalent gen-eral riterion for the global minimum [8℄. The attempt to haraterize it isessentially equivalent to posing the multimodal optimization problem anddi�erentiating de fato between global and loal minima. We outline herea theoretial attempt to aomplish this haraterization, by means of theimportant onept of level sets [9, 10℄. Given a level set,

Lf (α) = {~x| ~x ∈ S, f (~x) ≤ α} , (1.2)it is subjet to level set mapping, whih de�nes its e�etive domain:
Gf = {α|α ∈ R, Lf (α) 6= ∅} . (1.3)Assuming that Gf is ompat and losed, Lf (α) is said to be lower semi-ontinuous (ls) at the point ᾱ ∈ Gf if ~x ∈ Lf (ᾱ), {αi

}

⊂ Gf , {αi
}

→ ᾱimply the existene of K ∈ N and a sequene {~xi
} suh that {~xi

}

→ ~x and
~xi ∈ Lf

(

αi
) for i ≥ K.Given this, the following is a su�ient ondition for haraterizing aglobal minimum:



1.1. Bakground 9Theorem 1.1.1. Let f be a real-valued funtion on S ⊂ Rn. If every ~x ∈ Ssatisfying f (~x) = ᾱ is either a global minimum of f (·) on S or it is not aloal minimum of f (·), then Lf (α) is ls at ᾱ.Törn and Zilinskas onluded that the extension to multimodal domainsmakes the optimization problem unsolvable in the general ase, i.e., there isno e�ient solution tehnique for obtaining the global minimum value (see[8℄ pp. 6).The Hessian and the Condition Number Given a real-valued twiedi�erentiable n-dimensional funtion f , the Hessian matrix of f(~x) is de�nedas the matrix
H(f(~x)) =















∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
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· · · ∂2f
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n















(1.4)If the seond derivatives of f are all ontinuous, a ondition whih we shallassume here, the order of di�erentiation does not matter, and thus the Hes-sian matrix is symmetri. It is then worthwhile to introdue the onditionnumber of the Hessian, a salar whih haraterizes its degree of omplexity,and typially determines the di�ulty of a problem to be solved by optimiza-tion methods. Let {ΛH

i

}n

i=1
denote the eigenvalues of the Hessian H, and let

ΛH

min and ΛH
max denote its minimal and maximal eigenvalues, respetively.The ondition number of the Hessian matrix is de�ned by:ond(H) =

ΛH
max

ΛH

min

≥ 1 (1.5)Ill-onditioned problems are often lassi�ed as suh due to large onditionnumbers (e.g., 1014) of the Hessian on their landsapes.Separability Another de�ning property of problem di�ulty is the sepa-rability of the objetive funtion (see, e.g., [11℄). A funtion f : Rn → R isalled separable if it an be optimized by solving n 1-dimensional problemsseparately:
arg min

~x
f (~x) =

(

arg min
x1

f (x1, . . .) , . . . , arg min
xn

f (. . . , xn)

)1.1.2 Evolutionary AlgorithmsWhereas ES and EP are similar algorithms and share many basi harater-istis [12℄, the prinipal di�erene between them and GAs is the enoding of



10 Chapter 1. Evolution StrategiesAlgorithm 1 An Evolutionary Algorithm1: t← 02: Pt ← Init() {Pt ∈ Sµ: Set of solutions}3: Evaluate(Pt)4: while t < tmax do5: Gt ← Generate(Pt) {Generate λ variations}6: Evaluate(Gt)7: Pt+1 ← Selet(Gt ∪ Pt) {Rank and selet µ best}8: t← t+ 19: end whilethe geneti information. Traditional GAs enode the genome with disretevalues (as in nature), whereas ES as well as EP do that with ontinuousreal-values. Moreover, ES and EP foused more on development of muta-tion operators, while in lassial GA researh the reombination operatorreeived most attention. Today, GA, ES, and EP subsume under the termEvolutionary Algorithms (EAs).Here, we o�er an introdutory generi desription of an EA. The lat-ter onsiders a population (i.e., set) of individuals (i.e., trial solutions), andmodels its olletive learning proess. Eah individual in the population isinitialized aording to an algorithm-dependent proedure, and may arrynot only a spei� searh point in the landsape, but also some environmen-tal information onerning the searh. A ombination of stohasti as wellas deterministi proesses suh as mutation, reombination, and seletion,ditate the propagation in time towards suessively better individuals, or-responding to better regimes of the landsape. The quality of an individual,or alternatively the merit of a trial solution, are determined by a so-alled�tness funtion, whih is typially the objetive funtion or its resaling.Thus, ertain individuals are favored over others during the seletion phase,whih is based upon the �tness evaluation of the population. The seletedindividuals beome the andidate solutions of the next generation, while theothers die out.More expliitly, an EA starts with initializing the generation ounter t.After generating the initial population with µ individuals in S, a set Gt of λnew solutions is generated by means of mutation and possibly reombination.The new andidate solutions are evaluated and ranked in terms of theirquality (�tness value). The µ best solutions in Gt ∪ Pt are seleted to formthe new parent population Pt+1.A generalized EA pseudoode is outlined in Algorithm 1.



1.2. The Standard Evolution Strategy 111.2 The Standard Evolution StrategyEvolution Strategies were originally developed at the Tehnial Universityof Berlin as a proedure for automated experimental design optimization,rather than a global optimizer for ontinuous landsapes. Following a se-quene of suessful appliations (e.g., shape optimization of a bended pipe,drag minimization of a joint plate, and hardware design of a two-phase �ash-ing nozzle), a diploma thesis [13℄ and a dissertation [14℄ laid out the solidfoundations for ES as an optimization methodology. There has been exten-sive work on ES analysis and algorithmi design sine then [7, 15, 16℄.This setion, whih is mostly based on [1℄ and [7℄, will desribe the stan-dard ES in detail. Setion 1.2.1 will introdue notation and basi terminol-ogy. Setion 1.2.2 will present the (1 + 1) algorithm, whih was originallyanalyzed for theoretial purposes, but ontinued to play an important role inseveral aspets of Evolution Strategy design. The self-adaptation priniplewill be desribed in Setion 1.2.3, while Setion 1.2.4 will outline the ESalgorithm.1.2.1 Notation and TerminologyThe typial appliation domain of Evolution Strategies is the minimizationof non-linear objetive funtions of signature f : S ⊆ Rn → R. Given asearh problem of dimension n, let ~x := (x1, x2, ..., xn)T ∈ Rn denote theset of deision parameters or objet variables to be optimized: It is de�nedas an individual assoiated with a trial solution. In optimization problems,whih are of our main interest, it is then straightforward to de�ne the �tnessof that individual: It is the objetive funtion(s) value(s) of ~x, i.e., f (~x).Evolution Strategies onsider a population of andidate solutions of thegiven problem. This population undergoes stohasti as well as determinis-ti variations, with the so-alled mutation operator, and possibly with thereombination operator. The mutation operator is typially equivalent tosampling a random variation from a normal distribution. Due to the ontin-uous nature of the parameter spae, the biologial term mutation rate anbe assoiated here with the atual size of the mutation step in the deisionspae, also referred to as the mutation strength.Expliitly, an individual is represented by a tuple of ontinuous real-values, sometimes referred to as a hromosome, whih omprises the deisionparameters to be optimized, ~x, their �tness value, f (~x), as well as a set ofendogenous (i.e., evolvable) strategy parameters, ~s ∈ Rm.The kth individual of the population is thus denoted by:
~ak = (~xk, ~sk, f (~xk))The dimension m of the strategy parameter spae is subjet to the desiredparameter ontrol approah, to be disussed shortly. The endogenous pa-



12 Chapter 1. Evolution Strategiesrameters are a unique onept for ES, in partiular in the ontext of the mu-tation operator, and they play a ruial role in the so-alled self-adaptationpriniple (see Setion 1.2.3).Strategy-spei� parameters, suh as the population harateristi pa-rameters µ, λ, and the so-alled mixing number ν, are alled exogenousstrategy parameters, as they are kept onstant during the simulated evolu-tion. The mixing number determines the number of individuals involved inthe appliation of the reombination operator.1.2.2 Motivation: The (1 + 1) Evolution StrategyRehenberg [6℄ onsidered a simple (1 + 1) Evolution Strategy, with a �xedmutation strength σ, in order to investigate analytially two basi obje-tive funtions, namely the orridor model and the sphere model. From thehistorial perspetive, that study laid out the foundations for the theory ofEvolution Strategies.Rehenberg derived expliitly the expressions for the onvergene rate ofhis (1 + 1) ES for the two models. By de�nition, neither self-adaptation norreombination were employed in this strategy. Given the probability of themutation operator to over a distane k′ towards the optimum, p(k′), theonvergene rate ϕ is de�ned as the expetation of the distane k′ overedby the mutation:
ϕ =

∫ ∞

0
p(k′) · k′ dk′ (1.6)The expression for the optimal step-size for the two models was �rst derived.It was observed to depend on the so-alled suess probability ps,

ps = P {f(Mutate {~x}) ≤ f(~x)} . (1.7)By setting
dϕ

dσ

∣

∣

∣

∣

σ∗

= 0, (1.8)the optimal step-sizes for the two models were alulated, yielding also theoptimal suess probabilities. The obtained values were both lose to 1/5,regardless of the searh spae dimensionality. This led to the formulation ofthe well-known 1/5th-suess rule:The ratio of suessful mutations to all mutations should be 1/5.If it is greater than 1/5, inrease the standard deviation, if it issmaller, derease the standard deviation.For more details see [1℄. The implementation of the 1/5th-suess rule withinthe (1+1)-ES is given as Algorithm 2. As pratial hints, ps an be alulatedover intervals of 10 · n trials, and the adaptation onstant should be setbetween the boundaries 0.817 ≤ c≪ 1.



1.2. The Standard Evolution Strategy 13Algorithm 2 The (1 + 1) Evolution Strategy1: t← 02: Pt ← Init() {Pt ∈ S: Set of solutions}3: Evaluate(Pt)4: while t < tmax do5: ~x(t) := Mutate {~x(t− 1)} with step-size σ6: Evaluate(P ′(t) := {~x(t)}) : {f (~x(t))}7: Select {P ′(t) ∪ P (t)}8: t← t+ 19: if t mod n = 0 then10:
σ =







σ(t− n)/c if ps > 1/5
σ(t− n) · c if ps < 1/5
σ(t− n) if ps = 1/511: else12: σ(t) = σ(t− 1)13: end if14: end whileIt should be noted that 1/5th-suess rule has been kept alive, and ontin-ued to play an important role in several aspets, inluding the onstrutionof the elitist strategy of the Covariane Matrix Adaptation ES algorithm([17℄ and also see Setion 1.4).1.2.3 The Self-Adaptation PrinipleSetion 1.2.2 provided us with the motivation to adapt the endogenous strat-egy parameters during the ourse of evolution, e.g., tuning the mutativestep-size aording to the 1/5th-suess rule. The basi idea of the self-adaptation priniple is to onsider the strategy parameters as endogenousparameters, that undergo an evolutionary proess themselves. The idea ofoupling endogenous strategy parameters to the objet variables an be foundin organisms, where self-repair mehanisms exist, suh as repair enzymes andmutator genes [18℄. This allows an individual to adapt to the hanging en-vironment of its trajetory in the landsape, while keeping the potentiallyharmful e�et of mutation within reasonable boundaries. Hene, when muta-tive self-adaptation is applied, there is no deterministi ontrol in the handsof the user with respet to the mutation strategy.The ruial laim regarding ES is that self-adaptation of strategy param-eters works [19℄. It sueeds in doing so by applying the mutation, reom-bination and seletion operators in the strategy, and without the use of anyexogenous ontrol. The link between strategy and deision parameters isexploited, even if it is only indiret. Experiments upon whih this laim was



14 Chapter 1. Evolution Strategiesbased had found several boosting onditions for self-adaptation to work, suhas reombination on strategy parameters, seletion pressure within ertainbounds, and others.1.2.4 The Canonial (µ/ν +, λ)-ES AlgorithmWe desribe here the spei� operators for the standard Evolution Strategy,sometimes referred to as the Shwefel approah, and provide the reader withthe implementation details.MutationThe mutation operator is the dominant variation operator within ES, andthus we hoose to elaborate in this setion on its harateristis. As a retro-spetive analysis, we hoose to begin with the outline of some general rulesfor the design of mutation operators, as suggested by Beyer [15℄:1. Reahability. Given the urrent generation of individuals, any othersearh point in the landsape should be reahed within a �nite numberof mutation operations.2. Unbiasedness. Variation operators in general, and the mutation op-erator in partiular, should not introdue any bias, and satisfy themaximum entropy priniple. In the ase of ontinuous unonstrainedlandsapes, this would suggest the use of the normal distribution.3. Salability. The mutation strength should be adaptive with respetto the landsape.The ES mutation operator onsiders stohasti ontinuous variations,whih are based on the multivariate normal distribution. Given a normally-distributed random vetor, denoted by ~z = (z1, z2, . . . , zn)T , the mutationoperator is then de�ned as follows:
~xNEW = ~xOLD + ~z (1.9)A multivariate normal distribution is uniquely de�ned by a ovariane ma-trix, C ∈ Rn×n, whih is a symmetri positive semi-de�nite matrix, as wellas by a mean vetor ~m ∈ Rn. Its probability density funtion (PDF) is givenby:

Φpdf
N (~z) =

1
√

(2π)n detC
· exp

(

−1

2
(~z − ~m)T ·C−1 · (~z − ~m)

) (1.10)A random vetor ~z drawn from a multivariate normal distribution, is denotedby
~z ∼ N (~m,C) .



1.2. The Standard Evolution Strategy 15The ES mutation operator always onsiders a distribution with zeromean, i.e., ~m = ~0, and thus the ovariane matrix C is the de�ning om-ponent of this operator. It is haraterized by its (n · (n − 1)) /2 ovarianeelements,
cij = cov(xi, xj) = cov(xj , xi) = cji,as well as by its n varianes,

cii ≡ σ2
i = var(xi).Overall, we have,

C =











var(x1) cov(x1, x2) · · · cov(x1, xn)
cov(x2, x1) var(x2) · · · cov(x2, xn)... ... . . . ...
cov(xn, x1) cov(xn, x2) · · · var(xn)









Essentially, the (n · (n+ 1)) /2 independent elements of the ovariane ma-trix are the endogenous strategy parameters that evolve along with the in-dividual:
~s← C,i.e., the strategy parameter vetor ~s represents the ovariane matrix C inthis ase.For the de�nition of the update rule for the strategy parameters, it isonvenient to represent the o�-diagonal elements of C by means of the rota-tional angles between the prinipal axes of the deision parameters. Let αijdenote these angles,

cij = cov (xi, xj) =
1

2
(var(xi)− var(xj)) · tan (2αij) (1.11)Aording to the self-adaptation priniple, the ovariane matrix elementsalso evolve every generation. The adaptation of the ovariane matrix ele-ments is ditated by non-linear update rules: The diagonal terms, cii = σ2

i ,are updated aording to the log-normal distribution:
σNEW

i = σOLD
i · exp

(

τ ′ · N (0, 1) + τ · Ni (0, 1)
) (1.12)and the o�-diagonal terms are updated through the rotational angles:

αNEW
ij = αOLD

ij + β · Nℓ (0, 1) (1.13)where N (0, 1), Ni(0, 1), and Nℓ(0, 1) (ℓ = 1, . . . , (n · (n− 1)) /2) denote in-dependent random variables, and where τ ∼ 1/
√

2
√
n , τ ′ ∼ 1/

√
2n , and

β = 5
180π are onstants. After those two update steps, the ovariane matrixan be updated (o�-diagonal terms are alulated by means of Eq. 1.11).
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Figure 1.1: Mutation ellipsoids for n = 2, drawn from a general non-singularovariane matrix, with c1,2 ∼ tan (2α1,2). Figure ourtesy of Thomas Bäk.Geometrial Interpretation The equal probability density ontour linesof a multivariate normal distribution are ellipsoids, entered about the mean.The prinipal axes of the ellipsoids are de�ned by the eigenvetors of theovariane matrix C. The lengths of the prinipal axes are proportionateto the orresponding eigenvalues. Figure 1.1 provides an illustration formutation ellipsoids in the ase of n = 2.Correlated Mutations: Strategy Considerations Given a deisionparameter spae of dimension n, a general mutation-ontrol mehanism on-siders the ovariane matrix C, but may apply various di�erent strategies,for omputational onsiderations. There are three ommon approahes:1. A ovariane matrix proportionate to the identity matrix, i.e., havinga single free strategy parameter σ, often referred to as the global step-size:
C1 = σ2 · I (1.14)2. A diagonalized ovariane matrix, i.e., having a vetor of n free strat-egy parameters, (σ2

1, σ
2
2 , ..., σ

2
n

)T , typially referred to as the individualstep-sizes:
C2 = diag

(

σ2
1, σ

2
2 , ..., σ

2
n

) (1.15)
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Figure 1.2: Equidensity probability ontours for the three di�erent ap-proahes with respet to a 2D landsape. Left: A single global step-size(irles). Middle: n independent parameters (axis-parallel ellipsoids). Right:
(n · (n+ 1)) /2 independent parameters (arbitrarily oriented ellipsoids). Fig-ures ourtesy of Thomas Bäk [20℄.3. A general non-singular ovariane matrix, with arbitrary (n · (n+ 1)) /2free strategy parameters:

C3 = (cij) (1.16)Thus, the three approahes propose orders of O(1), O(n), or O(n2) strat-egy parameters to be learned, respetively, at the ost of di�erent invarianeproperties. Obviously, a single global step-size approah is very limited in itsability to generate suessful moves on a generi landsape. The generaliza-tion into individual step-sizes assigns di�erent varianes to eah oordinateaxis, ahieving an invariane with respet to translation, but still havingdependeny on the oordinate system (no invariane with respet to rota-tion). Finally, the most general approah with an arbitrary normal mutationdistribution introdues omplete invariane with respet to translation androtation. Figure 1.2 o�ers an illustration for the three di�erent approahes,on a given 2D landsape.ReombinationInspired by the organi mehanism of a meioti ell division, where the ge-neti material is reordered by means of rossover between the hromosomes,the ES reombination operator onsiders sharing the information from upto ν parent individuals [21℄. When ν > 2, it is usually referred to as multi-reombination. Unlike other Evolutionary Algorithms (e.g., GAs), the ESreombination operator obtains only a single o�spring.Due to the ontinuous nature of the parameters at hand, deision aswell as strategy parameters, there are two fundamental ways to reombine



18 Chapter 1. Evolution Strategiesparents:
• Disrete reombination: one of the alleles is randomly hosen among
ν parents. Given a parental matrix of the old generation, A

O =
(

~aO
1 ,~a

O
2 , ...,~a

O
ν

), the new reombinant ~aN is onstruted by:
(

~aN
)

i
:=
(

A
O
mi

)

i
, mi := rand {1, .., ν}

• Intermediate reombination: the values of ν parents are averaged, typi-ally with uniform weights. Essentially, this is equivalent to alulatingthe entroid of the ν parent vetors:
(

~aN
)

i
:=

1

ν

ν
∑

j=1

(

~aO
j

)

i
(1.17)The reombination operator in the standard ES ould be applied as follows:1. For eah objet variable hoose ν parents, and apply disrete reombi-nation on the orresponding variables.2. For eah strategy parameter hoose ν parents, and apply intermediatereombination on the orresponding variables.It should be noted that there are no generally known best settings of thereombination operator, and the above are typial implementations of it.Within the GA researh, the building blok hypothesis (BBH) (see, e.g.,[22℄) o�ered an explanation for the working mehanism of the rossover: Theombination of good, but yet di�erent, building bloks, i.e., spei� portionsof the geneti enoding from di�erent parents, is supposed to be the key rolefor propagating high �tness. The debate over this hypothesis has been keptalive. In ES populations, the diversity dereases rapidly. Therefore, BBH isunlikely to �t in a similar way it does in GA populations.On the other hand, ES researh has given rise to the geneti repair hy-pothesis [23℄, stating that the ommon good properties of the di�erent par-ents, rather than their di�erent features, are the key role in the workingmehanism of reombination. Also, reombination would typially dereasethe harmful e�et of mutation and would allow for high step-sizes whileahieving the same onvergene rates.SeletionNatural seletion is the driving fore of organi evolution: Clearing-out anold generation, and allowing its individuals with the �tness advantage toinrease their representation in the geneti pool of future generations. Asdramati as it might sound, death is an essential part in this proess.



1.2. The Standard Evolution Strategy 19Algorithm 3 The (µ/ν +, λ) Evolution Strategy1: t← 02: Pt ← Init() {Pt ∈ Sµ: Set of solutions}3: Evaluate(Pt)4: while t < tmax do5: Selet ν mating parents from Pt {Marriage}6: ~a′k(t) := Recombine {P (t)} ∀k ∈ {1, . . . , λ} {Reombination}7: ~a′′k(t) := Mutate {~a′k(t)} ∀k ∈ {1, . . . , λ} {Mutation}8: Evaluate(P ′(t) := {~a′′1(t), . . . ,~a′′λ(t)}) ({f (~x′′1(t)) , . . . , f (~x′′λ(t))})9: if (µ, λ)-ES then10: Select {P ′(t)}11: else if (µ+ λ)-ES then12: Select {P ′(t) ∪ P (t)}13: end if14: t← t+ 115: end whileEvolution Strategies adopt this priniple, and employ deterministi op-erators in order to selet the best µ individuals with the highest �tness, e.g.,minimal objetive funtion values, to be transferred into the next genera-tion. Two seletion operators are introdued in the standard ES using anelegant notation due to Shwefel. The notation haraterizes the seletionmehanism, as well as the number of parents and o�spring involved:
• (µ + λ)-seletion: the next generation of parents will be the best µindividuals seleted out of the union of urrent parents and λ o�spring.
• (µ, λ)-seletion: the next generation of parents will be the best µ indi-viduals seleted out of the urrent λ o�spring.In the ase of omma seletion, it is rather intuitive that setting µ < λwould be a neessary ondition for an e�ient onvergene. In plus seletion,however, any µ > 0 an be hosen in priniple. In the latter, the so-alledelitist seletion ours, when the survival of the best individual found so faris guaranteed, leading to a possible senario of a parent surviving for theentire proess.We are now in a position to introdue a pseudoode of the StandardEvolution Strategy (Algorithm 3).A Note on Population Sizes One of the important topis in ES researhis the study of optimal population sizes. By de�nition, the magnitude of λdetermines the number of funtion evaluations per generation, whih shouldpreferably be kept small.



20 Chapter 1. Evolution StrategiesTypial population sizes in ES keep a ratio of 1
7 between the parent andthe o�spring populations; a popular hoie is µ = 15 and λ = 100 (see, e.g.,[1℄ and [20℄).Based on experimental observations, when individual step-sizes are ho-sen as strategy parameters (Eq. 1.15), λ has to sale linearly with n. Inthe ase of arbitrary normal mutations (Eq. 1.16), Rudolph [24℄ showed thatsuessful adaptation to the landsape (i.e., learning suessfully the Hessianmatrix) an be ahieved with an upper bound of µ + λ = (n2 + 3n + 4)/2,but it is ertainly not likely to be ahieved with the typial population sizesof {µ = 15, λ = 100}.1.3 Derandomized Evolution Strategies (DES)Mutative step-size ontrol (MSC) tends to work well in the Standard-ESfor the adaptation of a single global step-size (Eq. 1.14), but tends to failwhen it omes to the individual step-sizes or arbitrary normal mutations(Eq. 1.15 or Eq. 1.16). Shwefel laimed that the adaptation of the strategyparameters in those ases is impossible within small populations [19℄, andsuggested larger populations as a solution to the problem.Due to the ruial role that the mutation operator plays within EvolutionStrategies, its mutative step-size ontrol was investigated intensively. Inpartiular, the disruptive e�ets to whih the MSC is subjet, were studiedat several levels [25, 16℄, and are reviewed here:

• Indiret seletion. By de�nition, the goal of the mutation operatoris to apply a stohasti variation to an objet variable vetor, whihwill inrease its seletion probability. The seletion of the strategyparameters setting is indiret, i.e., the vetor of a suessful mutationis not used to adapt the step-size parameters, but rather the parametersof the distribution that led to this mutation vetor.
• Realization of parameter variation. Due to the sampling froma random distribution, the realization of the parameter variation doesnot neessarily re�et the nature of the strategy parameters. Thus, thedi�erene de fato between good and bad strategy settings of strategyparameters is only re�eted in the di�erene between their probabilitiesto be seleted - whih an be rather small. Essentially, this means thatthe seletion proess of the strategy parameters is strongly disturbed.
• The strategy parameter hange rate is de�ned as the di�erene betweenstrategy parameters of two suessive generations. Hansen and Oster-meier [16℄ argue that the hange rate is an important fator, as it givesan indiation onerning the adaptation speed, and thus it has a diretin�uene on the performane of the algorithm. The prinipal laim isthat this hange rate basially vanishes in the standard-ES.



1.3. Derandomized Evolution Strategies (DES) 21The hange rate depends on the mutation strength to whih the strat-egy parameters are subjet. While aiming at attaining the maximalhange rate, the latter is underposed to an upper bound, due to the �-nite seletion information that an be transferred between generations.Change rates that exeed the upper bound would lead to a stohas-ti behavior. Moreover, the mutation strength that obtains optimalhange rate is typially smaller than the one that obtains good diver-sity among the mutants - a desired outome of the mutation operator,often referred to as seletion di�erene. Thus, the on�it between theobjetive of optimal hange rate versus the objetive of optimal sele-tion di�erene annot be resolved at the mutation strength level [25℄.A possible solution to this on�it would be to unlink the hange ratefrom the mutation strength.The so-alled derandomized mutative step-size ontrol aims to treat thosedisruptive e�ets, regardless of the problem dimensionality, population size,et.1.3.1 (1, λ) Derandomized ES VariantsThe onept of derandomized Evolution Strategies has been originally intro-dued by sholars at the Tehnial University of Berlin in the beginning ofthe 1990's. It was followed by the release of a new generation of suessfulES variants by Hansen, Ostermeier, and Gawelzyk [26, 27, 28, 29℄.The �rst versions of derandomized ES algorithms introdued a ontrolledglobal step-size in order to monitor the individual step-sizes by dereasingthe stohasti e�ets of the probabilisti sampling. The seletion disturbanewas ompletely removed with later versions by omitting the adaptation ofstrategy parameters by means of probabilisti sampling. This was ombinedwith individual information from the last generation (the suessful muta-tions, i.e., of seleted o�spring), and then adjusted to orrelated mutations.Later on, the onept of adaptation by aumulated information was intro-dued, aiming to use wisely the past information for the purpose of step-sizeadaptation: Instead of using the information from the last generation only,it was suessfully generalized to a weighted average of the previous genera-tions.Note that the di�erent derandomized-ES variants stritly follow a (1, λ)strategy, postponing the treatment of reombination or plus-strategies forlater stages1. In this way, the question how to update the strategy parame-ters when an o�spring does not improve its anestor is not relevant here.Moreover, the di�erent variants hold di�erent numbers of strategy pa-rameters to be adapted, and this is a fator in the learning speed of the1When asked about omma versus plus strategies, Hansen states that �with a goodenough algorithm at hand, employing the plus strategy is unneessary, as your algorithmshould be able to revisit the best attainable solution�.



22 Chapter 1. Evolution Strategiesoptimization routine. The di�erent algorithms hold a number of strategyparameters saling either linearly (O(n) parameters responsible for individ-ual step-sizes) or quadratially (O(n2) parameters responsible for arbitrarynormal mutations) with the dimensionality n of the searh spae.1.3.2 First Level of DerandomizationThe so-alled �rst level of derandomization ahieved the following desirede�ets:
• A degree of freedom with respet to the mutation strength of the strat-egy parameters.
• Salability of the ratio between the hange rate and the mutationstrength.
• Independene of population size with respet to the adaptation meh-anism.We hoose to review the implementation of the �rst level of derandom-ization through three partiular derandomized ES variants:DR1The �rst derandomized attempt [26℄ oupled the suessful mutations to theseletion of deision parameters, and learned the mutation step-size as wellas the saling vetor based upon the suessful variation. The mutation stepis formulated for the kth individual, k = 1, . . . , λ:

~x(g+1) = ~x(g) + ξkδ
(g)~ξk

scal
~δ
(g)
scal~zk ~zk ∈ {−1,+1}n (1.18)Note that ~zk is a random vetor of ±1, rather than a normally distributedrandom vetor, while ~ξk

scal ∼ ~N (0, 1)+, i.e., distributed over the positive partof the normal distribution. The evaluation and seletion are followed by theadaptation of the strategy parameters (subsripts sel refer to the seletedindividual):
δ(g+1) = δ(g) · (ξsel)β (1.19)

~δ
(g+1)
scal = ~δ

(g)
scal ·

(

~ξsel
scal + b

)βscal (1.20)
P
(

ξk = 7
5

)

= P
(

ξk = 5
7

)

= 1
2 ; β =

√

1/n , βscal = 1/n, b = 0.35, and
ξk ∈

{

7
5 ,

5
7

} are onstants. Note that the multipliation in Eq. 1.20 is betweentwo vetors and arried out as element-by-element multipliation, yielding avetor of the same dimension n.



1.3. Derandomized Evolution Strategies (DES) 23DR2The seond derandomized ES variant [27℄ aimed to aumulate informationabout the orrelation or anti-orrelation of past mutation vetors in order toadapt the global step-size as well as the individual step-sizes - by introduinga quasi-memory vetor. This aumulated information allowed omitting thestohasti element in the adaptation of the strategy parameters - updatingthem only by means of suessful variations, rather than with random steps.The mutation step for the kth individual, k = 1, . . . , λ, reads:
~x(g+1) = ~x(g) + δ(g)~δ

(g)
scal~zk ~zk ∼ ~N (0, 1) (1.21)Introduing a quasi-memory vetor ~Z:

~Z(g) = c~zsel + (1− c) ~Z(g−1) (1.22)The adaptation of the strategy parameters aording to the seleted o�-spring:
δ(g+1) = δ(g) ·
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)(1.24)with β =

√

1/n , βscal = 1/n, b = 0.35, and the quasi-memory rate c =
√

1/n as onstants. Note that the multipliation in Eq. 1.24 is betweentwo vetors and arried out as element-by-element multipliation, yielding avetor of the same dimension n.DR3This third variant [28℄, usually referred to as the Generation Set Adaptation(GSA), onsidered the derandomization of arbitrary normal mutations forthe �rst time, aiming to ahieve invariane with respet to the saling ofvariables and the rotation of the oordinate system. This naturally amewith the ost of a quasi-memory matrix, B ∈ Rm×n, setting the dimensionof the strategy parameters spae to n2 ≤ m ≤ 2n2. The adaptation of theglobal step-size is mutative with stohasti variations, just like in the DR1.The mutation step is formulated for the kth individual, k = 1, . . . , λ:
~x(g+1) = ~x(g) + δ(g)ξk~yk (1.25)

~yk = cmB
(g) · ~zk ~zk ∼ ~N (0, 1) (1.26)



24 Chapter 1. Evolution StrategiesThe update of the memory matrix is formulated as:
B

(g) =
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~b
(g)
1 , . . . ,~b(g)
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)

~b
(g+1)
1 = (1− c) ·~b(g)

1 + c · (cuξsel~ysel) , ~b
(g+1)
i+1 = ~b

(g)
i

(1.27)The step-size is updated as follows:
δ(g+1) = δ(g) (ξsel)
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2
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}, and cu =
√

(2− c)/c are onstants.1.4 The Covariane Matrix Adaptation ESFollowing a series of suessful derandomized ES variants addressing the �rstlevel of derandomization, and a ontinuous e�ort at the Tehnial Univer-sity of Berlin, the so-alled Covariane Matrix Adaptation (CMA) EvolutionStrategy was released in 1996 [29℄, as a ompletely derandomized EvolutionStrategy � the fourth generation of derandomized ES variants.Seond Level of Derandomization The so-alled seond level of deran-domization targeted the following e�ets:
• The probability to regenerate the same mutation step is inreased.
• The hange rate of the strategy parameters is subjet to expliit on-trol.
• Strategy parameters are stationary when subjet to random seletion.The seond level of derandomization was implemented by means of the CMA.The CMA ombines the robust mehanism of ES with powerful statistiallearning priniples, and thus it is sometimes subjet to informal ritiism fornot being a genuine Evolution Strategy. In short, it aims at satisfying themaximum likelihood priniple by applying Priniple Components Analysis(PCA) to the suessful mutations, and it uses umulative global step-sizeadaptation.1.4.1 PreliminaryOne of the goals of the CMA is to ahieve a suessful statistial learningproess of the optimal mutation distribution, whih is equivalent to learn-ing a ovariane matrix proportional to the inverse of the Hessianmatrix (see, e.g., [30℄), without alulating the atual derivatives:

C ∝ H
−1



1.4. The Covariane Matrix Adaptation ES 25Rather than representing a mutation step with a normal variation with zeromean (Eq. 1.9), it is onvenient to refer to the original notation of the normaldistribution. Thus, in the notation we use here, the vetor ~m represents themean of the mutation distribution, but is also assoiated with the favoritesolution at present (i.e., ~xOLD of Eq. 1.9), σ denotes the global step-size, andthe ovariane matrix C determines the shape of the distribution ellipsoid:
~xNEW ∼ N (~m, σ2

C) = ~m+ σ · N (~0,C) = ~m+ σ · ~zDi�erent priniples ditate the adaptation of the ovariane matrix, C, versusthe adaptation of the global step-size σ:
• The mean ~m and the ovariane matrix C of the normal distributionare updated aording to the maximum likelihood priniple, suh thatgood mutations are likely to appear again. ~m is updated suh that
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∣

∣

∣
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)

−→ maxonsidering the prior C. This is implemented through the so-alledCovariane Matrix Adaptation (CMA) mehanism.
• σ is updated suh that it is onjugate perpendiular to the onseutivesteps of ~m. This is implemented through the so-alled CumulativeStep-size Adaptation (CSA) mehanism.The Evolution PathThe most intuitive way to update the ovariane matrix would be to on-strut an n × n matrix analogue to the DR2 mehanism (see Eq. 1.22),with the outer-produt of the seleted mutation vetor ~zsel:

C←− (1− ccov)C + ccov~zsel~z
T
selHowever, the sign information of ~zsel is lost due to ~zsel~zT

sel = −~zsel (−~zsel)T .The solution lies within the de�nition of the so-alled evolution path, whihaumulates the history information using an exponentially weighted movingaverage:
~pc ∝

g
∑

i=0

(1− cc)g−i~z
(i)
selAnd now the ovariane matrix adaptation step reads:

C←− (1− ccov)C + ccov~pc~p
T
c



26 Chapter 1. Evolution StrategiesThe Path Length ControlThe ovariane matrix update is not likely to inrease the variane in alldiretions simultaneously, and thus a global step-size ontrol is muh needed.The basi idea of the so-alled path length ontrol is to measure the lengthof the evolution path, whih is also the onseutive steps of ~m, and adaptthe step-size aording to the following argument: If the evolution path islonger than expeted, the steps are likely parallel, and thus the step-sizeshould be inreased; Alternatively, if it is shorter than expeted, the stepsare probably anti-parallel, and the step-size should be dereased aordingly.The expeted length is de�ned in a straightforward manner as the expetedlength of a normally distributed random vetor.The atual measurement is done by means of the "onjugate" evolutionpath:
~pσ ∝

g
∑

i=0

(1− cσ)g−i
C

(i) − 1
2 ~z

(i)
selwhere the fatorization of C is required in order to align all diretions withinthe rotated frame. Then, the update of the step-size depends on the ompar-ison between ‖~pσ‖ and the expeted length of a normally distributed randomvetor, E [‖N (0, I) ‖]:

σ ←− σ · exp

( ‖~pσ‖
E [‖N (0, I) ‖] − 1

)1.4.2 The (1, λ) Rank-One CMAWe are now in a position to introdue the expliit formulation of the rank-oneupdate with umulation Covariane Matrix Adaptation Evolution Strategy,following the notation introdued in Setion 1.4.1. Additionally, onsider thediagonalization of the ovariane matrix, denoted by
C
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) holds the square-roots of theeigenvalues.The mutation step for the kth individual, k = 1, . . . , λ, is then de�nedas:
~x

(g+1)
k = ~x(g) + σ(g)

B
(g)

D
(g)~z

(g+1)
k (1.30)with ~zk ∼ ~N

(

~0, I
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c = ~0, is expliitly updated as follows:
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1.4. The Covariane Matrix Adaptation ES 27and then the ovariane matrix, initialized as identity C
(0) = I, is adaptedaordingly:

C
(g+1) = (1− ccov) ·C(g) + ccov · ~p(g+1)

c

(
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)T (1.32)The alulation of the "onjugate" evolution path, initialized ~p(0)
σ = ~0, reads:
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sel (1.33)and then followed by the update of the global step-size:
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 (1.34)The various learning oe�ients are typially set as cc = 4/(n + 4), ccov =
2/(n+1.4)2, cσ = 3/(n+4), and dσ = 1+ cσ. The expetation of the lengthof a normally distributed random vetor is given by:
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) (1.35)where the Gamma funtion is de�ned by:
Γ(n) =

∫ ∞

0
xn−1 exp(−x)dx (1.36)but may also be approximated by E [‖N (0, I) ‖] ≈ √n
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).Implementation Additional implementation remarks are outlines here:
• Arnold o�ered2 a dramati simpli�ation to the global step-size update(Eq. 1.34) with replaing ( ‚
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). Thiswas reported to perform equally well [16℄.
• The update of the evolution path (Eq. 1.31) is usually implementedwith a onditional threshold as follows:
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· E [‖N (0, I) ‖].2Hansen et al. ite this soure of information as personal ommuniations.



28 Chapter 1. Evolution Strategies1.4.3 The (µW , λ) Rank-µ CMAThe Rank-µ Covariane Matrix Adaptation [31℄ is an extension of the originalupdate rule for larger population sizes. The idea is to use µ > 1 vetorsin order to update the ovariane matrix C in eah generation, based onweighted intermediate reombination.Let ~xi:λ denote the ith ranked solution point, suh that
f (~x1:λ) ≤ f (~x2:λ) ≤ · · · ≤ f (~xλ:λ)The updated mean is now de�ned as follows:

~m←
µ
∑

i=1

wi~xi:λ = ~m+ σ

µ
∑

i=1

wi~zi:λ ≡ 〈~x〉Wwith a set of weights:
w1 ≥ w2 ≥ · · · ≥ wµ > 0,

µ
∑

i=1

wi = 1Essentially, this is a generalization of the intermediate reombination onept(Eq. 1.17), suggested by Rehenberg3.By setting ∀i : wi = 1
µ , the original reombination is restored, whih isthen noted by (µI , λ) (note, however, that the (µ/µI , λ) notation is also used[32℄).The ovariane matrix update an now be formalized by means of rank-µupdate, using an outer-produt of the weighted mutation vetors:

C←− (1− ccov)C + ccov

µ
∑
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T
i:λIt an be even furthermore ombined with the rank-one update:
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i:λWe shall now present the (µW , λ) rank-µ CMA harateristi equations:
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i:λ(1.41)3Reported as personal ommuniations between Hansen, Ostermeier and Rehenberg.
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 (1.43)The weights are typially set to:
wi=1...µ =

ln (µ+ 1)− ln (i)
∑µ

j=1 ln (µ+ 1)− ln (j)
(1.44)The onstant cW is de�ned suh that cW 〈~z〉(g+1)

W and ~z(g+1)
k are identiallydistributed with the same variane under random seletion:
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(1.45)The speial rank-µ onstant, µcov, is the variane e�etive seletion mass:
µcov =

1
∑µ

i=1w
2
i

(1.46)whih beomes µcov = µ in the speial ase of (µI , λ).The rest of the onstants are set as in the (1, λ) rank-one CMA.Population Size Given a searh spae of dimension n, the default CMApopulation sizes introdued a revolutionary order of magnitude into the ES�eld, O(log (n)), espeially when we take into aount the goal to learn thefull ovariane matrix of the deision parameters spae.The expliit suggested values are as follows:
λ = 4 + ⌊3 · ln (n)⌋ µ = ⌊λ/2⌋ (1.47)1.4.4 The (1 + λ) CMAThis elitist version [17℄ of the CMA-ES algorithm, whih had been originallyderived for the sake of a multi-objetive CMA algorithm [33℄, ombined thelassial onept of the (1 + 1) ES strategy, and in partiular the suessprobability and suess rule omponents (see Eq. 1.7 as well as Setion 1.2.2),with the Covariane Matrix Adaptation onept. The so-alled suess rulebased step size ontrol replaes the path length ontrol of the CMA-ommastrategy. The same notation as in Setion 1.4.2 is used here:
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k , k = 1, . . . , λ (1.48)



30 Chapter 1. Evolution StrategiesAfter the evaluation of the new generation, the suess rate is updated
psucc = λ

(g+1)
succ /λ, where:

p̄succ = (1− cp) · p̄succ + cp · psucc (1.49)
σ(g+1) = σ(g) · exp

(

1

d
·
(

p̄succ −
ptarget

succ
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succ

(1− p̄succ)

)) (1.50)The ovariane matrix is updated only if the seleted o�spring is better thanthe parent. Then,
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if p̄succ < pΘ

(1− cc) ~pc otherwise (1.51)
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(1− ccov) ·C(g) + ccov · ~pc~p
T
c if p̄succ < pΘ

(1− ccov) ·C(g) + ccov ·
(

~pc~p
T
c + cc (2− cc)C(g)

) otherwise(1.52)The default parameters are set as follows: d = 1 + n
2 , ptarget

succ = 2
11 , cp = 1

12 ,
cc = 2

n+2 , ccov = 2
n2+6 , and pΘ = 0.44.A Note on Usage As mentioned earlier, this plus-strategy version wasonstruted for multi-objetive optimization. Uno�ially, it is not reom-mended to use it otherwise. In this work, we will restrit the use of theCMA+ to the nihing framework exlusively, and thus will not onsider itupon the employment of the DES variants to single-riterion Quantum Con-trol optimization tasks in Chapter 7.1.4.5 Constraints HandlingThe broad topi of onstraints handling [34℄ is ertainly not of a majoronern in this study, but it does have an indiret impat on the nihingtehniques to be introdued here, as will beome more lear in the followinghapters. We thus hoose to speify here, in short, the general approah tohandle onstraints when derandomized-ES are in use, in light of the rule ofthumb suggested by Hansen and Ostermeier for the CMA (see [16℄, pp. 21).A possible way to handle onstraints would be to repeat the generationstep (e.g., Eq. 1.30) until λ, or at least µ feasible solutions are generated.This should be stritly enfored, before the following update equations areapplied. It is laimed that this method should perform in a satisfying man-ner, if a su�ient number of feasible solutions are initially generated - dueto the symmetry of the mutation distribution. However, if the global mini-mum is loated at the edge of the feasible domain, it is suggested that otheronstraints handling tehniques should be used.



1.4. The Covariane Matrix Adaptation ES 311.4.6 DisussionThe Covariane Matrix Adaptation Evolution Strategy is a state-of-the-artoptimization routine, whih ombines lassial deterministi onepts (e.g.,Hessian or Covariane matries learning) and statistial learning tools (e.g.,Prinipal Components Analysis) with the powerful stohasti mehanismof Evolution Strategies. In terms of standard performane riteria, it wasranked as the best Evolutionary Algorithm at hand [35℄.The CMA-ES has been informally ritiized for not being a genuine evolu-tion strategy, sine it inorporates those non-evolutionary omponents. Evenas suh, and despite its onsiderable suess-rate as a global optimizer, wewould like to stress that it ertainly has a nature of a loal searh routine.The fat that it learns a unimodal distribution in the searh spae - no mat-ter how well it does so - makes it a loal searh. We believe that this providesus with some motivation to use the CMA-ES, as well as other derandomized-ES routines, as algorithmi kernels for a multi-distribution approah - whihwould onstrut a nihing algorithm. The idea would be essentially to usemultiple CMAs in parallel, aiming to ahieve a good overage of the land-sapes with loal-searhers. This idea would beome more lear in the nexthapter, when we introdue the gateway to nihing.





The genes are the master programmers, and they areprogramming for their lives. They are judged aording to thesuess of their programs in oping with all the hazards thatlife throws at their survival mahines, and the judge is theruthless judge of the ourt of survival.The Sel�sh Gene; Rihard Dawkins
Chapter 2Introdution to Nihing2.1 Speiation Theory vs. Coneptual DesignsEvolutionary Algorithms have the tendeny to lose diversity within theirpopulation of feasible solutions and to onverge into a single solution [1, 36,37℄, even if the searh landsape has multiple globally optimal solutions.Nihing methods, the extension of EAs to �nding multiple optima inmulti-modal optimization within one population, address this issue by main-taining the diversity of ertain properties within the population. Thus, theyaim at obtaining parallel onvergene into multiple basins of attration in amulti-modal landsape within a single run.The study of nihing is hallenging both from the theoretial pointof view and from the pratial point of view. The theoretial hallengeis two-fold - maintaining the diversity within a population-based stohastialgorithm from the omputational perspetive, but also having an insightinto speiation theory or population genetis from the Evolutionary Biologyperspetive. The pratial aspet provides a real-world inentive for thisproblem - there is an inreasing interest of the applied optimization ommu-nity in providing the deision maker with multiple solutions whih ideallyrepresent di�erent oneptual designs, for single-riterion or multi-riterionsearh spaes [38, 39℄. The onept of "going optimal" is often extended nowinto the aim for "going multi-optimal", so to speak: Obtaining optimalresults but also providing the deision maker with di�erent hoies.On this partiular note, it is worth mentioning the so-alled Seond ToyotaParadox [40℄:"Delaying deisions, ommuniating ambiguously, and pursuingan exessive number of prototypes, an produe better ars fasterand heaper."Nihing methods have been studied in the past 35 years, mostly in theontext of Geneti Algorithms, and the fous has been mainly on the theo-retial aspet. As will be disussed here, nihing methods have been mostly33



34 Chapter 2. Introdution to Nihinga by-produt of studying population diversity, and were hardly ever at thefront of the EC researh.This hapter, the gateway to nihing, disusses a variety of introdutorytopis - ranging from biologial aspets of diversity and speiation, mathe-matial de�nitions of basins of attration, to GA nihing methods - whihre�et the strong interdisiplinary nature of this subjet.2.2 From DNA to Organi DiversityIn this setion we introdue the biologial elementary onepts that orre-spond to the ore of nihing methods: population diversity. This setion ismainly based on [41℄ and personal leture notes1.A Preliminary Note on Terminology A speies is de�ned as the small-est evolutionary independent unit. The term nihe, however, stems fromeology, and it has several di�erent de�nitions. It is sometimes referred toas the olletive environmental omponents whih are favored by a spei�speies, but ould also be onsidered as the eosystem itself whih hosts indi-viduals of various speies. Most de�nitions would typially also onsider thehosting apaity of the nihe, whih refers to the limited available resouresfor sustaining life in its domain.In the ontext of funtion optimization, nihe is assoiated with a peak,or a basin of attration, whereas a speies orresponds to the subpopulationof individuals oupying that nihe.2.2.1 Geneti DriftOrgani evolution an be broken down into four de�ning fundamental meha-nisms: natural seletion, mutation, migration or gene �ow, and geneti drift.The latter, whih essentially refers to sampling errors in �nite populations,was overlooked by Darwin, who had not been familiar with Mendelian ge-netis, and thus did not disuss this e�et in his "Origin of Speies" [42℄. Inshort, geneti drift is a stohasti proess in whih the diversity is lost in�nite populations. A distribution of geneti properties is transferred to thenext generation in a limited manner, due to the �nite number of generatedo�spring, or equivalently the limited statistial sampling of the distribution.As a result, the distribution is likely to approah an equilibrium distribution,e.g., �xation of spei� alleles when subjet to equal �tness. This is whygeneti drift is often onsidered as a neutral e�et. The smaller the popu-lation, the faster and stronger this e�et ours. An analogy is oasionallydrawn between geneti drift to Brownian motion of partiles in mehanis.1Notes were taken in the ourse "Evolutionary Biology" of Prof. David Stern (EEB309),Prineton University, Fall 2007



2.2. From DNA to Organi Diversity 35In order to demonstrate the geneti drift e�et, we onduted simula-tions2 on the following basi model of population genetis: The evolutionof random-mating populations with two alleles, namely, A and a, equal �t-nesses of the three genotypes (i.e., no preferenes for AA, Aa, nor aa), nomutations, no migration between the repliate populations, and �nite pop-ulation size N . We simulated ten simultaneously evolving populations, forthree test-ases of population sizes: N1 = 10, N2 = 100, and N3 = 1000.Figure 2.1 o�ers an illustration for the three di�erent simulations. It is easyto observe a lear trend in this simple experiment: Alleles' loss/�xation isvery likely to our in small population sizes, and is not likely to our inlarge population sizes.The geneti drift e�et had been originally reognized by R.A. Fisher[43℄ (referred to as random survival), and was expliitly mentioned by S.Wright when studying Mendelian populations [44℄. It was, however, re-visited and given a new interpretation in the Neutral Theory of MoleularEvolution of Kimura [45℄. The Neutral Theory suggested that the random ge-neti drift e�et is the main driving fore within moleular evolution, ratherthan the non-random natural seletion mehanism. Natural seletion as wellas geneti drift are onsidered nowadays, by the ontemporary evolution-ary biology ommunity, as the ombined driving fore of organi evolution.Moreover, the importane of the Neutral Theory is essentially in its being anull hypothesis model for the Natural Seletion Theory - by de�nition.2.2.2 Organi DiversityDiversity among individuals or populations in nature an be attributed todi�erent evolutionary proesses whih our at di�erent levels. We distin-guish here between variations that are observed within a single speies toa speiation proess, during whih a new speies arises, and review shortlyboth of them.Variations within a Speies Diversity of organisms within a single speiesstems from variane at the genotypi level, referred to as geneti diversity, orfrom the existene of spetrum of phenotypi realizations to a spei� geno-type. These e�ets are quanti�ed and are usually assoiated with genotypivariane and phenotypi variane, respetively. Several hypotheses explain-ing geneti diversity have been proposed within the disipline of populationgenetis, inluding the neutral evolution theory. It should be noted that ge-neti diversity is typially onsidered to be advantageous for survival, as itmay allow better adaptation of the population to environmental hanges,suh as limate variations, diseases, et.Phenotypi variane is measured on a ontinuous spetrum, also known2Simulations were onduted with the PopG Geneti Simulation Program, version 3.1.
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Figure 2.1: Ten simultaneously evolving populations, for three test-asesof population sizes: N1 = 10 [TOP℄, N2 = 100 [CENTER℄, and N3 = 1000[BOTTOM℄. The vertial axis orresponds to the allele frequeny of A in thepopulation, as a funtion of generations, indiated on the horizontal axis.



2.2. From DNA to Organi Diversity 37as quantitative variation. Roughly speaking, the main soures of quantitativevariations [41, 46℄ are outlined here:1. Genes have multiple loi, and hene are mapped into a large set ofphenotypes.2. Environmental e�ets have diret in�uene on natural seletion; �tnessis time-dependent, and thus phenotypi variations in the outome ofseletion are expeted.3. Phenotypi plastiity is the amount in whih the genotypi expressionvary in di�erent environments3, and it is a diret soure of variationat the phenotypi level.4. The plasti response of the genotype to the environment, i.e., the jointe�et of geneti and environmental elements, also a�ets the seletionof a spei� phenotype, and thus an lead to variations. This e�et isknown as Genotype-Environment Interation ("G-by-E").Thus, quantitative variations are mainly aused by genotypi and phenotypirealizations and their interation with the environment. The ratio betweengeneti variane to total phenotypi variane is de�ned as heritability [44℄.Speiation The essene of the speiation proess is lak of gene �ow,where physial isolation often plays the role of the barrier to gene �ow. Lakof gene �ow is only one of the neessary onditions for speiation. Anotherneessary ondition for speiation to our is that the redution of gene �owwill be followed by a phase of geneti divergene, by means of mutation,seletion, and drift. Finally, the ompletion or elimination of divergene anbe assessed via the so-alled seondary ontat phase: interbreeding betweenthe parental populations would possibly fail (o�spring is less �t), sueed(o�spring is �tter), or have a neutral outome (o�spring has the same �tness).This would orrespond respetively to inreasing, dereasing or stabilizingthe di�erentiation between the two arising speies. Note that the speiationan our de fato, without the atual seondary ontat taking plae; thelatter is for observational assessment purposes.In organi evolution, four di�erent levels of speiation are onsidered,orresponding to four levels of physial linkage between the subpopulations:1. Allopatri speiation The split in the population ours only due toomplete geographial separation, e.g., migration or mountain build-ing. It results in two geographially isolated populations.3Bradshaw [47℄ gave the following qualitative de�nition to phenotypi plastiity: "Theamount by whih the expressions of individual harateristis of a genotype are hangedby di�erent environments is a measure of the plastiity of these haraters".



38 Chapter 2. Introdution to Nihing2. Peripatri speiation Speies arise in small populations whih arenot geographially separated but rather isolated in pratie; the e�etours mainly due to the geneti drift e�et.3. Parapatri speiation The geographial separation is limited, witha physial overlap between the two zones where the populations splitfrom eah other.4. Sympatri speiation The two diverging populations oexist in thesame zone, and thus the speiation is stritly non-geographial. Thisis observed in nature in parasite populations, that are loated in thesame zone, but assoiated with di�erent plant or animal hosts [48℄.These four modes of speiation orrespond to four levels of geographiallydereasing linkages. Roughly speaking, statistial assoiation of geneti om-ponents in nature, suh as loi, typially results from physial linkage. In thisase, we laim that statistial disassoiation, whih is the trigger to speia-tion, originates from gradually dereasing physial linkage.In summary, speiation typially ours throughout three steps:1. Geographi isolation or redution of gene �ow.2. Geneti divergene (mutation, seletion, drift).3. Seondary ontat (observation/assessment).2.3 "Eologial Optima": Basins of AttrationWe devote this setion to the de�nition of basins of attration. This setionis mainly based on Törn and Zilinskas [8℄.The task of de�ning a generi basin of attration seems to be one of themost di�ult problems in the �eld of global optimization, and there haveonly been few attempts to treat it theoretially4 [8℄.Rigorously, it is possible to de�ne the basin by means of a loal optimizer.In partiular, onsider a gradient desent algorithm starting from ~x0, whihis haraterized by the following dynamis:
d~x(t)

dt
= −∇f (~x(t)) (2.1)with the initial ondition ~x (0) = ~x0. Now, onsider the set of points forwhih the limit exists:

Υ =
{

~x ∈ Rn
∣

∣

∣~x(0) = ~x ∧ ~x(t)|t≥0 satis�es Eq. 2.1 ∧ lim
t→∞

~x(t) exists}(2.2)4Intuitively, and stritly metaphorially speaking, we may think of a region of attrationof ~xL as the region, where if water is poured, it will reah ~xL. Aordingly, we may thenthink of the basin of ~xL as the maximal region that will be overed when the avity at ~xLis �lled to the lowest part of its rim.



2.4. Population Diversity within Evolutionary Algorithms 39De�nition 2.3.1. The region of attration A(~xL) of a loal minimum ~xL is
A(~xL) =

{

~x ∈ Υ
∣

∣

∣~x(0) = ~x ∧ ~x(t)|t≥0 satis�es Eq. 2.1 ∧ lim
t→∞

~x(t) = ~xL

}

.(2.3)The basin of ~xL is the maximal level set that is fully ontained in A(~xL).In the ase of several disonneted loal minima with the same funtionvalue, it is possible to de�ne the region of attration as the union of thenon-overlapping onneted sets.2.3.1 Classi�ation of Optima: The Pratial PerspetiveOn the note of the theoretial de�nition of the basin, it is worth mentioningthe pratial perspetive for the lassi�ation of optima shapes, also referredto as global topology. This topi is strongly related to the emerging sub�eldof robustness study (see, e.g., [49℄), whih aims at attaining high-yield optimawith large basins (i.e., low partial derivative values in the proximity of thepeak). Moreover, yet visited from a di�erent diretion, another approahwas introdued reently by Lunaek and Whitley for lassifying di�erentlasses of multimodal landsapes with respet to algorithmi performane[50℄. The latter de�nes the dispersion metri of a landsape as the degreeto whih the loal optima are globally lustered near one another. Land-sapes with low dispersion have their best loal optima lustered together ina single funnel5. This lassi�ation to low dispersion versus high dispersionmay be assoiated with the algorithmi trade-o� between exploration of thelandsape and exploitation of loal strutures. In the broad ontext of thiswork, it is interesting to note that the CMA was shown in [50℄ to performwell on low-dispersion landsapes, and was less e�ient on high-dispersionlandsapes.2.4 Population Diversity within EAsThe term population diversity is ommonly used in the ontext of Evolution-ary Algorithms, but it rarely refers to a rigorous de�nition. Essentially, itis assoiated both with geneti diversity and speiation - the two di�erentonepts from organi evolution that were disussed in Setion 2.2 - at thesame time. This is simply due to the fat that the di�erenes between thetwo onepts do not have any pratial e�et on the evolutionary searh andthe goal of maintaining diversity among the evolving andidate solutions. Inthe well known trade-o� between exploration and exploitation of the land-sape during a searh, maintaining population diversity is a driving fore inthe exploration front, and thus it is an important omponent. Among EC5We deliberately avoid the de�nition of a funnel, as its de�nition is rather vague. Werefer the reader to [51℄.



40 Chapter 2. Introdution to Nihingresearhers, population diversity is �rst onsidered as a omponent due toplay a role in a fruitful exploration of the landsape for the sake of obtaininga single solution, while its role in obtaining multiple solutions is typiallyonsidered as a seondary one.Mahfoud's Formalism Mahfoud onstruted a formalism for harater-izing population diversity in the framework of Evolutionary Algorithms (see[37℄, pp. 50-59). Mahfoud's formal framework was based on the partition-ing of the searh spae into equivalene lasses (set to minima in the searhlandsape), a desriptive relation (typially, genotypi or phenotypi map-pings), and the measurement of distane between the urrent distribution ofsubpopulations to some given goal-distribution.Let P = {pi}ℓi=1 be a disrete distribution desribing the urrent parti-tioning of the population into subpopulations, i.e., pi is the portion of thepopulation loated at the ith site. Let Q = {qi}ℓi=1 be the goal-distributionof the population with respet to the de�ned sites. We demand that byonstrution we have ∑ℓ
i=1 pi = 1, as well as ∑ℓ

i=1 qi = 1. The formal-ism fouses in de�ning the direted divergene, or distane, of distribution
P to distribution Q. Several well-known metris follow this formalism bysatisfying its various riteria. We review some of them here.1. The entropy of a system is a quantitative measurement of its disor-der or randomness [52℄. Although it had originated in Physis, in theSeond Law of Thermodynamis, it also beame an important riterionin information systems, also referred to as Shannon's Information En-tropy. Aordingly, this general onept has several de�nitions, wherewe hoose here to introdue a relevant de�nition to probability distri-butions.De�nition 2.4.1. The entropy of a disrete probability distribution,

{pi}ℓi=1, is de�ned as:
S(P ) =

ℓ
∑

i=1

pi · ln
(

1

pi

)

= −
ℓ
∑

i=1

pi · ln (pi) (2.4)The following measure, developed by Kullbak and Leibler [53℄, quan-ti�es the direted divergene between the two distributions, P and Q,as long as it is well de�ned (i.e., ∀i pi > 0, qi > 0):
D (P,Q) =

ℓ
∑

i=1

pi · ln
(

pi

qi

) (2.5)Given a uniform goal-distribution, the Kullbak-Leibler measure is re-



2.4. Population Diversity within Evolutionary Algorithms 41dued to the following:
D (P,U) =

ℓ
∑

i=1

pi · ln
(

pi

1/ℓ

)

= ln (ℓ)− S(P ) (2.6)Mahfoud shows that the Kullbak-Leibler measure satis�es the riteriaof his formalism, and an be used as a diversity measure.2. The standard distane metris are useful measures of direted diver-gene between the distributions.De�nition 2.4.2. A family of distane metris is de�ned as follows:
D (P,Q) =

√

√

√

√

ℓ
∑

i=1

|pi − qi|k , 0 < k ≤ ∞ (2.7)Mahfoud shows that the family of distane metris, with 0 < k ≤ ∞,satis�es the riteria and an be used as diversity measures.This analytial framework, with its derived measurements of diversity, al-lowed Mahfoud to ompare the role of population diversity among di�erentGA nihing tehniques, and essentially beame a performane riterion inhis study.Diversity Loss Subjet to the omplex dynamis of the various foreswithin an evolutionary algorithm, population diversity is typially lost, andthe searh is likely to onverge into a single basin of attration in the land-sape.Population diversity loss within the population of solutions is the funda-mental e�et whih nihing methods aim to treat. In fat, from the histor-ial perspetive, the quest for diversity-promoting-tehniques was the maingoal within the EC ommunity for some time, and nihing methods weremerely obtained as by-produts, so to speak, of that e�ort. As will be arguedhere, population diversity is an important omponent in a population-basedsearh, and it even beomes ritial in extended tehniques, suh as Evolu-tionary Multi-Objetive approahes (see Chapter 5).Next, we desribe the e�et of diversity loss within Evolution Strate-gies. This will be followed by some onlusions drawn by the GA researhonerning diversity loss within GAs, as a point of referene to ES.2.4.1 Diversity Loss in Evolution StrategiesThe de�ning mehanism of ES is strongly ditated by the mutation operatoras well as by the deterministi seletion operator. As de�ning operators,



42 Chapter 2. Introdution to Nihingthey have a diret in�uene on the diversity property of the population. Thereombination operator, nevertheless, does not play a ritial role in the ESmehanism. In pratie, espeially in the ontext of derandomized ES, it isnot an essential omponent.We attribute two main omponents to the population diversity loss withinES: fast take-over, whih is assoiated with the seletion operator, and ge-neti drift (or neutrality e�et), whih is assoiated both with the seletionand the reombination operators, respetively.Seletive Pressure: Fast Take-OverEvolution Strategies have a stritly deterministi, rank-based approah, toseletion. In the two traditional approahes, (µ, λ) and (µ + λ), the bestindividuals are seleted - implying, rather intuitively, high seletive pressure.Due to the ruial role of the seletion operator within the evolution proess,its impat within the ES �eld has been widely investigated.Goldberg and Deb introdued the important onept of takeover time[54℄, whih gives a quantitative desription of seletive pressure with re-spet to the seletion operator exlusively:De�nition 2.4.3. The takeover time τ∗ is the minimal number of gener-ations until repeated appliation of the seletion operator yields a uniformpopulation �lled with opies of the best individual.The seletive pressure has been further investigated by Bäk [36℄, whoanalyzed all the ES seletion mehanisms also with respet to takeover times.Here, we introdue the results for the takeover times of the main seletionmehanisms in the absene of mutation, where we hose to omit the deriva-tions. See [1℄ for the proofs.Theorem 2.4.4. The takeover time of (µ, λ)-seletion is :
τ∗(µ,λ) =

ln(λ)

ln
(

λ
µ

) (2.8)Theorem 2.4.5. The takeover time of (µ + λ)-seletion is given impliitlyby:
λ =

(

ατ∗+1
1 − ατ∗+1

2

)

√

λ
µ ·
(

λ
µ + 4

)

α1,2 =
λ

2µ
± 1

2
·
√

(

λ

µ

(

λ

µ
+ 4

))

(2.9)



2.4. Population Diversity within Evolutionary Algorithms 43Corollary 2.4.6. It is easy to verify that upon the substitution of the tradi-tional population sizes of the standard-ES, one obtains very short takeovertimes for the given seletion mehanisms, whih imply high seletive pres-sure.The ratio λ
µ learly plays a dominant role in the derived takeover times ofthe two seletion approahes. Not surprisingly, the term seletive pressure isoasionally assoiated with this ratio. It should be noted that the same ratioalso governs the onvergene veloity of the (µ +, λ)-ES for large populationsizes, i.e., µ≫ 1 (see [1℄ pp. 89-90).ES Geneti DriftWe onsider two di�erent ES neutral e�ets, that ould be together asribedas a general ES geneti drift: Reombination drift and seletion drift. Weargue that these two omponents are diretly responsible to the loss of pop-ulation diversity in ES.Reombination Drift Beyer explored extensively the so-alled mutation-indued speiation by reombination (MISR) priniple (see, e.g., [55℄). A-ording to this important priniple, repeated appliation of the mutationoperator, subjet to a dominant reombination operator, would lead to astable distribution of the population, whih resembles a speies or a loudof individuals. When �tness-based seletion is applied, this loud is likely tomove together towards �tter regions of the landsape. Furthermore, Beyermanaged to prove analytially [55℄ that the MISR priniple is indeed uni-versal when �nite populations are employed, subjet to sampling-based re-ombination. The latter was ahieved by analyzing the ES dynamis with-out �tness-based seletion, deriving the expeted population variane, andshowing that it is redued with random sampling in �nite populations. Thisresult was also orroborated by numerial simulations. That study providesus with an analytial result that a sampling-based reombination is subjetto geneti drift, and leads to loss of population diversity.Seletion Drift At the same time, a reent study on the extintion ofsubpopulations on a simple bimodal equi-�tness model investigated the drifte�et of the seletion operator [56℄. It onsidered the appliation of seletionon �nite populations, when the �tness values of the di�erent attrators wereequal (i.e., eliminating the possibility of a take-over e�et), and argued thata neutral e�et (drift) would our, pushing the population into a singleattrator. The latter study indeed demonstrated this e�et of seletion driftin ES, whih resulted in a onvergene to an equilibrium distribution arounda single attrator. It was also shown that the time of extintion inreasesproportionally with µ. The analysis was onduted by means of Markovhain models, supported by statistial simulations.



44 Chapter 2. Introdution to NihingCorollary 2.4.7. Evolution Strategies that employ �nite populations aretypially underposed to several e�ets that are responsible for the loss of pop-ulation diversity. It has been shown that the standard seletion mehanismsmay lead to a fast take-over e�et. In addition, we argued that both thereombination and the seletion operators experiene their own drift e�etsthat lead to population diversity loss. We onlude that an Evolution Strategywith a small population is likely to enounter a rapid e�et of diversity loss.2.4.2 Point of Referene: Diversity Loss within GAsMahfoud devoted a large part of his thesis to studying population diver-sity within GAs [37℄. He onluded that three main omponents an beattributed to the e�et of population diversity loss within GAs:
• Seletion Pressure The traditional GA applies a probabilisti se-letion mehanism, namely the Roulette-Wheel Seletion (RWS). Thismehanism belongs to a broad set of seletion mehanisms whih followthe �tness-proportionate seletion priniple. Seletion pressure is thusassoiated with the 1st moment of the seletion operator. It has beendemonstrated by Mahfoud [37℄ that the seletion pressure, or equiva-lently the non-zero expetation of the seletion operator, prevents thealgorithm from onverging in parallel into more than a single attrator.
• Seletion Noise Seletion noise is assoiated with the 2nd moment ofthe seletion operator, or its variane. Mahfoud [37℄ demonstrated thatthe high variane of the RWS, as well as of other seletion mehanisms,is responsible for the fast onvergene of a population into a singleattrator, even when there exists a set of equally �t attrators. Weonsider this e�et as a geneti drift in its broad de�nition - samplingerror of a distribution - although it was not expliitly referred to assuh by Mahfoud.
• Operator Disruption Evolutionary operators in general, and themu-tation and reombination operators in partiular, boost the evolutionproess toward exploration of the searh spae. In that sense, theyhave a onstrutive e�et on the proess, sine they allow loating newand better solutions. However, their ation also has a destrutive ef-fet. This is due to the fat that by applying them good solutions thathave been loated previously might be lost. In that sense, they elimi-nate ompetition between highly �t individuals, and "assist" some ofthem to take-over. The mutation operator usually has a small e�et,sine it ats in small steps - low mutation probability in the traditionalGA, whih means infrequent ourrene of bit �ips. Thus, the muta-tion operator an be onsidered to have a negligible disruption. Thereombination operator, on the other hand, has a more onsiderable



2.4. Population Diversity within Evolutionary Algorithms 45e�et. In the GA �eld, where the rossover operator is in use (single-point, two-point or n-point rossovers), it has been shown to have adisruptive nature by breaking desired patterns within the population(the well known Shema Theorem disusses the shema disruption bythe rossover operator and states that shemata with high de�ninglength will most likely be disrupted by the rossover operator; see,e.g., [22℄).It should be noted that an equivalent ES disruptive-reombination ef-fet was analyzed in [57℄, and was shown to boost the extintion ofsubpopulations loated around a basin of attration. Furthermore, itwas observed that by omitting the reombination operator the stabilityof the subpopulations was indeed strengthened.2.4.3 Neutrality in ES Variations: Mutation DriftThe mutation operator, the de�ning operator of Evolution Strategies, appliesnormally-distributed variations of �nite sample sizes, and thus is expetedto experiene sampling errors as the sample sizes derease. These samplingerrors lead to an undireted movement of the population enter of mass,with speed whih depends on the population size. We shall all this e�etmutation drift.Simulations In order to demonstrate and analyze this mutation drift ef-fet, we onduted simulations on the following basi ES model: The par-allel evolution of several populations in an n-dimensional spae, based onsequential normally-distributed variations (with a �xed identity matrix asthe ovariane of the distribution), without seletion nor reombination.The ES variation an be then onsidered as a ontinuous random walk of
µ individuals in an n-dimensional spae. Essentially, this orresponds tomutation-only ES of multiple populations.We simulated 10 simultaneously evolving populations, for three test-asesof population sizes: µ1 = 10, µ2 = 100, and µ3 = 1000, subjet to threespae dimensions: n1 = 1, n2 = 10, and n3 = 1000. For eah simulation,we measured the distane of the population mean, or enter of mass, tothe starting point, as a funtion of generational steps. More preisely, wemeasured the loation of the population mean for n1, and the Eulideandistane from the origin for {n2, n3}. Figure 2.2 presents the outome ofthese alulations. It is easy to observe in those simulations a similar trendto the equivalent simulations of Setion 2.2.1: The enter of mass stronglydrifts away from the origin when the population is small, and shows theontrary behavior when the population is large. We therefore onlude thatmutation drift is very likely to our in small population sizes, and is notlikely to our in large population sizes.
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Figure 2.2: Illustration of the mutation drift e�et in ES, for 10 simultane-ously evolving populations, as a funtion of population size [µ1 = 10 (left),
µ2 = 100 (enter), and µ3 = 1000 (right)℄ and landsape dimensionality[n1 = 1 (top), n2 = 10 (enter), and n3 = 1000 (bottom)℄. The vertial axesorrespond to the loation of the enter of mass of the population (for
n1 = 1, top row) or distane from the origin to the enter of mass ofthe population (for n2 = 10 or n3 = 1000, in the enter or bottom rows,respetively). The horizontal axis orresponds to the generational step ofthe alulation.We thus demonstrated here that the enter of mass of a small ES pop-ulation is subjet to a so-alled mutation drift. This is an equivalent e�etto the geneti drift of alleles, as desribed in Setion 2.2.1. We laim thatit allows for easy translation of small populations from one loation to an-other, having the potential to boost fast and e�ient speiation. Therefore,we argue that drift in this ontext an be a blessing for the fast formationof speies in nihing.Sine small populations are typially employed by Evolution Strategies,and espeially by the derandomized variants, we onsider this e�et of muta-tion drift as a positive potential omponent for nihing with ES. This result



2.5. Classial Nihing Tehniques 47provides us with further motivation to introdue DES with small populationsinto the nihing framework.2.5 Classial Nihing TehniquesDespite the fat that the motivation for multimodal optimization is beyonddoubt, and the biologial inspiration is real, there is no unique de�nition ofthe mission statement for nihing tehniques. There have been several at-tempts to provide a proper de�nition and funtional spei�ation for nihing;we review some of them here:1. Mahfoud [37℄ hose to put emphasis on loating as well as maintaininggood optima, and formulated the following:The litmus test for a nihing method, therefore, will bewhether it possesses the apability to �nd multiple, �nal so-lutions within a reasonable amount of time, and to maintainthem for an extended period of time.2. Beyer et al. [58℄ put forward also the atual maintenane of populationdiversity:Nihing : proess of separation of individuals aording totheir states in the searh spae or maintenane of diversity byappropriate tehniques, e.g. loal population models, �tnesssharing, or distributed EA.3. Preuss [59℄ onsidered the two de�nitions mentioned above, and pro-posed a third:Nihing in EAs is a two-step proedure that (a) onurrentlyor subsequently distributes individuals onto distint basinsof attration and (b) failitates approximation of the orre-sponding (loal) optimizers.GA Nihing Methods Nihing methods within Geneti Algorithms havebeen studied during the past few deades, initially triggered by the neessityto promote population diversity within EAs. The researh has yielded avariety of di�erent methods, whih are the vast majority of existing work onnihing in general. The remainder of this setion will fous on GA nihingtehniques, by providing a short overview of the main known methods, withemphasis on the important onepts of Sharing and Crowding. This surveyis mainly based on [37℄ and [60℄.



48 Chapter 2. Introdution to Nihing2.5.1 Fitness SharingThe sharing onept was one of the pioneering nihing approahes. It was�rst introdued by Holland in 1975 [4℄, and later implemented as a nih-ing tehnique by Goldberg and Rihardson [61℄. This strong approah ofonsidering the �tness as a shared resoure has essentially beomean important onept in the broad �eld of Evolutionary Algorithms, andlaid the foundations for various suessful nihing tehniques for multimodalfuntion optimization, mainly within GAs. A short desription of the �tnesssharing mehanism follows.The basi idea of �tness sharing is to onsider the �tness of the land-sape as a resoure to be shared among the individuals, in order to dereaseredundany in the population. Given the similarity metri of the popula-tion, whih an be genotypi or phenotypi, the sharing funtion is de�nedas follows:
sh(di,j) =

{

1−
(

di,j

ρ

)αsh if di,j < ρ

0 otherwise (2.10)where di,j is the distane between individuals i and j, ρ (traditionally notedas σsh) is the �xed radius of every nihe, and αsh ≥ 1 is a ontrol parameter,typially set to 1. Using the sharing funtion, the nihe ount is given by
mi =

N
∑

j=1

sh(di,j) (2.11)Let an individual raw �tness be denoted by fi, then the shared �tness isde�ned by:
f sh

i =
fi

mi
(2.12)assuming that the �tness is stritly positive and subjet to maximization.The evaluation of the shared �tness is followed by the seletion phase, whihis typially based on the roulette wheel seletion (RWS) operator [22℄; Thelatter takes into onsideration the shared �tness. Thus, the sharing meha-nism pratially punishes individuals that have similar members within thepopulation via their �tness, and by that it aims at reduing redundany inthe gene pool, espeially around the peaks of the �tness landsape.One important auxiliary omponent of this approah is the nihe radius,

ρ. Essentially, this approah makes a strong assumption onerning the�tness landsape, stating that the optima are far enough from one anotherwith respet to the nihe radius, whih is estimated for the given problemand remains �xed during the ourse of evolution. This poses the so-allednihe radius problem, to be disussed later, espeially in Chapters 3 and 4.It is important to note that the formulas for determining the value of ρ,whih will be given in Chapter 3, are dependent on q, the number of peaks ofthe target funtion. Hene, a seond assumption is that q an be estimated.



2.5. Classial Nihing Tehniques 49In pratie, an aurate estimation of the expeted number of peaks qin a given domain may turn out to be extremely di�ult. Moreover, peaksmay vary in shape, and this would make the task of determining ρ ratherompliated. This provides us with the motivation to treat the issue of niheshapes in Chapter 4.In the literature, several GA nihing sharing-based tehniques, whihimplement and extend the basi onept of sharing, an be found [37, 61,62, 63, 64, 65, 66℄. Furthermore, the onept of sharing was suessfullyextended to other "yields of interest", suh as onept sharing [38℄.2.5.2 Dynami Fitness SharingIn order to improve the sharing mehanism, a dynami approah was pro-posed. The dynami nihe sharing method [64℄, whih extended the �tnesssharing tehnique, aimed at dynamially reognizing the q peaks of the form-ing nihes, and based on that information lassi�ed the individuals as eithermembers of one of the nihes, or as members of the "non-peaks domain".Expliitly, let us introdue the dynami nihe ount :
mdyn

i =

{

nj if individual i is within dynami nihe j
mi otherwise (non-peak individual) (2.13)where nj is the size of the jth dynami nihe (i.e., the number of individualswhih were lassi�ed to nihe j), and mi is the standard nihe ount, asde�ned in Eq. 2.11.The shared �tness is then de�ned as follows:

fdyn
i =

fi

mdyn
i

(2.14)The identi�ation of the dynami nihes an be arried out by means ofa greedy approah, as proposed in [64℄ as the Dynami Peak Identi�ation(DPI) algorithm (see Algorithm 4). As in the original �tness sharing teh-nique, the shared �tness evaluation is followed by the seletion phase, typ-ially implemented with the RWS operator. Thus, this tehnique does not�xate the peak individuals, but rather provides them with an advantage inthe seletion phase, whih is probability-based within GAs.2.5.3 ClearingAnother variation to the �tness sharing tehnique, alled learing, was in-trodued by Petrowski [65℄ at the same time as the dynami �tness sharing[64℄. The essene of this mehanism is the 'winner takes it all' priniple, andits idea is to designate a spei� number of individuals per nihe, referredto as winners, whih ould enjoy the resoures of that nihe. This is equiva-lent to the introdution of a "death penalty" to the losers of the nihe, the



50 Chapter 2. Introdution to NihingAlgorithm 4 Dynami Peak Identi�ation (DPI)input: population Pop, number of nihes q, nihe radius ρ1: Sort Pop in dereasing �tness order2: i := 13: NumPeaks := 04: DPS := ∅ {Set of peak elements in population}5: while NumPeaks 6= q and i ≤ popSize do6: if Pop[i] is not within sphere of radius ρ around peak in DPS then7: DPS := DPS ∪ {Pop[i]}8: NumPeaks := NumPeaks+ 19: end if10: i := i+ 111: end whileoutput: DPSindividuals of eah nihe whih lose the generational ompetition to the a-tual peak-individuals. Following a radius-based proedure of identifying thewinners and losers of eah nihe in eah generation, the winners are assignedwith their raw-�tness values, whereas all the other individuals are assignedwith zero �tness. This is alled the learing phase. The seletion phase,typially based on the RWS operator, onsiders de fato only the winners ofthe di�erent nihes. The allowed number of winners per nihe, also referredto as the nihe apaity , is a ontrol parameter that re�ets the degree ofelitism. In any ase, as in previous tehniques, the peaks are never �xated,and are subjet to the probabilisti seletion of the GA.This methods was shown to outperform the �tness sharing tehnique ona spei� set of low-dimensional test problems [65℄.2.5.4 CrowdingCrowding was one of the pioneering methods in this �eld, as introdued byde Jong in 1975 [67℄. The rowding approah aimed at reduing hangesin the population distribution between generations, in order to prevent pre-mature onvergene; it does so by applying restrited replaement. Next, wewill desribe the method in more detail.Given the traditional GA, a proportion G of the population is seletedin eah generation via �tness-proportionate seletion to undergo variations(i.e., rossover and mutation) - out of whih a part is hosen to die andto be replaed by the new o�spring. Eah o�spring �nds the individuals itreplaes by taking a random sample of CF (referred to as rowding fator)individuals from the population, and replaing themost similar individualfrom the sample. An appropriate similarity metri should be hosen.The ruial point of this nihing mehanism is the alulation of the



2.5. Classial Nihing Tehniques 51Algorithm 5 Deterministi Crowding: Replaement Seletion1: Selet two parents, p1 and p2, randomly, without replaement2: Generate two variations, c1 and c23: if d(p1, c1) + d(p2, c2) ≤ d(p1, c2) + d(p2, c1) then4: if f(c1) > f(p1) then replae p1 with c15: if f(c2) > f(p2) then replae p2 with c26: else7: if f(c2) > f(p1) then replae p1 with c28: if f(c1) > f(p2) then replae p2 with c19: end ifso-alled rowding distane between parents and o�spring, in order toontrol the hange rate between generations. A di�erent use of the rowdingdistane, applied among individuals of the same generation and assignedwith reversed ranking, will be revisited in the ontext of Evolutionary Multi-Objetive Optimization in Chapter 5; In the ontext of nihing see also Deb's"Omni-Optimizer" ([68℄ and Setion 5.2.1).Mahfoud, who analyzed the rowding nihing tehnique [37℄, onludedthat it was subjet to disruptive e�ets, mainly drift, whih prevented itfrom maintaining more than two peaks. He then proposed a mehanismalled deterministi rowding, as an improvement to the original rowdingnihing tehnique. The proposed proedure applies variation operators topairs of individuals in order to generate their o�spring, who are then allevaluated with respet to the rowding distane, and undergo replaementseletion (see Algorithm 5, whih assumes maximization).2.5.5 ClusteringThe appliation of lustering for nihing is very intuitive from the ompu-tational perspetive, as well as straightforward in its implementation. Yinet al. [62℄ proposed a lustering framework for nihing with GAs, whih wedesribe here brie�y. A lustering algorithm, suh as the K-Means algo-rithm [69℄, �rst partitions the population into nihes, and then onsiders theentroids, or enter points of mass, of the newly partitioned subpopulations.Let dic denote the distane between individual i and its entroid, andlet fi denote the raw �tness of individual i. Assuming that there are ncindividuals in the nihe of individuals i, its �tness is then de�ned as:
fClustering

i =
fi

nc · (1− (dic/2dmax)α)
, (2.15)where dmax is the maximum distane allowed between an individual and itsnihe entroid, and α is a de�ning parameter. It should be noted that thelustering algorithm uses an additional parameter, dmin, for determining the



52 Chapter 2. Introdution to Nihingminimal distane allowed between entroids, playing an equivalent role tothe nihe radius ρ of the sharing-based mehanisms.This method is often subjet to ritiism for its strong dependeny ona relatively large number of parameters. However, this lustering tehniquehas beome a popular kernel for nihing with EAs, and its appliation wasreported in various studies (see, e.g., [56, 70, 71, 72, 73, 74, 75℄).2.5.6 The Sequential Nihe TehniqueThe straightforward approah of iteration an be used to loate sequentiallymultiple peaks in the landsape, by means of an iterative loal searh [76℄.This proedure is blind to any information gathered in previous searhes,and sequentially restarts stohasti searhes, hoping to hit a di�erent peakevery run. Obviously, it is likely to enounter redundany, and the numberof expeted iterations is then inreased by a fator. A redundany fatoran be estimated if the peaks are of equal height (equi-�tness landsape),i.e., the probability to onverge into any of the q peaks is equal to 1/q:
R =

q
∑

i=1

1

iFor q > 3, this an be approximated by:
R ≈ γ + ln (q), (2.16)where γ ≈ 0.577 is the Euler-Masheroni onstant. This redundany fa-tor remains reasonably low for any pratial value of q, but is expeted toonsiderably inrease if all optima are not equally likely to be found.On a related note, we would like to mention a multi-restart with inreas-ing population size approah that was developed with the CMA algorithm[77℄. The latter aims at attaining the global minimum, while possibly visit-ing loal minima along the proess and restarting the algorithm with a largerpopulation size and a modi�ed initial step-size. It is not de�ned as a nihingtehnique and does not target optima other than the global minimum, butit an apture sub-optimal minima during its searh.Beasley et al. extended the naive iteration approah, and developed theso-alled Sequential Nihe tehnique [78℄. This method, in ontrast to theother nihing methods presented earlier, does not modify the geneti op-erators nor any harateristis of the traditional GA, but rather reates ageneral searh framework suitable for loating multiple solutions. By meansof this method the searh proess turns into a sequene of independent runsof the traditional GA, where the basi idea is to suppress the �tness funtionat the observed optimum that was obtained in eah run, in order to preventthe searh from revisiting that optimum.



2.5. Classial Nihing Tehniques 53In further detail, the traditional GA is run multiple times sequentially:given the best solution of eah run, it is �rst stored as a possible �nal solution,and seondly the �tness funtion is arti�ially suppressed in all the pointswithin the neighborhood of that optimum up to a desired radius. Thismodi�ation is done immediately after eah run. Its purpose is to disouragethe following runs from revisiting these optima, and by that to enourage theexploration of other areas of the searh landsape - aiming at obtaining allits optima. It should be noted that eah funtion modi�ation might yieldarti�ial disontinuities in the �tness landsape. This method fouses only onloating multiple optima of the given searh problem, without onsidering theonepts of parallel evolution and subpopulations formation. In that sense,it has been laimed that it ould not be onsidered as a nihing method, butrather as a modi�ed iterated searh.2.5.7 The Islands ModelThis is probably the most intuitive nihing approah from the biologialperspetive, diretly inspired by organi evolution. Also referred to as theRegional Population Model, this approah (see, e.g., [79, 80, 81℄) simulatesthe evolution of subpopulations on remote omputational units (independentproessors), aiming at ahieving a speiation e�et bymonitoring the gene�ow. The population is divided into multiple subpopulations, whih evolveindependently for a �xed number of generations, alled isolation period. Thisis followed by a phase of ontrolled gene �ow, or migration, when a portionof eah subpopulation migrates to other nodes.The geneti diversity and the amount of information exhange betweensubpopulations are determined by the following parameters - the numberof exhanged individuals, the migration rate, the seletion method of theindividuals for migration (uniformly at random, or elitist �tness-based ap-proah), and the sheme of migration, e.g., omplete net topology, ring topol-ogy, or neighborhood topology.2.5.8 Other GA-Based MethodsTagging (see, e.g., [82, 83℄) is a mehanism that aims at improving thedistane-based methods of �tness sharing and rowding, by labeling indi-viduals with tag-bits. Rather than arrying out distane alulations, thetag-bits are employed for identifying the subpopulations, enforing matingrestritions, and then implementing the �tness sharing mehanism. An indi-vidual is lassi�ed to a subpopulation by its geneti inheritane, so to speak,whih is subjet to generational variations, rather than by its atual spatialstate. This onept simpli�es the lassi�ation proess, and obviously re-dues the omputational osts per generation, but it also introdues a newbio-inspired approah into nihing: individuals belong to a speies beause



54 Chapter 2. Introdution to Nihingtheir parents did, and not beause they are urrently adjaent to a "peakindividual", for instane. This tehnique was shown in [82℄ to be a rathere�ient implementation of the sharing tehnique.A omplex subpopulation di�erentiation model, the so-alled Multina-tional Evolutionary Algorithm, was presented in [84℄. This original teh-nique onsiders a world of "nations", "governments", and "politiians", withdynamis ditated by migration of individuals, merging of subpopulations,and seletion. Additionally, it introdues a topology-based auxiliary meh-anism of sampling, whih detets whether feasible solutions share the samebasin of attration. Due to the urse of dimensionality, this sampling-basedmehanism is expeted to lose its e�ieny in high-dimensional landsapes.Stoean et al. [85℄ onstruted the so-alled Elitist Generational Ge-neti Chromodynamis Algorithm. The idea behind this radius-basedtehnique was the de�nition of a mating region, a replaement region, and amerging region �with appropriate mating-, replaement-, and merging-radii� whih ditates the dynami of the geneti operations.Chapter 4 will elaborate furthermore on spei� GA-based nihing teh-niques in the ontext of the so-alled nihe radius problem.2.5.9 Misellaneous: Mating ShemesIt has been observed that one the nihe formation proess starts, i.e., whenthe population onverges into the multiple basins in the landsape, ross-breeding between di�erent nihes is likely to fail in produing good o�spring.In biologial terms, this is the elimination of the divergene, by means ofhybridization, in the seondary ontat phase, as disussed in Setion2.2.2.Deb and Goldberg [54℄ proposed a so-alled mating restrition sheme,whih poses a limitation on the hoie of partners in the reprodution phaseand prevents reombination between ompeting nihes. They used a distanemeasure, subjet to a distane threshold whih was set to the nihe radius,and showed that it ould be used to improve the �tness sharing algorithm.Mahfoud [37℄ proved that the mating restrition sheme of Deb and Gold-berg was not su�ient per se in maintaining the population diversity in GAnihing. A di�erent approah of Smith and Bonaina [86℄, however, onsid-ered an Evolutionary Computation Multi-Agent System, as opposed to thetraditional entralized EA, and did manage to show that the same matingrestrition sheme in an agent-based framework was apable in maintainingdiversity and onverging with stability to the desired peaks.From the biologial perspetive, the mating restrition sheme is obvi-ously equivalent to keeping the geographial isolation, or the barrier to gene�ow, in order to allow the ompletion of the speiation phase. As disussedearlier, the geographial element in organi evolution is the ruial ompo-nent whih reates the onditions for speiation, and it is not surprising that



2.6. Nihing in Evolution Strategies 55arti�ial nihing tehniques hoose to enfore it, by means of mehanismssuh as the nihe radius or the mating restrition sheme.2.6 Nihing in Evolution StrategiesResearhers in the �eld of Evolution Strategies initially showed no partiularinterest in the �eld of nihing, leaving it essentially for Geneti Algorithms.An exeption would be the employment of island models. Roughly speaking,lassial nihing mehanisms suh as �tness sharing, whih rede�ne the sele-tion mehanism, are likely to interfere with the ore of Evolution Strategies� the self-adaptation mehanism � and thus doomed to experiene problemsin a straightforward implementation. Manipulations of �tness values areusually not suitable for Evolution Strategies, as in the ase of onstraintshandling: death-penalty is typially the preferred approah for onstraintsviolation in ES, rather than a ontinuous punishment as used in other EAs,in order to avoid the introdution of disruptive e�ets to the self-adaptationmehanism (see, e.g., [34, 87℄). Therefore, nihing with Evolution Strategieswould have to be addressed from a di�erent diretion. Moreover, the di�er-ent nature of the ES dynamis, throughout the deterministi seletion andthe mutation operator, suggests as well that a di�erent treatment is requiredhere.There are several, relatively new, nihing methods that have been pro-posed within ES, mostly lustering-based [56, 73, 74℄. A di�erent approah,whih preeded this thesis, was presented in [88, 89, 90℄.2.7 Disussion and Mission StatementNihing tehniques, following somehow various mission statements, intro-due a large variety of approahes, some of whih are more biologially in-spired, whereas others are multimodal-optimization oriented. In both ases,those tehniques were usually tested on low-dimensional arti�ial land-sapes, and the appliation of these methods to real-world landsapes washardly ever reported. We laim that nihing methods should be implementedalso for attaining multiple solutions in high-dimensional real-world problems,serving the deision makers by providing them with the hoie of optimalsolutions, and representing well Evolutionary Algorithms in multimodal do-mains. By our humble rekoning, the multimodal front of real-world applia-tions, i.e. multimodal real-world problems whih demand multiple optimalsolutions, should also enjoy the powerful apabilities of Evolution Strategies,as other fronts do, e.g., multi-objetive domains and onstrained domains.On a di�erent note, Preuss, in an important paper [59℄, raised the ques-tion: �Under what onditions an nihing tehniques be faster than iteratedloal searh algorithms?�. Considering a simpli�ed model, and assuming the



56 Chapter 2. Introdution to Nihingexistene of an e�ient basin identi�ation method, he managed to showthat it pays o� to employ Evolutionary Algorithms nihing tehniques onlandsapes whose basins of attration vary signi�antly in size. However,the original question in its general form remained open.Mahfoud [91℄ drew a omparison of parallel versus sequential nihingmethods, while onsidering �tness sharing, deterministi rowding, sequen-tial nihing, and parallel hilllimbing. Generally speaking, he onluded thatparallel nihing GAs outperform parallel hilllimbers on a hard set of prob-lems, and that sequential nihing is always outperformed by the parallelapproahes.Obviously, there is no free lunh, and there is no best tehnique, espe-ially in nihing. In this ontext, loal searh apabilities should not beunderestimated, and population diversity preservers should not be overesti-mated. We laim that like any other omplex omponent in organi as wellas arti�ial systems - the suess of nihing is about the subtle interplaybetween the di�erent, sometime on�iting, driving e�ets.We thus hoose to adopt Preuss' mission statement, and de�ne the hal-lenge in nihing as follows:Attaining the optimal interplay between partitioning thesearh spae into nihes oupied by stable subpopula-tions, by means of population diversity preservation, andexploiting the searh in eah nihe by means of a highlye�ient optimizer with loal-searh apabilities.



All animals are equal,but some animals are more equal than others.Animal Farm; George Orwell
Chapter 3Nihing with DerandomizedEvolution Strategies3.1 GeneralFollowing our mission statement, as presented in Setion 2.7, we would liketo onstrut a generi nihing framework whih o�ers the ombination ofpopulation diversity preservation and loal-searh apabilities. We onsiderDerandomized Evolution Strategies as the best hoie for that purpose, asEA variants with loal searh harateristis (see our disussion in Setion1.4.6). Furthermore, DES typially employ small populations, whih wasshown to be a potential advantage for a nihing tehnique, as it an boostthe speiation e�et (Setion 2.4.3). Thus, we are now hallenged to ompletethe framework by introduing a mehanism for partitioning the searh spaeinto "eologial optima", and stimulating population diversity preservation.We restrit this hapter to the sope of nihing with a �xed nihe radius,assuming that the landsapes under investigation would not dramatiallysu�er from the so-alled nihe-radius assumptions. Chapter 4 will extendthis framework to self-adaptive approahes, whih will aim at treating theseassumptions.This hapter presents our proposed algorithm, introdues our test bed ofarti�ial landsapes as well as the performane riteria, and �nally disussesthe numerial results of our alulations.3.2 The Proposed AlgorithmThe advent of derandomized Evolution Strategies allows suessful globaloptimization with minimal requirements onerning exogenous parameters,mostly without reombination, and with a low number of funtion evalua-tions. In partiular, onsider the (1 +, λ) derandomized ES variants presentedin Chapter 1. In the ontext of nihing, this generation of modern ES vari-57



58 Chapter 3. Nihing with Derandomized Evolution Strategiesants allows the onstrution of fairly simple and elegant nihing algorithms.Next, we outline our proposed method.Our nihing tehnique is based upon interating searh proesses, whihsimultaneously perform a derandomized (1, λ) or (1 + λ) searh in di�erentloations of the landsape. In ase of multimodal landsapes these searhproesses are meant to explore di�erent attrator basins of loal optima.An important point in our approah is to stritly enfore the �xed alloa-tion of the population resoures, i.e. number of o�spring, per nihe. The ideais thus to prevent a take-over senario, in whih a subpopulation loated ata �tter optimum generates more o�spring in omparison to ompeting sub-populations. The biologial idea behind this �xed alloation of resoureslies in the onept of limited hosting apaities of given eologial nihes, asintrodued in Chapter 2.The speiation interation ours every generation when all the o�springare onsidered together to beome nihes' representatives for the next iter-ation, or simply the next searh points, based on the rank of their �tnessand their loation with respet to higher-ranked individuals. We fous ina simple framework without reombination (µ = 1), whereas nihing withreombination will be onsidered in the spei� ontext of Chapter 5.3.2.1 Nihing with (1 +, λ) DES KernelsGiven q, the estimated/expeted number of peaks, q + p �D-sets� are ini-tialized, where a D-set is de�ned as the olletion of all the dynamiallyadapted strategy as well as deision parameters of the derandomized algo-rithm, whih uniquely de�ne the searh at a given point of time. Theseparameters are the urrent searh point, the mutation vetor / ovarianematrix, the global step-size, as well as other auxiliary parameters. At everypoint in time the algorithm stores exatly q + p D-sets, whih are assoi-ated with q + p searh points: q for the peaks and p for the �non-peaksdomain�. The (q+ 1)th...(q+ p)th D-sets are individuals whih are randomlyre-generated every epoh, i.e. a yle of κ generations, as potential andidatesfor nihe formation. This is basially a quasi-restart mehanism, whih al-lows new nihes to form dynamially. We stress that the total number offuntion evaluations alloated for a run should depend on the number ofdesired peaks, q, and not on p. Setting the value of p essentially re�ets thefollowing dilemma: Applying a wide restart approah for further exploringthe searh spae, versus exploiting omputational resoures for the existingnihes. In any ase, due to the urse of dimensionality, p loses its signi�aneas the dimension of the problem inreases.Until the stopping riterion is met, the following proedure takes plae.Eah searh point samples λ o�spring, based on its evolving D-set. Afterthe �tness evaluation of the new λ · (q+p) individuals, the lassi�ation intonihes of the entire population is obtained in a greedy manner, by means



3.2. The Proposed Algorithm 59Algorithm 6 (1 +, λ
)-DES Nihing with a Fixed Nihe Radius1: for i = 1 . . . (q + p) searh points do2: Generate λ samples based on the D-set of i3: end for4: Evaluate �tness of the population5: Compute the Dynami Peak Set (DPS) with the DPI Algorithm6: for all elements of DPS do7: Set peak as a searh point8: Inherit the D-set and update it respetively9: end for10: if NDPS=size of DPS < q then11: Generate q −NDPS new searh points, reset D-sets12: end if13: if gen mod κ ≡ 0 then14: Resample the (q + 1)th . . . (q + p)th searh points15: end ifof the DPI routine [64℄ (Algorithm 4). The latter based on the �xed niheradius ρ. The peaks then beome the new searh points, while their D-setsare inherited from their parents and updated respetively.We would like to point out the dynami nature of the subpopulationsdynamis. Due to the greedy lassi�ation to nihes, whih is arried out ev-ery generation, some nihes an merge in priniple, while all the individuals,exept for the peak individual, die out in pratie. Following our priniple of�xed resoures per nihe, only the peak individual will be sampled λ timesin the following generations. In soio-biologial terms, the peak individualould be assoiated with an alpha-male, whih wins the loal ompetitionand gets all the sexual resoures of its eologial nihe.A pseudo-ode for the nihing routine is presented as Algorithm 6.Sizing the Population We follow the reommended population size for

(1, λ) derandomized ES (see, e.g., [25℄), and set λ = 10. On this note, wewould like to mention a theoretial work on sizing the population in a deran-domized (1, λ) ES with respet to the loal progress [92℄. The latter workobtained theoretial results showing that the loal serial progress is maxi-mized when the expeted progress of the seond best individual vanishes.These results allowed for the onstrution of a population size adaptationsheme, whih sets the value of λ as a funtion of the �tness di�erene of theseond �ttest o�spring and its parent. This adaptation sheme was shownto perform well on a set of simple theoretial landsapes [92℄.



60 Chapter 3. Nihing with Derandomized Evolution Strategies3.3 Nihe Radius CalulationThe original formula for the nihe radius ρ, for phenotypi sharing in GAs,was derived by Deb and Goldberg [54℄. Analogously, by onsidering the ESdeision spae as the GA deoded parameter spae, the same formula an beapplied to optimization tasks de�ned over ontinuous domains, by employingthe Eulidean metri. Given q, the number of peaks in the solution spae,every nihe is onsidered to be surrounded by an n-dimensional hyperspherewith radius ρ, whih oupies 1
q of the entire volume of the spae. Thevolume of the hypersphere whih ontains the entire spae is
V = crn, (3.1)where c is a onstant, given expliitly by

c =
π
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, (3.2)with Γ(n) as de�ned in Eq. 1.36. Given lower and upper bound values,
{xk,min, xk,max}, of eah oordinate in the deision parameters spae, r isde�ned as follows:
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crn, (3.4)whih yields
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(3.5)Hene, by applying this nihe radius approah, two assumptions are made:1. The expeted/desired number of peaks, q, is given or an be estimated.2. All peaks are at least in distane 2ρ from eah other, where ρ is the�xed radius of every nihe.3.4 Experimental ProedureIn order to test our proposed algorithmi nihing framework, we would liketo apply them to a test suite of arti�ial landsapes. Their appliation toQuantum Control landsapes will be reported in Part II.We desribe here our experimental proedure. We begin by disussingthe onstrution of our test suite, and then present the numerial observationof our alulations.



3.4. Experimental Proedure 613.4.1 Multi-Modal Test FuntionsThe hoie of a numerial test bed for evaluating the performane of searh oroptimization methods is ertainly one of the ore issues among the sholarsin the ommunity of algorithms and Operations Researh.In a benhmark artile, Whitley et al. [11℄ ritiized the ommonly testedarti�ial landsapes in the Evolutionary Algorithms ommunity, and o�eredgeneral guidelines for onstruting test problems. We state these guidelineshere:1. Test suites should ontain problems that are resistant to hill-limbers.Hill-limbing strategies, inluding line searh, are typially faster thanEAs, when they are suessful. Hene, it is justi�ed to test EAs onlandsapes whih annot be easily hill-limbed.2. Test suites should ontain problems that are non-linear, non-separable,and non-symmetri.3. Test suites should ontain salable funtions. The dimensionality ofthe searh spae is an important issue, and thus should be tested a-ordingly.4. Test suites should ontain problems with salable evaluation ost. Theost of some evaluation funtions grows as a funtion of the searh spaedimensionality. This typially haraterizes real-world problems, andshould be onsidered.5. Test problems should have a anonial form. This demand is relevantto enoding-based algorithms, suh as GAs.The following remarkable e�ort was made almost a deade after that do-ument, when a large group of sholars in the EC ommunity joined theire�orts and ompiled an agreed test suite of arti�ial landsapes [93℄, to betested in an open performane ompetition reported at IEEE CEC 2005 [35℄.The latter also inluded multimodal funtions.The issue of developing a multimodal test suite reeived even less atten-tion, likely due to historial reasons. Sine multimodal domains were mainlytreated by GA-based nihing methods, their orresponding test suites werelimited to low-dimensional ontinuous landsapes, typially with two dei-sion parameters to be optimized (n = 2) (see, e.g., [61, 37℄).In essene, our study is the �rst to introdue EA nihing methods intohigh-dimensional ontinuous landsapes.When ompiling our test suite, we aimed at following Whitley's guide-lines, inluding some traditional GA-nihing test funtions as well as fun-tions from [93℄. The reader should keep in mind that our nihing methodswill be applied on real-world landsapes in Chapters 8 and 9.



62 Chapter 3. Nihing with Derandomized Evolution StrategiesOur test suite ontains the following arti�ial multimodal ontinuousfuntions (see Table 3.1 for their mathematial desription):
• M is a basi hyper-grid multimodal funtion with uniformly distributedminima of equal funtion value of −1. It is meant to test the stabilityof a partiularly large number of nihes: in the interval [0, 1]n it has

5n minima. We used α = 6.
• The well known Akley funtion has one global minimum, regardlessof its dimension n, whih is surrounded isotropially by 2n loal min-ima in the �rst hypersphere, followed by an exponentially inreasingnumber of minima in suessive hyperspheres. Akley's funtion hasbeen widely investigated in the ontext of Evolutionary Algorithms(see, e.g., [1℄). We used c1 = 20, c2 = 0.2, and c3 = 2π.
• L - also known as F2, as originally introdued in [61℄ - is a sinusoidtrapped in an exponential envelope. The parameter k determines thesharpness of the peaks in the funtion landsape; we set it to k = 6. Lhas one global minimum, regardless of n and k. It has been a populartest funtion for GA nihing methods. We used l1 = 5.1, l2 = 0.5,
l3 = 4 · ln(2), l4 = 0.0667 and l5 = 0.64.

• The Rastrigin funtion [8℄ has one global minimum, surrounded by alarge number of loal minima arranged in a lattie on�guration.We also onsider its shifted-rotated variant [93℄, with a linear trans-formation matrix of ondition number 2 as the rotation operator (seebelow a note on implementation).
• The Griewank funtion [8℄ has its global minimum (f∗ = 0) at the ori-gin, with several thousand loal minima in the area of interest. Thereare 4 sub-optimal minima: f̃ ≈ 0.0074 with ~̃x ≈ (±π,±π√2 , 0, 0, 0, ...0

).We also onsider its shifted-rotated variant [93℄, with a linear transfor-mation matrix of ondition number 3 as the rotation operator (see anote on implementation below).
• The funtion after Flether and Powell [1℄ is a non-separable non-linearparameter estimation problem, whih has a non-uniform distributionof 2n minima. It has non-isotropi attrator basins. See a note onimplementation below.A Note on Implementation Most of the data for the funtions, and inpartiular the translation and rotation operators, was retrieved from [93℄1.The Flether-Powell data (the matries A, B and the vetor ~α) was retrievedfrom [1℄.1Data is available for download at http://www.ntu.edu.sg/home/epnsugan/index_files/.



3.4. Experimental Proedure 63Table 3.1 summarizes the unonstrained multimodal test fun-tions as well as their initialization intervals.3.4.2 Performane CriteriaThe traditional GA nihing methods researh had been strongly interestedin the distribution of the �nal population ompared to a goal-distribution,as formalized by Mahfoud (see Setion 2.4). While Mahfoud's formalismintrodued a generi theoretial tool, being derived from information theory,most of the studies onsidered de fato spei� performane alulations. Forexample, a very popular nihing performane measurement, whih satis�esMahfoud formalism's riteria, is the Chi-square-like performane statisti(see, e.g., [54℄). The latter estimates the deviation of the atual distributionof individuals Ni from an ideal distribution (haraterized by mean µi andvariane σ2
i ) in all the i = 1 . . . q + 1 subspaes (q peak subspaes and thenon-peak subspae):

χ2 =

√

√

√

√

q+1
∑

i=1

(

Ni − µi

σi

)2

, (3.6)where the ideal-distribution harateristi values are derived per funtion.Our researh fouses on the ability to identify global as well as loaloptima, and to onverge in these diretions through time, with no partiularinterest in the distribution of the population. Thus, as has been done inearlier studies of GA nihing [64℄, we adopt the performane metri alledthe maximum peak ratio statisti. This metri measures the quality as well asthe number of optima given as a �nal result by the evolutionary algorithm.Expliitly, assuming a minimization problem, given the �tness values of thesubpopulations in the �nal population {f̃i

}q

i=1
, and the �tness values of thereal optima of the objetive funtion {F̂i

}q

i=1
, the maximum peak ratio isde�ned as follows:

MPR =

∑q
i=1 F̂i

∑q
i=1 f̃i

, (3.7)where all values are assumed to be stritly positive. If this is not the ase inthe original parameterization of the landsape, the latter should be saledaordingly with an additive onstant for the sake of this alulation. Also,given a maximization problem, the MPR is de�ned as the sum of the ob-tained optima divided by the sum of the real optima. A drawbak of thisperformane metri is that the real optima need to be known a-priori. How-ever, for many arti�ial test problems these an be derived analytially, ortight numerial approximations to them are available.
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3.4. Experimental Proedure 653.4.3 New Perspetive: MPR vs. TimeAlthough the MPR metri was originally derived to be analyzed by meansof the its saturation value, a new perspetive was introdued by us in [90℄.Our study investigated the MPR as a funtion of time, fousing on the earlystages of the run. It was shown experimentally that the time-dependentMPR data �ts a theoretial funtion: the logisti urve.The Logisti Equation A simple modeling of the organi populationgrowth is often desribed by the following di�erential equation:
dy

dt
= cy

(

1− y

a

)

, (3.8)with the solution
y(t) =

a

1 + exp {c (t− T )} , (3.9)where a is the saturation value of the urve, T is its time shift, and c (in thisontext always negative) determines the shape of the exponential rise.This equation, known as the logisti equation, desribes many proessesin nature. All those proesses share the same pattern of behavior - growthwith aeleration, followed by deeleration and then a saturation phase.In the ontext of evolutionary nihing methods, we argued [90℄ that thelogisti parameters should be interpreted in the following way - T as thelearning period of the algorithm, and the absolute value of c as its nihingformation aeleration.3.4.4 MPR Analysis: Previous ObservationThis MPR time-dependent analysis was applied in [90℄ to two ES-basednihing tehniques: nihing with the standard-ES aording to the Shwefel-approah [94℄, and nihing with the CMA-ES. In short, the standard-ESbased method applies the same nihing framework as the one desribed inthis thesis exept for one oneptual di�erene: it employs a (µ, λ) strategy ineah nihe, subjet to restrited mating. Otherwise, it employs the standardES operators.We outline some of the onlusions of that study here:1. The nihing formation aeleration, expressed as the absolute valueof c, had larger values for the CMA-ES mehanism for all the test-ases.That implied stronger nihing aeleration and faster onvergene.2. A trend onerning the absolute value of c as a funtion of the dimen-sionality was observed: the higher the dimensionality, the lower theabsolute value of c, i.e., the slower the nihing proess.



66 Chapter 3. Nihing with Derandomized Evolution Strategies3. The learning period, expressed as the value of T in the urve �tting,got negative as well as positive values. Negative values mean that thenihes formation proess, expressed as the exponential rise of the MPR,started immediately from generation zero.4. The averaged saturation value a, i.e., the MPR value, was larger inall of the test-ases for the CMA-ES mehanism. In that respet, theCMA kernel outperformed the standard-ES on the given landsapes.The study onluded with the laim that there was a lear trade-o� : Either a long learning period followed by a high nihing a-eleration (CMA-ES), or a short learning period followed by a lownihing aeleration (Standard-ES).3.5 Numerial ObservationWe desribe here our numerial observation with respet to the experimentalresults of our 5 nihing variants on the proposed test suite.3.5.1 Modus OperandiThe 5 nihing algorithms are tested on the spei�ed funtions for variousdimensions. Eah test ase inludes 100 runs per algorithm. All runs areperformed with a ore mehanism of a (1 +, 10)-strategy per nihe and initialpoints are sampled uniformly within the initialization intervals. Initial globalstep-sizes are set to 1
4 of the intervals. The parameter q is set based on a-priori knowledge when available, or arbitrarily otherwise.Funtion evaluations: the idea is to alloate a �xed number of evaluationsper peak (n · 104

), and thus eah run is stopped after q · n · 104 funtionevaluations.As mentioned earlier, setting the parameter p re�ets the trade-o� be-tween further sampling the searh-spae, on the expense of exploiting thegranted funtion evaluations at the existing attration sites. Here, we set
p = 1, whih means emphasis on the latter.A urve �tting routine is applied to eah run in order to retrieve theharateristi parameters of its logisti urve. This routine uses the least-squared-error method, and runs an optimization proedure to minimize it.3.5.2 Numerial ResultsThe numerial results are presented at several levels:Nihing AelerationTable 3.2 presents the mean and the standard deviations for the absolutevalue of the parameter c over 100 runs, as obtained by the urve �tting



3.5. Numerial Observation 67routine. There is a lear trend in the given numerial results - in the vastmajority of the test ases, the DR2 algorithm has the highest absolute valuesof c, whereas the CMA+ has the lowest absolute values. This trend orre-sponds to having the highest nihing aeleration and the lowest nihingaeleration, respetively. Moreover, the 4 omma strategies have absolute
c values in the same order of magnitude, whereas the CMA+ typially hasa lower absolute value in omparison to them.MPR SaturationThis salar value represents, to some degree, the quality of the obtainedminima, and thus the �nal result of the nihing proess. Table 3.3 presentsthe mean and the standard deviation of the saturation MPR values for thedi�erent test ases. As an be seen in this table, the CMA-(+, ) kernelsahieve the highest MPR values, and thus they outperform together theother methods with respet to the nihing proess. However, for the giventest ases, there is no lear winner for the MPR value.Global MinimumTable 3.4 ontains the perentage of runs in whih the global minimum wasloated. M is disarded from the table, as its global minimum was alwaysfound, by all algorithms, for every dimension n under investigation. Gener-ally speaking, the CMA-(+, ) routines, and in partiular the CMA+ strategy,were superior with respet to the other derandomized variants.One an also observe a strong orrelation between Tables 3.3 and 3.4:Routines that obtain high MPR saturation values, i.e., loate the top-qualitypeaks, typially perform well globally and loate the global minimum in ahigh perentage of the runs.The c− T Tradeo� HypothesisWe would like to numerially assess the hypothesis laiming the existene ofa tradeo� between the learning period T and the nihing aeleration c, asspeulated in [90℄, with respet to the 5 algorithms under investigation.We onsider two test funtions of the suite, one per lass: the separable
M and the non-separable GRS (the Shifted Rotated Griewank). For eah werun the algorithms for an inreasing dimensionality of n = 3, 4, . . . , 30, andobtain the MPR parameters for 100 runs - in order to plot c as a funtion of
T . Figures 3.1 and 3.2 present the c−T urves forM and GRS , respetively.The urves re�et a lear trade-o� between c and T over the dimensions forthe algorithms for both ases (an exeption: DR3 overM). We onsider thisa numerial orroboration of the hypothesis: The longer the learning period,the lower the nihing aeleration.



68 Chapter 3. Nihing with Derandomized Evolution Strategies
Table 3.2: The absolute value of the parameter c, obtained from urve�tting: Mean and standard deviation over 100 runs.Test-Case DR1 DR2 DR3 CMA CMA+

M : n = 3 0.107 ± 0.006 0.138 ± 0.009 0.106 ± 0.010 0.069 ± 0.005 0.054 ± 0.003
M : n = 10 0.059 ± 0.002 0.072 ± 0.002 0.071 ± 0.003 0.040 ± 0.001 0.015 ± 0.001
M : n = 40 0.027 ± 0.001 0.033 ± 0.001 0.024 ± 0.001 0.013 ± 0.001 0.003 ± 0.001
A : n = 3 0.153 ± 0.038 0.226 ± 0.058 0.167 ± 0.006 0.135 ± 0.033 0.048 ± 0.006
A : n = 10 0.063 ± 0.009 0.079 ± 0.013 0.071 ± 0.011 0.055 ± 0.011 0.017 ± 0.001
L : n = 3 0.164 ± 0.070 0.194 ± 0.124 0.151 ± 0.064 0.148 ± 0.047 0.063 ± 0.030
L : n = 10 0.150 ± 0.015 0.186 ± 0.024 0.143 ± 0.057 0.147 ± 0.016 0.040 ± 0.003
R : n = 3 0.022 ± 0.032 0.035 ± 0.042 0.009 ± 0.012 0.030 ± 0.024 0.010 ± 0.011
R : n = 10 0.046 ± 0.007 0.049 ± 0.010 0.039 ± 0.017 0.022 ± 0.007 0.016 ± 0.002
G : n = 3 0.012 ± 0.014 0.025 ± 0.017 0.012 ± 0.003 0.023 ± 0.040 0.006 ± 0.012
G : n = 10 0.031 ± 0.027 0.102 ± 0.020 0.031 ± 0.030 0.023 ± 0.003 0.019 ± 0.015

F : n = 3 0.022 ± 0.023 0.042 ± 0.017 0.024 ± 0.024 0.023 ± 0.025 0.015 ± 0.012
F : n = 10 0.054 ± 0.093 0.087 ± 0.105 0.078 ± 0.123 0.044 ± 0.083 0.022 ± 0.021
RRS : n = 3 0.157 ± 0.036 0.254 ± 0.053 0.178 ± 0.047 0.200 ± 0.041 0.055 ± 0.008
RRS : n = 10 0.072 ± 0.026 0.095 ± 0.019 0.083 ± 0.025 0.072 ± 0.027 0.020 ± 0.002
GRS : n = 3 0.108 ± 0.067 0.126 ± 0.074 0.118 ± 0.064 0.113 ± 0.069 0.050 ± 0.007
GRS : n = 10 0.056 ± 0.015 0.072 ± 0.015 0.085 ± 0.020 0.090 ± 0.012 0.020 ± 0.004

Table 3.3: The saturation MPR value: Mean and standard deviation over
100 runs.Test-Case DR1 DR2 DR3 CMA CMA+

M : n = 3 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
M : n = 10 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
M : n = 40 0.997 ± 0.002 1 ± 0 0.988 ± 0.003 1 ± 0 1 ± 0
A : n = 3 0.971 ± 0.029 0.966 ± 0.028 0.960 ± 0.030 0.977 ± 0.024 0.992 ± 0.017
A : n = 10 0.901 ± 0.024 0.905 ± 0.025 0.901 ± 0.025 0.920 ± 0.023 0.942 ± 0.023
L : n = 3 0.963 ± 0.028 0.945 ± 0.038 0.953 ± 0.029 0.962 ± 0.027 0.996 ± 0.006
L : n = 10 0.505 ± 0.163 0.379 ± 0.153 0.167 ± 0.129 0.596 ± 0.148 0.562 ± 0.109
R : n = 3 0.263 ± 0.314 0.245 ± 0.036 0.233 ± 0.042 0.143 ± 0.046 0.481 ± 0.124
R : n = 10 0.052 ± 0.007 0.063 ± 0.007 0.055 ± 0.005 0.057 ± 0.009 0.053 ± 0.005
G : n = 3 0.115 ± 0.168 0.526 ± 0.470 0.366 ± 0.050 0.223 ± 0.288 0.761 ± 0.098
G : n = 10 0.024 ± 0.042 0.026 ± 0.047 0.066 ± 0.018 0.015 ± 0.017 0.079 ± 0.029

F : n = 3 0.002 ± 0.002 0.002 ± 0.002 0.002 ± 0.002 0.003 ± 0.004 0.002 ± 0.001
F : n = 10 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001
RRS : n = 3 0.409 ± 0.111 0.463 ± 0.067 0.423 ± 0.117 0.469 ± 0.103 0.563 ± 0.098
RRS : n = 10 0.085 ± 0.015 0.099 ± 0.019 0.078 ± 0.015 0.108 ± 0.017 0.071 ± 0.014
GRS : n = 3 0.072 ± 0.043 0.078 ± 0.044 0.085 ± 0.048 0.082 ± 0.036 0.108 ± 0.041
GRS : n = 10 0.134 ± 0.038 0.144 ± 0.037 0.122 ± 0.035 0.161 ± 0.034 0.045 ± 0.013



3.5. Numerial Observation 69Table 3.4: Global minimum reahed in 100 runs.Test-Case DR1 DR2 DR3 CMA CMA+
A : n = 3 100% 100% 100% 100% 100%
A : n = 10 90% 91% 90% 92% 95%
L : n = 3 93% 74% 92% 97% 100%
L : n = 10 9% 2% 0% 17% 13%
R : n = 3 20% 19% 13% 16% 48%
R : n = 10 0% 0% 0% 0% 0%
G : n = 3 13% 21% 32% 13% 88%
G : n = 10 8% 16% 4% 16% 2%
F : n = 3 100% 100% 100% 100% 100%
F : n = 10 14% 12% 15% 23% 15%
RRS : n = 3 45% 40% 39% 54% 72%
RRS : n = 10 0% 0% 0% 0% 0%
GRS : n = 3 4% 2% 4% 12% 8%
GRS : n = 10 6% 1% 3% 14% 0%

Figure 3.1: The c − T urve for M: A lear trade-o� for the di�erent al-gorithms, exept for DR3, whih has a �at urve. Eah data point is anaverage of 100 runs, given n = 3, 4, . . . , 30.
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Figure 3.2: The c − T urve for GRS : A lear trade-o� for the 5 di�erentalgorithms. Eah data point is an average of 100 runs, given n = 3, 4, . . . , 30.3.5.3 DisussionThe elitist CMA strategy was observed to perform very well in the proposednihing framework. A straightforward and rather intuitive explanation forthat would be its tendeny to maintain onvergene in any basin of attra-tion, versus a higher probability for the omma strategy to esape them.Moreover, we would like to suggest another argument for the advantage ofan elitist strategy for nihing. The nihing problem an be onsidered as anoptimization task with onstraints, i.e., the formation of nihes that restritsompeting nihes and their optimization routines from exploring the searhspae freely. It has been suggested in previous studies (see, e.g., [87℄) thatES self-adaptation in onstrained problems will tend to fail with a omma-strategy, and thus a plus-strategy is preferable for suh problems. We mightlink this argumentation to the observation of our numerial results here, andsuggest that an elitist strategy is preferable for nihing.



Adaptability is not imitation.It means power of resistane and assimilation.Mahatma Gandhi
Chapter 4Self-Adaptive Nihe-Radii andNihe-Shape Approahes4.1 GeneralWhile the motivation and usefulness of nihing ast no doubt, the relax-ation of assumptions and limitations onerning the hypothetial landsapeis muh needed if nihing methods are to be valid in a broader range of ap-pliations. In short, we hoose to treat in this hapter the partiular limitingassumption of the �xed nihe radius by introduing self-adapting nihe-radiiand nihe-shape mehanisms.More spei�ally, nihing tehniques are often subjet to ritiism dueto the so-alled nihe radius problem. The majority of the nihing meth-ods make an assumption onerning the �tness landsape, stating that theoptima are far enough from one another with respet to the so-alled niheradius, whih is estimated for the given problem and remains �xed duringthe ourse of evolution, as outlined in Setion 3.3. Obviously, there are land-sapes for whih this assumption is not appliable, and where this approahis most likely to fail (see Figures 4.1 and 4.2 for illustration). As disussedearlier, the task of de�ning a generi basin of attration seems to be one ofthe most di�ult problems in the �eld of global optimization.4.1.1 Related WorkThere were several GA-oriented studies whih addressed this so-alled niheradius problem, aiming to relax the assumption spei�ed earlier, or even todrop it ompletely. Jelasity [63℄ suggested a ooling-based mehanism forthe nihe-radius, also known as the UEGO, whih adapts the global radiusas a funtion of time during the ourse of evolution. Gan and Warwik[72℄ introdued the so-alled Dynami Nihe Clustering, to overome theradius problem by using a lustering mehanism. A omplex subpopulation71



72 Chapter 4. Self-Adaptive Nihe-Shape Approahes

Figure 4.1: The Shekel funtion (see, e.g., [8℄) in a 2D deision spae: Intro-duing a dramatially uneven spread of optima; For more details see Table3.1.

Figure 4.2: The Vinent funtion in a 2D deision spae: A sine funtionwith a dereasing frequeny.



4.2. New Proposed Approahes 73di�erentiation model, the so-alled Multinational Evolutionary Algorithm,was presented by Ursem [84℄. It introdues a topologial-based auxiliarymehanism of sampling, whih detets whether feasible solutions share thesame basin of attration. A reent study by Stoean et al. [95℄ onsidered thehybridization of the latter with a radius-based nihing method proposed in[85℄. Finally, an iterative statistial-based approah was introdued lately[66℄ for learning the optimal nihe radius, without a-priori knowledge ofthe landsape. It onsiders the �tness sharing strategy, and optimizes itas a funtion of the population size and the nihe radius, without relaxingthe landsape assumption spei�ed earlier � i.e., the nihes are eventuallyobtained using a single �xed nihe radius.4.1.2 Our ApproahOur study introdues a new onept into the nihe radius problem, inspiredby the ES self-adaptation onept - an adaptive individual nihe ra-dius. The idea is that eah individual, i.e., feasible solution in the arti�ialpopulation, updates every generation a nihe radius along with its adaptivestrategy parameters. This study is an �adaptive extension� to nihing withthe CMA-ES.Two new approahes are presented here. The �rst exploits the self-adaptation of the step-size in the CMA-ES mehanism, the umulative step-size adaptation (CSA) mehanism, and ouples the individual nihe-radiusto it. Sine the step-size does not hold any further spatial information on-erning the landsape, the lassi�ation into nihes uses hyperspheres, basedon the Eulidean distane. The seond approah introdues the Mahalanobisdistane into the nihing mehanism, aiming to allow more aurate spatiallassi�ation by using ellipsoids whih are based upon the evolving distri-bution, rather than the uniform hyperspheres of the Eulidean metri. Thisidea an be easily implemented into the CMA-ES nihing routines, sine theovariane matrix of the distribution � an essential omponent of the Ma-halanobis distane � is already learned by the algorithm. These two newapproahes are tested with the CMA-(+, ) routines, and evaluated on a suiteof arti�ial landsapes, inluding problems with an uneven spread of optimaas well as with non-isotropi attrator basins.4.2 New Proposed ApproahesIn this setion we present two new approahes for the adaptation of thenihes lassi�ation mehanism, in the framework of nihing with the CMA-ES. Setion 4.2.1 presents the self-adaptive nihe radius mehanism whihis based upon the oupling to the step-size, and Setion 4.2.2 introduesnihing with the Mahalanobis distane, relying on the evolving ovarianematrix.



74 Chapter 4. Self-Adaptive Nihe-Shape Approahes4.2.1 Self-Adaptive Radius: Step-Size CouplingAiming to follow the suessful mehanism of the step-size adaptation, theidea of this approah is to ouple the nihe radius to the global step-size σ,whereas the indiret seletion of the nihe radius is governed by the objetivethat every nihe should ideally onsist of λ individuals. This is implementedby means of a quasi dynami �tness sharing mehanism. A detailed desrip-tion follows.The Nihing-CMA method is used as outlined earlier (Chapter 3), withthe following modi�ations. q is given as an input to the algorithm, but it isnow merely a predition or a demand for the maximal number of solutionsthe deision maker would like to obtain. Given the ith individual in thepopulation, a nihe radius denoted by ρ0
i is initialized by means of a rule(ρ0

i =
√
n ·σinit) in the beginning of the searh. Its update step in generation
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∣

∣

∣σ
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(g)
parent

∣

∣

∣:
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(g+1)
i = γ ·

(

1− exp
{

−α ·∆σ(g+1)
i

}) (4.2)See Figure 4.3 for an illustration. As for the onstants, γ and α are setdi�erently for the two seletion strategies:
γ =

{

1
5 for (1, λ) -seletion
4
5 for (1 + λ) -seletion α =

{

10 for (1, λ) -seletion
100 for (1 + λ) -seletion .(4.3)

γ determines the saturation value of the learning oe�ient: Strong ouplingto the parent's step-size for the plus strategy, versus a weak oupling forthe omma strategy. α ditates the strength of the exponential onvergenetowards the saturation value: Slow onvergene for the plus strategy, versus arapid onvergene for the omma strategy. This rule for parametri settingworks reliably on a wide range of problems, as we will show later. Therational behind it stems from the di�erent nihing onvergene behavior ofthe two strategies, as was already disussed in Setion 3.5. Furthermore, weshall disuss the use of new parameters in Setion 4.4.The DPI routine (Algorithm 4 is run using the individual nihe radii,for the identi�ation of the peaks and the lassi�ation of the population.Furthermore, introdue:
g (x, λ) = 1 + Θ (λ− x) · (λ− x)

2

λ
+ Θ (x− λ) · (λ− x)2 , (4.4)
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Figure 4.3: The learning oe�ient c(g+1)
i (Eq. 4.2) is plotted as a funtionof the step-size di�erene, ∆σ

(g+1)
i , for the two strategies, as derived fromEq. 4.3 � (γ, α) are substituted for the two strategies: {(1

5 , 10
)

,
(

4
5 , 100

)}.where Θ (y) is the Heaviside step funtion. Given a �xed λ, g (x, λ) is aparabola with unequal branhes, entered at (x = λ, g = 1) (see Figure 4.4for illustration). The justi�ation for its geometrial asymmetry will bedesribed shortly. Then, by applying the alulation of the dynami niheount mdyn
i (Eq. 2.13), based on the appropriate radii, we de�ne the nihe�tness of individual i by:

fniche
i =

fi

g
(

mdyn
i , λ

) (4.5)We assume, again, that the raw �tness is stritly positive and subjet tomaximization. Finally, the seletion of the next parent in eah nihe, i.e.,the so-alled alpha-male of the loal site, is based on this nihe �tness.Eq. 4.5 enfores the requirement for having a �xed resoure of λ individ-uals per nihe, sine g (x, λ) yields values greater than 1 for any nihe ountdi�erent than λ. The asymmetry of g (x, λ) is therefore meant to penalizemore the nihes whih exeed λ members, in omparison to those with lessthan λ members. This equation is a variant of the dynami shared �tness(Eq. 2.14), and is used now in the ontext of nihe radius adaptation.The self-adaptive nihing routine is presented in Algorithm 7.
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Figure 4.4: An illustration for g (x, λ = 10) (Eq. 4.4): A parabola with un-even branhes; The nihe �tness (Eq. 4.5) is penalized more for an over-populated nihe (λ > 10) due to the steep branh, in omparison to anunderpopulated nihe.Algorithm 7 Nihing-CMA with an Adaptive Nihe Radius1: for i = 1 . . . (q + p) searh points do2: Generate λ samples based on the CMA-set of i3: Update the nihe radius ρg+1
i aording to Eq. 4.14: end for5: Evaluate �tness of the population6: Compute the DPS with the DPI Algorithm, based on individual radii7: Compute the Dynami Nihe Count of every individual8: for all elements of DPS do9: Compute the Nihe Fitness (Eq. 4.5)10: Set individual with best nihe �tness as a searh point11: Inherit the CMA-set and update it respetively12: end for13: if NDPS =size of DPS < q then14: Generate q −NDPS new searh points, reset CMA-sets15: end if16: if gen mod κ ≡ 0 then17: Resample the (q + 1)th . . . (q + p)th searh points18: end if



4.2. New Proposed Approahes 774.2.2 Mahalanobis Metri: Covariane ExploitationExisting nihing tehniques, and in partiular those presented in Chapter 3and Setion 4.2.1, use the Eulidean distane in the deision spae for thelassi�ation of feasible solutions to the nihes under formation. This ap-proah is likely to enounter problems in high-dimensional landsapes withnon-isotropi basins of attration. Sine the CMA-ES algorithm alreadylearns the ovariane matrix of the deision spae distribution, it is worth-while to use it for a better spatial lassi�ation mehanism within the nihingframework. In essene, this an be onsidered as an upgrade of the nihingmehanism, as it aptures a more aurate spatial formation of the nihes.Most importantly, this approah is also self-adaptive.After giving this motivation, we proeed with disussing the details ofthis idea.The Mahalanobis Distane In the following, we onsider the Maha-lanobis distane, for instane in a probability distribution. Given a meanvetor ~m and a ovariane matrix Σ, the Mahalanobis distane of a vetor
~v from the mean vetor is de�ned as:

d (~v, ~m) =

√

(~v − ~m)T Σ−1 (~v − ~m) (4.6)It an be shown that the iso-distane surfaes of this metri are ellipsoidswhih are entered about the mean ~m. In the speial ase where Σ ∼ I(e.g., features are unorrelated and all varianes equal) the Mahalanobisdistane redues to the normalized Eulidean distane, and the iso-distanesurfaes beome Eulidean hyperspheres. Though the Mahalanobis distaneis typially applied in statistis, it an also be applied in di�erent ontexts asa metri on vetor spaes given a positive-semide�nite and symmetri matrix
Σ determining the ellipti iso-distane surfaes.Mahalanobis CMA-ES NihingIn the ontext of nihing, given an individual ~x, representing a nihe witha ovariane matrix Cx, we hoose to de�ne, aordingly, the Mahalanobisdistane of an individual ~y to the nihe by

d (~x, ~y) =

√

(~x− ~y)T Cx
−1 (~x− ~y) .Sine di�erent individuals have di�erent ovariane matries, this operationis asymmetri. Hene, the atual lassi�ation into nihes depends not onlyon the identity of the so-alled peak individuals, whih are seleted aordingto their higher �tness, but also on their individual ovariane matries. Dueto the fat that the lassi�ation itself is arried out individually by meansof independently evolving distane measures, an equivalent lassi�ation by



78 Chapter 4. Self-Adaptive Nihe-Shape Approahesmeans of the Eulidean metri would possibly result in a di�erent outomewhen ompared to this approah.Notably, the proposed routine does not have a seondary seletion meh-anism, whih was neessary for the self-adaptive nihe radius approah, asintrodued in Setion 4.2.1. The reason why it is not required here is that theloal shape of the attrator basins, as approximated by the CMA, is equiv-alent to the desired shape for the nihes, and thus su�ient for suessfullassi�ation of individuals to the nihe.Numerial ImplementationAs for the tehnial details, we disuss here the numerial implementation ofthe Mahalanobis metri, onsidering the matrix inversion whih is required.We show here that the matrix inversion, in this ontext, an be replaed bymatrix multipliation - whih leads to a signi�ant performane gain for thedimensions that are typially under study.In the CMA-ES mehanism, the eigenvalue-deomposition of the ovari-ane matrix C, whih is alulated every generation, reads
C = BD (BD)T , (4.7)where D = diag

(√
Λ1 ,
√

Λ2 , ...,
√

Λn

), with the eigenvalues {Λi}ni=1. Inorder to obtain C
−1, one an derive,

C
−1 =

[

BD (BD)T
]−1

= B
T −1

D
T −1

D
−1

B
−1 =

B · diag
(

1

Λ1
,

1

Λ2
, ...,

1

Λn

)

·BT
(4.8)and thus the matrix inversion alulation an be replaed, within the CMA-ES routine, by a matrix multipliation alulation.Despite the fat that these two operations are equivalent in terms ofnumerial omplexity (see, e.g., [96℄), we observe in pratie a di�erenebetween the two proedures for obtaining C

−1. For dimensions up to n = 30,it is observed that the multipliation proedure takes on average half thealulation time in omparison to the inversion proedure1. Hene, it payso� to follow the derivation given here.Due to numerial features of the eigenvalue-deomposition, whih werealso disussed by Hansen et al. (see [16℄, pp. 20), but are ruial here for theinversion operation of the ovariane matrix, we introdue a lower bound tothe eigenvalues: Λmin = 10−10.1The alulations were done with MATLAB 7.0.



4.3. Experimental Proedure 79Table 4.1: Additional test funtions to be minimized and initialization do-mains.Name Funtion Init Nihes
S [Shekel℄ S (~x) = −∑10

i=1
1

ki(~x−ai)(~x−ai)
T +ci

[0, 10]n 8

V [Vinent℄ V (~x) = − 1
n

∑n
i=1 sin (10 · ln(xi)) [0.25, 10]n 50Self-Adaptive Mahalanobis ApproahThe self-adaptive nihe radius mehanism presented in Setion 4.2.1, aneasily be adjusted to employ the Mahalanobis distane for the lassi�ation ofthe nihes. In the ontext of this study, it would beome a hybrid approah inthe sense that it applies both a self-adaptive nihe radius and a self-adaptivedistane metri for the sake of the lassi�ation phase. This hybridizationwill also be onsidered in the experimental proedure as an independentnihing routine.4.3 Experimental ProedureWe apply the same experimental setup of Chapter 3, with the followingmodi�ations:

• We onsider additional test-funtions with an uneven spread of optima,introduing a hallenge in the light of the nihe radius problem:1. The Vinent funtion is a sine funtion with a dereasing fre-queny. It has 6n global optima in the interval [0.25, 10]n .2. The Shekel funtion, suggested in [8℄, introdues a landsape witha dramatially uneven spread of optima. It has one global opti-mum, and 7 ordered loal optima. The Shekel data was retrievedfrom [8℄.Table 4.1 is an extension to Table 3.1, summarizing the additionaltest-funtions.
• In order to keep the behavior as simple as possible, the parameter p isset here to p = 0 (no so-alled restart mehanism).
• We keep the same experimental framework of funtion evaluationsgranted per nihe: n · 104 funtion evaluations are alloated per nihe,and thus a run is terminated after q · n · 104 funtion evaluations.4.3.1 Numerial ObservationWe disuss here the performane analysis at three levels:



80 Chapter 4. Self-Adaptive Nihe-Shape ApproahesGlobal MinimumTable 4.2 ontains the perentage of runs in whih the global minimum wasloated. M and V are disarded from the table, as their global minimumwas always found, by all algorithms, for every dimension n under investi-gation. For the omma strategy (four left olumns), we observe that theMahalanobis metri usually improves the global optimization � both for the�xed, as well as for the self-adaptive nihe radius approahes. On the otherhand, this does not seem to be the general trend for the plus strategy - onaverage the employment of the Mahalanobis distane does not improve theglobal optimization. We may onlude that there is no lear 'winner', andthat the routines employing the Mahalanobis distane do not ahieve a dra-mati improvement in global optimization. This is an expeted result, as theemployment of this metri assists in the formation of the nihes.MPR SaturationTables 4.3 and 4.4 present the mean and the standard deviation of the sat-uration MPR values for the di�erent test ases.We observe a trend of better performane for the routines employing theMahalanobis distane for both strategies. On average, the MPR values arehigher, re�eting a better nihing proess.Note that the nihing routines, exept for the �xed nihe radius ase, failon the Akley landsape, i.e., they loate only the global minimum, whereall other nihes are loated in the global basin of attration. This e�et anbe explained by the strong basin of attration of the global minimum, inomparison to the sub-optimal minima.Moreover, most of the MPR values for the Flether-Powell and shifted-rotated Griewank test-ases are muh lower than unity, due to the extremesaling of the landsape: It has false traps with very high funtion values.Thus, upon being trapped in these loal minima, the MPR value is expetedto be very low.Nihing AelerationThe MPR analysis allows us to ompare the nihing aeleration of the dif-ferent routines. Tables 4.5 and 4.6 present the mean values and the standarddeviation of the nihing aeleration values for the di�erent test ases, bymeans of the absolute value of the parameter c of Eq. 3.9. The urve-�ttingroutine did not attain data with aeptable high quality for the Flether-Powell test-ase, and it su�ered from extremely large standard deviations.We thus hoose to disard it from this table.There are some general trends in the attained data. The omma strategyhas typially higher nihing aeleration values, as expeted from previousobservations (Chapter 3). Within eah strategy, there is a trend of higher
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Table 4.2: Global minimum reahed in 100 runs (CMA denotes a (1, λ)-strategy, CMA+ denotes a (1 + λ)-strategy). Thebest result, per strategy, is emphasized in bold sripts.Test-Case CMA M-CMA S-CMA MS-CMA CMA+ M-CMA+ S-CMA+ MS-CMA+
A : n = 3 100% 100% 100% 100% 100% 100% 100% 100%
A : n = 10 94% 100% 100% 100% 97% 100% 100% 100%
L : n = 3 64% 66% 43% 54% 94% 89% 65% 70%
L : n = 10 16% 8% 2% 13% 9% 5% 1% 0%
R : n = 3 54% 59% 13% 40% 67% 62% 14% 30%
R : n = 10 0% 0% 0% 0% 0% 0% 0% 0%
G : n = 3 12% 19% 10% 25% 19% 19% 16% 52%
G : n = 10 20% 31% 27% 27% 0% 0% 0% 0%
S : n = 5 91% 97% 82% 100% 83% 62% 98% 91%
S : n = 10 21% 48% 46% 90% 97% 92% 100% 75%

F : n = 4 100% 100% 100% 100% 100% 100% 100% 100%

F : n = 10 25% 40% 36% 46% 17% 22% 34% 37%

RSR : n = 3 46% 54% 14% 24% 50% 66% 10% 26%

RSR : n = 10 8% 2% 0% 0% 0% 0% 0% 0%

GSR : n = 3 10% 0% 0% 0% 9% 0% 0% 0%

GSR : n = 10 0% 0% 0% 0% 0% 0% 0% 0%



82 Chapter 4. Self-Adaptive Nihe-Shape ApproahesTable 4.3: MPR saturation values for the (1, λ)-Strategy: Mean values andstandard deviations over 100 runs. Emphasized in bold-sript are winneralgorithms with respet to the spei�ed landsape, also in referene to theresults of Table 4.4. Landsapes with several winners do not apply boldsripts.Test-Case CMA M-CMA S-CMA MS-CMA
M : n = 3 1 ± 0 1 ± 0 1 ± 0 1 ± 0
M : n = 10 0.994 ± 0.002 0.967 ± 0.003 1 ± 0 1 ± 0
M : n = 40 0.956 ± 0.006 0.953 ± 0.008 0.994 ± 0.001 0.995 ± 0.002
A : n = 3 0.938 ± 0.044 N.A. 0.860 ± 0.143 N.A.
A : n = 10 0.909 ± 0.033 N.A. N.A. N.A.
L : n = 3 0.864 ± 0.092 0.870 ± 0.106 0.713 ± 0.083 0.834 ± 0.099
L : n = 10 0.240 ± 0.086 0.389 ± 0.114 0.478 ± 0.080 0.564 ± 0.105
R : n = 3 0.301 ± 0.081 0.228 ± 0.063 0.159 ± 0.041 0.305 ± 0.103
R : n = 10 0.103 ± 0.045 0.062 ± 0.011 0.082 ± 0.019 0.094 ± 0.022
G : n = 3 0.249 ± 0.126 0.234 ± 0.045 0.283 ± 0.092 0.255 ± 0.064
G : n = 10 0.252 ± 0.169 0.195 ± 0.040 0.186 ± 0.092 0.190 ± 0.041
S : n = 5 0.840 ± 0.320 0.911 ± 0.307 0.819 ± 0.300 0.979 ± 0.067
S : n = 10 0.820 ± 0.722 0.931 ± 0.073 0.596 ± 0.136 0.959 ± 0.062
V : n = 3 0.972 ± 0.011 0.920 ± 0.005 0.613 ± 0.028 0.552 ± 0.078
V : n = 10 0.998 ± 0.007 0.998 ± 0.001 0.999 ± 0.001 1 ± 0
F : n = 4 0.0004 ± 0.001 0.0049 ± 0.005 0.0005 ± 0.001 0.0173 ± 0.092
F : n = 10 0.0001 ± 0.001 0.0002 ± 0.001 0.0003 ± 0.001 0.0004 ± 0.001
RSR : n = 3 0.331 ± 0.103 0.231 ± 0.041 0.138 ± 0.051 0.268 ± 0.074
RSR : n = 10 0.130 ± 0.039 0.087 ± 0.042 0.069 ± 0.019 0.093 ± 0.018
GSR : n = 3 0.0009 ± 0.001 0.0010 ± 0.001 0.0007 ± 0.001 0.0010 ± 0.001
GSR : n = 10 0.0001 ± 0 0.0001 ± 0 0.0001 ± 0 0.0001 ± 0Table 4.4: MPR saturation values for the (1 + λ)-Strategy: Mean values andstandard deviations over 100 runs. Emphasized in bold-sript are winneralgorithms with respet to the spei�ed landsape, also in referene to theresults of Table 4.3. Landsapes with several winners do not apply boldsripts.Test-Case CMA+ M-CMA+ S-CMA+ MS-CMA+
M : n = 3 1 ± 0 1 ± 0 1 ± 0 1 ± 0
M : n = 10 0.991 ± 0.003 0.986 ± 0.003 1 ± 0 1 ± 0
M : n = 40 0.975 ± 0.008 0.980 ± 0.007 1 ± 0 1 ± 0
A : n = 3 0.989 ± 0.026 0.999 ± 0.009 0.930 ± 0.030 0.937 ± 0.159
A : n = 10 0.946 ± 0.017 0.987 ± 0.019 N.A. N.A.
L : n = 3 0.959 ± 0.033 0.962 ± 0.036 0.819 ± 0.079 0.919 ± 0.065
L : n = 10 0.454 ± 0.116 0.373 ± 0.115 0.423 ± 0.108 0.432 ± 0.090
R : n = 3 0.528 ± 0.118 0.552 ± 0.107 0.163 ± 0.072 0.250 ± 0.089
R : n = 10 0.102 ± 0.040 0.077 ± 0.027 0.049 ± 0.009 0.053 ± 0.011
G : n = 3 0.326 ± 0.094 0.334 ± 0.101 0.305 ± 0.114 0.494 ± 0.234
G : n = 10 0.037 ± 0.008 0.053 ± 0.015 0.062 ± 0.019 0.060 ± 0.015
S : n = 5 0.681 ± 0.114 0.897 ± 0.109 0.920 ± 0.073 0.882 ± 0.086
S : n = 10 0.658 ± 0.054 0.957 ± 0.104 0.916 ± 0.311 0.939 ± 0.085
V : n = 3 0.962 ± 0.012 0.999 ± 0.001 0.815 ± 0.072 0.689 ± 0.114
V : n = 10 0.953 ± 0.016 0.990 ± 0.004 0.996 ± 0.002 0.999 ± 0.001

F : n = 4 0.0007 ± 0.001 0.862 ± 0.385 0.0044 ± 0.002 0.991 ± 0.038
F : n = 10 0.0001 ± 0.001 0.0001 ± 0.001 0.0005 ± 0.001 0.0001 ± 0.001
RSR : n = 3 0.486 ± 0.137 0.563 ± 0.140 0.135 ± 0.051 0.249 ± 0.129
RSR : n = 10 0.081 ± 0.030 0.080 ± 0.018 0.044 ± 0.006 0.041 ± 0.006
GSR : n = 3 0.0009 ± 0.001 0.0007 ± 0.001 0.008 ± 0.001 0.0012± 0.002
GSR : n = 10 0.0002 ± 0 0.0002 ± 0 0.0002 ± 0 0.0002 ± 0



4.3. Experimental Proedure 83Table 4.5: Nihing aeleration values for the (1, λ)-Strategy: Mean valuesand standard deviations of the absolute value of c over 100 runs.Test-Case CMA M-CMA S-CMA MS-CMA
M : n = 3 0.068 ± 0.010 0.069 ± 0.002 0.049 ± 0.007 0.060 ± 0.008
M : n = 10 0.038 ± 0.001 0.043 ± 0.002 0.029 ± 0.002 0.032 ± 0.001
M : n = 40 0.014 ± 0.001 0.014 ± 0.001 0.010 ± 0.001 0.010 ± 0.001
A : n = 3 0.133 ± 0.015 N.A. 0.035 ± 0.013 N.A.
A : n = 10 0.063 ± 0.002 N.A. N.A. N.A.
L : n = 3 0.179 ± 0.038 0.184 ± 0.048 0.128 ± 0.044 0.167 ± 0.036
L : n = 10 0.174 ± 0.024 0.176 ± 0.025 0.144 ± 0.016 0.153 ± 0.019
R : n = 3 0.043 ± 0.007 0.131 ± 0.109 0.045 ± 0.027 0.125 ± 0.058
R : n = 10 0.043 ± 0.013 0.052 ± 0.012 0.064 ± 0.016 0.081 ± 0.015
G : n = 3 0.079 ± 0.079 0.112 ± 0.033 0.097 ± 0.080 0.152 ± 0.095
G : n = 10 0.001 ± 0.002 0.006 ± 0.002 1.051 ± 6.983 1.120 ± 5.418
S : n = 5 0.004 ± 0.005 0.019 ± 0.009 0.080 ± 0.056 0.072 ± 0.020
S : n = 10 0.004 ± 0.010 0.003 ± 0.005 0.012 ± 0.024 0.005 ± 0.004
V : n = 3 0.004 ± 0.004 0.104 ± 0.010 0.010 ± 0.027 1.023 ± 2.018
V : n = 10 0.004 ± 0.009 0.037 ± 0.024 0.055 ± 0.002 0.061 ± 0.003

RSR : n = 3 0.079 ± 0.068 0.153 ± 0.098 0.031 ± 0.019 0.113 ± 0.042
RSR : n = 10 0.077 ± 0.029 0.087 ± 0.032 0.051 ± 0.011 0.069 ± 0.010
GSR : n = 3 0.147 ± 0.088 0.150 ± 0.076 0.274 ± 0.284 0.129 ± 0.076
GSR : n = 10 0.101 ± 0.046 0.107 ± 0.045 0.204 ± 0.297 0.196 ± 0.276Table 4.6: Nihing aeleration values for the (1 + λ)-Strategy: Mean valuesand standard deviations of the absolute value of c over 100 runs.Test-Case CMA M-CMA S-CMA MS-CMA
M : n = 3 0.055 ± 0.007 0.056 ± 0.007 0.046 ± 0.004 0.049 ± 0.005
M : n = 10 0.015 ± 0.001 0.016 ± 0.001 0.015 ± 0.001 0.015 ± 0.001
M : n = 40 0.006 ± 0.001 0.006 ± 0.001 0.004 ± 0.001 0.004 ± 0.001
A : n = 3 0.044 ± 0.004 0.048 ± 0.004 0.016 ± 0.015 0.043 ± 0.016
A : n = 10 0.017 ± 0.001 0.016 ± 0.001 N.A. N.A.
L : n = 3 0.066 ± 0.015 0.066 ± 0.020 0.053 ± 0.012 0.058 ± 0.012
L : n = 10 0.029 ± 0.011 0.034 ± 0.007 0.040 ± 0.002 0.040 ± 0.002
R : n = 3 0.054 ± 0.005 0.053 ± 0.005 0.041 ± 0.007 0.043 ± 0.014
R : n = 10 0.015 ± 0.002 0.007 ± 0.001 0.019 ± 0.001 0.020 ± 0.001
G : n = 3 0.065 ± 0.009 0.064 ± 0.013 0.061 ± 0.014 0.050 ± 0.017
G : n = 10 0.808 ± 5.670 1.080 ± 10.380 0.748 ± 6.995 2.023 ± 18.077
S : n = 5 0.006 ± 0.008 0.006 ± 0.004 0.030 ± 0.012 0.021 ± 0.004
S : n = 10 0.002 ± 0.001 0.002 ± 0.001 0.009 ± 0.010 0.005 ± 0.003
V : n = 3 0.063 ± 0.008 0.065 ± 0.010 0.015 ± 0.005 0.040 ± 0.010
V : n = 10 0.027 ± 0.002 0.020 ± 0.003 0.025 ± 0.001 0.025 ± 0.001

RSR : n = 3 0.055 ± 0.006 0.056 ± 0.009 0.037 ± 0.010 0.045 ± 0.012
RSR : n = 10 0.021 ± 0.002 0.021 ± 0.002 0.018 ± 0.001 0.018 ± 0.001
GSR : n = 3 0.176 ± 0.150 0.156 ± 0.050 0.152 ± 0.069 0.181 ± 0.206
GSR : n = 10 0.031 ± 0.011 0.031 ± 0.016 0.032 ± 0.013 0.034 ± 0.011

nihing aeleration for the Mahalanobis-distane based routines. This resultis pretty muh intuitive - a more aurate spatial lassi�ation, as typiallyobtained by the Mahalanobis metri, allows the nihing mehanism in mostases to form appropriate nihes and to onverge faster.
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Figure 4.5: Final population of the CMA-(1, 10) with a self-adaptive niheradius on the 1D Shekel funtion.

Figure 4.6: Final population of the CMA-(1, 10) with a self-adaptive niheradius on the 1D Vinent funtion.



4.4. Disussion 854.3.2 General BehaviorThe proposed self-adaptive nihe radius routine performed well on the land-sapes with the �deeptive� distribution of optima, i.e., V and S, and man-aged to takle the nihe-radius problem suessfully. Visualizations of theruns on V and S for n = 1 are given as Figures 4.5 and 4.6. Figures A.1,A.2, and A.3 illustrate the adaptation of the lassi�ation-ellipses by theM-CMA+ routine on the 2D Flether-Powell, 3D Flether-Powell, and 3DAkley landsapes, respetively. It an be observed in the Flether-Powellase that eah nihe has its own harateristi matrix and onvergene pro-�le, whereas the onvergene in the Akley seems to be simultaneous, asexpeted from the landsape symmetry.4.4 DisussionWe have introdued new onepts of adaptive nihe-radii and nihe-shapesinto the framework of nihing with the Covariane Matrix Adaptation Evolu-tion Strategy. The main goal was to treat the so-alled nihe radius problem,and to o�er an e�ient nihing mehanism with no pre-assumptions on thelandsape. It was suessfully ahieved at two levels: The onstrution ofself-adaptive nihe-radius, and the employment of the Mahalanobis distanefor the adaptation of the nihe-shapes. We have desribed both approahesin detail.In further detail, given the CMA-ES-(1 +, λ
) routines, 4 variants of nih-ing were onsidered per routine, and tested on a suite of arti�ial landsapes.The new approahes were shown to perform in a satisfying manner, on land-sapes with evenly and unevenly spread optima. The nihe radius problemwas takled suessfully by the self-adaptive approah, as demonstrated onlandsapes with unevenly spread optima, both separable and non-separable.The appliation of the Mahalanobis distane ahieved its goal in improvingthe nihing proess, in terms of obtaining on average higher quality sub-optima, subjet to higher nihing aeleration. It does neither seem to im-prove nor to hamper, on average, the identi�ation of the loation of globalminimum, as expeted.The areful reader should note that employing the Mahalanobis distaneis appliable only when the nihing distane is alulated in the deisionspae. Sometimes this is not the ase, and other spaes are used for that(e.g., the seond-derivative spae, for more details see Chapter 8).We would like to disuss here the important issue of parameters in lightof our proposed approahes. The disussion is done at two levels. The�rst is the relaxation of existing parameters in the �xed-radius CMA nihingalgorithm, and more spei�ally the parameter q. The parameter q is reduedin this study, for the �rst time, from being a ritial nihing parameter inthe �xed-radius approah into being the estimated/desired target number of



86 Chapter 4. Self-Adaptive Nihe-Shape Approahesnihes/peaks in the self-adaptive approahes without any in�uene on thealgorithmi behavior. In essene, a possibly wrong estimation of q wouldsimply be responsible for wasting CPU yles when too large, or missinggood optima when too small. The seond level is the introdution of newparameters, i.e., α and γ (Eq. 4.3), for the funtion of the learning oe�ients(Eq. 4.2). Although this is an undesired situation, one should keep in mindthat by setting only two parameters, we are allowing the appliation of anihing method to landsapes with a large number of optima with possiblydi�erent basin sizes, that would require di�erent nihe radii, respetively.We would like to stress that if these parameters had not been introdued,the appliation to suh landsapes would not have been feasiblewith the �xed-radius approah, or would have required setting asmany parameters as the number of peaks. Thus, by setting only thesetwo parameters, we ahieve a lot. Moreover, the proposed settings apply fora wide range of pratially relevant landsapes, and do not have to be hosenfor eah new problem by means of additional experiments.Regarding the implementation of the Mahalanobis metri, we have of-fered here a numerial simpli�ation of the required alulation, whih wasobserved to pay o� in terms of omputation time. By applying this numerialimplementation, the Mahalanobis approah share the same omputationalomplexity as the previously disussed approahes.We thus present here both the self-adaptive nihe-radius CMA-nihing aswell as the CMA-nihing with Mahalanobis distane as state-of-the-art nih-ing tehniques within Evolution Strategies, and propose them as solutionsto the so-alled nihe-radius problem.



People talk about the middle of the road as though it wereunaeptable. Atually, all human problems, exepting morals,ome into the gray areas. Things are not all blak and white.There have to be ompromises. The middle of the road is all ofthe usable surfae.Dwight D. Eisenhower
Chapter 5Nihing-CMA forMulti-Objetive OptimizationThis hapter introdues an additional extension to our proposed nihingframework of Chapter 3, aiming at onstruting a simple algorithm for multi-objetive optimization.5.1 Multi-Objetive OptimizationDeision making in real-life is often subjet to multiple objetives to bemet. In many senarios, satisfying one objetive is typially in on�it withsatisfying the other. The �eld of Multi-Criterion Deision Making (MCDM)aims at developing mehanisms for supporting the deision making proesswhen treating multiple objetives. The idea is to study the nature of thetrade-o� between the various objetives, to seek a good ompromise, and toavoid a lose-lose senario.Naturally, we are interested in the optimization perspetive of MCDM,and espeially in evolutionary multi-objetive optimization algorithms (EMOA).The latter has developed in the last two deades, and has beome a �eld ofintense researh.Next, we brie�y review here formally the basi onepts of Multi-ObjetiveOptimization.5.1.1 FormulationGiven an optimization problem withm objetives, we onsider itsm-dimensionalobjetive spae, also referred to as the solution spae. By de�nition, the ve-tor of objetives is in Rm:

~f (~x) = (f1 (~x) , f2 (~x) , . . . , fm (~x))T (5.1)87



88 Chapter 5. Nihing-CMA as EMOAWe assume that all objetives are to be minimized. A partial order is de�nedon the solution spae, F = ~f(X ), by means of the Pareto domination oneptfor vetors in Rm, in the following manner:De�nition 5.1.1. Given any ~f (1) ∈ Rm and ~f (2) ∈ Rm, we state that ~f (1)stritly Pareto dominates ~f (2), noted as
~f (1) ≺ ~f (2),if and only if the following holds:

∀i ∈ {1, . . . m} : f
(1)
i ≤ f (2)

i ∧ ∃i ∈ {1, . . . ,m} : f
(1)
i < f

(2)
i (5.2)Note, that in the bi-riteria ase this de�nition is redued to:

~f (1) ≺ ~f (2) :⇔ f
(1)
1 < f

(2)
1 ∧ f (1)

2 ≤ f (2)
2 ∨ f (1)

1 ≤ f (2)
1 ∧ f (1)

2 < f
(2)
2 (5.3)In addition to the strit domination ≺, we de�ne further omparison opera-tors:

~f (1) � ~f (2) ⇐⇒ ~f (1) ≺ ~f (2) ∨ ~f (1) = ~f (2) (5.4)Moreover, we state that ~f (1) is inomparable to ~f (2), noted as
~f (1)||~f (2),if and only if

~f (1) � ~f (2) ∧ ~f (2) � ~f (1) (5.5)The ruial laim is that for any ompat subset of Rm, say F, thereexists a non-empty set of minimal elements with respet to thepartial order � (see, e.g., [97℄, pp. 29).We an now de�ne non-dominated points as follows:De�nition 5.1.2. Non-dominated points are the set of minimal elementswith respet to the partial order �:
FN = {~f ∈ F|∄~f ′ ∈ F : ~f ′ ≺ ~f} (5.6)where a subsript N will denote from now on a non-dominated set in theontext of multi-objetive optimization.Having de�ned the non-dominated set and the onept of Pareto domi-nation for general sets of vetors in Rm, we are now in a position to relateit to the optimization mission. The aim of Pareto optimization is to obtainthe non-dominated set for F = ~f(X ) and its pre-image in X , the so-alledPareto optimal set, also referred to as the e�ient set. We may then de-�ne the Pareto front as the set of all points in the objetive spae thatorrespond to the solutions in the Pareto-optimal set.



5.1. Multi-Objetive Optimization 89In many pratial appliations we are also satis�ed with a set of solutionswhose image under ~f yields a good approximation to the non-dominated set,though a de�nition of what is a good approximation is problem dependent.Often, it is desired to ahieve a uniform distribution on the Pareto frontand a good onvergene of all points in the approximation set to some non-dominated solution.For notational onveniene, we shall de�ne a strit pre-order on the de-ision spae as follows:
~x(1) ≺ ~x(2) ⇐⇒ f(~x(1)) ≺ f(~x(2)) (5.7)Aordingly, we de�ne the pre-order
~x(1) � ~x(2) ⇐⇒ f(~x(1)) � f(~x2) (5.8)Note, that this is not a partial order, as the antisymmetry axiom does nothave to be satis�ed. This stems from the fat, that two distint vetors mayhave the same funtion value. For the same reasons, it is also possible thatthe e�ient set omprises more members than the Pareto front.5.1.2 The NSGA-II AlgorithmDue to their robustness and �exibility, Evolutionary Multi-Objetive Op-timization Algorithms (EMOA) have reently reeived inreased attentionas problem solvers for di�ult simulator-based optimization problems [98,99, 100℄. Among these methods, the NSGA-II method is one of the mostpopular, and it has been suessfully applied to many real-world problems.The NSGA-II algorithm has been proposed by Deb [98℄. It aims atobtaining a well distributed approximation set of points that are lose to thePareto front. It is a (µ + λ)-EA (see Algorithm 1), whih employs spei�variation operators (for details we refer the reader to [98℄), as well as a uniqueseletion operator. We hoose to desribe the latter in detail.The NSGA-II seletion onsists of two phases, that orrespond to pri-mary versus seondary seletion riteria. At �rst, a proedure alled non-dominated sorting is applied, that obtains perfet order on the set of deisionvetors. Next, the solutions whih share the same rank are sorted by meansof the rowding distane riterion. Expliitly, non-dominated sorting worksas follows: Given a population R, its non-dominated subset R1 = RN isextrated. This set forms the best ranked solutions (rank=1). Given theset R −RN , the non-dominated subset R2 = (R − RN )N is then extrated,and so on. This is repeated until the set of solutions is empty. The sets

R1, . . . , Ri, . . . , Rℓ are alled the non-dominated sets of rank i, i = 1, . . . , ℓ.Sine these sets an possibly ontain more than one member, a seond ri-terion is applied in order to sort solutions that share the same rank. Thisseondary riterion puts emphasis on the diversity of the solutions, and is
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Figure 5.1: Non-dominated sorting. Figure ourtesy of Mihael Emmerih[101℄.alled the rowding distane: Given a solution ~x(i) ∈ Rn, we determine theorresponding ~f = f(~x) in the solution spae, and then evaluate
d(~f) =

n
∑

k=1

[

min{f(j)
k

|j∈{1,...,|R|}−{i}∧f(k)≤f(i)} f
(i)
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(j)
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min{f(j)
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|j∈{1,...,|R|}−{i}∧f(k)≥f(i)} f
(j)
k − f (i)

k

]

(5.9)For a visualization of the non-dominated sorting proedure and the rowdingdistane alulation on a bi-riteria optimization problem we refer to Figures5.1 and 5.2, respetively.A omprehensive overview on the NSGA-II and other EMO algorithmsan be found in [98, 99℄. Reently, an interesting method alled the SMS-EMOA [100℄ was proposed, and was shown to outperform the NSGA-II al-gorithm on standard benhmarks. However, the NSGA-II an be onsideredstill as the most widely applied EMOA tehnique in literature, and thus weshall employ it in this study (see Chapter 9).
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Figure 5.2: Crowding distane. Figure ourtesy of Mihael Emmerih [101℄.5.2 On Diversity in Multi-Objetive OptimizationReently it has been pointed out that not only high diversity of solutionsin the objetive spae but also high diversity of solutions in the e�ient setan be of interest for the deision maker [68, 102℄. For instane, if a spei�point on the Pareto front is seleted by the deision maker, it might also beinteresting to onsider di�erent possible realizations to this solution in thedeision spae. Hene, if there are two di�erent pre-images of the seletedpoint on the Pareto front in the e�ient set, both of them are of potentialinterest for the deision maker. This situation is illustrated in Figure 5.3.More preisely, the di�erene between the lassial seletion priniple toour proposed approah an be formalized as follows. Let A denote an ap-proximation set on whih we would like to apply ranking, and let ~xA and
~xB be two solutions in A. In the lassial seletion method, as employedby the NSGA-II or SMS-EMOA algorithms, a solution ~xA is preferred to asolution ~xB if ~xA has a better dominane rank than ~xB in A, with respetto non-dominated sorting. Given that ~xA and ~xB share the same dominanerank in A, then ~xA is preferred to ~xB, if and only if ~xA ontributes more
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Decision Space Objective Space

Figure 5.3: Diversity for deision making : Illustrative example for a senariowhere two adjaent points on the Pareto front are mapped onto two pointsin two ompletely di�erent regions in the deision spae. Units and salesare arbitrary.to the diversity of the approximation set in the objetive spae than ~xB . Inthe proposed seletion priniple, ~xA remains preferable to ~xB, if ~xA has abetter dominane rank than ~xB in A. However, given that ~xA and ~xB sharethe same dominane rank in A, then ~xA is preferred to ~xB , if and only ifit ontributes more to the diversity in the aggregated spae (i.e., in bothobjetive and deision spaes). This priniple an be instantiated in di�erentways, depending on the diversity measure de�ned on the aggregated spae.Multi-objetive optimization methods aim at maintaining diversity, bytheir de�nition, and indeed, one of the popular mehanisms for diversitymaintenane is the rowding onept [67℄, whih is also applied, yet di�er-ently, as a single-objetive nihing tehnique. Thus, the important ompo-nent of diversity is the linking element between the �elds of multi-objetiveand multi-modal optimization. However, in multi-objetive optimization thediversity maintenane is typially sought in the objetive spae, for the sakeof obtaining a fair overage of the Pareto front, while not taken into aountfor the Pareto optimal set in the deision spae.5.2.1 Related WorkSeveral di�erent studies treated related topis to the work presented in thishapter. We review them here shortly.Nihing for MOEA: The NPGA Nihing tehniques have been alreadyused in the multi-objetive optimization arena, by being adjusted aord-ingly. Horn, Nafploitis and Goldberg [103℄ introdued a nihing tehnique for



5.2. On Diversity in Multi-Objetive Optimization 93multi-objetive optimization, known as the Nihed-Pareto GA (NPGA). Thealgorithm was a variant of the �tness sharing nihing method, whereas thenihing distane metri was set to onsider the objetive spae only. The se-letion was based on the so-alled Pareto domination tournaments or on theminimal nihe ount, otherwise. The NPGA was a lassial example of usingan existing single-objetive nihing tehnique, in a straightforward manner,for multi-objetive optimization - only by rede�ning the nihing distanemeasure and the seletion mehanism. However, its kernel was the simpleGA, whih typially su�ers from limited performane in high-dimensionalontinuous landsapes, and it laked any self-adaptation mehanism.The Omni-Optimizer Deb's so-alled Omni-Optimizer [68℄ is onsideredto be one of the �rst and only attempts of introduing a generi optimiza-tion routine whih aims at overing the four ategories of funtion opti-mization: Single-objetive uni-global, single-objetive multi-global, multi-objetive uni-global, and multi-objetive multi-global problems. Also, it isone of the �rst attempts to take diversity in the deision spae into onsid-eration.In priniple, this algorithm extends the NSGA-II by onsidering addi-tionally the diversity in the deision spae. This is implemented by means ofthe rowding distane alulation in the deision spae for all the individuals.The assigned rowding distane is de�ned as follows:if rowd_dist_obj(i) > avg_rowd_dist_obj orrowd_dist_de(i) > avg_rowd_dist_dethen rowd_dist(i) = max (rowd_dist_obj(i), rowd_dist_de(i))else rowd_dist(i) = min (rowd_dist_obj(i), rowd_dist_de(i))i.e., if the individual has above-the-average rowding distane, either in thedeision or objetive spae, the larger of them is assigned to it, otherwisethe smaller of the two distanes is assigned. This riterion is rather general,and strongly relies on uniform distribution of peaks as well as on their equal�tness values. Also, the salability of the two di�erent spaes is not treated.We would like to speulate that it is expeted to experiene di�ulties onnon-uniform multi-modal landsapes, for instane. From the pratial per-spetive, the algorithm was reported in [68℄ to be tested only on a single testfuntion, onstruted by Deb for this purpose, with uniformly-distributedequi-�tness minima landsape. We shall revisit this test-funtion in our ex-perimental proedure.Deision-Spae Diversity as an Independent Objetive To�olo andBenini [104℄ also promoted the issue of geneti diversity in multi-objetivealgorithms, and proposed their so-alled Geneti Diversity Evolutionary Al-gorithm (GDEA) for multi-objetive optimization. The latter onsiders the



94 Chapter 5. Nihing-CMA as EMOAdiversity of trial solutions in the deision spae, quanti�ed by means of aoverage funtion, as an independent objetive, subjet to maximization, inthe ongoing multi-objetive searh. This GA-based approah was shown tooutperform the NSGA on a set of 30D bi-riteria minimization problemsintrodued by Zitzler et al. [105℄.Self-Adaptation in Multi-Objetive Optimization Self-adaptation ofstrategy parameters [106℄ has beome a fundamental omponent in the evo-lutionary optimization routine. Moreover, the self-adaptation of the muta-tion strategy parameters has been shown to be neessary for e�ient single-objetive optimization within ES [106℄.Self-adaptation is expeted to fail in the lassial multi-objetive optimiza-tion routine. This is due to the fat that given on�iting objetives, asuessful mutation toward one objetive is not neessarily a suessful mu-tation toward the others � and hene should not be seleted.Bühe, Müller and Koumoutsakos [107℄ onduted a pioneering study ofself-adaptation in multi-objetive optimization. They onsidered three dif-ferent lasses of multi-objetive algorithms - independent sampling, ooper-ative population searh with dominane riterion and ooperative populationsearh without dominane riterion. Three representatives - CMEA, SPEAand SDM - mathing the lasses respetively, were tested on a multi-objetivegeneralization of the sphere model, and ompared with respet to eah other.Self-adaptation had been plugged-in into the evolutionary ore mehanismsof the algorithms, in a limited way (rotation angles, for instane, were notalways adapted). The onlusion was that self-adaptation did not work forooperative population searhes whih use the dominane riterion in the �t-ness assignment (SPEA), and this result was reassured by testing more rep-resentatives from that lass of algorithms, suh as the NSGA-II and SPEA2.However, self-adaptation ould work for the CMEA and SDM, whih do notuse dominane, but rather onsider a single objetive for optimization whilethe other objetives are treated as onstraints. The onluding message waslear � self-adaptation does not work in its lassial de�nition upon onsid-ering multiple objetives � as had been speulated.Reently, the self-adaptation obstale was treated suessfully by usingthe so-alled hyper-volume indiator (also known as S-metri) [99℄ as a se-letion riterion, similar to [100℄, in the Multi-Objetive CMA-ES [33℄, to bedisussed next. A similar approah, yet employing a simpler ES kernel, wasalso reported reently in [108℄.CMA-ES for Multi-Objetive Optimization An algorithm for multi-objetive optimization with a CMA kernel was introdued reently [33℄, em-ploying numerous (1 + 1) parallel searh proesses that undergo a sharedseletion phase. The latter is based on non-dominating ranking as a primary



5.3. Multi-Parent Nihing with (µW , λ)-CMA 95riterion, followed by the maximization of the Pareto front hyper-volume asa seondary riterion. Crowding distane was also onsidered as an alterna-tive seondary seletion riterion. In many ways, this algorithm resemblesour nihing framework. However, its diversity preservation stems from theoutome of seletion with respet to multiple riteria, rather than from thespatial enforement of speiation by means of a nihe de�nition. It is impor-tant to note in this ontext, that the hyper-volume indiator is well-de�nedas a measure of diversity and solution-set quality in the objetive spae, butannot be applied as an indiator of diversity in the searh spae.5.3 Multi-Parent Nihing with (µW , λ)-CMAIn order to apply a nihing algorithm for multi-objetive optimization, wewould like to design a stable nihing kernel, where nihes are less dynamiand assoiated more strongly with their spatial origins. In pratie, we aimat �xing an o�spring to its spatial nihe, or alternatively, at verifying that aseleted suessor of a nihe indeed originates from the same soure as theparent as well as the other members. The veri�ation of this ondition maybe easily inorporated into the nihing framework presented in Chapter 3.This ondition naturally poses a limitation on the free speiation proess.Thus, we would like to boost the performane of this limited nihing variantby introduing a multi-parent nihing approah, as will be disussed shortly.The (1 +, λ
) nihing framework may be extended to a multi-parent nih-ing framework, by employing a (µW , λ)-CMA kernel. We propose here thefollowing algorithm. In this extension, the issue to be treated is the iden-ti�ation of the seleted set of o�spring due to be reombined. Followingthe (1, λ) framework, the nihe representative is well de�ned, i.e., as outputfrom the DPI routine. However, the number of individuals in that niheis unknown a-priori, and moreover, some of the individuals in the urrentspatial nihe might not share the same parent. Thus, we hoose to de�nethe rest of the seleted o�spring as the set of at most ⌊λ2 ⌋ − 1 individualsthat are within nihe radius from the peak individual and share a parentwith it. This way, it is guaranteed that the ES mutation distribution evolvesontinuously, and that the spatial nihe is stable.Sine the value of µ is set dynamially every generation, and is likelyto vary over time, other auxiliary oe�ients must be updated aordingly,suh as the reombination weights (see Eq. 1.44). Otherwise, this sheme isnot expeted to introdue any instabilities into the nihing framework. Asfor the value of λ, we propose to set it to its reommended default value, asin Eq. 1.47:

λ = 4 + ⌊3 · ln (n)⌋A pseudo-ode for the multi-parent-CMA nihing routine is presented inAlgorithm 8.



96 Chapter 5. Nihing-CMA as EMOAAlgorithm 8 Multi-Parent (µW , λ) Nihing-CMA with a Fixed Nihe Ra-dius1: for i = 1 . . . (q + p) searh points do2: Generate λ samples based on the CMA-set of i3: end for4: Evaluate �tness of the population5: Compute the Dynami Peak Set with the DPI Algorithm6: for j = 1 . . . q elements of DPS do7: Identify at most µ = ⌊λ2 ⌋ �ttest individuals with Parent (peak(j))8: Apply weighted reombination on these individuals to yield 〈~x〉jW , 〈~z〉jW9: Inherit the CMA-set of Parent (peak(j)) and update it w.r.t. 〈~z〉jW10: end for11: if NDPS=size of DPS < q then12: Generate q −NDPS new searh points, reset CMA-sets13: end if14: if gen mod κ ≡ 0 then15: Resample the (q + 1)th . . . (q + p)th searh points16: end ifNumerial Observation: (1, λ)-Nihing vs. (µW , λ)-NihingWe tested the derived multi-parent nihing-CMA variant on the suite of ar-ti�ial multimodal landsapes of Setion 3.4. A omparison with its (1, λ)sibling learly shows that the multi-parent variant is inferior in performaneon the given landsapes. It seems that the free speiation omponent in theoriginal (1, λ) strategy plays an important role in the nihing proess. There-fore, we restrit the use of the multi-parent variant to the multi-objetiveframework, whih will be derived next.5.4 Nihing-CMA as EMOAThe idea of the proposed method is to approximate the Pareto front usingnihes, i.e. every nihe represents a point in the evolving front. This isahieved by onsidering the aggregated deision and objetive spaes for thedistane metri of the nihing formation. This method employs the multi-parent nihing-CMA routine as it is, with the following modi�ations:
• Ranking of individuals is based upon non-dominated sorting.
• Distane between nihes is evaluated in the aggregated spae, as will beexplained shortly. Also, the estimation of the nihe radius is adjusted.



5.4. Nihing-CMA as EMOA 975.4.1 The Nihing Distane MetriGiven the n-dimensional deision vetor of individual i, ~x(i) =
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), the distane between individuals i and j is de�ned as the Eu-lidean distane between the two aggregated vetors subjet to dimension-ality normalization, i.e., norm-2 in the n+m aggregated spae. It expliitlyreads,
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)2 (5.10)5.4.2 Seletion: Non-dominating RankingIn order to selet individuals based on more than a single objetive, the ex-isting seletion mehanism had to be modi�ed. As outlined previously, thenihes are identi�ed based on their ranked quality. In our new multi-objetiveontext, rather than sorting the �tness values, we propose to perform domi-nane ranking, after whih the routine will proeed as usual: Starting withrank 1, a greedy identi�ation of the nihes will be exeuted, onsidering thedistane with respet to the aggregated objetive and deision spaes. If notall q nihes are populated, the routine will proeed to rank 2, and so on.5.4.3 Estimation of the Nihe RadiusSine our method aims to approximate the Pareto front by populating itwith a uniform distribution of q nihes, we an estimate the nihe radius
ρ for spei� ases. The following derivations are stritly limited to 2Ddeision or objetive spaes, but we believe that they ould be generalizedto n-dimensional spaes.Consider a onneted Pareto front, and assume that we an de�ne itslength, denoted by lFRONT . Also, let the diameter of the Pareto set bedenoted by lSET . Upon onsidering the aggregated spae, and demanding auniform distribution of nihes, one may write:

2 · ρ · q =
√

l2FRONT + l2SET (5.11)Simpli�ed Model One an onsider a simpli�ed model for providing anupper and a lower bounds for ρ, by taking into aount only the objetivespae. For this purpose let us onsider the Nadir objetive vetor, denotedhere as ~ζ(N ) = (f1,N , f2,N )T . In the general m-dimensional objetive spae,the Nadir objetive vetor is de�ned as the vetor with the worst objetive



98 Chapter 5. Nihing-CMA as EMOAvalues of all Pareto optimal solutions (as opposed to the worst objetivevalues of the entire spae):
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. (5.12)The Nadir objetive vetor an be omputed for m = 2 by employing single-objetive optimization. For m > 2, heuristis are available, but the problemis onsidered to be omputationally hard [97℄.Without loss of generality, assume that the objetives {f1, f2} are as-signed with values in the intervals {[f1,min, f1,N ] , [f2,min, f2,N ]}, respe-tively. The length of the assumably-onneted Pareto front has a lowerbound of
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, (5.13)and an upper bound of
lFRONT,max = |f1,N − f1,min|+ |f2,N − f2,min| . (5.14)Hene, upon assuming a uniformly spaed population of the q nihes alongthe front, one an derive
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2 · q (5.15)The General Case For the general ase, we hoose to de�ne the defaultvalues as the radii of the deision or the objetive spaes, respetively:

rSET =

√

√

√

√

n
∑

i=1

(xi,max − xi,min)2 (5.16)
rFRONT =

√

√

√

√

m
∑

j=1

(fj,max − fj,min)2 (5.17)And thus
ρ =

√

∑n
i=1 (xi,max − xi,min)2 +

∑m
j=1 (fj,max − fj,min)2

2 · q (5.18)The nihe radius is essentially a ruial parameter of this method, and itsestimation or tuning is ritial for the algorithmi suess.



5.5. Numerial Simulations 995.5 Numerial SimulationsWe outline here our experimental setup for the proposed method.5.5.1 Test Funtions: Arti�ial LandsapesWe onsider a set of arti�ial bi-riteria landsapes in order to test the algo-rithmi performane. Following our mission statement, and due to the fatthat we have no desire in introduing another standard EMOA, we tend tofous in landsapes with more interesting deision spae harateristis, andprovide the reader with a proof of onept for the proposed approah. Next,we desribe the four di�erent landsapes to be onsidered:1. Deb's Omni-Test As mentioned earlier, Deb onstruted a bi-riteriamulti-global landsape for testing his Omni-Optimizer [68℄. Expliitly,it reads:
f1(~x) =

n
∑

i=1

sin (πxi) −→ min
f2(~x) =

n
∑

i=1

cos (πxi) −→ min (5.19)where ∀i xi ∈ [0, 6].2. EBN The EBN family of funtions [100℄ introdued a very basi setof test-problems for multi-objetive algorithms. Expliitly, it reads:
f

(γ)
1 (~x) =

(

n
∑

i=1

|xi|
)γ

· n−γ −→ min
f

(γ)
2 (~x) =

(

n
∑

i=1

|xi − 1|
)γ

· n−γ −→ min (5.20)The shape of the Pareto front an be ontrolled by means of the pa-rameter γ, and it is de�ned by the following equation:
y2 =

(

1− y1/γ
1

)γ
, y1 ∈ [0, 1] (5.21)Thus, the shape of the front will be a onave, linear, or onvex ar forthe ases of γ < 1, γ = 1, or γ > 1, respetively.The main purpose of studies employing this set of problems is hara-terizing the EMOA distribution points on a Pareto front of di�erentelementary shapes. The EBN problems are attrative in the ontext ofe�ient set approximation, as the pre-images of points in the objetivespae are not single points, but rather line segments on the diagonalsof [0, 1]n, exepting the extremal points (0, 1)T and (1, 0)T (see, e.g.,[101℄). In our study we shall onsider the ase of γ = 1.



100 Chapter 5. Nihing-CMA as EMOA3. "Two-on-One" This test-ase was originally introdued in an inter-esting study of the Pareto-optimal set [109℄, whih has been to someextent one of the origins to the study presented in this hapter. Itis a two-dimensional funtion, with a 4th-degree polynomial with twominima as f1 versus the sphere funtion as f2:
f1(x1, x2) = x4

1 + x4
2 − x2

1 + x2
2 − cx1x2 + dx1 + 20 −→ min

f2(x1, x2) = (x1 − k)2 + (x2 − l)2 −→ min (5.22)We onsider the asymmetri ase, with c = 10, d = 0.25, k = 0, and
l = 0 (ase number 3 as reported in [109℄).4. Lamé Superspheres We onsider a multi-global instantiation of afamily of test problems introdued by Emmerih and Deutz [110℄, thePareto fronts of whih have a spherial or super-spherial geometry.In ontrast to the EBN problem, the set of pre-images of a point onthe Pareto front for this instane is �nite, and solutions are plaed onequidistant parallel line-segments, eah of them being a pre-image of aloal Pareto front.Let d = 1

n−1

∑n
i=2 xi, and r = sin2(π · d),

f1 = (1 + r) · cos(x1) −→ min
f2 = (1 + r) · sin(x1) −→ min (5.23)with x1 ∈

[

0, π
2

], and xi ∈ [1, 5] for i = 2, . . . , n.5.5.2 Modus OperandiWe arried out numerial simulations on the bi-riteria landsapes introduedin the previous setion in order to test the algorithmi performane of theproposed method. We hose to apply three additional algorithms as referenemethods: the NSGA-II, the Omni-Optimizer, and a variant of the NSGA-II whih onsiders an aggregated spae in the rowding alulations. Thelatter routine is meant to assess the importane of the aggregation oneptfor attaining deision spae diversity. The idea was to approximate thePareto front by means of q = 50 points, and alloate a �xed number of
NumEvalmax = 50, 000 funtion evaluations per run. We are aware thatthese are not the optimal settings for the referene methods; The Omni-Optimizer, for instane, was reported in [68℄ to employ a population of 1, 000individuals. However, our goal here is also to exploit the advent of modernderandomized Evolution Strategies, whih o�er optimization with minimalsettings.In order to assess the boost of diversity in the deision spae, we wouldlike to introdue here a quanti�er for that. Let dA,B denote the Eulidean



5.5. Numerial Simulations 101Table 5.1: Hypervolume values of the Pareto fronts of the 4 di�erent algo-rithms on the 4 test-ases: Average and standard-deviation over 20 runs.Hypervolume Nihing-CMA NSGA-II NSGA-II-Agg Omni-Opt.Omni-Test 30.27 ± 0.05 30.17 ± 0.034 29.80 ± 0.23 29.75 ± 0.18EBN 3.283 ± 0.042 3.289 ± 0.088 2.87 ± 0.182 2.064 ± 0.057Two-on-One 173.4 ± 0.26 173.7 ± 1.56 172.7 ± 1.78 150.2 ± 28.6Superspheres 3.176 ± 0.038 3.203 ± 0.001 3.117 ± 0.080 2.457 ± 0.372distane between individual ~xA and individual ~xB:
dA,B = ‖~xA − ~xB‖ (5.24)We then de�ne the population diversity of the Pareto optimal set as themean value of the µN (µN−1)

2 distane measures between all the individuals,normalized by the diameter of the deision spae, denoted by diam:
D =

2diam · µN (µN − 1)
·
∑

A 6=B

dA,B (5.25)This salar should give us an indiation to what degree the �nal populationis diverse.5.5.3 Numerial ObservationWe present the numerial results by means of plots of typial runs of the re-sulting approximated Pareto-set and Pareto-front (i.e., all the non-dominatedindividuals in the last generation). The plots present the outome of the dif-ferent algorithms both in the deision and the objetive spaes, per land-sape. Note that the deision spae is represented by plotting x1 ver-sus x2, exept for the Superspheres test-ase where x1 is plotted versus
1

(n−1) ·
∑n

i=2 xi. These plots are given in Figures 5.4, 5.5, 5.6, and 5.7.Table 5.1 presents the alulations of the S-metri, as a performaneriterion in the objetive spae, averaged over 20 runs. Moreover, Table 5.2presents the alulations of the deision spae diversity, as de�ned in Eq.5.25, averaged over 20 runs.Generally speaking, the proposed algorithm performed in a highly satis-fying manner, obtaining good Pareto-sets with high diversity in the deisionspae, whih are mapped onto well-approximated Pareto-fronts. In terms ofthe performane riterion in the objetive spae, the S-metri (hypervolume),Nihing-CMA and the NSGA-II performed equally well, while the NSGA-IIwith aggregation and the Omni-Optimizer typially performed slightly worse.Regarding the diversity in the deision spae, the proposed algorithm aom-plished its goal: it attained higher deision spae diversity in omparison to



102 Chapter 5. Nihing-CMA as EMOATable 5.2: Deision-spae diversity, as de�ned in Eq. 5.25, of the 4 di�erentalgorithms on the 4 test-ases: Average and standard-deviation over 20 runs.Diversity Nihing-CMA NSGA-II NSGA-II-Agg Omni-Opt.Omni-Test 0.256 ± 0.060 0.205 ± 0.079 0.222 ± 0.070 0.030 ± 0.002EBN 0.483 ± 0.008 0.410 ± 0.023 0.356 ± 0.028 0.011 ± 0.010Two-on-One 0.295 ± 0.01 0.136 ± 0.036 0.116 ± 0.031 0.106 ± 0.054Superspheres 0.413 ± 0.024 0.239 ± 0.049 0.307 ± 0.046 0.062 ± 0.056the other method on all landsapes. This result an also be learly observedin the deision spae plots. On the Omni-Test landsape, Nihing-CMA per-formed very well, while typially obtaining 4 Pareto subsets, in omparisonto one or two subsets for eah of the other routines. On the EBN landsape,Nihing-CMA attained a quasi-uniform distribution in the deision spae.On the "Two-on-One" landsape, the proposed algorithm managed to ex-plore both branhes of the so-alled propeller-shaped Pareto-set [109℄, whilethe other algorithms typially explored either one of the two branhes. Onthe Super-Spheres landsape, Nihing-CMA performed extremely well, whileobtaining a good distribution of typially 3 Pareto subsets. The other meth-ods, nevertheless, usually obtained a single Pareto subset. This is learlyobserved in Figure 5.7, where the �nal population of the these algorithmsis mostly onentrated along a single line-segment, orresponding to a sin-gle Pareto subset. Hene, in multi-globality terms, Nihing-CMA learlyoutperformed the other methods on these landsapes.It should be noted that introduing the aggregation omponent into theNSGA-II did improve the attained deision spae diversity to some extent ontwo landsapes, but did not have a onsiderable ontribution. We onludethat onsidering the aggregated spae by itself does not seem to be su�ientfor attaining high diversity in the deision spae. We rather onsider it as abridge for nihing to multi-objetive domains. We would like also to pointout the poor performane of the Omni-Optimizer in terms of the attaineddeision spae diversity. It is likely that its performane was hampered dueto the small population size employed here.DisussionThe onstruted algorithm required rather mild adjustments to the newarena of multi-global multi-objetive optimization. Due to the fat thatit is nihe-radius based, we proposed a way to approximate this parameter.The algorithm was applied to a testbed of onventional arti�ial bi-riterialandsapes, of various dimensions, and ompared to the lassial GA-basedEMOAs: The NSGA-II, the Omni-Optimizer and an aggregated-spae vari-
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Figure 5.4: 5D Omni-Test landsape (Eq. 5.19): Final populations of thefour routines (see legend). Left: Deision spae; Right: Objetive spae.

Figure 5.5: 10D EBN landsape (Eq. 5.20): Final populations of the fourroutines (see legend). Left: Deision spae; Right: Objetive spae.ant of the NSGA-II. The observed numerial results were highly satisfying,where in all ases not only the Pareto front, but also the e�ient set, werebetter overed in omparison to the existing approahes. This outome pro-vided us with the desired proof of onept for the proposed method. It shouldbe noted that the GA-based methods performed poorly, likely due to thesmall population sizes that are typially employed by ES-based algorithmikernels.
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Figure 5.6: 2D Two-on-One landsape (Eq. 5.22): Final populations of thefour routines (see legend). Left: Deision spae; Right: Objetive spae.

Figure 5.7: 4D Super-Spheres landsape (Eq. 5.23): Final populations of thefour routines (see legend). Left: Deision spae; Right: Objetive spae.
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The dream is alive!Hershel Rabitz
Chapter 6Introdution to QuantumControlControlling the motion of atoms and moleules has been a dream sine theearly days of Quantum Mehanis. Although this quest initially met withfailure, the foundation of the Quantum Control (QC) �eld in the 1980s,throughout the development of various approahes [111, 112, 113℄, has �nallybrought this dream to fruition. Quantum Control, sometimes referred to asOptimal Control or Coherent Control, aims at altering the ourse of quantumdynamis phenomena for spei� target realizations. There are two mainthreads within Quantum Control, theoretial versus experimental ontrol,as typially enountered in Physis. They have experiened an amazinginrease of interest during the past 10 years, in parallel to the tehnologialdevelopments of ultrafast laser pulse shaping apabilities, that obviouslymade it possible to turn the dream into reality. For a broad �eld review see[114, 115, 116℄.The list of suessfully losed-loop quantum ontrolled systems in Physisand Chemistry is pratially endless. Examples of early work ontain suess-ful appliations in �uoresene spetrum manipulation [117℄, ontrol of quan-tum wavefuntions [118℄, vibrational exitation tailoring in polymers [119℄,moleular rearrangement seletivity [120℄, hemial disrimination [121℄, ul-trafast solid-state optial swithing [122℄, and photosyntheti bateria energytransfer [123℄.In this hapter we review the fundamental priniples of Quantum Control,both in theory and in experiments. Should the reader hoose to explorethis hapter, an understanding of the basi quantum mehanis priniples isassumed, as well as being familiar with the Dira notation. The reader whowishes to abstrat from the physis details ould simply view the QuantumControl appliations in this study as a non-linear high-dimensional set ofproblems with real-world appliations.107



108 Chapter 6. Introdution to Quantum Control6.1 Optimal Control TheoryOptimal Control Theory (OCT) [124, 125℄ aims at manipulating the quantumdynamis of a simulated system by means of an external ontrol �eld, ǫ (t),whih typially orresponds to a temporal eletromagneti �eld arising froma laser soure. The objetive to be met in this ontrol proess is de�ned bymeans of a given physial observable, whose yield is subjet to maximization.A quantum ontrol landsape is thus de�ned as the funtional dependeneof an observable yield on the ontrol variables, and may be visualized as asurfae over the spae of all possible ontrols.This setion is mainly based on [126℄ (de�nitions) and on [127, 128℄ (QCderivations).6.1.1 The Quantum Control FrameworkFormally, we onsider quantum systems whih are desribed by Hamiltoniansof the form
H (t) = H0 − ~µ · ~ǫ (t) (6.1)with H0 as the free-�eld Hamiltonian, ~µ the dipole moment operator, and

~ǫ (t) the eletri �eld, within the so-alled eletri dipole approximation. Theeletri �eld is often redued to a salar, due to the ommon assumption of alinear polarization. In pratie, a �nite number N of states is onsidered, andthus the Hilbert in�nite-dimensional spae is pratially redued toan N-dimensional spae, and therefore the Hamiltonian is typiallyan N ×N Hermitian matrix.Given some initial quantum state |ψ (t = 0)〉 = |ψ0〉, the time evolutionof the quantum state |ψ (t)〉 is ditated by the time-dependent Shrödingerequation:
i~
∂

∂t
|ψ (t)〉 = H(t) |ψ (t)〉 (6.2)Equivalently, the time propagation operator, typially referred to as the prop-agator, ats on quantum states in the following manner:

|ψ (t)〉 = U
(

t, t′
) ∣

∣ψ
(

t′
)〉

⇔
∣

∣ψ
(

t′
)〉

 |ψ (t)〉 (6.3)and has the form:
U
(

t, t′
)

= T exp

(

− i
~

∫ t

t′
H
(

t′
)

dt′
)

= exp (iA(t)) (6.4)where T is Dyson's time-ordering operator, and A = A† is an N ×N Hermi-tian matrix. Figure 6.1 provides an illustration for the onept of multiplequantum pathways from an initial state to a �nal state.
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Control Laser FieldFigure 6.1: [Left℄ Given a quantum system with an initial state |ψi〉, theQuantum Control proess aims at steering the system into a desired targetstate, |ψf 〉, by means of the ontrol laser �eld ~ǫ (t). Coherent ontrol re-lies on the existene of multiple quantum pathways between the two states,as illustrated, whih result in interferene; The goal is thus obtaining on-strutive interferene in the desired �nal state, and destrutive interfereneelsewhere. [Right℄ The quantization of the multiple quantum pathways pi-ture; The transition from the initial state to the target state may be attainedin multiple pathways.Let the target observable operator be O, then the yield of the ontrol pro-ess for a pure quantum state is de�ned as the expetation of the observableoperator at time t = T :
J = 〈O〉T = 〈ψT |O|ψT 〉 =

〈

ψ0

∣

∣

∣U†OU
∣

∣

∣ψ0

〉

= 〈ψ0 |OT |ψ0〉 (6.5)while referring from now on to U as U(T, 0), unless spei�ed otherwise.Let OT be diagonalized and spanned by means of its eigenvetors:
OT = U†OU =

∑

j

σj |φj〉 〈φj|, (6.6)then the highest eigenvalue σmax orresponds to the maximal attainableobservable value.When an ensemble of quantum states is under investigation,
|Ψ(t)〉 =

∑

j

pj(t) |ψj〉,it is haraterized by the density operator ρ(t) = |Ψ(t)〉 〈Ψ(t)|. The dynamisof the ensemble is then ditated by the von Neumann equation for the



110 Chapter 6. Introdution to Quantum Controldensity operator ρ(t):
i~
∂ρ(t)

∂t
= [H(t), ρ(t)] (6.7)where [A,B] = AB−BA.An observable is measured by Tr (ρO), and the Quantum Control yieldis de�ned respetively by:

J = 〈OT 〉 = Tr (ρTO) = Tr(Uρ0U†O
) (6.8)where

ρT = ρ(T ) = Uρ0U†Additional auxiliary osts may be imposed on the ontrols due to onstraints,e.g., minimal �uene, and onstrut respetively a quantum ontrol ostfuntional of the form:
J ′ = J − λ

∫ T

0
g (ǫ(t)) dt (6.9)However, in this hapter we restrit our treatment to quantum optimal on-trol problems in the absene of these onstraints.Critial Points: Kinemati Treatment At a ritial point the di�eren-tial of the ontrol landsape with respet to U vanishes. This is the so-alledkinemati treatment of the ritial point analysis, and it reads:

δJ
δU = 0 (6.10)Sine U†U = I, we get

δU†U + U†δU = 0for any δU . Eq. 6.10 may be rewritten now as
δJ
δU = Tr(δUρ0U†O + Uρ0δU†O

)

= Tr(δUρ0U†O − Uρ0U†δUU†O
)

=

= Tr([ρ0,U†OU
]

U†δU
)

=
〈

U
[

U†OU , ρ0

]

, δU
〉

= 0 (6.11)leading to the important result that at a ritial point
[OT , ρ0] =

[

U†OU , ρ0

]

= 0 (6.12)Hene, OT and ρ0 ommute, and thus are simultaneously diagonalizable,aording to this kinemati treatment.



6.1. Optimal Control Theory 111Critial Points: Dynami Treatment The dynami treatment, whihonsiders the di�erential of the observable with respet to the ontrol �eld
ǫ(t), is typially based on the hain rule:

δJ [~ǫ(t)]

δ~ǫ(t)
=
δJ
δU ·

δU
δ~ǫ(t)

(6.13)The dynami piture is more omplex, and is subjet to a more deliatetreatment, aordingly. At a ritial point, it ould be shown [127℄ that thisdi�erential yields:
δJ
δ~ǫ(t)

= Tr ([OT , ρ0]B(t)) = 0, (6.14)where B(t) = (i/~)U†(t, 0)∇~ǫH(t)U(t, 0).The ruial assumption whih is made by the dynami treatment statesthat the matrix B(t) forms a set of N2 linearly independent funtions forall time 0 ≤ t ≤ T . This assumption obviously leads to [OT , ρ0] = 0, as inEq. 6.12, and to the onlusion that the observable and the density matrixommute in the dynami piture as well.When diagonalizing the density matrix, the same eigenvetors of theobservable (Eq. 6.6) are used:
ρ0 =

∑

j

λj |φj〉 〈φj|The ontrol yield now reads:
J = Tr∑

i

∑

j

σiλj |φi〉 〈φi| φj〉 〈φj|



 = Tr∑
j

λjσπ(j) |φj〉 〈φj |



 =

=
∑

j

λjσπ(j) (6.15)where π(j) denotes a permutation, out of N ! possible permutations of theseeigenvalues, assuming that there is no degeneray.Speial Case: Pi→f A speial state-to-state ase is ommonly onsidered,where the transfer of a pure initial state |i〉, into a desired �nal state |f〉, issubjet to maximization. It is expressed aordingly through pure densityprojetors: A density matrix ρ0 = |i〉 〈i|, and an observable O = |f〉 〈f |.This population transfer problem has a simpler theoretial treatment, andmoreover, is also ommonly enountered in real-world appliations. Moreexpliitly, let us onsider the time evolution operator by its matrix element,
Uif = 〈i|U |f〉 (6.16)being a funtional of the ontrol �eld, U = U [ǫ(t)]. Then the quantumontrol population transfer problem is posed as maximizing the probability
Pi−→f = |Uif |2 (6.17)



112 Chapter 6. Introdution to Quantum Control6.1.2 ControllabilityBy assessing the ontrollability of the quantum system we aim at attain-ing the existene of a ontrol �eld whih obtains the maximal target yield,without studying the nature of the landsape. This is essentially di�erentfrom optimality analysis, whih aims at loating extrema on the landsape,without neessarily onduting ontrollability assessment.A powerful aspet of Quantum Control theoretial landsapes is the abil-ity to assess perfet ontrollability of the system, with hardly any assump-tions on the quantum system, as presented in the following theorem:Theorem 6.1.1. Assuming ontrollability of the system, the only extremavalues for Quantum Control of population transfer orresponds to perfetontrol:
Pi−→f = 1In the following we shall outline the prinipal steps of the proof for thislaim, following [129, 130℄. For simpliity, we hoose to onsider the speialase of Pi−→f , subjet to dynami treatment. Note that Pi→f = |Uif |2.Proof Idea A dynami treatment of a landsape extremum reads:
δPi→f

δǫ(t)
= 0 (6.18)Using the identity

〈i|U |f〉 = 〈i| exp (iA) |f〉 ,where A = A
† is an N ×N Hermitian matrix, Eq. 6.18 may be rewritten as

δPi→f

δǫ(t)
=
∑

p,q

∂ |Uif |2
∂Apq

δApq

δǫ(t)
= 0 (6.19)The same ruial assumption made regarding Eq. 6.14 is made here, redu-ing the dynami piture into the kinemati piture: The uniqueness of thefuntional dependene of the matrix elements Apq [ǫ(t)] on ǫ(t) is implied bythe assumed ontrollability of the system.Eq. 6.18 an now be satis�ed by

∂ |Uif |2
∂Apq

=
∂

∂Apq
|〈i| exp (iA) |f〉|2 = U

∗
if

∂Uif

∂Apq
+ Uif

∂U∗
if

∂Apq
= 0 ∀p∀q(6.20)Further examination of this equation (see Supplemental Online Material of[129℄) leads to the following onlusion:

Uif = exp (iα), α ∈ R (6.21)



6.1. Optimal Control Theory 113and thus |Uif | = 1, and the laim is satis�ed aordingly:
Pi−→f = 1 (6.22)The most general ase would be the dynamial treatment of the extrema of

J = Tr (ρTO). An equivalent theorem, stating that the extrema of suhlandsapes would orrespond to perfet ontrol or to no-ontrol, exists andis proven in [127℄. Furthermore, the latter artile presents important resultsregarding the nature of the landsape, whih we hoose to review here brie�y:1. The Slope An upper bound of the gradient reads:
∣

∣

∣

∣

δJ
δǫ(t)

∣

∣

∣

∣

≤ 2

~
‖O‖ × ‖~µ‖ (6.23)where the linear polarization of the eletri �eld was assumed for sim-pliity. In pratial realizations, it is reasonable to expet that thelandsape slope up to the global maximum will have no steep regions,suggesting that the optima are robust.2. Hessian at the Global Maximum The Hessian matrix has typiallyat most (2N −np−1) non-zero negative eigenvalues (np is the numberof non-zero eigenvalues of ρ0), where the rest orrespond to the nullspae, whih is spanned by their eigenfuntions. Thus, there existsaddle points, but they do not introdue any obstale toward loatingthe global maximum.3. Robustness The trae of the Hessian matrix at the top of the land-sape suggests a robust global maximum in any pratial realization,and gets more robust as the dimensionality N inreases.We onlude this setion by stating the following orollary:Corollary 6.1.2. Quantum Control landsapes have extrema that orrespondto perfet ontrol or to no-ontrol. Furthermore, given a ontrollable quan-tum system, there is always a trap-free pathway up to the top of the ontrollandsape from any loation, allowing the loation of the global maximumwith �rst-order (gradient) information.6.1.3 Control Level SetsGiven the results obtained in the previous setion, stating that the gradientof the yield funtion vanishes only at the top of the landsape, it is possibleto draw an important onlusion regarding the existene of level sets1 inthe landsape.1This important onept, whih was disussed previously in the ontext of global min-imum de�nition (see Eq. 1.2 and Theorem 1.1.1) or the basin de�nition (see De�nition2.3.1), is revisited here in the ontext of suess-rate.



114 Chapter 6. Introdution to Quantum ControlLet f : Rn → R be under investigation, with a point in the landsapewhih satis�es:
f∗ = f(~x∗), ∇f(~x∗) 6= 0The so-alled Impliit Funtion Theorem states that there exists an (n− 1)-dimensional manifold near ~x∗ with the same funtion value of f∗, and itstangent plane at ~x∗ is perpendiular to ∇f(~x∗).This theorem an be applied diretly to Quantum Control landsapes,due to the results presented previously. While limbing up the QC landsape,every assoiated yield value along the way has a orresponding manifold,whih an potentially be explored by ontinuous trajetories.Obviously, we annot apply the same theorem in order to draw an equiv-alent onlusion regarding the existene of a level set at the top. However, itis possible to show that a denumerably in�nite number of solutions exists atthe top of the landsape. Under mild assumptions, it was shown in [131, 132℄that in the absene of onstraints an in�nite number of solutions will existfor a general Quantum Control problem. The proof is based on funtionalanalysis treatment, subjet to perturbation formulation, and is beyond thesope of this study.We may onlude that Quantum Control landsapes are not only easyin terms of the loation of its maxima, i.e., optimal ontrols, as suggestedpreviously, but also o�er a rih diversity of multiple solutions.The areful reader should note that the above onlusions are valid onlyfor Theoretial Quantum Control landsapes, where no onstraints whatso-ever are posed. In the ontext of our work on Quantum Control optimiza-tion, to be presented in the following hapters, the landsapes under studywill always be underposed by multiple onstraints, and thus the degree towhih these theorems are appliable is generally unknown. However, possi-ble orroboration of the given Quantum Control landsape analysis mightbe identi�ed in our work, and will be disussed.The D-MORPH Algorithm Standard algorithms for the optimizationof optimal ontrol are designed for limbing-up the ontrol landsape andloating its extrema at the top, but are not apable of examining the level-sets of the landsape.A speial algorithm for exploring ontrol �elds on a given landsape level-set was designed by Rothman et al. [133, 134℄, aiming to produe trajeto-ries throughout ontrol �elds whih orrespond to a preserved observable.This algorithm is referred to as Di�eomorphi Modulation under Observable-Response-Preserving Homotopy (D-MORPH), and it allows an examinationof various ontrol �elds whih attain the same yield, but may have di�erentphysial properties, e.g., �uene.



6.1. Optimal Control Theory 115The basi idea of the D-MORPH algorithm is to onstrain the quantumdynamis suh that the observable is preserved for all ontrol �elds at agiven time. It is onvenient to introdue a dummy exploration variable s,and present the quantum dynamis aordingly (0 ≤ s ≤ 1):
ǫ(s, t)←− ǫ(t)

H (s, t) = H0(s)− ~µ(s) · ~ǫ (s, t)

i~
∂

∂t
|ψ (s, t)〉 = H(s, t) |ψ (s, t)〉

〈O(s)〉T = 〈ψ(s, T ) |O|ψ(s, T )〉

(6.24)Given the desired target observable value at time T , denoted by CT , theD-MORPH algorithm aims at loating ontrol �elds ǫ(s, t) that satisfy thefollowing non-linear equation:
F (s) = 〈O(s)〉T −CT = 0 (6.25)A homotopy path an then be obtained by solving the following di�erentialequation:
dF (s)

ds
=
d 〈O(s)〉T

ds
= 0 (6.26)We only outline the D-MORPH algorithm above, while omitting most of theexpliit derivations of the integration proess to be followed. We refer thereader to [133, 134℄ for those details.We onlude this setion with the following orollary:Corollary 6.1.3. A general ontrollable Quantum Control problem has arih landsape with an in�nite number of optimal solutions, orrespondingto perfet ontrol. Climbing-up to the top of the landsape reveals ontrollevel-sets at every yield value, with manifolds whih an be explored with on-tinuous trajetories. The latter may be obtained by means of the D-MORPHalgorithm.6.1.4 Computational ComplexityThe framework of this study is global optimization, where the fous here ison optimal ontrol of theoretial quantum systems, by means of optimallydetermining a ontrol �eld parameterized by n funtion values. As suh,studying its omputational omplexity aspet would traditionally onsiderthe resoures required for the optimization algorithm as a funtion of thedimensionality of the searh spae, denoted here by n.Due to the speial nature of quantum systems, studying the time om-plexity of OCT optimization algorithms with respet to the Hilbert spaedimensionality N is of onsiderable interest. In fat, when onsidering theomputational expense of resoures for a given OCT optimization problem,



116 Chapter 6. Introdution to Quantum Controlthe propagation of the Shrödinger equation is far more substantial than thesalability of the ontrol �eld to be optimally determined. Aordingly, theunderlying optimization hallenge seems to stem from the size of the quan-tum system N , rather than from the number of the eletri �eld funtionvalues to be optimally determined, n.Hene, OCT omputational omplexity researh fouses on the Hilbertspae dimensionality N . It should be noted that kinemati optimizationtreatment of OCT, whih is typially not of this study's fous, onsidersHermitian matries of dimension O (N2
) as the ontrol. Thus, in the latterase the time omplexity anyway has to be treated in terms of N .We review here brie�y a single test ase.Time Complexity of a Pure-State Quantum SystemFollowing Corollary 6.1.2, we know that an OCT searh an be algorithmi-ally implemented by means of gradient-based steps. It is thus onvenientto onsider the gradient �ow, whih is de�ned as the trajetory followed bythe algorithm when the step update follows

−∇UJ (U)The latter is based upon the kinemati treatment (see Eq. 6.10 and its deriva-tions). It is then possible to estimate an upper bound for the required timefor onvergene into an ε-neighborhood of the global maximum for the lassof observable maximization problems [135℄. The upper bound for a pureinitial state system, ρ0 = |i〉 〈i|, then reads:
τmax ≤

1

2 (σ1 − σk+1)

[

ln

(

2Nk

ε2

)

+ 2 · ln
(

(N − k − 2) σk+1

k (σ1 − σk+1)

)] (6.27)where N is the Hilbert spae dimension, σ1 > σk+1 > . . . > σN are theeigenvalues of the observable O, and k is the degeneray of the maximaleigenvalue, σ1.OCT optimization has a polynomial number of variables in terms of N ,and given the estimation of Eq. 6.27 we may onlude that it has a logarithmitime omplexity. It thus belongs to the omplexity lass CLOG (ontinuouslog) in the ontext of the relevant omplexity literature (see, e.g., [136℄).OCT omputational omplexity researh is still in its early days, and isurrently under promising study. It inludes the investigation of other testases, subjet to theoretial as well as empirial approahes.



6.2. Optimal Control Experiments 1176.2 Optimal Control ExperimentsOptimal Control Experiments (OCE) [116, 137℄ onsider the realization ofQuantum Control in the real-life laboratory, aiming at employing a learningproess for altering the ourse of quantum dynamis phenomena of spei�target-appliations. Here, the yield, or the suess-rate, is obtained by aphysial measurement of the target appliation, whereas numerial modelingof the system's Hamiltonian is not required.Initially, there were several qualitatively di�erent quantum ontrol shem-es. Brumer and Shapiro proposed the use of multi-olor interferene to on-trol quantum systems [112, 138℄: Combinations of harmoni light �elds wereused to ontrol the total and di�erential ross-setions of photo-ionizationand dissoiation proesses. That approah foused on the frequeny-domaindesription of the quantum system, and it was followed by a proposed Quan-tum Control approah by Tannor and Rie, based on exploiting the time-evolution of wave pakets that are produed when quantum systems interatwith short laser pulses [111, 139℄. Finally, Rabitz introdued the importantonept of feedbak ontrol, where phase-, amplitude- and/or polarizationshaping subjet to a losed learning loop are used to guide a quantum systemtoward a desired �nal state [113℄. Rabitz's approah has been suessfullyapplied in numerous appliations, and pratially beame the ommon ex-perimental routine in the �eld. We shall fous in this study on the feedbakontrol approah.The remainder of this setion will review experimental Quantum Control,while fousing in omputational and optimization aspets. We do not disussthe tehnial realization of the atual laser pulse. This part is mainly basedon [116, 140℄, as well as on personal leture notes2.6.2.1 Femtoseond Laser Pulse ShapingAs presented earlier, the ontrol �eld in OCT orresponds to the eletri�eld, whih is tuned in the temporal domain in a straightforward mannerby the optimization routine. However, the realization in OCE dramatiallydi�ers [116℄.When onsidering laser pulses in the duration of femtoseonds3, it isnot yet possible to shape pulses in the temporal domain: State-of-the-arteletro-opti swithes an urrently modulate only in the order of piose-onds4. Hene, the pulse shaping in OCE is typially implemented by meansof "slow" manipulation of the spetrum, subjet to a realization of the Fourier2Notes were taken in the ourse "Quantum Control" of Prof. Hershel Rabitz(CHM509), Prineton University, Fall 200731fs = 10−15s, i.e., 1 millionth of 1 billionth of a seond.41ps = 10−12s, i.e., 1 trillionth of a seond.



118 Chapter 6. Introdution to Quantum Controltransform. We denote the experimental eletri �eld by E(t),
E(t) ∼ R

{∫ ∞

−∞
E(ω) exp(iωt) dω

}where E(ω) is the spetral �eld. Pulse shapers allow independent ampli-tude as well as phase modulations, and the spetral �eld may be modeledaordingly:
E(ω) = A(ω) exp (iφ(ω))with A(ω) as the spetral amplitude, and φ(ω) as the spetral phase.Time vs. Frequeny The transition between time to frequeny domainsis obtained by the Fourier transform, F , whose ation an be summarizedas follows:

E(ω) =
1

2π

∫ ∞

−∞
Ẽ(t) exp (−iωt) dt = F

[

Ẽ(t)
]

Ẽ(t) = A(t) exp (iΦ(t)) =

∫ ∞

−∞
E(ω) exp (iωt) dω = F−1 [E(ω)]

(6.28)where A(t) is the temporal amplitude and Φ(t) is the temporal phase. Inpratie, the modeling of the experimental eletri �eld is real, and it reads:
E(t) = R

{∫ ∞

−∞
A(ω) exp(iφ(ω)) exp(iωt) dω

} (6.29)The Fourier transform also determines the reiproal relation between thespetral width to the temporal width, whih is another form of the un-ertainty priniple. Given the temporal full-width-half-maximum (FWHM)pulse width, ∆τlaser,FWHM , and the FWHM spetral width, ∆ωlaser,FWHM ,the time-bandwidth relation reads:
∆ωlaser,FWHM ·∆τlaser,FWHM ≥ 2πcB (6.30)where cB ≤ 1 depends on the pro�le of the spetral amplitude A(ω).It is important to distinguish between the temporal intensity of the �eld,

I(t) =
∣

∣

∣
Ẽ(t)

∣

∣

∣

2 (6.31)and the spetral intensity of the �eld,
I(ω) = |E(ω)|2 (6.32)whih are stritly not diretly related, due to the loss of the phaseinformation.
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Figure 6.2: The Quantum Control experimental learning loop.The Control Phase Generally speaking, the ontrol funtion in spetralmodulation onsists of the spetral amplitude funtion A(ω) as well as ofthe spetral phase funtion φ(ω). Most Quantum Control proesses aremore sensitive to the phase than to the amplitude, and phase-only shapingis typially su�ient for attaining optimal ontrol. We thus hoose to restritour study to phase modulation, and to onsider the spetral funtion A(ω) as�xed. The latter is then well-approximated by a Gaussian whih determinesthe bandwidth, or the pulse duration, aordingly. Note that shaping thepulse with phase-only modulation guarantees the onservation of the pulseenergy.We thus onsider only φ(ω) as our ontrol funtion: It de�nes the spe-tral phase at n frequenies {ωi}ni=1, that are equally distributed aross thespetrum of the pulse. These n values {φ(ωi)}ni=1 orrespond to n pixelsof the pulse shaper, and they would beome the deision parameters to beoptimized in the experimental learning loop:
φ(ω) := (φ(ω1), φ(ω2), ..., φ(ωn)) (6.33)Figure 6.2 illustrates the losed learning loop experimental Quantum Controlproess.6.2.2 Laboratory Realization: ConstraintsThe realization of the quantum system in the laboratory poses onstraints onthe quantum dynamis, and may lead to a di�erent OCE searh landsape,in omparison to its equivalent OCT landsape. The OCT theorems whihguarantee a trap-free pathway to perfet ontrol from any loation in the



120 Chapter 6. Introdution to Quantum Controllandsape, with gradient-based steps and in logarithmi time omplexity,may no longer be valid in OCE landsapes. Generally speaking, it is notlear how do Quantum Control landsapes appear in the laboratory.We disuss here brie�y several aspets of laboratory experiments whihare likely to be translated into onstraints in the OCE landsape [140℄.The ruial omponent of laser pulse shaping proess is the phase modu-lation, whih is typially exposed to waveform distortion e�ets (for a om-prehensive study see [141℄). We outline here several modulation omponents.Pixelation and Replia Pulses In pratie, the pulse shaping proessis implemented by a so-alled Spatial Light Modulator (SLM), whih istypially based on Liquid Crystal Display (LCD). This approah onsidersindividual pixels subjet to retangle-ativation-funtions, squ(ν), ideallysharply-de�ned and with no gaps between eah other. This is referred to asthe stairase approximation. The time modulation of these step-funtions isattained by means of their inverse Fourier transform,
F−1 [squ(ν)] ∼ sin(τ)where the width of sin(τ) = sin(τ)

τ is inversely proportional to the pixelwidth. Expliitly, the resulting temporal eletri �eld in this pixelizationan be desribed as follows:
e(t) =

∑

n

ẽ(t− nτ) · sin(πt
τ

)

, (6.34)with ẽ(t) as the desired eletri �eld, and where τ = 1
∆ν is the inversefrequeny spaing per pixel.Pratially, step-funtion gaps between SLM eletrodes are responsiblefor the onstrution of so-alled parasiti replia pulses in the temporal do-main, whih are loated at the zeros of the sin envelope funtion.Pulse Break-Up A linear phase funtion results in the time shift of thetemporal pulse. This an easily be derived by a hange of variables, orby the appliation of the so-alled Fourier Shift Theorem (see, e.g., [142℄).The in�uene of the replia pulses beomes more substantial when they aremoved from the zeros of the envelope sin funtion, by breaking-up thepulse energy into multiple parasiti replia pulses. This is equivalent tothe following statement: The steeper the linear phase, the more pronounedbeome the replia pulses, whih generally result in lower suboptimal yields[140℄.Phase Range: Wrapping Phases that di�er in 2π radians are mathe-matially equivalent. This periodi nature of the phase in [0, 2π]n pratially



6.2. Optimal Control Experiments 121poses periodi boundary onditions on the modulator. Given 0 < ε ≤ 2π,the so-alled phase wrapping operator is implemented as follows:
φi = 2π + ε −→ φ̃i := ε

φj = −ε −→ φ̃j := 2π − ε (6.35)or simply as φ̃i := φi mod 2π.From an optimization perspetive, this means that the searh spae ispratially an n-dimensional hyperube spanning a length of 2π in eah di-mension. It is likely to have impliations on the optimization routine in use.In terms of onstraints, wrapped phases may be exposed to singularity e�ets(0 − 1 jumps), but it is not onsidered to be a signi�ant e�et. Thus, weonsider it here more as a mathematial feature of the searh spae, ratherthan a onstraint.Resolution The number of pixels, n, determines the ontrol resolution,and poses a diret onstraint on the shaped-pulse in the temporal domain:Due to the reiproal nature of the Fourier transform with respet to fre-queny versus time, spetral resolution determines the upper bound for tem-poral resolution. For instane, typial laboratory realizations urrently on-sider n = 128 pixels with spetral resolution of 0.25 nm/pixel, whih allow ashaped pulse with maximum temporal length of 8.5ps at FWHM bandwidthof 10nm.We hereby summarize the main laboratory onstraints in a typial quan-tum system realization:1. Temporal or spetral resolution of the �eld Limited spetral res-olution in the realized shaper implies limited pulse temporal resolution.State-of-the-art LCD pulse shapers ontain 640 pixels to be tuned.2. Limited �eld �uene, limited �eld intensity Potential damageto di�erent experimental omponents restrits in pratie the applied�eld �uene and its intensity.3. Limited spetral bandwidth or pulse duration State-of-the-artommerial lasers an produe nowadays pulses at the duration of ∼
20 fs.4. Proper basis The atual representation of the ontrol phase, e.g.,pixel basis, polynomial expansion basis, et., poses by itself an addi-tional onstraint on the landsape.5. Noise Existene of laboratory noise, by de�nition, poses onstraintson the landsape.



122 Chapter 6. Introdution to Quantum Control6.3 Experimental ProedureIn this study we are interested both in numerial modeling of quantum sys-tems, as well as in their real laboratory experiments. The numerial modelingis typially driven by a known Hamiltonian, but designed in a laboratory-oriented manner, as will be desribed shortly. Essentially, it is OCT om-bined with some OCE harateristis.In our alulations, we hoose to restrit this study mostly to noise-freesimulations, as we are interested in the physis of the system, rather thanonduting an atual simulation of a real laboratory experiment. On thisnote, we onsider the absene of noise in our alulations as a blessing, as itallows for lean interpretation of the physis of the system. In one partiularase, we will arry out simulations with noise.Generally speaking, onsidering the various quantum systems under in-vestigation in this study, the goal that we would like to ahieve in our exper-imental work is three-fold, and may be outlined as follows:1. A preliminary part of our work on eah quantum system is devotedto a large extent to an investigation of the performane of spei�derandomized Evolution Strategies, as well as parameterizations, withrespet to the given optimization task. As suggested in Setion 1.4.4,this would inlude the omma-strategy DES variants.2. After having identi�ed the routines whih perform best on our prob-lems, further work would typially onentrate on the physial interpre-tation of the obtained optimal solutions, when appliable to the systemunder study. In partiular, we will aim at larifying why ertain pulsestrutures perform better than other trial solutions. This will also beaompanied with investigation of pulse-intensity, �eld salability, andother de�ning features.3. Finally, we will be interested in applying misellaneous optimizationtehniques, at the level of deision making: multi-objetive optimiza-tion, and the appliation of nihing.Next, we provide tehnial details onerning the two lasses of experi-mental work onduted in this study: numerial simulations and laboratoryexperiments.6.3.1 Numerial SimulationsWe present here the numerial modeling of our laser pulse shaping frame-work, whih is in essene valid for all the numerial alulations onduted inthis work, unless spei�ed otherwise. The idea is to simulate the experimen-tal pulse shaping proess, in terms of ontrol de�nition, physial limitations,et.



6.3. Experimental Proedure 123As disussed earlier, in our alulations the ontrol is solely the phasefuntion φ(ω). It de�nes the phase at n frequenies {ωi}ni=1 that are equallydistributed aross the spetrum of the pulse. These n values {φ(ωi)}ni=1 arethe deision parameters to be optimally determined. Upon their alibrationthey are numerially interpolated into ñ = 214 points, using the spline()proedure [143℄, for the alulation of the eletri �eld in Eq. 6.29. The latteris implemented by means of the FFT() proedure [143℄.The numerial resolution is naturally underposed to a on�it with theexpeted optimization e�ieny. In order to ahieve a good trade-o� betweenthe two, i.e., keeping both resolution and optimization e�ieny as high aspossible, the value of n = 80 turned to be a good ompromise. The searhspae is therefore an 80-dimensional hyperube spanning a length of 2π ineah dimension.The spetral funtion A(ω) is taken to be a Gaussian, entered at 800nm,with a width hosen suh that the full-width-at-half-maximum (FWHM)length of the Fourier transform limited (FTL) pulse (obtained by setting
φ(ω) ≡ 0) is ∆τ ≈ 100fs.Most of the simulations were run with FORTRAN ode, as written andprovided by Prof. Mar Vrakking, of Amolf-FOM, Amsterdam5. This waslater ombined with a MATLAB version of the original ode, as implementedby the author. For the two-photon proesses reported in Chapter 7 we useda LabView simulator of Prineton University, oded by Jonathan Roslund.6.3.2 Laboratory ExperimentsThe laboratory experiments reported in this work were all onduted at theFrik Laboratory, Rabitz Group, Chemistry Department, Prineton Uni-versity6. The laser soure was a Ti:sapphire femtoseond system, with aTsunami osillator and a 1kHz 1.8mJ Spit�re ampli�er. A pulse was en-tered at ∼ 800nm, with a bandwidth of ∆λ ≈ 10nm, yielding ∆τ ≈ 100fspulse duration at FWHM. The employed SLM onsisted of 128 pixels (phase-only modulation, liquid-rystal), but the experiments typially used 64 pix-els, by oupling together pairs of adjaent pixels, unless spei�ed otherwise.All algorithms were oded in LabView.Referene Routine in the Lab: Geneti AlgorithmGeneti Algorithms (GAs) are the most ommon optimization routines inQC experiments in the vast majority of physis laboratories, likely due to5Dediated training was given by Mar Vrakking and Christian Siedshlag, and Ithank them both for that.6All experiments were onduted under the dediated supervision of JonathanRoslund of the Rabitz Group, whose support in running the experiments has been prie-less.



124 Chapter 6. Introdution to Quantum Controlhistorial reasons. As a referene to spei� derandomized ES that we applyin our experiments, we shall also report on the GA performane.The Traditional GA We use the traditional GA [22℄, with bitstring rep-resentation of l = 6 bit resolution per pixel. It employs a �xed populationof µ = 30 individuals. The mutation rate for a bit-�ip is pm = 0.005, andthe seletion mehanism keeps the �ttest o�spring, as well as the single bestindividual of the previous generation (elitism). It should be noted that theseparameters were olletively optimized to allow su�ient resolution so as toarrive at the highest quality solution with the fastest onvergene.



You should understand the physis, write down the orretequations, and let nature do the alulations.Peter Debye
Chapter 7Two Photon Proesses7.1 IntrodutionThe �eld of non-linear optis desribes optial phenomena whih are ob-served when high intensity light passes through media. The non-linearityis due to the interation between the light, typially a laser �eld, and a di-eletri media, whose �eld-indued polarization responds non-linearly to theinident eletri �eld.Given the temporal intensity of the eletri �eld, I(t), its non-linear signalof the kth order is modeled for k > 1 as:

Signal
(k)
NL ∝

∫ ∞

−∞
Ik(t)dt, (7.1)orresponding to the interation of k photos.The �eld of non-linear optis o�ers a variety of popular Quantum Con-trol appliations. Seond-order variants, whih orrespond to two-photonproesses, are partiularly attrative beause of their easy implementationin the laboratory, as well as their known mathematial formulation. Two-photon proesses an be utilized to explore experimental Quantum Controllandsapes, and also an form a realisti testbed for global optimization al-gorithms.This hapter is devoted to the formal de�nition of two-photon proesses,their mathematial desription, and to the appliation of optimization rou-tines to their signal-maximization problems in the laboratory.7.2 Seond Harmoni GenerationSeond harmoni generation (SHG) or frequeny doubling is a two-photonproess in whih an eletri �eld interats non-linearly with a material andgenerates an output photon with double the energy of two input photons.The total energy of the output light is proportional to the integrated squared125



126 Chapter 7. Two Photon Proessesintensity of the primary pulse, as expeted from a seond-order non-linearproess.The time-dependent pro�le of the laser �eld is exatly as given in Eq.6.29. The SHG signal is then de�ned by:
SHGt ≡ St =

∫ ∞

−∞
I(t)2 dt =

∫ ∞

−∞
|E(t)|4 dt, (7.2)i.e., integration over time of the intensity. SHG is a proess that turns out tobe a good test ase in the laboratory, and its investigation ontributes to theunderstanding of other proesses. This is beause the SHG is a measure ofthe pulse duration, and this property is useful as an auxiliary harateristi.From the theoretial point of view, the SHG is a simple test funtion, withsome interesting mathematial properties that will be fully derived here, butyet not an easy optimization task for global optimizers.7.2.1 Total SHGIn order to gain a better insight into the problem, we provide here the readerwith some of its mathematial properties. Espeially, we would like to derivethe equivalene between time and frequeny pitures. The following setionis mainly based on Braewell [142℄.De�nition 7.2.1. Given the spetral amplitude equipped with the omplexphases, E(ω) = A(ω) exp(iφ(ω)), onsider its autoorrelation (onvolution)funtion E2(ω):

E2(ω) = E(ω) ∗ E(ω) =

∫ ∞

−∞
E(Ω) · E(ω − Ω)dΩWe would like to show how this autoorrelation funtion in the frequenydomain is linked to the time domain:Theorem 7.2.2. The autoorrelation funtion of the spetral amplitude,

E2(ω), is proportional to the Fourier transform of the squared time-dependenteletri �eld, i.e.:
E2(ω) ∝

∫ ∞

−∞
Ẽ(t)2 exp (−iωt) dt (7.3)



7.2. Seond Harmoni Generation 127Proof.
E2(ω) =

∫ ∞

−∞
E(Ω) ·E(ω − Ω)dΩ =

=

∫ ∞

−∞

[

1

2π

∫ ∞

−∞
Ẽ(t) exp (−iΩt) dt

]

·
[

1

2π

∫ ∞

−∞
Ẽ(τ) exp (−i(ω − Ω)τ) dτ

]

dΩ =

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ẽ(t)Ẽ(τ) exp (−iΩ(t− τ)) · exp (−iωτ) dΩ dt dτ =

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
Ẽ(t)Ẽ(τ)δ(t − τ) exp (−iωτ) dt dτ =

=
1

2π

∫ ∞

−∞
Ẽ(t)Ẽ(t) exp (−iωt) dt =

=
1

2π

∫ ∞

−∞
Ẽ(t)2 exp (−iωt) dtwhere δ(x − x̃) is the Dira delta funtion.Theorem 7.2.3. (Planherel's Theorem) Given f(x), whih has theFourier transform F (s), the integral over the squared modulus of f(x) isequal to the integral over the squared modulus of its spetrum F (s):

∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|F (s)|2dsSee [142℄. Thus, we an onlude from Theorems 7.2.2 and 7.2.3 that

∫ ∞

−∞
|E2(ω)|2dω =

∫ ∞

−∞
|E(t)|4dtand, equivalently, in terms of the intensities

St =

∫ ∞

−∞
I2(ω)dω =

∫ ∞

−∞
I(t)2dt (7.4)where I2(ω) = |E2(ω)|2.Global MaximumTheorem 7.2.4. The Total-SHG signal is maximized by the phase being anylinear funtion of frequeny, and in partiular by the onstant phase:

argmaxφ(ω) {St (φ (ω))} ≡ a · ω + b
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Figure 7.1: An illustration of the frequeny doubling e�et in Seond Har-moni Generation. Constrution of E2 (ω) out of E (ω).An important remark should be made onerning the existene of a singleoptimal solution for the SHG maximization problem: Due to the use ofseond-order perturbation theory, the onstant phase is a point in theontrol spae (the generalization to a linear phase stems from symmetry),i.e., the level-set ollapses into a single point. In higher-order orretions forSHG the maximally attained yield an be obtained by various other phasepro�les.Figure 7.1 provides the reader with an illustration for the so-alled fre-queny doubling e�et - the ontribution of two phase points around the en-tral frequeny ω0 at E (ω), φ (ω0 + ω1) and φ (ω0 + ω2), to the onstrutionof Ẽ (ω) with φ (2 · ω0 + ω1 + ω2). Note the shift in the entral frequeny,and the saling of the Gaussian.7.2.2 Filtered SHGWe onsider another seond-order quantum optial system, whih ould beonsidered as a �ltered ase of the SHG system. It orresponds to a two pho-ton absorption (TPA) proess, whose model desribes, within the limits ofseond-order time-dependent perturbation theory, the probability of makinga transition from a ground state |g〉 to an exited state |e〉, upon the ati-vation of the laser �eld. Thus, a spei� transition frequeny is onsideredhere, ωeg, whih pratially �lters the signal,
SHGf ≡ Sf (ωeg) =

∫ ∞

−∞
δ (ωeg − ω) I2(ω)dω,by means of the Dira delta funtion δ (Ω− Ω′). It expliitly reads

Sf (ωeg) =

∣

∣

∣

∣

∫ ∞

−∞
E(ω)E (ωeg − ω) dω

∣

∣

∣

∣

2 (7.5)
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Figure 7.2: A spetral illustration for the total-SHG (left) versus the �ltered-SHG (right) signals. Figure ourtesy of Jonathan Roslund.Global MaximumTheorem 7.2.5. The �ltered-SHG signal is maximized by the phase beingany odd funtion of frequeny antisymmetri about ωeg

2 , i.e., spetral phasesof the form φ(
ωeg

2 − ω) = −φ(
ωeg

2 + ω).See [144, 145℄. Figure 7.2 provides an illustrative omparison betweenthe two SHG variants onsidered here.Problem Di�ulty: Numerial AssessmentIn order to assess the optimization di�ulty of the Seond Harmoni Gen-eration maximization problems, we onsidered numerial simulations of thetwo SHG problem variants and onduted the following simple statistialtest. We onsidered phase funtions pixelized by n = 64 funtion values,whih are randomly initialized in the interval [0, 2π]64. We then graduallytransformed the given random phases into a zero-phase in two di�erent rou-tines: (1) Setting funtion values to zero when onsistently indexing fromright to left, or (2) Setting funtion values to zero in random permutationof indies, with no repetition. Both routines eventually obtain zero-phases,whih attain the maximal yield of 1 for both SHG problem variants.Figure 7.3 presents typial runs for the two routines when applied to bothSHG problem variants. It is observed in these plots that approximately 50%of the funtion values must be set to zero in order to enhane the yieldvalue, for all ases. One this threshold is exeeded, the yield value inreasesonsistently until it reahes the value of 1. The atual pro�les of routine(1) versus routine (2) di�er, for both SHG variants. More variables arerequired to be set to zero in the random indexing routine, in omparison to
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Figure 7.3: Transforming randomly-initialized phases into a zero-phase,pixel-by-pixel, either by (1) Consistently indexing the phase funtion fromright to left, or by (2) Randomly seleting phase funtion indies, withoutrepetition. The attained yield per index-step is reorded for eah test-ase.Typial runs are presented for the two routines applied to the SHG problemvariants. Left: Filtered-SHG system; Right: Total-SHG system.the onsistent indexing. This is due to the shape of the weighting funtion(i.e., a Gaussian), whih limits the ontribution to the yield value from pixelswhih are not in the proximity of the entral frequeny.This statistial test reveals that the SHG problems under investigationare non-separable upon following the formal de�nition.7.3 Numerial SimulationsWe present here results of the four derandomized ES omma-variants whenapplied to numerial simulations of seond-order photon proesses: The max-imization of the Total-SHG as well as the Filtered-SHG signals.7.3.1 Preliminary ES Failure: Strethed PhasesWhen applied to both SHG simulations, the derandomized ES variants suf-fered from pre-mature onvergene to sub-optimal solutions of low yield.Upon examination of the attained optimized phases in the deision spae,they were always observed to be highly steep linear phases. We o�er thefollowing explanation for that.The ES is not subjet to any restritions onerning its deision param-eters, in partiular in the ontext of the periodi nature of the phase. Itseems that an unrestrited searh, as employed by the ES variants in hand,is likely to streth the andidate phases, with no way to reverse it. It su�ersaordingly from onvergene to highly steep linear phases with sub-optimal



7.3. Numerial Simulations 131Table 7.1: Derandomized Evolution Strategies optimizing the Total-SHGsimulation: Mean and standard-deviation of attained yield over 100 runs forthe three proedures � unrestrited, wrapped and bounded.Algorithm Unrestrited Wrapped BoundedDR1 0.208 ± 0.072 0.873 ± 0.187 0.574 ± 0.189DR2 0.181 ± 0.064 0.967 ± 0.019 0.725 ± 0.185DR3 0.457 ± 0.198 0.718 ± 0.274 0.529 ± 0.278CMA 0.581 ± 0.136 1± 0 0.997 ± 0.002Table 7.2: Derandomized Evolution Strategies optimizing the Filtered-SHGsimulation: Mean and standard-deviation of attained yield over 100 runs forthe three proedures � unrestrited, wrapped and bounded.Algorithm Unrestrited Wrapped BoundedDR1 0.257 ± 0.087 0.666 ± 0.247 0.713 ± 0.152DR2 0.248 ± 0.091 0.804 ± 0.195 0.908 ± 0.125DR3 0.539 ± 0.162 0.762 ± 0.209 0.554 ± 0.173CMA 0.487 ± 0.134 0.990 ± 0.008 0.964 ± 0.052yield values, as outlined earlier in Setion 6.2.2. By implementing periodiboundary onditions into the ES algorithms, by means of oupling the wrap-ping operator (Eq. 6.35) to the mutation operator, this problem was solved.This proedure will be referred to as the wrapped proedure.As a third proedure, we also onsidered the appliation of a boundaryoperator that �xes an exeeded value to the lower or upper bounds. Given
ε > 0, it reads:

φi = 2π + ε −→ φ̃i := 2π

φj = −ε −→ φ̃j := 0
(7.6)It is referred to as the bounded proedure.7.3.2 Numerial ObservationTables 7.1 and 7.2 summarize the numerial results of the appliation of thefour derandomized ES omma-variants to the total-SHG and �ltered-SHGsimulation problems, respetively, subjet to the three spei�ed proedures,with n = 64 deision parameters. There are two lear observations fromthe given alulations:1. The wrapping operator seems to be an essential omponent for the un-restrited ES optimization, and should be implemented into ES when



132 Chapter 7. Two Photon Proessesoptimizing "phase" variables on a QC landsapes. This is an expetedonlusion, given the nature of the searh spae. However, it is inter-esting to note the relatively high standard deviations for the resultsobtained subjet to wrapping for the �ltered-SHG ase for the �rstthree DES variants. Also, it is observed that the bounded approahworks better for the DR2 on the �ltered-SHG landsape.2. The CMA outperformed the other algorithms on these two landsapes,with onsistent winning performane. The DR2 was seond-best, andit performed in a highly satisfatory manner. We thus hold two DESvariants, eah representing �rst- or seond-order information approah,respetively, whih performed well on these QC landsapes.Intermediate DisussionWe found that employing the ES variants with default settings unrestri-tively on the given QC landsapes resulted in pre-mature onvergene tosub-optimal phases with highly sloped linear pro�les. We analyzed this ef-fet, and introdued the wrapping operator into the ES framework. Thelatter solved the observed problem.7.4 Laboratory ExperimentsWe report here on laboratory experiments where we aimed at optimizing thetwo quantum ontrol systems desribed in Setion 7.2. Due to the tremen-dous e�ort and time whih are required for a reliable experiment, we had nohoie but to restrit ourselves to a limited number of experiments as wellas optimization routines.We hose to employ three optimization routines in the laboratory:
• DR2: First-order DES.
• CMA: Seond-order DES.
• GA: Laboratory referene.Conerning the tehnial details, for total-SHG signal, St, the ampli�edpulses are delivered to a 100 µm type-I BBO rystal, and the time integratedSHG signal is reorded with a photodiode and boxar integrator. For the�ltered-SHG signal, Sf , unampli�ed seed pulses are foused onto a 100 µmtype-I BBO rystal, and the resultant up-onverted light is analyzed with aspetrometer. Regarding the atual yield values reorded by us, we hooseto normalize the FTL signal as yield 1.0 for both systems.It should be noted that the SHG optimization problems have been widelyinvestigated at several levels, inluding at laboratory experiments [146℄,where it was shown to have a highly omplex landsape.



7.4. Laboratory Experiments 133Table 7.3: Laboratory SHG Optimization: Performane Evaluation. Theexperimental results of the two SHG systems, averaged over 10 experiments.The �nal yield (averaged over the last 50 iterations) and the number ofevaluations required to ross a yield threshold of 0.90 are onsidered here.Routine Filtered-SHG Total-SHGAvg. Yield 0.9 Eval Avg. Yield 0.9 EvalGA 0.95 4665 0.95 5557DR2 0.93 2159 0.72 NACMA 0.95 841 0.98 766ES Failure Revisited: Strethed Phases When applied to the exper-imental setup, the derandomized ES variants initially su�ered from pre-mature onvergene to sub-optimal solutions of yield ≈ 0.75, where themaximum value is 1.0. Upon examination of the attained optimized phasesin the deision spae, the strething e�et as reported in Setion 7.3.1 wasobserved. Thus, we used the wrapping operator in the two DES variantsin all the reported experiments. The GA, on the other hand, did not typi-ally loate highly-steep linear phases sine the [0, 2π] bounds are impliitlyimplemented by means of the phenotypi mapping (see, e.g., [22℄).7.4.1 Performane EvaluationsTable 7.3 presents the results of the two reported systems, averaged over
10 experiments. We onsider the �nal yield (averaged over the last 50 itera-tions), as well as the number of evaluations required to ross a yield thresholdof 0.90, as the performane riteria per experiment. Figure 7.4 presents aver-aging of the runs, with attained yield as a funtion of the required number offuntion evaluations. Note that this averaging proedure takes into aountall 10 runs, whereas the onvergene data shown in Table 7.3 onsiders onlythe relevant runs that exeeded the 0.90 yield threshold. Figure 7.5 presentshistograms for the di�erent algorithms with �nal yield versus the number ofruns.As re�eted from the experimental results, the CMA performed best onthe given experimental systems, both in terms of �nal yield as well as on-vergene speed. We would like to emphasize the extraordinary boost of on-vergene speed provided by the CMA relative to the GA, whih is signi�antin the laboratory. Moreover, the CMA has a sharp and rapid onvergenepro�le, in ontrast to the ine�ient hill-limbing apability of the GA. Thispro�le is easy to identify as there is no ambiguity about onvergene, andthus it is another attrative feature for the laboratory user.Next, we disuss the experimental results and the algorithmi behavior.
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Figure 7.4: Averaged runs of the algorithms over 10 runs. Left: Filtered-SHGsystem; Right: Total-SHG system.

Figure 7.5: Suess-rate (yield) histograms. Left: Filtered-SHG system;Right: Total-SHG system.Diversity of SolutionsAs mentioned earlier in Setion 7.2.2, the �ltered SHG system possesses afamily of nontrivial phases that orrespond to global maxima. Interestingly,eah run for the �ltered SHG ase onverged to a distint antisymmetriphase. This olletion of di�erent solutions provided a pratial perspetiveonerning the rihness of QC landsapes and their underlying level sets.Sensitivity to NoiseThe CMA-ES and the GA performed in a satisfatory manner on the givenontrol problems and did not seem to be signi�antly impaired by the ex-istene of noise in the experimental system. The DR2, on the other hand,su�ered from high-sensitivity to the initial step-size. Its performane was dis-appointing, in partiular in omparison to noise-free alulations that were



7.4. Laboratory Experiments 135reported in the past [147, 148℄. A proposed explanation for this behaviorould be the lak of reombination, whih has been shown to be a ruial ESomponent in noisy environments (see, e.g., [149℄).Covariane LearningReording the CMA data during the optimizations allows an analysis ofthe evolutionary searh proess. Upon examination of the data, it is foundthat the ovariane matrix remains diagonal during the searh (Eq. 1.41), orequivalently, the CMA does not utilize its seond-order mehanism (i.e., ro-tations) when limbing up the landsape. This is not a surprising result, butrather an important piee of experimental evidene toward the orroborationof the OCT landsape analysis as outlined in Corollary 6.1.2.Figure 7.6 presents a typial CMA run for the optimization of total-SHGin the laboratory and shows the yield and step-size upon funtion evaluations.Figure 7.7 presents the square-roots of the ovariane matrix eigenvalues asa funtion of the number of experiments as well as the Eulidean distanesbetween the best phase variables of suessive iterations, i.e.,
d(g+1) = ‖~φ(g+1)

best (ω)− ~φ(g)
best(ω)‖, (7.7)where ~φbest(ω) is as in Eq. 6.33.We onduted an equivalent test in a noise-free simulator for the total-SHG problem1. Figure 7.8 presents a typial CMA run on the simulator. Theonvergene pro�le on the simulator is observed to be similar to the labo-ratory experiment, i.e., rapid limbing-up of the landsape without utilizingthe seond-order mehanism. However, upon approahing the top of thelandsape, one of the ovariane matrix eigenvalues dramatially grows, asshown in Figure 7.9. This behavior was observed to be typial in all runs.The orresponding eigenvetor is always a �at phase, suggesting that theCMA disovers the invariane of a onstant phase on the total-SHG signal.The phase Eulidean trajetories are plotted as well in Figure 7.9, showingsome minor ativity during this growth stage, orresponding to super-�netuning of the spetral phase. The yield values, nonetheless, do not seem tobe further improved during this proess, at least in the preision available.In pratie, the parameter adaptation during this �ne-tuning stage produes�tness variations below that of the system noise in the laboratory, whihexplains its absene in laboratory optimizations.Simulations: Zeroth-Order CMAGiven the experimental observation reported in the previous setion, wewere interested in testing the CMA while removing its ovariane learning1The simulator was implemented in LabView with the Lab2 pakage.
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Figure 7.6: CMA optimization of the Total-SHG in the laboratory. Yield(solid line, left axis) and step-size (dashed line, right log-saled axis), versusfuntion evaluations.

Figure 7.7: CMA optimization of the Total-SHG in the laboratory. Square-root of the 64 eigenvalues of the ovariane matrix (solid thin lines, left axis),and phase Eulidean trajetories (bold points, right log-saled axis), versusfuntion evaluations. Missing trajetory points orrespond to zero values.omponents. In essene, we leave the CMA only with the step-size as astrategy parameter, and �x the ovariane matrix as an identity matrix.This is a zeroth-order ES with normal mutations subjet to hyperspheres asthe equidensity probability surfaes. In order to assess the zeroth-order CMAbehavior on the given QC systems, we onduted additional simulations withtwo variants of the algorithm:
• (µW , λ)-CMA with C = I.
• (1, λ)-CMA with C = I.The simulations were onduted for both systems - total-SHG as well as�ltered-SHG - both with a noise-free simulator and a simulator with noise.
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Figure 7.8: CMA optimization of the Total-SHG on a noise-free simulator.Yield (solid line, left axis) and step-size (dashed line, right log-saled axis),versus funtion evaluations.

Figure 7.9: CMA optimization of the Total-SHG on a noise-free simula-tor. Square-root of the 64 eigenvalues of the ovariane matrix (solid thinlines, left log-saled axis), and phase Eulidean trajetories (bold points,right log-saled axis), versus funtion evaluations. Missing trajetory pointsorrespond to zero values. The single exploding eigenvalue an easily beidenti�ed in this sale.The results of the simulations show that the CMA performane is nothampered at all on both systems when removing its ovariane learning om-ponents: the (µW , λ)-CMA with C = I performs as well as the original CMA,in terms of �nal attained yield and onvergene speed. This observation isvalid for noise-free as well as for noisy simulations. However, when theweighted reombination operator was removed, the (1, λ)-CMA with C = Idid not onverge, nor did it even limb-up from the initial yield at the bottomof the landsape. We thus onlude that it is possible to optimize the givensimulated QC landsapes by a zeroth-order ES, as long as the weighted-reombination operator is kept.



138 Chapter 7. Two Photon Proesses7.4.2 DisussionWe presented a survey of derandomized Evolution Strategies and a GenetiAlgorithm to a set of Quantum Control systems in the laboratory. As faras we know, this was one of the �rst appliations of derandomized ES toexperimental QC in general, and the �rst study to ondut a omparisonbetween ES to GA as well as to explore the evolutionary path of the CMA,in partiular. We would like to mention, however, two studies [150, 151℄ thatapplied Evolution Strategies to OCE, and explored a spei� QC systemboth in experiments and simulations. The latter studies onluded that theemployed Evolution Strategies were promising optimization routines.While the QC systems examined here possess easily understood globaloptima, the searh is onduted over a highly omplex, urvilinear ontrollandsape, whih provides a good testbed for optimization algorithms. Fromthe pratial point of view, these systems are relatively easy for implemen-tation in the laboratory.We found that employing the ES variants with default settings unre-stritively on the given QC landsapes resulted in pre-mature onvergeneto sub-optimal phases with highly sloped linear pro�les. We analyzed thise�et, and introdued the wrapping operator into the ES framework. Thelatter solved the observed problem.The CMA-ES outperformed the other algorithms in terms of �nal yieldas well as in onvergene speed. It introdued a signi�ant inrease in on-vergene speed to the typial performane of the GA in the laboratory andis a promising tool for future laboratory experiments. While analyzing itsbehavior, it was experimentally on�rmed that its seond-order mehanismwas not utilized when limbing-up the landsape. This may be onsideredas an experimental orroboration of the OCT landsape analysis.We also onduted noise-free simulations of the CMA-ES applied to thesystems. The latter alulations revealed interesting behavior of the ovari-ane matrix, upon approahing the top of the landsape. A single eigenvalueonsistently explodes with a orresponding eigenvetor of a �at phase. Wesuggest that this is due to the fat that the CMA suessfully learned theinvariane of a onstant phase in these problems. Furthermore, we onsid-ered zeroth-order versions of the CMA in simulations, where the ovarianelearning omponent was removed. The latter performed extremely well, aslong as the weighted-reombination operator was kept.



It is the theory that deides what an be observed.Albert Einstein
Chapter 8The Rotational FrameworkThe main Quantum Control appliation of this study is dynami moleularalignment, whih will be presented in the next hapter. The urrent hap-ter onsiders the rotational framework of moleules, as a preparation forthe alignment appliation. We desribe here the formal numerial modelingbasis, and present alulations for the optimization of population transfer.Finally, we apply our nihing algorithms to the population transfer problem.8.1 Numerial ModelingWe onsider here Hamiltonians that onsist of a moleular part H0, whilethe interation with the semi-lassial laser �eld subjet to the dipole ap-proximation is expressed by V :

H (t) = H0 − V
V = µE(t) cos(ωt)

(8.1)The envelope of the laser �eld, whih ompletely determines the dynamis,is exatly as introdued in Eq. 6.29:
E(t) = R

{
∫ ∞

−∞
A(ω) exp(iφ(ω)) exp(iωt) dω

}8.1.1 Preliminary: Two Eletroni States SystemsWe start by outlining the fundamental details of a two-eletroni-state sys-tem. This setion is mainly based on [152℄.Consider a system with two eletroni states: The ground state |g〉, andan o�-resonant exited state |e〉 with energy ~ω0. Its wavefuntion may bedesribed as follows:
|Ψ(t)〉 = αg(t) |g〉+ αe(t) exp(−iω0t) |e〉 (8.2)139



140 Chapter 8. The Rotational FrameworkUpon applying the Shrödinger equation,
i~
∂ |Ψ(t)〉
∂t

= H |Ψ(t)〉 , (8.3)by using a Hamiltonian of the form of Eq. 8.1, two oupled di�erential equa-tions are obtained:
i~α̇g(t) = − exp(−iωt)E(t) 〈g|µ |e〉αe(t)
i~α̇e(t) = − exp(iωt)E(t) 〈e|µ |g〉αg(t)− ~∆αe(t)

(8.4)where ∆ = ω − ω0 is the so-alled detuning.In order to keep the desription as general as possible, the peak �eldstrength is not �xed expliitly; Instead, we set the peak Rabi frequeny
Ω(t) for the transition between the eletroni states |g〉 and |e〉, whih isproportional to the produt of peak �eld strength and the oupling matrixelement between |g〉 and |e〉:

Ω(t) =
〈g|µ |e〉 Ẽ(t)

2~
, (8.5)where we used the omplex form of the eletri �eld, Ẽ(t) (see Eq. 6.28).Also, it is onvenient to note:

Ωge =
〈g|µ |e〉

2~
(8.6)The di�erential equations for the expansion oe�ients of the wavefuntionmay be written now in a matrix notation as follows:

i

(

α̇g(t)
α̇e(t)

)

= −
(

0 Ω(t)
Ω∗(t) ∆

)(

αg(t)
αe(t)

) (8.7)The Rabi frequeny thus determines the interation strength in our framework.8.1.2 Rotational LevelsWe proeed by desribing the rotational framework of the moleules. Thissetion is mainly based on [153℄. We onsider a model of diatomi linearmoleules that populate rotational levels in a given temperature T . Themoleules are haraterized by their rotational quantum number, J , as wellas by the projetion of the angular momentum on the laser polarization axis,
M . We take the moleule to be a rigid rotor, whih allows a desription ofits wavefuntion solely in terms of the rotational eigenstates |JKM〉, where
K = 0 for a diatomi moleule. We take into aount the two eletronistates, as presented earlier: Ground state |g〉 and o�-resonant exited state
|e〉. The wavefuntion, for a given M , is thus expanded as follows:

|ΨM(t)〉 =

Nrot
∑

J=M

α
(g)
JM (t) |gJM〉+ exp(−iω0t)α

(e)
JM (t) |eJM〉 (8.8)



8.2. Population Transfer: Optimization 141The moleular omponent of the Hamiltonian an be divided into two parts,
H0 = Helec +Hrot, (8.9)that orrespond to the following eigenstates:

Helec |gJM〉 = 0
Helec |eJM〉 = ~ω0 |eJM〉 (8.10)

Hrot |gJM〉 = BgJ(J + 1) |gJM〉
Hrot |eJM〉 = BeJ(J + 1) |eJM〉 (8.11)with Bg and Be as the rotational onstants of the moleule.The time dependene desription of the moleular wavefuntion is givenby:

i~
∂ |ΨM (t)〉

∂t
= H |ΨM (t)〉 (8.12)The laser �eld indues transitions between the rotational states whih, inthe o�-resonant ase, our via subsequent Raman proesses. The transitionsbetween |g〉 and |e〉 are assumed to proeed via the seletion rules of thequantum numbers ∆J = ±1,∆M = 0.The derivation onludes with the following di�erential equations for theexpansion oe�ients of the wavefuntion:

α̇
(g)
J (t) = − i

~
BgJ(J + 1)α

(g)
J (t) + iΩ(t) 〈J | cos θ |J + 1〉α(e)

J+1(t)+

+iΩ(t) 〈J | cos θ |J − 1〉α(e)
J−1(t)

α̇
(e)
J (t) =

[

i∆ − i

~
BeJ(J + 1)

]

α
(e)
J (t) + iΩ∗(t) 〈J | cos θ |J + 1〉α(g)

J+1(t)+

+iΩ∗(t) 〈J | cos θ |J − 1〉α(g)
J−1(t) (8.13)where

〈J | cos θ |J + 1〉 =

√

(J + 1)2

(2J + 3) (2J + 1)

〈J | cos θ |J − 1〉 =

√

J2

(2J + 1) (2J − 1)

(8.14)
8.2 Population Transfer: OptimizationWe onsider here the problem of population transfer within the rotationalframework as an optimization problem, subjet to the numerial modelingfor diatomi moleules presented earlier. The objetive to be met is de�nedas the probability to populate a spei� target rotational level, given theinitial ground state:

J := Pi−→f , |i〉 = |gJ = 0〉 , |f〉 = |gJtarget〉 , (8.15)



142 Chapter 8. The Rotational Frameworkwhere possibly Jtarget ∈ {0, 2, 4, 6, 8, . . . ,Nrot}. In our alulations, the yieldsubjet to maximization is simply ∣∣
∣
α

(g)
Jtarget

(T )
∣

∣

∣

2, in terms of the notationintrodued earlier. Also, by de�nition, M = 0.We onsider Nrot = 20, where this expansion was on�rmed to give on-verged results in the present alulations. The moleule under investigationhas a rotational onstant of Brot = Bg = Be = 5cm−1.Solving the de�ning di�erential equations for the population transferproblem (Eq. 8.13) is obviously omputationally expensive. In pratie, givenan eletri �eld, a single evaluation of the resulting wavepaket has the dura-tion of approximately 5s on a single P4-HT 2.6GHz proessor. We are thusinterested in optimization proedures with as minimal funtion evaluationsas possible.8.2.1 Experimental ProedureThere are several de�ning parameters in the present alulations. Some ofthem are ritial, as they pose diret onstraints on the quantum systemat hand, and pratially determine its ontrollability. In our model, suhparameters are the peak Rabi frequeny, whih plays the equivalent roleof the laser intensity, as well as the pulse duration. Setting these two pa-rameters de�nes the simulated physial system. Given the target rotationallevel, it is then possible to aim at steering the system toward it. Thus, wehoose to onsider the population transfer as a funtion of these two de�n-ing parameters, where the fous will be on spei� values that re�et beststate-of-the-art laboratory experiments.From the algorithmi perspetive, we hoose to restrit our alulations tothe DR2 and the CMA algorithms, whih performed best on the Two-PhotonProess problems. They both employ small populations, and onsider �rst-order and seond-order information, respetively.Preliminary Runs Preliminary alulations revealed a lear piture, whihould have been predited by intuition1. These preliminary alulations wereonsisted of 10 runs per algorithm on Jtarget = {0, 2, 4, 6, 8} with the follow-ing peak Rabi frequenies:
Ωge = {40, 60, 80, . . . , 160, 180} × 1012s−1.Given a Rabi frequeny of Ωge = 160 × 1012s−1, the quantum system ouldeasily be steered into perfet ontrol for low J values (J = {0, 2, 4}). Thistask beame infeasible for higher J values with the given Rabi frequeny.However, when the latter was inreased, e.g., Ωge = 180×1012s−1, it beame1As muh as intuition exists for QuantumMehanis; "My batting average on intuitionis lose to zero in quantum ontrol, and I wear that zero average proudly" (Hershel Rabitz,private ommuniations).



8.2. Population Transfer: Optimization 143feasible. Hene, there is a trend of ontrollability as a funtion of the laserintensity, espeially for the higher rotational levels. As far as the algorithmiperformane was onerned, the DR2 and the CMA performed equally wellon the given systems. Most importantly, there was never a situation wherethe DR2 obtained ontrollability on a given system on whih the CMA didnot, nor vie versa.We onsider the ase of a target rotational level of J = 4 as an inter-esting ase-study. This is due to the fat that it allows perfet ontrol at
Ωge = 160 × 1012s−1, but yet it is a hallenging task for the optimizationroutines. Also, the e�et of dereasing the peak Rabi frequeny while losingontrollability an be observed relatively easily.8.2.2 Numerial Observation: J = 0 −→ J = 4We applied the DR2 algorithm to the optimization of the population transferproblem from J = 0 to J = 4. These optimizations were performed for threevalues of the peak Rabi frequeny:

Ωge =
{

80× 1012s−1, 120× 1012s−1, 160× 1012s−1
}

.All alulations were arried out with 80 runs, limited to 10, 000 fun-tion evaluations per run. These alulations obtained qualitatively di�er-ent results for the three intensities onsidered. For Ωge = 80 × 1012s−1the optimizations were unable to aomplish the transfer from J = 0 to
J = 4 with unit e�ieny. The best e�ieny obtained was ≈ 32%. For
Ωge = 120 × 1012s−1 and for Ωge = 160 × 1012s−1 the transfer e�ienyapproahed 100% in most of the alulations.Aiming at omparing the results of individual optimization runs, we de-�ne a orrelation oe�ient that ompares pulse-shapes attained in two runs
i and j, by means of their �eld intensities:

ci,j =
max∆t {

∑

t Ii(t)Ij(t+ ∆t)}
[
√

∑

t I
2
i (t)

√

∑

t I
2
j (t)

] (8.16)where Ii(t) and Ij(t) are the �eld intensities of the pulses obtained in runs
i and j, respetively. Taking the maximum as a funtion of ∆t is due tothe fat that pulse-shapes attained by the optimization may be shifted withrespet to eah other. The sums are over the disrete time steps, as ondutedin the numerial alulation. Eq. 8.16 thus yields ci,i = 1, and ci,j = 0 ifpulses i and j do not overlap at all.Case 1: Ωge = 80×1012s−1 Figure A.4 presents the orrelation oe�ientfor the 80 optimization runs of the Ωge = 80 × 1012s−1 test-ase. The runsare sorted based on their suess-rate (see top panel in the plot). From Fig-ure A.4 we onlude that all solutions that approah the maximum observed



144 Chapter 8. The Rotational Frameworkpopulation are highly orrelated. Upon examination of the atual alula-tions, it is observed that all of these solutions are very lose to a single FTLpulse. Deviations from the FTL pulse do not only lead to a drop in theorrelation oe�ient, but also in the population transfer yield.Case 2: Ωge = 120 × 1012s−1 In Figure A.5 the orrelation oe�ientis plotted for the 80 optimization runs that were performed for the Ωge =
120×1012s−1 test-ase. Here, the laser pulse energy was su�ient to transferpopulation from J = 0 to J = 4 with near-unit e�ieny. The best solutions,whih have a population transfer e�ieny of 99.982% and 99.98%, were onlyweakly orrelated to eah other, and were only weakly orrelated to most ofthe other solutions. Spei�ally, there were only 9 solutions among the set of
80 that share a orrelation oe�ient larger than 0.95 with the best solution(indexed as 1). Many of the remaining solutions are strongly orrelated withthe 3rd-best solution, whih has a population transfer yield of 99.975%: Asmany as 41 solutions shared a orrelation oe�ient larger than 0.95 withthat solution (indexed as 3). While the three good solutions 1, 2, and 3 arerather di�erent from eah other, they ontain most of the dominant featuresof the identi�ed optimized solutions.Solutions 1-3 are presented in Figure 8.1. Despite their di�erene hara-teristis, all three solutions in Figure 8.1 are dominated by a series of peakswith a separation of 4.79 × 10−13s. This orresponds to the beating periodof a oherent superposition of J = 2 and J = 4 (∆E = 14B). Additionalgood solutions likely exist, possibly ontinuously onneted on a ommonlevel set, and further speial numerial methods are needed to explore thispossibility, suh as the D-MORPH algorithm (Setion 6.1.3).Case 3: Ωge = 160×1012s−1 Figure A.6 presents the orrelation oe�ientfor 80 optimization runs of the Ωge = 160 × 1012s−1 test-ase. While thedegree of population transfer is very high in almost all the runs at this inten-sity, the orrelation between the various solutions is very limited. Clearly, alarge number of solutions that transfer the population with unit e�ieny o-exist, with very little ommonality between them. Indeed, inspetion of theatual pulse shapes obtained in these runs reveals highly ompliated pulses,with few regular features, and an absene of the peak arising from oherenebetween J = 2 and J = 4 in the Fourier transform power spetrum.8.2.3 Intermediate DisussionUpon inreasing the intensity from Ωge = 80×1012s−1 to Ωge = 160×1012s−1we �nd that population transfer is aomplished with an ever inreasingnumber of distinguishable solutions.The results presented here an be viewed as additional experimental or-roboration to the results outlined in Corollary 6.1.2, where it was onluded
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Figure 8.1: Comparison of the 3 best-performing pulse shapes that wereobtained in 80 runs of the DR2 for the population transfer problem of J =
0 −→ J = 4 at Ωge = 120× 1012s−1. All solutions onsist of trains of pulseswith a spaing of 4.79 × 10−13s, whih orresponds to the beating periodbetween J = 2 and J = 4.



146 Chapter 8. The Rotational Frameworkthat ontrollable quantum systems with no onstraints plaed on the on-trols only have extrema that orrespond to perfet ontrol, or to no ontrolat all; Additional analysis revealed the fundamental nature of ontrol levelsets (see Corollary 6.1.3) at the absolute extrema and at sub-optimal ontrolyields.A striking aspet of the results is the evidene that the numberof independent solutions produed by an optimization seems toritially depend on the di�ulty of the problem. In the urrentpopulation transfer alulations we observed that at low intensity,where reahing the target is a hard problem with less than perfetyield, the trials invariably onverge onto one and the same solu-tion, whereas at higher intensity, where this represents an easierproblem, a wide variety of solutions are enountered.8.3 Appliation of NihingMotivation: Landsape Rihness The numerial observation of theprevious setion, as summarized in the intermediate disussion, provides uswith the strong motivation to apply nihing to the problem. The revealedrihness of the landsape, as predited by OCT theorems but assessed hereon our onstrained OCE/OCT-ombined landsape, is onsidered by us as aweloming invitation for the nihing framework.8.3.1 Preliminary: Distane MeasureUpon applying nihing to Quantum Control landsapes, we are required tode�ne an appropriate distane metri. Although Eq. 8.16 already providesus with a possible diversity measure, we would like to selet a distane metriwhih is as lose as possible to the deision parameters, i.e., the ontrol phasespae. We shall then apply Eq. 8.16 for assessing the diversity of the attainedsolutions.When onsidering the deision frequeny spae, one should keep in mindthat the attained �eld alulations are invariant under the following trans-formations:
• φ̃(ω) = φ(ω) + φ0: This would add a multipliation onstant after theFourier transform is alulated.
• φ̃(ω) = φ(ω) + c · ω: This would simply shift the entire pulse withrespet to the time origin and therefore has no observable e�et.These invariane properties must be taken into aount when de�ning adistane measure between two individuals in the deision spae, φi(ω) and

φj(ω), as it is lear that using the straightforward approah of the Eulideandistane would not aomplish the desired goal: Due to the fat that φ(ω)



8.3. Appliation of Nihing 147is invariant under the spei�ed transformations, alulating the distane be-tween two feasible solutions, φi(ω) and φj(ω), would not guarantee that thederived pulse-shapes, Ii(t) and Ij(t), respetively, would have di�erent pro-�les. Thus, a new distane measure that would remove this degeneray ismuh needed here.Our proposed solution is to apply the distane metri in the seond-derivative spae of φ(ω), where the invariane properties vanish. Expli-itly, given that the disretization is to n funtion values, the distane between
φi(ω), φj(ω) is de�ned as follows:

di,j =

√

√

√

√

n
∑

k=1

((

∂2φi(ω)

∂ω2

)

k

−
(

∂2φj(ω)

∂ω2

)

k

)2 (8.17)8.3.2 Numerial ObservationWe onsider here three nihing strategies:1. The (1, λ)-DR2 - as a representative of �rst-order information ap-proah.2. The (1, λ)-CMA - as a representative of seond-order information ap-proah.3. The (1 + λ)-CMA - as a representative of elitist strategies.We ondut 10 runs per method, searhing for q = 3 nihes, subjet tophase-funtion parameterization of n = 80. Eah run was limited to 10, 000funtion evaluations per nihe.The results of our alulations are disussed at several levels.Nihe-RadiusNumerially, the derivative is simply implemented by means of the MATLABommand diff. Thus, after the double-appliation of diff to the originalphase-vetor of dimension n = 80, the modi�ed vetor ~y is redued to di-mension n∗ = n− 2 = 78. Given the original upper and lower bound valuesof the deision parameters,
xk,min = 0, xk,max = +2π k = 1..80,the �rst appliation of diff will make new bound values of

x̃k,min = −2π, x̃k,max = +2π k = 1..79,and the seond appliation will make it
yk,min = −4π, yk,max = +4π k = 1..78.



148 Chapter 8. The Rotational FrameworkTable 8.1: Three nihes obtained in 10 runs � averaged yield values (inparentheses - best value attained) � for the three employed nihing strategies.Ranked-Nihes DR2 CMA CMA+Best nihe 0.9999 (0.9999) 0.9892 (0.9923) 0.9992 (0.9997)

2nd-best nihe 0.9745 (0.9910) 0.7391 (0.9797) 0.9982 (0.9995)

3rd-best nihe 0.2293 (0.2984) 0.0951 (0.1619) 0.9780 (0.9972)When plugging this into Eq. 3.5, we obtain:
ρ =

1
2

√

78 · (8π)2

3
1
78

≈ 110 (8.18)The initial setting of the nihe-radius, ρ = 110, failed to obtain satisfyingperformane. The DR2 as well as the CMA-omma routines did not sueedin obtaining good solutions. The CMA-plus, however, managed to loategood solutions for the �rst nihe only; the seond and third nihes were notpopulated by good solutions. Upon dividing the nihe radius by half, i.e.,
ρ̃ = 55, we started to obtain satisfying results, as will be reported here. Weshall o�er an explanation for this observation in the disussion to follow inthe end of this setion.Suess-RateThe averaged as well as maximally attained yield values of the three methods,for the three obtained nihes, are presented in Table 8.1. It an be onludedthat nihing with the CMA-plus kernel typially obtains the best three nihesin terms of the population-transfer yield. Nihing with the DR2 as well asthe CMA-omma kernels always obtain a �rst nihe of high quality. The DR2typially obtains a very good seond nihe, but fails in obtaining a third-bestnihe of high quality. The CMA-omma, on the other hand, typially failsto obtain seond- and third-best nihes of satisfying quality.Nihes Cross-CorrelationIn order to verify that the resulting nihes indeed represent su�iently dif-ferent pulse shapes, we alulated the ross-orrelation oe�ients for theobtained pulse-shapes, as de�ned in Eq. 8.16. The results of these alula-tions are presented in Table 8.2. In addition, we an state that a orrelationvalue larger than 0.8 was never observed. Based on these �ndings, we anonlude that the pulse-shapes of the di�erent nihes are weakly orrelatedto one another, as originally desired.



8.3. Appliation of Nihing 149Table 8.2: Nihes orrelation for the nihes obtained in 10 runs � averagedross-orrelation values, as de�ned in Eq. 8.16 � for the three employednihing strategies.Nihes Correlation DR2 CMA CMA+
c1,2 0.6583 0.7244 0.6883

c1,3 0.6982 0.6835 0.6993

c2,3 0.6471 0.7181 0.7154DisussionWe would like to summarize our numerial observation of the applied nihingalgorithms to the population transfer problem within the rotational frame-work. We have identi�ed a degeneray in the default diversity-measure be-tween andidate solutions, due to some invariane properties of the Fouriertransform in the deision spae. We o�ered a problem-spei� diversity mea-sure to overome it. Upon its employment, the latter was shown to be su-essful, as the obtained pulse-shapes di�ered onsiderably. This was alsoassessed by means of the alulation of the orrelation oe�ients betweenthe pulse-shapes, whih were observed to be low.The original theoretial alulation of the nihe radius was not observedto be suessful at the pratial level. The results reported here were ob-tained only after introduing a fator of 0.5 to the original value. We believethat this suggests a landsape with a limited regime of good solutions. Essen-tially, following the argumentation given in Setion 3.5.3, whih onsideredthe nihe formation proess subjet to a �xed nihe radius as a onstrainedoptimization problem, we argue that introduing a large nihe radius wouldpose a highly onstrained problem. This should remind us that the proposedformula for the nihe radius is merely an approximation, and moreover, weshould keep in mind that the nihe radius is a sensitive yet ruial omponentof this mehanism.In terms of algorithmi performane, the CMA-plus performed best whenobtaining typially three nihes of high-quality pulses. The DR2 sueededin obtaining a �rst and seond good nihes, but failed in the third nihe.The CMA-omma was observed to typially obtain only a single nihe of ahigh-quality pulse.We believe that the observed inompetene of the nihing framework withthe omma-strategy kernels to obtain good results in the seondary nihes isdue to the landsape properties in general, and the limited regimes of high-quality basins of attration. Furthermore, we would like to speulate thatthe failure of the originally employed nihe-radius is linked to the failure ofthe omma-strategies in obtaining good seondary optima.





I an safely say that nobody understands Quantum Mehanis.Rihard Feynman
Chapter 9Dynami Moleular AlignmentThe Quantum Control appliation to dynami moleular alignment [153, 154℄is of onsiderable interest beause of its many pratial onsequenes. Forinstane, many hemial and physial proesses, ranging from bimoleularreations [155℄ to high harmoni generation [156℄, are diretly in�uened bythe angular distribution of the moleular sample. Furthermore, in many fun-damental moleular dissoiation or ionization experiments the interpretationof the olleted data will beome more e�ient if the moleules are alignedwith respet to a ertain axis. Hene, tehniques to generate moleularalignment are needed in pratie.Ahieving moleular alignment an be lassi�ed into two possible modes:1. Pendular State When the envelope of the �eld hanges slowly om-pared to the timesale of moleular rotation, typially in the pioseondregime, eah rotational state of the initial Boltzmann distribution istransformed adiabatially into a pendular state. The drawbak of thisapproah is that any alignment produed while the �eld is turned onwill vanish one it is turned o� again. Thus, suh experiments annotbe arried out subjet to �eld-free onditions.2. Impulsive Alignment Here, the duration of the applied pulses ismuh shorter than a rotational period [157℄. A wavepaket of rotationalstates is onstruted suh that �eld-free alignment an be onsiderablyattained.Both modes aim at onstruting a superposition of as many angular momen-tum eigenstates as possible. Due to the unertainty priniple, a broad dis-tribution in angular momentum orresponds to a narrow distribution of theangular position. However, it is important to note that both the amplitudesand the relative phases of the omposite rotational states have to be underontrol in order to ahieve alignment. This requirement is ful�lled for thependular state ase, sine it is an eigenstate of the ombined moleule-�eld151



152 Chapter 9. Dynami Moleular AlignmentHamiltonian. However, in the general ase, a randomly phased superposi-tion of rotational states will not interfere favorably in attaining moleularalignment.For the impulsive ase, the evolution of the total wavefuntion (after theeletri �eld is turned o�) repeats with the revival time
Trev =

1

2Brotc
(9.1)where Brot is the rotational onstant of the moleule and c is the speed oflight. Partial revivals an be observed at Trev/2 and, possibly, at Trev/4,when one-half or one-quarter, respetively, of the populated rotational levelshave undergone an idential number of rotations. Shaped femtoseond laserpulses that lead to a high degree of alignment manage to maximize thenumber of rotational states that are in phase at these times. However, theyhave to ful�ll an additional requirement: Low �eld intensities should beapplied in order to avoid a senario in whih the moleules are ionized.This aspet also plays a role in keeping the numerial modeling onsistentin desribing the moleule as a rigid rotator, as disussed in Chapter 8.Therefore, one would like to ahieve high alignment while keeping the peaklaser intensity as low as possible.On that note, reent publiations have foused on �nding pulse shapesother than the FTL pulse that reate a high degree of alignment. Leibsherel al. [158, 159℄ have theoretially shown that in the nonperturbative regimea train of pulses lead to better alignment than a single FTL pulse. Forasymmetri moleules, orientation has been found to be optimized by asequene of kiks as well [160℄.Suh pulse sequenes an be easily onstruted and also optimized withrespet to the relatively small number of their ontrol parameters. There-fore, they provide an attrative starting point for more omplex optimizationshemes, where the eletri �eld is de�ned by a onsiderably larger numberof ontrol parameters. The task of obtaining high-quality solutions in thishigh-dimensional searh spae is nontrivial, already when onsidering onlythe ground state in the initial distribution. For �nite temperatures, thealignment optimization has to be performed simultaneously for a set of ini-tial rotational states, whih, together with the large number of eletri �eldontrol parameters poses a hallenging optimization problem.9.1 Numerial ModelingThe numerial modeling of the rotational framework, as presented in Chapter8, is adopted here fully. The remaining task is the de�nition of the alignmentobservable.



9.1. Numerial Modeling 153The alignment alulation uses the following omponents in our basis:
〈JM | cos2 θ |JM〉 =
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(2J + 1)(2J − 3) (9.2)We onsider a thermal ensemble of diatomi moleules undergoing irradiationat a �nite temperature. The latter is set to T = 100 K, and implemented bymeans of a Boltzmann averaging whih pratially orresponds to the densitymatrix ρ. The moleule under investigation has a rotational onstant of
Brot = Bg = Be = 5cm−1. We set the Rabi peak frequeny to Ωge =
180 × 1012s−1.For the sake of attaining high moleular alignment while keeping the peak�eld intensity as low as possible, due to the rigid rotator approximation,we introdue a onstraint to the optimization proedure, by means of apunishment term to pulses that are too intense. It expliitly reads

Ip =

∫

E2(t)Θ(E2(t)− Ithr) dt (9.3)with Θ(x) as the Heaviside step funtion.Thus, the �tness funtion assigned to a andidate pulse shape is de�nedby
F = maxE(t)

〈

cos2(θ)
〉

− βIp. (9.4)By hoosing β large enough, Ithr an be used to e�etively operate theevolutionary searh only on a subset of pulses whose maximum peak �eldintensity approahes the threshold intensity from below. We have typiallyused β = 1; Unless otherwise spei�ed, Ithr was set to Ithr = 0.36 · IFTL.Figure 9.1 provides an illustrative overview of the numerial proess.9.1.1 Numerial Simulations: Tehnial DetailsWe hereby provide some information about the experimental setup of thedynami alignment numerial simulation:
• In the absene of a laser �eld, a random phase should yield on averagean alignment value of 0.333, due to the isotropi 3D spae. In thepresene of a laser �eld a random phase typially obtains alignmentvalues around 0.4.
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Figure 9.1: An overview of the numerial proess. The ontrol funtion is thephase (irled, top left), the amplitude funtion is �xed and approximatedby a Gaussian (bottom left). The shaping proess (Eq. 6.29) generates theeletri �eld, E(t) (enter). The "Shrödinger Box" of the alignment ob-servable represents the numerial alulation of the interation between theeletri �eld with the moleules, based on the quantum dynamis numerialmodeling. The revival struture (right) is the observed simulated behaviorof the moleules, upon whih the yield value is based.
• The punishment term, as introdued in Eq. 9.3 and in Eq. 9.4, an yield�tness values below the value of 0.4. The probability of a randomlygenerated pulse, with no spei� parameterization, to get penalized isextremely low.
• Every �tness evaluation all requires approximately 35s on a singleP4-HT 2.6GHz proessor.
• Due to the heavy omputational ost of a single simulator evaluation,we are limited in granting funtion evaluations. We are thus enour-aged to employ optimization routines with minimal settings. Moreover,we shall apply experiments with a low number of repetitions.9.2 Experimental ProedureIn order to preliminarily assess the performane of the algorithms on thegiven problem, we have onduted 10 independent runs for eah of the de-randomized ES omma-variants with the goal of optimizing the alignment ofa sample of generi diatomi moleules undergoing irradiation by a shapedfemtoseond laser. We limit eah run to 10, 000 funtion evaluations, due tothe omputational ost of the simulator.



9.2. Experimental Proedure 155Algorithm DR1 DR2 DR3 CMAAVG-Fitness 0.6399 0.6789 0.6534 0.6261Table 9.1: Dynami moleular alignment: Attained �tness values, averagedover 10 runs, for the DES omma variants.9.2.1 First Numerial Results: Comparison of the AlgorithmsTable 9.1 summarizes the numerial results of the runs - the averaged �tnessvalue obtained by eah optimization routine. Based on our experiene withthe problem and the algorithms, the yield di�erenes of Table 9.1 are be-lieved to be signi�ant. Moreover, due to the limited number of simulationswe do not provide further statistial analysis of the results.Roughly speaking, the algorithms were observed to perform equally well,with the exeption of the DR2 algorithm that managed to obtain a signif-iantly better optimum than the others. While the DR3 algorithm showedthe fastest initial �tness inrease, it seemed to get stuk in a sub-optimalloal trap after ≈ 2, 000 funtion evaluations. We have found this behaviorto be typial for the DR3 algorithm.The ranking of the algorithms was qualitatively similar for a number of align-ment optimization runs employing di�erent parameter settings.Figure 9.2 presents the best pulse-shape solution attained, as obtained bythe DR2 routine.9.2.2 The Complete-Basis-Funtions ParameterizationIn this setion we present a new method for learning a funtion, based ona representation transformation, whih an also be referred to as param-eterization. The so-alled Complete-Basis-Funtions Parameterization wasoriginally derived for the sake of learning the ontrol funtion of the dynamialignment problem, i.e. the phase φ(ω), but is a general method for learn-ing a generi n-variable funtion. It an redue the dimensionality of thesearh spae and possibly boost the onvergene speed, respetively, as willbe explained in detail.Appendix B provides the reader with the mathematial bak-ground on omplete-basis funtions, and presents the spei� fun-tions that are onsidered in our study. For the sake of onsisteny andreading larity, we speify here our notation for a spanned target funtion
f (x):

f (x) =
Kmax
∑

k=1

ckξk (x)with ck as the expansion oe�ients, and {ξk (x)}∞k=1 as the the set ofomplete-basis funtions.
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Figure 9.2: Best solution attained by the DR2. Thik line: alignment; thinline: intensity pro�le of the optimized laser pulse. The solution onsists ofthree main peaks (see labels).Preliminary: Expanding a Known Funtion As we will demonstratehere, �nding the expansion of a known funtion by means of a given set ofomplete-basis-funtions, i.e., �nding the oe�ients of the funtions in thisbasis, is an easy task for a simple evolutionary algorithm, and in partiularfor the standard-ES. For simpliity, and without loss of generality, let usassume that the task is to approximate a one-variable funtion using theFourier series:
f(x) =
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∞
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)This task an be generalized to funtions of higher dimensions, and by us-ing other expansions of omplete-basis funtions. Following the notationof Appendix B, onsider a �nite number of the expansion oe�ients ofthe osine and sine funtions, {ak}Ka

k=0, {bk}Kb

k=1, as the deision parametersto be optimized by the evolutionary searh. As a preliminary task in thisstudy, we found that the standard-ES (Shwefel approah) onverged easilyand quikly to the orret oe�ients. This elementary �tting problem wassimply de�ned by means of the square-error minimization: The �tness, sub-jet to minimization, was de�ned respetively as the root-mean-square errorfuntion between the original funtion and its evolving expansion.Figure 9.3 presents the outome of learning the triangle funtion withthe standard-ES, using only the �rst 20 frequenies (Kmax = Ka +Kb = 40)
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Figure 9.3: Learning the triangle funtion by means of the �rst 20 Fourierfrequenies. The plot shows the original triangle funtion and its Fourierapproximation.of a Fourier series as building bloks for a given funtion disretization of
N = 100.Proposed Method: Learning an Unknown Funtion The idea ofspanning a funtion using a set of omplete basis-funtions an also be ap-plied for the task of learning an unknown funtion, represented by N funtionvalues, as in our quantum ontrol alignment problem. The inspiration for thismethod was the initial intuition to the alignment problem, whih suggestedthat the ontrol funtion should be periodi. Motivated by this intuition,we started to run simulations in whih an ES was aiming at learning φ(ω)using the harmoni funtions as building bloks. Rather than learning theinterpolated values of the ontrol funtion, the oe�ients of the harmonis(Fourier omponents) were optimized. Following the suess of those exper-iments, we extended the method to other sets of omplete basis funtions,and in partiular to the sets of funtions whih are introdued in AppendixB: The Legendre Polynomials, the Bessel Funtions, the Hermite Polynomi-als, and the Chebyshev polynomials.Assuming that the desired disretization is up to a resolution of N pointsin the interval, we limit the number of elements in the expansion series to
Kmax, where preferably Kmax ≪ N . By that we an ahieve a dramati di-mensionality redution of the searh spae, aiming to boost the onvergenespeed. The idea is then to apply an evolutionary searh to the n = Kmax



158 Chapter 9. Dynami Moleular Alignmentoe�ients of the expansion funtions, where a simple transformation is ap-plied for every �tness evaluation. In pratie, the required time for additionalomputation of this transformation is negligible with respet to the objetivefuntion evaluation, in most real-world problems.An ES employing a Fourier auxiliary funtion has been proposed in thepast, known as the FES method [161℄. The FES aims at approximatingthe �tness landsape, and partiularly its small attration basins, by meansof the Fourier series. However, the areful reader should notie that ourmethod is based on a di�erent priniple. It uses omplete-basis funtionsas a transformation of the deision parameters themselves, rather than the�tness landsape, whih is left untouhed. It strongly relies on the fat thatthese deision parameters represent a ontinuous funtion - and this funtionis due to be approximated.Preliminary CalulationsQuadrati Phase Funtions: The α-Test Sine we are about to inves-tigate representations of low-order polynomials, we would �rst like to addressthe question whether there exists a trivial extremum whih would beome aloal trap for suh phase funtions. Hene, we alulated the �tness of on-struted quadrati phase funtions, entered around the entral frequeny.Expliitly, we onsidered the following family of onstruted phases:
φα(ω) = α · (ω − ωcentral)

2, (9.5)where the ontinuous parameter α is sanned systematially in the interval
[0, 15]. Note that these phases are onstruted over n = 80 funtion values,and given as input to the dynami alignment simulator as before.The results of this so-alled α-test are presented in Figure 9.4.As an be learly seen in the given plot, most of the quadrati phasefuntions attain extremely low �tness values, due to large punishment terms,and they never exeed the �tness value of 0.45. This eliminates the existeneof a trivial quadrati solution for the problem.The Initial States Density Test We set the number of terms in eahexpansion to Kmax = 40. The following preliminary experiment is meant toompare the natural initial quality of the di�erent parameterizations withrespet to the alignment problem. We applied a so-alled initial states den-sity test, a statistial �tness measurement of the initialized phase funtionsin the di�erent parameterizations. For eah parameterization in use, i.e.,the diret/plain 80-dimensional random phase vetor, or the random 40-dimensional oe�ient vetor for the various polynomials in use, we initial-ized 1, 000 phase funtions and alulated their mean �tness and standarddeviation. The numerial results are visualized as histograms in Figures 9.5-
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Figure 9.4: The α-test: The �tness of quadrati phase funtions, enteredaround the entral frequeny, as de�ned in Eq. 9.5.Table 9.2: Parameterizations: Averaged PerformaneRoutine Diret Fourier LegendreAvg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval(1,10)-DR2 0.6789 2325 0.4494 N.A. 0.6384 629(1,10)-CMA 0.4676 N.A. 0.4542 N.A. 0.6409 515.1

(µ, λ)-CMA 0.6261 4962.5 0.6171 4475.8 0.6466 194.5Routine Bessel Hermite ChebyshevAvg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval(1,10)-DR2 0.6299 1390 0.5944 5610 0.4843 N.A.(1,10)-CMA 0.6229 2212.9 0.6755 271 0.4979 N.A.
(µ, λ)-CMA 0.6232 2719.5 0.6843 118 0.6225 3770.89.10, providing the �tness distributions of the various random initializations.See further disussion below.Parameterizations: Numerial ResultsIn this setion we present the numerial results for optimizing the dynamialignment problem with the di�erent parameterizations - the diret/plain pa-rameterization versus the polynomial-based parameterizations with Kmax =

40 terms. Our runs were based on the following algorithmi kernels:1. (1, 10)-DR2
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FitnessFigure 9.5: Initial states density testfor diret parameterization. FitnessFigure 9.6: Initial states density testfor Fourier parameterization.

FitnessFigure 9.7: Initial states density testfor Legendre parameterization. FitnessFigure 9.8: Initial states density testfor Bessel parameterization.

FitnessFigure 9.9: Initial states density testfor Hermite parameterization. FitnessFigure 9.10: Initial states density testfor Chebyshev parameterization.



9.2. Experimental Proedure 161Table 9.3: Parameterizations: Summary of Best ResultsParameterization Best Fitness 0.6 Eval Routine Initial States DensityDiret-Param 0.6899 2310 (1,10)-DR2 0.4026 ± 0.018Fourier 0.6526 1411 (7,15)-CMA 0.4110 ± 0.019Legendre 0.6487 106 (7,15)-CMA 0.3122 ± 0.075Bessel 0.6457 61 (7,15)-CMA 0.2218 ± 0.077Hermite 0.6866 31 (7,15)-CMA 0.4558 ± 0.048Chebyshev 0.6490 1051 (7,15)-CMA 0.4226 ± 0.0232. (1, 10)-CMA3. (µW , λ)-CMA: Following the reommended settings (Eq. 1.47): (7, 15)for n = 40, versus (8, 17) for n = 80.The runs were limited to 10, 000 funtion evaluations. We onduted 10 runsper method.We onsider the performane riteria of the various methods as the following:
• The mean �tness values per method over the 10 runs.
• The averaged number of evaluations per method until the �tness valueof 0.6 was reahed during the runs. We onsider the yield value of 0.6as the lower bound of the regime of good solutions.
• The results of the initial states density test, as was introdued ear-lier: The averaged initial �tness values per method, with the standarddeviation.We provide a table of results, whih onsists of the numerial values ofthe spei�ed performane riteria per method. It is given as Table 9.2. Table9.3 summarizes the best results obtained per parameterization.Analysis and DisussionAn important result that should be pointed out is that all the runs in the var-ious parameterizations have onverged into a highly �t phase funtion withat least one optimization routine, i.e., all the given omplete-basis funtionsare apable of spanning a good phase funtion with Kmax = 40 terms.Furthermore, we would like to analyze shortly the experimental resultsof the various parameterizations with respet to the dynami alignment op-timization, as presented in Tables 9.2 and 9.3:1. Initial State The Hermite parameterization has learly the most nat-ural initial representation for the phase funtion for the given problem,among the various ases, as re�eted from the initial states density test



162 Chapter 9. Dynami Moleular Alignmentresults (Figures 9.5-9.10 and Table 9.3). Note that the Legendre as wellas the Bessel parameterizations have low initial �tness values, evenbelow the diret parameterization, due to the punishment e�et. Itshould be stressed that the standard deviations of the di�erent �tnessdistributions are reasonably low.2. Fitness Values The Hermite parameterization obtained �tness val-ues as high as the diret parameterization method, though by meansof a di�erent algorithm, as will be disussed shortly. As far as weknow, the attained yield values in the regime of ≈ 0.69 are the high-est osine-squared alignment values whih were ever attained for thispartiular on�guration of the problem. Hene, from the optimiza-tion perspetive, the proposed parameterization does not hamper thefeasibility to obtain the maximally-attained yield within the limit offuntion evaluations.3. DR2 vs. CMA There is a lear trend regarding the two algorith-mi kernels. The DR2 obtained the best results for the diret pa-rameterization, but obviously failed to deliver reasonable results forthe polynomial-based parameterizations. In most ases, the DR2 doesnot even onverge. The (7, 15)-CMA, on the other hand, performedvery well with the various polynomial-based parameterizations, andattained �ne results also for the diret parameterization. The (1, 10)-CMA is learly inferior with respet to its rank-µ weighted-reombinedsibling. Our proposed explanation for this trend is the strong orrela-tions between the polynomials' oe�ients, whih make the ovarianematrix an essential omponent for suessful optimization. On theother hand, it seems that the ovariane matrix is not an essentialomponent for the diret parameterization, and may even introdue abarrier, to some degree, to the global searh.We would like to link this to the onlusions drawn for the QC land-sapes of Two-Photon Proesses in Chapter 7, where QC landsapeanalysis stating that �rst-order information is su�ient for optimiz-ing QC landsapes was experimentally orroborated. The fat thatthe DR2 algorithm performs so well on the urrent dynami alignmentlandsape, whih is a ombined OCT/OCE landsape, ould be on-sidered as an additional orroboration to this QC landsape analysis.We shall further explore the performane of the DR2 versus CMA-ESwith respet to the diret versus Hermite parameterizations in Setion9.3.4. Boosting Convergene Speed An immediate onlusion from bothtables is that the proposed method ahieved a signi�ant boost of theonvergene speed for all the di�erent polynomial-based parameteri-
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Figure 9.11: The speeding-up e�et: Typial onvergene pro�les of the
(µW , λ) CMA-ES for the Hermite versus the diret parameterizations.zations, in omparison to the diret parameterization. The Hermiteparameterization with the (7, 15)-CMA is learly the fastest routine,and it outperformed the other routines by far. It should be noted thatthe Legendre as well as the Bessel parameterizations, whih have thelowest initial yield values, manage to ompensate for that and reahthe regime of good solutions (yield > 0.6) rather quikly.Typial onvergene pro�les for Hermite versus diret parameteriza-tions are plotted in Figure 9.11.5. Physis Interpretation Aiming at gaining physis insights into thenature of highly-�t phase funtions with respet to the alignment prob-lem, we examined the nature of good solutions in the di�erent pa-rameterizations. The idea was to alulate the distributions of theoe�ients, and try to identify dominane of ertain omponents (fre-quenies in the Fourier ase). Unfortunately, suh dominane ouldnot be identi�ed within the results. The set of attained optimal phasesreveals high omplexity, whih ould not be takled. This providesus with the motivation to explore a simpler variant of the alignmentproblem in Setion 9.3.
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Figure 9.12: Optimized pulses and alignment for Ithr = 0.2 · IFTL, Ithr =
0.25 · IFTL and Ithr = 0.3 · IFTL. Figure ourtesy of Christian Siedshlag[162℄. Intensity [IFTL℄ 0.2 0.25 0.3 0.36

〈

cos2(θ)
〉 0.662 0.673 0.6734 0.689Table 9.4: Best 〈cos2(θ)
〉 values obtained with the DR2 algorithm over �veruns for di�erent values of Ithr [162℄.9.2.3 Further InvestigationWe would like to review here brie�y additional alulations for this alignmentproblem, whih were arried out by Siedshlag and Vrakking (see, e.g., [162℄).Punishment Strength By dereasing Ithr, the searh algorithm was shownto look for e�etive pulses with less available peak intensity. The numerialresults of additional optimization runs, arried out by the DR2 algorithm,for Ithr = 0.2 · IFTL, Ithr = 0.25 · IFTL and Ithr = 0.3 · IFTL are presented inTable 9.4. Note that lowering Ithr ould slightly improve the attained align-ment. Overall, the evolutionary searh was able to make up for the smallerpeak intensities by redistributing the �uene in a lever way, so to speak.The optimized pulse-shapes for the three lower threshold intensities are pre-sented in Figure 9.12. The three solutions are observed to be remarkablysimilar.Construted Pulse Trains Siedshlag and Vrakking [162℄ also treatedthe question whether a simple train of pulses that is onstruted by an ap-propriately designed phase funtion yields results that are omparable tothose ahieved by the evolutionary approah. In partiular, the question ad-
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Figure 9.13: A ut through the ontourplot of Figure A.7 for A = 2.26,for whih the largest alignment (〈cos2(θ)
〉

= 0.589
) in the two-parameterapproah under the ondition I < 0.36 · IFTL was ahieved [162℄. Figureourtesy of Christian Siedshlag.dressed trains of pulses, whih are generated by osillatory phase funtions.Expliitly, the following family of phases was onsidered:

φosc(ω) = A · sin(ω∆ + α) (9.6)The two relevant parameters, A and ∆, were sanned in a searh for the pulsethat would produe the best alignment; Figure A.7 presents the outomeof that san. The magnitude of A ontrols the distribution of the availableintensity over the peaks in the pulse train (and hene the peak intensity withrespet to the FTL solution), while ∆ orresponds diretly to the time delaybetween two onseutive peaks. Note that the maximally obtained alignmentyield in this san was A ≈ 0.68 and ∆ = 1.7ps; However, its orrespondingpeak intensity was too high for the model, i.e., I > 0.36 · IFTL.Figure 9.13 presents a ut of the ontourplot san of Figure A.7, at themaximally obtained yield in the allowed range (0.589). It was onluded in[162℄ that this approah was not �exible enough to adapt to the �ner detailsof the time-dependent alignment response.9.3 Investigation of Optimality: Zero KelvinHere we fous in a simpli�ed variant of the original alignment problem, atzero temperature (T = 0 K) and with only a single rotational level at the



166 Chapter 9. Dynami Moleular Alignmentinitial distribution. The numerial modeling of Eq. 8.8 onsiders now M = 0and reads:
|Ψ(t)〉 =

Nrot
∑

J=0

α
(g)
J (t) |gJ〉+ exp (−iω0t)α

(e)
J (t) |eJ〉 (9.7)The motivation for this simpli�ation is to allow studying the physialharateristis of the optimal solutions, whih would not have been possiblefor the general ase, e.g., traking the time-dependent population of therotational levels, given only the ground level at initialization. From thetehnial perspetive, this simpli�ation redues the simulator evaluationtime to approximately 5s on a single P4-HT 2.6GHz proessor.We arried out alulations optimizing �eld-free moleular alignmentstarting from J = 0 for a number of algorithmi approahes and variousRabi peak frequenies. In eah ase, the same alulation was attemptedby means of 20 runs. Eah run was limited to 20, 000 funtion evaluations.We restrit the disussion in this setion to the best results obtained in eahseries of 20 trials.Figure 9.14 presents a omparison between one optimization of dynamialignment starting from J = 0, performed using the DR2 algorithm underperturbative onditions (Ωge = 40× 1012s−1

) and four optimizations per-formed under non-perturbative onditions (Ωge = 160× 1012s−1
) using boththe DR2 and the CMA algorithms, with either a diret/plain parameteriza-tion of the phase or with the Hermite parameterization, employing the �rst

Kmax = 40 Hermite polynomials. Furthermore, based on our previous obser-vations in this hapter, we employed (1, 10)-DR2 or {(7, 15), (8, 17)}-CMA(the latter depends on the parameterization used).The obtained result at low laser intensity (Ωge = 40× 1012s−1
) is simple: Apulse train is observed where the spaing between the peaks is approximatelythe rotational period of a oherent superposition state onsisting of J = 0and J = 2 only (Trev02 = 1

6Brotc
= 1.1ps

). The time-dependent intensity isgiven by a train of pulses where the largest pulse reahes an intensity of
0.36 · IFTL.The obtained pulse-shapes at high laser intensity (Ωge = 160× 1012s−1),are onsiderably more omplex and no simple periodiity an be observed.The averaged as well as largest values of 〈cos2 (θ)

〉 attained are shown inTable 9.5.In onsisteny with the numerial results of the previous setion, thehighest alignment yield values attained for this partiular system were alsoobtained by the DR2 with plain parameterization as well as by the CMA withHermite parameterization. Employing the CMA with plain parameterizationor the DR2 algorithm with the Hermite parameterization yields a slightlylower values over 20 trials. Based on our experiene with the problem and thealgorithms, the yield di�erenes of Table 9.5 are believed to be signi�ant.
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Figure 9.14: (a) Comparison of an optimization performed employing theDR2 algorithm with Ωge = 40 × 1012s−1 and (b) Four alulations with
Ωge = 160 × 1012s−1 employing the DR2 and the CMA algorithms witheither a plain or Hermite parameterizations of the ontrol phase funtion.

(1, 10)-DR2 {(7, 15), (8, 17)}-CMAPlain Param. 0.9559 ± 0.007 (0.9622) 0.9413 ± 0.006 (0.9508)Hermite Param. 0.9501 ± 0.004 (0.9570) 0.9583 ± 0.003 (0.9618)Table 9.5: Maximizing the osine-squared �eld-free moleular alignmentstarting from J = 0 (T = 0K) at Ωge = 160 × 1012s−1 over 20 runs with
20, 000 funtion evaluations per run; Mean and standard-deviation valuesare given, with the maximal value obtained in brakets.



168 Chapter 9. Dynami Moleular AlignmentThis is supported by inspetion of the pulse shapes shown in Figure 9.14.The two most suessful optimizations (CMA/Hermite and DR2/Plain) notonly share their yield value of 〈cos2 (θ)
〉, but furthermore make use of a pulseshape that is very similar.9.3.1 Coneptual Quantum StruturesThe time-dependent population of the rotational levels an be analyzed ina fairly simple tehnique, known as the Sliding Window Fourier Transform(SWFT), whih provides us with a powerful visual tool. Given the re-vival struture of an obtained solution, a sliding time window is Fouriertransformed, to produe the frequeny piture through the alignment pro-ess. This windowing reates a transformation whih is loalized in time.Due to the quantization of the rotational levels, only ertain frequenies (orenergy levels, respetively) are expeted to appear.We applied the SWFT routine to the optimal solutions whih were foundin the various runs under non-perturbative onditions. Figures A.10, A.11,A.12 and A.13 visualize the typial population proess of the rotational levelsfor four typial solutions of the di�erent optimization proedures (2 param-eterizations times 2 DES variants). The observed quantum energy levels areindeed as expeted from theory.The results reveal two di�erent oneptual quantum strutures, whihorrespond to optimal and sub-optimal solutions in terms of the alignmentyield. The plain-DR2 as well as the Hermite-CMA proedures obtain thebest solutions, whih share the same struture - they are haraterized bythe dominant population of the 4th rotational level in the SWFT piture,orresponding to J = 6. On the other hand, the plain-CMA and Hermite-DR2 proedures obtain solutions with lower yield, whih are haraterizedby a gradually inreasing population of the rotational levels.The original revival strutures for two obtained solutions, representingthe two oneptual strutures, are given in Figures A.8 and A.9. The optimalfamily of solutions (Figure A.8) possesses a dramati revival struture, witha typial strong pulse in the train whih lies on the boundary of the punishedregime (I ≈ 0.36 · IFTL). This strong pulse seems to be essential in givingthe moleules the right 'kik', and most likely responsible for the dominantpopulation of the 4th rotational level in the SWFT piture (J = 6). The sub-optimal family of solutions (Figure A.9) possesses a revival struture witha smooth exponential envelope, and thus has a gradual building-up of therotational levels in the SWFT piture, respetively. It typially ontains atrain of medium pulses and laks a dominant one.We would like to emphasize the fat that we obtained the same family ofoptimal solutions, representing a single Quantum struture, from two di�er-ent optimization approahes: The �rst employs a �rst-order DES subjet todiret pixelation of the ontrol phase, while the other employs a seond-order



9.3. The Zero Kelvin Case Study 169DES subjet to Hermite expansion of the ontrol phase.9.3.2 Maximally Attained YieldWhile this does not onstitute a proof, we speulate that within the on-straints in the optimization (i.e., the �nite pulse bandwidth and energy, aswell as the �nite resolution of the phase funtion), both algorithms havefound a solution that approahes the best solution that is possible. How-ever, even if the solutions are optimal within the onstraints set by the laserbandwidth, the laser pulse energy and the parameterization of the phase,it is lear that the solutions do not approah the maximum alignment thatan be supported by the basis of Nrot = 20 rotational states (see Eq. 9.7)that were used in the alulation. The maximum alignment supported bythis basis is the largest eigenvalue of the observable matrix, whih was foundto be 0.9863. The orresponding eigenvetor will be referred to here as themaximal eigenvetor or the maximal wavepaket.We asribe the di�erene between this maximum value and the values ob-tained in the optimizations as being largely due to the �nite laser bandwidthin our alulations. The bandwidth and the pulse duration of a laser pulsewith a Gaussian shape are related by Eq. 6.30, where the spetral amplitudeparameter reads cB = 0.441. Thus, for a pulse with a 100fs Fourier-limitedduration, the bandwidth is ∆ωlaser,FWHM = 0.0182eV = 147cm−1. When amoleule undergoes a Raman transition from J = J0 to J = J0 + 2, the en-ergy absorbed from the laser �eld is Brot · (4J0 +6). This absorbed energy isthe di�erene between the pump- and dump-photons involved in the Ramanexitation. Consequently, the Raman exitation beomes frustrated when
Brot · (4J0 + 6) > ∆ωlaser,FWHM . In our ase, with a rotational onstant of
Brot = 5cm−1, this threshold ours for J0 ≈ 6.As Figure 9.15 shows, the rotational wave paket that displays the largestalignment after the optimization ontains only limited ontributions from
J = 8 and J = 10, and none from rotational levels above J = 10. Byontrast, the maximal wavepaket ontains ontributions all the way up to
J = 18. In this respet, it may appear to be surprising that a high yield of
0.962 an be obtained when the optimized wavepaket di�ers so muh fromthe maximal wavepaket. In order to assess the ruial in�uene of the band-width onstraint on the ut-o� of aessible J values, additional alulationswere performed with the original bandwidth doubled, while the �uene waskept �xed (thus orresponding to a 50fs pulse with Ωge = 226 × 1012s−1).These results are also presented in Figure 9.15 as a referene to the alula-tions with the original bandwidth. The doubling of the bandwidth permittedpopulating up to J = 12, and thus produed an enhaned alignment yieldof 0.975. Note that the distintion between the two families of solutions,orresponding to the two algorithmi lasses, as disussed in Setion 9.3.1,an be learly observed in Figure 9.15.



170 Chapter 9. Dynami Moleular AlignmentThe di�erene between the maximal wavepaket and optimized wavepaketis also re�eted in the angular probability distribution funtions, as presentedin Figure 9.16. These probability distribution funtions are respetively on-struted from the oe�ients of the maximal eigenvetor as well as the stateobtained from the optimized �eld, based on Eq. 9.7. Even though at thehigher bandwidth the disrepany between the optimally ontrolled distri-bution funtion and the maximally attainable limit appears to be signi�ant,a high alignment value was still obtained.The explanation for this exellent behavior, despite onsiderable di�erenesin the omposition of the wavefuntion, lies in the variational priniple (see,e.g., [126℄), whih states that a �rst order error in a trial wavefuntion (i.e.,the wavepaket from the bandwidth limited optimal ontrol �eld) will pro-due an extremum eigenvalue (i.e., alignment yield) of seond-order error:
〈ψ|H |ψ〉
〈ψ|ψ〉 =

En + 〈δ| H |δ〉
〈n|n〉+ 〈δ|δ〉 = En +O

(

δ2
) (9.8)9.3.3 Another Perspetive to Optimality: Phasing-UpWhen a moleule is exposed to a shaped, intense laser pulse the optimiza-tion has to aomplish two things. First, the optimization has to reate awavepaket onsisting of a large number of rotational states that an serve toalign the moleule. Seond, the optimization has to prepare the wavepaketwith the orret phase relationship between the omponent wavefuntions, sothat during its �eld-free evolution these omponents would oherently add-upto generate an optimally aligned wavefuntion. While there is no riteriumavailable that allows us to asertain whether the algorithm has optimizedthe population distribution, it is possible to investigate the phase relation-ship of the omponent wavefuntions in the optimized solutions. Maximumalignment ours if at some point in time the phases of all omponent wave-funtions di�er from eah other by 0 (modulo 2π).Expliitly, given a wavefuntion,

ψ =
∑

j

a
(t)
j · |j〉 · exp

(

−iEjt

~

)

,the oe�ients a(t)
j are omplex numbers, and as suh an be expressed intheir polar representation:

a
(t)
j = r

(t)
j · exp

(

iϕ
(t)
j

)

. (9.9)We thus question whether given a ertain population - does the optimizationroutine produe the optimal set of phases ϕ(t)
j ? In order to answer thisquestion, a simple optimization proedure was implemented in the followingmanner: It aepts the a(t)

j as input, and aims at optimizing the phases ϕ(t)
j
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Figure 9.15: TOP: The distribution of the maximal and the best opti-mized wavepakets over the rotational states. Stars represent the maximalwavepaket in the �nite rotational basis (i.e., orresponding to the highest-ranked eigenvetor of the observable matrix). Diamonds represent the 1stoptimized set of solutions (CMA-Hermite / DR2-Plain), and Squares repre-sent the 2nd optimized set of solutions (CMA-Plain / DR2-Hermite); Cirlesrepresent alulations with doubled bandwidth and the same �uene (50fspulse with Ωge = 226 × 1012s−1), optimized by the DR2 subjet to plainparameterization. The �gure learly shows that the limited �eld bandwidthuts o� the rotational states for the optimized solutions after J = 10, whenthe original bandwidth is used, or after J = 12 when the bandwidth is dou-bled. Furthermore, this plot illustrates the distintion between the twofamilies of solutions for the original bandwidth (i.e., Diamonds ver-sus Squares) arising from the di�erent algorithmi approahes. BOTTOM:The alignment as a funtion of the overlap of the optimized wavepakets |Ψ〉with the maximal eigenvetor |V 〉. Note that the overlap for the originalbandwidth never exeeds 0.8 in magnitude. Also note the three lustersfor the families of algorithmi solutions.
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Figure 9.16: Left axis: Normalized angular probability distribution funtionfor the maximal ase |ψmax (θ)|2 sin (θ), and the optimized ontrol funtion
|ψopt (θ)|2 sin (θ). Right axis: The value of cos2 (θ). The onstraints pro-hibit the evolutionary algorithm from attaining the absolute maximal angu-lar probability distribution funtion; However, the expetation value of theobservable 〈cos2 (θ)

〉

opt
= 0.9621 when using the original bandwidth orre-sponding to a 100fs Fourier-limited pulse is within 0.025 of the maximumattainable value 〈cos2 (θ)
〉

max
= 0.9863. When doubling the bandwidth (i.e.,basing the shaped laser pulse on a 50fs Fourier-limited pulse) 〈cos2 (θ)

〉

optinreases to 0.975, whih is only 0.0113 away from the maximum attainablevalue.suh that the osine-squared alignment is maximized. Pratially, it uses asubroutine from the general alignment ode for the evaluation, and appliesthe CMA algorithm for the tuning of the 10 relevant phases. Note that asingle funtion evaluation has the duration of ≈ 0.5s.We onsidered 50 di�erent ases of high-quality solutions to the alignmentproblem (all solutions have osine-squared-alignment values in the regime of
0.95) - for eah test ase 100 independent optimizations were run, aiming totune the phases.The experimental results are lear and sharp. They are presented at twolevels:1. In all 100 runs for all 50 test-ases - the best solution has alwayssynhronized phases. There are di�erent phase values per run, butit does not make a di�erene for the osine-squared alignment, as longas the populated levels hold that same phase value. Expliitly, theSigma-RMS of the phases was alulated:

∆ϕoptimal = 0.0117



9.4. Evolution of Pulses under Dynami Intensity 1732. The 50 test-ases, as originally obtained by the original optimizationprior to this optimization proedure, held phases whih were not farfrom being synhronized,
∆ϕDR2 = 0.0566,and indeed, the optimizations did not improve the osine-squared align-ment dramatially: Always less than 1% improvement was reorded.We onsider this a very strong result - the evolutionary optimization routinemanaged to takle the �ne-tuning of the quantum ontrol problem, behindthe omplex transformations and the so-alled Shrödinger blak-box.To summarize, while we annot establish whether the optimization hasdistributed the population in the best possible way, we do observe that thealgorithm has properly phased-up all omponent wavefuntions with respetto eah other. This type of oherent alignment of phases was also observedto be optimal in the mehanisti analysis of another state-to-state ontrolappliation [163℄.9.4 Evolution of Pulses under Dynami IntensityOur observation so far regarding the alignment problem, and in partiularonerning its zero-Kelvin variant in the previous setion, provides us withthe motivation to investigate optimized pulse strutures that obtain highalignment yield at di�erent laser intensities, and espeially their evolutionsubjet to a slowly-varying laser intensity. This setion is a diret experimen-tal ontinuation to Setion 9.3, onsidering solely the zero-Kelvin alignmentvariant with two spei� algorithmi approahes that were employed for itsoptimization: the DR2-plain and CMA-Hermite proedures.9.4.1 Evolutionary Algorithms in Dynami EnvironmentsFrom the algorithmi perspetive, the optimization framework beomes nowan evolutionary searh subjet to a dynami environment [71℄.Evolutionary Algorithms are natural andidates for optimization in dy-nami environments, due to the straightforward analogy with organi evo-lution, whih ours in a ontinuously varying environment. Typial ap-proahes for dynami environments inlude the promotion of diversity, theuse of multi-populations, the introdution of memory-based omponents,or the assignment of so-alled souts that maintain information about thesearh spae.Evolution Strategies are a partiularly good hoie, for their built-in mu-tative self-adaptation mehanism. The standard-ES has been demonstratedto perform well under a dynami environment of a time-varying spheremodel ("a landsape with atastrophes"), using a omma strategy and with



174 Chapter 9. Dynami Moleular Alignmentno reombination (see, e.g., [164℄). The mutative self-adaptation mehanismplayed a ruial role, in allowing a rapid adjustment of the evolving individ-uals to the time-dependent loation of the global maximum: The optimalmutation strategy parameters were learned suessfully, without exogenousontrol. Other empirial studies extended this model to ontinuously mov-ing peaks, and reported on satisfying adaptation of the standard-ES [165℄.Arnold and Beyer onsidered spei� derandomized Evolution Strategies,and showed theoretially that the step-size adaptation mehanism works per-fetly well on a moving-sphere problem [166℄. In light of these �ndings, we�nd our andidate derandomized ES variants perfetly suited for the urrentoptimization task.9.4.2 Dynami Intensity Environment: ProedureIn order to observe, and possibly understand how the optimal laser pulseshape evolves from the simple pulse train obtained for Ωge = 40 × 1012s−1(Figure 9.14 (a)), into a muh more ompliated pulse-shape for Ωge = 160×
1012s−1 (Figure 9.14 (b)), a series of alulations were onduted where Ωgewas inreased linearly as a funtion of the generation number. Inthese alulations, the moleule was initially exposed to a shaped laser �eldwith Ωge = 40 × 1012s−1, and over 10, 000 generations this value linearlyinreased to Ωge = 180 × 1012s−1. This was immediately followed by alinear derease of the intensity over additional 10, 000 generations, bak tothe initial value of Ωge = 40 × 1012s−1. Note that a generation involves 10or 15 funtion evaluations, for the DR2-plain or CMA-Hermite proedures,respetively. Furthermore, we onsider two ontrol resolutions for the plain-parameterization, n1 = 80 versus n2 = 160, in order to test the algorithmiperformane in these two searh spae dimensions.The analysis of the dynami intensity environment is disussed next atseveral levels.Intensity Milestones: Dynami vs. Stati OptimizationFigure 9.17 presents the best evolution runs of the DR2-plain optimizationproedure for n1 = 80 and n2 = 160 pixels, respetively. It ontains foururves, whih orrespond to the evolution progress in the ramped-up andramped-down laser intensity environments of the two di�erent runs. Notethat the ramped-down urves of the two runs merge. The ramped-up urvesdi�er signi�antly in the initial learning periods, due to the di�erent searhspae dimensionality, as expeted.Following the initial learning period of the optimization proedure, asmooth inrease is observed in the alignment yield 〈cos2(θ)〉, as a funtionof the laser intensity. The best 〈cos2(θ)

〉 value, as reported in the statihigh intensity ase (Table 9.5), is suessfully reovered: A 〈cos2(θ)
〉 value



9.4. Evolution of Pulses under Dynami Intensity 175of 0.962 was obtained at Ωge = 160 × 1012s−1. Thus, the dynami environ-ment does not hamper the optimization performane given a desired targetintensity, as long as the initial learning period is passed.Figure 9.18 presents a omparison between the pulse-shape attainedby the DR2 during a dynami-intensity run at the milestone of Ωge =
160× 1012s−1, to the equivalent optimized pulse-shape attained in the statioptimization proedure at the same Rabi frequeny milestone, previouslyshown in Figure 9.14. Several onlusions may be drawn from this om-parison. While the 〈cos2(θ)〉 yield value is similar for both alulations (aswell as in further alulations using this approah), the pulse shapes aredramatially di�erent. Evidently, the pulse shape that the algorithm �ndsis heavily in�uened by the way that the adaptation of the pulse intensitysteered the alulations through the searh landsape. This behavior is on-sistent with theoretial analysis of Quantum Control landsapes and theirlevel sets [131, 134℄.Evolution of PulsesWe devote this setion to the exploration of the pulse shapes obtained inthe dynami intensity environments. Our experimental proedure has essen-tially an asymmetri nature due to its two stages: The �rst stage of rampingthe intensity from low-to-high requires a learning phase (see Figure 9.17),whereas when reversing the proess and bringing the intensity bak downthe optimization starts from a onverged result. Thus, highly optimizedsolutions an be maintained throughout the latter exursion, and the transi-tion from high-to-low intensity an be ontinuously observed. This proessis illustrated both in Figure 9.19 and in Figure 9.20. In the latter, a se-quene of pulses are shown, starting from pulses at low intensity (top-leftorner), where the learning proess takes plae, moving along the snapshotgallery in a matrix-indexing-order fashion, to the enter of the plot wherethe intensity is in its maximal regime, before reduing to a lower inten-sity again for the pulses shown in the lower-right part of the plot. Theselatter pulse-shapes are very simple pulse trains, with a pulse separation of
1/(3Brotc) = 2.2ps. Suh a pulse train is very di�erent from the pulse trainobtained for the stati problem (Figure 9.14), where a pulse separation of
1.1ps was observed in the stati alulation at Ωge = 40 × 1012s−1. Never-theless, the alignment observed at the end of the optimization of Figure 9.20reahes a value of 〈cos2(θ)

〉

= 0.548, whih ompares rather well with thevalue of 0.550 obtained in Figure 9.14. At these low intensities, as previouslyobserved at high intensity, vastly di�erent pulse shapes are able to produesimilar optimized values of 〈cos2(θ)
〉. These solutions are on a level set, butthe present alulations do not reveal if these solutions are on onneted(i.e., ontinuously morphable from one level set to another), or disonnetedomponents of the level set. At low intensity, the 1/(6Brotc) = 1.1ps pe-
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Figure 9.17: Evolution ourse of the best DR2-plain runs for phase resolu-tions of n1 = 80 and n2 = 160 pixels, on the ramped-up intensity (dashedor dotted, respetively) versus the ramped-down intensity (reversed dire-tion, solid urves that merge for both runs). Eah diretion orresponds to
105 generations (106 funtion evaluations).

Figure 9.18: Comparison of pulse shapes that were obtained in optimizationsemploying the DR2-plain proedure, when using a �xed Ωge = 160×1012s−1(bottom, and see Figure 9.14), or � at this same value of Ωge = 160×1012s−1� in the ourse of an optimization where Ωge was linearly varied from 40 ×
1012s−1 to 180 × 1012s−1.
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Figure 9.19: Intensity dependene of the alignment 〈cos2(θ)
〉 and the laserpulse shape from the ramped-up dynami intensity environment, subjetto a linear inrease: Ωge := 40 × 1012s−1 → 180 × 1012s−1. Snapshots aretaken at � (a) 54 × 1012s−1, (b) 110 × 1012s−1, () 166 × 1012s−1 � andanalyzed respetively.



178 Chapter 9. Dynami Moleular Alignmentriod observed in Figure 9.14 and the 1/(3Brotc) = 2.2ps period observed inFigure 9.20 orrespond to a laser interation that ours one per period
Trev02 = 1/(6Brotc) = 1.1ps of the J = (0, 2) oherent superposition state(Figure 9.14), or every seond period (Figure 9.20). This an easily be ob-served in Figure 9.19, where the temporal behavior is shown for the laserpulse shape and the indued dynami alignment for Ωge = 54 × 1012s−1,
Ωge = 110×1012s−1, and Ωge = 166×1012s−1. As the intensity is inreased,higher rotational states begin to ontribute to the rotational wavepaket andthe Trev = 1/(2Brotc) = 3.3ps rotational period begins to assert itself. Thisis a onsequene of the energy di�erenes between rotational levels J0 and
J0 + 2, being multiples of 2Brot for all values of J0. In the latter half ofthe pulse (t > 0), additional narrowly spaed pulses ome into play, beingspaed by Trev/4 = 1/(8Brotc) = 0.8ps. The ourrene of these new peaksomes at the expense of the peak at 2.2ps, whih is onsiderably weakenedin the alulation at Ωge = 110×1012s−1 (Figure 9.19(b)), and is ompletelyabsent in the alulation at Ωge = 166 × 1012s−1 (Figure 9.19()). In thelatter alulation a new peak has appeared at a delay of 3.3ps, orrespondingto the full revival of the rotational wavepaket formed.We thus onlude that the optimal pulses observed in the simulationsarise as a result of an interplay between the temporal struture that is re-quired to optimize the transfer from J = 0 to J = 2, leading to peak sep-arations that are a multiple of 1/(6Brotc), and the temporal struture thatis required to optimize the transfer from there to higher rotational levels,whih leads to peak separations that are multiples of 1/(8Brotc).Step-Size and Phase TrajetoriesFigure 9.21 presents the alulation of the Eulidean distane between evolv-ing ontrol phase funtions that are determined sequentially as optimal ev-ery 100 generations (i.e., between following best-individuals), as well as theglobal step-size of the mutation operator in those time stamps. Dramatihanges between ontrol phases are observed in the initial learning period,as expeted. This is followed by a trend of mild hanges, with several burstsof ≈ 2π variations. We propose the so-alled wrapping e�et as an ex-planation for these ≈ 2π-jumps: The ontrol phase funtion is subjet to
[0, 2π]-periodi boundary onditions, that are enfored by wrapping a phasevalue. Upon examination of the phase spae, it is indeed on�rmed thatthese bursts are aused by a boundary wrapping of a phase funtion value(its index varies). We thus onlude that the variations in the phase spaeare onsistently mild subjet to the dynami laser intensity. This is onsis-tent with the step-size behavior (presented in log10 sale), whih stays in theorder of 10−2 after the learning period, with expeted �utuations.Interestingly, following the initial learning period, the algorithm "staysin the neighborhood", whih seems to be su�ient for determining optimal
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Figure 9.20: Evolution of laser pulses subjet to linearly inreased followedby linearly dereased laser intensity, Ωge := 40×1012s−1 → 180×1012s−1 →
40 × 1012s−1, presented as snapshots of optimized pulse shapes at spei�intensity milestones. The order follows a matrix-indexing fashion. The pulse-shapes obtained in the end of the proess, i.e., after the ramping-down tothe regime of low-intensity (bottom right) are a simple pulse train with pulseseparation of 1/(3Brotc) = 2.2ps.
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Figure 9.21: The evolution ourse of the DR2-plain on n1 = 80 pixels sub-jet to the ramping up and down laser intensity environment. Dashed line �unsaled �tness evolution; Thin solid line � the Eulidean distane betweenevolving ontrol phase funtions [saled on the left axis℄; Thik line - globalstep-size of the mutation operator [log-saled on the right axis℄. DramatiEulidean trajetories in the ontrol phase funtion are observed during theinitial learning period, as well as at spei� bursts of ≈ 2π variations, orre-sponding to the so-alled wrapping e�et.ontrols for the ontinuously hanging laser intensity. This means that highalignment yield at di�erent laser intensities orresponds to a neighborhoodof the ontrol spae.9.5 Salability: Control DisretizationIn this setion we aim at exploring the salability of the alignment problemwith respet to the ontrol resolution. So far, the latter has been �xed inour alulations to n = 80. In partiular, we would like to study the trade-o� between the ontrol resolution, whih allows �ne-tuning of the eletri�eld, to the suess-rate of the evolutionary learning proess, subjet to a�xed number of funtion evaluations. Due to omputational onsiderations,we hoose to ondut the salability alulations on the zero-Kelvin variantof the alignment problem. Also, we selet the DR2 subjet to the plainparameterization as our optimization kernel for this investigation.
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Figure 9.22: Best, mean and worst osine-squared alignment values obtainedby the DR2 for eah parameterization, over 10 runs of 20, 000 funtion eval-uations eah (see legend).9.5.1 Numerial ObservationWe apply the DR2 algorithm to the optimization task in the following man-ner: 10 runs per ontrol disretization, with n = {80, 100, 120, . . . , 680, 700},and additionally with n = {800, 900, 1000}. Eah run is limited to 20, 000funtion evaluations.Figure 9.22 presents the numerial results of these alulations. The best,mean and worst �tness values obtained by the DR2, after 20, 000 funtionevaluations, for eah disretization, are presented. As an be observed, thebest �tness value is attained for n = {80, 100}; As the dimension n inreases,there seems to be a weak trend of �tness values derease, but the DR2still manages to obtain high quality solutions in the regime of 0.94 even for
n = 400.A typial evolution run for n = 100 is given in Figure 9.23. As anbe observed from this plot, a suessful learning is obtained after ≈ 5, 000funtion evaluations. In higher dimensions, i.e., n ≥ 500, the DR2 doesnot sueed in takling the problem within the limited number of funtionevaluations. A typial run for n = 700 is presented in Figure 9.24.
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Figure 9.23: A typial DR2 evolution run for n = 100, with 20, 000 funtionevaluations. Suessful learning is observed after ≈ 5, 000 evaluations.

Figure 9.24: A typial DR2 evolution run for n = 700, with 20, 000 funtionevaluations. No suessful learning is observed.
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Figure 9.25: DR2 evolution run, for n = 1000, with 100, 000 funtion eval-uations. The best osine-squared alignment value found was f∗ = 0.9583.Granting Additional Funtion EvaluationsGiven the numerial results of the previous setion, we were interested inthe question whether the �xed number of funtion evaluations posed a lim-itation on the searh and did not allow a suessful learning of the deisionparameters and onvergene into a good solution.We have onduted another series of runs, limited now to 100, 000 fun-tion evaluations, for the extreme ase of n = 1000. We were surprised to�nd out that some of the runs did sueed in onverging suessfully into�ne solutions of high yield values. In partiular, we would like to pointout a run whih attained a solution with osine-squared alignment value of
f∗ = 0.9583, a value whih is lose to the highest value known to us for thisvariant of the problem. The plot of that spei� evolution run is given inFigure 9.25. A rough observation reveals that the DR2 'takes-o�' into a on-vergene pathway only after ≈ 50, 000 funtion evaluations, and then it needsadditional 30, 000 funtion evaluations to reah saturation. This numerialobservation indiates that the learning task of the deision parameters inthis problem is still feasible in higher dimensions of the ontrol funtion,as long as the granted number of funtion evaluations is su�iently large.From the algorithmi perspetive, the employed DES variant, the DR2 algo-rithm, takled suessfully this 1000-dimensional problem. However, from



184 Chapter 9. Dynami Moleular Alignmentthe physis perspetive, suh a high-resolution parameterizationdoes not seem to pay-o�, as far as the osine-squared observableis onerned, and there seems to be no justi�ation to employdisretization of the ontrol phase funtion with more than n=80pixels.9.6 Intermediate DisussionOur alulations so far, espeially in Setions 9.3 and 9.4, show that it ispossible to enounter high diversity of optimal solutions in onstrained nu-merial simulations of Quantum Control, and moreover, that the examina-tion of suh rih sets of solutions an beome an important aspet of theontrol experiments. The diversity of suessful ontrols likely ontains use-ful dynamial information, and may also provide the deision maker witha list of hoies to onsider for weighing in other anillary ontrol riteria,e.g., multi-riterion deision making. The present alulations optimizingdynami moleular alignment in a diatomi moleule exposed to an intense,shaped laser �eld, provide ompelling evidene that the absolute value ofthe quantity that is being optimized (i.e., the �tness) is the true measure ofsuess, and that the same value of the �tness may be ahievable by widelydi�ering laser pulse shapes that share only a limited number of ommonfeatures. Eah of these solutions has the potential of arrying valuable infor-mation about the underlying physis, where some of the solutions providedkey information on the dynamis of the alignment proess. Viewed in thissense, the uniqueness of the �tness value, and the diversity of the solutionsthat an lead to aomplishment is a blessing in disguise.We also showed that the optimized alignment yield attained a value whihwas very lose to the maximal possible yield in the urrent framework, evenwhen the onstraints on the optimization translated into a signi�ant distor-tion of the resultant wavepaket. By relaxing spei� onstraints, we showedthat it was possible to enhane the observable alignment further toward themaximal attainable alignment possible for the rotational basis set used. Thisoutome leads to the optimisti onlusion that high yields may be obtained,even when a priori it seems that the system is subjet to severe onstraintsfor onstruting the wavepaket. As disussed, the origin of this behavioran be understood in terms of the variational priniple, as well as the phys-ial observable involving an integration over the wavefuntion whih hidessome of its disrepanies.As a diret implementation of these onlusions, we would like to om-plete our work on the optimization of dynami moleular alignment by meansof two additional aspets - multi-objetive optimization, as well as nihing.



9.7. Multi-Objetive Optimization 1859.7 Multi-Objetive OptimizationAs further investigation of the alignment problem, we would like to ex-tend our single-riterion optimization approah to a Pareto Optimizationapproah. As previously introdued in Chapter 5, Pareto Optimization aimsat attaining the e�ient set for a given multi-objetive optimization problemand its orresponding Pareto front. In partiular, we are interested in remov-ing the punishment approah to high-intensity pulses, and rather onsiderthe �uene of the pulse as an independent objetive, subjet to minimiza-tion. Thus, the observable's yield remains as an objetive, while we hooseto de�ne the total-SHG signal of the eletri �eld as the seondary objetivesubjet to minimization.Formally, we aim at �nding the Pareto front for the following bi-riteriaproblem:
f1 = maxE(t)

〈

cos2(θ)
〉

−→ max

f2 =

∫ ∞

−∞
|E(t)|4dt −→ min

(9.10)In order to selet an appropriate optimization method, the following har-ateristis of the objetive funtions in the appliation problem are of im-portane: Based on our aumulated experiene with the problem in itssingle-riterion form, we assume that the funtions f1 and f2 are ontinu-ous in most points, highly nonlinear and multimodal. Nothing is known yetabout the shape of the Pareto front for the appliation problem. Analytialtehniques and methods based on di�erential alulus are likely to fail in thisproblem, beause of the omplexity of the integral equations.9.7.1 Choie of MethodsWe hoose to apply the NSGA-II, as presented earlier (Setion 5.1.2), to theurrent task. Due to the duration of the simulator evaluation, we would liketo onsider a spei� metamodel that may allow for the aeleration of thealulations.Metamodel-Assisted NSGA-II In order to aelerate stohasti opti-mization algorithms in the presene of time onsuming funtion, metamod-els have been frequently proposed (see, e.g., [167, 168, 169℄). A metamodelis an approximation of an objetive funtion that is learned from a set ofevaluations.More expliitly, given a set of points ~x(1), . . . , ~x(k) ∈ Rn, and the or-responding evaluations of the objetive funtions at these points, ~f (1) =
f
(

~x(1)
)

, . . . , ~f (k) = f
(

~x(k)
), the metamodel an be used to ompute anapproximation, denoted by f̂(~x) ≈ f(~x), for any point ~x ∈ Rn, in a dura-tion whih is onsiderably shorter than the preise evaluation. As expeted,



186 Chapter 9. Dynami Moleular Alignmentmetamodels tend to be more preise near the training points.Kriging1, also referred to as Gaussian random �eld models, is a parti-ular type of interpolation model that has been frequently applied for meta-modeling [167, 168, 169℄. The statistial motivation for this method is thatthe deterministi objetive funtions are onsidered to be realizations of aGaussian random �eld G. This assumption makes it possible to ompute ameasure for the unertainty of preditions, i.e., eah predition value is asso-iated with a standard deviation that an be used for omputing two-sidedon�dene intervals.It is typially assumed that these random variables G~x are orrelated bymeans of a spatial orrelation funtion,
c : Rn × Rn → [−1, 1],i.e., a orrelation funtion that depends only on the positions of the randomvariables in spae. In our study we shall use a orrelation funtion of theform:

c(~x, ~x′) = exp
(

−θ
∣

∣~x− ~x′
∣

∣

2
)The orrelation funtion of the Gaussian random �eld is estimated from thegiven data, or given a-priori. In this study we apply leave-one-out ross-validation to determine an appropriate value of θ, as suggested in [170℄.After the orrelation funtion is estimated, the predition is made. For thispurpose, the onditional Gaussian distribution at the given input vetor

~x ∈ Rn is omputed.A pratial implementation of Kriging has been desribed by Emmerih[101℄, and it was suessfully employed in engineering design optimization[100, 169, 171℄. Multi-objetive problems were typially approahed by learn-ing metamodels for eah objetive funtion separately, in an implementationknown as loal Kriging. We omit here its derivations, and refer the readerto [101℄.In the metamodel-assisted NSGA-II [171℄, Kriging metamodels are usedto pre-evaluate the set of o�spring solutions and selet favorable variantsamong it for preise evaluation. The unertainty information an be used tofailitate searh in less explored regimes of the landsape.Algorithm 9 outlines the general Metamodel-Assisted Evolutionary Al-gorithm (MA-EA), as desribed by Emmerih [101℄. The di�erene to thegeneri Evolutionary Algorithm an be summarized as follows:
• All preisely evaluated points are stored in a database, denoted by Dt(f. lines 4 and 9).1Kriging originates from geostatistis, and is named after the mining-engineer Krige.
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Figure 9.26: Outputs of Gaussian Random Field Metamodels using a R→ Rmapping example. Three points, ~x(1), ~x(2), and ~x(3) have been evaluatedhere. The result of eah approximated evaluation at a point ~x′ is representedby the mean value, ŷ, and by the standard deviation, ŝ, of a 1D Gaussiandistribution. Figure ourtesy of Mihael Emmerih [101℄.
• The algorithm �lters out less promising solutions (f. line 8) andthereby redues the o�spring population size. The remaining solu-tions are then preisely evaluated and onsidered in the subsequentseletion.There are many possibilities to design �lters for that purpose. In this studywe restrit ourselves to onstant output size �lters. The size of the resulting�ltered set will be denoted by ν and the orresponding MA-EA will be termeda (µ + ν < λ)-EA. All �lters will be rank-based, i.e. they sort the o�springpopulation with respet to some riterion, a so-alled �lter riterion.We o�er a 3D visualization in Figure 9.27 in order to gain some intuitioninto the di�erent onepts of �lters in the bi-riteria ase. In the latter, thePareto-front approximation of the urrent population is depited, as well asthree o�spring individuals, namely ~x1, ~x2 and ~x3. The o�spring individualshave been evaluated with the Kriging metamodel, and thus their preisevalues are not yet known, but rather the de�ning parameters of 2D Gaussianrandom variables, G~xi

. The distributions of the random variables G~x1
,G~x2

,and G~x3
are also visualized in the diagram by means of their probabilitydensity funtions.Four di�erent riteria have been disussed by Emmerih [101℄ for assigninga yield value to a searh point ~x, whih is based on the predition provided
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Figure 9.27: Interval boxes for approximations in a solution spae with twoobjetives. Figure ourtesy of Mihael Emmerih [101℄.by the de�ning parameters of the Gaussian preditor G~x:
• Mean Value Non-dominated / rowding distane sorting, based onthe expeted value for G~x given by f̂(~x).
• Lower Con�dene Bound (LCB) Non-dominated / rowding dis-tane sorting on the lower bound edge of the on�dene interval of
G~x.

• Probability of improvement (PoI): The probability that the re-alization of G~x is non-dominated. It an be omputed via integrationover the non-dominated set.
• Expeted Improvement (ExI) The expeted inrease in the domi-nated hypervolume for G~x is measured.Modus OperandiWe applied the following algorithmi kernels to the Dynami MoleularAlignment:
• NSGA-II: The lassial variant by Deb [98, 172℄.
• Metamodel-Assisted EA with Probability of Improvement (PoI-EMOA).
• Metamodel-Assisted EA with Expeted Improvement (ExI-EMOA).The parameterization of these methods is µ = 50, ν = 0.2 · λ, with twodi�erent settings for λ: λ = 250 and λ = 50. The parameters of the mutationoperator and reombination operator have been hosen as desribed by Deb



9.7. Multi-Objetive Optimization 189Algorithm 9 (µ+ λ)-MA-EA1: t← 02: Pt ← init() {Pt ∈ Sµ: Set of solutions}3: Evaluate(Pt)4: Dt ← Pt5: while t < tmax do6: Gt ← Generate(Pt) {Generate λ variations}7: Metamodel_evaluate(Gt) {Metamodel is derived from Dt}8: Qt = Filter(Gt)9: Dt+1 ← Dt ∪Qt10: Pt+1 ← Selet(Qt ∪ Pt) {Rank and selet µ best}11: t← t+ 112: end while[98℄. Due to implementation onsiderations, in pratie both objetives wereminimized, and therefore we assign:
f1 → max =⇒−f1 → min9.7.2 Numerial ObservationFigures A.14, A.15 and A.16 present the results of our alulations, wherethe 20%, 50% (median), and 80% attainment surfaes are plotted. Eah oneof them refers to 5 runs with 20, 000 evaluations per run. In order to makethe urves easier to be distinguished, we zoomed-in a box around the kneepoint of the Pareto front approximations.DisussionThe results learly indiate that there is a on�it between the two objetives,as suspeted. Thus, Pareto optimization is an appropriate tool for solvingthis problem. The fat that a onvex Pareto front has been observed suggeststhat good ompromise solutions are likely to be found. We observe a sharpinreasing �ank at both ends of the approximated Pareto front. Regions offair trade-o�s range from about −0.6 to −0.4 in the (−f1) oordinate.There are signi�ant di�erenes in the behavior of the multi-objetiveEA variants. The best overage of the Pareto front has been ahieved bythe ExI-EMOA. This variant is the only variant that found solutions for f1above 0.58. The highest value found was 0.6184. The PoI-EMOA resultedin approximations with lower spread. However, the preision of this EMOAvariant was better in the regions overed. This result is onsistent withsome theoretial �ndings reported in [171℄, as well as with their numerialassessment on arti�ial problems reported there. The expeted improvementmeasure puts emphasis on exploring unknown regions, while the probability
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Figure 9.28: Left: f − f̂ - plot for (−f1); Right: f − flb - plot for (−f1).

Figure 9.29: Left: f − f̂ - plot for f2; Right: f − flb - plot for f2.of improvement have the tendeny to arry out better exploitation of visitedregions. Overall, the metamodel-assistane seems to be a valuable ingredientfor this problem, as an be seen by omparing the results of the NSGA-IIwith those of the metamodel-assisted EMOA.A more detailed analysis of the metamodel-based approximations wasperformed, in order to assess whether the metamodeling worked as expetedfrom theory. The results are displayed in Figures 9.28 and 9.29, for one ofthe runs with the ExI-EMOA (λ = 250). The f − f̂ plots indiate that inthe whole range of funtion values the results obtained with the metamodelwere strongly orrelated with the true funtion values. The error bandwidthfor f1 is about 10% of its range versus 15% for f2 with respet to its range.These results orrespond to results in similar studies in metamodel-assistedoptimization [171℄. Moreover, the lower on�dene bounds, denoted by flb,have been ompared to the outome of the preise evaluations, f . Here, the
95.45%-lower on�dene bounds, as omputed by the Kriging method, havebeen assessed for their validity (see Figures 9.28 and 9.29). The results arein onformity with theory for f1. However, some outliers for f2 in the region



9.8. Appliation of Nihing 191of flb from 0.15 − 0.2 should be reported. However, these outliers did notseem to hamper the algorithmi performane.From the physis point of view the obtained result is interesting, sineit shows the nature of the trade-o� between the alignment's observable andthe intensity of the eletri �eld, expressed here by means of the seondharmoni generation signal. The importane of the intensity riterion islikely to govern the deision of the expert on the trade-o� surfae, whihis to look for solutions with relatively good f1 values in the region of fairtrade-o�s.9.8 Appliation of NihingWe shall apply here our DES nihing algorithms to the zero-Kelvin variantof the dynami moleular alignment. Following the appliation of nihing tothe population transfer problem in the rotational framework, as desribed inSetion 8.3, we take into onsideration the diversity measure issue, and fullyadopt the onlusions drawn in Setion 8.3.1.Modus OperandiWe onsider here three nihing strategies:1. The (1, λ)-DR2 � for being the best method to perform on this problem,and also as a representative of �rst-order strategies.2. The (1, λ)-CMA � as a representative of seond-order information strate-gies.3. The (1 + λ)-CMA � as a representative of elitist strategies.We ondut 10 runs per method, searhing for q = 3 nihes, subjet to plainparameterization of the ontrol phase at n = 80 pixels. Eah run was limitedto 15, 000 funtion evaluations per nihe.9.8.1 Numerial ObservationThe alulations are disussed at several levels.Nihe-RadiusFollowing the derivation done for the nihe radius in the population transferproblem in Setion 8.3.2, we onduted preliminary runs with a nihe-radiusof ρ = 110. However, it performed poorly, in an equivalent way to its initialperformane on the population transfer problem: The DR2 as well as theCMA-omma failed, and the CMA-plus obtained good solutions only for the�rst nihe.



192 Chapter 9. Dynami Moleular AlignmentTable 9.6: Three nihes obtained in 10 runs � averaged yield values (inparentheses - best value attained) � for the three employed nihing strategies.Ranked-Nihes DR2 CMA CMA+Best nihe 0.9417 (0.9605) 0.8553 (0.9029) 0.9517 (0.9585)

2nd-best nihe 0.8477 (0.9552) 0.8229 (0.8561) 0.9493 (0.9525)

3rd-best nihe 0.8054 (0.8558) 0.7966 (0.8161) 0.9365 (0.9484)Table 9.7: Nihes orrelation for the nihes obtained in 10 runs � averagedross-orrelation values, as de�ned in Eq. 8.16.Nihes Correlation DR2 CMA CMA+
c1,2 0.6784 0.6952 0.6312

c1,3 0.6288 0.6905 0.6062

c2,3 0.7593 0.6951 0.6414We managed to get satisfying results for ρ̃ = 55, as will be reported here.Thus, onsider all the reported results here as obtained with ρ̃ = 55.Suess-RateThe osine-squared alignment of the three methods, for the three obtainednihes, is presented in Table 9.6. We an observe a lear trend - the CMA+mehanism outperformed the other mehanisms, with onsistent loationof three good nihes on average. However, the DR2 mehanism managed toobtain the top-quality solutions for the best as well as for the 2nd-best nihes,in onsisteny with our previously reported results. The latter typially failedto loate a 3rd good nihe. The CMA omma-strategy, on the other hand,simply failed in obtaining satisfying nihing results on this landsape.Nihes Cross-CorrelationWe alulated the ross-orrelation oe�ients for the obtained pulse-shapesof the di�erent nihes, as de�ned in Eq. 8.16. The results of these alu-lations are presented in Table 9.7. We may state that the pulse-shapes ofthe di�erent nihes are weakly orrelated to one another. In partiular, it isinteresting to note the low orrelation values of the the CMA+ kernel.



9.8. Appliation of Nihing 193Laser Pulse DesignsOur de�nition of a distane measure to this problem has been proved tobe suessful. The obtained pulses in the time-domain had indeed di�erentharateristis, representing di�erent oneptual laser-pulse designs. Threenihes, obtained in a typial CMA+ run, are plotted by means of their pulseintensities and revival strutures in Figures A.17, A.19 and A.21.Coneptual Quantum Strutures RevisitedWe would like to o�er an additional analysis for our nihing solutions. Fig-ures A.18, A.20 and A.22 provide the SWFT piture for the obtained so-lutions. It an be observed that these three solutions represent the sameoneptual quantum struture of states population. This SWFT observationreinfores our onlusions onerning the orrelation between the employedoptimization routine in ombination with the applied parameterization tospei� oneptual quantum strutures, as drawn in Setion 9.3.1. There-fore, we do not �nd it surprising that all three obtained pulses share thesame 'behind-the-senes physis', due to the fat that they were all obtainedwith the same algorithmi kernel (e.g., CMA+), subjet to the plain param-eterization. This observation does not ontradit our primary onlusionthat the nihing proess has been suessful in loating three di�erent pulseshapes in the temporal domain, as initially required. It simply reveals anadditional, well-hidden, degeneray among the solutions. In the next setionwe shall o�er a way to remove this seond degeneray ompletely.Removing the Seond DegenerayGiven the additional degeneray whih was enountered in the SWFT spae,one an further develop a problem-spei� diversity measurement. In thisase, our idea is to onsider the wavepaket spae, and more expliitly, toevaluate the di�erenes between the population of rotational levels, ∣∣∣a(t)
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2,as the measurement of diversity between nihes. The implementation itselfis straightforward, due to the fat that the vetor of population oe�ients isgiven by the alignment-routine. Sine the oe�ients are normalized, subjetto the normalization postulate of Quantum Mehanis, it is fairly simple toestimate the nihe radius in this ase.Nihe Radius: Wavepaket Spae Aording to the Quantum Mehan-is normalization postulate, the wavepaket oe�ients in the N -dimensionalHilbert spae are normalized:
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194 Chapter 9. Dynami Moleular AlignmentIn the wavepaket treatment for removing the seond degeneray, these o-e�ients play the role of the deision parameters, as far as the diversitymeasurement is onerned.The alulation of r of Eq. 3.3 simply reads:
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≈ 0.47 (9.11)Thus, we set it to ρ = 0.5. We hoose to employ only the CMA+ kernel inthis ase, subjet to plain as well as Hermite parameterizations, aiming toshow feasibility of the de�ned diversity measure.This newly-de�ned diversity-measurement for the alignment problem hasbeen observed to be suessful. The obtained pulses in the temporal domainhad indeed di�erent harateristis, and in partiular their shapes di�ered ina satisfying manner. We onsider here the results obtained when the Hermiteparameterization was employed. The best nihe obtained in every run wastypially of the optimal lass known to us: Both the osine-squared alignmentyield, as well as the pulse shape and the population pro�le, were assoiatedwith the best solutions reported previously. The seond-best nihe was arepresentative of a sub-optimal set of solutions: It had a lower value of osine-squared alignment yield and a di�erent pro�le of population. However, notethat the third-best loated nihe was not typially an interesting solution,as it had dramatially lower alignment values in omparison to the �rst twonihes. The temporal pulse-shapes themselves were very weakly orrelated.Typial solutions of best and seond-best nihes are plotted in FiguresA.23 and A.25, with their orresponding SWFT pitures in Figures A.24 andA.26.DisussionWe would like to summarize our numerial observation of the applied nihingalgorithms to the dynami moleular alignment problem. Nihing with theCMA+ kernel performed best, while always obtaining three nihes of high-quality laser pulses. The DR2 found the best solution, in onsisteny withour previously reported observations, but did not perform well on the se-ondary nihes. The CMA-omma failed to obtain satisfying nihing results.The original alulation of the nihe radius was not suessful at thepratial level, as reported for the population transfer problem. After intro-duing a fator of 0.5 to the original value, the nihing proess was observed



9.8. Appliation of Nihing 195to be suessful. The obtained pulse-shapes were typially weakly orrelated,as required.As far as the algorithmi performane is onerned, we adopt the onlu-sions drawn for the appliation of nihing to the population-transfer problem.We thus asribe the failure in pratie of the originally alulated nihe ra-dius, as well as the ompromised performane of the omma-strategy kernelson the seondary nihes, to the highly onstrained nature of the landsapewhen underposed to a radius-based nihing framework.Furthermore, we have applied a physis numerial assessment, at thequantum rotational piture, with the so-alled SWFT tehnique. The lat-ter has supported previous observations onerning the orrelation betweenoptimization routines in ombination with parameterizations to oneptualquantum strutures. This observation revealed that all three nihes of agiven run, whih di�er su�iently at the laser-pulse design level (tempo-ral domain), typially share the same oneptual quantum struture at theSWFT piture (wavepaket spae). We o�ered another diversity measure,whih relies on the physis information, in order to remove this seond de-generay. This approah indeed sueeded in that, and obtained multiplesolutions orresponding to di�erent oneptual designs.





While the growing orpus of knowledge ould be represented bythe diameter of an expanding irle, the horizons of ignoraneand open questions would be then represented by the area ofthat irle.Chinese proverb
Summary and OutlookOur journey has gone so far through the realms of Natural Sienes, whilekeeping a guiding torh of Computing and Operations Researh. The journeyis oming to its losure, and thus we would like to summarize it.Our starting point was the �eld of Evolution Strategies, a omputationaldisipline whih stems from Evolutionary Biology. We presented it in Chap-ter 1, and desribed in detail a new generation of its algorithms, the so-alledDerandomized Evolution Strategies. We suggested to onsider these state-of-the-art ES variants as powerful optimization methods with loal-searhapabilities.Chapter 2 was the gateway to nihing, and treated a wide spetrumof related topis. In partiular, we deepened furthermore into the worldof Biology, exploring the topis of diversity and organi variations. Weturned from there bak to the optimization arena, where we onsidered ade�nition of the attration basin, the part of the searh landsape whihis equivalent to the eologial nihe. We disussed the important issue ofpopulation diversity within Evolution Strategies. Espeially, we reviewedprevious researh onduted on the loss of diversity in ES, due to two mainomponents: Seletive pressure (take-over e�et), and drift (neutral e�ets,assoiated with both reombination and seletion). We thus reahed theonlusion that an Evolution Strategy whih employs a small populationwill inevitably lose its population diversity.At the same time, we presented alulations whih suggested that ESwith small populations are subjet to a so-alled mutation drift. The latterallows for easy translation of populations from one loation to another, ane�et that has the potential to boost fast speiation. This observation thusprovided us with further motivation to apply nihing with DES, algorithmivariants whih typially employ small populations.This was followed by a survey of lassial nihing methods, mainly fromthe GA �eld. We onluded this introdutory hapter with postulating ourmission statement with respet to nihing. In short, we argued that a nihingtehnique should attain the optimal interplay between the partitioning intostable subpopulations and the exploitation of eah nihe by means of ane�ient optimizer with loal-searh apabilities.Armed with this mission statement, and motivated by various results197



198 Summary and Outlooksuggesting that DES would be an attrative hoie for algorithmi kernelsin a nihing framework, we aepted upon ourselves the hallenge. Chap-ter 3, the ore of Part I, introdued our proposed framework of nihing inderandomized-ES, subjet to a �xed nihe-radius approah. The frameworkwas inspired by biologial onepts and by lassial GA nihing tehniques.In biologial terms, the proposed algorithm was assoiated with a speia-tion model of individual alpha-males. Following a detailed desription ofour method, we outlined a testbed of arti�ial multimodal ontinuous land-sapes. Upon the appliation of the proposed algorithm to the searh ofminima in these landsapes, we analyzed the numerial observation with theso-alled MPR Analysis. The latter allowed us to derive parametri valuesthat typially de�ne the behavior of eah DES variant as a nihing kernel.Our observation onluded that the CMA plus-strategy, whih has the lowestnihing aeleration, performed better than the other DES variants. Our pro-posed explanation for that onsidered the nihing problem as a onstrainedoptimization problem, where a plus-strategy is argued to have an advantagefor ES.Chapter 4 was a diret extension of Chapter 3, and it aimed at treat-ing the nihe radius problem. By employing the CMA algorithmi kernel,we proposed two di�erent approahes for self-adaptation of nihe-radii andnihe-shapes, based on step-size oupling and the appliation of the Maha-lanobis distane, respetively. We tested the various proposed variants onarti�ial multimodal landsapes, inluding landsapes with even and unevenspread of optima. The performane was highly satisfying, and was investi-gated by means of the MPR Analysis.In Chapter 5 we introdued our nihing framework into the multi-objetivearena. Our stated mission was to treat multi-global optimization problems.More spei�ally, our goal was to boost diversity in the deision spae, andby doing so to o�er more hoie in the typially on�iting deision makingproess. We derived a multi-parent nihing-CMA variant for that purpose,and showed that the appliation to a spei� set of multi-objetive problemsrequired only mild algorithmi adjustments. The observed performane washighly satisfying, and provided us with the desired proof of onept.Chapter 6 was the gateway to Part II, reviewing the main topis of OCTand OCE in the ontext of optimization. It outlined various important the-oretial results, whih onluded that ontrollable unonstrained quantumsystems have extrema that orrespond to perfet ontrol, or to no ontrolat all. Furthermore, perfet ontrol ould be typially obtained with only�rst-order (gradient) information while limbing-up the QC landsape; Atthe top of the landsape, there is an in�nite number of attainable optimalpoints. Despite the fat that these results are valid for "perfet" theoretiallandsapes with no onstraints, they play an important role in posing QC



Summary and Outlook 199optimization problems, and in suggesting ertain remarkable properties thatmight be instantiated in pratie. Some of the work reported here orrobo-rated some of these properties.Our pratial work on Quantum Control systems began in Chapter 7,where we onsidered two systems of two-photoni proesses both in simu-lations and in the laboratory. Upon analysis of pre-mature onvergene ofDES variants on these landsapes, due to the unrestrited searh employedby them, we introdued the so-alled wrapping operator into the ES frame-work. The CMA outperformed the other algorithms on those landsapes,even without using its seond-order (ovariane) information. We foundthese results to be an experimental orroboration of the OCT landsapeanalysis disussed in Chapter 6.The quantum rotational framework, whih onstituted a onsiderable partof our researh, was treated in this study at several levels throughout Chap-ters 8 and 9. Chapter 8 laid out the Quantum Mehanial foundations of therotational framework, and posed the so-alled population transfer problem.The latter was investigated by means of simulations at di�erent laser intensi-ties, whih revealed a rih landsape with a wide variety of optimal solutions.Moreover, it was observed that the number of independent solutions ritiallydepends on the di�ulty of the problem, determined by the laser intensity.The study of the rotational population transfer problem was onluded withthe appliation of our nihing algorithms. The latter required the de�nitionof a tailor-made distane metri, due to invariane properties of the ontrolphase funtion. The numerial simulations obtained good nihing results,where the elitist CMA kernel performed best. Due to the fat that the orig-inal nihe-radius alulation for this landsape failed in pratie, as well tothe fat that the omma-strategies did not perform well on seondary optima,we speulated that the introdution of a radius-based nihing approah tothis landsape posed a highly-onstrained optimization problem.Last but not least, the dynami moleular alignment problem was ex-tensively investigated in Chapter 9. We began the hapter by providing themotivation for obtaining moleular alignment, and then formally posed theproblem. Following a straightforward appliation of DES to the problem wefurther approahed it from multiple angles. We developed a parameteriza-tion method, that was shown to boost the onvergene of DES on the align-ment landsape. Moreover, we introdued a simpli�ed variant of the originalalignment problem, at zero Kelvin temperature, whih allowed an improvedinvestigation from the Physis perspetive. The examination of ertain DESvariants subjet to spei� parameterizations resulted in a fruitful study ofoptimality, where two lasses of solutions, optimal and sub-optimal, wererevealed. This optimality study also onluded that despite the onsider-able di�erene between the omposition of the optimized wavepaket andthe maximally attainable wavepaket, the obtained yield in the optimizationwas typially fairly lose to the maximally attainable yield. This exellent



200 Summary and Outlookbehavior was explained by means of the variational priniple.We proeeded with optimizing the alignment problem subjet to a dy-nami intensity environment. This resulted in a new perspetive on theevolution of laser pulses, and on�rmed furthermore our understanding ofthe optimal strutures within laser pulses applied to this problem.This was followed by the employment of a multi-riteria approah tothe alignment problem, while onsidering the minimization of the total se-ond harmoni generation signal as a seondary objetive with respet to thealignment yield objetive. Due to the heavy omputational ost of the sim-ulator, we introdued the so-alled Kriging Metamodel in order to boost ouralulations. This appliation on�rmed our suspiion of the existene of aon�it between the two objetives, whih had been treated previously bymeans of a punishment term.Finally, we applied our nihing algorithms to the alignment problem. Byfollowing the tailor-made distane metri introdued in Chapter 8, our �rstround of alulations obtained satisfying results. All the di�erent nihesrepresented, nevertheless, the same oneptual quantum design, as expetedfrom our previous investigation of optimality. Thus, we arried out a seondround of alulations, where the distane between the nihes was measuredin the wavepaket spae. The latter ahieved the goal of removing the ob-served degeneray. We linked the failure of the originally alulated niheradius to the ompromised performane of the omma-strategy kernels onthe seondary nihes, and asribed both to the highly onstrained nature ofthe landsape when underposed to a �xed radius-based nihing framework.Upon onluding this study, the message that we would like to post isthree-fold. Firstly, we would like to enourage the appliation of nihingmethods to high-dimensional real-world hard problems, for providing thedeision makers with the hoie among several optimal or near-optimal so-lutions. As was demonstrated here, the proposed nihing framework withDES kernels was apable of providing satisfying results on the investigatedQuantum Control landsapes. Furthermore, we showed that the employ-ment of a domain-spei� tailor-made diversity measure is possible, whenneessary. Seondly, we believe that the important multiple optima identi�-ation task has not yet attrated the proper attention of the sientists in theEvolutionary Computation ommunity, and some would even laim that itis often negleted. Therefore, we hope that a orresponding sub-ommunitywithin the EC ommunity will emerge in the near future. Thirdly, we arguethat the �eld of Quantum Control is a highly attrative testbed for opti-mization methods, as well as a rih arena of hallenging open problems. Assuh, it should enjoy the powerful apabilities of state-of-the-art Evolution-ary approahes, at all possible levels: multi-riterion optimization, nihingtehniques, optimization in environments with unertainty, et.



Summary and Outlook 201OutlookWe believe that we ompiled a genuine interdisiplinary study, with twomain ontributing omponents: The �rst, the introdution of nihing withthe powerful kernels of Derandomized ES variants to the arena of multimodalfuntion optimization, and the seond, the introdution of Quantum Controlto state-of-the-art evolutionary approahes. We, nevertheless, believe thatthere are still various diretions for future researh.It would be interesting to further apply our proposed nihing frameworkto additional searh landsapes, either arti�ial or from the real-world ap-pliations domain. In addition, the multi-globality goal in multi-objetiveoptimization ould be further explored, by means of extended algorithmidevelopments and by means of an appliation to pratial optimization prob-lems.Another hallenging diretion would be the development of additionalnihing frameworks with DES kernels whih do not utilize a nihe-radiusbased approah. As devoted followers of the No Free Lunh Theorem,we believe that there is always room for ompeting methods.On the Quantum Control front, there are still many open researh topisthat are related to our study. At the experimental level, it would obviouslybe exiting to optimize in the laboratory the Dynami Moleular Alignment.These experiments are approahing ount-down at Amolf-Amsterdam, uponthe ompletion of this dissertation.On that note, Quantum Control Experiments introdue many possibleoptimization topis for future researh. Suh topis are the investigation ofnoise and its e�et on algorithmi performane, robustness of obtained on-trols, the appliation of nihing as well as multi-riteria optimization in theexperimental learning-loop, and others.By introduing these hallenges we onlude this study, whih hopefullyturned out to be an enjoyable natural omputing experiene for the reader.We would like to end with the simple all: "keep it natural!".





Appendix AAdditional FiguresWe present here additional �gures in full-olor format.
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Additional Figures 205

Figure A.1: A snapshot gallery: The adaptation of the lassi�ation-ellipses,subjet to the Mahalanobis metri with the updating ovariane matrix, withthe CMA+ kernel on the 2D Flether-Powell problem. Images are taken inthe box [−π, π]2. Contours of the landsape are given as the bakground,where the X's indiate the real optima, the dots are the evolving individuals,and the ellipses are plotted entered about the peak individual. A snapshot istaken every 4 generations (i.e., every 160 funtion evaluations), as indiatedby the ounter.
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Figure A.2: A 3D-snapshot gallery: The adaptation of the lassi�ation-ellipses, subjet to the Mahalanobis metri with the updating ovarianematrix, with the CMA+ kernel on the 3D Flether-Powell problem. Imagesare taken in the box [−π, π]3. The ellipses are entered about the evolvingpeak individuals. A snapshot is taken every 20 generations (i.e., every 800funtion evaluations), as indiated by the ounter.
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Figure A.3: A 3D-snapshot gallery: The adaptation of the lassi�ation-ellipses, subjet to the Mahalanobis metri with the updating ovarianematrix, with the CMA+ kernel on the 3D Akley problem. Images aretaken in the box [−2, 2]3. The ellipses are entered about the evolving peakindividuals, and are observed to adapt simultaneously. A snapshot is takenevery 25 generations (i.e., every 1750 funtion evaluations), as indiated bythe ounter.
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Figure A.4: Population transfers from J = 0 to J = 4 obtained in 80 runs ofthe DR2 algorithm with Ωge = 80×1012s−1 (top), along with the orrelationoe�ient between the solutions, as de�ned in Eq. 8.16 (bottom). The solu-tions that perform best are highly orrelated. Pixels in white orrespond toross-orrelation value of 1 (after rounding-o�).
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Figure A.5: Population transfers from J = 0 to J = 4 obtained in 80runs of the DR2 algorithm with Ωge = 120 × 1012s−1 (top), along with theorrelation oe�ient between the solutions, as de�ned in Eq. 8.16 (bottom).The solutions that perform well an be divided into a �nite group of solutionsthat are highly orrelated within the group but not with solutions outsidethe group. Pixels in white orrespond to ross-orrelation value of 1 (afterrounding-o�).
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Figure A.6: Population transfers from J = 0 to J = 4 obtained in 80 runs ofthe DR2 algorithm with Ωge = 160×1012s−1 (top), along with the orrelationoe�ient between the solutions, as de�ned in Eq. 8.16 (bottom). Manynear-perfet solutions exist that are only weakly orrelated to eah other.Pixels in white orrespond to ross-orrelation value of 1 (after rounding-o�).
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Figure A.7: Contourplot of 〈cos2(θ)
〉 as a funtion of A and ∆ as de�nedin Eq. 9.6 for a peak Rabi frequeny of Ωge = 180 · 1012s−1. The olorsale ranges from 0.3551 (blue) to 0.688 (red). Figure ourtesy of ChristianSiedshlag [162℄.



212 Appendix AAlignment and Revival Struture of two obtained solutions. Thin red line:Alignment; Thik blak line: Laser pulse intensity.

Figure A.8: A typial optimal solution, obtained by the DR2-plain; Align-ment yield: < cos2 (θ) >= 0.9622.

Figure A.9: A typial sub-optimal solution, obtained by the CMA-plain: Asmooth exponential envelope of the revival struture is observed; Alignmentyield: < cos2 (θ) >= 0.9505.



Additional Figures 213Sliding Window Fourier Transform applied to the revival strutures ofobtained solutions (e.g., thin-red alignment urve of Figure A.8). Thevalues are log-saled, and represent how high the rotational levels of themoleules are populated as a funtion of the interation time.

Figure A.10: DR2 with plain-parameterization: The 4th rotational level,orresponding to J = 6, is mostly populated after the interation.

Figure A.11: CMA with plain-parameterization: All �ve �rst rotational lev-els are populated gradually after the interation.



214 Appendix ASliding Window Fourier Transform applied to the revival strutures ofobtained solutions: ontinued.

Figure A.12: DR2 with Hermite-parameterization: The four �rst rotationallevels are populated gradually after the interation.

Figure A.13: CMA with plain-parameterization: The 4th rotational level,orresponding to J = 6, is mostly populated after the interation.



Additional Figures 215Attainment surfaes for the bi-riteria optimization of the Dynami Mole-ular Alignment problem.

Figure A.14: Left: 20% Attainment Surfaes; Right: zoom-in.

Figure A.15: Left: Median Attainment Surfaes; Right: zoom-in.

Figure A.16: Left: 80% Attainment Surfaes; Right: zoom-in.



216 Appendix ANihing for the Dynami Moleular Alignment problem; Best-nihe results:Revival struture and the orresponding SWFT piture.

Figure A.17: Best nihe: < cos2 (θ) >= 0.9524.

Figure A.18: SWFT piture of the best nihe's solution.



Additional Figures 217Nihing for the Dynami Moleular Alignment problem; 2nd-best niheresults: Revival struture and the orresponding SWFT piture.

Figure A.19: 2nd-best nihe: < cos2 (θ) >= 0.9513.

Figure A.20: SWFT piture of the 2nd-best nihe's solution.



218 Appendix ANihing for the Dynami Moleular Alignment problem; 3rd-best niheresults: Revival struture and the orresponding SWFT piture.

Figure A.21: 3rd-best nihe: < cos2 (θ) >= 0.9466.

Figure A.22: SWFT piture of the 3rd-best nihe's solution.



Additional Figures 219Nihing in the wavepaket spae; A typial best-nihe: Revival strutureand the orresponding SWFT piture.

Figure A.23: Optimal nihe: 〈cos2 (θ)
〉

= 0.9596.

Figure A.24: Optimal nihe: 4th rotational level, orresponding to J = 6, ismostly populated after the interation.



220 Appendix ANihing in the wavepaket spae; A typial 2nd-best nihe: Revivalstruture and the orresponding SWFT piture.

Figure A.25: Sub-optimal nihe: 〈cos2 (θ)
〉

= 0.9472.

Figure A.26: Sub-optimal nihe: 3rd rotational level, orresponding to J = 4,is mostly populated after the interation.
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Appendix BComplete-Basis FuntionsHere is a brief summary of the fundamental mathematial onepts be-hind the Complete-Basis-Funtions Parameterization, as presented in Se-tion 9.2.2. This part is mainly based on Abramowitz [173℄ and Kaplan [174℄.Let f (x) be given in the interval a ≤ x ≤ b, and let

ξ1 (x) , ξ2 (x) , . . . , ξk (x) , . . . (B.1)be funtions whih are all pieewise ontinuous in this interval.The set {ξk (x)}∞k=1 is alled omplete if it an span any pieewise on-tinuous funtion f (x), e.g.,
f (x) =

∞
∑

k=1

ckξk (x) , (B.2)where the oe�ients ck are given by:
ck =

1

Bk

∫ b

a
f (x) ξk (x) dx, Bk =

∫ b

a
[ξk (x)]2 dx (B.3)The onvergene is guaranteed by the so-alled ompleteness theorem. Ex-pliitly, the series

Rm =

∫ b

a

(

f(x)−
m
∑

k=1

ckξk (x)

)2

dx =

∫ b

a
(f(x)− Sm(x))2 dx (B.4)onverges to zero for su�iently large m:

lim
m→∞

Rm = 0, (B.5)where we denoted the sequene of partial sums as Sm(x):
Sm(x) =

m
∑

k=1

ckξk (x) (B.6)221



222 Appendix BBy de�nition, the onvergene of the series of funtions is equivalent to theonvergene of Sm(x) to f(x):
lim

m→∞
Sm(x) = f(x) (B.7)The Fourier (Trigonometri) SeriesA trigonometri series is an expansion of a periodi funtion in terms of asum of sines and osines, making use of the orthogonality property of theharmoni funtions. Without loss of generality, let us onsider from nowon the interval [0, L]. Let f(x) be a single-valued funtion de�ned on thatinterval, then its trigonometri series or trigonometri expansion is given by:

f̃(x) =
1

2
a0 +

∞
∑

k=1

ak cos

(

2πk

L
· x
)

+
∞
∑

k=1

bk sin

(

2πk

L
· x
) (B.8)If the oe�ients ak and bk satisfy ertain onditions, then the series is alleda Fourier series.If f(x) is periodi with period L, and has ontinuous �rst and seond deriva-tives for all x in the interval, it is guaranteed that the trigonometri series of

f(x) will onverge uniformly to f(x) for all x; This is referred to as satisfyingthe Dirihlet onditions. We shall refer in this study to the trigonometriseries as the Fourier series.Other Sets of FuntionsIf one is indeed interested in periodi funtions, there is no natural alternativebut using the trigonometri series. However, if one is onerned with otherrepresentations of a general funtion over a given interval, a great variety ofother sets of funtions is available, e.g.:
• Legendre polynomials, Pk(x):

Pk(x) =
(2k − 1)(2k − 3) · · · 1

k!

{

xk − k(k − 1)

2(k − 1)
xk−2+

+
k(k − 1)(k − 2)(k − 3)

2 · 4(2k − 1)(2k − 3)
xk−4 − · · ·

}
(B.9)whih an also be de�ned via Rodrigues' formula:

P0(x) = 1 Pk(x) =
1

2kk!

dk

dxk

(

x2 − 1
)k
, k = 1, 2, . . . (B.10)If f(x) satis�es the Dirihlet onditions mentioned earlier, then therewill exist a Legendre series expansion for it in the interval −1 < x < 1.For illustration, the �rst 10 Legendre polynomials are plotted in FigureB.1.
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Figure B.1: The First 10 Legendre Polynomials.
• Bessel Funtion of the First Kind and of Order l, Jl(x):

Jl(x) =

∞
∑

k=0

(−1)k xl+2k

2l+2k · k! · Γ (l + k + 1)
(B.11)with Γ(α) as de�ned in Eq. 1.36. Given a �xed l ≥ 0, the funtions

{√x Jl (λlkx)}∞k=1 form an orthogonal omplete system over the inter-val 0 ≤ x ≤ 1.
• Hermite polynomials, Hk(x):

Hk(x) = (−1)k exp
{

x2
} dk

dxk

(

exp
{

−x2
})

, k = 0, 1, . . . (B.12)The Hermite polynomials form a omplete set of funtions over thein�nite interval −∞ < x < ∞, with respet to the weight funtion
exp

(

−1
2x

2
).

• Chebyshev polynomials of the First Kind , Tk(x):
Tk(x) =

k

2

⌊k/2⌋
∑

r=0

(−1)r

k − r

(

k−r
r

)

(2x)k−2r , k = 0, 1, . . . (B.13)The Chebyshev polynomials of the First Kind form a omplete set offuntions over the interval [−1, 1] with respet to the weight funtion
1√

1−x2
.



224 Appendix BHigher DimensionsAn expansion by means of a omplete set of funtions an be generalized forhigher dimensions. For illustration, let us onsider the two-dimensional aseof the trigonometri series. The funtions cos(2πk
L ·x)·cos(2πl

L ·y), sin(2πk
L ·x)·

cos(2πl
L ·y), cos(2πk

L ·x)·sin(2πl
L ·y), and sin(2πk

L ·x)·sin(2πl
L ·y) form an orthonor-mal omplete system of funtions in the box [(0, 0), (0, L), (L, 0), (L,L)].Given a funtion in that domain, f(x, y), its expansion an then be writ-ten in the form:

f(x, y) =

∞
∑

k=0

∞
∑

l=0

λkl ·
{

akl cos(
2πk

L
x) cos(

2πl

L
y)+

+bkl sin(
2πk

L
x) cos(

2πl

L
y) + ckl cos(

2πk

L
x) sin(

2πl

L
y)+

+dkl sin(
2πk

L
x) sin(

2πl

L
y)

}

(B.14)
CorollaryAn in�nite series of omplete basis funtions onverges to any �reasonablywell behaving� funtion. Hene, it is straightforward to approximate a givenfuntion with a �nite series of those funtions, i.e., by utting its tail froma ertain point. In priniple, the sum Sm(x) (Eq. B.6) an always be foundto a desired degree of auray by adding up enough terms of the series.For pratial appliations, the orollary is that every funtion an be ap-proximated using a series of omplete basis funtions, to whatever desiredor pratial auray. Moreover, this orollary an be easily generalized toany desired dimension.
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Samenvatting (Duth)Op alle niveaus van het dagelijks leven word je regelmatig geonfronteerd metsystemen die in hun natuurlijke omgeving funtioneren en daarbij een zekeremate van optimaal gedrag vertonen. Zulk optimaal gedrag vormt hierdooreen belangrijke inspiratiebron voor allerlei gebieden. Binnen het vakgebiedNatural Computing is het de bedoeling berekeningstehnieken te ontwikke-len die zo goed mogelijk gebundelde vershijnselen uit de natuur benaderen,op basis waarvan deze tehnieken op hun beurt vaak heel goed presteren ininformatieverwerkingsproessen. Uit een lange lijst van natural-omputing-deelgebieden zijn we in het bijzonder geïnteresseerd geraakt in het uitermateboeiende gebied van Organi Evolution - Organishe Evolutie - en in zijnrekentegenhanger, het zogenoemde gebied van de Evolutionaire Algorith-men (EA). Door een optimalisatieprobleem naar een kunstmatig-biologisheomgeving om te zetten, benaderen EA inderdaad bepaalde stukjes uit deDarwinistish dynamia en streven die EA er daarbij naar, goed passendeoplossingen te bereiken in termen van de probleemsituatie. Daarbij is eenpopulatie van mogelijke oplossingen onderhevig aan kunstmatige, dat wilzeggen gesimuleerde variatie. Vervolgens overleven zulke mogelijke oplossin-gen een dergelijke simulatie op basis van onrete riteria voortvloeiend uithet gekozen seletiemehanisme.De oorspronkelijke bedoeling van ons onderzoek was om bepaalde vari-anten van EA, Evolutionaire Strategieën geheten (ES), uit te breiden naardeelpopulaties van pilot-oplossingen die parallel toegroeien naar vershillendeoplossingen van het probleem. Dit idee is gebaseerd op een begrip uit de evo-lutietheorie, organi speiation, de organish-evolutionaire ontwikkeling persoort. Waar het hier op neer komt is, dat de manier van denken binnenNatural Computing dieper dient in te gaan op theorieën uit de Evolution-aire Biologie en in het liht van de gewenste evolutionaire soortontwikkelingreatieve oplossingen dient te vinden voor de kunstmatige populatie. Dezogenoemde Nihe-tehnieken vormen de uitbreiding van EA naar deelpopu-laties met ieder hun eigen evolutionaire ontwikkeling. Zij zijn al bestudeerdvanaf het begin van de EA en wel voornamelijk binnen de populaire variantvan de Genetish Algorithmen (GA). Naast de theoretishe uitdaging omzulke tehnieken te ontwerpen, daarbij krahtig ondersteund door biologie-geinspireerde motivatie, zijn er ook goede gronden vanuit de praktijk om243



244 Samenvattingdit te proberen. Met name vanuit het vakgebied van de besliskunde, datal rehtstreeks baat heeft bij de opkomst van het gebied van globale opti-malizering, wordt duidelijk dat er dringend behoefte is aan meervoudigheidvan vershillende optimale oplossingen. In een ideaal geval zullen deze meer-voudige oplossingen, zoals verkregen uit de optimalisatie-aanpak, onderlingeen hoge mate van diversiteit vertonen en zullen zij vershillende oneptueleontwerpen voor oplossingen vertegenwoordigen.Terwijl we de bedoeling hadden dit onderzoek voornamelijk te rihtenop nihe-tehnieken in ES, waren we er tevens vanaf het begin op uit dealgorithmes waar we op uit zouden komen, te gebruiken voor praktishetoepassingen in het pas ontsloten gebied van Quantum Control (QC). Ditlaatste biedt een enorme versheidenheid aan veel-dimensionale ontinue op-timalisatieproblemen, zowel op theoretish als op experimenteel niveau. Indit opziht heeft QC de potentie een ideale testomgeving te zijn voor evo-lutionaire optimalisatie, in het bijzonder voor nihe-aanpakken. Dit komtdoor enkele opmerkelijke karakteristieken van zogeheten QC-landshappen.Typerend voor zulke landshappen is, zoals bewezen in QC-theorie, dat zeoneindig veel optimale oplossingen hebben. Door dit alles is de ombinatievan nihe-onderzoek en zijn toepassingen op QC-landshappen voor ons heelintrigerend. Toen we deze overweldigende, ideale rijkdom aan oplossingenbinnen QC-landshappen dan ook eenmaal hadden opgemerkt, hebben webesloten een op zihzelf staand deel van dit proefshrift te wijden aan Quan-tum Control. In symbolishe zin vormt deze interdisiplinaire studie daarmeeeen gesloten natural-omputing-irkel, waarin biologish-georiënteerd onder-zoek van organishe evolutie, met name die binnen een soort, bijdraagt aande ontwikkeling van rekenmethoden om toepassingen binnen de natuurkundeals geheel op te lossen en in het bijzonder binnen Quantum Control. Naarons idee wordt deze symbolishe zienswijze nog verder versterkt door hetstohastishe karakter van EA. Aldus, biologish geïnspireerd door Evolu-tionaire Biologie in het algemeen en door organi speiation in het bijzonderen tevens op sherp door de drijfveer meervoudig optimale oplossingen tewillen vinden voor het beter nemen van beslissingen in praktijsituaties, doenwe in deze studie verslag van onze reis, vertrokken vanuit diversiteit in denatuur, beland bij oneptuele ontwerpen in Quantum Control.Dit proefshrift bestaat uit twee delen: Deel I introdueert een nihe-framework voor een klasse van state-of-the-art ES-algorithmen, namelijk deDerandomized Evolution Strategies (DES), en gaat in op het uitproberenvan de voorgestelde algorithmen in kunstmatige landshappen. Deel II geefteen overziht van de voornaamste aspeten van Quantum Control binnende algemene ontext van globale funtie-optimalisatie. Vervolgens wordende experimentele waarnemingen van de DES algorithmen gepresenteerd entevens die van de voorgestelde nihe-algorithmen zoals toegepast op ver-shillende QC-systemen, zowel in laboratoriumsituaties als op vershillendeniveaus van numerieke simulatie.
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