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There are more things in heaven and earth, Horatio,than are dreamt of in your philosophy.Prin
e Hamlet, Hamlet; William Shakespeare
Introdu
tionOptimal behavior of natural systems is frequently en
ountered at all lev-els of everyday life, and thus has be
ome a major sour
e of inspiration forvarious �elds. The dis
ipline of Natural Computing aims at developing 
om-putational te
hniques that mimi
 
olle
tive phenomena in nature that oftenexhibit ex
ellent behavior in information pro
essing. Among a long list ofnatural 
omputing bran
hes, we are parti
ularly interested in the fas
inat-ing �eld of Organi
 Evolution, and its 
omputational derivative, the so-
alledEvolutionary Algorithms (EAs) �eld. By en
oding an optimization probleminto an arti�
ial biologi
al environment, EAs mimi
 
ertain elements in theDarwinian dynami
s and aim at obtaining highly-�t solutions in terms ofthe problem. A population of trial solutions undergo arti�
ial variations andsurvive this simulation upon the 
riteria posed by the sele
tion me
hanism.Analogously, it is suggested that this population would evolve into highly-�tsolutions of the optimization problem.The original goal of this work was to extend spe
i�
 variants of EAs,
alled Evolution Strategies (ES), to subpopulations of trial solutions whi
hevolve in parallel to various solutions of the problem. This idea stems fromthe evolutionary 
on
ept of organi
 spe
iation. Essentially, the natural 
om-puting way of thinking is required here to further deepen into EvolutionaryBiology Theory, and attain 
reative solutions for the arti�
ial population inlight of the desired spe
iation e�e
t. The so-
alled ni
hing te
hniques arethe extension of EAs to spe
iation forming multiple subpopulations. Theyhave been investigated sin
e the early days of EAs, mainly within the pop-ular variants of Geneti
 Algorithms (GAs). In addition to the theoreti
al
hallenge to design su
h te
hniques, whi
h is well supported by the biologi-
ally inspired motivation, there is a real-world in
entive for this e�ort. Thedis
ipline of de
ision making, whi
h makes dire
t bene�t out of the adventof the global optimization �eld, poses the demand for the multipli
ity ofdi�erent optimal solutions. Ideally, those multiple solutions, as obtained bythe optimization routine, would have high diversity among ea
h other, andrepresent di�erent 
on
eptual designs.Aiming at largely devoting this resear
h to ni
hing in ES, we were alsooriginally interested in applying our proposed algorithms to experimental op-timization. More spe
i�
ally, we were aiming at appli
ations in the emerg-1



2 Introdu
tioning �eld of Quantum Control (QC). The latter o�ers an enormous variety ofhigh-dimensional 
ontinuous optimization problems, both at the theoreti
alas well as the experimental levels. In that respe
t, it is potentially a heavenlytestbed for Evolutionary optimization, and parti
ularly for ni
hing methods.This is due to some remarkable properties of QC lands
apes, whi
h typi
allypossess an in�nite number of optimal solutions, as proved by QC Theory.We thus �nd the 
ombination of resear
h on ni
hing and the appli
ation toQC lands
apes very attra
tive. After being exposed to this overwhelmingtreasure of QC lands
ape ri
hness, we de
ided to devote an independent partof this dissertation to Quantum Control.Symboli
ally, this interdis
iplinary study forms a 
losed natural 
omput-ing 
ir
le, where biologi
ally-oriented investigation of organi
 evolution andspe
iation helps to develop methods for solving appli
ations in Physi
s ingeneral, and in Quantum Control in parti
ular. By our re
koning, this sym-bolism is even further strengthened upon 
onsidering the sto
hasti
 natureof Evolutionary Algorithms; This pro
ess 
an be thus 
onsidered as throw-ing di
e in order to solve Quantum Me
hani
s, sometimes referred to as thes
ien
e of di
e.Thus, biologi
ally inspired by organi
 evolution in general, and organi
spe
iation in parti
ular, armed with the real-world in
entive to obtain multi-ple optimal solutions for better de
ision making, we hereby begin our journeyfrom diversity in nature to 
on
eptual designs in Quantum Control.This dissertation therefore 
onsists of two parts: Part I introdu
es ani
hing framework to a set of state-of-the-art ES algorithms, namely Deran-domized Evolution Strategies (DES), and fo
uses on testing the proposedalgorithms on arti�
ial lands
apes. Part II reviews the main aspe
ts ofQuantum Control in the general 
ontext of global fun
tion optimization.It then presents the experimental observation of Derandomized ES as wellas the proposed ni
hing algorithms when applied to several QC systems,both at the laboratory and at the numeri
al simulations levels. As far aswe know, this is the �rst time that Quantum Control sear
h lands
apes are
omprehensively introdu
ed to the 
ommunity of Computer S
ien
e.Part I begins with presenting the algorithmi
 kernels of this study, De-randomized Evolution Strategies. This is done in Chapter 1 by providingthe reader with the essential terminology of global optimization, reviewingthe fundamentals of the ES �eld, and eventually introdu
ing expli
itly, indetail, the derandomized algorithms.Upon developing a ni
hing framework for Evolution Strategies, some pre-liminary topi
s had to be addressed. We properly introdu
e the real-worldin
entive for ni
hing, namely the sele
tion of 
on
eptual designs by the de-
ision maker. Furthermore, we review elementary 
on
epts of the Organi




Introdu
tion 3Spe
iation Theory, dis
uss the 
ru
ial aspe
t of population diversity withinES, and �nally present a short overview of previously introdu
ed ni
hingte
hniques. Chapter 2 aims at addressing those topi
s, and therefore it 
on-stitutes an important preliminary study for the derivation of our ni
hingframework. Due to the highly interdis
iplinary nature of the ni
hing re-sear
h, this 
hapter presents a parti
ularly high diversity of topi
s, whi
hare linked by ni
hing.In Chapter 3 we present our proposed framework of ni
hing within De-randomized ES. We des
ribe it in detail, and thereafter test it on a suite ofmultimodal arti�
ial lands
apes. We analyze the numeri
al observation, anddis
uss the algorithmi
 performan
e.Chapter 4 extends the framework of Chapter 3 to self-adaptive ni
he-shape approa
hes, for solving the so-
alled ni
he radius problem. This is animportant topi
 in the �eld of ni
hing, as it attempts to treat the 
hallengeof de�ning a generi
 basin of attra
tion without a-priori knowledge on thelands
ape.Another extension of our proposed ni
hing framework, this time to the�eld of Multi-Obje
tive Optimization, is introdu
ed in Chapter 5. As thetwo �elds of ni
hing and multi-
riterion optimization, 
orresponding to mul-timodal and multiobje
tive problems, respe
tively, have many aspe
ts in
ommon, we show the feasibility of utilizing our ni
hing framework in amulti-obje
tive approa
h. This 
on
ludes Part I of the thesis.The goal that Part II aims to a
hieve is two-fold: Firstly, properly in-trodu
ing the main optimization aspe
ts of the Quantum Control �eld, andse
ondly, presenting our work on the optimization of a spe
i�
 QuantumControl problem, namely Dynami
 Mole
ular Alignment. We thus beginChapter 6 with a detailed review of Quantum Control Theory and Experi-ments. The review outlines fundamental 
on
epts of Quantum Control The-ory, and mainly fo
uses on theorems 
on
erning the 
riti
al points of thelands
apes, as well as on lands
ape ri
hness and multipli
ity of optimal so-lutions. It then presents Quantum Control Experiments, and dis
usses ourexperimental setup for Part II.Chapter 7 des
ribes our investigation of two optimization problems 
orre-sponding to Quantum Control systems of Se
ond Harmoni
 Generation. We
ondu
t experiments on these optimization problems, by means of numeri
alsimulations as well as laboratory experiments, by employing spe
i�
 Deran-domized ES variants. It is the only 
hapter where we report on real-worldlaboratory experiments, while the following 
hapters fo
us on numeri
al sim-ulations ex
lusively.Chapter 8 is devoted to the introdu
tion of the rotational framework,the fundamental framework upon whi
h the Dynami
 Mole
ular Alignmentproblem is based. In that respe
t, this 
hapter 
an be 
onsidered as a gateway



4 Introdu
tionto our work on the alignment problem investigated in Chapter 9. Following adetailed Quantum Me
hani
al des
ription of the framework, Chapter 8 posesthe rotational population transfer optimization problem. It then presents ournumeri
al observation of the Derandomized ES employment to the problem,and �nalizes the 
hapter with applying our proposed ni
hing algorithms.Chapter 9 reports in detail on our work on the Dynami
 Mole
ular Align-ment, whi
h 
onstitutes the main appli
ation in our resear
h on Quan-tum Control lands
apes. It des
ribes the alignment problem, and thenpresents various optimization approa
hes that we employed in addition to thestraightforward appli
ation of Derandomized ES. These approa
hes in
ludea spe
ial parameterization method developed for this purpose, optimalityinvestigation of a simpli�ed variant, optimization subje
t to a dynami
allyvarying environment, multi-obje
tive 
onsideration of the problem, and, �-nally, the appli
ation of ni
hing.We thereafter 
omplete this journey by summarizing our main resultsand by presenting promising dire
tions for future resear
h.A Te
hni
al Note Due to te
hni
al printing 
onsiderations, several plotsfrom various 
hapters are 
on
entrated in Appendix A. In these parti
ular
ases, a plot is referred to in the text as Figure A.x.
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If it 
ould be demonstrated that any 
omplex organ existed,whi
h 
ould not possibly have been formed by numerous,su

essive, slight modi�
ations, my theory would absolutelybreak down.Charles Darwin
Chapter 1Evolution Strategies1.1 Ba
kgroundThe paradigm of Evolutionary Computation (EC), whi
h is gleaned from themodel of organi
 evolution, studies populations of 
andidate solutions under-going variations and sele
tion, and aims at bene�ting from the 
olle
tive phe-nomena of their generational behavior. The term Evolutionary Algorithms(EAs) essentially refers to the 
olle
tion of su
h generi
 methods, inspiredby the theory of natural evolution, that en
ode 
omplex problems into anarti�
ial biologi
al environment, de�ne its geneti
 operators, and simulateits propagation in time. Motivated by the basi
 prin
iples of the Darwiniantheory, it is suggested that su
h simulation would yield an optimal solutionfor the given problem.Evolutionary Algorithms [1℄ have three main streams, rooted either inthe United States or in Germany, during the 1960s: Evolutionary Program-ming (EP), founded by L. Fogel in San-Diego [2℄, Geneti
 Algorithms (GAs)founded by J. Holland in Ann Arbor [3, 4℄, and Evolution Strategies (ES),founded by P. Bienert, H.P. S
hwefel and I. Re
henberg, three students tothat time at the Te
hni
al University of Berlin (see, e.g., [5, 6, 7℄).Evolution Strategies for global parameter optimization, the general frame-work of this study, is reviewed in this 
hapter. We start with laying out thebasi
 foundations and de�nitions.1.1.1 The Framework: Global OptimizationLet us introdu
e the elementary terminology of a 
ontinuous real-valued pa-rameter optimization problem [8℄. The following de�nition ex
ludes dis
reteand mixed-integer problems. Given an obje
tive fun
tion, also 
alled thetarget fun
tion,

f : S ⊆ Rn → R, S 6= ∅7



8 Chapter 1. Evolution Strategieswhere S is the set of feasible solutions
S = {~x ∈ Rn | gj(~x) ≥ 0 ∀j ∈ {1, ..., q}} , gj(~x) : Rn → Rsubje
t to q inequality 
onstraints gj(~x), the goal is to �nd a ve
tor ~x∗ ∈ Swhi
h satis�es

∀~x ∈ S : f(~x) ≥ f(~x∗) ≡ f∗ (1.1)Then, f∗ is de�ned as the global minimum and ~x∗ is the global minimumlo
ation.Due to
min{f(~x)} = −max{−f(~x)},it is straightforward to 
onvert every minimization problem into a maximiza-tion problem. Thus, without loss of generality, we shall assume a minimiza-tion problem, unless spe
i�ed otherwise.A lo
al minimum f̂ = f(~̂x) is de�ned in the following manner:

∃ǫ > 0 ∀~x ∈ S :
∥

∥

∥
~x− ~̂x

∥

∥

∥
< ǫ⇒ f̂ ≤ f(~x)Unimodality vs. Multimodality A lands
ape is said to be unimodal ifit has only a single minimum, and multimodal otherwise. It is 
alled multi-global if there are several minima with equal fun
tion values as the globalminimum.Global Minimum in Pra
ti
e: Chara
terization While there existsa general 
riterion for the automati
 identi�
ation of a lo
al minimum,su
h as the zero gradient 
riterion, in pra
ti
e there is no equivalent gen-eral 
riterion for the global minimum [8℄. The attempt to 
hara
terize it isessentially equivalent to posing the multimodal optimization problem anddi�erentiating de fa
to between global and lo
al minima. We outline herea theoreti
al attempt to a

omplish this 
hara
terization, by means of theimportant 
on
ept of level sets [9, 10℄. Given a level set,

Lf (α) = {~x| ~x ∈ S, f (~x) ≤ α} , (1.2)it is subje
t to level set mapping, whi
h de�nes its e�e
tive domain:
Gf = {α|α ∈ R, Lf (α) 6= ∅} . (1.3)Assuming that Gf is 
ompa
t and 
losed, Lf (α) is said to be lower semi-
ontinuous (ls
) at the point ᾱ ∈ Gf if ~x ∈ Lf (ᾱ), {αi

}

⊂ Gf , {αi
}

→ ᾱimply the existen
e of K ∈ N and a sequen
e {~xi
} su
h that {~xi

}

→ ~x and
~xi ∈ Lf

(

αi
) for i ≥ K.Given this, the following is a su�
ient 
ondition for 
hara
terizing aglobal minimum:



1.1. Ba
kground 9Theorem 1.1.1. Let f be a real-valued fun
tion on S ⊂ Rn. If every ~x ∈ Ssatisfying f (~x) = ᾱ is either a global minimum of f (·) on S or it is not alo
al minimum of f (·), then Lf (α) is ls
 at ᾱ.Törn and Zilinskas 
on
luded that the extension to multimodal domainsmakes the optimization problem unsolvable in the general 
ase, i.e., there isno e�
ient solution te
hnique for obtaining the global minimum value (see[8℄ pp. 6).The Hessian and the Condition Number Given a real-valued twi
edi�erentiable n-dimensional fun
tion f , the Hessian matrix of f(~x) is de�nedas the matrix
H(f(~x)) =















∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn... ... . . . ...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n















(1.4)If the se
ond derivatives of f are all 
ontinuous, a 
ondition whi
h we shallassume here, the order of di�erentiation does not matter, and thus the Hes-sian matrix is symmetri
. It is then worthwhile to introdu
e the 
onditionnumber of the Hessian, a s
alar whi
h 
hara
terizes its degree of 
omplexity,and typi
ally determines the di�
ulty of a problem to be solved by optimiza-tion methods. Let {ΛH

i

}n

i=1
denote the eigenvalues of the Hessian H, and let

ΛH

min and ΛH
max denote its minimal and maximal eigenvalues, respe
tively.The 
ondition number of the Hessian matrix is de�ned by:
ond(H) =

ΛH
max

ΛH

min

≥ 1 (1.5)Ill-
onditioned problems are often 
lassi�ed as su
h due to large 
onditionnumbers (e.g., 1014) of the Hessian on their lands
apes.Separability Another de�ning property of problem di�
ulty is the sepa-rability of the obje
tive fun
tion (see, e.g., [11℄). A fun
tion f : Rn → R is
alled separable if it 
an be optimized by solving n 1-dimensional problemsseparately:
arg min

~x
f (~x) =

(

arg min
x1

f (x1, . . .) , . . . , arg min
xn

f (. . . , xn)

)1.1.2 Evolutionary AlgorithmsWhereas ES and EP are similar algorithms and share many basi
 
hara
ter-isti
s [12℄, the prin
ipal di�eren
e between them and GAs is the en
oding of



10 Chapter 1. Evolution StrategiesAlgorithm 1 An Evolutionary Algorithm1: t← 02: Pt ← Init() {Pt ∈ Sµ: Set of solutions}3: Evaluate(Pt)4: while t < tmax do5: Gt ← Generate(Pt) {Generate λ variations}6: Evaluate(Gt)7: Pt+1 ← Sele
t(Gt ∪ Pt) {Rank and sele
t µ best}8: t← t+ 19: end whilethe geneti
 information. Traditional GAs en
ode the genome with dis
retevalues (as in nature), whereas ES as well as EP do that with 
ontinuousreal-values. Moreover, ES and EP fo
used more on development of muta-tion operators, while in 
lassi
al GA resear
h the re
ombination operatorre
eived most attention. Today, GA, ES, and EP subsume under the termEvolutionary Algorithms (EAs).Here, we o�er an introdu
tory generi
 des
ription of an EA. The lat-ter 
onsiders a population (i.e., set) of individuals (i.e., trial solutions), andmodels its 
olle
tive learning pro
ess. Ea
h individual in the population isinitialized a

ording to an algorithm-dependent pro
edure, and may 
arrynot only a spe
i�
 sear
h point in the lands
ape, but also some environmen-tal information 
on
erning the sear
h. A 
ombination of sto
hasti
 as wellas deterministi
 pro
esses su
h as mutation, re
ombination, and sele
tion,di
tate the propagation in time towards su

essively better individuals, 
or-responding to better regimes of the lands
ape. The quality of an individual,or alternatively the merit of a trial solution, are determined by a so-
alled�tness fun
tion, whi
h is typi
ally the obje
tive fun
tion or its res
aling.Thus, 
ertain individuals are favored over others during the sele
tion phase,whi
h is based upon the �tness evaluation of the population. The sele
tedindividuals be
ome the 
andidate solutions of the next generation, while theothers die out.More expli
itly, an EA starts with initializing the generation 
ounter t.After generating the initial population with µ individuals in S, a set Gt of λnew solutions is generated by means of mutation and possibly re
ombination.The new 
andidate solutions are evaluated and ranked in terms of theirquality (�tness value). The µ best solutions in Gt ∪ Pt are sele
ted to formthe new parent population Pt+1.A generalized EA pseudo
ode is outlined in Algorithm 1.



1.2. The Standard Evolution Strategy 111.2 The Standard Evolution StrategyEvolution Strategies were originally developed at the Te
hni
al Universityof Berlin as a pro
edure for automated experimental design optimization,rather than a global optimizer for 
ontinuous lands
apes. Following a se-quen
e of su

essful appli
ations (e.g., shape optimization of a bended pipe,drag minimization of a joint plate, and hardware design of a two-phase �ash-ing nozzle), a diploma thesis [13℄ and a dissertation [14℄ laid out the solidfoundations for ES as an optimization methodology. There has been exten-sive work on ES analysis and algorithmi
 design sin
e then [7, 15, 16℄.This se
tion, whi
h is mostly based on [1℄ and [7℄, will des
ribe the stan-dard ES in detail. Se
tion 1.2.1 will introdu
e notation and basi
 terminol-ogy. Se
tion 1.2.2 will present the (1 + 1) algorithm, whi
h was originallyanalyzed for theoreti
al purposes, but 
ontinued to play an important role inseveral aspe
ts of Evolution Strategy design. The self-adaptation prin
iplewill be des
ribed in Se
tion 1.2.3, while Se
tion 1.2.4 will outline the ESalgorithm.1.2.1 Notation and TerminologyThe typi
al appli
ation domain of Evolution Strategies is the minimizationof non-linear obje
tive fun
tions of signature f : S ⊆ Rn → R. Given asear
h problem of dimension n, let ~x := (x1, x2, ..., xn)T ∈ Rn denote theset of de
ision parameters or obje
t variables to be optimized: It is de�nedas an individual asso
iated with a trial solution. In optimization problems,whi
h are of our main interest, it is then straightforward to de�ne the �tnessof that individual: It is the obje
tive fun
tion(s) value(s) of ~x, i.e., f (~x).Evolution Strategies 
onsider a population of 
andidate solutions of thegiven problem. This population undergoes sto
hasti
 as well as determinis-ti
 variations, with the so-
alled mutation operator, and possibly with there
ombination operator. The mutation operator is typi
ally equivalent tosampling a random variation from a normal distribution. Due to the 
ontin-uous nature of the parameter spa
e, the biologi
al term mutation rate 
anbe asso
iated here with the a
tual size of the mutation step in the de
isionspa
e, also referred to as the mutation strength.Expli
itly, an individual is represented by a tuple of 
ontinuous real-values, sometimes referred to as a 
hromosome, whi
h 
omprises the de
isionparameters to be optimized, ~x, their �tness value, f (~x), as well as a set ofendogenous (i.e., evolvable) strategy parameters, ~s ∈ Rm.The kth individual of the population is thus denoted by:
~ak = (~xk, ~sk, f (~xk))The dimension m of the strategy parameter spa
e is subje
t to the desiredparameter 
ontrol approa
h, to be dis
ussed shortly. The endogenous pa-



12 Chapter 1. Evolution Strategiesrameters are a unique 
on
ept for ES, in parti
ular in the 
ontext of the mu-tation operator, and they play a 
ru
ial role in the so-
alled self-adaptationprin
iple (see Se
tion 1.2.3).Strategy-spe
i�
 parameters, su
h as the population 
hara
teristi
 pa-rameters µ, λ, and the so-
alled mixing number ν, are 
alled exogenousstrategy parameters, as they are kept 
onstant during the simulated evolu-tion. The mixing number determines the number of individuals involved inthe appli
ation of the re
ombination operator.1.2.2 Motivation: The (1 + 1) Evolution StrategyRe
henberg [6℄ 
onsidered a simple (1 + 1) Evolution Strategy, with a �xedmutation strength σ, in order to investigate analyti
ally two basi
 obje
-tive fun
tions, namely the 
orridor model and the sphere model. From thehistori
al perspe
tive, that study laid out the foundations for the theory ofEvolution Strategies.Re
henberg derived expli
itly the expressions for the 
onvergen
e rate ofhis (1 + 1) ES for the two models. By de�nition, neither self-adaptation norre
ombination were employed in this strategy. Given the probability of themutation operator to 
over a distan
e k′ towards the optimum, p(k′), the
onvergen
e rate ϕ is de�ned as the expe
tation of the distan
e k′ 
overedby the mutation:
ϕ =

∫ ∞

0
p(k′) · k′ dk′ (1.6)The expression for the optimal step-size for the two models was �rst derived.It was observed to depend on the so-
alled su

ess probability ps,

ps = P {f(Mutate {~x}) ≤ f(~x)} . (1.7)By setting
dϕ

dσ

∣

∣

∣

∣

σ∗

= 0, (1.8)the optimal step-sizes for the two models were 
al
ulated, yielding also theoptimal su

ess probabilities. The obtained values were both 
lose to 1/5,regardless of the sear
h spa
e dimensionality. This led to the formulation ofthe well-known 1/5th-su

ess rule:The ratio of su

essful mutations to all mutations should be 1/5.If it is greater than 1/5, in
rease the standard deviation, if it issmaller, de
rease the standard deviation.For more details see [1℄. The implementation of the 1/5th-su

ess rule withinthe (1+1)-ES is given as Algorithm 2. As pra
ti
al hints, ps 
an be 
al
ulatedover intervals of 10 · n trials, and the adaptation 
onstant should be setbetween the boundaries 0.817 ≤ c≪ 1.



1.2. The Standard Evolution Strategy 13Algorithm 2 The (1 + 1) Evolution Strategy1: t← 02: Pt ← Init() {Pt ∈ S: Set of solutions}3: Evaluate(Pt)4: while t < tmax do5: ~x(t) := Mutate {~x(t− 1)} with step-size σ6: Evaluate(P ′(t) := {~x(t)}) : {f (~x(t))}7: Select {P ′(t) ∪ P (t)}8: t← t+ 19: if t mod n = 0 then10:
σ =







σ(t− n)/c if ps > 1/5
σ(t− n) · c if ps < 1/5
σ(t− n) if ps = 1/511: else12: σ(t) = σ(t− 1)13: end if14: end whileIt should be noted that 1/5th-su

ess rule has been kept alive, and 
ontin-ued to play an important role in several aspe
ts, in
luding the 
onstru
tionof the elitist strategy of the Covarian
e Matrix Adaptation ES algorithm([17℄ and also see Se
tion 1.4).1.2.3 The Self-Adaptation Prin
ipleSe
tion 1.2.2 provided us with the motivation to adapt the endogenous strat-egy parameters during the 
ourse of evolution, e.g., tuning the mutativestep-size a

ording to the 1/5th-su

ess rule. The basi
 idea of the self-adaptation prin
iple is to 
onsider the strategy parameters as endogenousparameters, that undergo an evolutionary pro
ess themselves. The idea of
oupling endogenous strategy parameters to the obje
t variables 
an be foundin organisms, where self-repair me
hanisms exist, su
h as repair enzymes andmutator genes [18℄. This allows an individual to adapt to the 
hanging en-vironment of its traje
tory in the lands
ape, while keeping the potentiallyharmful e�e
t of mutation within reasonable boundaries. Hen
e, when muta-tive self-adaptation is applied, there is no deterministi
 
ontrol in the handsof the user with respe
t to the mutation strategy.The 
ru
ial 
laim regarding ES is that self-adaptation of strategy param-eters works [19℄. It su

eeds in doing so by applying the mutation, re
om-bination and sele
tion operators in the strategy, and without the use of anyexogenous 
ontrol. The link between strategy and de
ision parameters isexploited, even if it is only indire
t. Experiments upon whi
h this 
laim was



14 Chapter 1. Evolution Strategiesbased had found several boosting 
onditions for self-adaptation to work, su
has re
ombination on strategy parameters, sele
tion pressure within 
ertainbounds, and others.1.2.4 The Canoni
al (µ/ν +, λ)-ES AlgorithmWe des
ribe here the spe
i�
 operators for the standard Evolution Strategy,sometimes referred to as the S
hwefel approa
h, and provide the reader withthe implementation details.MutationThe mutation operator is the dominant variation operator within ES, andthus we 
hoose to elaborate in this se
tion on its 
hara
teristi
s. As a retro-spe
tive analysis, we 
hoose to begin with the outline of some general rulesfor the design of mutation operators, as suggested by Beyer [15℄:1. Rea
hability. Given the 
urrent generation of individuals, any othersear
h point in the lands
ape should be rea
hed within a �nite numberof mutation operations.2. Unbiasedness. Variation operators in general, and the mutation op-erator in parti
ular, should not introdu
e any bias, and satisfy themaximum entropy prin
iple. In the 
ase of 
ontinuous un
onstrainedlands
apes, this would suggest the use of the normal distribution.3. S
alability. The mutation strength should be adaptive with respe
tto the lands
ape.The ES mutation operator 
onsiders sto
hasti
 
ontinuous variations,whi
h are based on the multivariate normal distribution. Given a normally-distributed random ve
tor, denoted by ~z = (z1, z2, . . . , zn)T , the mutationoperator is then de�ned as follows:
~xNEW = ~xOLD + ~z (1.9)A multivariate normal distribution is uniquely de�ned by a 
ovarian
e ma-trix, C ∈ Rn×n, whi
h is a symmetri
 positive semi-de�nite matrix, as wellas by a mean ve
tor ~m ∈ Rn. Its probability density fun
tion (PDF) is givenby:

Φpdf
N (~z) =

1
√

(2π)n detC
· exp

(

−1

2
(~z − ~m)T ·C−1 · (~z − ~m)

) (1.10)A random ve
tor ~z drawn from a multivariate normal distribution, is denotedby
~z ∼ N (~m,C) .



1.2. The Standard Evolution Strategy 15The ES mutation operator always 
onsiders a distribution with zeromean, i.e., ~m = ~0, and thus the 
ovarian
e matrix C is the de�ning 
om-ponent of this operator. It is 
hara
terized by its (n · (n − 1)) /2 
ovarian
eelements,
cij = cov(xi, xj) = cov(xj , xi) = cji,as well as by its n varian
es,

cii ≡ σ2
i = var(xi).Overall, we have,

C =











var(x1) cov(x1, x2) · · · cov(x1, xn)
cov(x2, x1) var(x2) · · · cov(x2, xn)... ... . . . ...
cov(xn, x1) cov(xn, x2) · · · var(xn)









Essentially, the (n · (n+ 1)) /2 independent elements of the 
ovarian
e ma-trix are the endogenous strategy parameters that evolve along with the in-dividual:
~s← C,i.e., the strategy parameter ve
tor ~s represents the 
ovarian
e matrix C inthis 
ase.For the de�nition of the update rule for the strategy parameters, it is
onvenient to represent the o�-diagonal elements of C by means of the rota-tional angles between the prin
ipal axes of the de
ision parameters. Let αijdenote these angles,

cij = cov (xi, xj) =
1

2
(var(xi)− var(xj)) · tan (2αij) (1.11)A

ording to the self-adaptation prin
iple, the 
ovarian
e matrix elementsalso evolve every generation. The adaptation of the 
ovarian
e matrix ele-ments is di
tated by non-linear update rules: The diagonal terms, cii = σ2

i ,are updated a

ording to the log-normal distribution:
σNEW

i = σOLD
i · exp

(

τ ′ · N (0, 1) + τ · Ni (0, 1)
) (1.12)and the o�-diagonal terms are updated through the rotational angles:

αNEW
ij = αOLD

ij + β · Nℓ (0, 1) (1.13)where N (0, 1), Ni(0, 1), and Nℓ(0, 1) (ℓ = 1, . . . , (n · (n− 1)) /2) denote in-dependent random variables, and where τ ∼ 1/
√

2
√
n , τ ′ ∼ 1/

√
2n , and

β = 5
180π are 
onstants. After those two update steps, the 
ovarian
e matrix
an be updated (o�-diagonal terms are 
al
ulated by means of Eq. 1.11).
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Figure 1.1: Mutation ellipsoids for n = 2, drawn from a general non-singular
ovarian
e matrix, with c1,2 ∼ tan (2α1,2). Figure 
ourtesy of Thomas Bä
k.Geometri
al Interpretation The equal probability density 
ontour linesof a multivariate normal distribution are ellipsoids, 
entered about the mean.The prin
ipal axes of the ellipsoids are de�ned by the eigenve
tors of the
ovarian
e matrix C. The lengths of the prin
ipal axes are proportionateto the 
orresponding eigenvalues. Figure 1.1 provides an illustration formutation ellipsoids in the 
ase of n = 2.Correlated Mutations: Strategy Considerations Given a de
isionparameter spa
e of dimension n, a general mutation-
ontrol me
hanism 
on-siders the 
ovarian
e matrix C, but may apply various di�erent strategies,for 
omputational 
onsiderations. There are three 
ommon approa
hes:1. A 
ovarian
e matrix proportionate to the identity matrix, i.e., havinga single free strategy parameter σ, often referred to as the global step-size:
C1 = σ2 · I (1.14)2. A diagonalized 
ovarian
e matrix, i.e., having a ve
tor of n free strat-egy parameters, (σ2

1, σ
2
2 , ..., σ

2
n

)T , typi
ally referred to as the individualstep-sizes:
C2 = diag

(

σ2
1, σ

2
2 , ..., σ

2
n

) (1.15)
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Figure 1.2: Equidensity probability 
ontours for the three di�erent ap-proa
hes with respe
t to a 2D lands
ape. Left: A single global step-size(
ir
les). Middle: n independent parameters (axis-parallel ellipsoids). Right:
(n · (n+ 1)) /2 independent parameters (arbitrarily oriented ellipsoids). Fig-ures 
ourtesy of Thomas Bä
k [20℄.3. A general non-singular 
ovarian
e matrix, with arbitrary (n · (n+ 1)) /2free strategy parameters:

C3 = (cij) (1.16)Thus, the three approa
hes propose orders of O(1), O(n), or O(n2) strat-egy parameters to be learned, respe
tively, at the 
ost of di�erent invarian
eproperties. Obviously, a single global step-size approa
h is very limited in itsability to generate su

essful moves on a generi
 lands
ape. The generaliza-tion into individual step-sizes assigns di�erent varian
es to ea
h 
oordinateaxis, a
hieving an invarian
e with respe
t to translation, but still havingdependen
y on the 
oordinate system (no invarian
e with respe
t to rota-tion). Finally, the most general approa
h with an arbitrary normal mutationdistribution introdu
es 
omplete invarian
e with respe
t to translation androtation. Figure 1.2 o�ers an illustration for the three di�erent approa
hes,on a given 2D lands
ape.Re
ombinationInspired by the organi
 me
hanism of a meioti
 
ell division, where the ge-neti
 material is reordered by means of 
rossover between the 
hromosomes,the ES re
ombination operator 
onsiders sharing the information from upto ν parent individuals [21℄. When ν > 2, it is usually referred to as multi-re
ombination. Unlike other Evolutionary Algorithms (e.g., GAs), the ESre
ombination operator obtains only a single o�spring.Due to the 
ontinuous nature of the parameters at hand, de
ision aswell as strategy parameters, there are two fundamental ways to re
ombine
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• Dis
rete re
ombination: one of the alleles is randomly 
hosen among
ν parents. Given a parental matrix of the old generation, A

O =
(

~aO
1 ,~a

O
2 , ...,~a

O
ν

), the new re
ombinant ~aN is 
onstru
ted by:
(

~aN
)

i
:=
(

A
O
mi

)

i
, mi := rand {1, .., ν}

• Intermediate re
ombination: the values of ν parents are averaged, typi-
ally with uniform weights. Essentially, this is equivalent to 
al
ulatingthe 
entroid of the ν parent ve
tors:
(

~aN
)

i
:=

1

ν

ν
∑

j=1

(

~aO
j

)

i
(1.17)The re
ombination operator in the standard ES 
ould be applied as follows:1. For ea
h obje
t variable 
hoose ν parents, and apply dis
rete re
ombi-nation on the 
orresponding variables.2. For ea
h strategy parameter 
hoose ν parents, and apply intermediatere
ombination on the 
orresponding variables.It should be noted that there are no generally known best settings of there
ombination operator, and the above are typi
al implementations of it.Within the GA resear
h, the building blo
k hypothesis (BBH) (see, e.g.,[22℄) o�ered an explanation for the working me
hanism of the 
rossover: The
ombination of good, but yet di�erent, building blo
ks, i.e., spe
i�
 portionsof the geneti
 en
oding from di�erent parents, is supposed to be the key rolefor propagating high �tness. The debate over this hypothesis has been keptalive. In ES populations, the diversity de
reases rapidly. Therefore, BBH isunlikely to �t in a similar way it does in GA populations.On the other hand, ES resear
h has given rise to the geneti
 repair hy-pothesis [23℄, stating that the 
ommon good properties of the di�erent par-ents, rather than their di�erent features, are the key role in the workingme
hanism of re
ombination. Also, re
ombination would typi
ally de
reasethe harmful e�e
t of mutation and would allow for high step-sizes whilea
hieving the same 
onvergen
e rates.Sele
tionNatural sele
tion is the driving for
e of organi
 evolution: Clearing-out anold generation, and allowing its individuals with the �tness advantage toin
rease their representation in the geneti
 pool of future generations. Asdramati
 as it might sound, death is an essential part in this pro
ess.



1.2. The Standard Evolution Strategy 19Algorithm 3 The (µ/ν +, λ) Evolution Strategy1: t← 02: Pt ← Init() {Pt ∈ Sµ: Set of solutions}3: Evaluate(Pt)4: while t < tmax do5: Sele
t ν mating parents from Pt {Marriage}6: ~a′k(t) := Recombine {P (t)} ∀k ∈ {1, . . . , λ} {Re
ombination}7: ~a′′k(t) := Mutate {~a′k(t)} ∀k ∈ {1, . . . , λ} {Mutation}8: Evaluate(P ′(t) := {~a′′1(t), . . . ,~a′′λ(t)}) ({f (~x′′1(t)) , . . . , f (~x′′λ(t))})9: if (µ, λ)-ES then10: Select {P ′(t)}11: else if (µ+ λ)-ES then12: Select {P ′(t) ∪ P (t)}13: end if14: t← t+ 115: end whileEvolution Strategies adopt this prin
iple, and employ deterministi
 op-erators in order to sele
t the best µ individuals with the highest �tness, e.g.,minimal obje
tive fun
tion values, to be transferred into the next genera-tion. Two sele
tion operators are introdu
ed in the standard ES using anelegant notation due to S
hwefel. The notation 
hara
terizes the sele
tionme
hanism, as well as the number of parents and o�spring involved:
• (µ + λ)-sele
tion: the next generation of parents will be the best µindividuals sele
ted out of the union of 
urrent parents and λ o�spring.
• (µ, λ)-sele
tion: the next generation of parents will be the best µ indi-viduals sele
ted out of the 
urrent λ o�spring.In the 
ase of 
omma sele
tion, it is rather intuitive that setting µ < λwould be a ne
essary 
ondition for an e�
ient 
onvergen
e. In plus sele
tion,however, any µ > 0 
an be 
hosen in prin
iple. In the latter, the so-
alledelitist sele
tion o

urs, when the survival of the best individual found so faris guaranteed, leading to a possible s
enario of a parent surviving for theentire pro
ess.We are now in a position to introdu
e a pseudo
ode of the StandardEvolution Strategy (Algorithm 3).A Note on Population Sizes One of the important topi
s in ES resear
his the study of optimal population sizes. By de�nition, the magnitude of λdetermines the number of fun
tion evaluations per generation, whi
h shouldpreferably be kept small.
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al population sizes in ES keep a ratio of 1
7 between the parent andthe o�spring populations; a popular 
hoi
e is µ = 15 and λ = 100 (see, e.g.,[1℄ and [20℄).Based on experimental observations, when individual step-sizes are 
ho-sen as strategy parameters (Eq. 1.15), λ has to s
ale linearly with n. Inthe 
ase of arbitrary normal mutations (Eq. 1.16), Rudolph [24℄ showed thatsu

essful adaptation to the lands
ape (i.e., learning su

essfully the Hessianmatrix) 
an be a
hieved with an upper bound of µ + λ = (n2 + 3n + 4)/2,but it is 
ertainly not likely to be a
hieved with the typi
al population sizesof {µ = 15, λ = 100}.1.3 Derandomized Evolution Strategies (DES)Mutative step-size 
ontrol (MSC) tends to work well in the Standard-ESfor the adaptation of a single global step-size (Eq. 1.14), but tends to failwhen it 
omes to the individual step-sizes or arbitrary normal mutations(Eq. 1.15 or Eq. 1.16). S
hwefel 
laimed that the adaptation of the strategyparameters in those 
ases is impossible within small populations [19℄, andsuggested larger populations as a solution to the problem.Due to the 
ru
ial role that the mutation operator plays within EvolutionStrategies, its mutative step-size 
ontrol was investigated intensively. Inparti
ular, the disruptive e�e
ts to whi
h the MSC is subje
t, were studiedat several levels [25, 16℄, and are reviewed here:

• Indire
t sele
tion. By de�nition, the goal of the mutation operatoris to apply a sto
hasti
 variation to an obje
t variable ve
tor, whi
hwill in
rease its sele
tion probability. The sele
tion of the strategyparameters setting is indire
t, i.e., the ve
tor of a su

essful mutationis not used to adapt the step-size parameters, but rather the parametersof the distribution that led to this mutation ve
tor.
• Realization of parameter variation. Due to the sampling froma random distribution, the realization of the parameter variation doesnot ne
essarily re�e
t the nature of the strategy parameters. Thus, thedi�eren
e de fa
to between good and bad strategy settings of strategyparameters is only re�e
ted in the di�eren
e between their probabilitiesto be sele
ted - whi
h 
an be rather small. Essentially, this means thatthe sele
tion pro
ess of the strategy parameters is strongly disturbed.
• The strategy parameter 
hange rate is de�ned as the di�eren
e betweenstrategy parameters of two su

essive generations. Hansen and Oster-meier [16℄ argue that the 
hange rate is an important fa
tor, as it givesan indi
ation 
on
erning the adaptation speed, and thus it has a dire
tin�uen
e on the performan
e of the algorithm. The prin
ipal 
laim isthat this 
hange rate basi
ally vanishes in the standard-ES.



1.3. Derandomized Evolution Strategies (DES) 21The 
hange rate depends on the mutation strength to whi
h the strat-egy parameters are subje
t. While aiming at attaining the maximal
hange rate, the latter is underposed to an upper bound, due to the �-nite sele
tion information that 
an be transferred between generations.Change rates that ex
eed the upper bound would lead to a sto
has-ti
 behavior. Moreover, the mutation strength that obtains optimal
hange rate is typi
ally smaller than the one that obtains good diver-sity among the mutants - a desired out
ome of the mutation operator,often referred to as sele
tion di�eren
e. Thus, the 
on�i
t between theobje
tive of optimal 
hange rate versus the obje
tive of optimal sele
-tion di�eren
e 
annot be resolved at the mutation strength level [25℄.A possible solution to this 
on�i
t would be to unlink the 
hange ratefrom the mutation strength.The so-
alled derandomized mutative step-size 
ontrol aims to treat thosedisruptive e�e
ts, regardless of the problem dimensionality, population size,et
.1.3.1 (1, λ) Derandomized ES VariantsThe 
on
ept of derandomized Evolution Strategies has been originally intro-du
ed by s
holars at the Te
hni
al University of Berlin in the beginning ofthe 1990's. It was followed by the release of a new generation of su

essfulES variants by Hansen, Ostermeier, and Gawel
zyk [26, 27, 28, 29℄.The �rst versions of derandomized ES algorithms introdu
ed a 
ontrolledglobal step-size in order to monitor the individual step-sizes by de
reasingthe sto
hasti
 e�e
ts of the probabilisti
 sampling. The sele
tion disturban
ewas 
ompletely removed with later versions by omitting the adaptation ofstrategy parameters by means of probabilisti
 sampling. This was 
ombinedwith individual information from the last generation (the su

essful muta-tions, i.e., of sele
ted o�spring), and then adjusted to 
orrelated mutations.Later on, the 
on
ept of adaptation by a

umulated information was intro-du
ed, aiming to use wisely the past information for the purpose of step-sizeadaptation: Instead of using the information from the last generation only,it was su

essfully generalized to a weighted average of the previous genera-tions.Note that the di�erent derandomized-ES variants stri
tly follow a (1, λ)strategy, postponing the treatment of re
ombination or plus-strategies forlater stages1. In this way, the question how to update the strategy parame-ters when an o�spring does not improve its an
estor is not relevant here.Moreover, the di�erent variants hold di�erent numbers of strategy pa-rameters to be adapted, and this is a fa
tor in the learning speed of the1When asked about 
omma versus plus strategies, Hansen states that �with a goodenough algorithm at hand, employing the plus strategy is unne
essary, as your algorithmshould be able to revisit the best attainable solution�.



22 Chapter 1. Evolution Strategiesoptimization routine. The di�erent algorithms hold a number of strategyparameters s
aling either linearly (O(n) parameters responsible for individ-ual step-sizes) or quadrati
ally (O(n2) parameters responsible for arbitrarynormal mutations) with the dimensionality n of the sear
h spa
e.1.3.2 First Level of DerandomizationThe so-
alled �rst level of derandomization a
hieved the following desirede�e
ts:
• A degree of freedom with respe
t to the mutation strength of the strat-egy parameters.
• S
alability of the ratio between the 
hange rate and the mutationstrength.
• Independen
e of population size with respe
t to the adaptation me
h-anism.We 
hoose to review the implementation of the �rst level of derandom-ization through three parti
ular derandomized ES variants:DR1The �rst derandomized attempt [26℄ 
oupled the su

essful mutations to thesele
tion of de
ision parameters, and learned the mutation step-size as wellas the s
aling ve
tor based upon the su

essful variation. The mutation stepis formulated for the kth individual, k = 1, . . . , λ:

~x(g+1) = ~x(g) + ξkδ
(g)~ξk

scal
~δ
(g)
scal~zk ~zk ∈ {−1,+1}n (1.18)Note that ~zk is a random ve
tor of ±1, rather than a normally distributedrandom ve
tor, while ~ξk

scal ∼ ~N (0, 1)+, i.e., distributed over the positive partof the normal distribution. The evaluation and sele
tion are followed by theadaptation of the strategy parameters (subs
ripts sel refer to the sele
tedindividual):
δ(g+1) = δ(g) · (ξsel)β (1.19)

~δ
(g+1)
scal = ~δ

(g)
scal ·

(

~ξsel
scal + b

)βscal (1.20)
P
(

ξk = 7
5

)

= P
(

ξk = 5
7

)

= 1
2 ; β =

√

1/n , βscal = 1/n, b = 0.35, and
ξk ∈

{

7
5 ,

5
7

} are 
onstants. Note that the multipli
ation in Eq. 1.20 is betweentwo ve
tors and 
arried out as element-by-element multipli
ation, yielding ave
tor of the same dimension n.
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ond derandomized ES variant [27℄ aimed to a

umulate informationabout the 
orrelation or anti-
orrelation of past mutation ve
tors in order toadapt the global step-size as well as the individual step-sizes - by introdu
inga quasi-memory ve
tor. This a

umulated information allowed omitting thesto
hasti
 element in the adaptation of the strategy parameters - updatingthem only by means of su

essful variations, rather than with random steps.The mutation step for the kth individual, k = 1, . . . , λ, reads:
~x(g+1) = ~x(g) + δ(g)~δ

(g)
scal~zk ~zk ∼ ~N (0, 1) (1.21)Introdu
ing a quasi-memory ve
tor ~Z:

~Z(g) = c~zsel + (1− c) ~Z(g−1) (1.22)The adaptation of the strategy parameters a

ording to the sele
ted o�-spring:
δ(g+1) = δ(g) ·



exp





‖~Z(g)‖
√
n
√

c
2−c

− 1 +
1

5n









β (1.23)
~δ
(g+1)
scal = ~δ

(g)
scal ·





∣

∣

∣

~Z(g)
∣

∣

∣

√

c
2−c

+ b





βscal

,
∣

∣

∣

~Z(g)
∣

∣

∣
=
(

|Z(g)
1 |, |Z

(g)
2 |, ..., |Z(g)

n |
)(1.24)with β =

√

1/n , βscal = 1/n, b = 0.35, and the quasi-memory rate c =
√

1/n as 
onstants. Note that the multipli
ation in Eq. 1.24 is betweentwo ve
tors and 
arried out as element-by-element multipli
ation, yielding ave
tor of the same dimension n.DR3This third variant [28℄, usually referred to as the Generation Set Adaptation(GSA), 
onsidered the derandomization of arbitrary normal mutations forthe �rst time, aiming to a
hieve invarian
e with respe
t to the s
aling ofvariables and the rotation of the 
oordinate system. This naturally 
amewith the 
ost of a quasi-memory matrix, B ∈ Rm×n, setting the dimensionof the strategy parameters spa
e to n2 ≤ m ≤ 2n2. The adaptation of theglobal step-size is mutative with sto
hasti
 variations, just like in the DR1.The mutation step is formulated for the kth individual, k = 1, . . . , λ:
~x(g+1) = ~x(g) + δ(g)ξk~yk (1.25)

~yk = cmB
(g) · ~zk ~zk ∼ ~N (0, 1) (1.26)



24 Chapter 1. Evolution StrategiesThe update of the memory matrix is formulated as:
B

(g) =
(

~b
(g)
1 , . . . ,~b(g)

m

)

~b
(g+1)
1 = (1− c) ·~b(g)

1 + c · (cuξsel~ysel) , ~b
(g+1)
i+1 = ~b

(g)
i

(1.27)The step-size is updated as follows:
δ(g+1) = δ(g) (ξsel)

β (1.28)where P (ξk = 3
2

)

= P
(

ξk = 2
3

)

= 1
2 ; β =

√

1/n , cm = (1/
√
m )(1 + 1/m),

c =
√

1/n , ξk ∈ {3
2 ,

2
3

}, and cu =
√

(2− c)/c are 
onstants.1.4 The Covarian
e Matrix Adaptation ESFollowing a series of su

essful derandomized ES variants addressing the �rstlevel of derandomization, and a 
ontinuous e�ort at the Te
hni
al Univer-sity of Berlin, the so-
alled Covarian
e Matrix Adaptation (CMA) EvolutionStrategy was released in 1996 [29℄, as a 
ompletely derandomized EvolutionStrategy � the fourth generation of derandomized ES variants.Se
ond Level of Derandomization The so-
alled se
ond level of deran-domization targeted the following e�e
ts:
• The probability to regenerate the same mutation step is in
reased.
• The 
hange rate of the strategy parameters is subje
t to expli
it 
on-trol.
• Strategy parameters are stationary when subje
t to random sele
tion.The se
ond level of derandomization was implemented by means of the CMA.The CMA 
ombines the robust me
hanism of ES with powerful statisti
allearning prin
iples, and thus it is sometimes subje
t to informal 
riti
ism fornot being a genuine Evolution Strategy. In short, it aims at satisfying themaximum likelihood prin
iple by applying Prin
iple Components Analysis(PCA) to the su

essful mutations, and it uses 
umulative global step-sizeadaptation.1.4.1 PreliminaryOne of the goals of the CMA is to a
hieve a su

essful statisti
al learningpro
ess of the optimal mutation distribution, whi
h is equivalent to learn-ing a 
ovarian
e matrix proportional to the inverse of the Hessianmatrix (see, e.g., [30℄), without 
al
ulating the a
tual derivatives:

C ∝ H
−1



1.4. The Covarian
e Matrix Adaptation ES 25Rather than representing a mutation step with a normal variation with zeromean (Eq. 1.9), it is 
onvenient to refer to the original notation of the normaldistribution. Thus, in the notation we use here, the ve
tor ~m represents themean of the mutation distribution, but is also asso
iated with the favoritesolution at present (i.e., ~xOLD of Eq. 1.9), σ denotes the global step-size, andthe 
ovarian
e matrix C determines the shape of the distribution ellipsoid:
~xNEW ∼ N (~m, σ2

C) = ~m+ σ · N (~0,C) = ~m+ σ · ~zDi�erent prin
iples di
tate the adaptation of the 
ovarian
e matrix, C, versusthe adaptation of the global step-size σ:
• The mean ~m and the 
ovarian
e matrix C of the normal distributionare updated a

ording to the maximum likelihood prin
iple, su
h thatgood mutations are likely to appear again. ~m is updated su
h that

P
(

~xsel|N
(

~m, σ2
C
))

−→ maxand C is updated su
h that
P
(

~xsel − ~mold

σ

∣

∣

∣

∣

N
(

~0,C
)

)

−→ max
onsidering the prior C. This is implemented through the so-
alledCovarian
e Matrix Adaptation (CMA) me
hanism.
• σ is updated su
h that it is 
onjugate perpendi
ular to the 
onse
utivesteps of ~m. This is implemented through the so-
alled CumulativeStep-size Adaptation (CSA) me
hanism.The Evolution PathThe most intuitive way to update the 
ovarian
e matrix would be to 
on-stru
t an n × n matrix analogue to the DR2 me
hanism (see Eq. 1.22),with the outer-produ
t of the sele
ted mutation ve
tor ~zsel:

C←− (1− ccov)C + ccov~zsel~z
T
selHowever, the sign information of ~zsel is lost due to ~zsel~zT

sel = −~zsel (−~zsel)T .The solution lies within the de�nition of the so-
alled evolution path, whi
ha

umulates the history information using an exponentially weighted movingaverage:
~pc ∝

g
∑

i=0

(1− cc)g−i~z
(i)
selAnd now the 
ovarian
e matrix adaptation step reads:

C←− (1− ccov)C + ccov~pc~p
T
c



26 Chapter 1. Evolution StrategiesThe Path Length ControlThe 
ovarian
e matrix update is not likely to in
rease the varian
e in alldire
tions simultaneously, and thus a global step-size 
ontrol is mu
h needed.The basi
 idea of the so-
alled path length 
ontrol is to measure the lengthof the evolution path, whi
h is also the 
onse
utive steps of ~m, and adaptthe step-size a

ording to the following argument: If the evolution path islonger than expe
ted, the steps are likely parallel, and thus the step-sizeshould be in
reased; Alternatively, if it is shorter than expe
ted, the stepsare probably anti-parallel, and the step-size should be de
reased a

ordingly.The expe
ted length is de�ned in a straightforward manner as the expe
tedlength of a normally distributed random ve
tor.The a
tual measurement is done by means of the "
onjugate" evolutionpath:
~pσ ∝

g
∑

i=0

(1− cσ)g−i
C

(i) − 1
2 ~z

(i)
selwhere the fa
torization of C is required in order to align all dire
tions withinthe rotated frame. Then, the update of the step-size depends on the 
ompar-ison between ‖~pσ‖ and the expe
ted length of a normally distributed randomve
tor, E [‖N (0, I) ‖]:

σ ←− σ · exp

( ‖~pσ‖
E [‖N (0, I) ‖] − 1

)1.4.2 The (1, λ) Rank-One CMAWe are now in a position to introdu
e the expli
it formulation of the rank-oneupdate with 
umulation Covarian
e Matrix Adaptation Evolution Strategy,following the notation introdu
ed in Se
tion 1.4.1. Additionally, 
onsider thediagonalization of the 
ovarian
e matrix, denoted by
C

(g) = B
(g)

D
(g)
(

B
(g)

D
(g)
)T (1.29)where B

(g) is an orthonormal rotation matrix whi
h de�nes the 
oordinatesystem, and D
(g) = diag

(√
Λ1 ,
√

Λ2 , ...,
√

Λn

) holds the square-roots of theeigenvalues.The mutation step for the kth individual, k = 1, . . . , λ, is then de�nedas:
~x

(g+1)
k = ~x(g) + σ(g)

B
(g)

D
(g)~z

(g+1)
k (1.30)with ~zk ∼ ~N

(

~0, I
).The evolution path, initialized ~p(0)

c = ~0, is expli
itly updated as follows:
~p(g+1)

c = (1− cc) · ~p(g)
c +

√

cc(2− cc) ·B(g)
D

(g)~z
(g+1)
sel (1.31)



1.4. The Covarian
e Matrix Adaptation ES 27and then the 
ovarian
e matrix, initialized as identity C
(0) = I, is adapteda

ordingly:

C
(g+1) = (1− ccov) ·C(g) + ccov · ~p(g+1)

c

(

~p(g+1)
c

)T (1.32)The 
al
ulation of the "
onjugate" evolution path, initialized ~p(0)
σ = ~0, reads:

~p(g+1)
σ = (1− cσ) · ~p(g)

σ +
√

cσ(2− cσ) ·B(g)~z
(g+1)
sel (1.33)and then followed by the update of the global step-size:

σ(g+1) = σ(g) · exp





cσ
dσ
·





∥

∥

∥
~p
(g+1)
σ

∥

∥

∥

E [‖N (0, I) ‖] − 1







 (1.34)The various learning 
oe�
ients are typi
ally set as cc = 4/(n + 4), ccov =
2/(n+1.4)2, cσ = 3/(n+4), and dσ = 1+ cσ. The expe
tation of the lengthof a normally distributed random ve
tor is given by:

E [‖N (0, I) ‖] =
√

2 · Γ
(

n+1
2

)

Γ
(

n
2

) (1.35)where the Gamma fun
tion is de�ned by:
Γ(n) =

∫ ∞

0
xn−1 exp(−x)dx (1.36)but may also be approximated by E [‖N (0, I) ‖] ≈ √n

(

1− 1
4n + 1

21n2

).Implementation Additional implementation remarks are outlines here:
• Arnold o�ered2 a dramati
 simpli�
ation to the global step-size update(Eq. 1.34) with repla
ing ( ‚

‚

‚
~p
(g+1)
σ

‚

‚

‚

E[‖N (0,I)‖] − 1

) by (‚

‚

‚
~p
(g+1)
σ

‚

‚

‚

2
−n

2n

). Thiswas reported to perform equally well [16℄.
• The update of the evolution path (Eq. 1.31) is usually implementedwith a 
onditional threshold as follows:

~p(g+1)
c = (1− cc) · ~p(g)

c +H(g+1)
σ

√

cc(2− cc) ·B(g)
D

(g)~z
(g+1)
sel (1.37)

H(g+1)
σ =







1 if ‚

‚

‚
~p
(g+1)
σ

‚

‚

‚√
1−(1−cσ)2

< Hthresh

0 otherwise (1.38)where Hthresh =
(

1.5 + 1
n−0.5

)

· E [‖N (0, I) ‖].2Hansen et al. 
ite this sour
e of information as personal 
ommuni
ations.



28 Chapter 1. Evolution Strategies1.4.3 The (µW , λ) Rank-µ CMAThe Rank-µ Covarian
e Matrix Adaptation [31℄ is an extension of the originalupdate rule for larger population sizes. The idea is to use µ > 1 ve
torsin order to update the 
ovarian
e matrix C in ea
h generation, based onweighted intermediate re
ombination.Let ~xi:λ denote the ith ranked solution point, su
h that
f (~x1:λ) ≤ f (~x2:λ) ≤ · · · ≤ f (~xλ:λ)The updated mean is now de�ned as follows:

~m←
µ
∑

i=1

wi~xi:λ = ~m+ σ

µ
∑

i=1

wi~zi:λ ≡ 〈~x〉Wwith a set of weights:
w1 ≥ w2 ≥ · · · ≥ wµ > 0,

µ
∑

i=1

wi = 1Essentially, this is a generalization of the intermediate re
ombination 
on
ept(Eq. 1.17), suggested by Re
henberg3.By setting ∀i : wi = 1
µ , the original re
ombination is restored, whi
h isthen noted by (µI , λ) (note, however, that the (µ/µI , λ) notation is also used[32℄).The 
ovarian
e matrix update 
an now be formalized by means of rank-µupdate, using an outer-produ
t of the weighted mutation ve
tors:

C←− (1− ccov)C + ccov

µ
∑

i=1

wi~zi:λ~z
T
i:λIt 
an be even furthermore 
ombined with the rank-one update:

C←− (1− ccov)C +
ccov

µcov
~pc~p

T
c + ccov

(

1− 1

µcov

) µ
∑

i=1

wi~zi:λ~z
T
i:λWe shall now present the (µW , λ) rank-µ CMA 
hara
teristi
 equations:

~x
(g+1)
k = 〈~x〉(g)

W + σ(g)
B

(g)
D

(g)~z
(g+1)
k , k = 1, . . . , λ (1.39)

~p(g+1)
c = (1− cc) · ~p(g)

c +
√

cc(2− cc) · cW B
(g)

D
(g)〈~z〉(g+1)

W (1.40)
C

(g+1) = (1−ccov)·C(g)+
ccov

µcov
·~p(g+1)

c

(

~p(g+1)
c

)T
+ccov

(

1− 1

µcov

) µ
∑

i=1

wi~zi:λ~z
T
i:λ(1.41)3Reported as personal 
ommuni
ations between Hansen, Ostermeier and Re
henberg.
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~p(g+1)

σ = (1− cσ) · ~p(g)
σ +

√

cσ(2− cσ) ·B(g)
(

D
(g)
)−1 (

B
(g)
)T

cW 〈~z〉(g+1)
W(1.42)

σ(g+1) = σ(g) · exp





cσ
dσ
·





∥

∥

∥
~p
(g+1)
σ

∥

∥

∥

E [‖N (0, I) ‖] − 1







 (1.43)The weights are typi
ally set to:
wi=1...µ =

ln (µ+ 1)− ln (i)
∑µ

j=1 ln (µ+ 1)− ln (j)
(1.44)The 
onstant cW is de�ned su
h that cW 〈~z〉(g+1)

W and ~z(g+1)
k are identi
allydistributed with the same varian
e under random sele
tion:

cW =

∑µ
i=1wi

√

∑µ
i=1w

2
i

(1.45)The spe
ial rank-µ 
onstant, µcov, is the varian
e e�e
tive sele
tion mass:
µcov =

1
∑µ

i=1w
2
i

(1.46)whi
h be
omes µcov = µ in the spe
ial 
ase of (µI , λ).The rest of the 
onstants are set as in the (1, λ) rank-one CMA.Population Size Given a sear
h spa
e of dimension n, the default CMApopulation sizes introdu
ed a revolutionary order of magnitude into the ES�eld, O(log (n)), espe
ially when we take into a

ount the goal to learn thefull 
ovarian
e matrix of the de
ision parameters spa
e.The expli
it suggested values are as follows:
λ = 4 + ⌊3 · ln (n)⌋ µ = ⌊λ/2⌋ (1.47)1.4.4 The (1 + λ) CMAThis elitist version [17℄ of the CMA-ES algorithm, whi
h had been originallyderived for the sake of a multi-obje
tive CMA algorithm [33℄, 
ombined the
lassi
al 
on
ept of the (1 + 1) ES strategy, and in parti
ular the su

essprobability and su

ess rule 
omponents (see Eq. 1.7 as well as Se
tion 1.2.2),with the Covarian
e Matrix Adaptation 
on
ept. The so-
alled su

ess rulebased step size 
ontrol repla
es the path length 
ontrol of the CMA-
ommastrategy. The same notation as in Se
tion 1.4.2 is used here:

~x
(g+1)
k = ~x(g) + σ(g)

B
(g)

D
(g)~z

(g+1)
k , k = 1, . . . , λ (1.48)



30 Chapter 1. Evolution StrategiesAfter the evaluation of the new generation, the su

ess rate is updated
psucc = λ

(g+1)
succ /λ, where:

p̄succ = (1− cp) · p̄succ + cp · psucc (1.49)
σ(g+1) = σ(g) · exp

(

1

d
·
(

p̄succ −
ptarget

succ

1− ptarget
succ

(1− p̄succ)

)) (1.50)The 
ovarian
e matrix is updated only if the sele
ted o�spring is better thanthe parent. Then,
~pc =







(1− cc) ~pc +
√

cc (2− cc) · ~x
(g+1)
sel

−~x(g)

σ
(g)
parent

if p̄succ < pΘ

(1− cc) ~pc otherwise (1.51)
C

(g+1) =







(1− ccov) ·C(g) + ccov · ~pc~p
T
c if p̄succ < pΘ

(1− ccov) ·C(g) + ccov ·
(

~pc~p
T
c + cc (2− cc)C(g)

) otherwise(1.52)The default parameters are set as follows: d = 1 + n
2 , ptarget

succ = 2
11 , cp = 1

12 ,
cc = 2

n+2 , ccov = 2
n2+6 , and pΘ = 0.44.A Note on Usage As mentioned earlier, this plus-strategy version was
onstru
ted for multi-obje
tive optimization. Uno�
ially, it is not re
om-mended to use it otherwise. In this work, we will restri
t the use of theCMA+ to the ni
hing framework ex
lusively, and thus will not 
onsider itupon the employment of the DES variants to single-
riterion Quantum Con-trol optimization tasks in Chapter 7.1.4.5 Constraints HandlingThe broad topi
 of 
onstraints handling [34℄ is 
ertainly not of a major
on
ern in this study, but it does have an indire
t impa
t on the ni
hingte
hniques to be introdu
ed here, as will be
ome more 
lear in the following
hapters. We thus 
hoose to spe
ify here, in short, the general approa
h tohandle 
onstraints when derandomized-ES are in use, in light of the rule ofthumb suggested by Hansen and Ostermeier for the CMA (see [16℄, pp. 21).A possible way to handle 
onstraints would be to repeat the generationstep (e.g., Eq. 1.30) until λ, or at least µ feasible solutions are generated.This should be stri
tly enfor
ed, before the following update equations areapplied. It is 
laimed that this method should perform in a satisfying man-ner, if a su�
ient number of feasible solutions are initially generated - dueto the symmetry of the mutation distribution. However, if the global mini-mum is lo
ated at the edge of the feasible domain, it is suggested that other
onstraints handling te
hniques should be used.



1.4. The Covarian
e Matrix Adaptation ES 311.4.6 Dis
ussionThe Covarian
e Matrix Adaptation Evolution Strategy is a state-of-the-artoptimization routine, whi
h 
ombines 
lassi
al deterministi
 
on
epts (e.g.,Hessian or Covarian
e matri
es learning) and statisti
al learning tools (e.g.,Prin
ipal Components Analysis) with the powerful sto
hasti
 me
hanismof Evolution Strategies. In terms of standard performan
e 
riteria, it wasranked as the best Evolutionary Algorithm at hand [35℄.The CMA-ES has been informally 
riti
ized for not being a genuine evolu-tion strategy, sin
e it in
orporates those non-evolutionary 
omponents. Evenas su
h, and despite its 
onsiderable su

ess-rate as a global optimizer, wewould like to stress that it 
ertainly has a nature of a lo
al sear
h routine.The fa
t that it learns a unimodal distribution in the sear
h spa
e - no mat-ter how well it does so - makes it a lo
al sear
h. We believe that this providesus with some motivation to use the CMA-ES, as well as other derandomized-ES routines, as algorithmi
 kernels for a multi-distribution approa
h - whi
hwould 
onstru
t a ni
hing algorithm. The idea would be essentially to usemultiple CMAs in parallel, aiming to a
hieve a good 
overage of the land-s
apes with lo
al-sear
hers. This idea would be
ome more 
lear in the next
hapter, when we introdu
e the gateway to ni
hing.





The genes are the master programmers, and they areprogramming for their lives. They are judged a

ording to thesu

ess of their programs in 
oping with all the hazards thatlife throws at their survival ma
hines, and the judge is theruthless judge of the 
ourt of survival.The Sel�sh Gene; Ri
hard Dawkins
Chapter 2Introdu
tion to Ni
hing2.1 Spe
iation Theory vs. Con
eptual DesignsEvolutionary Algorithms have the tenden
y to lose diversity within theirpopulation of feasible solutions and to 
onverge into a single solution [1, 36,37℄, even if the sear
h lands
ape has multiple globally optimal solutions.Ni
hing methods, the extension of EAs to �nding multiple optima inmulti-modal optimization within one population, address this issue by main-taining the diversity of 
ertain properties within the population. Thus, theyaim at obtaining parallel 
onvergen
e into multiple basins of attra
tion in amulti-modal lands
ape within a single run.The study of ni
hing is 
hallenging both from the theoreti
al pointof view and from the pra
ti
al point of view. The theoreti
al 
hallengeis two-fold - maintaining the diversity within a population-based sto
hasti
algorithm from the 
omputational perspe
tive, but also having an insightinto spe
iation theory or population geneti
s from the Evolutionary Biologyperspe
tive. The pra
ti
al aspe
t provides a real-world in
entive for thisproblem - there is an in
reasing interest of the applied optimization 
ommu-nity in providing the de
ision maker with multiple solutions whi
h ideallyrepresent di�erent 
on
eptual designs, for single-
riterion or multi-
riterionsear
h spa
es [38, 39℄. The 
on
ept of "going optimal" is often extended nowinto the aim for "going multi-optimal", so to speak: Obtaining optimalresults but also providing the de
ision maker with di�erent 
hoi
es.On this parti
ular note, it is worth mentioning the so-
alled Se
ond ToyotaParadox [40℄:"Delaying de
isions, 
ommuni
ating ambiguously, and pursuingan ex
essive number of prototypes, 
an produ
e better 
ars fasterand 
heaper."Ni
hing methods have been studied in the past 35 years, mostly in the
ontext of Geneti
 Algorithms, and the fo
us has been mainly on the theo-reti
al aspe
t. As will be dis
ussed here, ni
hing methods have been mostly33



34 Chapter 2. Introdu
tion to Ni
hinga by-produ
t of studying population diversity, and were hardly ever at thefront of the EC resear
h.This 
hapter, the gateway to ni
hing, dis
usses a variety of introdu
torytopi
s - ranging from biologi
al aspe
ts of diversity and spe
iation, mathe-mati
al de�nitions of basins of attra
tion, to GA ni
hing methods - whi
hre�e
t the strong interdis
iplinary nature of this subje
t.2.2 From DNA to Organi
 DiversityIn this se
tion we introdu
e the biologi
al elementary 
on
epts that 
orre-spond to the 
ore of ni
hing methods: population diversity. This se
tion ismainly based on [41℄ and personal le
ture notes1.A Preliminary Note on Terminology A spe
ies is de�ned as the small-est evolutionary independent unit. The term ni
he, however, stems frome
ology, and it has several di�erent de�nitions. It is sometimes referred toas the 
olle
tive environmental 
omponents whi
h are favored by a spe
i�
spe
ies, but 
ould also be 
onsidered as the e
osystem itself whi
h hosts indi-viduals of various spe
ies. Most de�nitions would typi
ally also 
onsider thehosting 
apa
ity of the ni
he, whi
h refers to the limited available resour
esfor sustaining life in its domain.In the 
ontext of fun
tion optimization, ni
he is asso
iated with a peak,or a basin of attra
tion, whereas a spe
ies 
orresponds to the subpopulationof individuals o

upying that ni
he.2.2.1 Geneti
 DriftOrgani
 evolution 
an be broken down into four de�ning fundamental me
ha-nisms: natural sele
tion, mutation, migration or gene �ow, and geneti
 drift.The latter, whi
h essentially refers to sampling errors in �nite populations,was overlooked by Darwin, who had not been familiar with Mendelian ge-neti
s, and thus did not dis
uss this e�e
t in his "Origin of Spe
ies" [42℄. Inshort, geneti
 drift is a sto
hasti
 pro
ess in whi
h the diversity is lost in�nite populations. A distribution of geneti
 properties is transferred to thenext generation in a limited manner, due to the �nite number of generatedo�spring, or equivalently the limited statisti
al sampling of the distribution.As a result, the distribution is likely to approa
h an equilibrium distribution,e.g., �xation of spe
i�
 alleles when subje
t to equal �tness. This is whygeneti
 drift is often 
onsidered as a neutral e�e
t. The smaller the popu-lation, the faster and stronger this e�e
t o

urs. An analogy is o

asionallydrawn between geneti
 drift to Brownian motion of parti
les in me
hani
s.1Notes were taken in the 
ourse "Evolutionary Biology" of Prof. David Stern (EEB309),Prin
eton University, Fall 2007



2.2. From DNA to Organi
 Diversity 35In order to demonstrate the geneti
 drift e�e
t, we 
ondu
ted simula-tions2 on the following basi
 model of population geneti
s: The evolutionof random-mating populations with two alleles, namely, A and a, equal �t-nesses of the three genotypes (i.e., no preferen
es for AA, Aa, nor aa), nomutations, no migration between the repli
ate populations, and �nite pop-ulation size N . We simulated ten simultaneously evolving populations, forthree test-
ases of population sizes: N1 = 10, N2 = 100, and N3 = 1000.Figure 2.1 o�ers an illustration for the three di�erent simulations. It is easyto observe a 
lear trend in this simple experiment: Alleles' loss/�xation isvery likely to o

ur in small population sizes, and is not likely to o

ur inlarge population sizes.The geneti
 drift e�e
t had been originally re
ognized by R.A. Fisher[43℄ (referred to as random survival), and was expli
itly mentioned by S.Wright when studying Mendelian populations [44℄. It was, however, re-visited and given a new interpretation in the Neutral Theory of Mole
ularEvolution of Kimura [45℄. The Neutral Theory suggested that the random ge-neti
 drift e�e
t is the main driving for
e within mole
ular evolution, ratherthan the non-random natural sele
tion me
hanism. Natural sele
tion as wellas geneti
 drift are 
onsidered nowadays, by the 
ontemporary evolution-ary biology 
ommunity, as the 
ombined driving for
e of organi
 evolution.Moreover, the importan
e of the Neutral Theory is essentially in its being anull hypothesis model for the Natural Sele
tion Theory - by de�nition.2.2.2 Organi
 DiversityDiversity among individuals or populations in nature 
an be attributed todi�erent evolutionary pro
esses whi
h o

ur at di�erent levels. We distin-guish here between variations that are observed within a single spe
ies toa spe
iation pro
ess, during whi
h a new spe
ies arises, and review shortlyboth of them.Variations within a Spe
ies Diversity of organisms within a single spe
iesstems from varian
e at the genotypi
 level, referred to as geneti
 diversity, orfrom the existen
e of spe
trum of phenotypi
 realizations to a spe
i�
 geno-type. These e�e
ts are quanti�ed and are usually asso
iated with genotypi
varian
e and phenotypi
 varian
e, respe
tively. Several hypotheses explain-ing geneti
 diversity have been proposed within the dis
ipline of populationgeneti
s, in
luding the neutral evolution theory. It should be noted that ge-neti
 diversity is typi
ally 
onsidered to be advantageous for survival, as itmay allow better adaptation of the population to environmental 
hanges,su
h as 
limate variations, diseases, et
.Phenotypi
 varian
e is measured on a 
ontinuous spe
trum, also known2Simulations were 
ondu
ted with the PopG Geneti
 Simulation Program, version 3.1.
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Figure 2.1: Ten simultaneously evolving populations, for three test-
asesof population sizes: N1 = 10 [TOP℄, N2 = 100 [CENTER℄, and N3 = 1000[BOTTOM℄. The verti
al axis 
orresponds to the allele frequen
y of A in thepopulation, as a fun
tion of generations, indi
ated on the horizontal axis.



2.2. From DNA to Organi
 Diversity 37as quantitative variation. Roughly speaking, the main sour
es of quantitativevariations [41, 46℄ are outlined here:1. Genes have multiple lo
i, and hen
e are mapped into a large set ofphenotypes.2. Environmental e�e
ts have dire
t in�uen
e on natural sele
tion; �tnessis time-dependent, and thus phenotypi
 variations in the out
ome ofsele
tion are expe
ted.3. Phenotypi
 plasti
ity is the amount in whi
h the genotypi
 expressionvary in di�erent environments3, and it is a dire
t sour
e of variationat the phenotypi
 level.4. The plasti
 response of the genotype to the environment, i.e., the jointe�e
t of geneti
 and environmental elements, also a�e
ts the sele
tionof a spe
i�
 phenotype, and thus 
an lead to variations. This e�e
t isknown as Genotype-Environment Intera
tion ("G-by-E").Thus, quantitative variations are mainly 
aused by genotypi
 and phenotypi
realizations and their intera
tion with the environment. The ratio betweengeneti
 varian
e to total phenotypi
 varian
e is de�ned as heritability [44℄.Spe
iation The essen
e of the spe
iation pro
ess is la
k of gene �ow,where physi
al isolation often plays the role of the barrier to gene �ow. La
kof gene �ow is only one of the ne
essary 
onditions for spe
iation. Anotherne
essary 
ondition for spe
iation to o

ur is that the redu
tion of gene �owwill be followed by a phase of geneti
 divergen
e, by means of mutation,sele
tion, and drift. Finally, the 
ompletion or elimination of divergen
e 
anbe assessed via the so-
alled se
ondary 
onta
t phase: interbreeding betweenthe parental populations would possibly fail (o�spring is less �t), su

eed(o�spring is �tter), or have a neutral out
ome (o�spring has the same �tness).This would 
orrespond respe
tively to in
reasing, de
reasing or stabilizingthe di�erentiation between the two arising spe
ies. Note that the spe
iation
an o

ur de fa
to, without the a
tual se
ondary 
onta
t taking pla
e; thelatter is for observational assessment purposes.In organi
 evolution, four di�erent levels of spe
iation are 
onsidered,
orresponding to four levels of physi
al linkage between the subpopulations:1. Allopatri
 spe
iation The split in the population o

urs only due to
omplete geographi
al separation, e.g., migration or mountain build-ing. It results in two geographi
ally isolated populations.3Bradshaw [47℄ gave the following qualitative de�nition to phenotypi
 plasti
ity: "Theamount by whi
h the expressions of individual 
hara
teristi
s of a genotype are 
hangedby di�erent environments is a measure of the plasti
ity of these 
hara
ters".
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tion to Ni
hing2. Peripatri
 spe
iation Spe
ies arise in small populations whi
h arenot geographi
ally separated but rather isolated in pra
ti
e; the e�e
to

urs mainly due to the geneti
 drift e�e
t.3. Parapatri
 spe
iation The geographi
al separation is limited, witha physi
al overlap between the two zones where the populations splitfrom ea
h other.4. Sympatri
 spe
iation The two diverging populations 
oexist in thesame zone, and thus the spe
iation is stri
tly non-geographi
al. Thisis observed in nature in parasite populations, that are lo
ated in thesame zone, but asso
iated with di�erent plant or animal hosts [48℄.These four modes of spe
iation 
orrespond to four levels of geographi
allyde
reasing linkages. Roughly speaking, statisti
al asso
iation of geneti
 
om-ponents in nature, su
h as lo
i, typi
ally results from physi
al linkage. In this
ase, we 
laim that statisti
al disasso
iation, whi
h is the trigger to spe
ia-tion, originates from gradually de
reasing physi
al linkage.In summary, spe
iation typi
ally o

urs throughout three steps:1. Geographi
 isolation or redu
tion of gene �ow.2. Geneti
 divergen
e (mutation, sele
tion, drift).3. Se
ondary 
onta
t (observation/assessment).2.3 "E
ologi
al Optima": Basins of Attra
tionWe devote this se
tion to the de�nition of basins of attra
tion. This se
tionis mainly based on Törn and Zilinskas [8℄.The task of de�ning a generi
 basin of attra
tion seems to be one of themost di�
ult problems in the �eld of global optimization, and there haveonly been few attempts to treat it theoreti
ally4 [8℄.Rigorously, it is possible to de�ne the basin by means of a lo
al optimizer.In parti
ular, 
onsider a gradient des
ent algorithm starting from ~x0, whi
his 
hara
terized by the following dynami
s:
d~x(t)

dt
= −∇f (~x(t)) (2.1)with the initial 
ondition ~x (0) = ~x0. Now, 
onsider the set of points forwhi
h the limit exists:

Υ =
{

~x ∈ Rn
∣

∣

∣~x(0) = ~x ∧ ~x(t)|t≥0 satis�es Eq. 2.1 ∧ lim
t→∞

~x(t) exists}(2.2)4Intuitively, and stri
tly metaphori
ally speaking, we may think of a region of attra
tionof ~xL as the region, where if water is poured, it will rea
h ~xL. A

ordingly, we may thenthink of the basin of ~xL as the maximal region that will be 
overed when the 
avity at ~xLis �lled to the lowest part of its rim.



2.4. Population Diversity within Evolutionary Algorithms 39De�nition 2.3.1. The region of attra
tion A(~xL) of a lo
al minimum ~xL is
A(~xL) =

{

~x ∈ Υ
∣

∣

∣~x(0) = ~x ∧ ~x(t)|t≥0 satis�es Eq. 2.1 ∧ lim
t→∞

~x(t) = ~xL

}

.(2.3)The basin of ~xL is the maximal level set that is fully 
ontained in A(~xL).In the 
ase of several dis
onne
ted lo
al minima with the same fun
tionvalue, it is possible to de�ne the region of attra
tion as the union of thenon-overlapping 
onne
ted sets.2.3.1 Classi�
ation of Optima: The Pra
ti
al Perspe
tiveOn the note of the theoreti
al de�nition of the basin, it is worth mentioningthe pra
ti
al perspe
tive for the 
lassi�
ation of optima shapes, also referredto as global topology. This topi
 is strongly related to the emerging sub�eldof robustness study (see, e.g., [49℄), whi
h aims at attaining high-yield optimawith large basins (i.e., low partial derivative values in the proximity of thepeak). Moreover, yet visited from a di�erent dire
tion, another approa
hwas introdu
ed re
ently by Luna
ek and Whitley for 
lassifying di�erent
lasses of multimodal lands
apes with respe
t to algorithmi
 performan
e[50℄. The latter de�nes the dispersion metri
 of a lands
ape as the degreeto whi
h the lo
al optima are globally 
lustered near one another. Land-s
apes with low dispersion have their best lo
al optima 
lustered together ina single funnel5. This 
lassi�
ation to low dispersion versus high dispersionmay be asso
iated with the algorithmi
 trade-o� between exploration of thelands
ape and exploitation of lo
al stru
tures. In the broad 
ontext of thiswork, it is interesting to note that the CMA was shown in [50℄ to performwell on low-dispersion lands
apes, and was less e�
ient on high-dispersionlands
apes.2.4 Population Diversity within EAsThe term population diversity is 
ommonly used in the 
ontext of Evolution-ary Algorithms, but it rarely refers to a rigorous de�nition. Essentially, itis asso
iated both with geneti
 diversity and spe
iation - the two di�erent
on
epts from organi
 evolution that were dis
ussed in Se
tion 2.2 - at thesame time. This is simply due to the fa
t that the di�eren
es between thetwo 
on
epts do not have any pra
ti
al e�e
t on the evolutionary sear
h andthe goal of maintaining diversity among the evolving 
andidate solutions. Inthe well known trade-o� between exploration and exploitation of the land-s
ape during a sear
h, maintaining population diversity is a driving for
e inthe exploration front, and thus it is an important 
omponent. Among EC5We deliberately avoid the de�nition of a funnel, as its de�nition is rather vague. Werefer the reader to [51℄.
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tion to Ni
hingresear
hers, population diversity is �rst 
onsidered as a 
omponent due toplay a role in a fruitful exploration of the lands
ape for the sake of obtaininga single solution, while its role in obtaining multiple solutions is typi
ally
onsidered as a se
ondary one.Mahfoud's Formalism Mahfoud 
onstru
ted a formalism for 
hara
ter-izing population diversity in the framework of Evolutionary Algorithms (see[37℄, pp. 50-59). Mahfoud's formal framework was based on the partition-ing of the sear
h spa
e into equivalen
e 
lasses (set to minima in the sear
hlands
ape), a des
riptive relation (typi
ally, genotypi
 or phenotypi
 map-pings), and the measurement of distan
e between the 
urrent distribution ofsubpopulations to some given goal-distribution.Let P = {pi}ℓi=1 be a dis
rete distribution des
ribing the 
urrent parti-tioning of the population into subpopulations, i.e., pi is the portion of thepopulation lo
ated at the ith site. Let Q = {qi}ℓi=1 be the goal-distributionof the population with respe
t to the de�ned sites. We demand that by
onstru
tion we have ∑ℓ
i=1 pi = 1, as well as ∑ℓ

i=1 qi = 1. The formal-ism fo
uses in de�ning the dire
ted divergen
e, or distan
e, of distribution
P to distribution Q. Several well-known metri
s follow this formalism bysatisfying its various 
riteria. We review some of them here.1. The entropy of a system is a quantitative measurement of its disor-der or randomness [52℄. Although it had originated in Physi
s, in theSe
ond Law of Thermodynami
s, it also be
ame an important 
riterionin information systems, also referred to as Shannon's Information En-tropy. A

ordingly, this general 
on
ept has several de�nitions, wherewe 
hoose here to introdu
e a relevant de�nition to probability distri-butions.De�nition 2.4.1. The entropy of a dis
rete probability distribution,

{pi}ℓi=1, is de�ned as:
S(P ) =

ℓ
∑

i=1

pi · ln
(

1

pi

)

= −
ℓ
∑

i=1

pi · ln (pi) (2.4)The following measure, developed by Kullba
k and Leibler [53℄, quan-ti�es the dire
ted divergen
e between the two distributions, P and Q,as long as it is well de�ned (i.e., ∀i pi > 0, qi > 0):
D (P,Q) =

ℓ
∑

i=1

pi · ln
(

pi

qi

) (2.5)Given a uniform goal-distribution, the Kullba
k-Leibler measure is re-
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ed to the following:
D (P,U) =

ℓ
∑

i=1

pi · ln
(

pi

1/ℓ

)

= ln (ℓ)− S(P ) (2.6)Mahfoud shows that the Kullba
k-Leibler measure satis�es the 
riteriaof his formalism, and 
an be used as a diversity measure.2. The standard distan
e metri
s are useful measures of dire
ted diver-gen
e between the distributions.De�nition 2.4.2. A family of distan
e metri
s is de�ned as follows:
D (P,Q) =

√

√

√

√

ℓ
∑

i=1

|pi − qi|k , 0 < k ≤ ∞ (2.7)Mahfoud shows that the family of distan
e metri
s, with 0 < k ≤ ∞,satis�es the 
riteria and 
an be used as diversity measures.This analyti
al framework, with its derived measurements of diversity, al-lowed Mahfoud to 
ompare the role of population diversity among di�erentGA ni
hing te
hniques, and essentially be
ame a performan
e 
riterion inhis study.Diversity Loss Subje
t to the 
omplex dynami
s of the various for
eswithin an evolutionary algorithm, population diversity is typi
ally lost, andthe sear
h is likely to 
onverge into a single basin of attra
tion in the land-s
ape.Population diversity loss within the population of solutions is the funda-mental e�e
t whi
h ni
hing methods aim to treat. In fa
t, from the histor-i
al perspe
tive, the quest for diversity-promoting-te
hniques was the maingoal within the EC 
ommunity for some time, and ni
hing methods weremerely obtained as by-produ
ts, so to speak, of that e�ort. As will be arguedhere, population diversity is an important 
omponent in a population-basedsear
h, and it even be
omes 
riti
al in extended te
hniques, su
h as Evolu-tionary Multi-Obje
tive approa
hes (see Chapter 5).Next, we des
ribe the e�e
t of diversity loss within Evolution Strate-gies. This will be followed by some 
on
lusions drawn by the GA resear
h
on
erning diversity loss within GAs, as a point of referen
e to ES.2.4.1 Diversity Loss in Evolution StrategiesThe de�ning me
hanism of ES is strongly di
tated by the mutation operatoras well as by the deterministi
 sele
tion operator. As de�ning operators,
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tion to Ni
hingthey have a dire
t in�uen
e on the diversity property of the population. There
ombination operator, nevertheless, does not play a 
riti
al role in the ESme
hanism. In pra
ti
e, espe
ially in the 
ontext of derandomized ES, it isnot an essential 
omponent.We attribute two main 
omponents to the population diversity loss withinES: fast take-over, whi
h is asso
iated with the sele
tion operator, and ge-neti
 drift (or neutrality e�e
t), whi
h is asso
iated both with the sele
tionand the re
ombination operators, respe
tively.Sele
tive Pressure: Fast Take-OverEvolution Strategies have a stri
tly deterministi
, rank-based approa
h, tosele
tion. In the two traditional approa
hes, (µ, λ) and (µ + λ), the bestindividuals are sele
ted - implying, rather intuitively, high sele
tive pressure.Due to the 
ru
ial role of the sele
tion operator within the evolution pro
ess,its impa
t within the ES �eld has been widely investigated.Goldberg and Deb introdu
ed the important 
on
ept of takeover time[54℄, whi
h gives a quantitative des
ription of sele
tive pressure with re-spe
t to the sele
tion operator ex
lusively:De�nition 2.4.3. The takeover time τ∗ is the minimal number of gener-ations until repeated appli
ation of the sele
tion operator yields a uniformpopulation �lled with 
opies of the best individual.The sele
tive pressure has been further investigated by Bä
k [36℄, whoanalyzed all the ES sele
tion me
hanisms also with respe
t to takeover times.Here, we introdu
e the results for the takeover times of the main sele
tionme
hanisms in the absen
e of mutation, where we 
hose to omit the deriva-tions. See [1℄ for the proofs.Theorem 2.4.4. The takeover time of (µ, λ)-sele
tion is :
τ∗(µ,λ) =

ln(λ)

ln
(

λ
µ

) (2.8)Theorem 2.4.5. The takeover time of (µ + λ)-sele
tion is given impli
itlyby:
λ =

(

ατ∗+1
1 − ατ∗+1

2

)

√

λ
µ ·
(

λ
µ + 4

)

α1,2 =
λ

2µ
± 1

2
·
√

(

λ

µ

(

λ

µ
+ 4

))

(2.9)



2.4. Population Diversity within Evolutionary Algorithms 43Corollary 2.4.6. It is easy to verify that upon the substitution of the tradi-tional population sizes of the standard-ES, one obtains very short takeovertimes for the given sele
tion me
hanisms, whi
h imply high sele
tive pres-sure.The ratio λ
µ 
learly plays a dominant role in the derived takeover times ofthe two sele
tion approa
hes. Not surprisingly, the term sele
tive pressure iso

asionally asso
iated with this ratio. It should be noted that the same ratioalso governs the 
onvergen
e velo
ity of the (µ +, λ)-ES for large populationsizes, i.e., µ≫ 1 (see [1℄ pp. 89-90).ES Geneti
 DriftWe 
onsider two di�erent ES neutral e�e
ts, that 
ould be together as
ribedas a general ES geneti
 drift: Re
ombination drift and sele
tion drift. Weargue that these two 
omponents are dire
tly responsible to the loss of pop-ulation diversity in ES.Re
ombination Drift Beyer explored extensively the so-
alled mutation-indu
ed spe
iation by re
ombination (MISR) prin
iple (see, e.g., [55℄). A
-
ording to this important prin
iple, repeated appli
ation of the mutationoperator, subje
t to a dominant re
ombination operator, would lead to astable distribution of the population, whi
h resembles a spe
ies or a 
loudof individuals. When �tness-based sele
tion is applied, this 
loud is likely tomove together towards �tter regions of the lands
ape. Furthermore, Beyermanaged to prove analyti
ally [55℄ that the MISR prin
iple is indeed uni-versal when �nite populations are employed, subje
t to sampling-based re-
ombination. The latter was a
hieved by analyzing the ES dynami
s with-out �tness-based sele
tion, deriving the expe
ted population varian
e, andshowing that it is redu
ed with random sampling in �nite populations. Thisresult was also 
orroborated by numeri
al simulations. That study providesus with an analyti
al result that a sampling-based re
ombination is subje
tto geneti
 drift, and leads to loss of population diversity.Sele
tion Drift At the same time, a re
ent study on the extin
tion ofsubpopulations on a simple bimodal equi-�tness model investigated the drifte�e
t of the sele
tion operator [56℄. It 
onsidered the appli
ation of sele
tionon �nite populations, when the �tness values of the di�erent attra
tors wereequal (i.e., eliminating the possibility of a take-over e�e
t), and argued thata neutral e�e
t (drift) would o

ur, pushing the population into a singleattra
tor. The latter study indeed demonstrated this e�e
t of sele
tion driftin ES, whi
h resulted in a 
onvergen
e to an equilibrium distribution arounda single attra
tor. It was also shown that the time of extin
tion in
reasesproportionally with µ. The analysis was 
ondu
ted by means of Markov
hain models, supported by statisti
al simulations.
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tion to Ni
hingCorollary 2.4.7. Evolution Strategies that employ �nite populations aretypi
ally underposed to several e�e
ts that are responsible for the loss of pop-ulation diversity. It has been shown that the standard sele
tion me
hanismsmay lead to a fast take-over e�e
t. In addition, we argued that both there
ombination and the sele
tion operators experien
e their own drift e�e
tsthat lead to population diversity loss. We 
on
lude that an Evolution Strategywith a small population is likely to en
ounter a rapid e�e
t of diversity loss.2.4.2 Point of Referen
e: Diversity Loss within GAsMahfoud devoted a large part of his thesis to studying population diver-sity within GAs [37℄. He 
on
luded that three main 
omponents 
an beattributed to the e�e
t of population diversity loss within GAs:
• Sele
tion Pressure The traditional GA applies a probabilisti
 se-le
tion me
hanism, namely the Roulette-Wheel Sele
tion (RWS). Thisme
hanism belongs to a broad set of sele
tion me
hanisms whi
h followthe �tness-proportionate sele
tion prin
iple. Sele
tion pressure is thusasso
iated with the 1st moment of the sele
tion operator. It has beendemonstrated by Mahfoud [37℄ that the sele
tion pressure, or equiva-lently the non-zero expe
tation of the sele
tion operator, prevents thealgorithm from 
onverging in parallel into more than a single attra
tor.
• Sele
tion Noise Sele
tion noise is asso
iated with the 2nd moment ofthe sele
tion operator, or its varian
e. Mahfoud [37℄ demonstrated thatthe high varian
e of the RWS, as well as of other sele
tion me
hanisms,is responsible for the fast 
onvergen
e of a population into a singleattra
tor, even when there exists a set of equally �t attra
tors. We
onsider this e�e
t as a geneti
 drift in its broad de�nition - samplingerror of a distribution - although it was not expli
itly referred to assu
h by Mahfoud.
• Operator Disruption Evolutionary operators in general, and themu-tation and re
ombination operators in parti
ular, boost the evolutionpro
ess toward exploration of the sear
h spa
e. In that sense, theyhave a 
onstru
tive e�e
t on the pro
ess, sin
e they allow lo
ating newand better solutions. However, their a
tion also has a destru
tive ef-fe
t. This is due to the fa
t that by applying them good solutions thathave been lo
ated previously might be lost. In that sense, they elimi-nate 
ompetition between highly �t individuals, and "assist" some ofthem to take-over. The mutation operator usually has a small e�e
t,sin
e it a
ts in small steps - low mutation probability in the traditionalGA, whi
h means infrequent o

urren
e of bit �ips. Thus, the muta-tion operator 
an be 
onsidered to have a negligible disruption. There
ombination operator, on the other hand, has a more 
onsiderable



2.4. Population Diversity within Evolutionary Algorithms 45e�e
t. In the GA �eld, where the 
rossover operator is in use (single-point, two-point or n-point 
rossovers), it has been shown to have adisruptive nature by breaking desired patterns within the population(the well known S
hema Theorem dis
usses the s
hema disruption bythe 
rossover operator and states that s
hemata with high de�ninglength will most likely be disrupted by the 
rossover operator; see,e.g., [22℄).It should be noted that an equivalent ES disruptive-re
ombination ef-fe
t was analyzed in [57℄, and was shown to boost the extin
tion ofsubpopulations lo
ated around a basin of attra
tion. Furthermore, itwas observed that by omitting the re
ombination operator the stabilityof the subpopulations was indeed strengthened.2.4.3 Neutrality in ES Variations: Mutation DriftThe mutation operator, the de�ning operator of Evolution Strategies, appliesnormally-distributed variations of �nite sample sizes, and thus is expe
tedto experien
e sampling errors as the sample sizes de
rease. These samplingerrors lead to an undire
ted movement of the population 
enter of mass,with speed whi
h depends on the population size. We shall 
all this e�e
tmutation drift.Simulations In order to demonstrate and analyze this mutation drift ef-fe
t, we 
ondu
ted simulations on the following basi
 ES model: The par-allel evolution of several populations in an n-dimensional spa
e, based onsequential normally-distributed variations (with a �xed identity matrix asthe 
ovarian
e of the distribution), without sele
tion nor re
ombination.The ES variation 
an be then 
onsidered as a 
ontinuous random walk of
µ individuals in an n-dimensional spa
e. Essentially, this 
orresponds tomutation-only ES of multiple populations.We simulated 10 simultaneously evolving populations, for three test-
asesof population sizes: µ1 = 10, µ2 = 100, and µ3 = 1000, subje
t to threespa
e dimensions: n1 = 1, n2 = 10, and n3 = 1000. For ea
h simulation,we measured the distan
e of the population mean, or 
enter of mass, tothe starting point, as a fun
tion of generational steps. More pre
isely, wemeasured the lo
ation of the population mean for n1, and the Eu
lideandistan
e from the origin for {n2, n3}. Figure 2.2 presents the out
ome ofthese 
al
ulations. It is easy to observe in those simulations a similar trendto the equivalent simulations of Se
tion 2.2.1: The 
enter of mass stronglydrifts away from the origin when the population is small, and shows the
ontrary behavior when the population is large. We therefore 
on
lude thatmutation drift is very likely to o

ur in small population sizes, and is notlikely to o

ur in large population sizes.



46 Chapter 2. Introdu
tion to Ni
hing

Figure 2.2: Illustration of the mutation drift e�e
t in ES, for 10 simultane-ously evolving populations, as a fun
tion of population size [µ1 = 10 (left),
µ2 = 100 (
enter), and µ3 = 1000 (right)℄ and lands
ape dimensionality[n1 = 1 (top), n2 = 10 (
enter), and n3 = 1000 (bottom)℄. The verti
al axes
orrespond to the lo
ation of the 
enter of mass of the population (for
n1 = 1, top row) or distan
e from the origin to the 
enter of mass ofthe population (for n2 = 10 or n3 = 1000, in the 
enter or bottom rows,respe
tively). The horizontal axis 
orresponds to the generational step ofthe 
al
ulation.We thus demonstrated here that the 
enter of mass of a small ES pop-ulation is subje
t to a so-
alled mutation drift. This is an equivalent e�e
tto the geneti
 drift of alleles, as des
ribed in Se
tion 2.2.1. We 
laim thatit allows for easy translation of small populations from one lo
ation to an-other, having the potential to boost fast and e�
ient spe
iation. Therefore,we argue that drift in this 
ontext 
an be a blessing for the fast formationof spe
ies in ni
hing.Sin
e small populations are typi
ally employed by Evolution Strategies,and espe
ially by the derandomized variants, we 
onsider this e�e
t of muta-tion drift as a positive potential 
omponent for ni
hing with ES. This result
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al Ni
hing Te
hniques 47provides us with further motivation to introdu
e DES with small populationsinto the ni
hing framework.2.5 Classi
al Ni
hing Te
hniquesDespite the fa
t that the motivation for multimodal optimization is beyonddoubt, and the biologi
al inspiration is real, there is no unique de�nition ofthe mission statement for ni
hing te
hniques. There have been several at-tempts to provide a proper de�nition and fun
tional spe
i�
ation for ni
hing;we review some of them here:1. Mahfoud [37℄ 
hose to put emphasis on lo
ating as well as maintaininggood optima, and formulated the following:The litmus test for a ni
hing method, therefore, will bewhether it possesses the 
apability to �nd multiple, �nal so-lutions within a reasonable amount of time, and to maintainthem for an extended period of time.2. Beyer et al. [58℄ put forward also the a
tual maintenan
e of populationdiversity:Ni
hing : pro
ess of separation of individuals a

ording totheir states in the sear
h spa
e or maintenan
e of diversity byappropriate te
hniques, e.g. lo
al population models, �tnesssharing, or distributed EA.3. Preuss [59℄ 
onsidered the two de�nitions mentioned above, and pro-posed a third:Ni
hing in EAs is a two-step pro
edure that (a) 
on
urrentlyor subsequently distributes individuals onto distin
t basinsof attra
tion and (b) fa
ilitates approximation of the 
orre-sponding (lo
al) optimizers.GA Ni
hing Methods Ni
hing methods within Geneti
 Algorithms havebeen studied during the past few de
ades, initially triggered by the ne
essityto promote population diversity within EAs. The resear
h has yielded avariety of di�erent methods, whi
h are the vast majority of existing work onni
hing in general. The remainder of this se
tion will fo
us on GA ni
hingte
hniques, by providing a short overview of the main known methods, withemphasis on the important 
on
epts of Sharing and Crowding. This surveyis mainly based on [37℄ and [60℄.
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tion to Ni
hing2.5.1 Fitness SharingThe sharing 
on
ept was one of the pioneering ni
hing approa
hes. It was�rst introdu
ed by Holland in 1975 [4℄, and later implemented as a ni
h-ing te
hnique by Goldberg and Ri
hardson [61℄. This strong approa
h of
onsidering the �tness as a shared resour
e has essentially be
omean important 
on
ept in the broad �eld of Evolutionary Algorithms, andlaid the foundations for various su

essful ni
hing te
hniques for multimodalfun
tion optimization, mainly within GAs. A short des
ription of the �tnesssharing me
hanism follows.The basi
 idea of �tness sharing is to 
onsider the �tness of the land-s
ape as a resour
e to be shared among the individuals, in order to de
reaseredundan
y in the population. Given the similarity metri
 of the popula-tion, whi
h 
an be genotypi
 or phenotypi
, the sharing fun
tion is de�nedas follows:
sh(di,j) =

{

1−
(

di,j

ρ

)αsh if di,j < ρ

0 otherwise (2.10)where di,j is the distan
e between individuals i and j, ρ (traditionally notedas σsh) is the �xed radius of every ni
he, and αsh ≥ 1 is a 
ontrol parameter,typi
ally set to 1. Using the sharing fun
tion, the ni
he 
ount is given by
mi =

N
∑

j=1

sh(di,j) (2.11)Let an individual raw �tness be denoted by fi, then the shared �tness isde�ned by:
f sh

i =
fi

mi
(2.12)assuming that the �tness is stri
tly positive and subje
t to maximization.The evaluation of the shared �tness is followed by the sele
tion phase, whi
his typi
ally based on the roulette wheel sele
tion (RWS) operator [22℄; Thelatter takes into 
onsideration the shared �tness. Thus, the sharing me
ha-nism pra
ti
ally punishes individuals that have similar members within thepopulation via their �tness, and by that it aims at redu
ing redundan
y inthe gene pool, espe
ially around the peaks of the �tness lands
ape.One important auxiliary 
omponent of this approa
h is the ni
he radius,

ρ. Essentially, this approa
h makes a strong assumption 
on
erning the�tness lands
ape, stating that the optima are far enough from one anotherwith respe
t to the ni
he radius, whi
h is estimated for the given problemand remains �xed during the 
ourse of evolution. This poses the so-
alledni
he radius problem, to be dis
ussed later, espe
ially in Chapters 3 and 4.It is important to note that the formulas for determining the value of ρ,whi
h will be given in Chapter 3, are dependent on q, the number of peaks ofthe target fun
tion. Hen
e, a se
ond assumption is that q 
an be estimated.
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al Ni
hing Te
hniques 49In pra
ti
e, an a

urate estimation of the expe
ted number of peaks qin a given domain may turn out to be extremely di�
ult. Moreover, peaksmay vary in shape, and this would make the task of determining ρ rather
ompli
ated. This provides us with the motivation to treat the issue of ni
heshapes in Chapter 4.In the literature, several GA ni
hing sharing-based te
hniques, whi
himplement and extend the basi
 
on
ept of sharing, 
an be found [37, 61,62, 63, 64, 65, 66℄. Furthermore, the 
on
ept of sharing was su

essfullyextended to other "yields of interest", su
h as 
on
ept sharing [38℄.2.5.2 Dynami
 Fitness SharingIn order to improve the sharing me
hanism, a dynami
 approa
h was pro-posed. The dynami
 ni
he sharing method [64℄, whi
h extended the �tnesssharing te
hnique, aimed at dynami
ally re
ognizing the q peaks of the form-ing ni
hes, and based on that information 
lassi�ed the individuals as eithermembers of one of the ni
hes, or as members of the "non-peaks domain".Expli
itly, let us introdu
e the dynami
 ni
he 
ount :
mdyn

i =

{

nj if individual i is within dynami
 ni
he j
mi otherwise (non-peak individual) (2.13)where nj is the size of the jth dynami
 ni
he (i.e., the number of individualswhi
h were 
lassi�ed to ni
he j), and mi is the standard ni
he 
ount, asde�ned in Eq. 2.11.The shared �tness is then de�ned as follows:

fdyn
i =

fi

mdyn
i

(2.14)The identi�
ation of the dynami
 ni
hes 
an be 
arried out by means ofa greedy approa
h, as proposed in [64℄ as the Dynami
 Peak Identi�
ation(DPI) algorithm (see Algorithm 4). As in the original �tness sharing te
h-nique, the shared �tness evaluation is followed by the sele
tion phase, typ-i
ally implemented with the RWS operator. Thus, this te
hnique does not�xate the peak individuals, but rather provides them with an advantage inthe sele
tion phase, whi
h is probability-based within GAs.2.5.3 ClearingAnother variation to the �tness sharing te
hnique, 
alled 
learing, was in-trodu
ed by Petrowski [65℄ at the same time as the dynami
 �tness sharing[64℄. The essen
e of this me
hanism is the 'winner takes it all' prin
iple, andits idea is to designate a spe
i�
 number of individuals per ni
he, referredto as winners, whi
h 
ould enjoy the resour
es of that ni
he. This is equiva-lent to the introdu
tion of a "death penalty" to the losers of the ni
he, the
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tion to Ni
hingAlgorithm 4 Dynami
 Peak Identi�
ation (DPI)input: population Pop, number of ni
hes q, ni
he radius ρ1: Sort Pop in de
reasing �tness order2: i := 13: NumPeaks := 04: DPS := ∅ {Set of peak elements in population}5: while NumPeaks 6= q and i ≤ popSize do6: if Pop[i] is not within sphere of radius ρ around peak in DPS then7: DPS := DPS ∪ {Pop[i]}8: NumPeaks := NumPeaks+ 19: end if10: i := i+ 111: end whileoutput: DPSindividuals of ea
h ni
he whi
h lose the generational 
ompetition to the a
-tual peak-individuals. Following a radius-based pro
edure of identifying thewinners and losers of ea
h ni
he in ea
h generation, the winners are assignedwith their raw-�tness values, whereas all the other individuals are assignedwith zero �tness. This is 
alled the 
learing phase. The sele
tion phase,typi
ally based on the RWS operator, 
onsiders de fa
to only the winners ofthe di�erent ni
hes. The allowed number of winners per ni
he, also referredto as the ni
he 
apa
ity , is a 
ontrol parameter that re�e
ts the degree ofelitism. In any 
ase, as in previous te
hniques, the peaks are never �xated,and are subje
t to the probabilisti
 sele
tion of the GA.This methods was shown to outperform the �tness sharing te
hnique ona spe
i�
 set of low-dimensional test problems [65℄.2.5.4 CrowdingCrowding was one of the pioneering methods in this �eld, as introdu
ed byde Jong in 1975 [67℄. The 
rowding approa
h aimed at redu
ing 
hangesin the population distribution between generations, in order to prevent pre-mature 
onvergen
e; it does so by applying restri
ted repla
ement. Next, wewill des
ribe the method in more detail.Given the traditional GA, a proportion G of the population is sele
tedin ea
h generation via �tness-proportionate sele
tion to undergo variations(i.e., 
rossover and mutation) - out of whi
h a part is 
hosen to die andto be repla
ed by the new o�spring. Ea
h o�spring �nds the individuals itrepla
es by taking a random sample of CF (referred to as 
rowding fa
tor)individuals from the population, and repla
ing themost similar individualfrom the sample. An appropriate similarity metri
 should be 
hosen.The 
ru
ial point of this ni
hing me
hanism is the 
al
ulation of the
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al Ni
hing Te
hniques 51Algorithm 5 Deterministi
 Crowding: Repla
ement Sele
tion1: Sele
t two parents, p1 and p2, randomly, without repla
ement2: Generate two variations, c1 and c23: if d(p1, c1) + d(p2, c2) ≤ d(p1, c2) + d(p2, c1) then4: if f(c1) > f(p1) then repla
e p1 with c15: if f(c2) > f(p2) then repla
e p2 with c26: else7: if f(c2) > f(p1) then repla
e p1 with c28: if f(c1) > f(p2) then repla
e p2 with c19: end ifso-
alled 
rowding distan
e between parents and o�spring, in order to
ontrol the 
hange rate between generations. A di�erent use of the 
rowdingdistan
e, applied among individuals of the same generation and assignedwith reversed ranking, will be revisited in the 
ontext of Evolutionary Multi-Obje
tive Optimization in Chapter 5; In the 
ontext of ni
hing see also Deb's"Omni-Optimizer" ([68℄ and Se
tion 5.2.1).Mahfoud, who analyzed the 
rowding ni
hing te
hnique [37℄, 
on
ludedthat it was subje
t to disruptive e�e
ts, mainly drift, whi
h prevented itfrom maintaining more than two peaks. He then proposed a me
hanism
alled deterministi
 
rowding, as an improvement to the original 
rowdingni
hing te
hnique. The proposed pro
edure applies variation operators topairs of individuals in order to generate their o�spring, who are then allevaluated with respe
t to the 
rowding distan
e, and undergo repla
ementsele
tion (see Algorithm 5, whi
h assumes maximization).2.5.5 ClusteringThe appli
ation of 
lustering for ni
hing is very intuitive from the 
ompu-tational perspe
tive, as well as straightforward in its implementation. Yinet al. [62℄ proposed a 
lustering framework for ni
hing with GAs, whi
h wedes
ribe here brie�y. A 
lustering algorithm, su
h as the K-Means algo-rithm [69℄, �rst partitions the population into ni
hes, and then 
onsiders the
entroids, or 
enter points of mass, of the newly partitioned subpopulations.Let dic denote the distan
e between individual i and its 
entroid, andlet fi denote the raw �tness of individual i. Assuming that there are ncindividuals in the ni
he of individuals i, its �tness is then de�ned as:
fClustering

i =
fi

nc · (1− (dic/2dmax)α)
, (2.15)where dmax is the maximum distan
e allowed between an individual and itsni
he 
entroid, and α is a de�ning parameter. It should be noted that the
lustering algorithm uses an additional parameter, dmin, for determining the



52 Chapter 2. Introdu
tion to Ni
hingminimal distan
e allowed between 
entroids, playing an equivalent role tothe ni
he radius ρ of the sharing-based me
hanisms.This method is often subje
t to 
riti
ism for its strong dependen
y ona relatively large number of parameters. However, this 
lustering te
hniquehas be
ome a popular kernel for ni
hing with EAs, and its appli
ation wasreported in various studies (see, e.g., [56, 70, 71, 72, 73, 74, 75℄).2.5.6 The Sequential Ni
he Te
hniqueThe straightforward approa
h of iteration 
an be used to lo
ate sequentiallymultiple peaks in the lands
ape, by means of an iterative lo
al sear
h [76℄.This pro
edure is blind to any information gathered in previous sear
hes,and sequentially restarts sto
hasti
 sear
hes, hoping to hit a di�erent peakevery run. Obviously, it is likely to en
ounter redundan
y, and the numberof expe
ted iterations is then in
reased by a fa
tor. A redundan
y fa
tor
an be estimated if the peaks are of equal height (equi-�tness lands
ape),i.e., the probability to 
onverge into any of the q peaks is equal to 1/q:
R =

q
∑

i=1

1

iFor q > 3, this 
an be approximated by:
R ≈ γ + ln (q), (2.16)where γ ≈ 0.577 is the Euler-Mas
heroni 
onstant. This redundan
y fa
-tor remains reasonably low for any pra
ti
al value of q, but is expe
ted to
onsiderably in
rease if all optima are not equally likely to be found.On a related note, we would like to mention a multi-restart with in
reas-ing population size approa
h that was developed with the CMA algorithm[77℄. The latter aims at attaining the global minimum, while possibly visit-ing lo
al minima along the pro
ess and restarting the algorithm with a largerpopulation size and a modi�ed initial step-size. It is not de�ned as a ni
hingte
hnique and does not target optima other than the global minimum, butit 
an 
apture sub-optimal minima during its sear
h.Beasley et al. extended the naive iteration approa
h, and developed theso-
alled Sequential Ni
he te
hnique [78℄. This method, in 
ontrast to theother ni
hing methods presented earlier, does not modify the geneti
 op-erators nor any 
hara
teristi
s of the traditional GA, but rather 
reates ageneral sear
h framework suitable for lo
ating multiple solutions. By meansof this method the sear
h pro
ess turns into a sequen
e of independent runsof the traditional GA, where the basi
 idea is to suppress the �tness fun
tionat the observed optimum that was obtained in ea
h run, in order to preventthe sear
h from revisiting that optimum.
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al Ni
hing Te
hniques 53In further detail, the traditional GA is run multiple times sequentially:given the best solution of ea
h run, it is �rst stored as a possible �nal solution,and se
ondly the �tness fun
tion is arti�
ially suppressed in all the pointswithin the neighborhood of that optimum up to a desired radius. Thismodi�
ation is done immediately after ea
h run. Its purpose is to dis
ouragethe following runs from revisiting these optima, and by that to en
ourage theexploration of other areas of the sear
h lands
ape - aiming at obtaining allits optima. It should be noted that ea
h fun
tion modi�
ation might yieldarti�
ial dis
ontinuities in the �tness lands
ape. This method fo
uses only onlo
ating multiple optima of the given sear
h problem, without 
onsidering the
on
epts of parallel evolution and subpopulations formation. In that sense,it has been 
laimed that it 
ould not be 
onsidered as a ni
hing method, butrather as a modi�ed iterated sear
h.2.5.7 The Islands ModelThis is probably the most intuitive ni
hing approa
h from the biologi
alperspe
tive, dire
tly inspired by organi
 evolution. Also referred to as theRegional Population Model, this approa
h (see, e.g., [79, 80, 81℄) simulatesthe evolution of subpopulations on remote 
omputational units (independentpro
essors), aiming at a
hieving a spe
iation e�e
t bymonitoring the gene�ow. The population is divided into multiple subpopulations, whi
h evolveindependently for a �xed number of generations, 
alled isolation period. Thisis followed by a phase of 
ontrolled gene �ow, or migration, when a portionof ea
h subpopulation migrates to other nodes.The geneti
 diversity and the amount of information ex
hange betweensubpopulations are determined by the following parameters - the numberof ex
hanged individuals, the migration rate, the sele
tion method of theindividuals for migration (uniformly at random, or elitist �tness-based ap-proa
h), and the s
heme of migration, e.g., 
omplete net topology, ring topol-ogy, or neighborhood topology.2.5.8 Other GA-Based MethodsTagging (see, e.g., [82, 83℄) is a me
hanism that aims at improving thedistan
e-based methods of �tness sharing and 
rowding, by labeling indi-viduals with tag-bits. Rather than 
arrying out distan
e 
al
ulations, thetag-bits are employed for identifying the subpopulations, enfor
ing matingrestri
tions, and then implementing the �tness sharing me
hanism. An indi-vidual is 
lassi�ed to a subpopulation by its geneti
 inheritan
e, so to speak,whi
h is subje
t to generational variations, rather than by its a
tual spatialstate. This 
on
ept simpli�es the 
lassi�
ation pro
ess, and obviously re-du
es the 
omputational 
osts per generation, but it also introdu
es a newbio-inspired approa
h into ni
hing: individuals belong to a spe
ies be
ause
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tion to Ni
hingtheir parents did, and not be
ause they are 
urrently adja
ent to a "peakindividual", for instan
e. This te
hnique was shown in [82℄ to be a rathere�
ient implementation of the sharing te
hnique.A 
omplex subpopulation di�erentiation model, the so-
alled Multina-tional Evolutionary Algorithm, was presented in [84℄. This original te
h-nique 
onsiders a world of "nations", "governments", and "politi
ians", withdynami
s di
tated by migration of individuals, merging of subpopulations,and sele
tion. Additionally, it introdu
es a topology-based auxiliary me
h-anism of sampling, whi
h dete
ts whether feasible solutions share the samebasin of attra
tion. Due to the 
urse of dimensionality, this sampling-basedme
hanism is expe
ted to lose its e�
ien
y in high-dimensional lands
apes.Stoean et al. [85℄ 
onstru
ted the so-
alled Elitist Generational Ge-neti
 Chromodynami
s Algorithm. The idea behind this radius-basedte
hnique was the de�nition of a mating region, a repla
ement region, and amerging region �with appropriate mating-, repla
ement-, and merging-radii� whi
h di
tates the dynami
 of the geneti
 operations.Chapter 4 will elaborate furthermore on spe
i�
 GA-based ni
hing te
h-niques in the 
ontext of the so-
alled ni
he radius problem.2.5.9 Mis
ellaneous: Mating S
hemesIt has been observed that on
e the ni
he formation pro
ess starts, i.e., whenthe population 
onverges into the multiple basins in the lands
ape, 
ross-breeding between di�erent ni
hes is likely to fail in produ
ing good o�spring.In biologi
al terms, this is the elimination of the divergen
e, by means ofhybridization, in the se
ondary 
onta
t phase, as dis
ussed in Se
tion2.2.2.Deb and Goldberg [54℄ proposed a so-
alled mating restri
tion s
heme,whi
h poses a limitation on the 
hoi
e of partners in the reprodu
tion phaseand prevents re
ombination between 
ompeting ni
hes. They used a distan
emeasure, subje
t to a distan
e threshold whi
h was set to the ni
he radius,and showed that it 
ould be used to improve the �tness sharing algorithm.Mahfoud [37℄ proved that the mating restri
tion s
heme of Deb and Gold-berg was not su�
ient per se in maintaining the population diversity in GAni
hing. A di�erent approa
h of Smith and Bona
ina [86℄, however, 
onsid-ered an Evolutionary Computation Multi-Agent System, as opposed to thetraditional 
entralized EA, and did manage to show that the same matingrestri
tion s
heme in an agent-based framework was 
apable in maintainingdiversity and 
onverging with stability to the desired peaks.From the biologi
al perspe
tive, the mating restri
tion s
heme is obvi-ously equivalent to keeping the geographi
al isolation, or the barrier to gene�ow, in order to allow the 
ompletion of the spe
iation phase. As dis
ussedearlier, the geographi
al element in organi
 evolution is the 
ru
ial 
ompo-nent whi
h 
reates the 
onditions for spe
iation, and it is not surprising that
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ial ni
hing te
hniques 
hoose to enfor
e it, by means of me
hanismssu
h as the ni
he radius or the mating restri
tion s
heme.2.6 Ni
hing in Evolution StrategiesResear
hers in the �eld of Evolution Strategies initially showed no parti
ularinterest in the �eld of ni
hing, leaving it essentially for Geneti
 Algorithms.An ex
eption would be the employment of island models. Roughly speaking,
lassi
al ni
hing me
hanisms su
h as �tness sharing, whi
h rede�ne the sele
-tion me
hanism, are likely to interfere with the 
ore of Evolution Strategies� the self-adaptation me
hanism � and thus doomed to experien
e problemsin a straightforward implementation. Manipulations of �tness values areusually not suitable for Evolution Strategies, as in the 
ase of 
onstraintshandling: death-penalty is typi
ally the preferred approa
h for 
onstraintsviolation in ES, rather than a 
ontinuous punishment as used in other EAs,in order to avoid the introdu
tion of disruptive e�e
ts to the self-adaptationme
hanism (see, e.g., [34, 87℄). Therefore, ni
hing with Evolution Strategieswould have to be addressed from a di�erent dire
tion. Moreover, the di�er-ent nature of the ES dynami
s, throughout the deterministi
 sele
tion andthe mutation operator, suggests as well that a di�erent treatment is requiredhere.There are several, relatively new, ni
hing methods that have been pro-posed within ES, mostly 
lustering-based [56, 73, 74℄. A di�erent approa
h,whi
h pre
eded this thesis, was presented in [88, 89, 90℄.2.7 Dis
ussion and Mission StatementNi
hing te
hniques, following somehow various mission statements, intro-du
e a large variety of approa
hes, some of whi
h are more biologi
ally in-spired, whereas others are multimodal-optimization oriented. In both 
ases,those te
hniques were usually tested on low-dimensional arti�
ial land-s
apes, and the appli
ation of these methods to real-world lands
apes washardly ever reported. We 
laim that ni
hing methods should be implementedalso for attaining multiple solutions in high-dimensional real-world problems,serving the de
ision makers by providing them with the 
hoi
e of optimalsolutions, and representing well Evolutionary Algorithms in multimodal do-mains. By our humble re
koning, the multimodal front of real-world appli
a-tions, i.e. multimodal real-world problems whi
h demand multiple optimalsolutions, should also enjoy the powerful 
apabilities of Evolution Strategies,as other fronts do, e.g., multi-obje
tive domains and 
onstrained domains.On a di�erent note, Preuss, in an important paper [59℄, raised the ques-tion: �Under what 
onditions 
an ni
hing te
hniques be faster than iteratedlo
al sear
h algorithms?�. Considering a simpli�ed model, and assuming the
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hingexisten
e of an e�
ient basin identi�
ation method, he managed to showthat it pays o� to employ Evolutionary Algorithms ni
hing te
hniques onlands
apes whose basins of attra
tion vary signi�
antly in size. However,the original question in its general form remained open.Mahfoud [91℄ drew a 
omparison of parallel versus sequential ni
hingmethods, while 
onsidering �tness sharing, deterministi
 
rowding, sequen-tial ni
hing, and parallel hill
limbing. Generally speaking, he 
on
luded thatparallel ni
hing GAs outperform parallel hill
limbers on a hard set of prob-lems, and that sequential ni
hing is always outperformed by the parallelapproa
hes.Obviously, there is no free lun
h, and there is no best te
hnique, espe-
ially in ni
hing. In this 
ontext, lo
al sear
h 
apabilities should not beunderestimated, and population diversity preservers should not be overesti-mated. We 
laim that like any other 
omplex 
omponent in organi
 as wellas arti�
ial systems - the su

ess of ni
hing is about the subtle interplaybetween the di�erent, sometime 
on�i
ting, driving e�e
ts.We thus 
hoose to adopt Preuss' mission statement, and de�ne the 
hal-lenge in ni
hing as follows:Attaining the optimal interplay between partitioning thesear
h spa
e into ni
hes o

upied by stable subpopula-tions, by means of population diversity preservation, andexploiting the sear
h in ea
h ni
he by means of a highlye�
ient optimizer with lo
al-sear
h 
apabilities.



All animals are equal,but some animals are more equal than others.Animal Farm; George Orwell
Chapter 3Ni
hing with DerandomizedEvolution Strategies3.1 GeneralFollowing our mission statement, as presented in Se
tion 2.7, we would liketo 
onstru
t a generi
 ni
hing framework whi
h o�ers the 
ombination ofpopulation diversity preservation and lo
al-sear
h 
apabilities. We 
onsiderDerandomized Evolution Strategies as the best 
hoi
e for that purpose, asEA variants with lo
al sear
h 
hara
teristi
s (see our dis
ussion in Se
tion1.4.6). Furthermore, DES typi
ally employ small populations, whi
h wasshown to be a potential advantage for a ni
hing te
hnique, as it 
an boostthe spe
iation e�e
t (Se
tion 2.4.3). Thus, we are now 
hallenged to 
ompletethe framework by introdu
ing a me
hanism for partitioning the sear
h spa
einto "e
ologi
al optima", and stimulating population diversity preservation.We restri
t this 
hapter to the s
ope of ni
hing with a �xed ni
he radius,assuming that the lands
apes under investigation would not dramati
allysu�er from the so-
alled ni
he-radius assumptions. Chapter 4 will extendthis framework to self-adaptive approa
hes, whi
h will aim at treating theseassumptions.This 
hapter presents our proposed algorithm, introdu
es our test bed ofarti�
ial lands
apes as well as the performan
e 
riteria, and �nally dis
ussesthe numeri
al results of our 
al
ulations.3.2 The Proposed AlgorithmThe advent of derandomized Evolution Strategies allows su

essful globaloptimization with minimal requirements 
on
erning exogenous parameters,mostly without re
ombination, and with a low number of fun
tion evalua-tions. In parti
ular, 
onsider the (1 +, λ) derandomized ES variants presentedin Chapter 1. In the 
ontext of ni
hing, this generation of modern ES vari-57



58 Chapter 3. Ni
hing with Derandomized Evolution Strategiesants allows the 
onstru
tion of fairly simple and elegant ni
hing algorithms.Next, we outline our proposed method.Our ni
hing te
hnique is based upon intera
ting sear
h pro
esses, whi
hsimultaneously perform a derandomized (1, λ) or (1 + λ) sear
h in di�erentlo
ations of the lands
ape. In 
ase of multimodal lands
apes these sear
hpro
esses are meant to explore di�erent attra
tor basins of lo
al optima.An important point in our approa
h is to stri
tly enfor
e the �xed allo
a-tion of the population resour
es, i.e. number of o�spring, per ni
he. The ideais thus to prevent a take-over s
enario, in whi
h a subpopulation lo
ated ata �tter optimum generates more o�spring in 
omparison to 
ompeting sub-populations. The biologi
al idea behind this �xed allo
ation of resour
eslies in the 
on
ept of limited hosting 
apa
ities of given e
ologi
al ni
hes, asintrodu
ed in Chapter 2.The spe
iation intera
tion o

urs every generation when all the o�springare 
onsidered together to be
ome ni
hes' representatives for the next iter-ation, or simply the next sear
h points, based on the rank of their �tnessand their lo
ation with respe
t to higher-ranked individuals. We fo
us ina simple framework without re
ombination (µ = 1), whereas ni
hing withre
ombination will be 
onsidered in the spe
i�
 
ontext of Chapter 5.3.2.1 Ni
hing with (1 +, λ) DES KernelsGiven q, the estimated/expe
ted number of peaks, q + p �D-sets� are ini-tialized, where a D-set is de�ned as the 
olle
tion of all the dynami
allyadapted strategy as well as de
ision parameters of the derandomized algo-rithm, whi
h uniquely de�ne the sear
h at a given point of time. Theseparameters are the 
urrent sear
h point, the mutation ve
tor / 
ovarian
ematrix, the global step-size, as well as other auxiliary parameters. At everypoint in time the algorithm stores exa
tly q + p D-sets, whi
h are asso
i-ated with q + p sear
h points: q for the peaks and p for the �non-peaksdomain�. The (q+ 1)th...(q+ p)th D-sets are individuals whi
h are randomlyre-generated every epo
h, i.e. a 
y
le of κ generations, as potential 
andidatesfor ni
he formation. This is basi
ally a quasi-restart me
hanism, whi
h al-lows new ni
hes to form dynami
ally. We stress that the total number offun
tion evaluations allo
ated for a run should depend on the number ofdesired peaks, q, and not on p. Setting the value of p essentially re�e
ts thefollowing dilemma: Applying a wide restart approa
h for further exploringthe sear
h spa
e, versus exploiting 
omputational resour
es for the existingni
hes. In any 
ase, due to the 
urse of dimensionality, p loses its signi�
an
eas the dimension of the problem in
reases.Until the stopping 
riterion is met, the following pro
edure takes pla
e.Ea
h sear
h point samples λ o�spring, based on its evolving D-set. Afterthe �tness evaluation of the new λ · (q+p) individuals, the 
lassi�
ation intoni
hes of the entire population is obtained in a greedy manner, by means



3.2. The Proposed Algorithm 59Algorithm 6 (1 +, λ
)-DES Ni
hing with a Fixed Ni
he Radius1: for i = 1 . . . (q + p) sear
h points do2: Generate λ samples based on the D-set of i3: end for4: Evaluate �tness of the population5: Compute the Dynami
 Peak Set (DPS) with the DPI Algorithm6: for all elements of DPS do7: Set peak as a sear
h point8: Inherit the D-set and update it respe
tively9: end for10: if NDPS=size of DPS < q then11: Generate q −NDPS new sear
h points, reset D-sets12: end if13: if gen mod κ ≡ 0 then14: Resample the (q + 1)th . . . (q + p)th sear
h points15: end ifof the DPI routine [64℄ (Algorithm 4). The latter based on the �xed ni
heradius ρ. The peaks then be
ome the new sear
h points, while their D-setsare inherited from their parents and updated respe
tively.We would like to point out the dynami
 nature of the subpopulationsdynami
s. Due to the greedy 
lassi�
ation to ni
hes, whi
h is 
arried out ev-ery generation, some ni
hes 
an merge in prin
iple, while all the individuals,ex
ept for the peak individual, die out in pra
ti
e. Following our prin
iple of�xed resour
es per ni
he, only the peak individual will be sampled λ timesin the following generations. In so
io-biologi
al terms, the peak individual
ould be asso
iated with an alpha-male, whi
h wins the lo
al 
ompetitionand gets all the sexual resour
es of its e
ologi
al ni
he.A pseudo-
ode for the ni
hing routine is presented as Algorithm 6.Sizing the Population We follow the re
ommended population size for

(1, λ) derandomized ES (see, e.g., [25℄), and set λ = 10. On this note, wewould like to mention a theoreti
al work on sizing the population in a deran-domized (1, λ) ES with respe
t to the lo
al progress [92℄. The latter workobtained theoreti
al results showing that the lo
al serial progress is maxi-mized when the expe
ted progress of the se
ond best individual vanishes.These results allowed for the 
onstru
tion of a population size adaptations
heme, whi
h sets the value of λ as a fun
tion of the �tness di�eren
e of these
ond �ttest o�spring and its parent. This adaptation s
heme was shownto perform well on a set of simple theoreti
al lands
apes [92℄.



60 Chapter 3. Ni
hing with Derandomized Evolution Strategies3.3 Ni
he Radius Cal
ulationThe original formula for the ni
he radius ρ, for phenotypi
 sharing in GAs,was derived by Deb and Goldberg [54℄. Analogously, by 
onsidering the ESde
ision spa
e as the GA de
oded parameter spa
e, the same formula 
an beapplied to optimization tasks de�ned over 
ontinuous domains, by employingthe Eu
lidean metri
. Given q, the number of peaks in the solution spa
e,every ni
he is 
onsidered to be surrounded by an n-dimensional hyperspherewith radius ρ, whi
h o

upies 1
q of the entire volume of the spa
e. Thevolume of the hypersphere whi
h 
ontains the entire spa
e is
V = crn, (3.1)where c is a 
onstant, given expli
itly by

c =
π

n
2

Γ(n
2 + 1)

, (3.2)with Γ(n) as de�ned in Eq. 1.36. Given lower and upper bound values,
{xk,min, xk,max}, of ea
h 
oordinate in the de
ision parameters spa
e, r isde�ned as follows:

r =
1

2

√

√

√

√

n
∑

k=1

(xk,max − xk,min)2 (3.3)Upon dividing the volume into q parts, we may write
cρn =

1

q
crn, (3.4)whi
h yields

ρ =
r

n
√
q

(3.5)Hen
e, by applying this ni
he radius approa
h, two assumptions are made:1. The expe
ted/desired number of peaks, q, is given or 
an be estimated.2. All peaks are at least in distan
e 2ρ from ea
h other, where ρ is the�xed radius of every ni
he.3.4 Experimental Pro
edureIn order to test our proposed algorithmi
 ni
hing framework, we would liketo apply them to a test suite of arti�
ial lands
apes. Their appli
ation toQuantum Control lands
apes will be reported in Part II.We des
ribe here our experimental pro
edure. We begin by dis
ussingthe 
onstru
tion of our test suite, and then present the numeri
al observationof our 
al
ulations.



3.4. Experimental Pro
edure 613.4.1 Multi-Modal Test Fun
tionsThe 
hoi
e of a numeri
al test bed for evaluating the performan
e of sear
h oroptimization methods is 
ertainly one of the 
ore issues among the s
holarsin the 
ommunity of algorithms and Operations Resear
h.In a ben
hmark arti
le, Whitley et al. [11℄ 
riti
ized the 
ommonly testedarti�
ial lands
apes in the Evolutionary Algorithms 
ommunity, and o�eredgeneral guidelines for 
onstru
ting test problems. We state these guidelineshere:1. Test suites should 
ontain problems that are resistant to hill-
limbers.Hill-
limbing strategies, in
luding line sear
h, are typi
ally faster thanEAs, when they are su

essful. Hen
e, it is justi�ed to test EAs onlands
apes whi
h 
annot be easily hill-
limbed.2. Test suites should 
ontain problems that are non-linear, non-separable,and non-symmetri
.3. Test suites should 
ontain s
alable fun
tions. The dimensionality ofthe sear
h spa
e is an important issue, and thus should be tested a
-
ordingly.4. Test suites should 
ontain problems with s
alable evaluation 
ost. The
ost of some evaluation fun
tions grows as a fun
tion of the sear
h spa
edimensionality. This typi
ally 
hara
terizes real-world problems, andshould be 
onsidered.5. Test problems should have a 
anoni
al form. This demand is relevantto en
oding-based algorithms, su
h as GAs.The following remarkable e�ort was made almost a de
ade after that do
-ument, when a large group of s
holars in the EC 
ommunity joined theire�orts and 
ompiled an agreed test suite of arti�
ial lands
apes [93℄, to betested in an open performan
e 
ompetition reported at IEEE CEC 2005 [35℄.The latter also in
luded multimodal fun
tions.The issue of developing a multimodal test suite re
eived even less atten-tion, likely due to histori
al reasons. Sin
e multimodal domains were mainlytreated by GA-based ni
hing methods, their 
orresponding test suites werelimited to low-dimensional 
ontinuous lands
apes, typi
ally with two de
i-sion parameters to be optimized (n = 2) (see, e.g., [61, 37℄).In essen
e, our study is the �rst to introdu
e EA ni
hing methods intohigh-dimensional 
ontinuous lands
apes.When 
ompiling our test suite, we aimed at following Whitley's guide-lines, in
luding some traditional GA-ni
hing test fun
tions as well as fun
-tions from [93℄. The reader should keep in mind that our ni
hing methodswill be applied on real-world lands
apes in Chapters 8 and 9.



62 Chapter 3. Ni
hing with Derandomized Evolution StrategiesOur test suite 
ontains the following arti�
ial multimodal 
ontinuousfun
tions (see Table 3.1 for their mathemati
al des
ription):
• M is a basi
 hyper-grid multimodal fun
tion with uniformly distributedminima of equal fun
tion value of −1. It is meant to test the stabilityof a parti
ularly large number of ni
hes: in the interval [0, 1]n it has

5n minima. We used α = 6.
• The well known A
kley fun
tion has one global minimum, regardlessof its dimension n, whi
h is surrounded isotropi
ally by 2n lo
al min-ima in the �rst hypersphere, followed by an exponentially in
reasingnumber of minima in su

essive hyperspheres. A
kley's fun
tion hasbeen widely investigated in the 
ontext of Evolutionary Algorithms(see, e.g., [1℄). We used c1 = 20, c2 = 0.2, and c3 = 2π.
• L - also known as F2, as originally introdu
ed in [61℄ - is a sinusoidtrapped in an exponential envelope. The parameter k determines thesharpness of the peaks in the fun
tion lands
ape; we set it to k = 6. Lhas one global minimum, regardless of n and k. It has been a populartest fun
tion for GA ni
hing methods. We used l1 = 5.1, l2 = 0.5,
l3 = 4 · ln(2), l4 = 0.0667 and l5 = 0.64.

• The Rastrigin fun
tion [8℄ has one global minimum, surrounded by alarge number of lo
al minima arranged in a latti
e 
on�guration.We also 
onsider its shifted-rotated variant [93℄, with a linear trans-formation matrix of 
ondition number 2 as the rotation operator (seebelow a note on implementation).
• The Griewank fun
tion [8℄ has its global minimum (f∗ = 0) at the ori-gin, with several thousand lo
al minima in the area of interest. Thereare 4 sub-optimal minima: f̃ ≈ 0.0074 with ~̃x ≈ (±π,±π√2 , 0, 0, 0, ...0

).We also 
onsider its shifted-rotated variant [93℄, with a linear transfor-mation matrix of 
ondition number 3 as the rotation operator (see anote on implementation below).
• The fun
tion after Flet
her and Powell [1℄ is a non-separable non-linearparameter estimation problem, whi
h has a non-uniform distributionof 2n minima. It has non-isotropi
 attra
tor basins. See a note onimplementation below.A Note on Implementation Most of the data for the fun
tions, and inparti
ular the translation and rotation operators, was retrieved from [93℄1.The Flet
her-Powell data (the matri
es A, B and the ve
tor ~α) was retrievedfrom [1℄.1Data is available for download at http://www.ntu.edu.sg/home/epnsugan/index_files/.
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edure 63Table 3.1 summarizes the un
onstrained multimodal test fun
-tions as well as their initialization intervals.3.4.2 Performan
e CriteriaThe traditional GA ni
hing methods resear
h had been strongly interestedin the distribution of the �nal population 
ompared to a goal-distribution,as formalized by Mahfoud (see Se
tion 2.4). While Mahfoud's formalismintrodu
ed a generi
 theoreti
al tool, being derived from information theory,most of the studies 
onsidered de fa
to spe
i�
 performan
e 
al
ulations. Forexample, a very popular ni
hing performan
e measurement, whi
h satis�esMahfoud formalism's 
riteria, is the Chi-square-like performan
e statisti
(see, e.g., [54℄). The latter estimates the deviation of the a
tual distributionof individuals Ni from an ideal distribution (
hara
terized by mean µi andvarian
e σ2
i ) in all the i = 1 . . . q + 1 subspa
es (q peak subspa
es and thenon-peak subspa
e):

χ2 =

√

√

√

√

q+1
∑

i=1

(

Ni − µi

σi

)2

, (3.6)where the ideal-distribution 
hara
teristi
 values are derived per fun
tion.Our resear
h fo
uses on the ability to identify global as well as lo
aloptima, and to 
onverge in these dire
tions through time, with no parti
ularinterest in the distribution of the population. Thus, as has been done inearlier studies of GA ni
hing [64℄, we adopt the performan
e metri
 
alledthe maximum peak ratio statisti
. This metri
 measures the quality as well asthe number of optima given as a �nal result by the evolutionary algorithm.Expli
itly, assuming a minimization problem, given the �tness values of thesubpopulations in the �nal population {f̃i

}q

i=1
, and the �tness values of thereal optima of the obje
tive fun
tion {F̂i

}q

i=1
, the maximum peak ratio isde�ned as follows:

MPR =

∑q
i=1 F̂i

∑q
i=1 f̃i

, (3.7)where all values are assumed to be stri
tly positive. If this is not the 
ase inthe original parameterization of the lands
ape, the latter should be s
aleda

ordingly with an additive 
onstant for the sake of this 
al
ulation. Also,given a maximization problem, the MPR is de�ned as the sum of the ob-tained optima divided by the sum of the real optima. A drawba
k of thisperforman
e metri
 is that the real optima need to be known a-priori. How-ever, for many arti�
ial test problems these 
an be derived analyti
ally, ortight numeri
al approximations to them are available.



64Chapt
er3.Ni
hin

gwithDera
ndomizedE

volutionSt
rategies Table 3.1: Test fun
tions to be minimized, initialization domains and number of desired peaks. For some of the non-separablefun
tions, we apply translation and rotation: ~y = O (~x− ~r), where O is an orthogonal rotation matrix, and ~r is a shiftingve
tor. See the note on implementation.Separable:Name Fun
tion Init Ni
hes

M M (~x) = − 1
n

∑n
i=1 sinα (5πxi) [0, 1]n 100

A [A
kley℄ A(~x) = −c1 · exp
(

−c2
√

1
n

∑n
i=1 x

2
i

)

− exp
(

1
n

∑n
i=1 cos(c3xi)

)

+ c1 + e
[−10, 10]n 2n+ 1

L L(~x) = −∏n
i=1 sink (l1πxi + l2) · exp

(

−l3
(

xi−l4
l5

)2
)

[0, 1]n n+ 1

R [Rastrigin℄ R(~x) = 10n +
∑n

i=1

(

x2
i − 10 cos (2πxi)

)

[−1, 5]n n+ 1

G [Griewank℄ G (~x) = 1 +
∑n

i=1
x2

i

4000 −
∏n

i=1 cos
(

xi√
i

)

[−10, 10]n 5Non-separable:Name Fun
tion Init Ni
hes

F [Flet
her-Powell℄ F(~x) =
∑n

i=1 (Ai −Bi)
2

Ai =
∑n

j=1 (aij · sin(αj) + bij · cos(αj))

Bi =
∑n

j=1 (aij · sin(xj) + bij · cos(xj))

aij , bij ∈ [−100, 100] ; ~α ∈ [−π, π]n

[−π, π]n 10

RSR [S.R. Rastrigin℄ RSR(~x) = 10n+
∑n

i=1

(

y2
i − 10 cos (2πyi)

)

[−5, 5]n n+ 1

GSR [S.R. Griewank℄ GSR (~x) = 1 +
∑n

i=1
y2

i

4000 −
∏n

i=1 cos
(

yi√
i

)

[0, 600]n 5



3.4. Experimental Pro
edure 653.4.3 New Perspe
tive: MPR vs. TimeAlthough the MPR metri
 was originally derived to be analyzed by meansof the its saturation value, a new perspe
tive was introdu
ed by us in [90℄.Our study investigated the MPR as a fun
tion of time, fo
using on the earlystages of the run. It was shown experimentally that the time-dependentMPR data �ts a theoreti
al fun
tion: the logisti
 
urve.The Logisti
 Equation A simple modeling of the organi
 populationgrowth is often des
ribed by the following di�erential equation:
dy

dt
= cy

(

1− y

a

)

, (3.8)with the solution
y(t) =

a

1 + exp {c (t− T )} , (3.9)where a is the saturation value of the 
urve, T is its time shift, and c (in this
ontext always negative) determines the shape of the exponential rise.This equation, known as the logisti
 equation, des
ribes many pro
essesin nature. All those pro
esses share the same pattern of behavior - growthwith a

eleration, followed by de
eleration and then a saturation phase.In the 
ontext of evolutionary ni
hing methods, we argued [90℄ that thelogisti
 parameters should be interpreted in the following way - T as thelearning period of the algorithm, and the absolute value of c as its ni
hingformation a

eleration.3.4.4 MPR Analysis: Previous ObservationThis MPR time-dependent analysis was applied in [90℄ to two ES-basedni
hing te
hniques: ni
hing with the standard-ES a

ording to the S
hwefel-approa
h [94℄, and ni
hing with the CMA-ES. In short, the standard-ESbased method applies the same ni
hing framework as the one des
ribed inthis thesis ex
ept for one 
on
eptual di�eren
e: it employs a (µ, λ) strategy inea
h ni
he, subje
t to restri
ted mating. Otherwise, it employs the standardES operators.We outline some of the 
on
lusions of that study here:1. The ni
hing formation a

eleration, expressed as the absolute valueof c, had larger values for the CMA-ES me
hanism for all the test-
ases.That implied stronger ni
hing a

eleration and faster 
onvergen
e.2. A trend 
on
erning the absolute value of c as a fun
tion of the dimen-sionality was observed: the higher the dimensionality, the lower theabsolute value of c, i.e., the slower the ni
hing pro
ess.
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hing with Derandomized Evolution Strategies3. The learning period, expressed as the value of T in the 
urve �tting,got negative as well as positive values. Negative values mean that theni
hes formation pro
ess, expressed as the exponential rise of the MPR,started immediately from generation zero.4. The averaged saturation value a, i.e., the MPR value, was larger inall of the test-
ases for the CMA-ES me
hanism. In that respe
t, theCMA kernel outperformed the standard-ES on the given lands
apes.The study 
on
luded with the 
laim that there was a 
lear trade-o� : Either a long learning period followed by a high ni
hing a
-
eleration (CMA-ES), or a short learning period followed by a lowni
hing a

eleration (Standard-ES).3.5 Numeri
al ObservationWe des
ribe here our numeri
al observation with respe
t to the experimentalresults of our 5 ni
hing variants on the proposed test suite.3.5.1 Modus OperandiThe 5 ni
hing algorithms are tested on the spe
i�ed fun
tions for variousdimensions. Ea
h test 
ase in
ludes 100 runs per algorithm. All runs areperformed with a 
ore me
hanism of a (1 +, 10)-strategy per ni
he and initialpoints are sampled uniformly within the initialization intervals. Initial globalstep-sizes are set to 1
4 of the intervals. The parameter q is set based on a-priori knowledge when available, or arbitrarily otherwise.Fun
tion evaluations: the idea is to allo
ate a �xed number of evaluationsper peak (n · 104

), and thus ea
h run is stopped after q · n · 104 fun
tionevaluations.As mentioned earlier, setting the parameter p re�e
ts the trade-o� be-tween further sampling the sear
h-spa
e, on the expense of exploiting thegranted fun
tion evaluations at the existing attra
tion sites. Here, we set
p = 1, whi
h means emphasis on the latter.A 
urve �tting routine is applied to ea
h run in order to retrieve the
hara
teristi
 parameters of its logisti
 
urve. This routine uses the least-squared-error method, and runs an optimization pro
edure to minimize it.3.5.2 Numeri
al ResultsThe numeri
al results are presented at several levels:Ni
hing A

elerationTable 3.2 presents the mean and the standard deviations for the absolutevalue of the parameter c over 100 runs, as obtained by the 
urve �tting
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al Observation 67routine. There is a 
lear trend in the given numeri
al results - in the vastmajority of the test 
ases, the DR2 algorithm has the highest absolute valuesof c, whereas the CMA+ has the lowest absolute values. This trend 
orre-sponds to having the highest ni
hing a

eleration and the lowest ni
hinga

eleration, respe
tively. Moreover, the 4 
omma strategies have absolute
c values in the same order of magnitude, whereas the CMA+ typi
ally hasa lower absolute value in 
omparison to them.MPR SaturationThis s
alar value represents, to some degree, the quality of the obtainedminima, and thus the �nal result of the ni
hing pro
ess. Table 3.3 presentsthe mean and the standard deviation of the saturation MPR values for thedi�erent test 
ases. As 
an be seen in this table, the CMA-(+, ) kernelsa
hieve the highest MPR values, and thus they outperform together theother methods with respe
t to the ni
hing pro
ess. However, for the giventest 
ases, there is no 
lear winner for the MPR value.Global MinimumTable 3.4 
ontains the per
entage of runs in whi
h the global minimum waslo
ated. M is dis
arded from the table, as its global minimum was alwaysfound, by all algorithms, for every dimension n under investigation. Gener-ally speaking, the CMA-(+, ) routines, and in parti
ular the CMA+ strategy,were superior with respe
t to the other derandomized variants.One 
an also observe a strong 
orrelation between Tables 3.3 and 3.4:Routines that obtain high MPR saturation values, i.e., lo
ate the top-qualitypeaks, typi
ally perform well globally and lo
ate the global minimum in ahigh per
entage of the runs.The c− T Tradeo� HypothesisWe would like to numeri
ally assess the hypothesis 
laiming the existen
e ofa tradeo� between the learning period T and the ni
hing a

eleration c, asspe
ulated in [90℄, with respe
t to the 5 algorithms under investigation.We 
onsider two test fun
tions of the suite, one per 
lass: the separable
M and the non-separable GRS (the Shifted Rotated Griewank). For ea
h werun the algorithms for an in
reasing dimensionality of n = 3, 4, . . . , 30, andobtain the MPR parameters for 100 runs - in order to plot c as a fun
tion of
T . Figures 3.1 and 3.2 present the c−T 
urves forM and GRS , respe
tively.The 
urves re�e
t a 
lear trade-o� between c and T over the dimensions forthe algorithms for both 
ases (an ex
eption: DR3 overM). We 
onsider thisa numeri
al 
orroboration of the hypothesis: The longer the learning period,the lower the ni
hing a

eleration.
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Table 3.2: The absolute value of the parameter c, obtained from 
urve�tting: Mean and standard deviation over 100 runs.Test-Case DR1 DR2 DR3 CMA CMA+

M : n = 3 0.107 ± 0.006 0.138 ± 0.009 0.106 ± 0.010 0.069 ± 0.005 0.054 ± 0.003
M : n = 10 0.059 ± 0.002 0.072 ± 0.002 0.071 ± 0.003 0.040 ± 0.001 0.015 ± 0.001
M : n = 40 0.027 ± 0.001 0.033 ± 0.001 0.024 ± 0.001 0.013 ± 0.001 0.003 ± 0.001
A : n = 3 0.153 ± 0.038 0.226 ± 0.058 0.167 ± 0.006 0.135 ± 0.033 0.048 ± 0.006
A : n = 10 0.063 ± 0.009 0.079 ± 0.013 0.071 ± 0.011 0.055 ± 0.011 0.017 ± 0.001
L : n = 3 0.164 ± 0.070 0.194 ± 0.124 0.151 ± 0.064 0.148 ± 0.047 0.063 ± 0.030
L : n = 10 0.150 ± 0.015 0.186 ± 0.024 0.143 ± 0.057 0.147 ± 0.016 0.040 ± 0.003
R : n = 3 0.022 ± 0.032 0.035 ± 0.042 0.009 ± 0.012 0.030 ± 0.024 0.010 ± 0.011
R : n = 10 0.046 ± 0.007 0.049 ± 0.010 0.039 ± 0.017 0.022 ± 0.007 0.016 ± 0.002
G : n = 3 0.012 ± 0.014 0.025 ± 0.017 0.012 ± 0.003 0.023 ± 0.040 0.006 ± 0.012
G : n = 10 0.031 ± 0.027 0.102 ± 0.020 0.031 ± 0.030 0.023 ± 0.003 0.019 ± 0.015

F : n = 3 0.022 ± 0.023 0.042 ± 0.017 0.024 ± 0.024 0.023 ± 0.025 0.015 ± 0.012
F : n = 10 0.054 ± 0.093 0.087 ± 0.105 0.078 ± 0.123 0.044 ± 0.083 0.022 ± 0.021
RRS : n = 3 0.157 ± 0.036 0.254 ± 0.053 0.178 ± 0.047 0.200 ± 0.041 0.055 ± 0.008
RRS : n = 10 0.072 ± 0.026 0.095 ± 0.019 0.083 ± 0.025 0.072 ± 0.027 0.020 ± 0.002
GRS : n = 3 0.108 ± 0.067 0.126 ± 0.074 0.118 ± 0.064 0.113 ± 0.069 0.050 ± 0.007
GRS : n = 10 0.056 ± 0.015 0.072 ± 0.015 0.085 ± 0.020 0.090 ± 0.012 0.020 ± 0.004

Table 3.3: The saturation MPR value: Mean and standard deviation over
100 runs.Test-Case DR1 DR2 DR3 CMA CMA+

M : n = 3 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
M : n = 10 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
M : n = 40 0.997 ± 0.002 1 ± 0 0.988 ± 0.003 1 ± 0 1 ± 0
A : n = 3 0.971 ± 0.029 0.966 ± 0.028 0.960 ± 0.030 0.977 ± 0.024 0.992 ± 0.017
A : n = 10 0.901 ± 0.024 0.905 ± 0.025 0.901 ± 0.025 0.920 ± 0.023 0.942 ± 0.023
L : n = 3 0.963 ± 0.028 0.945 ± 0.038 0.953 ± 0.029 0.962 ± 0.027 0.996 ± 0.006
L : n = 10 0.505 ± 0.163 0.379 ± 0.153 0.167 ± 0.129 0.596 ± 0.148 0.562 ± 0.109
R : n = 3 0.263 ± 0.314 0.245 ± 0.036 0.233 ± 0.042 0.143 ± 0.046 0.481 ± 0.124
R : n = 10 0.052 ± 0.007 0.063 ± 0.007 0.055 ± 0.005 0.057 ± 0.009 0.053 ± 0.005
G : n = 3 0.115 ± 0.168 0.526 ± 0.470 0.366 ± 0.050 0.223 ± 0.288 0.761 ± 0.098
G : n = 10 0.024 ± 0.042 0.026 ± 0.047 0.066 ± 0.018 0.015 ± 0.017 0.079 ± 0.029

F : n = 3 0.002 ± 0.002 0.002 ± 0.002 0.002 ± 0.002 0.003 ± 0.004 0.002 ± 0.001
F : n = 10 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.001 ± 0.001
RRS : n = 3 0.409 ± 0.111 0.463 ± 0.067 0.423 ± 0.117 0.469 ± 0.103 0.563 ± 0.098
RRS : n = 10 0.085 ± 0.015 0.099 ± 0.019 0.078 ± 0.015 0.108 ± 0.017 0.071 ± 0.014
GRS : n = 3 0.072 ± 0.043 0.078 ± 0.044 0.085 ± 0.048 0.082 ± 0.036 0.108 ± 0.041
GRS : n = 10 0.134 ± 0.038 0.144 ± 0.037 0.122 ± 0.035 0.161 ± 0.034 0.045 ± 0.013
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al Observation 69Table 3.4: Global minimum rea
hed in 100 runs.Test-Case DR1 DR2 DR3 CMA CMA+
A : n = 3 100% 100% 100% 100% 100%
A : n = 10 90% 91% 90% 92% 95%
L : n = 3 93% 74% 92% 97% 100%
L : n = 10 9% 2% 0% 17% 13%
R : n = 3 20% 19% 13% 16% 48%
R : n = 10 0% 0% 0% 0% 0%
G : n = 3 13% 21% 32% 13% 88%
G : n = 10 8% 16% 4% 16% 2%
F : n = 3 100% 100% 100% 100% 100%
F : n = 10 14% 12% 15% 23% 15%
RRS : n = 3 45% 40% 39% 54% 72%
RRS : n = 10 0% 0% 0% 0% 0%
GRS : n = 3 4% 2% 4% 12% 8%
GRS : n = 10 6% 1% 3% 14% 0%

Figure 3.1: The c − T 
urve for M: A 
lear trade-o� for the di�erent al-gorithms, ex
ept for DR3, whi
h has a �at 
urve. Ea
h data point is anaverage of 100 runs, given n = 3, 4, . . . , 30.
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Figure 3.2: The c − T 
urve for GRS : A 
lear trade-o� for the 5 di�erentalgorithms. Ea
h data point is an average of 100 runs, given n = 3, 4, . . . , 30.3.5.3 Dis
ussionThe elitist CMA strategy was observed to perform very well in the proposedni
hing framework. A straightforward and rather intuitive explanation forthat would be its tenden
y to maintain 
onvergen
e in any basin of attra
-tion, versus a higher probability for the 
omma strategy to es
ape them.Moreover, we would like to suggest another argument for the advantage ofan elitist strategy for ni
hing. The ni
hing problem 
an be 
onsidered as anoptimization task with 
onstraints, i.e., the formation of ni
hes that restri
ts
ompeting ni
hes and their optimization routines from exploring the sear
hspa
e freely. It has been suggested in previous studies (see, e.g., [87℄) thatES self-adaptation in 
onstrained problems will tend to fail with a 
omma-strategy, and thus a plus-strategy is preferable for su
h problems. We mightlink this argumentation to the observation of our numeri
al results here, andsuggest that an elitist strategy is preferable for ni
hing.



Adaptability is not imitation.It means power of resistan
e and assimilation.Mahatma Gandhi
Chapter 4Self-Adaptive Ni
he-Radii andNi
he-Shape Approa
hes4.1 GeneralWhile the motivation and usefulness of ni
hing 
ast no doubt, the relax-ation of assumptions and limitations 
on
erning the hypotheti
al lands
apeis mu
h needed if ni
hing methods are to be valid in a broader range of ap-pli
ations. In short, we 
hoose to treat in this 
hapter the parti
ular limitingassumption of the �xed ni
he radius by introdu
ing self-adapting ni
he-radiiand ni
he-shape me
hanisms.More spe
i�
ally, ni
hing te
hniques are often subje
t to 
riti
ism dueto the so-
alled ni
he radius problem. The majority of the ni
hing meth-ods make an assumption 
on
erning the �tness lands
ape, stating that theoptima are far enough from one another with respe
t to the so-
alled ni
heradius, whi
h is estimated for the given problem and remains �xed duringthe 
ourse of evolution, as outlined in Se
tion 3.3. Obviously, there are land-s
apes for whi
h this assumption is not appli
able, and where this approa
his most likely to fail (see Figures 4.1 and 4.2 for illustration). As dis
ussedearlier, the task of de�ning a generi
 basin of attra
tion seems to be one ofthe most di�
ult problems in the �eld of global optimization.4.1.1 Related WorkThere were several GA-oriented studies whi
h addressed this so-
alled ni
heradius problem, aiming to relax the assumption spe
i�ed earlier, or even todrop it 
ompletely. Jelasity [63℄ suggested a 
ooling-based me
hanism forthe ni
he-radius, also known as the UEGO, whi
h adapts the global radiusas a fun
tion of time during the 
ourse of evolution. Gan and Warwi
k[72℄ introdu
ed the so-
alled Dynami
 Ni
he Clustering, to over
ome theradius problem by using a 
lustering me
hanism. A 
omplex subpopulation71
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Figure 4.1: The Shekel fun
tion (see, e.g., [8℄) in a 2D de
ision spa
e: Intro-du
ing a dramati
ally uneven spread of optima; For more details see Table3.1.

Figure 4.2: The Vin
ent fun
tion in a 2D de
ision spa
e: A sine fun
tionwith a de
reasing frequen
y.



4.2. New Proposed Approa
hes 73di�erentiation model, the so-
alled Multinational Evolutionary Algorithm,was presented by Ursem [84℄. It introdu
es a topologi
al-based auxiliaryme
hanism of sampling, whi
h dete
ts whether feasible solutions share thesame basin of attra
tion. A re
ent study by Stoean et al. [95℄ 
onsidered thehybridization of the latter with a radius-based ni
hing method proposed in[85℄. Finally, an iterative statisti
al-based approa
h was introdu
ed lately[66℄ for learning the optimal ni
he radius, without a-priori knowledge ofthe lands
ape. It 
onsiders the �tness sharing strategy, and optimizes itas a fun
tion of the population size and the ni
he radius, without relaxingthe lands
ape assumption spe
i�ed earlier � i.e., the ni
hes are eventuallyobtained using a single �xed ni
he radius.4.1.2 Our Approa
hOur study introdu
es a new 
on
ept into the ni
he radius problem, inspiredby the ES self-adaptation 
on
ept - an adaptive individual ni
he ra-dius. The idea is that ea
h individual, i.e., feasible solution in the arti�
ialpopulation, updates every generation a ni
he radius along with its adaptivestrategy parameters. This study is an �adaptive extension� to ni
hing withthe CMA-ES.Two new approa
hes are presented here. The �rst exploits the self-adaptation of the step-size in the CMA-ES me
hanism, the 
umulative step-size adaptation (CSA) me
hanism, and 
ouples the individual ni
he-radiusto it. Sin
e the step-size does not hold any further spatial information 
on-
erning the lands
ape, the 
lassi�
ation into ni
hes uses hyperspheres, basedon the Eu
lidean distan
e. The se
ond approa
h introdu
es the Mahalanobisdistan
e into the ni
hing me
hanism, aiming to allow more a

urate spatial
lassi�
ation by using ellipsoids whi
h are based upon the evolving distri-bution, rather than the uniform hyperspheres of the Eu
lidean metri
. Thisidea 
an be easily implemented into the CMA-ES ni
hing routines, sin
e the
ovarian
e matrix of the distribution � an essential 
omponent of the Ma-halanobis distan
e � is already learned by the algorithm. These two newapproa
hes are tested with the CMA-(+, ) routines, and evaluated on a suiteof arti�
ial lands
apes, in
luding problems with an uneven spread of optimaas well as with non-isotropi
 attra
tor basins.4.2 New Proposed Approa
hesIn this se
tion we present two new approa
hes for the adaptation of theni
hes 
lassi�
ation me
hanism, in the framework of ni
hing with the CMA-ES. Se
tion 4.2.1 presents the self-adaptive ni
he radius me
hanism whi
his based upon the 
oupling to the step-size, and Se
tion 4.2.2 introdu
esni
hing with the Mahalanobis distan
e, relying on the evolving 
ovarian
ematrix.
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he-Shape Approa
hes4.2.1 Self-Adaptive Radius: Step-Size CouplingAiming to follow the su

essful me
hanism of the step-size adaptation, theidea of this approa
h is to 
ouple the ni
he radius to the global step-size σ,whereas the indire
t sele
tion of the ni
he radius is governed by the obje
tivethat every ni
he should ideally 
onsist of λ individuals. This is implementedby means of a quasi dynami
 �tness sharing me
hanism. A detailed des
rip-tion follows.The Ni
hing-CMA method is used as outlined earlier (Chapter 3), withthe following modi�
ations. q is given as an input to the algorithm, but it isnow merely a predi
tion or a demand for the maximal number of solutionsthe de
ision maker would like to obtain. Given the ith individual in thepopulation, a ni
he radius denoted by ρ0
i is initialized by means of a rule(ρ0

i =
√
n ·σinit) in the beginning of the sear
h. Its update step in generation

(g + 1) is based on the parent's radius and step-size:
ρ
(g+1)
i =

(

1− c(g+1)
i

)

· ρ(g)
parent + c

(g+1)
i · √n , ·σ(g+1)

parent (4.1)where c(g)
i ∈ [0, 1) is the individual learning 
oe�
ient. The latter is updatedby means of the step-size di�eren
e, i.e., ∆σ

(g+1)
i =

∣

∣

∣σ
(g+1)
parent − σ

(g)
parent

∣

∣

∣:
c
(g+1)
i = γ ·

(

1− exp
{

−α ·∆σ(g+1)
i

}) (4.2)See Figure 4.3 for an illustration. As for the 
onstants, γ and α are setdi�erently for the two sele
tion strategies:
γ =

{

1
5 for (1, λ) -sele
tion
4
5 for (1 + λ) -sele
tion α =

{

10 for (1, λ) -sele
tion
100 for (1 + λ) -sele
tion .(4.3)

γ determines the saturation value of the learning 
oe�
ient: Strong 
ouplingto the parent's step-size for the plus strategy, versus a weak 
oupling forthe 
omma strategy. α di
tates the strength of the exponential 
onvergen
etowards the saturation value: Slow 
onvergen
e for the plus strategy, versus arapid 
onvergen
e for the 
omma strategy. This rule for parametri
 settingworks reliably on a wide range of problems, as we will show later. Therational behind it stems from the di�erent ni
hing 
onvergen
e behavior ofthe two strategies, as was already dis
ussed in Se
tion 3.5. Furthermore, weshall dis
uss the use of new parameters in Se
tion 4.4.The DPI routine (Algorithm 4 is run using the individual ni
he radii,for the identi�
ation of the peaks and the 
lassi�
ation of the population.Furthermore, introdu
e:
g (x, λ) = 1 + Θ (λ− x) · (λ− x)

2

λ
+ Θ (x− λ) · (λ− x)2 , (4.4)
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Figure 4.3: The learning 
oe�
ient c(g+1)
i (Eq. 4.2) is plotted as a fun
tionof the step-size di�eren
e, ∆σ

(g+1)
i , for the two strategies, as derived fromEq. 4.3 � (γ, α) are substituted for the two strategies: {(1

5 , 10
)

,
(

4
5 , 100

)}.where Θ (y) is the Heaviside step fun
tion. Given a �xed λ, g (x, λ) is aparabola with unequal bran
hes, 
entered at (x = λ, g = 1) (see Figure 4.4for illustration). The justi�
ation for its geometri
al asymmetry will bedes
ribed shortly. Then, by applying the 
al
ulation of the dynami
 ni
he
ount mdyn
i (Eq. 2.13), based on the appropriate radii, we de�ne the ni
he�tness of individual i by:

fniche
i =

fi

g
(

mdyn
i , λ

) (4.5)We assume, again, that the raw �tness is stri
tly positive and subje
t tomaximization. Finally, the sele
tion of the next parent in ea
h ni
he, i.e.,the so-
alled alpha-male of the lo
al site, is based on this ni
he �tness.Eq. 4.5 enfor
es the requirement for having a �xed resour
e of λ individ-uals per ni
he, sin
e g (x, λ) yields values greater than 1 for any ni
he 
ountdi�erent than λ. The asymmetry of g (x, λ) is therefore meant to penalizemore the ni
hes whi
h ex
eed λ members, in 
omparison to those with lessthan λ members. This equation is a variant of the dynami
 shared �tness(Eq. 2.14), and is used now in the 
ontext of ni
he radius adaptation.The self-adaptive ni
hing routine is presented in Algorithm 7.
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Figure 4.4: An illustration for g (x, λ = 10) (Eq. 4.4): A parabola with un-even bran
hes; The ni
he �tness (Eq. 4.5) is penalized more for an over-populated ni
he (λ > 10) due to the steep bran
h, in 
omparison to anunderpopulated ni
he.Algorithm 7 Ni
hing-CMA with an Adaptive Ni
he Radius1: for i = 1 . . . (q + p) sear
h points do2: Generate λ samples based on the CMA-set of i3: Update the ni
he radius ρg+1
i a

ording to Eq. 4.14: end for5: Evaluate �tness of the population6: Compute the DPS with the DPI Algorithm, based on individual radii7: Compute the Dynami
 Ni
he Count of every individual8: for all elements of DPS do9: Compute the Ni
he Fitness (Eq. 4.5)10: Set individual with best ni
he �tness as a sear
h point11: Inherit the CMA-set and update it respe
tively12: end for13: if NDPS =size of DPS < q then14: Generate q −NDPS new sear
h points, reset CMA-sets15: end if16: if gen mod κ ≡ 0 then17: Resample the (q + 1)th . . . (q + p)th sear
h points18: end if
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hes 774.2.2 Mahalanobis Metri
: Covarian
e ExploitationExisting ni
hing te
hniques, and in parti
ular those presented in Chapter 3and Se
tion 4.2.1, use the Eu
lidean distan
e in the de
ision spa
e for the
lassi�
ation of feasible solutions to the ni
hes under formation. This ap-proa
h is likely to en
ounter problems in high-dimensional lands
apes withnon-isotropi
 basins of attra
tion. Sin
e the CMA-ES algorithm alreadylearns the 
ovarian
e matrix of the de
ision spa
e distribution, it is worth-while to use it for a better spatial 
lassi�
ation me
hanism within the ni
hingframework. In essen
e, this 
an be 
onsidered as an upgrade of the ni
hingme
hanism, as it 
aptures a more a

urate spatial formation of the ni
hes.Most importantly, this approa
h is also self-adaptive.After giving this motivation, we pro
eed with dis
ussing the details ofthis idea.The Mahalanobis Distan
e In the following, we 
onsider the Maha-lanobis distan
e, for instan
e in a probability distribution. Given a meanve
tor ~m and a 
ovarian
e matrix Σ, the Mahalanobis distan
e of a ve
tor
~v from the mean ve
tor is de�ned as:

d (~v, ~m) =

√

(~v − ~m)T Σ−1 (~v − ~m) (4.6)It 
an be shown that the iso-distan
e surfa
es of this metri
 are ellipsoidswhi
h are 
entered about the mean ~m. In the spe
ial 
ase where Σ ∼ I(e.g., features are un
orrelated and all varian
es equal) the Mahalanobisdistan
e redu
es to the normalized Eu
lidean distan
e, and the iso-distan
esurfa
es be
ome Eu
lidean hyperspheres. Though the Mahalanobis distan
eis typi
ally applied in statisti
s, it 
an also be applied in di�erent 
ontexts asa metri
 on ve
tor spa
es given a positive-semide�nite and symmetri
 matrix
Σ determining the ellipti
 iso-distan
e surfa
es.Mahalanobis CMA-ES Ni
hingIn the 
ontext of ni
hing, given an individual ~x, representing a ni
he witha 
ovarian
e matrix Cx, we 
hoose to de�ne, a

ordingly, the Mahalanobisdistan
e of an individual ~y to the ni
he by

d (~x, ~y) =

√

(~x− ~y)T Cx
−1 (~x− ~y) .Sin
e di�erent individuals have di�erent 
ovarian
e matri
es, this operationis asymmetri
. Hen
e, the a
tual 
lassi�
ation into ni
hes depends not onlyon the identity of the so-
alled peak individuals, whi
h are sele
ted a

ordingto their higher �tness, but also on their individual 
ovarian
e matri
es. Dueto the fa
t that the 
lassi�
ation itself is 
arried out individually by meansof independently evolving distan
e measures, an equivalent 
lassi�
ation by
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hesmeans of the Eu
lidean metri
 would possibly result in a di�erent out
omewhen 
ompared to this approa
h.Notably, the proposed routine does not have a se
ondary sele
tion me
h-anism, whi
h was ne
essary for the self-adaptive ni
he radius approa
h, asintrodu
ed in Se
tion 4.2.1. The reason why it is not required here is that thelo
al shape of the attra
tor basins, as approximated by the CMA, is equiv-alent to the desired shape for the ni
hes, and thus su�
ient for su

essful
lassi�
ation of individuals to the ni
he.Numeri
al ImplementationAs for the te
hni
al details, we dis
uss here the numeri
al implementation ofthe Mahalanobis metri
, 
onsidering the matrix inversion whi
h is required.We show here that the matrix inversion, in this 
ontext, 
an be repla
ed bymatrix multipli
ation - whi
h leads to a signi�
ant performan
e gain for thedimensions that are typi
ally under study.In the CMA-ES me
hanism, the eigenvalue-de
omposition of the 
ovari-an
e matrix C, whi
h is 
al
ulated every generation, reads
C = BD (BD)T , (4.7)where D = diag

(√
Λ1 ,
√

Λ2 , ...,
√

Λn

), with the eigenvalues {Λi}ni=1. Inorder to obtain C
−1, one 
an derive,

C
−1 =

[

BD (BD)T
]−1

= B
T −1

D
T −1

D
−1

B
−1 =

B · diag
(

1

Λ1
,

1

Λ2
, ...,

1

Λn

)

·BT
(4.8)and thus the matrix inversion 
al
ulation 
an be repla
ed, within the CMA-ES routine, by a matrix multipli
ation 
al
ulation.Despite the fa
t that these two operations are equivalent in terms ofnumeri
al 
omplexity (see, e.g., [96℄), we observe in pra
ti
e a di�eren
ebetween the two pro
edures for obtaining C

−1. For dimensions up to n = 30,it is observed that the multipli
ation pro
edure takes on average half the
al
ulation time in 
omparison to the inversion pro
edure1. Hen
e, it payso� to follow the derivation given here.Due to numeri
al features of the eigenvalue-de
omposition, whi
h werealso dis
ussed by Hansen et al. (see [16℄, pp. 20), but are 
ru
ial here for theinversion operation of the 
ovarian
e matrix, we introdu
e a lower bound tothe eigenvalues: Λmin = 10−10.1The 
al
ulations were done with MATLAB 7.0.
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edure 79Table 4.1: Additional test fun
tions to be minimized and initialization do-mains.Name Fun
tion Init Ni
hes
S [Shekel℄ S (~x) = −∑10

i=1
1

ki(~x−ai)(~x−ai)
T +ci

[0, 10]n 8

V [Vin
ent℄ V (~x) = − 1
n

∑n
i=1 sin (10 · ln(xi)) [0.25, 10]n 50Self-Adaptive Mahalanobis Approa
hThe self-adaptive ni
he radius me
hanism presented in Se
tion 4.2.1, 
aneasily be adjusted to employ the Mahalanobis distan
e for the 
lassi�
ation ofthe ni
hes. In the 
ontext of this study, it would be
ome a hybrid approa
h inthe sense that it applies both a self-adaptive ni
he radius and a self-adaptivedistan
e metri
 for the sake of the 
lassi�
ation phase. This hybridizationwill also be 
onsidered in the experimental pro
edure as an independentni
hing routine.4.3 Experimental Pro
edureWe apply the same experimental setup of Chapter 3, with the followingmodi�
ations:

• We 
onsider additional test-fun
tions with an uneven spread of optima,introdu
ing a 
hallenge in the light of the ni
he radius problem:1. The Vin
ent fun
tion is a sine fun
tion with a de
reasing fre-quen
y. It has 6n global optima in the interval [0.25, 10]n .2. The Shekel fun
tion, suggested in [8℄, introdu
es a lands
ape witha dramati
ally uneven spread of optima. It has one global opti-mum, and 7 ordered lo
al optima. The Shekel data was retrievedfrom [8℄.Table 4.1 is an extension to Table 3.1, summarizing the additionaltest-fun
tions.
• In order to keep the behavior as simple as possible, the parameter p isset here to p = 0 (no so-
alled restart me
hanism).
• We keep the same experimental framework of fun
tion evaluationsgranted per ni
he: n · 104 fun
tion evaluations are allo
ated per ni
he,and thus a run is terminated after q · n · 104 fun
tion evaluations.4.3.1 Numeri
al ObservationWe dis
uss here the performan
e analysis at three levels:
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hesGlobal MinimumTable 4.2 
ontains the per
entage of runs in whi
h the global minimum waslo
ated. M and V are dis
arded from the table, as their global minimumwas always found, by all algorithms, for every dimension n under investi-gation. For the 
omma strategy (four left 
olumns), we observe that theMahalanobis metri
 usually improves the global optimization � both for the�xed, as well as for the self-adaptive ni
he radius approa
hes. On the otherhand, this does not seem to be the general trend for the plus strategy - onaverage the employment of the Mahalanobis distan
e does not improve theglobal optimization. We may 
on
lude that there is no 
lear 'winner', andthat the routines employing the Mahalanobis distan
e do not a
hieve a dra-mati
 improvement in global optimization. This is an expe
ted result, as theemployment of this metri
 assists in the formation of the ni
hes.MPR SaturationTables 4.3 and 4.4 present the mean and the standard deviation of the sat-uration MPR values for the di�erent test 
ases.We observe a trend of better performan
e for the routines employing theMahalanobis distan
e for both strategies. On average, the MPR values arehigher, re�e
ting a better ni
hing pro
ess.Note that the ni
hing routines, ex
ept for the �xed ni
he radius 
ase, failon the A
kley lands
ape, i.e., they lo
ate only the global minimum, whereall other ni
hes are lo
ated in the global basin of attra
tion. This e�e
t 
anbe explained by the strong basin of attra
tion of the global minimum, in
omparison to the sub-optimal minima.Moreover, most of the MPR values for the Flet
her-Powell and shifted-rotated Griewank test-
ases are mu
h lower than unity, due to the extremes
aling of the lands
ape: It has false traps with very high fun
tion values.Thus, upon being trapped in these lo
al minima, the MPR value is expe
tedto be very low.Ni
hing A

elerationThe MPR analysis allows us to 
ompare the ni
hing a

eleration of the dif-ferent routines. Tables 4.5 and 4.6 present the mean values and the standarddeviation of the ni
hing a

eleration values for the di�erent test 
ases, bymeans of the absolute value of the parameter c of Eq. 3.9. The 
urve-�ttingroutine did not attain data with a

eptable high quality for the Flet
her-Powell test-
ase, and it su�ered from extremely large standard deviations.We thus 
hoose to dis
ard it from this table.There are some general trends in the attained data. The 
omma strategyhas typi
ally higher ni
hing a

eleration values, as expe
ted from previousobservations (Chapter 3). Within ea
h strategy, there is a trend of higher
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Table 4.2: Global minimum rea
hed in 100 runs (CMA denotes a (1, λ)-strategy, CMA+ denotes a (1 + λ)-strategy). Thebest result, per strategy, is emphasized in bold s
ripts.Test-Case CMA M-CMA S-CMA MS-CMA CMA+ M-CMA+ S-CMA+ MS-CMA+
A : n = 3 100% 100% 100% 100% 100% 100% 100% 100%
A : n = 10 94% 100% 100% 100% 97% 100% 100% 100%
L : n = 3 64% 66% 43% 54% 94% 89% 65% 70%
L : n = 10 16% 8% 2% 13% 9% 5% 1% 0%
R : n = 3 54% 59% 13% 40% 67% 62% 14% 30%
R : n = 10 0% 0% 0% 0% 0% 0% 0% 0%
G : n = 3 12% 19% 10% 25% 19% 19% 16% 52%
G : n = 10 20% 31% 27% 27% 0% 0% 0% 0%
S : n = 5 91% 97% 82% 100% 83% 62% 98% 91%
S : n = 10 21% 48% 46% 90% 97% 92% 100% 75%

F : n = 4 100% 100% 100% 100% 100% 100% 100% 100%

F : n = 10 25% 40% 36% 46% 17% 22% 34% 37%

RSR : n = 3 46% 54% 14% 24% 50% 66% 10% 26%

RSR : n = 10 8% 2% 0% 0% 0% 0% 0% 0%

GSR : n = 3 10% 0% 0% 0% 9% 0% 0% 0%

GSR : n = 10 0% 0% 0% 0% 0% 0% 0% 0%
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he-Shape Approa
hesTable 4.3: MPR saturation values for the (1, λ)-Strategy: Mean values andstandard deviations over 100 runs. Emphasized in bold-s
ript are winneralgorithms with respe
t to the spe
i�ed lands
ape, also in referen
e to theresults of Table 4.4. Lands
apes with several winners do not apply bolds
ripts.Test-Case CMA M-CMA S-CMA MS-CMA
M : n = 3 1 ± 0 1 ± 0 1 ± 0 1 ± 0
M : n = 10 0.994 ± 0.002 0.967 ± 0.003 1 ± 0 1 ± 0
M : n = 40 0.956 ± 0.006 0.953 ± 0.008 0.994 ± 0.001 0.995 ± 0.002
A : n = 3 0.938 ± 0.044 N.A. 0.860 ± 0.143 N.A.
A : n = 10 0.909 ± 0.033 N.A. N.A. N.A.
L : n = 3 0.864 ± 0.092 0.870 ± 0.106 0.713 ± 0.083 0.834 ± 0.099
L : n = 10 0.240 ± 0.086 0.389 ± 0.114 0.478 ± 0.080 0.564 ± 0.105
R : n = 3 0.301 ± 0.081 0.228 ± 0.063 0.159 ± 0.041 0.305 ± 0.103
R : n = 10 0.103 ± 0.045 0.062 ± 0.011 0.082 ± 0.019 0.094 ± 0.022
G : n = 3 0.249 ± 0.126 0.234 ± 0.045 0.283 ± 0.092 0.255 ± 0.064
G : n = 10 0.252 ± 0.169 0.195 ± 0.040 0.186 ± 0.092 0.190 ± 0.041
S : n = 5 0.840 ± 0.320 0.911 ± 0.307 0.819 ± 0.300 0.979 ± 0.067
S : n = 10 0.820 ± 0.722 0.931 ± 0.073 0.596 ± 0.136 0.959 ± 0.062
V : n = 3 0.972 ± 0.011 0.920 ± 0.005 0.613 ± 0.028 0.552 ± 0.078
V : n = 10 0.998 ± 0.007 0.998 ± 0.001 0.999 ± 0.001 1 ± 0
F : n = 4 0.0004 ± 0.001 0.0049 ± 0.005 0.0005 ± 0.001 0.0173 ± 0.092
F : n = 10 0.0001 ± 0.001 0.0002 ± 0.001 0.0003 ± 0.001 0.0004 ± 0.001
RSR : n = 3 0.331 ± 0.103 0.231 ± 0.041 0.138 ± 0.051 0.268 ± 0.074
RSR : n = 10 0.130 ± 0.039 0.087 ± 0.042 0.069 ± 0.019 0.093 ± 0.018
GSR : n = 3 0.0009 ± 0.001 0.0010 ± 0.001 0.0007 ± 0.001 0.0010 ± 0.001
GSR : n = 10 0.0001 ± 0 0.0001 ± 0 0.0001 ± 0 0.0001 ± 0Table 4.4: MPR saturation values for the (1 + λ)-Strategy: Mean values andstandard deviations over 100 runs. Emphasized in bold-s
ript are winneralgorithms with respe
t to the spe
i�ed lands
ape, also in referen
e to theresults of Table 4.3. Lands
apes with several winners do not apply bolds
ripts.Test-Case CMA+ M-CMA+ S-CMA+ MS-CMA+
M : n = 3 1 ± 0 1 ± 0 1 ± 0 1 ± 0
M : n = 10 0.991 ± 0.003 0.986 ± 0.003 1 ± 0 1 ± 0
M : n = 40 0.975 ± 0.008 0.980 ± 0.007 1 ± 0 1 ± 0
A : n = 3 0.989 ± 0.026 0.999 ± 0.009 0.930 ± 0.030 0.937 ± 0.159
A : n = 10 0.946 ± 0.017 0.987 ± 0.019 N.A. N.A.
L : n = 3 0.959 ± 0.033 0.962 ± 0.036 0.819 ± 0.079 0.919 ± 0.065
L : n = 10 0.454 ± 0.116 0.373 ± 0.115 0.423 ± 0.108 0.432 ± 0.090
R : n = 3 0.528 ± 0.118 0.552 ± 0.107 0.163 ± 0.072 0.250 ± 0.089
R : n = 10 0.102 ± 0.040 0.077 ± 0.027 0.049 ± 0.009 0.053 ± 0.011
G : n = 3 0.326 ± 0.094 0.334 ± 0.101 0.305 ± 0.114 0.494 ± 0.234
G : n = 10 0.037 ± 0.008 0.053 ± 0.015 0.062 ± 0.019 0.060 ± 0.015
S : n = 5 0.681 ± 0.114 0.897 ± 0.109 0.920 ± 0.073 0.882 ± 0.086
S : n = 10 0.658 ± 0.054 0.957 ± 0.104 0.916 ± 0.311 0.939 ± 0.085
V : n = 3 0.962 ± 0.012 0.999 ± 0.001 0.815 ± 0.072 0.689 ± 0.114
V : n = 10 0.953 ± 0.016 0.990 ± 0.004 0.996 ± 0.002 0.999 ± 0.001

F : n = 4 0.0007 ± 0.001 0.862 ± 0.385 0.0044 ± 0.002 0.991 ± 0.038
F : n = 10 0.0001 ± 0.001 0.0001 ± 0.001 0.0005 ± 0.001 0.0001 ± 0.001
RSR : n = 3 0.486 ± 0.137 0.563 ± 0.140 0.135 ± 0.051 0.249 ± 0.129
RSR : n = 10 0.081 ± 0.030 0.080 ± 0.018 0.044 ± 0.006 0.041 ± 0.006
GSR : n = 3 0.0009 ± 0.001 0.0007 ± 0.001 0.008 ± 0.001 0.0012± 0.002
GSR : n = 10 0.0002 ± 0 0.0002 ± 0 0.0002 ± 0 0.0002 ± 0
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edure 83Table 4.5: Ni
hing a

eleration values for the (1, λ)-Strategy: Mean valuesand standard deviations of the absolute value of c over 100 runs.Test-Case CMA M-CMA S-CMA MS-CMA
M : n = 3 0.068 ± 0.010 0.069 ± 0.002 0.049 ± 0.007 0.060 ± 0.008
M : n = 10 0.038 ± 0.001 0.043 ± 0.002 0.029 ± 0.002 0.032 ± 0.001
M : n = 40 0.014 ± 0.001 0.014 ± 0.001 0.010 ± 0.001 0.010 ± 0.001
A : n = 3 0.133 ± 0.015 N.A. 0.035 ± 0.013 N.A.
A : n = 10 0.063 ± 0.002 N.A. N.A. N.A.
L : n = 3 0.179 ± 0.038 0.184 ± 0.048 0.128 ± 0.044 0.167 ± 0.036
L : n = 10 0.174 ± 0.024 0.176 ± 0.025 0.144 ± 0.016 0.153 ± 0.019
R : n = 3 0.043 ± 0.007 0.131 ± 0.109 0.045 ± 0.027 0.125 ± 0.058
R : n = 10 0.043 ± 0.013 0.052 ± 0.012 0.064 ± 0.016 0.081 ± 0.015
G : n = 3 0.079 ± 0.079 0.112 ± 0.033 0.097 ± 0.080 0.152 ± 0.095
G : n = 10 0.001 ± 0.002 0.006 ± 0.002 1.051 ± 6.983 1.120 ± 5.418
S : n = 5 0.004 ± 0.005 0.019 ± 0.009 0.080 ± 0.056 0.072 ± 0.020
S : n = 10 0.004 ± 0.010 0.003 ± 0.005 0.012 ± 0.024 0.005 ± 0.004
V : n = 3 0.004 ± 0.004 0.104 ± 0.010 0.010 ± 0.027 1.023 ± 2.018
V : n = 10 0.004 ± 0.009 0.037 ± 0.024 0.055 ± 0.002 0.061 ± 0.003

RSR : n = 3 0.079 ± 0.068 0.153 ± 0.098 0.031 ± 0.019 0.113 ± 0.042
RSR : n = 10 0.077 ± 0.029 0.087 ± 0.032 0.051 ± 0.011 0.069 ± 0.010
GSR : n = 3 0.147 ± 0.088 0.150 ± 0.076 0.274 ± 0.284 0.129 ± 0.076
GSR : n = 10 0.101 ± 0.046 0.107 ± 0.045 0.204 ± 0.297 0.196 ± 0.276Table 4.6: Ni
hing a

eleration values for the (1 + λ)-Strategy: Mean valuesand standard deviations of the absolute value of c over 100 runs.Test-Case CMA M-CMA S-CMA MS-CMA
M : n = 3 0.055 ± 0.007 0.056 ± 0.007 0.046 ± 0.004 0.049 ± 0.005
M : n = 10 0.015 ± 0.001 0.016 ± 0.001 0.015 ± 0.001 0.015 ± 0.001
M : n = 40 0.006 ± 0.001 0.006 ± 0.001 0.004 ± 0.001 0.004 ± 0.001
A : n = 3 0.044 ± 0.004 0.048 ± 0.004 0.016 ± 0.015 0.043 ± 0.016
A : n = 10 0.017 ± 0.001 0.016 ± 0.001 N.A. N.A.
L : n = 3 0.066 ± 0.015 0.066 ± 0.020 0.053 ± 0.012 0.058 ± 0.012
L : n = 10 0.029 ± 0.011 0.034 ± 0.007 0.040 ± 0.002 0.040 ± 0.002
R : n = 3 0.054 ± 0.005 0.053 ± 0.005 0.041 ± 0.007 0.043 ± 0.014
R : n = 10 0.015 ± 0.002 0.007 ± 0.001 0.019 ± 0.001 0.020 ± 0.001
G : n = 3 0.065 ± 0.009 0.064 ± 0.013 0.061 ± 0.014 0.050 ± 0.017
G : n = 10 0.808 ± 5.670 1.080 ± 10.380 0.748 ± 6.995 2.023 ± 18.077
S : n = 5 0.006 ± 0.008 0.006 ± 0.004 0.030 ± 0.012 0.021 ± 0.004
S : n = 10 0.002 ± 0.001 0.002 ± 0.001 0.009 ± 0.010 0.005 ± 0.003
V : n = 3 0.063 ± 0.008 0.065 ± 0.010 0.015 ± 0.005 0.040 ± 0.010
V : n = 10 0.027 ± 0.002 0.020 ± 0.003 0.025 ± 0.001 0.025 ± 0.001

RSR : n = 3 0.055 ± 0.006 0.056 ± 0.009 0.037 ± 0.010 0.045 ± 0.012
RSR : n = 10 0.021 ± 0.002 0.021 ± 0.002 0.018 ± 0.001 0.018 ± 0.001
GSR : n = 3 0.176 ± 0.150 0.156 ± 0.050 0.152 ± 0.069 0.181 ± 0.206
GSR : n = 10 0.031 ± 0.011 0.031 ± 0.016 0.032 ± 0.013 0.034 ± 0.011

ni
hing a

eleration for the Mahalanobis-distan
e based routines. This resultis pretty mu
h intuitive - a more a

urate spatial 
lassi�
ation, as typi
allyobtained by the Mahalanobis metri
, allows the ni
hing me
hanism in most
ases to form appropriate ni
hes and to 
onverge faster.
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Figure 4.5: Final population of the CMA-(1, 10) with a self-adaptive ni
heradius on the 1D Shekel fun
tion.

Figure 4.6: Final population of the CMA-(1, 10) with a self-adaptive ni
heradius on the 1D Vin
ent fun
tion.



4.4. Dis
ussion 854.3.2 General BehaviorThe proposed self-adaptive ni
he radius routine performed well on the land-s
apes with the �de
eptive� distribution of optima, i.e., V and S, and man-aged to ta
kle the ni
he-radius problem su

essfully. Visualizations of theruns on V and S for n = 1 are given as Figures 4.5 and 4.6. Figures A.1,A.2, and A.3 illustrate the adaptation of the 
lassi�
ation-ellipses by theM-CMA+ routine on the 2D Flet
her-Powell, 3D Flet
her-Powell, and 3DA
kley lands
apes, respe
tively. It 
an be observed in the Flet
her-Powell
ase that ea
h ni
he has its own 
hara
teristi
 matrix and 
onvergen
e pro-�le, whereas the 
onvergen
e in the A
kley seems to be simultaneous, asexpe
ted from the lands
ape symmetry.4.4 Dis
ussionWe have introdu
ed new 
on
epts of adaptive ni
he-radii and ni
he-shapesinto the framework of ni
hing with the Covarian
e Matrix Adaptation Evolu-tion Strategy. The main goal was to treat the so-
alled ni
he radius problem,and to o�er an e�
ient ni
hing me
hanism with no pre-assumptions on thelands
ape. It was su

essfully a
hieved at two levels: The 
onstru
tion ofself-adaptive ni
he-radius, and the employment of the Mahalanobis distan
efor the adaptation of the ni
he-shapes. We have des
ribed both approa
hesin detail.In further detail, given the CMA-ES-(1 +, λ
) routines, 4 variants of ni
h-ing were 
onsidered per routine, and tested on a suite of arti�
ial lands
apes.The new approa
hes were shown to perform in a satisfying manner, on land-s
apes with evenly and unevenly spread optima. The ni
he radius problemwas ta
kled su

essfully by the self-adaptive approa
h, as demonstrated onlands
apes with unevenly spread optima, both separable and non-separable.The appli
ation of the Mahalanobis distan
e a
hieved its goal in improvingthe ni
hing pro
ess, in terms of obtaining on average higher quality sub-optima, subje
t to higher ni
hing a

eleration. It does neither seem to im-prove nor to hamper, on average, the identi�
ation of the lo
ation of globalminimum, as expe
ted.The 
areful reader should note that employing the Mahalanobis distan
eis appli
able only when the ni
hing distan
e is 
al
ulated in the de
isionspa
e. Sometimes this is not the 
ase, and other spa
es are used for that(e.g., the se
ond-derivative spa
e, for more details see Chapter 8).We would like to dis
uss here the important issue of parameters in lightof our proposed approa
hes. The dis
ussion is done at two levels. The�rst is the relaxation of existing parameters in the �xed-radius CMA ni
hingalgorithm, and more spe
i�
ally the parameter q. The parameter q is redu
edin this study, for the �rst time, from being a 
riti
al ni
hing parameter inthe �xed-radius approa
h into being the estimated/desired target number of
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hesni
hes/peaks in the self-adaptive approa
hes without any in�uen
e on thealgorithmi
 behavior. In essen
e, a possibly wrong estimation of q wouldsimply be responsible for wasting CPU 
y
les when too large, or missinggood optima when too small. The se
ond level is the introdu
tion of newparameters, i.e., α and γ (Eq. 4.3), for the fun
tion of the learning 
oe�
ients(Eq. 4.2). Although this is an undesired situation, one should keep in mindthat by setting only two parameters, we are allowing the appli
ation of ani
hing method to lands
apes with a large number of optima with possiblydi�erent basin sizes, that would require di�erent ni
he radii, respe
tively.We would like to stress that if these parameters had not been introdu
ed,the appli
ation to su
h lands
apes would not have been feasiblewith the �xed-radius approa
h, or would have required setting asmany parameters as the number of peaks. Thus, by setting only thesetwo parameters, we a
hieve a lot. Moreover, the proposed settings apply fora wide range of pra
ti
ally relevant lands
apes, and do not have to be 
hosenfor ea
h new problem by means of additional experiments.Regarding the implementation of the Mahalanobis metri
, we have of-fered here a numeri
al simpli�
ation of the required 
al
ulation, whi
h wasobserved to pay o� in terms of 
omputation time. By applying this numeri
alimplementation, the Mahalanobis approa
h share the same 
omputational
omplexity as the previously dis
ussed approa
hes.We thus present here both the self-adaptive ni
he-radius CMA-ni
hing aswell as the CMA-ni
hing with Mahalanobis distan
e as state-of-the-art ni
h-ing te
hniques within Evolution Strategies, and propose them as solutionsto the so-
alled ni
he-radius problem.



People talk about the middle of the road as though it wereuna

eptable. A
tually, all human problems, ex
epting morals,
ome into the gray areas. Things are not all bla
k and white.There have to be 
ompromises. The middle of the road is all ofthe usable surfa
e.Dwight D. Eisenhower
Chapter 5Ni
hing-CMA forMulti-Obje
tive OptimizationThis 
hapter introdu
es an additional extension to our proposed ni
hingframework of Chapter 3, aiming at 
onstru
ting a simple algorithm for multi-obje
tive optimization.5.1 Multi-Obje
tive OptimizationDe
ision making in real-life is often subje
t to multiple obje
tives to bemet. In many s
enarios, satisfying one obje
tive is typi
ally in 
on�i
t withsatisfying the other. The �eld of Multi-Criterion De
ision Making (MCDM)aims at developing me
hanisms for supporting the de
ision making pro
esswhen treating multiple obje
tives. The idea is to study the nature of thetrade-o� between the various obje
tives, to seek a good 
ompromise, and toavoid a lose-lose s
enario.Naturally, we are interested in the optimization perspe
tive of MCDM,and espe
ially in evolutionary multi-obje
tive optimization algorithms (EMOA).The latter has developed in the last two de
ades, and has be
ome a �eld ofintense resear
h.Next, we brie�y review here formally the basi
 
on
epts of Multi-Obje
tiveOptimization.5.1.1 FormulationGiven an optimization problem withm obje
tives, we 
onsider itsm-dimensionalobje
tive spa
e, also referred to as the solution spa
e. By de�nition, the ve
-tor of obje
tives is in Rm:

~f (~x) = (f1 (~x) , f2 (~x) , . . . , fm (~x))T (5.1)87



88 Chapter 5. Ni
hing-CMA as EMOAWe assume that all obje
tives are to be minimized. A partial order is de�nedon the solution spa
e, F = ~f(X ), by means of the Pareto domination 
on
eptfor ve
tors in Rm, in the following manner:De�nition 5.1.1. Given any ~f (1) ∈ Rm and ~f (2) ∈ Rm, we state that ~f (1)stri
tly Pareto dominates ~f (2), noted as
~f (1) ≺ ~f (2),if and only if the following holds:

∀i ∈ {1, . . . m} : f
(1)
i ≤ f (2)

i ∧ ∃i ∈ {1, . . . ,m} : f
(1)
i < f

(2)
i (5.2)Note, that in the bi-
riteria 
ase this de�nition is redu
ed to:

~f (1) ≺ ~f (2) :⇔ f
(1)
1 < f

(2)
1 ∧ f (1)

2 ≤ f (2)
2 ∨ f (1)

1 ≤ f (2)
1 ∧ f (1)

2 < f
(2)
2 (5.3)In addition to the stri
t domination ≺, we de�ne further 
omparison opera-tors:

~f (1) � ~f (2) ⇐⇒ ~f (1) ≺ ~f (2) ∨ ~f (1) = ~f (2) (5.4)Moreover, we state that ~f (1) is in
omparable to ~f (2), noted as
~f (1)||~f (2),if and only if

~f (1) � ~f (2) ∧ ~f (2) � ~f (1) (5.5)The 
ru
ial 
laim is that for any 
ompa
t subset of Rm, say F, thereexists a non-empty set of minimal elements with respe
t to thepartial order � (see, e.g., [97℄, pp. 29).We 
an now de�ne non-dominated points as follows:De�nition 5.1.2. Non-dominated points are the set of minimal elementswith respe
t to the partial order �:
FN = {~f ∈ F|∄~f ′ ∈ F : ~f ′ ≺ ~f} (5.6)where a subs
ript N will denote from now on a non-dominated set in the
ontext of multi-obje
tive optimization.Having de�ned the non-dominated set and the 
on
ept of Pareto domi-nation for general sets of ve
tors in Rm, we are now in a position to relateit to the optimization mission. The aim of Pareto optimization is to obtainthe non-dominated set for F = ~f(X ) and its pre-image in X , the so-
alledPareto optimal set, also referred to as the e�
ient set. We may then de-�ne the Pareto front as the set of all points in the obje
tive spa
e that
orrespond to the solutions in the Pareto-optimal set.



5.1. Multi-Obje
tive Optimization 89In many pra
ti
al appli
ations we are also satis�ed with a set of solutionswhose image under ~f yields a good approximation to the non-dominated set,though a de�nition of what is a good approximation is problem dependent.Often, it is desired to a
hieve a uniform distribution on the Pareto frontand a good 
onvergen
e of all points in the approximation set to some non-dominated solution.For notational 
onvenien
e, we shall de�ne a stri
t pre-order on the de-
ision spa
e as follows:
~x(1) ≺ ~x(2) ⇐⇒ f(~x(1)) ≺ f(~x(2)) (5.7)A

ordingly, we de�ne the pre-order
~x(1) � ~x(2) ⇐⇒ f(~x(1)) � f(~x2) (5.8)Note, that this is not a partial order, as the antisymmetry axiom does nothave to be satis�ed. This stems from the fa
t, that two distin
t ve
tors mayhave the same fun
tion value. For the same reasons, it is also possible thatthe e�
ient set 
omprises more members than the Pareto front.5.1.2 The NSGA-II AlgorithmDue to their robustness and �exibility, Evolutionary Multi-Obje
tive Op-timization Algorithms (EMOA) have re
ently re
eived in
reased attentionas problem solvers for di�
ult simulator-based optimization problems [98,99, 100℄. Among these methods, the NSGA-II method is one of the mostpopular, and it has been su

essfully applied to many real-world problems.The NSGA-II algorithm has been proposed by Deb [98℄. It aims atobtaining a well distributed approximation set of points that are 
lose to thePareto front. It is a (µ + λ)-EA (see Algorithm 1), whi
h employs spe
i�
variation operators (for details we refer the reader to [98℄), as well as a uniquesele
tion operator. We 
hoose to des
ribe the latter in detail.The NSGA-II sele
tion 
onsists of two phases, that 
orrespond to pri-mary versus se
ondary sele
tion 
riteria. At �rst, a pro
edure 
alled non-dominated sorting is applied, that obtains perfe
t order on the set of de
isionve
tors. Next, the solutions whi
h share the same rank are sorted by meansof the 
rowding distan
e 
riterion. Expli
itly, non-dominated sorting worksas follows: Given a population R, its non-dominated subset R1 = RN isextra
ted. This set forms the best ranked solutions (rank=1). Given theset R −RN , the non-dominated subset R2 = (R − RN )N is then extra
ted,and so on. This is repeated until the set of solutions is empty. The sets

R1, . . . , Ri, . . . , Rℓ are 
alled the non-dominated sets of rank i, i = 1, . . . , ℓ.Sin
e these sets 
an possibly 
ontain more than one member, a se
ond 
ri-terion is applied in order to sort solutions that share the same rank. Thisse
ondary 
riterion puts emphasis on the diversity of the solutions, and is
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Figure 5.1: Non-dominated sorting. Figure 
ourtesy of Mi
hael Emmeri
h[101℄.
alled the 
rowding distan
e: Given a solution ~x(i) ∈ Rn, we determine the
orresponding ~f = f(~x) in the solution spa
e, and then evaluate
d(~f) =

n
∑

k=1

[

min{f(j)
k

|j∈{1,...,|R|}−{i}∧f(k)≤f(i)} f
(i)
k − f

(j)
k +

min{f(j)
k

|j∈{1,...,|R|}−{i}∧f(k)≥f(i)} f
(j)
k − f (i)

k

]

(5.9)For a visualization of the non-dominated sorting pro
edure and the 
rowdingdistan
e 
al
ulation on a bi-
riteria optimization problem we refer to Figures5.1 and 5.2, respe
tively.A 
omprehensive overview on the NSGA-II and other EMO algorithms
an be found in [98, 99℄. Re
ently, an interesting method 
alled the SMS-EMOA [100℄ was proposed, and was shown to outperform the NSGA-II al-gorithm on standard ben
hmarks. However, the NSGA-II 
an be 
onsideredstill as the most widely applied EMOA te
hnique in literature, and thus weshall employ it in this study (see Chapter 9).
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Figure 5.2: Crowding distan
e. Figure 
ourtesy of Mi
hael Emmeri
h [101℄.5.2 On Diversity in Multi-Obje
tive OptimizationRe
ently it has been pointed out that not only high diversity of solutionsin the obje
tive spa
e but also high diversity of solutions in the e�
ient set
an be of interest for the de
ision maker [68, 102℄. For instan
e, if a spe
i�
point on the Pareto front is sele
ted by the de
ision maker, it might also beinteresting to 
onsider di�erent possible realizations to this solution in thede
ision spa
e. Hen
e, if there are two di�erent pre-images of the sele
tedpoint on the Pareto front in the e�
ient set, both of them are of potentialinterest for the de
ision maker. This situation is illustrated in Figure 5.3.More pre
isely, the di�eren
e between the 
lassi
al sele
tion prin
iple toour proposed approa
h 
an be formalized as follows. Let A denote an ap-proximation set on whi
h we would like to apply ranking, and let ~xA and
~xB be two solutions in A. In the 
lassi
al sele
tion method, as employedby the NSGA-II or SMS-EMOA algorithms, a solution ~xA is preferred to asolution ~xB if ~xA has a better dominan
e rank than ~xB in A, with respe
tto non-dominated sorting. Given that ~xA and ~xB share the same dominan
erank in A, then ~xA is preferred to ~xB, if and only if ~xA 
ontributes more
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Decision Space Objective Space

Figure 5.3: Diversity for de
ision making : Illustrative example for a s
enariowhere two adja
ent points on the Pareto front are mapped onto two pointsin two 
ompletely di�erent regions in the de
ision spa
e. Units and s
alesare arbitrary.to the diversity of the approximation set in the obje
tive spa
e than ~xB . Inthe proposed sele
tion prin
iple, ~xA remains preferable to ~xB, if ~xA has abetter dominan
e rank than ~xB in A. However, given that ~xA and ~xB sharethe same dominan
e rank in A, then ~xA is preferred to ~xB , if and only ifit 
ontributes more to the diversity in the aggregated spa
e (i.e., in bothobje
tive and de
ision spa
es). This prin
iple 
an be instantiated in di�erentways, depending on the diversity measure de�ned on the aggregated spa
e.Multi-obje
tive optimization methods aim at maintaining diversity, bytheir de�nition, and indeed, one of the popular me
hanisms for diversitymaintenan
e is the 
rowding 
on
ept [67℄, whi
h is also applied, yet di�er-ently, as a single-obje
tive ni
hing te
hnique. Thus, the important 
ompo-nent of diversity is the linking element between the �elds of multi-obje
tiveand multi-modal optimization. However, in multi-obje
tive optimization thediversity maintenan
e is typi
ally sought in the obje
tive spa
e, for the sakeof obtaining a fair 
overage of the Pareto front, while not taken into a

ountfor the Pareto optimal set in the de
ision spa
e.5.2.1 Related WorkSeveral di�erent studies treated related topi
s to the work presented in this
hapter. We review them here shortly.Ni
hing for MOEA: The NPGA Ni
hing te
hniques have been alreadyused in the multi-obje
tive optimization arena, by being adjusted a

ord-ingly. Horn, Nafploitis and Goldberg [103℄ introdu
ed a ni
hing te
hnique for
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tive Optimization 93multi-obje
tive optimization, known as the Ni
hed-Pareto GA (NPGA). Thealgorithm was a variant of the �tness sharing ni
hing method, whereas theni
hing distan
e metri
 was set to 
onsider the obje
tive spa
e only. The se-le
tion was based on the so-
alled Pareto domination tournaments or on theminimal ni
he 
ount, otherwise. The NPGA was a 
lassi
al example of usingan existing single-obje
tive ni
hing te
hnique, in a straightforward manner,for multi-obje
tive optimization - only by rede�ning the ni
hing distan
emeasure and the sele
tion me
hanism. However, its kernel was the simpleGA, whi
h typi
ally su�ers from limited performan
e in high-dimensional
ontinuous lands
apes, and it la
ked any self-adaptation me
hanism.The Omni-Optimizer Deb's so-
alled Omni-Optimizer [68℄ is 
onsideredto be one of the �rst and only attempts of introdu
ing a generi
 optimiza-tion routine whi
h aims at 
overing the four 
ategories of fun
tion opti-mization: Single-obje
tive uni-global, single-obje
tive multi-global, multi-obje
tive uni-global, and multi-obje
tive multi-global problems. Also, it isone of the �rst attempts to take diversity in the de
ision spa
e into 
onsid-eration.In prin
iple, this algorithm extends the NSGA-II by 
onsidering addi-tionally the diversity in the de
ision spa
e. This is implemented by means ofthe 
rowding distan
e 
al
ulation in the de
ision spa
e for all the individuals.The assigned 
rowding distan
e is de�ned as follows:if 
rowd_dist_obj(i) > avg_
rowd_dist_obj or
rowd_dist_de
(i) > avg_
rowd_dist_de
then 
rowd_dist(i) = max (
rowd_dist_obj(i), 
rowd_dist_de
(i))else 
rowd_dist(i) = min (
rowd_dist_obj(i), 
rowd_dist_de
(i))i.e., if the individual has above-the-average 
rowding distan
e, either in thede
ision or obje
tive spa
e, the larger of them is assigned to it, otherwisethe smaller of the two distan
es is assigned. This 
riterion is rather general,and strongly relies on uniform distribution of peaks as well as on their equal�tness values. Also, the s
alability of the two di�erent spa
es is not treated.We would like to spe
ulate that it is expe
ted to experien
e di�
ulties onnon-uniform multi-modal lands
apes, for instan
e. From the pra
ti
al per-spe
tive, the algorithm was reported in [68℄ to be tested only on a single testfun
tion, 
onstru
ted by Deb for this purpose, with uniformly-distributedequi-�tness minima lands
ape. We shall revisit this test-fun
tion in our ex-perimental pro
edure.De
ision-Spa
e Diversity as an Independent Obje
tive To�olo andBenini [104℄ also promoted the issue of geneti
 diversity in multi-obje
tivealgorithms, and proposed their so-
alled Geneti
 Diversity Evolutionary Al-gorithm (GDEA) for multi-obje
tive optimization. The latter 
onsiders the
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hing-CMA as EMOAdiversity of trial solutions in the de
ision spa
e, quanti�ed by means of a
overage fun
tion, as an independent obje
tive, subje
t to maximization, inthe ongoing multi-obje
tive sear
h. This GA-based approa
h was shown tooutperform the NSGA on a set of 30D bi-
riteria minimization problemsintrodu
ed by Zitzler et al. [105℄.Self-Adaptation in Multi-Obje
tive Optimization Self-adaptation ofstrategy parameters [106℄ has be
ome a fundamental 
omponent in the evo-lutionary optimization routine. Moreover, the self-adaptation of the muta-tion strategy parameters has been shown to be ne
essary for e�
ient single-obje
tive optimization within ES [106℄.Self-adaptation is expe
ted to fail in the 
lassi
al multi-obje
tive optimiza-tion routine. This is due to the fa
t that given 
on�i
ting obje
tives, asu

essful mutation toward one obje
tive is not ne
essarily a su

essful mu-tation toward the others � and hen
e should not be sele
ted.Bü
he, Müller and Koumoutsakos [107℄ 
ondu
ted a pioneering study ofself-adaptation in multi-obje
tive optimization. They 
onsidered three dif-ferent 
lasses of multi-obje
tive algorithms - independent sampling, 
ooper-ative population sear
h with dominan
e 
riterion and 
ooperative populationsear
h without dominan
e 
riterion. Three representatives - CMEA, SPEAand SDM - mat
hing the 
lasses respe
tively, were tested on a multi-obje
tivegeneralization of the sphere model, and 
ompared with respe
t to ea
h other.Self-adaptation had been plugged-in into the evolutionary 
ore me
hanismsof the algorithms, in a limited way (rotation angles, for instan
e, were notalways adapted). The 
on
lusion was that self-adaptation did not work for
ooperative population sear
hes whi
h use the dominan
e 
riterion in the �t-ness assignment (SPEA), and this result was reassured by testing more rep-resentatives from that 
lass of algorithms, su
h as the NSGA-II and SPEA2.However, self-adaptation 
ould work for the CMEA and SDM, whi
h do notuse dominan
e, but rather 
onsider a single obje
tive for optimization whilethe other obje
tives are treated as 
onstraints. The 
on
luding message was
lear � self-adaptation does not work in its 
lassi
al de�nition upon 
onsid-ering multiple obje
tives � as had been spe
ulated.Re
ently, the self-adaptation obsta
le was treated su

essfully by usingthe so-
alled hyper-volume indi
ator (also known as S-metri
) [99℄ as a se-le
tion 
riterion, similar to [100℄, in the Multi-Obje
tive CMA-ES [33℄, to bedis
ussed next. A similar approa
h, yet employing a simpler ES kernel, wasalso reported re
ently in [108℄.CMA-ES for Multi-Obje
tive Optimization An algorithm for multi-obje
tive optimization with a CMA kernel was introdu
ed re
ently [33℄, em-ploying numerous (1 + 1) parallel sear
h pro
esses that undergo a sharedsele
tion phase. The latter is based on non-dominating ranking as a primary
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riterion, followed by the maximization of the Pareto front hyper-volume asa se
ondary 
riterion. Crowding distan
e was also 
onsidered as an alterna-tive se
ondary sele
tion 
riterion. In many ways, this algorithm resemblesour ni
hing framework. However, its diversity preservation stems from theout
ome of sele
tion with respe
t to multiple 
riteria, rather than from thespatial enfor
ement of spe
iation by means of a ni
he de�nition. It is impor-tant to note in this 
ontext, that the hyper-volume indi
ator is well-de�nedas a measure of diversity and solution-set quality in the obje
tive spa
e, but
annot be applied as an indi
ator of diversity in the sear
h spa
e.5.3 Multi-Parent Ni
hing with (µW , λ)-CMAIn order to apply a ni
hing algorithm for multi-obje
tive optimization, wewould like to design a stable ni
hing kernel, where ni
hes are less dynami
and asso
iated more strongly with their spatial origins. In pra
ti
e, we aimat �xing an o�spring to its spatial ni
he, or alternatively, at verifying that asele
ted su

essor of a ni
he indeed originates from the same sour
e as theparent as well as the other members. The veri�
ation of this 
ondition maybe easily in
orporated into the ni
hing framework presented in Chapter 3.This 
ondition naturally poses a limitation on the free spe
iation pro
ess.Thus, we would like to boost the performan
e of this limited ni
hing variantby introdu
ing a multi-parent ni
hing approa
h, as will be dis
ussed shortly.The (1 +, λ
) ni
hing framework may be extended to a multi-parent ni
h-ing framework, by employing a (µW , λ)-CMA kernel. We propose here thefollowing algorithm. In this extension, the issue to be treated is the iden-ti�
ation of the sele
ted set of o�spring due to be re
ombined. Followingthe (1, λ) framework, the ni
he representative is well de�ned, i.e., as outputfrom the DPI routine. However, the number of individuals in that ni
heis unknown a-priori, and moreover, some of the individuals in the 
urrentspatial ni
he might not share the same parent. Thus, we 
hoose to de�nethe rest of the sele
ted o�spring as the set of at most ⌊λ2 ⌋ − 1 individualsthat are within ni
he radius from the peak individual and share a parentwith it. This way, it is guaranteed that the ES mutation distribution evolves
ontinuously, and that the spatial ni
he is stable.Sin
e the value of µ is set dynami
ally every generation, and is likelyto vary over time, other auxiliary 
oe�
ients must be updated a

ordingly,su
h as the re
ombination weights (see Eq. 1.44). Otherwise, this s
heme isnot expe
ted to introdu
e any instabilities into the ni
hing framework. Asfor the value of λ, we propose to set it to its re
ommended default value, asin Eq. 1.47:

λ = 4 + ⌊3 · ln (n)⌋A pseudo-
ode for the multi-parent-CMA ni
hing routine is presented inAlgorithm 8.



96 Chapter 5. Ni
hing-CMA as EMOAAlgorithm 8 Multi-Parent (µW , λ) Ni
hing-CMA with a Fixed Ni
he Ra-dius1: for i = 1 . . . (q + p) sear
h points do2: Generate λ samples based on the CMA-set of i3: end for4: Evaluate �tness of the population5: Compute the Dynami
 Peak Set with the DPI Algorithm6: for j = 1 . . . q elements of DPS do7: Identify at most µ = ⌊λ2 ⌋ �ttest individuals with Parent (peak(j))8: Apply weighted re
ombination on these individuals to yield 〈~x〉jW , 〈~z〉jW9: Inherit the CMA-set of Parent (peak(j)) and update it w.r.t. 〈~z〉jW10: end for11: if NDPS=size of DPS < q then12: Generate q −NDPS new sear
h points, reset CMA-sets13: end if14: if gen mod κ ≡ 0 then15: Resample the (q + 1)th . . . (q + p)th sear
h points16: end ifNumeri
al Observation: (1, λ)-Ni
hing vs. (µW , λ)-Ni
hingWe tested the derived multi-parent ni
hing-CMA variant on the suite of ar-ti�
ial multimodal lands
apes of Se
tion 3.4. A 
omparison with its (1, λ)sibling 
learly shows that the multi-parent variant is inferior in performan
eon the given lands
apes. It seems that the free spe
iation 
omponent in theoriginal (1, λ) strategy plays an important role in the ni
hing pro
ess. There-fore, we restri
t the use of the multi-parent variant to the multi-obje
tiveframework, whi
h will be derived next.5.4 Ni
hing-CMA as EMOAThe idea of the proposed method is to approximate the Pareto front usingni
hes, i.e. every ni
he represents a point in the evolving front. This isa
hieved by 
onsidering the aggregated de
ision and obje
tive spa
es for thedistan
e metri
 of the ni
hing formation. This method employs the multi-parent ni
hing-CMA routine as it is, with the following modi�
ations:
• Ranking of individuals is based upon non-dominated sorting.
• Distan
e between ni
hes is evaluated in the aggregated spa
e, as will beexplained shortly. Also, the estimation of the ni
he radius is adjusted.
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hing-CMA as EMOA 975.4.1 The Ni
hing Distan
e Metri
Given the n-dimensional de
ision ve
tor of individual i, ~x(i) =
(

x
(i)
1 , . . . , x

(i)
n

)T ,with its assigned m-dimensional obje
tive ve
tor, ~f (i) =
(

f
(i)
1 , . . . , f

(i)
m

)T ,and given the equivalent de
ision and obje
tive ve
tors of individual j,
(

~x(j), ~f (j)
), the distan
e between individuals i and j is de�ned as the Eu-
lidean distan
e between the two aggregated ve
tors subje
t to dimension-ality normalization, i.e., norm-2 in the n+m aggregated spa
e. It expli
itlyreads,

di,j =

√

√

√

√

1

n

n
∑

k=1

(

x
(i)
k − x

(j)
k

)2
+

1

m

m
∑

ℓ=1

(

f
(i)
ℓ − f

(j)
ℓ

)2 (5.10)5.4.2 Sele
tion: Non-dominating RankingIn order to sele
t individuals based on more than a single obje
tive, the ex-isting sele
tion me
hanism had to be modi�ed. As outlined previously, theni
hes are identi�ed based on their ranked quality. In our new multi-obje
tive
ontext, rather than sorting the �tness values, we propose to perform domi-nan
e ranking, after whi
h the routine will pro
eed as usual: Starting withrank 1, a greedy identi�
ation of the ni
hes will be exe
uted, 
onsidering thedistan
e with respe
t to the aggregated obje
tive and de
ision spa
es. If notall q ni
hes are populated, the routine will pro
eed to rank 2, and so on.5.4.3 Estimation of the Ni
he RadiusSin
e our method aims to approximate the Pareto front by populating itwith a uniform distribution of q ni
hes, we 
an estimate the ni
he radius
ρ for spe
i�
 
ases. The following derivations are stri
tly limited to 2Dde
ision or obje
tive spa
es, but we believe that they 
ould be generalizedto n-dimensional spa
es.Consider a 
onne
ted Pareto front, and assume that we 
an de�ne itslength, denoted by lFRONT . Also, let the diameter of the Pareto set bedenoted by lSET . Upon 
onsidering the aggregated spa
e, and demanding auniform distribution of ni
hes, one may write:

2 · ρ · q =
√

l2FRONT + l2SET (5.11)Simpli�ed Model One 
an 
onsider a simpli�ed model for providing anupper and a lower bounds for ρ, by taking into a

ount only the obje
tivespa
e. For this purpose let us 
onsider the Nadir obje
tive ve
tor, denotedhere as ~ζ(N ) = (f1,N , f2,N )T . In the general m-dimensional obje
tive spa
e,the Nadir obje
tive ve
tor is de�ned as the ve
tor with the worst obje
tive
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hing-CMA as EMOAvalues of all Pareto optimal solutions (as opposed to the worst obje
tivevalues of the entire spa
e):
ζ
(N )
i = max

{

fi

∣

∣

∣
(f1, . . . , fi, . . . , fm)T ∈ FN

}

. (5.12)The Nadir obje
tive ve
tor 
an be 
omputed for m = 2 by employing single-obje
tive optimization. For m > 2, heuristi
s are available, but the problemis 
onsidered to be 
omputationally hard [97℄.Without loss of generality, assume that the obje
tives {f1, f2} are as-signed with values in the intervals {[f1,min, f1,N ] , [f2,min, f2,N ]}, respe
-tively. The length of the assumably-
onne
ted Pareto front has a lowerbound of
lFRONT,min =

√

(

(f1,N − f1,min)2 + (f2,N − f2,min)2
)

, (5.13)and an upper bound of
lFRONT,max = |f1,N − f1,min|+ |f2,N − f2,min| . (5.14)Hen
e, upon assuming a uniformly spa
ed population of the q ni
hes alongthe front, one 
an derive

√

(

(f1,N − f1,min)2 + (f2,N − f2,min)2
)

2 · q ≤ ρ ≤ |f1,N − f1,min|+ |f2,N − f2,min|
2 · q (5.15)The General Case For the general 
ase, we 
hoose to de�ne the defaultvalues as the radii of the de
ision or the obje
tive spa
es, respe
tively:

rSET =

√

√

√

√

n
∑

i=1

(xi,max − xi,min)2 (5.16)
rFRONT =

√

√

√

√

m
∑

j=1

(fj,max − fj,min)2 (5.17)And thus
ρ =

√

∑n
i=1 (xi,max − xi,min)2 +

∑m
j=1 (fj,max − fj,min)2

2 · q (5.18)The ni
he radius is essentially a 
ru
ial parameter of this method, and itsestimation or tuning is 
riti
al for the algorithmi
 su

ess.
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al Simulations 995.5 Numeri
al SimulationsWe outline here our experimental setup for the proposed method.5.5.1 Test Fun
tions: Arti�
ial Lands
apesWe 
onsider a set of arti�
ial bi-
riteria lands
apes in order to test the algo-rithmi
 performan
e. Following our mission statement, and due to the fa
tthat we have no desire in introdu
ing another standard EMOA, we tend tofo
us in lands
apes with more interesting de
ision spa
e 
hara
teristi
s, andprovide the reader with a proof of 
on
ept for the proposed approa
h. Next,we des
ribe the four di�erent lands
apes to be 
onsidered:1. Deb's Omni-Test As mentioned earlier, Deb 
onstru
ted a bi-
riteriamulti-global lands
ape for testing his Omni-Optimizer [68℄. Expli
itly,it reads:
f1(~x) =

n
∑

i=1

sin (πxi) −→ min
f2(~x) =

n
∑

i=1

cos (πxi) −→ min (5.19)where ∀i xi ∈ [0, 6].2. EBN The EBN family of fun
tions [100℄ introdu
ed a very basi
 setof test-problems for multi-obje
tive algorithms. Expli
itly, it reads:
f

(γ)
1 (~x) =

(

n
∑

i=1

|xi|
)γ

· n−γ −→ min
f

(γ)
2 (~x) =

(

n
∑

i=1

|xi − 1|
)γ

· n−γ −→ min (5.20)The shape of the Pareto front 
an be 
ontrolled by means of the pa-rameter γ, and it is de�ned by the following equation:
y2 =

(

1− y1/γ
1

)γ
, y1 ∈ [0, 1] (5.21)Thus, the shape of the front will be a 
on
ave, linear, or 
onvex ar
 forthe 
ases of γ < 1, γ = 1, or γ > 1, respe
tively.The main purpose of studies employing this set of problems is 
hara
-terizing the EMOA distribution points on a Pareto front of di�erentelementary shapes. The EBN problems are attra
tive in the 
ontext ofe�
ient set approximation, as the pre-images of points in the obje
tivespa
e are not single points, but rather line segments on the diagonalsof [0, 1]n, ex
epting the extremal points (0, 1)T and (1, 0)T (see, e.g.,[101℄). In our study we shall 
onsider the 
ase of γ = 1.
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hing-CMA as EMOA3. "Two-on-One" This test-
ase was originally introdu
ed in an inter-esting study of the Pareto-optimal set [109℄, whi
h has been to someextent one of the origins to the study presented in this 
hapter. Itis a two-dimensional fun
tion, with a 4th-degree polynomial with twominima as f1 versus the sphere fun
tion as f2:
f1(x1, x2) = x4

1 + x4
2 − x2

1 + x2
2 − cx1x2 + dx1 + 20 −→ min

f2(x1, x2) = (x1 − k)2 + (x2 − l)2 −→ min (5.22)We 
onsider the asymmetri
 
ase, with c = 10, d = 0.25, k = 0, and
l = 0 (
ase number 3 as reported in [109℄).4. Lamé Superspheres We 
onsider a multi-global instantiation of afamily of test problems introdu
ed by Emmeri
h and Deutz [110℄, thePareto fronts of whi
h have a spheri
al or super-spheri
al geometry.In 
ontrast to the EBN problem, the set of pre-images of a point onthe Pareto front for this instan
e is �nite, and solutions are pla
ed onequidistant parallel line-segments, ea
h of them being a pre-image of alo
al Pareto front.Let d = 1

n−1

∑n
i=2 xi, and r = sin2(π · d),

f1 = (1 + r) · cos(x1) −→ min
f2 = (1 + r) · sin(x1) −→ min (5.23)with x1 ∈

[

0, π
2

], and xi ∈ [1, 5] for i = 2, . . . , n.5.5.2 Modus OperandiWe 
arried out numeri
al simulations on the bi-
riteria lands
apes introdu
edin the previous se
tion in order to test the algorithmi
 performan
e of theproposed method. We 
hose to apply three additional algorithms as referen
emethods: the NSGA-II, the Omni-Optimizer, and a variant of the NSGA-II whi
h 
onsiders an aggregated spa
e in the 
rowding 
al
ulations. Thelatter routine is meant to assess the importan
e of the aggregation 
on
eptfor attaining de
ision spa
e diversity. The idea was to approximate thePareto front by means of q = 50 points, and allo
ate a �xed number of
NumEvalmax = 50, 000 fun
tion evaluations per run. We are aware thatthese are not the optimal settings for the referen
e methods; The Omni-Optimizer, for instan
e, was reported in [68℄ to employ a population of 1, 000individuals. However, our goal here is also to exploit the advent of modernderandomized Evolution Strategies, whi
h o�er optimization with minimalsettings.In order to assess the boost of diversity in the de
ision spa
e, we wouldlike to introdu
e here a quanti�er for that. Let dA,B denote the Eu
lidean
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al Simulations 101Table 5.1: Hypervolume values of the Pareto fronts of the 4 di�erent algo-rithms on the 4 test-
ases: Average and standard-deviation over 20 runs.Hypervolume Ni
hing-CMA NSGA-II NSGA-II-Agg Omni-Opt.Omni-Test 30.27 ± 0.05 30.17 ± 0.034 29.80 ± 0.23 29.75 ± 0.18EBN 3.283 ± 0.042 3.289 ± 0.088 2.87 ± 0.182 2.064 ± 0.057Two-on-One 173.4 ± 0.26 173.7 ± 1.56 172.7 ± 1.78 150.2 ± 28.6Superspheres 3.176 ± 0.038 3.203 ± 0.001 3.117 ± 0.080 2.457 ± 0.372distan
e between individual ~xA and individual ~xB:
dA,B = ‖~xA − ~xB‖ (5.24)We then de�ne the population diversity of the Pareto optimal set as themean value of the µN (µN−1)

2 distan
e measures between all the individuals,normalized by the diameter of the de
ision spa
e, denoted by diam:
D =

2diam · µN (µN − 1)
·
∑

A 6=B

dA,B (5.25)This s
alar should give us an indi
ation to what degree the �nal populationis diverse.5.5.3 Numeri
al ObservationWe present the numeri
al results by means of plots of typi
al runs of the re-sulting approximated Pareto-set and Pareto-front (i.e., all the non-dominatedindividuals in the last generation). The plots present the out
ome of the dif-ferent algorithms both in the de
ision and the obje
tive spa
es, per land-s
ape. Note that the de
ision spa
e is represented by plotting x1 ver-sus x2, ex
ept for the Superspheres test-
ase where x1 is plotted versus
1

(n−1) ·
∑n

i=2 xi. These plots are given in Figures 5.4, 5.5, 5.6, and 5.7.Table 5.1 presents the 
al
ulations of the S-metri
, as a performan
e
riterion in the obje
tive spa
e, averaged over 20 runs. Moreover, Table 5.2presents the 
al
ulations of the de
ision spa
e diversity, as de�ned in Eq.5.25, averaged over 20 runs.Generally speaking, the proposed algorithm performed in a highly satis-fying manner, obtaining good Pareto-sets with high diversity in the de
isionspa
e, whi
h are mapped onto well-approximated Pareto-fronts. In terms ofthe performan
e 
riterion in the obje
tive spa
e, the S-metri
 (hypervolume),Ni
hing-CMA and the NSGA-II performed equally well, while the NSGA-IIwith aggregation and the Omni-Optimizer typi
ally performed slightly worse.Regarding the diversity in the de
ision spa
e, the proposed algorithm a

om-plished its goal: it attained higher de
ision spa
e diversity in 
omparison to
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hing-CMA as EMOATable 5.2: De
ision-spa
e diversity, as de�ned in Eq. 5.25, of the 4 di�erentalgorithms on the 4 test-
ases: Average and standard-deviation over 20 runs.Diversity Ni
hing-CMA NSGA-II NSGA-II-Agg Omni-Opt.Omni-Test 0.256 ± 0.060 0.205 ± 0.079 0.222 ± 0.070 0.030 ± 0.002EBN 0.483 ± 0.008 0.410 ± 0.023 0.356 ± 0.028 0.011 ± 0.010Two-on-One 0.295 ± 0.01 0.136 ± 0.036 0.116 ± 0.031 0.106 ± 0.054Superspheres 0.413 ± 0.024 0.239 ± 0.049 0.307 ± 0.046 0.062 ± 0.056the other method on all lands
apes. This result 
an also be 
learly observedin the de
ision spa
e plots. On the Omni-Test lands
ape, Ni
hing-CMA per-formed very well, while typi
ally obtaining 4 Pareto subsets, in 
omparisonto one or two subsets for ea
h of the other routines. On the EBN lands
ape,Ni
hing-CMA attained a quasi-uniform distribution in the de
ision spa
e.On the "Two-on-One" lands
ape, the proposed algorithm managed to ex-plore both bran
hes of the so-
alled propeller-shaped Pareto-set [109℄, whilethe other algorithms typi
ally explored either one of the two bran
hes. Onthe Super-Spheres lands
ape, Ni
hing-CMA performed extremely well, whileobtaining a good distribution of typi
ally 3 Pareto subsets. The other meth-ods, nevertheless, usually obtained a single Pareto subset. This is 
learlyobserved in Figure 5.7, where the �nal population of the these algorithmsis mostly 
on
entrated along a single line-segment, 
orresponding to a sin-gle Pareto subset. Hen
e, in multi-globality terms, Ni
hing-CMA 
learlyoutperformed the other methods on these lands
apes.It should be noted that introdu
ing the aggregation 
omponent into theNSGA-II did improve the attained de
ision spa
e diversity to some extent ontwo lands
apes, but did not have a 
onsiderable 
ontribution. We 
on
ludethat 
onsidering the aggregated spa
e by itself does not seem to be su�
ientfor attaining high diversity in the de
ision spa
e. We rather 
onsider it as abridge for ni
hing to multi-obje
tive domains. We would like also to pointout the poor performan
e of the Omni-Optimizer in terms of the attainedde
ision spa
e diversity. It is likely that its performan
e was hampered dueto the small population size employed here.Dis
ussionThe 
onstru
ted algorithm required rather mild adjustments to the newarena of multi-global multi-obje
tive optimization. Due to the fa
t thatit is ni
he-radius based, we proposed a way to approximate this parameter.The algorithm was applied to a testbed of 
onventional arti�
ial bi-
riterialands
apes, of various dimensions, and 
ompared to the 
lassi
al GA-basedEMOAs: The NSGA-II, the Omni-Optimizer and an aggregated-spa
e vari-
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Figure 5.4: 5D Omni-Test lands
ape (Eq. 5.19): Final populations of thefour routines (see legend). Left: De
ision spa
e; Right: Obje
tive spa
e.

Figure 5.5: 10D EBN lands
ape (Eq. 5.20): Final populations of the fourroutines (see legend). Left: De
ision spa
e; Right: Obje
tive spa
e.ant of the NSGA-II. The observed numeri
al results were highly satisfying,where in all 
ases not only the Pareto front, but also the e�
ient set, werebetter 
overed in 
omparison to the existing approa
hes. This out
ome pro-vided us with the desired proof of 
on
ept for the proposed method. It shouldbe noted that the GA-based methods performed poorly, likely due to thesmall population sizes that are typi
ally employed by ES-based algorithmi
kernels.
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Figure 5.6: 2D Two-on-One lands
ape (Eq. 5.22): Final populations of thefour routines (see legend). Left: De
ision spa
e; Right: Obje
tive spa
e.

Figure 5.7: 4D Super-Spheres lands
ape (Eq. 5.23): Final populations of thefour routines (see legend). Left: De
ision spa
e; Right: Obje
tive spa
e.
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The dream is alive!Hers
hel Rabitz
Chapter 6Introdu
tion to QuantumControlControlling the motion of atoms and mole
ules has been a dream sin
e theearly days of Quantum Me
hani
s. Although this quest initially met withfailure, the foundation of the Quantum Control (QC) �eld in the 1980s,throughout the development of various approa
hes [111, 112, 113℄, has �nallybrought this dream to fruition. Quantum Control, sometimes referred to asOptimal Control or Coherent Control, aims at altering the 
ourse of quantumdynami
s phenomena for spe
i�
 target realizations. There are two mainthreads within Quantum Control, theoreti
al versus experimental 
ontrol,as typi
ally en
ountered in Physi
s. They have experien
ed an amazingin
rease of interest during the past 10 years, in parallel to the te
hnologi
aldevelopments of ultrafast laser pulse shaping 
apabilities, that obviouslymade it possible to turn the dream into reality. For a broad �eld review see[114, 115, 116℄.The list of su

essfully 
losed-loop quantum 
ontrolled systems in Physi
sand Chemistry is pra
ti
ally endless. Examples of early work 
ontain su

ess-ful appli
ations in �uores
en
e spe
trum manipulation [117℄, 
ontrol of quan-tum wavefun
tions [118℄, vibrational ex
itation tailoring in polymers [119℄,mole
ular rearrangement sele
tivity [120℄, 
hemi
al dis
rimination [121℄, ul-trafast solid-state opti
al swit
hing [122℄, and photosyntheti
 ba
teria energytransfer [123℄.In this 
hapter we review the fundamental prin
iples of Quantum Control,both in theory and in experiments. Should the reader 
hoose to explorethis 
hapter, an understanding of the basi
 quantum me
hani
s prin
iples isassumed, as well as being familiar with the Dira
 notation. The reader whowishes to abstra
t from the physi
s details 
ould simply view the QuantumControl appli
ations in this study as a non-linear high-dimensional set ofproblems with real-world appli
ations.107



108 Chapter 6. Introdu
tion to Quantum Control6.1 Optimal Control TheoryOptimal Control Theory (OCT) [124, 125℄ aims at manipulating the quantumdynami
s of a simulated system by means of an external 
ontrol �eld, ǫ (t),whi
h typi
ally 
orresponds to a temporal ele
tromagneti
 �eld arising froma laser sour
e. The obje
tive to be met in this 
ontrol pro
ess is de�ned bymeans of a given physi
al observable, whose yield is subje
t to maximization.A quantum 
ontrol lands
ape is thus de�ned as the fun
tional dependen
eof an observable yield on the 
ontrol variables, and may be visualized as asurfa
e over the spa
e of all possible 
ontrols.This se
tion is mainly based on [126℄ (de�nitions) and on [127, 128℄ (QCderivations).6.1.1 The Quantum Control FrameworkFormally, we 
onsider quantum systems whi
h are des
ribed by Hamiltoniansof the form
H (t) = H0 − ~µ · ~ǫ (t) (6.1)with H0 as the free-�eld Hamiltonian, ~µ the dipole moment operator, and

~ǫ (t) the ele
tri
 �eld, within the so-
alled ele
tri
 dipole approximation. Theele
tri
 �eld is often redu
ed to a s
alar, due to the 
ommon assumption of alinear polarization. In pra
ti
e, a �nite number N of states is 
onsidered, andthus the Hilbert in�nite-dimensional spa
e is pra
ti
ally redu
ed toan N-dimensional spa
e, and therefore the Hamiltonian is typi
allyan N ×N Hermitian matrix.Given some initial quantum state |ψ (t = 0)〉 = |ψ0〉, the time evolutionof the quantum state |ψ (t)〉 is di
tated by the time-dependent S
hrödingerequation:
i~
∂

∂t
|ψ (t)〉 = H(t) |ψ (t)〉 (6.2)Equivalently, the time propagation operator, typi
ally referred to as the prop-agator, a
ts on quantum states in the following manner:

|ψ (t)〉 = U
(

t, t′
) ∣

∣ψ
(

t′
)〉

⇔
∣

∣ψ
(

t′
)〉

 |ψ (t)〉 (6.3)and has the form:
U
(

t, t′
)

= T exp

(

− i
~

∫ t

t′
H
(

t′
)

dt′
)

= exp (iA(t)) (6.4)where T is Dyson's time-ordering operator, and A = A† is an N ×N Hermi-tian matrix. Figure 6.1 provides an illustration for the 
on
ept of multiplequantum pathways from an initial state to a �nal state.



6.1. Optimal Control Theory 109

Control Laser FieldFigure 6.1: [Left℄ Given a quantum system with an initial state |ψi〉, theQuantum Control pro
ess aims at steering the system into a desired targetstate, |ψf 〉, by means of the 
ontrol laser �eld ~ǫ (t). Coherent 
ontrol re-lies on the existen
e of multiple quantum pathways between the two states,as illustrated, whi
h result in interferen
e; The goal is thus obtaining 
on-stru
tive interferen
e in the desired �nal state, and destru
tive interferen
eelsewhere. [Right℄ The quantization of the multiple quantum pathways pi
-ture; The transition from the initial state to the target state may be attainedin multiple pathways.Let the target observable operator be O, then the yield of the 
ontrol pro-
ess for a pure quantum state is de�ned as the expe
tation of the observableoperator at time t = T :
J = 〈O〉T = 〈ψT |O|ψT 〉 =

〈

ψ0

∣

∣

∣U†OU
∣

∣

∣ψ0

〉

= 〈ψ0 |OT |ψ0〉 (6.5)while referring from now on to U as U(T, 0), unless spe
i�ed otherwise.Let OT be diagonalized and spanned by means of its eigenve
tors:
OT = U†OU =

∑

j

σj |φj〉 〈φj|, (6.6)then the highest eigenvalue σmax 
orresponds to the maximal attainableobservable value.When an ensemble of quantum states is under investigation,
|Ψ(t)〉 =

∑

j

pj(t) |ψj〉,it is 
hara
terized by the density operator ρ(t) = |Ψ(t)〉 〈Ψ(t)|. The dynami
sof the ensemble is then di
tated by the von Neumann equation for the
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tion to Quantum Controldensity operator ρ(t):
i~
∂ρ(t)

∂t
= [H(t), ρ(t)] (6.7)where [A,B] = AB−BA.An observable is measured by Tr (ρO), and the Quantum Control yieldis de�ned respe
tively by:

J = 〈OT 〉 = Tr (ρTO) = Tr(Uρ0U†O
) (6.8)where

ρT = ρ(T ) = Uρ0U†Additional auxiliary 
osts may be imposed on the 
ontrols due to 
onstraints,e.g., minimal �uen
e, and 
onstru
t respe
tively a quantum 
ontrol 
ostfun
tional of the form:
J ′ = J − λ

∫ T

0
g (ǫ(t)) dt (6.9)However, in this 
hapter we restri
t our treatment to quantum optimal 
on-trol problems in the absen
e of these 
onstraints.Criti
al Points: Kinemati
 Treatment At a 
riti
al point the di�eren-tial of the 
ontrol lands
ape with respe
t to U vanishes. This is the so-
alledkinemati
 treatment of the 
riti
al point analysis, and it reads:

δJ
δU = 0 (6.10)Sin
e U†U = I, we get

δU†U + U†δU = 0for any δU . Eq. 6.10 may be rewritten now as
δJ
δU = Tr(δUρ0U†O + Uρ0δU†O

)

= Tr(δUρ0U†O − Uρ0U†δUU†O
)

=

= Tr([ρ0,U†OU
]

U†δU
)

=
〈

U
[

U†OU , ρ0

]

, δU
〉

= 0 (6.11)leading to the important result that at a 
riti
al point
[OT , ρ0] =

[

U†OU , ρ0

]

= 0 (6.12)Hen
e, OT and ρ0 
ommute, and thus are simultaneously diagonalizable,a

ording to this kinemati
 treatment.
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al Points: Dynami
 Treatment The dynami
 treatment, whi
h
onsiders the di�erential of the observable with respe
t to the 
ontrol �eld
ǫ(t), is typi
ally based on the 
hain rule:

δJ [~ǫ(t)]

δ~ǫ(t)
=
δJ
δU ·

δU
δ~ǫ(t)

(6.13)The dynami
 pi
ture is more 
omplex, and is subje
t to a more deli
atetreatment, a

ordingly. At a 
riti
al point, it 
ould be shown [127℄ that thisdi�erential yields:
δJ
δ~ǫ(t)

= Tr ([OT , ρ0]B(t)) = 0, (6.14)where B(t) = (i/~)U†(t, 0)∇~ǫH(t)U(t, 0).The 
ru
ial assumption whi
h is made by the dynami
 treatment statesthat the matrix B(t) forms a set of N2 linearly independent fun
tions forall time 0 ≤ t ≤ T . This assumption obviously leads to [OT , ρ0] = 0, as inEq. 6.12, and to the 
on
lusion that the observable and the density matrix
ommute in the dynami
 pi
ture as well.When diagonalizing the density matrix, the same eigenve
tors of theobservable (Eq. 6.6) are used:
ρ0 =

∑

j

λj |φj〉 〈φj|The 
ontrol yield now reads:
J = Tr∑

i

∑

j

σiλj |φi〉 〈φi| φj〉 〈φj|



 = Tr∑
j

λjσπ(j) |φj〉 〈φj |



 =

=
∑

j

λjσπ(j) (6.15)where π(j) denotes a permutation, out of N ! possible permutations of theseeigenvalues, assuming that there is no degenera
y.Spe
ial Case: Pi→f A spe
ial state-to-state 
ase is 
ommonly 
onsidered,where the transfer of a pure initial state |i〉, into a desired �nal state |f〉, issubje
t to maximization. It is expressed a

ordingly through pure densityproje
tors: A density matrix ρ0 = |i〉 〈i|, and an observable O = |f〉 〈f |.This population transfer problem has a simpler theoreti
al treatment, andmoreover, is also 
ommonly en
ountered in real-world appli
ations. Moreexpli
itly, let us 
onsider the time evolution operator by its matrix element,
Uif = 〈i|U |f〉 (6.16)being a fun
tional of the 
ontrol �eld, U = U [ǫ(t)]. Then the quantum
ontrol population transfer problem is posed as maximizing the probability
Pi−→f = |Uif |2 (6.17)
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tion to Quantum Control6.1.2 ControllabilityBy assessing the 
ontrollability of the quantum system we aim at attain-ing the existen
e of a 
ontrol �eld whi
h obtains the maximal target yield,without studying the nature of the lands
ape. This is essentially di�erentfrom optimality analysis, whi
h aims at lo
ating extrema on the lands
ape,without ne
essarily 
ondu
ting 
ontrollability assessment.A powerful aspe
t of Quantum Control theoreti
al lands
apes is the abil-ity to assess perfe
t 
ontrollability of the system, with hardly any assump-tions on the quantum system, as presented in the following theorem:Theorem 6.1.1. Assuming 
ontrollability of the system, the only extremavalues for Quantum Control of population transfer 
orresponds to perfe
t
ontrol:
Pi−→f = 1In the following we shall outline the prin
ipal steps of the proof for this
laim, following [129, 130℄. For simpli
ity, we 
hoose to 
onsider the spe
ial
ase of Pi−→f , subje
t to dynami
 treatment. Note that Pi→f = |Uif |2.Proof Idea A dynami
 treatment of a lands
ape extremum reads:
δPi→f

δǫ(t)
= 0 (6.18)Using the identity

〈i|U |f〉 = 〈i| exp (iA) |f〉 ,where A = A
† is an N ×N Hermitian matrix, Eq. 6.18 may be rewritten as

δPi→f

δǫ(t)
=
∑

p,q

∂ |Uif |2
∂Apq

δApq

δǫ(t)
= 0 (6.19)The same 
ru
ial assumption made regarding Eq. 6.14 is made here, redu
-ing the dynami
 pi
ture into the kinemati
 pi
ture: The uniqueness of thefun
tional dependen
e of the matrix elements Apq [ǫ(t)] on ǫ(t) is implied bythe assumed 
ontrollability of the system.Eq. 6.18 
an now be satis�ed by

∂ |Uif |2
∂Apq

=
∂

∂Apq
|〈i| exp (iA) |f〉|2 = U

∗
if

∂Uif

∂Apq
+ Uif

∂U∗
if

∂Apq
= 0 ∀p∀q(6.20)Further examination of this equation (see Supplemental Online Material of[129℄) leads to the following 
on
lusion:

Uif = exp (iα), α ∈ R (6.21)
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laim is satis�ed a

ordingly:
Pi−→f = 1 (6.22)The most general 
ase would be the dynami
al treatment of the extrema of

J = Tr (ρTO). An equivalent theorem, stating that the extrema of su
hlands
apes would 
orrespond to perfe
t 
ontrol or to no-
ontrol, exists andis proven in [127℄. Furthermore, the latter arti
le presents important resultsregarding the nature of the lands
ape, whi
h we 
hoose to review here brie�y:1. The Slope An upper bound of the gradient reads:
∣

∣

∣

∣

δJ
δǫ(t)

∣

∣

∣

∣

≤ 2

~
‖O‖ × ‖~µ‖ (6.23)where the linear polarization of the ele
tri
 �eld was assumed for sim-pli
ity. In pra
ti
al realizations, it is reasonable to expe
t that thelands
ape slope up to the global maximum will have no steep regions,suggesting that the optima are robust.2. Hessian at the Global Maximum The Hessian matrix has typi
allyat most (2N −np−1) non-zero negative eigenvalues (np is the numberof non-zero eigenvalues of ρ0), where the rest 
orrespond to the nullspa
e, whi
h is spanned by their eigenfun
tions. Thus, there existsaddle points, but they do not introdu
e any obsta
le toward lo
atingthe global maximum.3. Robustness The tra
e of the Hessian matrix at the top of the land-s
ape suggests a robust global maximum in any pra
ti
al realization,and gets more robust as the dimensionality N in
reases.We 
on
lude this se
tion by stating the following 
orollary:Corollary 6.1.2. Quantum Control lands
apes have extrema that 
orrespondto perfe
t 
ontrol or to no-
ontrol. Furthermore, given a 
ontrollable quan-tum system, there is always a trap-free pathway up to the top of the 
ontrollands
ape from any lo
ation, allowing the lo
ation of the global maximumwith �rst-order (gradient) information.6.1.3 Control Level SetsGiven the results obtained in the previous se
tion, stating that the gradientof the yield fun
tion vanishes only at the top of the lands
ape, it is possibleto draw an important 
on
lusion regarding the existen
e of level sets1 inthe lands
ape.1This important 
on
ept, whi
h was dis
ussed previously in the 
ontext of global min-imum de�nition (see Eq. 1.2 and Theorem 1.1.1) or the basin de�nition (see De�nition2.3.1), is revisited here in the 
ontext of su

ess-rate.
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tion to Quantum ControlLet f : Rn → R be under investigation, with a point in the lands
apewhi
h satis�es:
f∗ = f(~x∗), ∇f(~x∗) 6= 0The so-
alled Impli
it Fun
tion Theorem states that there exists an (n− 1)-dimensional manifold near ~x∗ with the same fun
tion value of f∗, and itstangent plane at ~x∗ is perpendi
ular to ∇f(~x∗).This theorem 
an be applied dire
tly to Quantum Control lands
apes,due to the results presented previously. While 
limbing up the QC lands
ape,every asso
iated yield value along the way has a 
orresponding manifold,whi
h 
an potentially be explored by 
ontinuous traje
tories.Obviously, we 
annot apply the same theorem in order to draw an equiv-alent 
on
lusion regarding the existen
e of a level set at the top. However, itis possible to show that a denumerably in�nite number of solutions exists atthe top of the lands
ape. Under mild assumptions, it was shown in [131, 132℄that in the absen
e of 
onstraints an in�nite number of solutions will existfor a general Quantum Control problem. The proof is based on fun
tionalanalysis treatment, subje
t to perturbation formulation, and is beyond thes
ope of this study.We may 
on
lude that Quantum Control lands
apes are not only easyin terms of the lo
ation of its maxima, i.e., optimal 
ontrols, as suggestedpreviously, but also o�er a ri
h diversity of multiple solutions.The 
areful reader should note that the above 
on
lusions are valid onlyfor Theoreti
al Quantum Control lands
apes, where no 
onstraints whatso-ever are posed. In the 
ontext of our work on Quantum Control optimiza-tion, to be presented in the following 
hapters, the lands
apes under studywill always be underposed by multiple 
onstraints, and thus the degree towhi
h these theorems are appli
able is generally unknown. However, possi-ble 
orroboration of the given Quantum Control lands
ape analysis mightbe identi�ed in our work, and will be dis
ussed.The D-MORPH Algorithm Standard algorithms for the optimizationof optimal 
ontrol are designed for 
limbing-up the 
ontrol lands
ape andlo
ating its extrema at the top, but are not 
apable of examining the level-sets of the lands
ape.A spe
ial algorithm for exploring 
ontrol �elds on a given lands
ape level-set was designed by Rothman et al. [133, 134℄, aiming to produ
e traje
to-ries throughout 
ontrol �elds whi
h 
orrespond to a preserved observable.This algorithm is referred to as Di�eomorphi
 Modulation under Observable-Response-Preserving Homotopy (D-MORPH), and it allows an examinationof various 
ontrol �elds whi
h attain the same yield, but may have di�erentphysi
al properties, e.g., �uen
e.
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 idea of the D-MORPH algorithm is to 
onstrain the quantumdynami
s su
h that the observable is preserved for all 
ontrol �elds at agiven time. It is 
onvenient to introdu
e a dummy exploration variable s,and present the quantum dynami
s a

ordingly (0 ≤ s ≤ 1):
ǫ(s, t)←− ǫ(t)

H (s, t) = H0(s)− ~µ(s) · ~ǫ (s, t)

i~
∂

∂t
|ψ (s, t)〉 = H(s, t) |ψ (s, t)〉

〈O(s)〉T = 〈ψ(s, T ) |O|ψ(s, T )〉

(6.24)Given the desired target observable value at time T , denoted by CT , theD-MORPH algorithm aims at lo
ating 
ontrol �elds ǫ(s, t) that satisfy thefollowing non-linear equation:
F (s) = 〈O(s)〉T −CT = 0 (6.25)A homotopy path 
an then be obtained by solving the following di�erentialequation:
dF (s)

ds
=
d 〈O(s)〉T

ds
= 0 (6.26)We only outline the D-MORPH algorithm above, while omitting most of theexpli
it derivations of the integration pro
ess to be followed. We refer thereader to [133, 134℄ for those details.We 
on
lude this se
tion with the following 
orollary:Corollary 6.1.3. A general 
ontrollable Quantum Control problem has ari
h lands
ape with an in�nite number of optimal solutions, 
orrespondingto perfe
t 
ontrol. Climbing-up to the top of the lands
ape reveals 
ontrollevel-sets at every yield value, with manifolds whi
h 
an be explored with 
on-tinuous traje
tories. The latter may be obtained by means of the D-MORPHalgorithm.6.1.4 Computational ComplexityThe framework of this study is global optimization, where the fo
us here ison optimal 
ontrol of theoreti
al quantum systems, by means of optimallydetermining a 
ontrol �eld parameterized by n fun
tion values. As su
h,studying its 
omputational 
omplexity aspe
t would traditionally 
onsiderthe resour
es required for the optimization algorithm as a fun
tion of thedimensionality of the sear
h spa
e, denoted here by n.Due to the spe
ial nature of quantum systems, studying the time 
om-plexity of OCT optimization algorithms with respe
t to the Hilbert spa
edimensionality N is of 
onsiderable interest. In fa
t, when 
onsidering the
omputational expense of resour
es for a given OCT optimization problem,



116 Chapter 6. Introdu
tion to Quantum Controlthe propagation of the S
hrödinger equation is far more substantial than thes
alability of the 
ontrol �eld to be optimally determined. A

ordingly, theunderlying optimization 
hallenge seems to stem from the size of the quan-tum system N , rather than from the number of the ele
tri
 �eld fun
tionvalues to be optimally determined, n.Hen
e, OCT 
omputational 
omplexity resear
h fo
uses on the Hilbertspa
e dimensionality N . It should be noted that kinemati
 optimizationtreatment of OCT, whi
h is typi
ally not of this study's fo
us, 
onsidersHermitian matri
es of dimension O (N2
) as the 
ontrol. Thus, in the latter
ase the time 
omplexity anyway has to be treated in terms of N .We review here brie�y a single test 
ase.Time Complexity of a Pure-State Quantum SystemFollowing Corollary 6.1.2, we know that an OCT sear
h 
an be algorithmi-
ally implemented by means of gradient-based steps. It is thus 
onvenientto 
onsider the gradient �ow, whi
h is de�ned as the traje
tory followed bythe algorithm when the step update follows

−∇UJ (U)The latter is based upon the kinemati
 treatment (see Eq. 6.10 and its deriva-tions). It is then possible to estimate an upper bound for the required timefor 
onvergen
e into an ε-neighborhood of the global maximum for the 
lassof observable maximization problems [135℄. The upper bound for a pureinitial state system, ρ0 = |i〉 〈i|, then reads:
τmax ≤

1

2 (σ1 − σk+1)

[

ln

(

2Nk

ε2

)

+ 2 · ln
(

(N − k − 2) σk+1

k (σ1 − σk+1)

)] (6.27)where N is the Hilbert spa
e dimension, σ1 > σk+1 > . . . > σN are theeigenvalues of the observable O, and k is the degenera
y of the maximaleigenvalue, σ1.OCT optimization has a polynomial number of variables in terms of N ,and given the estimation of Eq. 6.27 we may 
on
lude that it has a logarithmi
time 
omplexity. It thus belongs to the 
omplexity 
lass CLOG (
ontinuouslog) in the 
ontext of the relevant 
omplexity literature (see, e.g., [136℄).OCT 
omputational 
omplexity resear
h is still in its early days, and is
urrently under promising study. It in
ludes the investigation of other test
ases, subje
t to theoreti
al as well as empiri
al approa
hes.



6.2. Optimal Control Experiments 1176.2 Optimal Control ExperimentsOptimal Control Experiments (OCE) [116, 137℄ 
onsider the realization ofQuantum Control in the real-life laboratory, aiming at employing a learningpro
ess for altering the 
ourse of quantum dynami
s phenomena of spe
i�
target-appli
ations. Here, the yield, or the su

ess-rate, is obtained by aphysi
al measurement of the target appli
ation, whereas numeri
al modelingof the system's Hamiltonian is not required.Initially, there were several qualitatively di�erent quantum 
ontrol s
hem-es. Brumer and Shapiro proposed the use of multi-
olor interferen
e to 
on-trol quantum systems [112, 138℄: Combinations of harmoni
 light �elds wereused to 
ontrol the total and di�erential 
ross-se
tions of photo-ionizationand disso
iation pro
esses. That approa
h fo
used on the frequen
y-domaindes
ription of the quantum system, and it was followed by a proposed Quan-tum Control approa
h by Tannor and Ri
e, based on exploiting the time-evolution of wave pa
kets that are produ
ed when quantum systems intera
twith short laser pulses [111, 139℄. Finally, Rabitz introdu
ed the important
on
ept of feedba
k 
ontrol, where phase-, amplitude- and/or polarizationshaping subje
t to a 
losed learning loop are used to guide a quantum systemtoward a desired �nal state [113℄. Rabitz's approa
h has been su

essfullyapplied in numerous appli
ations, and pra
ti
ally be
ame the 
ommon ex-perimental routine in the �eld. We shall fo
us in this study on the feedba
k
ontrol approa
h.The remainder of this se
tion will review experimental Quantum Control,while fo
using in 
omputational and optimization aspe
ts. We do not dis
ussthe te
hni
al realization of the a
tual laser pulse. This part is mainly basedon [116, 140℄, as well as on personal le
ture notes2.6.2.1 Femtose
ond Laser Pulse ShapingAs presented earlier, the 
ontrol �eld in OCT 
orresponds to the ele
tri
�eld, whi
h is tuned in the temporal domain in a straightforward mannerby the optimization routine. However, the realization in OCE dramati
allydi�ers [116℄.When 
onsidering laser pulses in the duration of femtose
onds3, it isnot yet possible to shape pulses in the temporal domain: State-of-the-artele
tro-opti
 swit
hes 
an 
urrently modulate only in the order of pi
ose
-onds4. Hen
e, the pulse shaping in OCE is typi
ally implemented by meansof "slow" manipulation of the spe
trum, subje
t to a realization of the Fourier2Notes were taken in the 
ourse "Quantum Control" of Prof. Hers
hel Rabitz(CHM509), Prin
eton University, Fall 200731fs = 10−15s, i.e., 1 millionth of 1 billionth of a se
ond.41ps = 10−12s, i.e., 1 trillionth of a se
ond.



118 Chapter 6. Introdu
tion to Quantum Controltransform. We denote the experimental ele
tri
 �eld by E(t),
E(t) ∼ R

{∫ ∞

−∞
E(ω) exp(iωt) dω

}where E(ω) is the spe
tral �eld. Pulse shapers allow independent ampli-tude as well as phase modulations, and the spe
tral �eld may be modeleda

ordingly:
E(ω) = A(ω) exp (iφ(ω))with A(ω) as the spe
tral amplitude, and φ(ω) as the spe
tral phase.Time vs. Frequen
y The transition between time to frequen
y domainsis obtained by the Fourier transform, F , whose a
tion 
an be summarizedas follows:

E(ω) =
1

2π

∫ ∞

−∞
Ẽ(t) exp (−iωt) dt = F

[

Ẽ(t)
]

Ẽ(t) = A(t) exp (iΦ(t)) =

∫ ∞

−∞
E(ω) exp (iωt) dω = F−1 [E(ω)]

(6.28)where A(t) is the temporal amplitude and Φ(t) is the temporal phase. Inpra
ti
e, the modeling of the experimental ele
tri
 �eld is real, and it reads:
E(t) = R

{∫ ∞

−∞
A(ω) exp(iφ(ω)) exp(iωt) dω

} (6.29)The Fourier transform also determines the re
ipro
al relation between thespe
tral width to the temporal width, whi
h is another form of the un-
ertainty prin
iple. Given the temporal full-width-half-maximum (FWHM)pulse width, ∆τlaser,FWHM , and the FWHM spe
tral width, ∆ωlaser,FWHM ,the time-bandwidth relation reads:
∆ωlaser,FWHM ·∆τlaser,FWHM ≥ 2πcB (6.30)where cB ≤ 1 depends on the pro�le of the spe
tral amplitude A(ω).It is important to distinguish between the temporal intensity of the �eld,

I(t) =
∣

∣

∣
Ẽ(t)

∣

∣

∣

2 (6.31)and the spe
tral intensity of the �eld,
I(ω) = |E(ω)|2 (6.32)whi
h are stri
tly not dire
tly related, due to the loss of the phaseinformation.
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Signal:
<Observable>

Molecular
Sample

Trial Control Field

Phase Calibration Feedback:
Fitness (Yield)

Optimization
Routine

Figure 6.2: The Quantum Control experimental learning loop.The Control Phase Generally speaking, the 
ontrol fun
tion in spe
tralmodulation 
onsists of the spe
tral amplitude fun
tion A(ω) as well as ofthe spe
tral phase fun
tion φ(ω). Most Quantum Control pro
esses aremore sensitive to the phase than to the amplitude, and phase-only shapingis typi
ally su�
ient for attaining optimal 
ontrol. We thus 
hoose to restri
tour study to phase modulation, and to 
onsider the spe
tral fun
tion A(ω) as�xed. The latter is then well-approximated by a Gaussian whi
h determinesthe bandwidth, or the pulse duration, a

ordingly. Note that shaping thepulse with phase-only modulation guarantees the 
onservation of the pulseenergy.We thus 
onsider only φ(ω) as our 
ontrol fun
tion: It de�nes the spe
-tral phase at n frequen
ies {ωi}ni=1, that are equally distributed a
ross thespe
trum of the pulse. These n values {φ(ωi)}ni=1 
orrespond to n pixelsof the pulse shaper, and they would be
ome the de
ision parameters to beoptimized in the experimental learning loop:
φ(ω) := (φ(ω1), φ(ω2), ..., φ(ωn)) (6.33)Figure 6.2 illustrates the 
losed learning loop experimental Quantum Controlpro
ess.6.2.2 Laboratory Realization: ConstraintsThe realization of the quantum system in the laboratory poses 
onstraints onthe quantum dynami
s, and may lead to a di�erent OCE sear
h lands
ape,in 
omparison to its equivalent OCT lands
ape. The OCT theorems whi
hguarantee a trap-free pathway to perfe
t 
ontrol from any lo
ation in the
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tion to Quantum Controllands
ape, with gradient-based steps and in logarithmi
 time 
omplexity,may no longer be valid in OCE lands
apes. Generally speaking, it is not
lear how do Quantum Control lands
apes appear in the laboratory.We dis
uss here brie�y several aspe
ts of laboratory experiments whi
hare likely to be translated into 
onstraints in the OCE lands
ape [140℄.The 
ru
ial 
omponent of laser pulse shaping pro
ess is the phase modu-lation, whi
h is typi
ally exposed to waveform distortion e�e
ts (for a 
om-prehensive study see [141℄). We outline here several modulation 
omponents.Pixelation and Repli
a Pulses In pra
ti
e, the pulse shaping pro
essis implemented by a so-
alled Spatial Light Modulator (SLM), whi
h istypi
ally based on Liquid Crystal Display (LCD). This approa
h 
onsidersindividual pixels subje
t to re
tangle-a
tivation-fun
tions, squ(ν), ideallysharply-de�ned and with no gaps between ea
h other. This is referred to asthe stair
ase approximation. The time modulation of these step-fun
tions isattained by means of their inverse Fourier transform,
F−1 [squ(ν)] ∼ sin
(τ)where the width of sin
(τ) = sin(τ)

τ is inversely proportional to the pixelwidth. Expli
itly, the resulting temporal ele
tri
 �eld in this pixelization
an be des
ribed as follows:
e(t) =

∑

n

ẽ(t− nτ) · sin
(πt
τ

)

, (6.34)with ẽ(t) as the desired ele
tri
 �eld, and where τ = 1
∆ν is the inversefrequen
y spa
ing per pixel.Pra
ti
ally, step-fun
tion gaps between SLM ele
trodes are responsiblefor the 
onstru
tion of so-
alled parasiti
 repli
a pulses in the temporal do-main, whi
h are lo
ated at the zeros of the sin
 envelope fun
tion.Pulse Break-Up A linear phase fun
tion results in the time shift of thetemporal pulse. This 
an easily be derived by a 
hange of variables, orby the appli
ation of the so-
alled Fourier Shift Theorem (see, e.g., [142℄).The in�uen
e of the repli
a pulses be
omes more substantial when they aremoved from the zeros of the envelope sin
 fun
tion, by breaking-up thepulse energy into multiple parasiti
 repli
a pulses. This is equivalent tothe following statement: The steeper the linear phase, the more pronoun
edbe
ome the repli
a pulses, whi
h generally result in lower suboptimal yields[140℄.Phase Range: Wrapping Phases that di�er in 2π radians are mathe-mati
ally equivalent. This periodi
 nature of the phase in [0, 2π]n pra
ti
ally
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 boundary 
onditions on the modulator. Given 0 < ε ≤ 2π,the so-
alled phase wrapping operator is implemented as follows:
φi = 2π + ε −→ φ̃i := ε

φj = −ε −→ φ̃j := 2π − ε (6.35)or simply as φ̃i := φi mod 2π.From an optimization perspe
tive, this means that the sear
h spa
e ispra
ti
ally an n-dimensional hyper
ube spanning a length of 2π in ea
h di-mension. It is likely to have impli
ations on the optimization routine in use.In terms of 
onstraints, wrapped phases may be exposed to singularity e�e
ts(0 − 1 jumps), but it is not 
onsidered to be a signi�
ant e�e
t. Thus, we
onsider it here more as a mathemati
al feature of the sear
h spa
e, ratherthan a 
onstraint.Resolution The number of pixels, n, determines the 
ontrol resolution,and poses a dire
t 
onstraint on the shaped-pulse in the temporal domain:Due to the re
ipro
al nature of the Fourier transform with respe
t to fre-quen
y versus time, spe
tral resolution determines the upper bound for tem-poral resolution. For instan
e, typi
al laboratory realizations 
urrently 
on-sider n = 128 pixels with spe
tral resolution of 0.25 nm/pixel, whi
h allow ashaped pulse with maximum temporal length of 8.5ps at FWHM bandwidthof 10nm.We hereby summarize the main laboratory 
onstraints in a typi
al quan-tum system realization:1. Temporal or spe
tral resolution of the �eld Limited spe
tral res-olution in the realized shaper implies limited pulse temporal resolution.State-of-the-art LCD pulse shapers 
ontain 640 pixels to be tuned.2. Limited �eld �uen
e, limited �eld intensity Potential damageto di�erent experimental 
omponents restri
ts in pra
ti
e the applied�eld �uen
e and its intensity.3. Limited spe
tral bandwidth or pulse duration State-of-the-art
ommer
ial lasers 
an produ
e nowadays pulses at the duration of ∼
20 fs.4. Proper basis The a
tual representation of the 
ontrol phase, e.g.,pixel basis, polynomial expansion basis, et
., poses by itself an addi-tional 
onstraint on the lands
ape.5. Noise Existen
e of laboratory noise, by de�nition, poses 
onstraintson the lands
ape.



122 Chapter 6. Introdu
tion to Quantum Control6.3 Experimental Pro
edureIn this study we are interested both in numeri
al modeling of quantum sys-tems, as well as in their real laboratory experiments. The numeri
al modelingis typi
ally driven by a known Hamiltonian, but designed in a laboratory-oriented manner, as will be des
ribed shortly. Essentially, it is OCT 
om-bined with some OCE 
hara
teristi
s.In our 
al
ulations, we 
hoose to restri
t this study mostly to noise-freesimulations, as we are interested in the physi
s of the system, rather than
ondu
ting an a
tual simulation of a real laboratory experiment. On thisnote, we 
onsider the absen
e of noise in our 
al
ulations as a blessing, as itallows for 
lean interpretation of the physi
s of the system. In one parti
ular
ase, we will 
arry out simulations with noise.Generally speaking, 
onsidering the various quantum systems under in-vestigation in this study, the goal that we would like to a
hieve in our exper-imental work is three-fold, and may be outlined as follows:1. A preliminary part of our work on ea
h quantum system is devotedto a large extent to an investigation of the performan
e of spe
i�
derandomized Evolution Strategies, as well as parameterizations, withrespe
t to the given optimization task. As suggested in Se
tion 1.4.4,this would in
lude the 
omma-strategy DES variants.2. After having identi�ed the routines whi
h perform best on our prob-lems, further work would typi
ally 
on
entrate on the physi
al interpre-tation of the obtained optimal solutions, when appli
able to the systemunder study. In parti
ular, we will aim at 
larifying why 
ertain pulsestru
tures perform better than other trial solutions. This will also bea

ompanied with investigation of pulse-intensity, �eld s
alability, andother de�ning features.3. Finally, we will be interested in applying mis
ellaneous optimizationte
hniques, at the level of de
ision making: multi-obje
tive optimiza-tion, and the appli
ation of ni
hing.Next, we provide te
hni
al details 
on
erning the two 
lasses of experi-mental work 
ondu
ted in this study: numeri
al simulations and laboratoryexperiments.6.3.1 Numeri
al SimulationsWe present here the numeri
al modeling of our laser pulse shaping frame-work, whi
h is in essen
e valid for all the numeri
al 
al
ulations 
ondu
ted inthis work, unless spe
i�ed otherwise. The idea is to simulate the experimen-tal pulse shaping pro
ess, in terms of 
ontrol de�nition, physi
al limitations,et
.



6.3. Experimental Pro
edure 123As dis
ussed earlier, in our 
al
ulations the 
ontrol is solely the phasefun
tion φ(ω). It de�nes the phase at n frequen
ies {ωi}ni=1 that are equallydistributed a
ross the spe
trum of the pulse. These n values {φ(ωi)}ni=1 arethe de
ision parameters to be optimally determined. Upon their 
alibrationthey are numeri
ally interpolated into ñ = 214 points, using the spline()pro
edure [143℄, for the 
al
ulation of the ele
tri
 �eld in Eq. 6.29. The latteris implemented by means of the FFT() pro
edure [143℄.The numeri
al resolution is naturally underposed to a 
on�i
t with theexpe
ted optimization e�
ien
y. In order to a
hieve a good trade-o� betweenthe two, i.e., keeping both resolution and optimization e�
ien
y as high aspossible, the value of n = 80 turned to be a good 
ompromise. The sear
hspa
e is therefore an 80-dimensional hyper
ube spanning a length of 2π inea
h dimension.The spe
tral fun
tion A(ω) is taken to be a Gaussian, 
entered at 800nm,with a width 
hosen su
h that the full-width-at-half-maximum (FWHM)length of the Fourier transform limited (FTL) pulse (obtained by setting
φ(ω) ≡ 0) is ∆τ ≈ 100fs.Most of the simulations were run with FORTRAN 
ode, as written andprovided by Prof. Mar
 Vrakking, of Amolf-FOM, Amsterdam5. This waslater 
ombined with a MATLAB version of the original 
ode, as implementedby the author. For the two-photon pro
esses reported in Chapter 7 we useda LabView simulator of Prin
eton University, 
oded by Jonathan Roslund.6.3.2 Laboratory ExperimentsThe laboratory experiments reported in this work were all 
ondu
ted at theFri
k Laboratory, Rabitz Group, Chemistry Department, Prin
eton Uni-versity6. The laser sour
e was a Ti:sapphire femtose
ond system, with aTsunami os
illator and a 1kHz 1.8mJ Spit�re ampli�er. A pulse was 
en-tered at ∼ 800nm, with a bandwidth of ∆λ ≈ 10nm, yielding ∆τ ≈ 100fspulse duration at FWHM. The employed SLM 
onsisted of 128 pixels (phase-only modulation, liquid-
rystal), but the experiments typi
ally used 64 pix-els, by 
oupling together pairs of adja
ent pixels, unless spe
i�ed otherwise.All algorithms were 
oded in LabView.Referen
e Routine in the Lab: Geneti
 AlgorithmGeneti
 Algorithms (GAs) are the most 
ommon optimization routines inQC experiments in the vast majority of physi
s laboratories, likely due to5Dedi
ated training was given by Mar
 Vrakking and Christian Sieds
hlag, and Ithank them both for that.6All experiments were 
ondu
ted under the dedi
ated supervision of JonathanRoslund of the Rabitz Group, whose support in running the experiments has been pri
e-less.
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tion to Quantum Controlhistori
al reasons. As a referen
e to spe
i�
 derandomized ES that we applyin our experiments, we shall also report on the GA performan
e.The Traditional GA We use the traditional GA [22℄, with bitstring rep-resentation of l = 6 bit resolution per pixel. It employs a �xed populationof µ = 30 individuals. The mutation rate for a bit-�ip is pm = 0.005, andthe sele
tion me
hanism keeps the �ttest o�spring, as well as the single bestindividual of the previous generation (elitism). It should be noted that theseparameters were 
olle
tively optimized to allow su�
ient resolution so as toarrive at the highest quality solution with the fastest 
onvergen
e.



You should understand the physi
s, write down the 
orre
tequations, and let nature do the 
al
ulations.Peter Debye
Chapter 7Two Photon Pro
esses7.1 Introdu
tionThe �eld of non-linear opti
s des
ribes opti
al phenomena whi
h are ob-served when high intensity light passes through media. The non-linearityis due to the intera
tion between the light, typi
ally a laser �eld, and a di-ele
tri
 media, whose �eld-indu
ed polarization responds non-linearly to thein
ident ele
tri
 �eld.Given the temporal intensity of the ele
tri
 �eld, I(t), its non-linear signalof the kth order is modeled for k > 1 as:

Signal
(k)
NL ∝

∫ ∞

−∞
Ik(t)dt, (7.1)
orresponding to the intera
tion of k photos.The �eld of non-linear opti
s o�ers a variety of popular Quantum Con-trol appli
ations. Se
ond-order variants, whi
h 
orrespond to two-photonpro
esses, are parti
ularly attra
tive be
ause of their easy implementationin the laboratory, as well as their known mathemati
al formulation. Two-photon pro
esses 
an be utilized to explore experimental Quantum Controllands
apes, and also 
an form a realisti
 testbed for global optimization al-gorithms.This 
hapter is devoted to the formal de�nition of two-photon pro
esses,their mathemati
al des
ription, and to the appli
ation of optimization rou-tines to their signal-maximization problems in the laboratory.7.2 Se
ond Harmoni
 GenerationSe
ond harmoni
 generation (SHG) or frequen
y doubling is a two-photonpro
ess in whi
h an ele
tri
 �eld intera
ts non-linearly with a material andgenerates an output photon with double the energy of two input photons.The total energy of the output light is proportional to the integrated squared125
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essesintensity of the primary pulse, as expe
ted from a se
ond-order non-linearpro
ess.The time-dependent pro�le of the laser �eld is exa
tly as given in Eq.6.29. The SHG signal is then de�ned by:
SHGt ≡ St =

∫ ∞

−∞
I(t)2 dt =

∫ ∞

−∞
|E(t)|4 dt, (7.2)i.e., integration over time of the intensity. SHG is a pro
ess that turns out tobe a good test 
ase in the laboratory, and its investigation 
ontributes to theunderstanding of other pro
esses. This is be
ause the SHG is a measure ofthe pulse duration, and this property is useful as an auxiliary 
hara
teristi
.From the theoreti
al point of view, the SHG is a simple test fun
tion, withsome interesting mathemati
al properties that will be fully derived here, butyet not an easy optimization task for global optimizers.7.2.1 Total SHGIn order to gain a better insight into the problem, we provide here the readerwith some of its mathemati
al properties. Espe
ially, we would like to derivethe equivalen
e between time and frequen
y pi
tures. The following se
tionis mainly based on Bra
ewell [142℄.De�nition 7.2.1. Given the spe
tral amplitude equipped with the 
omplexphases, E(ω) = A(ω) exp(iφ(ω)), 
onsider its auto
orrelation (
onvolution)fun
tion E2(ω):

E2(ω) = E(ω) ∗ E(ω) =

∫ ∞

−∞
E(Ω) · E(ω − Ω)dΩWe would like to show how this auto
orrelation fun
tion in the frequen
ydomain is linked to the time domain:Theorem 7.2.2. The auto
orrelation fun
tion of the spe
tral amplitude,

E2(ω), is proportional to the Fourier transform of the squared time-dependentele
tri
 �eld, i.e.:
E2(ω) ∝

∫ ∞

−∞
Ẽ(t)2 exp (−iωt) dt (7.3)
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E2(ω) =

∫ ∞

−∞
E(Ω) ·E(ω − Ω)dΩ =

=

∫ ∞

−∞

[

1

2π

∫ ∞

−∞
Ẽ(t) exp (−iΩt) dt

]

·
[

1

2π

∫ ∞

−∞
Ẽ(τ) exp (−i(ω − Ω)τ) dτ

]

dΩ =

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ẽ(t)Ẽ(τ) exp (−iΩ(t− τ)) · exp (−iωτ) dΩ dt dτ =

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
Ẽ(t)Ẽ(τ)δ(t − τ) exp (−iωτ) dt dτ =

=
1

2π

∫ ∞

−∞
Ẽ(t)Ẽ(t) exp (−iωt) dt =

=
1

2π

∫ ∞

−∞
Ẽ(t)2 exp (−iωt) dtwhere δ(x − x̃) is the Dira
 delta fun
tion.Theorem 7.2.3. (Plan
herel's Theorem) Given f(x), whi
h has theFourier transform F (s), the integral over the squared modulus of f(x) isequal to the integral over the squared modulus of its spe
trum F (s):

∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|F (s)|2dsSee [142℄. Thus, we 
an 
on
lude from Theorems 7.2.2 and 7.2.3 that

∫ ∞

−∞
|E2(ω)|2dω =

∫ ∞

−∞
|E(t)|4dtand, equivalently, in terms of the intensities

St =

∫ ∞

−∞
I2(ω)dω =

∫ ∞

−∞
I(t)2dt (7.4)where I2(ω) = |E2(ω)|2.Global MaximumTheorem 7.2.4. The Total-SHG signal is maximized by the phase being anylinear fun
tion of frequen
y, and in parti
ular by the 
onstant phase:

argmaxφ(ω) {St (φ (ω))} ≡ a · ω + b
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Figure 7.1: An illustration of the frequen
y doubling e�e
t in Se
ond Har-moni
 Generation. Constru
tion of E2 (ω) out of E (ω).An important remark should be made 
on
erning the existen
e of a singleoptimal solution for the SHG maximization problem: Due to the use ofse
ond-order perturbation theory, the 
onstant phase is a point in the
ontrol spa
e (the generalization to a linear phase stems from symmetry),i.e., the level-set 
ollapses into a single point. In higher-order 
orre
tions forSHG the maximally attained yield 
an be obtained by various other phasepro�les.Figure 7.1 provides the reader with an illustration for the so-
alled fre-quen
y doubling e�e
t - the 
ontribution of two phase points around the 
en-tral frequen
y ω0 at E (ω), φ (ω0 + ω1) and φ (ω0 + ω2), to the 
onstru
tionof Ẽ (ω) with φ (2 · ω0 + ω1 + ω2). Note the shift in the 
entral frequen
y,and the s
aling of the Gaussian.7.2.2 Filtered SHGWe 
onsider another se
ond-order quantum opti
al system, whi
h 
ould be
onsidered as a �ltered 
ase of the SHG system. It 
orresponds to a two pho-ton absorption (TPA) pro
ess, whose model des
ribes, within the limits ofse
ond-order time-dependent perturbation theory, the probability of makinga transition from a ground state |g〉 to an ex
ited state |e〉, upon the a
ti-vation of the laser �eld. Thus, a spe
i�
 transition frequen
y is 
onsideredhere, ωeg, whi
h pra
ti
ally �lters the signal,
SHGf ≡ Sf (ωeg) =

∫ ∞

−∞
δ (ωeg − ω) I2(ω)dω,by means of the Dira
 delta fun
tion δ (Ω− Ω′). It expli
itly reads

Sf (ωeg) =

∣

∣

∣

∣

∫ ∞

−∞
E(ω)E (ωeg − ω) dω

∣

∣

∣

∣

2 (7.5)
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Figure 7.2: A spe
tral illustration for the total-SHG (left) versus the �ltered-SHG (right) signals. Figure 
ourtesy of Jonathan Roslund.Global MaximumTheorem 7.2.5. The �ltered-SHG signal is maximized by the phase beingany odd fun
tion of frequen
y antisymmetri
 about ωeg

2 , i.e., spe
tral phasesof the form φ(
ωeg

2 − ω) = −φ(
ωeg

2 + ω).See [144, 145℄. Figure 7.2 provides an illustrative 
omparison betweenthe two SHG variants 
onsidered here.Problem Di�
ulty: Numeri
al AssessmentIn order to assess the optimization di�
ulty of the Se
ond Harmoni
 Gen-eration maximization problems, we 
onsidered numeri
al simulations of thetwo SHG problem variants and 
ondu
ted the following simple statisti
altest. We 
onsidered phase fun
tions pixelized by n = 64 fun
tion values,whi
h are randomly initialized in the interval [0, 2π]64. We then graduallytransformed the given random phases into a zero-phase in two di�erent rou-tines: (1) Setting fun
tion values to zero when 
onsistently indexing fromright to left, or (2) Setting fun
tion values to zero in random permutationof indi
es, with no repetition. Both routines eventually obtain zero-phases,whi
h attain the maximal yield of 1 for both SHG problem variants.Figure 7.3 presents typi
al runs for the two routines when applied to bothSHG problem variants. It is observed in these plots that approximately 50%of the fun
tion values must be set to zero in order to enhan
e the yieldvalue, for all 
ases. On
e this threshold is ex
eeded, the yield value in
reases
onsistently until it rea
hes the value of 1. The a
tual pro�les of routine(1) versus routine (2) di�er, for both SHG variants. More variables arerequired to be set to zero in the random indexing routine, in 
omparison to
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Figure 7.3: Transforming randomly-initialized phases into a zero-phase,pixel-by-pixel, either by (1) Consistently indexing the phase fun
tion fromright to left, or by (2) Randomly sele
ting phase fun
tion indi
es, withoutrepetition. The attained yield per index-step is re
orded for ea
h test-
ase.Typi
al runs are presented for the two routines applied to the SHG problemvariants. Left: Filtered-SHG system; Right: Total-SHG system.the 
onsistent indexing. This is due to the shape of the weighting fun
tion(i.e., a Gaussian), whi
h limits the 
ontribution to the yield value from pixelswhi
h are not in the proximity of the 
entral frequen
y.This statisti
al test reveals that the SHG problems under investigationare non-separable upon following the formal de�nition.7.3 Numeri
al SimulationsWe present here results of the four derandomized ES 
omma-variants whenapplied to numeri
al simulations of se
ond-order photon pro
esses: The max-imization of the Total-SHG as well as the Filtered-SHG signals.7.3.1 Preliminary ES Failure: Stret
hed PhasesWhen applied to both SHG simulations, the derandomized ES variants suf-fered from pre-mature 
onvergen
e to sub-optimal solutions of low yield.Upon examination of the attained optimized phases in the de
ision spa
e,they were always observed to be highly steep linear phases. We o�er thefollowing explanation for that.The ES is not subje
t to any restri
tions 
on
erning its de
ision param-eters, in parti
ular in the 
ontext of the periodi
 nature of the phase. Itseems that an unrestri
ted sear
h, as employed by the ES variants in hand,is likely to stret
h the 
andidate phases, with no way to reverse it. It su�ersa

ordingly from 
onvergen
e to highly steep linear phases with sub-optimal



7.3. Numeri
al Simulations 131Table 7.1: Derandomized Evolution Strategies optimizing the Total-SHGsimulation: Mean and standard-deviation of attained yield over 100 runs forthe three pro
edures � unrestri
ted, wrapped and bounded.Algorithm Unrestri
ted Wrapped BoundedDR1 0.208 ± 0.072 0.873 ± 0.187 0.574 ± 0.189DR2 0.181 ± 0.064 0.967 ± 0.019 0.725 ± 0.185DR3 0.457 ± 0.198 0.718 ± 0.274 0.529 ± 0.278CMA 0.581 ± 0.136 1± 0 0.997 ± 0.002Table 7.2: Derandomized Evolution Strategies optimizing the Filtered-SHGsimulation: Mean and standard-deviation of attained yield over 100 runs forthe three pro
edures � unrestri
ted, wrapped and bounded.Algorithm Unrestri
ted Wrapped BoundedDR1 0.257 ± 0.087 0.666 ± 0.247 0.713 ± 0.152DR2 0.248 ± 0.091 0.804 ± 0.195 0.908 ± 0.125DR3 0.539 ± 0.162 0.762 ± 0.209 0.554 ± 0.173CMA 0.487 ± 0.134 0.990 ± 0.008 0.964 ± 0.052yield values, as outlined earlier in Se
tion 6.2.2. By implementing periodi
boundary 
onditions into the ES algorithms, by means of 
oupling the wrap-ping operator (Eq. 6.35) to the mutation operator, this problem was solved.This pro
edure will be referred to as the wrapped pro
edure.As a third pro
edure, we also 
onsidered the appli
ation of a boundaryoperator that �xes an ex
eeded value to the lower or upper bounds. Given
ε > 0, it reads:

φi = 2π + ε −→ φ̃i := 2π

φj = −ε −→ φ̃j := 0
(7.6)It is referred to as the bounded pro
edure.7.3.2 Numeri
al ObservationTables 7.1 and 7.2 summarize the numeri
al results of the appli
ation of thefour derandomized ES 
omma-variants to the total-SHG and �ltered-SHGsimulation problems, respe
tively, subje
t to the three spe
i�ed pro
edures,with n = 64 de
ision parameters. There are two 
lear observations fromthe given 
al
ulations:1. The wrapping operator seems to be an essential 
omponent for the un-restri
ted ES optimization, and should be implemented into ES when
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essesoptimizing "phase" variables on a QC lands
apes. This is an expe
ted
on
lusion, given the nature of the sear
h spa
e. However, it is inter-esting to note the relatively high standard deviations for the resultsobtained subje
t to wrapping for the �ltered-SHG 
ase for the �rstthree DES variants. Also, it is observed that the bounded approa
hworks better for the DR2 on the �ltered-SHG lands
ape.2. The CMA outperformed the other algorithms on these two lands
apes,with 
onsistent winning performan
e. The DR2 was se
ond-best, andit performed in a highly satisfa
tory manner. We thus hold two DESvariants, ea
h representing �rst- or se
ond-order information approa
h,respe
tively, whi
h performed well on these QC lands
apes.Intermediate Dis
ussionWe found that employing the ES variants with default settings unrestri
-tively on the given QC lands
apes resulted in pre-mature 
onvergen
e tosub-optimal phases with highly sloped linear pro�les. We analyzed this ef-fe
t, and introdu
ed the wrapping operator into the ES framework. Thelatter solved the observed problem.7.4 Laboratory ExperimentsWe report here on laboratory experiments where we aimed at optimizing thetwo quantum 
ontrol systems des
ribed in Se
tion 7.2. Due to the tremen-dous e�ort and time whi
h are required for a reliable experiment, we had no
hoi
e but to restri
t ourselves to a limited number of experiments as wellas optimization routines.We 
hose to employ three optimization routines in the laboratory:
• DR2: First-order DES.
• CMA: Se
ond-order DES.
• GA: Laboratory referen
e.Con
erning the te
hni
al details, for total-SHG signal, St, the ampli�edpulses are delivered to a 100 µm type-I BBO 
rystal, and the time integratedSHG signal is re
orded with a photodiode and box
ar integrator. For the�ltered-SHG signal, Sf , unampli�ed seed pulses are fo
used onto a 100 µmtype-I BBO 
rystal, and the resultant up-
onverted light is analyzed with aspe
trometer. Regarding the a
tual yield values re
orded by us, we 
hooseto normalize the FTL signal as yield 1.0 for both systems.It should be noted that the SHG optimization problems have been widelyinvestigated at several levels, in
luding at laboratory experiments [146℄,where it was shown to have a highly 
omplex lands
ape.



7.4. Laboratory Experiments 133Table 7.3: Laboratory SHG Optimization: Performan
e Evaluation. Theexperimental results of the two SHG systems, averaged over 10 experiments.The �nal yield (averaged over the last 50 iterations) and the number ofevaluations required to 
ross a yield threshold of 0.90 are 
onsidered here.Routine Filtered-SHG Total-SHGAvg. Yield 0.9 Eval Avg. Yield 0.9 EvalGA 0.95 4665 0.95 5557DR2 0.93 2159 0.72 NACMA 0.95 841 0.98 766ES Failure Revisited: Stret
hed Phases When applied to the exper-imental setup, the derandomized ES variants initially su�ered from pre-mature 
onvergen
e to sub-optimal solutions of yield ≈ 0.75, where themaximum value is 1.0. Upon examination of the attained optimized phasesin the de
ision spa
e, the stret
hing e�e
t as reported in Se
tion 7.3.1 wasobserved. Thus, we used the wrapping operator in the two DES variantsin all the reported experiments. The GA, on the other hand, did not typi-
ally lo
ate highly-steep linear phases sin
e the [0, 2π] bounds are impli
itlyimplemented by means of the phenotypi
 mapping (see, e.g., [22℄).7.4.1 Performan
e EvaluationsTable 7.3 presents the results of the two reported systems, averaged over
10 experiments. We 
onsider the �nal yield (averaged over the last 50 itera-tions), as well as the number of evaluations required to 
ross a yield thresholdof 0.90, as the performan
e 
riteria per experiment. Figure 7.4 presents aver-aging of the runs, with attained yield as a fun
tion of the required number offun
tion evaluations. Note that this averaging pro
edure takes into a

ountall 10 runs, whereas the 
onvergen
e data shown in Table 7.3 
onsiders onlythe relevant runs that ex
eeded the 0.90 yield threshold. Figure 7.5 presentshistograms for the di�erent algorithms with �nal yield versus the number ofruns.As re�e
ted from the experimental results, the CMA performed best onthe given experimental systems, both in terms of �nal yield as well as 
on-vergen
e speed. We would like to emphasize the extraordinary boost of 
on-vergen
e speed provided by the CMA relative to the GA, whi
h is signi�
antin the laboratory. Moreover, the CMA has a sharp and rapid 
onvergen
epro�le, in 
ontrast to the ine�
ient hill-
limbing 
apability of the GA. Thispro�le is easy to identify as there is no ambiguity about 
onvergen
e, andthus it is another attra
tive feature for the laboratory user.Next, we dis
uss the experimental results and the algorithmi
 behavior.
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Figure 7.4: Averaged runs of the algorithms over 10 runs. Left: Filtered-SHGsystem; Right: Total-SHG system.

Figure 7.5: Su

ess-rate (yield) histograms. Left: Filtered-SHG system;Right: Total-SHG system.Diversity of SolutionsAs mentioned earlier in Se
tion 7.2.2, the �ltered SHG system possesses afamily of nontrivial phases that 
orrespond to global maxima. Interestingly,ea
h run for the �ltered SHG 
ase 
onverged to a distin
t antisymmetri
phase. This 
olle
tion of di�erent solutions provided a pra
ti
al perspe
tive
on
erning the ri
hness of QC lands
apes and their underlying level sets.Sensitivity to NoiseThe CMA-ES and the GA performed in a satisfa
tory manner on the given
ontrol problems and did not seem to be signi�
antly impaired by the ex-isten
e of noise in the experimental system. The DR2, on the other hand,su�ered from high-sensitivity to the initial step-size. Its performan
e was dis-appointing, in parti
ular in 
omparison to noise-free 
al
ulations that were



7.4. Laboratory Experiments 135reported in the past [147, 148℄. A proposed explanation for this behavior
ould be the la
k of re
ombination, whi
h has been shown to be a 
ru
ial ES
omponent in noisy environments (see, e.g., [149℄).Covarian
e LearningRe
ording the CMA data during the optimizations allows an analysis ofthe evolutionary sear
h pro
ess. Upon examination of the data, it is foundthat the 
ovarian
e matrix remains diagonal during the sear
h (Eq. 1.41), orequivalently, the CMA does not utilize its se
ond-order me
hanism (i.e., ro-tations) when 
limbing up the lands
ape. This is not a surprising result, butrather an important pie
e of experimental eviden
e toward the 
orroborationof the OCT lands
ape analysis as outlined in Corollary 6.1.2.Figure 7.6 presents a typi
al CMA run for the optimization of total-SHGin the laboratory and shows the yield and step-size upon fun
tion evaluations.Figure 7.7 presents the square-roots of the 
ovarian
e matrix eigenvalues asa fun
tion of the number of experiments as well as the Eu
lidean distan
esbetween the best phase variables of su

essive iterations, i.e.,
d(g+1) = ‖~φ(g+1)

best (ω)− ~φ(g)
best(ω)‖, (7.7)where ~φbest(ω) is as in Eq. 6.33.We 
ondu
ted an equivalent test in a noise-free simulator for the total-SHG problem1. Figure 7.8 presents a typi
al CMA run on the simulator. The
onvergen
e pro�le on the simulator is observed to be similar to the labo-ratory experiment, i.e., rapid 
limbing-up of the lands
ape without utilizingthe se
ond-order me
hanism. However, upon approa
hing the top of thelands
ape, one of the 
ovarian
e matrix eigenvalues dramati
ally grows, asshown in Figure 7.9. This behavior was observed to be typi
al in all runs.The 
orresponding eigenve
tor is always a �at phase, suggesting that theCMA dis
overs the invarian
e of a 
onstant phase on the total-SHG signal.The phase Eu
lidean traje
tories are plotted as well in Figure 7.9, showingsome minor a
tivity during this growth stage, 
orresponding to super-�netuning of the spe
tral phase. The yield values, nonetheless, do not seem tobe further improved during this pro
ess, at least in the pre
ision available.In pra
ti
e, the parameter adaptation during this �ne-tuning stage produ
es�tness variations below that of the system noise in the laboratory, whi
hexplains its absen
e in laboratory optimizations.Simulations: Zeroth-Order CMAGiven the experimental observation reported in the previous se
tion, wewere interested in testing the CMA while removing its 
ovarian
e learning1The simulator was implemented in LabView with the Lab2 pa
kage.
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Figure 7.6: CMA optimization of the Total-SHG in the laboratory. Yield(solid line, left axis) and step-size (dashed line, right log-s
aled axis), versusfun
tion evaluations.

Figure 7.7: CMA optimization of the Total-SHG in the laboratory. Square-root of the 64 eigenvalues of the 
ovarian
e matrix (solid thin lines, left axis),and phase Eu
lidean traje
tories (bold points, right log-s
aled axis), versusfun
tion evaluations. Missing traje
tory points 
orrespond to zero values.
omponents. In essen
e, we leave the CMA only with the step-size as astrategy parameter, and �x the 
ovarian
e matrix as an identity matrix.This is a zeroth-order ES with normal mutations subje
t to hyperspheres asthe equidensity probability surfa
es. In order to assess the zeroth-order CMAbehavior on the given QC systems, we 
ondu
ted additional simulations withtwo variants of the algorithm:
• (µW , λ)-CMA with C = I.
• (1, λ)-CMA with C = I.The simulations were 
ondu
ted for both systems - total-SHG as well as�ltered-SHG - both with a noise-free simulator and a simulator with noise.
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Figure 7.8: CMA optimization of the Total-SHG on a noise-free simulator.Yield (solid line, left axis) and step-size (dashed line, right log-s
aled axis),versus fun
tion evaluations.

Figure 7.9: CMA optimization of the Total-SHG on a noise-free simula-tor. Square-root of the 64 eigenvalues of the 
ovarian
e matrix (solid thinlines, left log-s
aled axis), and phase Eu
lidean traje
tories (bold points,right log-s
aled axis), versus fun
tion evaluations. Missing traje
tory points
orrespond to zero values. The single exploding eigenvalue 
an easily beidenti�ed in this s
ale.The results of the simulations show that the CMA performan
e is nothampered at all on both systems when removing its 
ovarian
e learning 
om-ponents: the (µW , λ)-CMA with C = I performs as well as the original CMA,in terms of �nal attained yield and 
onvergen
e speed. This observation isvalid for noise-free as well as for noisy simulations. However, when theweighted re
ombination operator was removed, the (1, λ)-CMA with C = Idid not 
onverge, nor did it even 
limb-up from the initial yield at the bottomof the lands
ape. We thus 
on
lude that it is possible to optimize the givensimulated QC lands
apes by a zeroth-order ES, as long as the weighted-re
ombination operator is kept.
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esses7.4.2 Dis
ussionWe presented a survey of derandomized Evolution Strategies and a Geneti
Algorithm to a set of Quantum Control systems in the laboratory. As faras we know, this was one of the �rst appli
ations of derandomized ES toexperimental QC in general, and the �rst study to 
ondu
t a 
omparisonbetween ES to GA as well as to explore the evolutionary path of the CMA,in parti
ular. We would like to mention, however, two studies [150, 151℄ thatapplied Evolution Strategies to OCE, and explored a spe
i�
 QC systemboth in experiments and simulations. The latter studies 
on
luded that theemployed Evolution Strategies were promising optimization routines.While the QC systems examined here possess easily understood globaloptima, the sear
h is 
ondu
ted over a highly 
omplex, 
urvilinear 
ontrollands
ape, whi
h provides a good testbed for optimization algorithms. Fromthe pra
ti
al point of view, these systems are relatively easy for implemen-tation in the laboratory.We found that employing the ES variants with default settings unre-stri
tively on the given QC lands
apes resulted in pre-mature 
onvergen
eto sub-optimal phases with highly sloped linear pro�les. We analyzed thise�e
t, and introdu
ed the wrapping operator into the ES framework. Thelatter solved the observed problem.The CMA-ES outperformed the other algorithms in terms of �nal yieldas well as in 
onvergen
e speed. It introdu
ed a signi�
ant in
rease in 
on-vergen
e speed to the typi
al performan
e of the GA in the laboratory andis a promising tool for future laboratory experiments. While analyzing itsbehavior, it was experimentally 
on�rmed that its se
ond-order me
hanismwas not utilized when 
limbing-up the lands
ape. This may be 
onsideredas an experimental 
orroboration of the OCT lands
ape analysis.We also 
ondu
ted noise-free simulations of the CMA-ES applied to thesystems. The latter 
al
ulations revealed interesting behavior of the 
ovari-an
e matrix, upon approa
hing the top of the lands
ape. A single eigenvalue
onsistently explodes with a 
orresponding eigenve
tor of a �at phase. Wesuggest that this is due to the fa
t that the CMA su

essfully learned theinvarian
e of a 
onstant phase in these problems. Furthermore, we 
onsid-ered zeroth-order versions of the CMA in simulations, where the 
ovarian
elearning 
omponent was removed. The latter performed extremely well, aslong as the weighted-re
ombination operator was kept.



It is the theory that de
ides what 
an be observed.Albert Einstein
Chapter 8The Rotational FrameworkThe main Quantum Control appli
ation of this study is dynami
 mole
ularalignment, whi
h will be presented in the next 
hapter. The 
urrent 
hap-ter 
onsiders the rotational framework of mole
ules, as a preparation forthe alignment appli
ation. We des
ribe here the formal numeri
al modelingbasis, and present 
al
ulations for the optimization of population transfer.Finally, we apply our ni
hing algorithms to the population transfer problem.8.1 Numeri
al ModelingWe 
onsider here Hamiltonians that 
onsist of a mole
ular part H0, whilethe intera
tion with the semi-
lassi
al laser �eld subje
t to the dipole ap-proximation is expressed by V :

H (t) = H0 − V
V = µE(t) cos(ωt)

(8.1)The envelope of the laser �eld, whi
h 
ompletely determines the dynami
s,is exa
tly as introdu
ed in Eq. 6.29:
E(t) = R

{
∫ ∞

−∞
A(ω) exp(iφ(ω)) exp(iωt) dω

}8.1.1 Preliminary: Two Ele
troni
 States SystemsWe start by outlining the fundamental details of a two-ele
troni
-state sys-tem. This se
tion is mainly based on [152℄.Consider a system with two ele
troni
 states: The ground state |g〉, andan o�-resonant ex
ited state |e〉 with energy ~ω0. Its wavefun
tion may bedes
ribed as follows:
|Ψ(t)〉 = αg(t) |g〉+ αe(t) exp(−iω0t) |e〉 (8.2)139



140 Chapter 8. The Rotational FrameworkUpon applying the S
hrödinger equation,
i~
∂ |Ψ(t)〉
∂t

= H |Ψ(t)〉 , (8.3)by using a Hamiltonian of the form of Eq. 8.1, two 
oupled di�erential equa-tions are obtained:
i~α̇g(t) = − exp(−iωt)E(t) 〈g|µ |e〉αe(t)
i~α̇e(t) = − exp(iωt)E(t) 〈e|µ |g〉αg(t)− ~∆αe(t)

(8.4)where ∆ = ω − ω0 is the so-
alled detuning.In order to keep the des
ription as general as possible, the peak �eldstrength is not �xed expli
itly; Instead, we set the peak Rabi frequen
y
Ω(t) for the transition between the ele
troni
 states |g〉 and |e〉, whi
h isproportional to the produ
t of peak �eld strength and the 
oupling matrixelement between |g〉 and |e〉:

Ω(t) =
〈g|µ |e〉 Ẽ(t)

2~
, (8.5)where we used the 
omplex form of the ele
tri
 �eld, Ẽ(t) (see Eq. 6.28).Also, it is 
onvenient to note:

Ωge =
〈g|µ |e〉

2~
(8.6)The di�erential equations for the expansion 
oe�
ients of the wavefun
tionmay be written now in a matrix notation as follows:

i

(

α̇g(t)
α̇e(t)

)

= −
(

0 Ω(t)
Ω∗(t) ∆

)(

αg(t)
αe(t)

) (8.7)The Rabi frequen
y thus determines the intera
tion strength in our framework.8.1.2 Rotational LevelsWe pro
eed by des
ribing the rotational framework of the mole
ules. Thisse
tion is mainly based on [153℄. We 
onsider a model of diatomi
 linearmole
ules that populate rotational levels in a given temperature T . Themole
ules are 
hara
terized by their rotational quantum number, J , as wellas by the proje
tion of the angular momentum on the laser polarization axis,
M . We take the mole
ule to be a rigid rotor, whi
h allows a des
ription ofits wavefun
tion solely in terms of the rotational eigenstates |JKM〉, where
K = 0 for a diatomi
 mole
ule. We take into a

ount the two ele
troni
states, as presented earlier: Ground state |g〉 and o�-resonant ex
ited state
|e〉. The wavefun
tion, for a given M , is thus expanded as follows:

|ΨM(t)〉 =

Nrot
∑

J=M

α
(g)
JM (t) |gJM〉+ exp(−iω0t)α

(e)
JM (t) |eJM〉 (8.8)
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ular 
omponent of the Hamiltonian 
an be divided into two parts,
H0 = Helec +Hrot, (8.9)that 
orrespond to the following eigenstates:

Helec |gJM〉 = 0
Helec |eJM〉 = ~ω0 |eJM〉 (8.10)

Hrot |gJM〉 = BgJ(J + 1) |gJM〉
Hrot |eJM〉 = BeJ(J + 1) |eJM〉 (8.11)with Bg and Be as the rotational 
onstants of the mole
ule.The time dependen
e des
ription of the mole
ular wavefun
tion is givenby:

i~
∂ |ΨM (t)〉

∂t
= H |ΨM (t)〉 (8.12)The laser �eld indu
es transitions between the rotational states whi
h, inthe o�-resonant 
ase, o

ur via subsequent Raman pro
esses. The transitionsbetween |g〉 and |e〉 are assumed to pro
eed via the sele
tion rules of thequantum numbers ∆J = ±1,∆M = 0.The derivation 
on
ludes with the following di�erential equations for theexpansion 
oe�
ients of the wavefun
tion:

α̇
(g)
J (t) = − i

~
BgJ(J + 1)α

(g)
J (t) + iΩ(t) 〈J | cos θ |J + 1〉α(e)

J+1(t)+

+iΩ(t) 〈J | cos θ |J − 1〉α(e)
J−1(t)

α̇
(e)
J (t) =

[

i∆ − i

~
BeJ(J + 1)

]

α
(e)
J (t) + iΩ∗(t) 〈J | cos θ |J + 1〉α(g)

J+1(t)+

+iΩ∗(t) 〈J | cos θ |J − 1〉α(g)
J−1(t) (8.13)where

〈J | cos θ |J + 1〉 =

√

(J + 1)2

(2J + 3) (2J + 1)

〈J | cos θ |J − 1〉 =

√

J2

(2J + 1) (2J − 1)

(8.14)
8.2 Population Transfer: OptimizationWe 
onsider here the problem of population transfer within the rotationalframework as an optimization problem, subje
t to the numeri
al modelingfor diatomi
 mole
ules presented earlier. The obje
tive to be met is de�nedas the probability to populate a spe
i�
 target rotational level, given theinitial ground state:

J := Pi−→f , |i〉 = |gJ = 0〉 , |f〉 = |gJtarget〉 , (8.15)



142 Chapter 8. The Rotational Frameworkwhere possibly Jtarget ∈ {0, 2, 4, 6, 8, . . . ,Nrot}. In our 
al
ulations, the yieldsubje
t to maximization is simply ∣∣
∣
α

(g)
Jtarget

(T )
∣

∣

∣

2, in terms of the notationintrodu
ed earlier. Also, by de�nition, M = 0.We 
onsider Nrot = 20, where this expansion was 
on�rmed to give 
on-verged results in the present 
al
ulations. The mole
ule under investigationhas a rotational 
onstant of Brot = Bg = Be = 5cm−1.Solving the de�ning di�erential equations for the population transferproblem (Eq. 8.13) is obviously 
omputationally expensive. In pra
ti
e, givenan ele
tri
 �eld, a single evaluation of the resulting wavepa
ket has the dura-tion of approximately 5s on a single P4-HT 2.6GHz pro
essor. We are thusinterested in optimization pro
edures with as minimal fun
tion evaluationsas possible.8.2.1 Experimental Pro
edureThere are several de�ning parameters in the present 
al
ulations. Some ofthem are 
riti
al, as they pose dire
t 
onstraints on the quantum systemat hand, and pra
ti
ally determine its 
ontrollability. In our model, su
hparameters are the peak Rabi frequen
y, whi
h plays the equivalent roleof the laser intensity, as well as the pulse duration. Setting these two pa-rameters de�nes the simulated physi
al system. Given the target rotationallevel, it is then possible to aim at steering the system toward it. Thus, we
hoose to 
onsider the population transfer as a fun
tion of these two de�n-ing parameters, where the fo
us will be on spe
i�
 values that re�e
t beststate-of-the-art laboratory experiments.From the algorithmi
 perspe
tive, we 
hoose to restri
t our 
al
ulations tothe DR2 and the CMA algorithms, whi
h performed best on the Two-PhotonPro
ess problems. They both employ small populations, and 
onsider �rst-order and se
ond-order information, respe
tively.Preliminary Runs Preliminary 
al
ulations revealed a 
lear pi
ture, whi
h
ould have been predi
ted by intuition1. These preliminary 
al
ulations were
onsisted of 10 runs per algorithm on Jtarget = {0, 2, 4, 6, 8} with the follow-ing peak Rabi frequen
ies:
Ωge = {40, 60, 80, . . . , 160, 180} × 1012s−1.Given a Rabi frequen
y of Ωge = 160 × 1012s−1, the quantum system 
ouldeasily be steered into perfe
t 
ontrol for low J values (J = {0, 2, 4}). Thistask be
ame infeasible for higher J values with the given Rabi frequen
y.However, when the latter was in
reased, e.g., Ωge = 180×1012s−1, it be
ame1As mu
h as intuition exists for QuantumMe
hani
s; "My batting average on intuitionis 
lose to zero in quantum 
ontrol, and I wear that zero average proudly" (Hers
hel Rabitz,private 
ommuni
ations).
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e, there is a trend of 
ontrollability as a fun
tion of the laserintensity, espe
ially for the higher rotational levels. As far as the algorithmi
performan
e was 
on
erned, the DR2 and the CMA performed equally wellon the given systems. Most importantly, there was never a situation wherethe DR2 obtained 
ontrollability on a given system on whi
h the CMA didnot, nor vi
e versa.We 
onsider the 
ase of a target rotational level of J = 4 as an inter-esting 
ase-study. This is due to the fa
t that it allows perfe
t 
ontrol at
Ωge = 160 × 1012s−1, but yet it is a 
hallenging task for the optimizationroutines. Also, the e�e
t of de
reasing the peak Rabi frequen
y while losing
ontrollability 
an be observed relatively easily.8.2.2 Numeri
al Observation: J = 0 −→ J = 4We applied the DR2 algorithm to the optimization of the population transferproblem from J = 0 to J = 4. These optimizations were performed for threevalues of the peak Rabi frequen
y:

Ωge =
{

80× 1012s−1, 120× 1012s−1, 160× 1012s−1
}

.All 
al
ulations were 
arried out with 80 runs, limited to 10, 000 fun
-tion evaluations per run. These 
al
ulations obtained qualitatively di�er-ent results for the three intensities 
onsidered. For Ωge = 80 × 1012s−1the optimizations were unable to a

omplish the transfer from J = 0 to
J = 4 with unit e�
ien
y. The best e�
ien
y obtained was ≈ 32%. For
Ωge = 120 × 1012s−1 and for Ωge = 160 × 1012s−1 the transfer e�
ien
yapproa
hed 100% in most of the 
al
ulations.Aiming at 
omparing the results of individual optimization runs, we de-�ne a 
orrelation 
oe�
ient that 
ompares pulse-shapes attained in two runs
i and j, by means of their �eld intensities:

ci,j =
max∆t {

∑

t Ii(t)Ij(t+ ∆t)}
[
√

∑

t I
2
i (t)

√

∑

t I
2
j (t)

] (8.16)where Ii(t) and Ij(t) are the �eld intensities of the pulses obtained in runs
i and j, respe
tively. Taking the maximum as a fun
tion of ∆t is due tothe fa
t that pulse-shapes attained by the optimization may be shifted withrespe
t to ea
h other. The sums are over the dis
rete time steps, as 
ondu
tedin the numeri
al 
al
ulation. Eq. 8.16 thus yields ci,i = 1, and ci,j = 0 ifpulses i and j do not overlap at all.Case 1: Ωge = 80×1012s−1 Figure A.4 presents the 
orrelation 
oe�
ientfor the 80 optimization runs of the Ωge = 80 × 1012s−1 test-
ase. The runsare sorted based on their su

ess-rate (see top panel in the plot). From Fig-ure A.4 we 
on
lude that all solutions that approa
h the maximum observed
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orrelated. Upon examination of the a
tual 
al
ula-tions, it is observed that all of these solutions are very 
lose to a single FTLpulse. Deviations from the FTL pulse do not only lead to a drop in the
orrelation 
oe�
ient, but also in the population transfer yield.Case 2: Ωge = 120 × 1012s−1 In Figure A.5 the 
orrelation 
oe�
ientis plotted for the 80 optimization runs that were performed for the Ωge =
120×1012s−1 test-
ase. Here, the laser pulse energy was su�
ient to transferpopulation from J = 0 to J = 4 with near-unit e�
ien
y. The best solutions,whi
h have a population transfer e�
ien
y of 99.982% and 99.98%, were onlyweakly 
orrelated to ea
h other, and were only weakly 
orrelated to most ofthe other solutions. Spe
i�
ally, there were only 9 solutions among the set of
80 that share a 
orrelation 
oe�
ient larger than 0.95 with the best solution(indexed as 1). Many of the remaining solutions are strongly 
orrelated withthe 3rd-best solution, whi
h has a population transfer yield of 99.975%: Asmany as 41 solutions shared a 
orrelation 
oe�
ient larger than 0.95 withthat solution (indexed as 3). While the three good solutions 1, 2, and 3 arerather di�erent from ea
h other, they 
ontain most of the dominant featuresof the identi�ed optimized solutions.Solutions 1-3 are presented in Figure 8.1. Despite their di�eren
e 
hara
-teristi
s, all three solutions in Figure 8.1 are dominated by a series of peakswith a separation of 4.79 × 10−13s. This 
orresponds to the beating periodof a 
oherent superposition of J = 2 and J = 4 (∆E = 14B). Additionalgood solutions likely exist, possibly 
ontinuously 
onne
ted on a 
ommonlevel set, and further spe
ial numeri
al methods are needed to explore thispossibility, su
h as the D-MORPH algorithm (Se
tion 6.1.3).Case 3: Ωge = 160×1012s−1 Figure A.6 presents the 
orrelation 
oe�
ientfor 80 optimization runs of the Ωge = 160 × 1012s−1 test-
ase. While thedegree of population transfer is very high in almost all the runs at this inten-sity, the 
orrelation between the various solutions is very limited. Clearly, alarge number of solutions that transfer the population with unit e�
ien
y 
o-exist, with very little 
ommonality between them. Indeed, inspe
tion of thea
tual pulse shapes obtained in these runs reveals highly 
ompli
ated pulses,with few regular features, and an absen
e of the peak arising from 
oheren
ebetween J = 2 and J = 4 in the Fourier transform power spe
trum.8.2.3 Intermediate Dis
ussionUpon in
reasing the intensity from Ωge = 80×1012s−1 to Ωge = 160×1012s−1we �nd that population transfer is a

omplished with an ever in
reasingnumber of distinguishable solutions.The results presented here 
an be viewed as additional experimental 
or-roboration to the results outlined in Corollary 6.1.2, where it was 
on
luded
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Figure 8.1: Comparison of the 3 best-performing pulse shapes that wereobtained in 80 runs of the DR2 for the population transfer problem of J =
0 −→ J = 4 at Ωge = 120× 1012s−1. All solutions 
onsist of trains of pulseswith a spa
ing of 4.79 × 10−13s, whi
h 
orresponds to the beating periodbetween J = 2 and J = 4.



146 Chapter 8. The Rotational Frameworkthat 
ontrollable quantum systems with no 
onstraints pla
ed on the 
on-trols only have extrema that 
orrespond to perfe
t 
ontrol, or to no 
ontrolat all; Additional analysis revealed the fundamental nature of 
ontrol levelsets (see Corollary 6.1.3) at the absolute extrema and at sub-optimal 
ontrolyields.A striking aspe
t of the results is the eviden
e that the numberof independent solutions produ
ed by an optimization seems to
riti
ally depend on the di�
ulty of the problem. In the 
urrentpopulation transfer 
al
ulations we observed that at low intensity,where rea
hing the target is a hard problem with less than perfe
tyield, the trials invariably 
onverge onto one and the same solu-tion, whereas at higher intensity, where this represents an easierproblem, a wide variety of solutions are en
ountered.8.3 Appli
ation of Ni
hingMotivation: Lands
ape Ri
hness The numeri
al observation of theprevious se
tion, as summarized in the intermediate dis
ussion, provides uswith the strong motivation to apply ni
hing to the problem. The revealedri
hness of the lands
ape, as predi
ted by OCT theorems but assessed hereon our 
onstrained OCE/OCT-
ombined lands
ape, is 
onsidered by us as awel
oming invitation for the ni
hing framework.8.3.1 Preliminary: Distan
e MeasureUpon applying ni
hing to Quantum Control lands
apes, we are required tode�ne an appropriate distan
e metri
. Although Eq. 8.16 already providesus with a possible diversity measure, we would like to sele
t a distan
e metri
whi
h is as 
lose as possible to the de
ision parameters, i.e., the 
ontrol phasespa
e. We shall then apply Eq. 8.16 for assessing the diversity of the attainedsolutions.When 
onsidering the de
ision frequen
y spa
e, one should keep in mindthat the attained �eld 
al
ulations are invariant under the following trans-formations:
• φ̃(ω) = φ(ω) + φ0: This would add a multipli
ation 
onstant after theFourier transform is 
al
ulated.
• φ̃(ω) = φ(ω) + c · ω: This would simply shift the entire pulse withrespe
t to the time origin and therefore has no observable e�e
t.These invarian
e properties must be taken into a

ount when de�ning adistan
e measure between two individuals in the de
ision spa
e, φi(ω) and

φj(ω), as it is 
lear that using the straightforward approa
h of the Eu
lideandistan
e would not a

omplish the desired goal: Due to the fa
t that φ(ω)
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ation of Ni
hing 147is invariant under the spe
i�ed transformations, 
al
ulating the distan
e be-tween two feasible solutions, φi(ω) and φj(ω), would not guarantee that thederived pulse-shapes, Ii(t) and Ij(t), respe
tively, would have di�erent pro-�les. Thus, a new distan
e measure that would remove this degenera
y ismu
h needed here.Our proposed solution is to apply the distan
e metri
 in the se
ond-derivative spa
e of φ(ω), where the invarian
e properties vanish. Expli
-itly, given that the dis
retization is to n fun
tion values, the distan
e between
φi(ω), φj(ω) is de�ned as follows:

di,j =

√

√

√

√

n
∑

k=1

((

∂2φi(ω)

∂ω2

)

k

−
(

∂2φj(ω)

∂ω2

)

k

)2 (8.17)8.3.2 Numeri
al ObservationWe 
onsider here three ni
hing strategies:1. The (1, λ)-DR2 - as a representative of �rst-order information ap-proa
h.2. The (1, λ)-CMA - as a representative of se
ond-order information ap-proa
h.3. The (1 + λ)-CMA - as a representative of elitist strategies.We 
ondu
t 10 runs per method, sear
hing for q = 3 ni
hes, subje
t tophase-fun
tion parameterization of n = 80. Ea
h run was limited to 10, 000fun
tion evaluations per ni
he.The results of our 
al
ulations are dis
ussed at several levels.Ni
he-RadiusNumeri
ally, the derivative is simply implemented by means of the MATLAB
ommand diff. Thus, after the double-appli
ation of diff to the originalphase-ve
tor of dimension n = 80, the modi�ed ve
tor ~y is redu
ed to di-mension n∗ = n− 2 = 78. Given the original upper and lower bound valuesof the de
ision parameters,
xk,min = 0, xk,max = +2π k = 1..80,the �rst appli
ation of diff will make new bound values of

x̃k,min = −2π, x̃k,max = +2π k = 1..79,and the se
ond appli
ation will make it
yk,min = −4π, yk,max = +4π k = 1..78.



148 Chapter 8. The Rotational FrameworkTable 8.1: Three ni
hes obtained in 10 runs � averaged yield values (inparentheses - best value attained) � for the three employed ni
hing strategies.Ranked-Ni
hes DR2 CMA CMA+Best ni
he 0.9999 (0.9999) 0.9892 (0.9923) 0.9992 (0.9997)

2nd-best ni
he 0.9745 (0.9910) 0.7391 (0.9797) 0.9982 (0.9995)

3rd-best ni
he 0.2293 (0.2984) 0.0951 (0.1619) 0.9780 (0.9972)When plugging this into Eq. 3.5, we obtain:
ρ =

1
2

√

78 · (8π)2

3
1
78

≈ 110 (8.18)The initial setting of the ni
he-radius, ρ = 110, failed to obtain satisfyingperforman
e. The DR2 as well as the CMA-
omma routines did not su

eedin obtaining good solutions. The CMA-plus, however, managed to lo
ategood solutions for the �rst ni
he only; the se
ond and third ni
hes were notpopulated by good solutions. Upon dividing the ni
he radius by half, i.e.,
ρ̃ = 55, we started to obtain satisfying results, as will be reported here. Weshall o�er an explanation for this observation in the dis
ussion to follow inthe end of this se
tion.Su

ess-RateThe averaged as well as maximally attained yield values of the three methods,for the three obtained ni
hes, are presented in Table 8.1. It 
an be 
on
ludedthat ni
hing with the CMA-plus kernel typi
ally obtains the best three ni
hesin terms of the population-transfer yield. Ni
hing with the DR2 as well asthe CMA-
omma kernels always obtain a �rst ni
he of high quality. The DR2typi
ally obtains a very good se
ond ni
he, but fails in obtaining a third-bestni
he of high quality. The CMA-
omma, on the other hand, typi
ally failsto obtain se
ond- and third-best ni
hes of satisfying quality.Ni
hes Cross-CorrelationIn order to verify that the resulting ni
hes indeed represent su�
iently dif-ferent pulse shapes, we 
al
ulated the 
ross-
orrelation 
oe�
ients for theobtained pulse-shapes, as de�ned in Eq. 8.16. The results of these 
al
ula-tions are presented in Table 8.2. In addition, we 
an state that a 
orrelationvalue larger than 0.8 was never observed. Based on these �ndings, we 
an
on
lude that the pulse-shapes of the di�erent ni
hes are weakly 
orrelatedto one another, as originally desired.
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ation of Ni
hing 149Table 8.2: Ni
hes 
orrelation for the ni
hes obtained in 10 runs � averaged
ross-
orrelation values, as de�ned in Eq. 8.16 � for the three employedni
hing strategies.Ni
hes Correlation DR2 CMA CMA+
c1,2 0.6583 0.7244 0.6883

c1,3 0.6982 0.6835 0.6993

c2,3 0.6471 0.7181 0.7154Dis
ussionWe would like to summarize our numeri
al observation of the applied ni
hingalgorithms to the population transfer problem within the rotational frame-work. We have identi�ed a degenera
y in the default diversity-measure be-tween 
andidate solutions, due to some invarian
e properties of the Fouriertransform in the de
ision spa
e. We o�ered a problem-spe
i�
 diversity mea-sure to over
ome it. Upon its employment, the latter was shown to be su
-
essful, as the obtained pulse-shapes di�ered 
onsiderably. This was alsoassessed by means of the 
al
ulation of the 
orrelation 
oe�
ients betweenthe pulse-shapes, whi
h were observed to be low.The original theoreti
al 
al
ulation of the ni
he radius was not observedto be su

essful at the pra
ti
al level. The results reported here were ob-tained only after introdu
ing a fa
tor of 0.5 to the original value. We believethat this suggests a lands
ape with a limited regime of good solutions. Essen-tially, following the argumentation given in Se
tion 3.5.3, whi
h 
onsideredthe ni
he formation pro
ess subje
t to a �xed ni
he radius as a 
onstrainedoptimization problem, we argue that introdu
ing a large ni
he radius wouldpose a highly 
onstrained problem. This should remind us that the proposedformula for the ni
he radius is merely an approximation, and moreover, weshould keep in mind that the ni
he radius is a sensitive yet 
ru
ial 
omponentof this me
hanism.In terms of algorithmi
 performan
e, the CMA-plus performed best whenobtaining typi
ally three ni
hes of high-quality pulses. The DR2 su

eededin obtaining a �rst and se
ond good ni
hes, but failed in the third ni
he.The CMA-
omma was observed to typi
ally obtain only a single ni
he of ahigh-quality pulse.We believe that the observed in
ompeten
e of the ni
hing framework withthe 
omma-strategy kernels to obtain good results in the se
ondary ni
hes isdue to the lands
ape properties in general, and the limited regimes of high-quality basins of attra
tion. Furthermore, we would like to spe
ulate thatthe failure of the originally employed ni
he-radius is linked to the failure ofthe 
omma-strategies in obtaining good se
ondary optima.





I 
an safely say that nobody understands Quantum Me
hani
s.Ri
hard Feynman
Chapter 9Dynami
 Mole
ular AlignmentThe Quantum Control appli
ation to dynami
 mole
ular alignment [153, 154℄is of 
onsiderable interest be
ause of its many pra
ti
al 
onsequen
es. Forinstan
e, many 
hemi
al and physi
al pro
esses, ranging from bimole
ularrea
tions [155℄ to high harmoni
 generation [156℄, are dire
tly in�uen
ed bythe angular distribution of the mole
ular sample. Furthermore, in many fun-damental mole
ular disso
iation or ionization experiments the interpretationof the 
olle
ted data will be
ome more e�
ient if the mole
ules are alignedwith respe
t to a 
ertain axis. Hen
e, te
hniques to generate mole
ularalignment are needed in pra
ti
e.A
hieving mole
ular alignment 
an be 
lassi�ed into two possible modes:1. Pendular State When the envelope of the �eld 
hanges slowly 
om-pared to the times
ale of mole
ular rotation, typi
ally in the pi
ose
ondregime, ea
h rotational state of the initial Boltzmann distribution istransformed adiabati
ally into a pendular state. The drawba
k of thisapproa
h is that any alignment produ
ed while the �eld is turned onwill vanish on
e it is turned o� again. Thus, su
h experiments 
annotbe 
arried out subje
t to �eld-free 
onditions.2. Impulsive Alignment Here, the duration of the applied pulses ismu
h shorter than a rotational period [157℄. A wavepa
ket of rotationalstates is 
onstru
ted su
h that �eld-free alignment 
an be 
onsiderablyattained.Both modes aim at 
onstru
ting a superposition of as many angular momen-tum eigenstates as possible. Due to the un
ertainty prin
iple, a broad dis-tribution in angular momentum 
orresponds to a narrow distribution of theangular position. However, it is important to note that both the amplitudesand the relative phases of the 
omposite rotational states have to be under
ontrol in order to a
hieve alignment. This requirement is ful�lled for thependular state 
ase, sin
e it is an eigenstate of the 
ombined mole
ule-�eld151
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ular AlignmentHamiltonian. However, in the general 
ase, a randomly phased superposi-tion of rotational states will not interfere favorably in attaining mole
ularalignment.For the impulsive 
ase, the evolution of the total wavefun
tion (after theele
tri
 �eld is turned o�) repeats with the revival time
Trev =

1

2Brotc
(9.1)where Brot is the rotational 
onstant of the mole
ule and c is the speed oflight. Partial revivals 
an be observed at Trev/2 and, possibly, at Trev/4,when one-half or one-quarter, respe
tively, of the populated rotational levelshave undergone an identi
al number of rotations. Shaped femtose
ond laserpulses that lead to a high degree of alignment manage to maximize thenumber of rotational states that are in phase at these times. However, theyhave to ful�ll an additional requirement: Low �eld intensities should beapplied in order to avoid a s
enario in whi
h the mole
ules are ionized.This aspe
t also plays a role in keeping the numeri
al modeling 
onsistentin des
ribing the mole
ule as a rigid rotator, as dis
ussed in Chapter 8.Therefore, one would like to a
hieve high alignment while keeping the peaklaser intensity as low as possible.On that note, re
ent publi
ations have fo
used on �nding pulse shapesother than the FTL pulse that 
reate a high degree of alignment. Leibs
herel al. [158, 159℄ have theoreti
ally shown that in the nonperturbative regimea train of pulses lead to better alignment than a single FTL pulse. Forasymmetri
 mole
ules, orientation has been found to be optimized by asequen
e of ki
ks as well [160℄.Su
h pulse sequen
es 
an be easily 
onstru
ted and also optimized withrespe
t to the relatively small number of their 
ontrol parameters. There-fore, they provide an attra
tive starting point for more 
omplex optimizations
hemes, where the ele
tri
 �eld is de�ned by a 
onsiderably larger numberof 
ontrol parameters. The task of obtaining high-quality solutions in thishigh-dimensional sear
h spa
e is nontrivial, already when 
onsidering onlythe ground state in the initial distribution. For �nite temperatures, thealignment optimization has to be performed simultaneously for a set of ini-tial rotational states, whi
h, together with the large number of ele
tri
 �eld
ontrol parameters poses a 
hallenging optimization problem.9.1 Numeri
al ModelingThe numeri
al modeling of the rotational framework, as presented in Chapter8, is adopted here fully. The remaining task is the de�nition of the alignmentobservable.
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al Modeling 153The alignment 
al
ulation uses the following 
omponents in our basis:
〈JM | cos2 θ |JM〉 =

1

3
+

2

3

(

J(J + 1)− 3M2

(2J + 3)(2J − 1)

)

〈JM | cos2 θ |J + 2 M〉 =

1

2J + 3

√

(J +M + 2)(J +M + 1)(J −M + 2)(J −M + 1)

(2J + 5)(2J + 1)

〈JM | cos2 θ |J − 2 M〉 =
1

2J − 1

√

(J +M)(J +M − 1)(J −M)(J −M − 1)

(2J + 1)(2J − 3) (9.2)We 
onsider a thermal ensemble of diatomi
 mole
ules undergoing irradiationat a �nite temperature. The latter is set to T = 100 K, and implemented bymeans of a Boltzmann averaging whi
h pra
ti
ally 
orresponds to the densitymatrix ρ. The mole
ule under investigation has a rotational 
onstant of
Brot = Bg = Be = 5cm−1. We set the Rabi peak frequen
y to Ωge =
180 × 1012s−1.For the sake of attaining high mole
ular alignment while keeping the peak�eld intensity as low as possible, due to the rigid rotator approximation,we introdu
e a 
onstraint to the optimization pro
edure, by means of apunishment term to pulses that are too intense. It expli
itly reads

Ip =

∫

E2(t)Θ(E2(t)− Ithr) dt (9.3)with Θ(x) as the Heaviside step fun
tion.Thus, the �tness fun
tion assigned to a 
andidate pulse shape is de�nedby
F = maxE(t)

〈

cos2(θ)
〉

− βIp. (9.4)By 
hoosing β large enough, Ithr 
an be used to e�e
tively operate theevolutionary sear
h only on a subset of pulses whose maximum peak �eldintensity approa
hes the threshold intensity from below. We have typi
allyused β = 1; Unless otherwise spe
i�ed, Ithr was set to Ithr = 0.36 · IFTL.Figure 9.1 provides an illustrative overview of the numeri
al pro
ess.9.1.1 Numeri
al Simulations: Te
hni
al DetailsWe hereby provide some information about the experimental setup of thedynami
 alignment numeri
al simulation:
• In the absen
e of a laser �eld, a random phase should yield on averagean alignment value of 0.333, due to the isotropi
 3D spa
e. In thepresen
e of a laser �eld a random phase typi
ally obtains alignmentvalues around 0.4.
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Figure 9.1: An overview of the numeri
al pro
ess. The 
ontrol fun
tion is thephase (
ir
led, top left), the amplitude fun
tion is �xed and approximatedby a Gaussian (bottom left). The shaping pro
ess (Eq. 6.29) generates theele
tri
 �eld, E(t) (
enter). The "S
hrödinger Box" of the alignment ob-servable represents the numeri
al 
al
ulation of the intera
tion between theele
tri
 �eld with the mole
ules, based on the quantum dynami
s numeri
almodeling. The revival stru
ture (right) is the observed simulated behaviorof the mole
ules, upon whi
h the yield value is based.
• The punishment term, as introdu
ed in Eq. 9.3 and in Eq. 9.4, 
an yield�tness values below the value of 0.4. The probability of a randomlygenerated pulse, with no spe
i�
 parameterization, to get penalized isextremely low.
• Every �tness evaluation 
all requires approximately 35s on a singleP4-HT 2.6GHz pro
essor.
• Due to the heavy 
omputational 
ost of a single simulator evaluation,we are limited in granting fun
tion evaluations. We are thus en
our-aged to employ optimization routines with minimal settings. Moreover,we shall apply experiments with a low number of repetitions.9.2 Experimental Pro
edureIn order to preliminarily assess the performan
e of the algorithms on thegiven problem, we have 
ondu
ted 10 independent runs for ea
h of the de-randomized ES 
omma-variants with the goal of optimizing the alignment ofa sample of generi
 diatomi
 mole
ules undergoing irradiation by a shapedfemtose
ond laser. We limit ea
h run to 10, 000 fun
tion evaluations, due tothe 
omputational 
ost of the simulator.
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edure 155Algorithm DR1 DR2 DR3 CMAAVG-Fitness 0.6399 0.6789 0.6534 0.6261Table 9.1: Dynami
 mole
ular alignment: Attained �tness values, averagedover 10 runs, for the DES 
omma variants.9.2.1 First Numeri
al Results: Comparison of the AlgorithmsTable 9.1 summarizes the numeri
al results of the runs - the averaged �tnessvalue obtained by ea
h optimization routine. Based on our experien
e withthe problem and the algorithms, the yield di�eren
es of Table 9.1 are be-lieved to be signi�
ant. Moreover, due to the limited number of simulationswe do not provide further statisti
al analysis of the results.Roughly speaking, the algorithms were observed to perform equally well,with the ex
eption of the DR2 algorithm that managed to obtain a signif-i
antly better optimum than the others. While the DR3 algorithm showedthe fastest initial �tness in
rease, it seemed to get stu
k in a sub-optimallo
al trap after ≈ 2, 000 fun
tion evaluations. We have found this behaviorto be typi
al for the DR3 algorithm.The ranking of the algorithms was qualitatively similar for a number of align-ment optimization runs employing di�erent parameter settings.Figure 9.2 presents the best pulse-shape solution attained, as obtained bythe DR2 routine.9.2.2 The Complete-Basis-Fun
tions ParameterizationIn this se
tion we present a new method for learning a fun
tion, based ona representation transformation, whi
h 
an also be referred to as param-eterization. The so-
alled Complete-Basis-Fun
tions Parameterization wasoriginally derived for the sake of learning the 
ontrol fun
tion of the dynami
alignment problem, i.e. the phase φ(ω), but is a general method for learn-ing a generi
 n-variable fun
tion. It 
an redu
e the dimensionality of thesear
h spa
e and possibly boost the 
onvergen
e speed, respe
tively, as willbe explained in detail.Appendix B provides the reader with the mathemati
al ba
k-ground on 
omplete-basis fun
tions, and presents the spe
i�
 fun
-tions that are 
onsidered in our study. For the sake of 
onsisten
y andreading 
larity, we spe
ify here our notation for a spanned target fun
tion
f (x):

f (x) =
Kmax
∑

k=1

ckξk (x)with ck as the expansion 
oe�
ients, and {ξk (x)}∞k=1 as the the set of
omplete-basis fun
tions.
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Figure 9.2: Best solution attained by the DR2. Thi
k line: alignment; thinline: intensity pro�le of the optimized laser pulse. The solution 
onsists ofthree main peaks (see labels).Preliminary: Expanding a Known Fun
tion As we will demonstratehere, �nding the expansion of a known fun
tion by means of a given set of
omplete-basis-fun
tions, i.e., �nding the 
oe�
ients of the fun
tions in thisbasis, is an easy task for a simple evolutionary algorithm, and in parti
ularfor the standard-ES. For simpli
ity, and without loss of generality, let usassume that the task is to approximate a one-variable fun
tion using theFourier series:
f(x) =

1

2
a0 +

∞
∑

k=1

ak cos

(

2πk

L
· x
)

+

∞
∑

k=1

bk sin

(

2πk

L
· x
)This task 
an be generalized to fun
tions of higher dimensions, and by us-ing other expansions of 
omplete-basis fun
tions. Following the notationof Appendix B, 
onsider a �nite number of the expansion 
oe�
ients ofthe 
osine and sine fun
tions, {ak}Ka

k=0, {bk}Kb

k=1, as the de
ision parametersto be optimized by the evolutionary sear
h. As a preliminary task in thisstudy, we found that the standard-ES (S
hwefel approa
h) 
onverged easilyand qui
kly to the 
orre
t 
oe�
ients. This elementary �tting problem wassimply de�ned by means of the square-error minimization: The �tness, sub-je
t to minimization, was de�ned respe
tively as the root-mean-square errorfun
tion between the original fun
tion and its evolving expansion.Figure 9.3 presents the out
ome of learning the triangle fun
tion withthe standard-ES, using only the �rst 20 frequen
ies (Kmax = Ka +Kb = 40)
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Figure 9.3: Learning the triangle fun
tion by means of the �rst 20 Fourierfrequen
ies. The plot shows the original triangle fun
tion and its Fourierapproximation.of a Fourier series as building blo
ks for a given fun
tion dis
retization of
N = 100.Proposed Method: Learning an Unknown Fun
tion The idea ofspanning a fun
tion using a set of 
omplete basis-fun
tions 
an also be ap-plied for the task of learning an unknown fun
tion, represented by N fun
tionvalues, as in our quantum 
ontrol alignment problem. The inspiration for thismethod was the initial intuition to the alignment problem, whi
h suggestedthat the 
ontrol fun
tion should be periodi
. Motivated by this intuition,we started to run simulations in whi
h an ES was aiming at learning φ(ω)using the harmoni
 fun
tions as building blo
ks. Rather than learning theinterpolated values of the 
ontrol fun
tion, the 
oe�
ients of the harmoni
s(Fourier 
omponents) were optimized. Following the su

ess of those exper-iments, we extended the method to other sets of 
omplete basis fun
tions,and in parti
ular to the sets of fun
tions whi
h are introdu
ed in AppendixB: The Legendre Polynomials, the Bessel Fun
tions, the Hermite Polynomi-als, and the Chebyshev polynomials.Assuming that the desired dis
retization is up to a resolution of N pointsin the interval, we limit the number of elements in the expansion series to
Kmax, where preferably Kmax ≪ N . By that we 
an a
hieve a dramati
 di-mensionality redu
tion of the sear
h spa
e, aiming to boost the 
onvergen
espeed. The idea is then to apply an evolutionary sear
h to the n = Kmax
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oe�
ients of the expansion fun
tions, where a simple transformation is ap-plied for every �tness evaluation. In pra
ti
e, the required time for additional
omputation of this transformation is negligible with respe
t to the obje
tivefun
tion evaluation, in most real-world problems.An ES employing a Fourier auxiliary fun
tion has been proposed in thepast, known as the FES method [161℄. The FES aims at approximatingthe �tness lands
ape, and parti
ularly its small attra
tion basins, by meansof the Fourier series. However, the 
areful reader should noti
e that ourmethod is based on a di�erent prin
iple. It uses 
omplete-basis fun
tionsas a transformation of the de
ision parameters themselves, rather than the�tness lands
ape, whi
h is left untou
hed. It strongly relies on the fa
t thatthese de
ision parameters represent a 
ontinuous fun
tion - and this fun
tionis due to be approximated.Preliminary Cal
ulationsQuadrati
 Phase Fun
tions: The α-Test Sin
e we are about to inves-tigate representations of low-order polynomials, we would �rst like to addressthe question whether there exists a trivial extremum whi
h would be
ome alo
al trap for su
h phase fun
tions. Hen
e, we 
al
ulated the �tness of 
on-stru
ted quadrati
 phase fun
tions, 
entered around the 
entral frequen
y.Expli
itly, we 
onsidered the following family of 
onstru
ted phases:
φα(ω) = α · (ω − ωcentral)

2, (9.5)where the 
ontinuous parameter α is s
anned systemati
ally in the interval
[0, 15]. Note that these phases are 
onstru
ted over n = 80 fun
tion values,and given as input to the dynami
 alignment simulator as before.The results of this so-
alled α-test are presented in Figure 9.4.As 
an be 
learly seen in the given plot, most of the quadrati
 phasefun
tions attain extremely low �tness values, due to large punishment terms,and they never ex
eed the �tness value of 0.45. This eliminates the existen
eof a trivial quadrati
 solution for the problem.The Initial States Density Test We set the number of terms in ea
hexpansion to Kmax = 40. The following preliminary experiment is meant to
ompare the natural initial quality of the di�erent parameterizations withrespe
t to the alignment problem. We applied a so-
alled initial states den-sity test, a statisti
al �tness measurement of the initialized phase fun
tionsin the di�erent parameterizations. For ea
h parameterization in use, i.e.,the dire
t/plain 80-dimensional random phase ve
tor, or the random 40-dimensional 
oe�
ient ve
tor for the various polynomials in use, we initial-ized 1, 000 phase fun
tions and 
al
ulated their mean �tness and standarddeviation. The numeri
al results are visualized as histograms in Figures 9.5-
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Figure 9.4: The α-test: The �tness of quadrati
 phase fun
tions, 
enteredaround the 
entral frequen
y, as de�ned in Eq. 9.5.Table 9.2: Parameterizations: Averaged Performan
eRoutine Dire
t Fourier LegendreAvg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval(1,10)-DR2 0.6789 2325 0.4494 N.A. 0.6384 629(1,10)-CMA 0.4676 N.A. 0.4542 N.A. 0.6409 515.1

(µ, λ)-CMA 0.6261 4962.5 0.6171 4475.8 0.6466 194.5Routine Bessel Hermite ChebyshevAvg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval Avg. Fit. 0.6 Eval(1,10)-DR2 0.6299 1390 0.5944 5610 0.4843 N.A.(1,10)-CMA 0.6229 2212.9 0.6755 271 0.4979 N.A.
(µ, λ)-CMA 0.6232 2719.5 0.6843 118 0.6225 3770.89.10, providing the �tness distributions of the various random initializations.See further dis
ussion below.Parameterizations: Numeri
al ResultsIn this se
tion we present the numeri
al results for optimizing the dynami
alignment problem with the di�erent parameterizations - the dire
t/plain pa-rameterization versus the polynomial-based parameterizations with Kmax =

40 terms. Our runs were based on the following algorithmi
 kernels:1. (1, 10)-DR2
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FitnessFigure 9.5: Initial states density testfor dire
t parameterization. FitnessFigure 9.6: Initial states density testfor Fourier parameterization.

FitnessFigure 9.7: Initial states density testfor Legendre parameterization. FitnessFigure 9.8: Initial states density testfor Bessel parameterization.

FitnessFigure 9.9: Initial states density testfor Hermite parameterization. FitnessFigure 9.10: Initial states density testfor Chebyshev parameterization.
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edure 161Table 9.3: Parameterizations: Summary of Best ResultsParameterization Best Fitness 0.6 Eval Routine Initial States DensityDire
t-Param 0.6899 2310 (1,10)-DR2 0.4026 ± 0.018Fourier 0.6526 1411 (7,15)-CMA 0.4110 ± 0.019Legendre 0.6487 106 (7,15)-CMA 0.3122 ± 0.075Bessel 0.6457 61 (7,15)-CMA 0.2218 ± 0.077Hermite 0.6866 31 (7,15)-CMA 0.4558 ± 0.048Chebyshev 0.6490 1051 (7,15)-CMA 0.4226 ± 0.0232. (1, 10)-CMA3. (µW , λ)-CMA: Following the re
ommended settings (Eq. 1.47): (7, 15)for n = 40, versus (8, 17) for n = 80.The runs were limited to 10, 000 fun
tion evaluations. We 
ondu
ted 10 runsper method.We 
onsider the performan
e 
riteria of the various methods as the following:
• The mean �tness values per method over the 10 runs.
• The averaged number of evaluations per method until the �tness valueof 0.6 was rea
hed during the runs. We 
onsider the yield value of 0.6as the lower bound of the regime of good solutions.
• The results of the initial states density test, as was introdu
ed ear-lier: The averaged initial �tness values per method, with the standarddeviation.We provide a table of results, whi
h 
onsists of the numeri
al values ofthe spe
i�ed performan
e 
riteria per method. It is given as Table 9.2. Table9.3 summarizes the best results obtained per parameterization.Analysis and Dis
ussionAn important result that should be pointed out is that all the runs in the var-ious parameterizations have 
onverged into a highly �t phase fun
tion withat least one optimization routine, i.e., all the given 
omplete-basis fun
tionsare 
apable of spanning a good phase fun
tion with Kmax = 40 terms.Furthermore, we would like to analyze shortly the experimental resultsof the various parameterizations with respe
t to the dynami
 alignment op-timization, as presented in Tables 9.2 and 9.3:1. Initial State The Hermite parameterization has 
learly the most nat-ural initial representation for the phase fun
tion for the given problem,among the various 
ases, as re�e
ted from the initial states density test
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ular Alignmentresults (Figures 9.5-9.10 and Table 9.3). Note that the Legendre as wellas the Bessel parameterizations have low initial �tness values, evenbelow the dire
t parameterization, due to the punishment e�e
t. Itshould be stressed that the standard deviations of the di�erent �tnessdistributions are reasonably low.2. Fitness Values The Hermite parameterization obtained �tness val-ues as high as the dire
t parameterization method, though by meansof a di�erent algorithm, as will be dis
ussed shortly. As far as weknow, the attained yield values in the regime of ≈ 0.69 are the high-est 
osine-squared alignment values whi
h were ever attained for thisparti
ular 
on�guration of the problem. Hen
e, from the optimiza-tion perspe
tive, the proposed parameterization does not hamper thefeasibility to obtain the maximally-attained yield within the limit offun
tion evaluations.3. DR2 vs. CMA There is a 
lear trend regarding the two algorith-mi
 kernels. The DR2 obtained the best results for the dire
t pa-rameterization, but obviously failed to deliver reasonable results forthe polynomial-based parameterizations. In most 
ases, the DR2 doesnot even 
onverge. The (7, 15)-CMA, on the other hand, performedvery well with the various polynomial-based parameterizations, andattained �ne results also for the dire
t parameterization. The (1, 10)-CMA is 
learly inferior with respe
t to its rank-µ weighted-re
ombinedsibling. Our proposed explanation for this trend is the strong 
orrela-tions between the polynomials' 
oe�
ients, whi
h make the 
ovarian
ematrix an essential 
omponent for su

essful optimization. On theother hand, it seems that the 
ovarian
e matrix is not an essential
omponent for the dire
t parameterization, and may even introdu
e abarrier, to some degree, to the global sear
h.We would like to link this to the 
on
lusions drawn for the QC land-s
apes of Two-Photon Pro
esses in Chapter 7, where QC lands
apeanalysis stating that �rst-order information is su�
ient for optimiz-ing QC lands
apes was experimentally 
orroborated. The fa
t thatthe DR2 algorithm performs so well on the 
urrent dynami
 alignmentlands
ape, whi
h is a 
ombined OCT/OCE lands
ape, 
ould be 
on-sidered as an additional 
orroboration to this QC lands
ape analysis.We shall further explore the performan
e of the DR2 versus CMA-ESwith respe
t to the dire
t versus Hermite parameterizations in Se
tion9.3.4. Boosting Convergen
e Speed An immediate 
on
lusion from bothtables is that the proposed method a
hieved a signi�
ant boost of the
onvergen
e speed for all the di�erent polynomial-based parameteri-
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Figure 9.11: The speeding-up e�e
t: Typi
al 
onvergen
e pro�les of the
(µW , λ) CMA-ES for the Hermite versus the dire
t parameterizations.zations, in 
omparison to the dire
t parameterization. The Hermiteparameterization with the (7, 15)-CMA is 
learly the fastest routine,and it outperformed the other routines by far. It should be noted thatthe Legendre as well as the Bessel parameterizations, whi
h have thelowest initial yield values, manage to 
ompensate for that and rea
hthe regime of good solutions (yield > 0.6) rather qui
kly.Typi
al 
onvergen
e pro�les for Hermite versus dire
t parameteriza-tions are plotted in Figure 9.11.5. Physi
s Interpretation Aiming at gaining physi
s insights into thenature of highly-�t phase fun
tions with respe
t to the alignment prob-lem, we examined the nature of good solutions in the di�erent pa-rameterizations. The idea was to 
al
ulate the distributions of the
oe�
ients, and try to identify dominan
e of 
ertain 
omponents (fre-quen
ies in the Fourier 
ase). Unfortunately, su
h dominan
e 
ouldnot be identi�ed within the results. The set of attained optimal phasesreveals high 
omplexity, whi
h 
ould not be ta
kled. This providesus with the motivation to explore a simpler variant of the alignmentproblem in Se
tion 9.3.
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Figure 9.12: Optimized pulses and alignment for Ithr = 0.2 · IFTL, Ithr =
0.25 · IFTL and Ithr = 0.3 · IFTL. Figure 
ourtesy of Christian Sieds
hlag[162℄. Intensity [IFTL℄ 0.2 0.25 0.3 0.36

〈

cos2(θ)
〉 0.662 0.673 0.6734 0.689Table 9.4: Best 〈cos2(θ)
〉 values obtained with the DR2 algorithm over �veruns for di�erent values of Ithr [162℄.9.2.3 Further InvestigationWe would like to review here brie�y additional 
al
ulations for this alignmentproblem, whi
h were 
arried out by Sieds
hlag and Vrakking (see, e.g., [162℄).Punishment Strength By de
reasing Ithr, the sear
h algorithm was shownto look for e�e
tive pulses with less available peak intensity. The numeri
alresults of additional optimization runs, 
arried out by the DR2 algorithm,for Ithr = 0.2 · IFTL, Ithr = 0.25 · IFTL and Ithr = 0.3 · IFTL are presented inTable 9.4. Note that lowering Ithr 
ould slightly improve the attained align-ment. Overall, the evolutionary sear
h was able to make up for the smallerpeak intensities by redistributing the �uen
e in a 
lever way, so to speak.The optimized pulse-shapes for the three lower threshold intensities are pre-sented in Figure 9.12. The three solutions are observed to be remarkablysimilar.Constru
ted Pulse Trains Sieds
hlag and Vrakking [162℄ also treatedthe question whether a simple train of pulses that is 
onstru
ted by an ap-propriately designed phase fun
tion yields results that are 
omparable tothose a
hieved by the evolutionary approa
h. In parti
ular, the question ad-
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Figure 9.13: A 
ut through the 
ontourplot of Figure A.7 for A = 2.26,for whi
h the largest alignment (〈cos2(θ)
〉

= 0.589
) in the two-parameterapproa
h under the 
ondition I < 0.36 · IFTL was a
hieved [162℄. Figure
ourtesy of Christian Sieds
hlag.dressed trains of pulses, whi
h are generated by os
illatory phase fun
tions.Expli
itly, the following family of phases was 
onsidered:

φosc(ω) = A · sin(ω∆ + α) (9.6)The two relevant parameters, A and ∆, were s
anned in a sear
h for the pulsethat would produ
e the best alignment; Figure A.7 presents the out
omeof that s
an. The magnitude of A 
ontrols the distribution of the availableintensity over the peaks in the pulse train (and hen
e the peak intensity withrespe
t to the FTL solution), while ∆ 
orresponds dire
tly to the time delaybetween two 
onse
utive peaks. Note that the maximally obtained alignmentyield in this s
an was A ≈ 0.68 and ∆ = 1.7ps; However, its 
orrespondingpeak intensity was too high for the model, i.e., I > 0.36 · IFTL.Figure 9.13 presents a 
ut of the 
ontourplot s
an of Figure A.7, at themaximally obtained yield in the allowed range (0.589). It was 
on
luded in[162℄ that this approa
h was not �exible enough to adapt to the �ner detailsof the time-dependent alignment response.9.3 Investigation of Optimality: Zero KelvinHere we fo
us in a simpli�ed variant of the original alignment problem, atzero temperature (T = 0 K) and with only a single rotational level at the
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 Mole
ular Alignmentinitial distribution. The numeri
al modeling of Eq. 8.8 
onsiders now M = 0and reads:
|Ψ(t)〉 =

Nrot
∑

J=0

α
(g)
J (t) |gJ〉+ exp (−iω0t)α

(e)
J (t) |eJ〉 (9.7)The motivation for this simpli�
ation is to allow studying the physi
al
hara
teristi
s of the optimal solutions, whi
h would not have been possiblefor the general 
ase, e.g., tra
king the time-dependent population of therotational levels, given only the ground level at initialization. From thete
hni
al perspe
tive, this simpli�
ation redu
es the simulator evaluationtime to approximately 5s on a single P4-HT 2.6GHz pro
essor.We 
arried out 
al
ulations optimizing �eld-free mole
ular alignmentstarting from J = 0 for a number of algorithmi
 approa
hes and variousRabi peak frequen
ies. In ea
h 
ase, the same 
al
ulation was attemptedby means of 20 runs. Ea
h run was limited to 20, 000 fun
tion evaluations.We restri
t the dis
ussion in this se
tion to the best results obtained in ea
hseries of 20 trials.Figure 9.14 presents a 
omparison between one optimization of dynami
alignment starting from J = 0, performed using the DR2 algorithm underperturbative 
onditions (Ωge = 40× 1012s−1

) and four optimizations per-formed under non-perturbative 
onditions (Ωge = 160× 1012s−1
) using boththe DR2 and the CMA algorithms, with either a dire
t/plain parameteriza-tion of the phase or with the Hermite parameterization, employing the �rst

Kmax = 40 Hermite polynomials. Furthermore, based on our previous obser-vations in this 
hapter, we employed (1, 10)-DR2 or {(7, 15), (8, 17)}-CMA(the latter depends on the parameterization used).The obtained result at low laser intensity (Ωge = 40× 1012s−1
) is simple: Apulse train is observed where the spa
ing between the peaks is approximatelythe rotational period of a 
oherent superposition state 
onsisting of J = 0and J = 2 only (Trev02 = 1

6Brotc
= 1.1ps

). The time-dependent intensity isgiven by a train of pulses where the largest pulse rea
hes an intensity of
0.36 · IFTL.The obtained pulse-shapes at high laser intensity (Ωge = 160× 1012s−1),are 
onsiderably more 
omplex and no simple periodi
ity 
an be observed.The averaged as well as largest values of 〈cos2 (θ)

〉 attained are shown inTable 9.5.In 
onsisten
y with the numeri
al results of the previous se
tion, thehighest alignment yield values attained for this parti
ular system were alsoobtained by the DR2 with plain parameterization as well as by the CMA withHermite parameterization. Employing the CMA with plain parameterizationor the DR2 algorithm with the Hermite parameterization yields a slightlylower values over 20 trials. Based on our experien
e with the problem and thealgorithms, the yield di�eren
es of Table 9.5 are believed to be signi�
ant.
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Figure 9.14: (a) Comparison of an optimization performed employing theDR2 algorithm with Ωge = 40 × 1012s−1 and (b) Four 
al
ulations with
Ωge = 160 × 1012s−1 employing the DR2 and the CMA algorithms witheither a plain or Hermite parameterizations of the 
ontrol phase fun
tion.

(1, 10)-DR2 {(7, 15), (8, 17)}-CMAPlain Param. 0.9559 ± 0.007 (0.9622) 0.9413 ± 0.006 (0.9508)Hermite Param. 0.9501 ± 0.004 (0.9570) 0.9583 ± 0.003 (0.9618)Table 9.5: Maximizing the 
osine-squared �eld-free mole
ular alignmentstarting from J = 0 (T = 0K) at Ωge = 160 × 1012s−1 over 20 runs with
20, 000 fun
tion evaluations per run; Mean and standard-deviation valuesare given, with the maximal value obtained in bra
kets.
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 Mole
ular AlignmentThis is supported by inspe
tion of the pulse shapes shown in Figure 9.14.The two most su

essful optimizations (CMA/Hermite and DR2/Plain) notonly share their yield value of 〈cos2 (θ)
〉, but furthermore make use of a pulseshape that is very similar.9.3.1 Con
eptual Quantum Stru
turesThe time-dependent population of the rotational levels 
an be analyzed ina fairly simple te
hnique, known as the Sliding Window Fourier Transform(SWFT), whi
h provides us with a powerful visual tool. Given the re-vival stru
ture of an obtained solution, a sliding time window is Fouriertransformed, to produ
e the frequen
y pi
ture through the alignment pro-
ess. This windowing 
reates a transformation whi
h is lo
alized in time.Due to the quantization of the rotational levels, only 
ertain frequen
ies (orenergy levels, respe
tively) are expe
ted to appear.We applied the SWFT routine to the optimal solutions whi
h were foundin the various runs under non-perturbative 
onditions. Figures A.10, A.11,A.12 and A.13 visualize the typi
al population pro
ess of the rotational levelsfor four typi
al solutions of the di�erent optimization pro
edures (2 param-eterizations times 2 DES variants). The observed quantum energy levels areindeed as expe
ted from theory.The results reveal two di�erent 
on
eptual quantum stru
tures, whi
h
orrespond to optimal and sub-optimal solutions in terms of the alignmentyield. The plain-DR2 as well as the Hermite-CMA pro
edures obtain thebest solutions, whi
h share the same stru
ture - they are 
hara
terized bythe dominant population of the 4th rotational level in the SWFT pi
ture,
orresponding to J = 6. On the other hand, the plain-CMA and Hermite-DR2 pro
edures obtain solutions with lower yield, whi
h are 
hara
terizedby a gradually in
reasing population of the rotational levels.The original revival stru
tures for two obtained solutions, representingthe two 
on
eptual stru
tures, are given in Figures A.8 and A.9. The optimalfamily of solutions (Figure A.8) possesses a dramati
 revival stru
ture, witha typi
al strong pulse in the train whi
h lies on the boundary of the punishedregime (I ≈ 0.36 · IFTL). This strong pulse seems to be essential in givingthe mole
ules the right 'ki
k', and most likely responsible for the dominantpopulation of the 4th rotational level in the SWFT pi
ture (J = 6). The sub-optimal family of solutions (Figure A.9) possesses a revival stru
ture witha smooth exponential envelope, and thus has a gradual building-up of therotational levels in the SWFT pi
ture, respe
tively. It typi
ally 
ontains atrain of medium pulses and la
ks a dominant one.We would like to emphasize the fa
t that we obtained the same family ofoptimal solutions, representing a single Quantum stru
ture, from two di�er-ent optimization approa
hes: The �rst employs a �rst-order DES subje
t todire
t pixelation of the 
ontrol phase, while the other employs a se
ond-order
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t to Hermite expansion of the 
ontrol phase.9.3.2 Maximally Attained YieldWhile this does not 
onstitute a proof, we spe
ulate that within the 
on-straints in the optimization (i.e., the �nite pulse bandwidth and energy, aswell as the �nite resolution of the phase fun
tion), both algorithms havefound a solution that approa
hes the best solution that is possible. How-ever, even if the solutions are optimal within the 
onstraints set by the laserbandwidth, the laser pulse energy and the parameterization of the phase,it is 
lear that the solutions do not approa
h the maximum alignment that
an be supported by the basis of Nrot = 20 rotational states (see Eq. 9.7)that were used in the 
al
ulation. The maximum alignment supported bythis basis is the largest eigenvalue of the observable matrix, whi
h was foundto be 0.9863. The 
orresponding eigenve
tor will be referred to here as themaximal eigenve
tor or the maximal wavepa
ket.We as
ribe the di�eren
e between this maximum value and the values ob-tained in the optimizations as being largely due to the �nite laser bandwidthin our 
al
ulations. The bandwidth and the pulse duration of a laser pulsewith a Gaussian shape are related by Eq. 6.30, where the spe
tral amplitudeparameter reads cB = 0.441. Thus, for a pulse with a 100fs Fourier-limitedduration, the bandwidth is ∆ωlaser,FWHM = 0.0182eV = 147cm−1. When amole
ule undergoes a Raman transition from J = J0 to J = J0 + 2, the en-ergy absorbed from the laser �eld is Brot · (4J0 +6). This absorbed energy isthe di�eren
e between the pump- and dump-photons involved in the Ramanex
itation. Consequently, the Raman ex
itation be
omes frustrated when
Brot · (4J0 + 6) > ∆ωlaser,FWHM . In our 
ase, with a rotational 
onstant of
Brot = 5cm−1, this threshold o

urs for J0 ≈ 6.As Figure 9.15 shows, the rotational wave pa
ket that displays the largestalignment after the optimization 
ontains only limited 
ontributions from
J = 8 and J = 10, and none from rotational levels above J = 10. By
ontrast, the maximal wavepa
ket 
ontains 
ontributions all the way up to
J = 18. In this respe
t, it may appear to be surprising that a high yield of
0.962 
an be obtained when the optimized wavepa
ket di�ers so mu
h fromthe maximal wavepa
ket. In order to assess the 
ru
ial in�uen
e of the band-width 
onstraint on the 
ut-o� of a

essible J values, additional 
al
ulationswere performed with the original bandwidth doubled, while the �uen
e waskept �xed (thus 
orresponding to a 50fs pulse with Ωge = 226 × 1012s−1).These results are also presented in Figure 9.15 as a referen
e to the 
al
ula-tions with the original bandwidth. The doubling of the bandwidth permittedpopulating up to J = 12, and thus produ
ed an enhan
ed alignment yieldof 0.975. Note that the distin
tion between the two families of solutions,
orresponding to the two algorithmi
 
lasses, as dis
ussed in Se
tion 9.3.1,
an be 
learly observed in Figure 9.15.
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 Mole
ular AlignmentThe di�eren
e between the maximal wavepa
ket and optimized wavepa
ketis also re�e
ted in the angular probability distribution fun
tions, as presentedin Figure 9.16. These probability distribution fun
tions are respe
tively 
on-stru
ted from the 
oe�
ients of the maximal eigenve
tor as well as the stateobtained from the optimized �eld, based on Eq. 9.7. Even though at thehigher bandwidth the dis
repan
y between the optimally 
ontrolled distri-bution fun
tion and the maximally attainable limit appears to be signi�
ant,a high alignment value was still obtained.The explanation for this ex
ellent behavior, despite 
onsiderable di�eren
esin the 
omposition of the wavefun
tion, lies in the variational prin
iple (see,e.g., [126℄), whi
h states that a �rst order error in a trial wavefun
tion (i.e.,the wavepa
ket from the bandwidth limited optimal 
ontrol �eld) will pro-du
e an extremum eigenvalue (i.e., alignment yield) of se
ond-order error:
〈ψ|H |ψ〉
〈ψ|ψ〉 =

En + 〈δ| H |δ〉
〈n|n〉+ 〈δ|δ〉 = En +O

(

δ2
) (9.8)9.3.3 Another Perspe
tive to Optimality: Phasing-UpWhen a mole
ule is exposed to a shaped, intense laser pulse the optimiza-tion has to a

omplish two things. First, the optimization has to 
reate awavepa
ket 
onsisting of a large number of rotational states that 
an serve toalign the mole
ule. Se
ond, the optimization has to prepare the wavepa
ketwith the 
orre
t phase relationship between the 
omponent wavefun
tions, sothat during its �eld-free evolution these 
omponents would 
oherently add-upto generate an optimally aligned wavefun
tion. While there is no 
riteriumavailable that allows us to as
ertain whether the algorithm has optimizedthe population distribution, it is possible to investigate the phase relation-ship of the 
omponent wavefun
tions in the optimized solutions. Maximumalignment o

urs if at some point in time the phases of all 
omponent wave-fun
tions di�er from ea
h other by 0 (modulo 2π).Expli
itly, given a wavefun
tion,

ψ =
∑

j

a
(t)
j · |j〉 · exp

(

−iEjt

~

)

,the 
oe�
ients a(t)
j are 
omplex numbers, and as su
h 
an be expressed intheir polar representation:

a
(t)
j = r

(t)
j · exp

(

iϕ
(t)
j

)

. (9.9)We thus question whether given a 
ertain population - does the optimizationroutine produ
e the optimal set of phases ϕ(t)
j ? In order to answer thisquestion, a simple optimization pro
edure was implemented in the followingmanner: It a

epts the a(t)

j as input, and aims at optimizing the phases ϕ(t)
j
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Figure 9.15: TOP: The distribution of the maximal and the best opti-mized wavepa
kets over the rotational states. Stars represent the maximalwavepa
ket in the �nite rotational basis (i.e., 
orresponding to the highest-ranked eigenve
tor of the observable matrix). Diamonds represent the 1stoptimized set of solutions (CMA-Hermite / DR2-Plain), and Squares repre-sent the 2nd optimized set of solutions (CMA-Plain / DR2-Hermite); Cir
lesrepresent 
al
ulations with doubled bandwidth and the same �uen
e (50fspulse with Ωge = 226 × 1012s−1), optimized by the DR2 subje
t to plainparameterization. The �gure 
learly shows that the limited �eld bandwidth
uts o� the rotational states for the optimized solutions after J = 10, whenthe original bandwidth is used, or after J = 12 when the bandwidth is dou-bled. Furthermore, this plot illustrates the distin
tion between the twofamilies of solutions for the original bandwidth (i.e., Diamonds ver-sus Squares) arising from the di�erent algorithmi
 approa
hes. BOTTOM:The alignment as a fun
tion of the overlap of the optimized wavepa
kets |Ψ〉with the maximal eigenve
tor |V 〉. Note that the overlap for the originalbandwidth never ex
eeds 0.8 in magnitude. Also note the three 
lustersfor the families of algorithmi
 solutions.
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Figure 9.16: Left axis: Normalized angular probability distribution fun
tionfor the maximal 
ase |ψmax (θ)|2 sin (θ), and the optimized 
ontrol fun
tion
|ψopt (θ)|2 sin (θ). Right axis: The value of cos2 (θ). The 
onstraints pro-hibit the evolutionary algorithm from attaining the absolute maximal angu-lar probability distribution fun
tion; However, the expe
tation value of theobservable 〈cos2 (θ)

〉

opt
= 0.9621 when using the original bandwidth 
orre-sponding to a 100fs Fourier-limited pulse is within 0.025 of the maximumattainable value 〈cos2 (θ)
〉

max
= 0.9863. When doubling the bandwidth (i.e.,basing the shaped laser pulse on a 50fs Fourier-limited pulse) 〈cos2 (θ)

〉

optin
reases to 0.975, whi
h is only 0.0113 away from the maximum attainablevalue.su
h that the 
osine-squared alignment is maximized. Pra
ti
ally, it uses asubroutine from the general alignment 
ode for the evaluation, and appliesthe CMA algorithm for the tuning of the 10 relevant phases. Note that asingle fun
tion evaluation has the duration of ≈ 0.5s.We 
onsidered 50 di�erent 
ases of high-quality solutions to the alignmentproblem (all solutions have 
osine-squared-alignment values in the regime of
0.95) - for ea
h test 
ase 100 independent optimizations were run, aiming totune the phases.The experimental results are 
lear and sharp. They are presented at twolevels:1. In all 100 runs for all 50 test-
ases - the best solution has alwayssyn
hronized phases. There are di�erent phase values per run, butit does not make a di�eren
e for the 
osine-squared alignment, as longas the populated levels hold that same phase value. Expli
itly, theSigma-RMS of the phases was 
al
ulated:

∆ϕoptimal = 0.0117
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 Intensity 1732. The 50 test-
ases, as originally obtained by the original optimizationprior to this optimization pro
edure, held phases whi
h were not farfrom being syn
hronized,
∆ϕDR2 = 0.0566,and indeed, the optimizations did not improve the 
osine-squared align-ment dramati
ally: Always less than 1% improvement was re
orded.We 
onsider this a very strong result - the evolutionary optimization routinemanaged to ta
kle the �ne-tuning of the quantum 
ontrol problem, behindthe 
omplex transformations and the so-
alled S
hrödinger bla
k-box.To summarize, while we 
annot establish whether the optimization hasdistributed the population in the best possible way, we do observe that thealgorithm has properly phased-up all 
omponent wavefun
tions with respe
tto ea
h other. This type of 
oherent alignment of phases was also observedto be optimal in the me
hanisti
 analysis of another state-to-state 
ontrolappli
ation [163℄.9.4 Evolution of Pulses under Dynami
 IntensityOur observation so far regarding the alignment problem, and in parti
ular
on
erning its zero-Kelvin variant in the previous se
tion, provides us withthe motivation to investigate optimized pulse stru
tures that obtain highalignment yield at di�erent laser intensities, and espe
ially their evolutionsubje
t to a slowly-varying laser intensity. This se
tion is a dire
t experimen-tal 
ontinuation to Se
tion 9.3, 
onsidering solely the zero-Kelvin alignmentvariant with two spe
i�
 algorithmi
 approa
hes that were employed for itsoptimization: the DR2-plain and CMA-Hermite pro
edures.9.4.1 Evolutionary Algorithms in Dynami
 EnvironmentsFrom the algorithmi
 perspe
tive, the optimization framework be
omes nowan evolutionary sear
h subje
t to a dynami
 environment [71℄.Evolutionary Algorithms are natural 
andidates for optimization in dy-nami
 environments, due to the straightforward analogy with organi
 evo-lution, whi
h o

urs in a 
ontinuously varying environment. Typi
al ap-proa
hes for dynami
 environments in
lude the promotion of diversity, theuse of multi-populations, the introdu
tion of memory-based 
omponents,or the assignment of so-
alled s
outs that maintain information about thesear
h spa
e.Evolution Strategies are a parti
ularly good 
hoi
e, for their built-in mu-tative self-adaptation me
hanism. The standard-ES has been demonstratedto perform well under a dynami
 environment of a time-varying spheremodel ("a lands
ape with 
atastrophes"), using a 
omma strategy and with
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ular Alignmentno re
ombination (see, e.g., [164℄). The mutative self-adaptation me
hanismplayed a 
ru
ial role, in allowing a rapid adjustment of the evolving individ-uals to the time-dependent lo
ation of the global maximum: The optimalmutation strategy parameters were learned su

essfully, without exogenous
ontrol. Other empiri
al studies extended this model to 
ontinuously mov-ing peaks, and reported on satisfying adaptation of the standard-ES [165℄.Arnold and Beyer 
onsidered spe
i�
 derandomized Evolution Strategies,and showed theoreti
ally that the step-size adaptation me
hanism works per-fe
tly well on a moving-sphere problem [166℄. In light of these �ndings, we�nd our 
andidate derandomized ES variants perfe
tly suited for the 
urrentoptimization task.9.4.2 Dynami
 Intensity Environment: Pro
edureIn order to observe, and possibly understand how the optimal laser pulseshape evolves from the simple pulse train obtained for Ωge = 40 × 1012s−1(Figure 9.14 (a)), into a mu
h more 
ompli
ated pulse-shape for Ωge = 160×
1012s−1 (Figure 9.14 (b)), a series of 
al
ulations were 
ondu
ted where Ωgewas in
reased linearly as a fun
tion of the generation number. Inthese 
al
ulations, the mole
ule was initially exposed to a shaped laser �eldwith Ωge = 40 × 1012s−1, and over 10, 000 generations this value linearlyin
reased to Ωge = 180 × 1012s−1. This was immediately followed by alinear de
rease of the intensity over additional 10, 000 generations, ba
k tothe initial value of Ωge = 40 × 1012s−1. Note that a generation involves 10or 15 fun
tion evaluations, for the DR2-plain or CMA-Hermite pro
edures,respe
tively. Furthermore, we 
onsider two 
ontrol resolutions for the plain-parameterization, n1 = 80 versus n2 = 160, in order to test the algorithmi
performan
e in these two sear
h spa
e dimensions.The analysis of the dynami
 intensity environment is dis
ussed next atseveral levels.Intensity Milestones: Dynami
 vs. Stati
 OptimizationFigure 9.17 presents the best evolution runs of the DR2-plain optimizationpro
edure for n1 = 80 and n2 = 160 pixels, respe
tively. It 
ontains four
urves, whi
h 
orrespond to the evolution progress in the ramped-up andramped-down laser intensity environments of the two di�erent runs. Notethat the ramped-down 
urves of the two runs merge. The ramped-up 
urvesdi�er signi�
antly in the initial learning periods, due to the di�erent sear
hspa
e dimensionality, as expe
ted.Following the initial learning period of the optimization pro
edure, asmooth in
rease is observed in the alignment yield 〈cos2(θ)〉, as a fun
tionof the laser intensity. The best 〈cos2(θ)

〉 value, as reported in the stati
high intensity 
ase (Table 9.5), is su

essfully re
overed: A 〈cos2(θ)
〉 value
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 environ-ment does not hamper the optimization performan
e given a desired targetintensity, as long as the initial learning period is passed.Figure 9.18 presents a 
omparison between the pulse-shape attainedby the DR2 during a dynami
-intensity run at the milestone of Ωge =
160× 1012s−1, to the equivalent optimized pulse-shape attained in the stati
optimization pro
edure at the same Rabi frequen
y milestone, previouslyshown in Figure 9.14. Several 
on
lusions may be drawn from this 
om-parison. While the 〈cos2(θ)〉 yield value is similar for both 
al
ulations (aswell as in further 
al
ulations using this approa
h), the pulse shapes aredramati
ally di�erent. Evidently, the pulse shape that the algorithm �ndsis heavily in�uen
ed by the way that the adaptation of the pulse intensitysteered the 
al
ulations through the sear
h lands
ape. This behavior is 
on-sistent with theoreti
al analysis of Quantum Control lands
apes and theirlevel sets [131, 134℄.Evolution of PulsesWe devote this se
tion to the exploration of the pulse shapes obtained inthe dynami
 intensity environments. Our experimental pro
edure has essen-tially an asymmetri
 nature due to its two stages: The �rst stage of rampingthe intensity from low-to-high requires a learning phase (see Figure 9.17),whereas when reversing the pro
ess and bringing the intensity ba
k downthe optimization starts from a 
onverged result. Thus, highly optimizedsolutions 
an be maintained throughout the latter ex
ursion, and the transi-tion from high-to-low intensity 
an be 
ontinuously observed. This pro
essis illustrated both in Figure 9.19 and in Figure 9.20. In the latter, a se-quen
e of pulses are shown, starting from pulses at low intensity (top-left
orner), where the learning pro
ess takes pla
e, moving along the snapshotgallery in a matrix-indexing-order fashion, to the 
enter of the plot wherethe intensity is in its maximal regime, before redu
ing to a lower inten-sity again for the pulses shown in the lower-right part of the plot. Theselatter pulse-shapes are very simple pulse trains, with a pulse separation of
1/(3Brotc) = 2.2ps. Su
h a pulse train is very di�erent from the pulse trainobtained for the stati
 problem (Figure 9.14), where a pulse separation of
1.1ps was observed in the stati
 
al
ulation at Ωge = 40 × 1012s−1. Never-theless, the alignment observed at the end of the optimization of Figure 9.20rea
hes a value of 〈cos2(θ)

〉

= 0.548, whi
h 
ompares rather well with thevalue of 0.550 obtained in Figure 9.14. At these low intensities, as previouslyobserved at high intensity, vastly di�erent pulse shapes are able to produ
esimilar optimized values of 〈cos2(θ)
〉. These solutions are on a level set, butthe present 
al
ulations do not reveal if these solutions are on 
onne
ted(i.e., 
ontinuously morphable from one level set to another), or dis
onne
ted
omponents of the level set. At low intensity, the 1/(6Brotc) = 1.1ps pe-
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Figure 9.17: Evolution 
ourse of the best DR2-plain runs for phase resolu-tions of n1 = 80 and n2 = 160 pixels, on the ramped-up intensity (dashedor dotted, respe
tively) versus the ramped-down intensity (reversed dire
-tion, solid 
urves that merge for both runs). Ea
h dire
tion 
orresponds to
105 generations (106 fun
tion evaluations).

Figure 9.18: Comparison of pulse shapes that were obtained in optimizationsemploying the DR2-plain pro
edure, when using a �xed Ωge = 160×1012s−1(bottom, and see Figure 9.14), or � at this same value of Ωge = 160×1012s−1� in the 
ourse of an optimization where Ωge was linearly varied from 40 ×
1012s−1 to 180 × 1012s−1.
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Figure 9.19: Intensity dependen
e of the alignment 〈cos2(θ)
〉 and the laserpulse shape from the ramped-up dynami
 intensity environment, subje
tto a linear in
rease: Ωge := 40 × 1012s−1 → 180 × 1012s−1. Snapshots aretaken at � (a) 54 × 1012s−1, (b) 110 × 1012s−1, (
) 166 × 1012s−1 � andanalyzed respe
tively.
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ular Alignmentriod observed in Figure 9.14 and the 1/(3Brotc) = 2.2ps period observed inFigure 9.20 
orrespond to a laser intera
tion that o

urs on
e per period
Trev02 = 1/(6Brotc) = 1.1ps of the J = (0, 2) 
oherent superposition state(Figure 9.14), or every se
ond period (Figure 9.20). This 
an easily be ob-served in Figure 9.19, where the temporal behavior is shown for the laserpulse shape and the indu
ed dynami
 alignment for Ωge = 54 × 1012s−1,
Ωge = 110×1012s−1, and Ωge = 166×1012s−1. As the intensity is in
reased,higher rotational states begin to 
ontribute to the rotational wavepa
ket andthe Trev = 1/(2Brotc) = 3.3ps rotational period begins to assert itself. Thisis a 
onsequen
e of the energy di�eren
es between rotational levels J0 and
J0 + 2, being multiples of 2Brot for all values of J0. In the latter half ofthe pulse (t > 0), additional narrowly spa
ed pulses 
ome into play, beingspa
ed by Trev/4 = 1/(8Brotc) = 0.8ps. The o

urren
e of these new peaks
omes at the expense of the peak at 2.2ps, whi
h is 
onsiderably weakenedin the 
al
ulation at Ωge = 110×1012s−1 (Figure 9.19(b)), and is 
ompletelyabsent in the 
al
ulation at Ωge = 166 × 1012s−1 (Figure 9.19(
)). In thelatter 
al
ulation a new peak has appeared at a delay of 3.3ps, 
orrespondingto the full revival of the rotational wavepa
ket formed.We thus 
on
lude that the optimal pulses observed in the simulationsarise as a result of an interplay between the temporal stru
ture that is re-quired to optimize the transfer from J = 0 to J = 2, leading to peak sep-arations that are a multiple of 1/(6Brotc), and the temporal stru
ture thatis required to optimize the transfer from there to higher rotational levels,whi
h leads to peak separations that are multiples of 1/(8Brotc).Step-Size and Phase Traje
toriesFigure 9.21 presents the 
al
ulation of the Eu
lidean distan
e between evolv-ing 
ontrol phase fun
tions that are determined sequentially as optimal ev-ery 100 generations (i.e., between following best-individuals), as well as theglobal step-size of the mutation operator in those time stamps. Dramati

hanges between 
ontrol phases are observed in the initial learning period,as expe
ted. This is followed by a trend of mild 
hanges, with several burstsof ≈ 2π variations. We propose the so-
alled wrapping e�e
t as an ex-planation for these ≈ 2π-jumps: The 
ontrol phase fun
tion is subje
t to
[0, 2π]-periodi
 boundary 
onditions, that are enfor
ed by wrapping a phasevalue. Upon examination of the phase spa
e, it is indeed 
on�rmed thatthese bursts are 
aused by a boundary wrapping of a phase fun
tion value(its index varies). We thus 
on
lude that the variations in the phase spa
eare 
onsistently mild subje
t to the dynami
 laser intensity. This is 
onsis-tent with the step-size behavior (presented in log10 s
ale), whi
h stays in theorder of 10−2 after the learning period, with expe
ted �u
tuations.Interestingly, following the initial learning period, the algorithm "staysin the neighborhood", whi
h seems to be su�
ient for determining optimal



9.4. Evolution of Pulses under Dynami
 Intensity 179

Figure 9.20: Evolution of laser pulses subje
t to linearly in
reased followedby linearly de
reased laser intensity, Ωge := 40×1012s−1 → 180×1012s−1 →
40 × 1012s−1, presented as snapshots of optimized pulse shapes at spe
i�
intensity milestones. The order follows a matrix-indexing fashion. The pulse-shapes obtained in the end of the pro
ess, i.e., after the ramping-down tothe regime of low-intensity (bottom right) are a simple pulse train with pulseseparation of 1/(3Brotc) = 2.2ps.
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Figure 9.21: The evolution 
ourse of the DR2-plain on n1 = 80 pixels sub-je
t to the ramping up and down laser intensity environment. Dashed line �uns
aled �tness evolution; Thin solid line � the Eu
lidean distan
e betweenevolving 
ontrol phase fun
tions [s
aled on the left axis℄; Thi
k line - globalstep-size of the mutation operator [log-s
aled on the right axis℄. Dramati
Eu
lidean traje
tories in the 
ontrol phase fun
tion are observed during theinitial learning period, as well as at spe
i�
 bursts of ≈ 2π variations, 
orre-sponding to the so-
alled wrapping e�e
t.
ontrols for the 
ontinuously 
hanging laser intensity. This means that highalignment yield at di�erent laser intensities 
orresponds to a neighborhoodof the 
ontrol spa
e.9.5 S
alability: Control Dis
retizationIn this se
tion we aim at exploring the s
alability of the alignment problemwith respe
t to the 
ontrol resolution. So far, the latter has been �xed inour 
al
ulations to n = 80. In parti
ular, we would like to study the trade-o� between the 
ontrol resolution, whi
h allows �ne-tuning of the ele
tri
�eld, to the su

ess-rate of the evolutionary learning pro
ess, subje
t to a�xed number of fun
tion evaluations. Due to 
omputational 
onsiderations,we 
hoose to 
ondu
t the s
alability 
al
ulations on the zero-Kelvin variantof the alignment problem. Also, we sele
t the DR2 subje
t to the plainparameterization as our optimization kernel for this investigation.
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Figure 9.22: Best, mean and worst 
osine-squared alignment values obtainedby the DR2 for ea
h parameterization, over 10 runs of 20, 000 fun
tion eval-uations ea
h (see legend).9.5.1 Numeri
al ObservationWe apply the DR2 algorithm to the optimization task in the following man-ner: 10 runs per 
ontrol dis
retization, with n = {80, 100, 120, . . . , 680, 700},and additionally with n = {800, 900, 1000}. Ea
h run is limited to 20, 000fun
tion evaluations.Figure 9.22 presents the numeri
al results of these 
al
ulations. The best,mean and worst �tness values obtained by the DR2, after 20, 000 fun
tionevaluations, for ea
h dis
retization, are presented. As 
an be observed, thebest �tness value is attained for n = {80, 100}; As the dimension n in
reases,there seems to be a weak trend of �tness values de
rease, but the DR2still manages to obtain high quality solutions in the regime of 0.94 even for
n = 400.A typi
al evolution run for n = 100 is given in Figure 9.23. As 
anbe observed from this plot, a su

essful learning is obtained after ≈ 5, 000fun
tion evaluations. In higher dimensions, i.e., n ≥ 500, the DR2 doesnot su

eed in ta
kling the problem within the limited number of fun
tionevaluations. A typi
al run for n = 700 is presented in Figure 9.24.
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Figure 9.23: A typi
al DR2 evolution run for n = 100, with 20, 000 fun
tionevaluations. Su

essful learning is observed after ≈ 5, 000 evaluations.

Figure 9.24: A typi
al DR2 evolution run for n = 700, with 20, 000 fun
tionevaluations. No su

essful learning is observed.
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Figure 9.25: DR2 evolution run, for n = 1000, with 100, 000 fun
tion eval-uations. The best 
osine-squared alignment value found was f∗ = 0.9583.Granting Additional Fun
tion EvaluationsGiven the numeri
al results of the previous se
tion, we were interested inthe question whether the �xed number of fun
tion evaluations posed a lim-itation on the sear
h and did not allow a su

essful learning of the de
isionparameters and 
onvergen
e into a good solution.We have 
ondu
ted another series of runs, limited now to 100, 000 fun
-tion evaluations, for the extreme 
ase of n = 1000. We were surprised to�nd out that some of the runs did su

eed in 
onverging su

essfully into�ne solutions of high yield values. In parti
ular, we would like to pointout a run whi
h attained a solution with 
osine-squared alignment value of
f∗ = 0.9583, a value whi
h is 
lose to the highest value known to us for thisvariant of the problem. The plot of that spe
i�
 evolution run is given inFigure 9.25. A rough observation reveals that the DR2 'takes-o�' into a 
on-vergen
e pathway only after ≈ 50, 000 fun
tion evaluations, and then it needsadditional 30, 000 fun
tion evaluations to rea
h saturation. This numeri
alobservation indi
ates that the learning task of the de
ision parameters inthis problem is still feasible in higher dimensions of the 
ontrol fun
tion,as long as the granted number of fun
tion evaluations is su�
iently large.From the algorithmi
 perspe
tive, the employed DES variant, the DR2 algo-rithm, ta
kled su

essfully this 1000-dimensional problem. However, from
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ular Alignmentthe physi
s perspe
tive, su
h a high-resolution parameterizationdoes not seem to pay-o�, as far as the 
osine-squared observableis 
on
erned, and there seems to be no justi�
ation to employdis
retization of the 
ontrol phase fun
tion with more than n=80pixels.9.6 Intermediate Dis
ussionOur 
al
ulations so far, espe
ially in Se
tions 9.3 and 9.4, show that it ispossible to en
ounter high diversity of optimal solutions in 
onstrained nu-meri
al simulations of Quantum Control, and moreover, that the examina-tion of su
h ri
h sets of solutions 
an be
ome an important aspe
t of the
ontrol experiments. The diversity of su

essful 
ontrols likely 
ontains use-ful dynami
al information, and may also provide the de
ision maker witha list of 
hoi
es to 
onsider for weighing in other an
illary 
ontrol 
riteria,e.g., multi-
riterion de
ision making. The present 
al
ulations optimizingdynami
 mole
ular alignment in a diatomi
 mole
ule exposed to an intense,shaped laser �eld, provide 
ompelling eviden
e that the absolute value ofthe quantity that is being optimized (i.e., the �tness) is the true measure ofsu

ess, and that the same value of the �tness may be a
hievable by widelydi�ering laser pulse shapes that share only a limited number of 
ommonfeatures. Ea
h of these solutions has the potential of 
arrying valuable infor-mation about the underlying physi
s, where some of the solutions providedkey information on the dynami
s of the alignment pro
ess. Viewed in thissense, the uniqueness of the �tness value, and the diversity of the solutionsthat 
an lead to a

omplishment is a blessing in disguise.We also showed that the optimized alignment yield attained a value whi
hwas very 
lose to the maximal possible yield in the 
urrent framework, evenwhen the 
onstraints on the optimization translated into a signi�
ant distor-tion of the resultant wavepa
ket. By relaxing spe
i�
 
onstraints, we showedthat it was possible to enhan
e the observable alignment further toward themaximal attainable alignment possible for the rotational basis set used. Thisout
ome leads to the optimisti
 
on
lusion that high yields may be obtained,even when a priori it seems that the system is subje
t to severe 
onstraintsfor 
onstru
ting the wavepa
ket. As dis
ussed, the origin of this behavior
an be understood in terms of the variational prin
iple, as well as the phys-i
al observable involving an integration over the wavefun
tion whi
h hidessome of its dis
repan
ies.As a dire
t implementation of these 
on
lusions, we would like to 
om-plete our work on the optimization of dynami
 mole
ular alignment by meansof two additional aspe
ts - multi-obje
tive optimization, as well as ni
hing.
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tive OptimizationAs further investigation of the alignment problem, we would like to ex-tend our single-
riterion optimization approa
h to a Pareto Optimizationapproa
h. As previously introdu
ed in Chapter 5, Pareto Optimization aimsat attaining the e�
ient set for a given multi-obje
tive optimization problemand its 
orresponding Pareto front. In parti
ular, we are interested in remov-ing the punishment approa
h to high-intensity pulses, and rather 
onsiderthe �uen
e of the pulse as an independent obje
tive, subje
t to minimiza-tion. Thus, the observable's yield remains as an obje
tive, while we 
hooseto de�ne the total-SHG signal of the ele
tri
 �eld as the se
ondary obje
tivesubje
t to minimization.Formally, we aim at �nding the Pareto front for the following bi-
riteriaproblem:
f1 = maxE(t)

〈

cos2(θ)
〉

−→ max

f2 =

∫ ∞

−∞
|E(t)|4dt −→ min

(9.10)In order to sele
t an appropriate optimization method, the following 
har-a
teristi
s of the obje
tive fun
tions in the appli
ation problem are of im-portan
e: Based on our a

umulated experien
e with the problem in itssingle-
riterion form, we assume that the fun
tions f1 and f2 are 
ontinu-ous in most points, highly nonlinear and multimodal. Nothing is known yetabout the shape of the Pareto front for the appli
ation problem. Analyti
alte
hniques and methods based on di�erential 
al
ulus are likely to fail in thisproblem, be
ause of the 
omplexity of the integral equations.9.7.1 Choi
e of MethodsWe 
hoose to apply the NSGA-II, as presented earlier (Se
tion 5.1.2), to the
urrent task. Due to the duration of the simulator evaluation, we would liketo 
onsider a spe
i�
 metamodel that may allow for the a

eleration of the
al
ulations.Metamodel-Assisted NSGA-II In order to a

elerate sto
hasti
 opti-mization algorithms in the presen
e of time 
onsuming fun
tion, metamod-els have been frequently proposed (see, e.g., [167, 168, 169℄). A metamodelis an approximation of an obje
tive fun
tion that is learned from a set ofevaluations.More expli
itly, given a set of points ~x(1), . . . , ~x(k) ∈ Rn, and the 
or-responding evaluations of the obje
tive fun
tions at these points, ~f (1) =
f
(

~x(1)
)

, . . . , ~f (k) = f
(

~x(k)
), the metamodel 
an be used to 
ompute anapproximation, denoted by f̂(~x) ≈ f(~x), for any point ~x ∈ Rn, in a dura-tion whi
h is 
onsiderably shorter than the pre
ise evaluation. As expe
ted,
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 Mole
ular Alignmentmetamodels tend to be more pre
ise near the training points.Kriging1, also referred to as Gaussian random �eld models, is a parti
-ular type of interpolation model that has been frequently applied for meta-modeling [167, 168, 169℄. The statisti
al motivation for this method is thatthe deterministi
 obje
tive fun
tions are 
onsidered to be realizations of aGaussian random �eld G. This assumption makes it possible to 
ompute ameasure for the un
ertainty of predi
tions, i.e., ea
h predi
tion value is asso-
iated with a standard deviation that 
an be used for 
omputing two-sided
on�den
e intervals.It is typi
ally assumed that these random variables G~x are 
orrelated bymeans of a spatial 
orrelation fun
tion,
c : Rn × Rn → [−1, 1],i.e., a 
orrelation fun
tion that depends only on the positions of the randomvariables in spa
e. In our study we shall use a 
orrelation fun
tion of theform:

c(~x, ~x′) = exp
(

−θ
∣

∣~x− ~x′
∣

∣

2
)The 
orrelation fun
tion of the Gaussian random �eld is estimated from thegiven data, or given a-priori. In this study we apply leave-one-out 
ross-validation to determine an appropriate value of θ, as suggested in [170℄.After the 
orrelation fun
tion is estimated, the predi
tion is made. For thispurpose, the 
onditional Gaussian distribution at the given input ve
tor

~x ∈ Rn is 
omputed.A pra
ti
al implementation of Kriging has been des
ribed by Emmeri
h[101℄, and it was su

essfully employed in engineering design optimization[100, 169, 171℄. Multi-obje
tive problems were typi
ally approa
hed by learn-ing metamodels for ea
h obje
tive fun
tion separately, in an implementationknown as lo
al Kriging. We omit here its derivations, and refer the readerto [101℄.In the metamodel-assisted NSGA-II [171℄, Kriging metamodels are usedto pre-evaluate the set of o�spring solutions and sele
t favorable variantsamong it for pre
ise evaluation. The un
ertainty information 
an be used tofa
ilitate sear
h in less explored regimes of the lands
ape.Algorithm 9 outlines the general Metamodel-Assisted Evolutionary Al-gorithm (MA-EA), as des
ribed by Emmeri
h [101℄. The di�eren
e to thegeneri
 Evolutionary Algorithm 
an be summarized as follows:
• All pre
isely evaluated points are stored in a database, denoted by Dt(
f. lines 4 and 9).1Kriging originates from geostatisti
s, and is named after the mining-engineer Krige.
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Figure 9.26: Outputs of Gaussian Random Field Metamodels using a R→ Rmapping example. Three points, ~x(1), ~x(2), and ~x(3) have been evaluatedhere. The result of ea
h approximated evaluation at a point ~x′ is representedby the mean value, ŷ, and by the standard deviation, ŝ, of a 1D Gaussiandistribution. Figure 
ourtesy of Mi
hael Emmeri
h [101℄.
• The algorithm �lters out less promising solutions (
f. line 8) andthereby redu
es the o�spring population size. The remaining solu-tions are then pre
isely evaluated and 
onsidered in the subsequentsele
tion.There are many possibilities to design �lters for that purpose. In this studywe restri
t ourselves to 
onstant output size �lters. The size of the resulting�ltered set will be denoted by ν and the 
orresponding MA-EA will be termeda (µ + ν < λ)-EA. All �lters will be rank-based, i.e. they sort the o�springpopulation with respe
t to some 
riterion, a so-
alled �lter 
riterion.We o�er a 3D visualization in Figure 9.27 in order to gain some intuitioninto the di�erent 
on
epts of �lters in the bi-
riteria 
ase. In the latter, thePareto-front approximation of the 
urrent population is depi
ted, as well asthree o�spring individuals, namely ~x1, ~x2 and ~x3. The o�spring individualshave been evaluated with the Kriging metamodel, and thus their pre
isevalues are not yet known, but rather the de�ning parameters of 2D Gaussianrandom variables, G~xi

. The distributions of the random variables G~x1
,G~x2

,and G~x3
are also visualized in the diagram by means of their probabilitydensity fun
tions.Four di�erent 
riteria have been dis
ussed by Emmeri
h [101℄ for assigninga yield value to a sear
h point ~x, whi
h is based on the predi
tion provided
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Figure 9.27: Interval boxes for approximations in a solution spa
e with twoobje
tives. Figure 
ourtesy of Mi
hael Emmeri
h [101℄.by the de�ning parameters of the Gaussian predi
tor G~x:
• Mean Value Non-dominated / 
rowding distan
e sorting, based onthe expe
ted value for G~x given by f̂(~x).
• Lower Con�den
e Bound (LCB) Non-dominated / 
rowding dis-tan
e sorting on the lower bound edge of the 
on�den
e interval of
G~x.

• Probability of improvement (PoI): The probability that the re-alization of G~x is non-dominated. It 
an be 
omputed via integrationover the non-dominated set.
• Expe
ted Improvement (ExI) The expe
ted in
rease in the domi-nated hypervolume for G~x is measured.Modus OperandiWe applied the following algorithmi
 kernels to the Dynami
 Mole
ularAlignment:
• NSGA-II: The 
lassi
al variant by Deb [98, 172℄.
• Metamodel-Assisted EA with Probability of Improvement (PoI-EMOA).
• Metamodel-Assisted EA with Expe
ted Improvement (ExI-EMOA).The parameterization of these methods is µ = 50, ν = 0.2 · λ, with twodi�erent settings for λ: λ = 250 and λ = 50. The parameters of the mutationoperator and re
ombination operator have been 
hosen as des
ribed by Deb
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tive Optimization 189Algorithm 9 (µ+ λ)-MA-EA1: t← 02: Pt ← init() {Pt ∈ Sµ: Set of solutions}3: Evaluate(Pt)4: Dt ← Pt5: while t < tmax do6: Gt ← Generate(Pt) {Generate λ variations}7: Metamodel_evaluate(Gt) {Metamodel is derived from Dt}8: Qt = Filter(Gt)9: Dt+1 ← Dt ∪Qt10: Pt+1 ← Sele
t(Qt ∪ Pt) {Rank and sele
t µ best}11: t← t+ 112: end while[98℄. Due to implementation 
onsiderations, in pra
ti
e both obje
tives wereminimized, and therefore we assign:
f1 → max =⇒−f1 → min9.7.2 Numeri
al ObservationFigures A.14, A.15 and A.16 present the results of our 
al
ulations, wherethe 20%, 50% (median), and 80% attainment surfa
es are plotted. Ea
h oneof them refers to 5 runs with 20, 000 evaluations per run. In order to makethe 
urves easier to be distinguished, we zoomed-in a box around the kneepoint of the Pareto front approximations.Dis
ussionThe results 
learly indi
ate that there is a 
on�i
t between the two obje
tives,as suspe
ted. Thus, Pareto optimization is an appropriate tool for solvingthis problem. The fa
t that a 
onvex Pareto front has been observed suggeststhat good 
ompromise solutions are likely to be found. We observe a sharpin
reasing �ank at both ends of the approximated Pareto front. Regions offair trade-o�s range from about −0.6 to −0.4 in the (−f1) 
oordinate.There are signi�
ant di�eren
es in the behavior of the multi-obje
tiveEA variants. The best 
overage of the Pareto front has been a
hieved bythe ExI-EMOA. This variant is the only variant that found solutions for f1above 0.58. The highest value found was 0.6184. The PoI-EMOA resultedin approximations with lower spread. However, the pre
ision of this EMOAvariant was better in the regions 
overed. This result is 
onsistent withsome theoreti
al �ndings reported in [171℄, as well as with their numeri
alassessment on arti�
ial problems reported there. The expe
ted improvementmeasure puts emphasis on exploring unknown regions, while the probability
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Figure 9.28: Left: f − f̂ - plot for (−f1); Right: f − flb - plot for (−f1).

Figure 9.29: Left: f − f̂ - plot for f2; Right: f − flb - plot for f2.of improvement have the tenden
y to 
arry out better exploitation of visitedregions. Overall, the metamodel-assistan
e seems to be a valuable ingredientfor this problem, as 
an be seen by 
omparing the results of the NSGA-IIwith those of the metamodel-assisted EMOA.A more detailed analysis of the metamodel-based approximations wasperformed, in order to assess whether the metamodeling worked as expe
tedfrom theory. The results are displayed in Figures 9.28 and 9.29, for one ofthe runs with the ExI-EMOA (λ = 250). The f − f̂ plots indi
ate that inthe whole range of fun
tion values the results obtained with the metamodelwere strongly 
orrelated with the true fun
tion values. The error bandwidthfor f1 is about 10% of its range versus 15% for f2 with respe
t to its range.These results 
orrespond to results in similar studies in metamodel-assistedoptimization [171℄. Moreover, the lower 
on�den
e bounds, denoted by flb,have been 
ompared to the out
ome of the pre
ise evaluations, f . Here, the
95.45%-lower 
on�den
e bounds, as 
omputed by the Kriging method, havebeen assessed for their validity (see Figures 9.28 and 9.29). The results arein 
onformity with theory for f1. However, some outliers for f2 in the region
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ation of Ni
hing 191of flb from 0.15 − 0.2 should be reported. However, these outliers did notseem to hamper the algorithmi
 performan
e.From the physi
s point of view the obtained result is interesting, sin
eit shows the nature of the trade-o� between the alignment's observable andthe intensity of the ele
tri
 �eld, expressed here by means of the se
ondharmoni
 generation signal. The importan
e of the intensity 
riterion islikely to govern the de
ision of the expert on the trade-o� surfa
e, whi
his to look for solutions with relatively good f1 values in the region of fairtrade-o�s.9.8 Appli
ation of Ni
hingWe shall apply here our DES ni
hing algorithms to the zero-Kelvin variantof the dynami
 mole
ular alignment. Following the appli
ation of ni
hing tothe population transfer problem in the rotational framework, as des
ribed inSe
tion 8.3, we take into 
onsideration the diversity measure issue, and fullyadopt the 
on
lusions drawn in Se
tion 8.3.1.Modus OperandiWe 
onsider here three ni
hing strategies:1. The (1, λ)-DR2 � for being the best method to perform on this problem,and also as a representative of �rst-order strategies.2. The (1, λ)-CMA � as a representative of se
ond-order information strate-gies.3. The (1 + λ)-CMA � as a representative of elitist strategies.We 
ondu
t 10 runs per method, sear
hing for q = 3 ni
hes, subje
t to plainparameterization of the 
ontrol phase at n = 80 pixels. Ea
h run was limitedto 15, 000 fun
tion evaluations per ni
he.9.8.1 Numeri
al ObservationThe 
al
ulations are dis
ussed at several levels.Ni
he-RadiusFollowing the derivation done for the ni
he radius in the population transferproblem in Se
tion 8.3.2, we 
ondu
ted preliminary runs with a ni
he-radiusof ρ = 110. However, it performed poorly, in an equivalent way to its initialperforman
e on the population transfer problem: The DR2 as well as theCMA-
omma failed, and the CMA-plus obtained good solutions only for the�rst ni
he.
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 Mole
ular AlignmentTable 9.6: Three ni
hes obtained in 10 runs � averaged yield values (inparentheses - best value attained) � for the three employed ni
hing strategies.Ranked-Ni
hes DR2 CMA CMA+Best ni
he 0.9417 (0.9605) 0.8553 (0.9029) 0.9517 (0.9585)

2nd-best ni
he 0.8477 (0.9552) 0.8229 (0.8561) 0.9493 (0.9525)

3rd-best ni
he 0.8054 (0.8558) 0.7966 (0.8161) 0.9365 (0.9484)Table 9.7: Ni
hes 
orrelation for the ni
hes obtained in 10 runs � averaged
ross-
orrelation values, as de�ned in Eq. 8.16.Ni
hes Correlation DR2 CMA CMA+
c1,2 0.6784 0.6952 0.6312

c1,3 0.6288 0.6905 0.6062

c2,3 0.7593 0.6951 0.6414We managed to get satisfying results for ρ̃ = 55, as will be reported here.Thus, 
onsider all the reported results here as obtained with ρ̃ = 55.Su

ess-RateThe 
osine-squared alignment of the three methods, for the three obtainedni
hes, is presented in Table 9.6. We 
an observe a 
lear trend - the CMA+me
hanism outperformed the other me
hanisms, with 
onsistent lo
ationof three good ni
hes on average. However, the DR2 me
hanism managed toobtain the top-quality solutions for the best as well as for the 2nd-best ni
hes,in 
onsisten
y with our previously reported results. The latter typi
ally failedto lo
ate a 3rd good ni
he. The CMA 
omma-strategy, on the other hand,simply failed in obtaining satisfying ni
hing results on this lands
ape.Ni
hes Cross-CorrelationWe 
al
ulated the 
ross-
orrelation 
oe�
ients for the obtained pulse-shapesof the di�erent ni
hes, as de�ned in Eq. 8.16. The results of these 
al
u-lations are presented in Table 9.7. We may state that the pulse-shapes ofthe di�erent ni
hes are weakly 
orrelated to one another. In parti
ular, it isinteresting to note the low 
orrelation values of the the CMA+ kernel.



9.8. Appli
ation of Ni
hing 193Laser Pulse DesignsOur de�nition of a distan
e measure to this problem has been proved tobe su

essful. The obtained pulses in the time-domain had indeed di�erent
hara
teristi
s, representing di�erent 
on
eptual laser-pulse designs. Threeni
hes, obtained in a typi
al CMA+ run, are plotted by means of their pulseintensities and revival stru
tures in Figures A.17, A.19 and A.21.Con
eptual Quantum Stru
tures RevisitedWe would like to o�er an additional analysis for our ni
hing solutions. Fig-ures A.18, A.20 and A.22 provide the SWFT pi
ture for the obtained so-lutions. It 
an be observed that these three solutions represent the same
on
eptual quantum stru
ture of states population. This SWFT observationreinfor
es our 
on
lusions 
on
erning the 
orrelation between the employedoptimization routine in 
ombination with the applied parameterization tospe
i�
 
on
eptual quantum stru
tures, as drawn in Se
tion 9.3.1. There-fore, we do not �nd it surprising that all three obtained pulses share thesame 'behind-the-s
enes physi
s', due to the fa
t that they were all obtainedwith the same algorithmi
 kernel (e.g., CMA+), subje
t to the plain param-eterization. This observation does not 
ontradi
t our primary 
on
lusionthat the ni
hing pro
ess has been su

essful in lo
ating three di�erent pulseshapes in the temporal domain, as initially required. It simply reveals anadditional, well-hidden, degenera
y among the solutions. In the next se
tionwe shall o�er a way to remove this se
ond degenera
y 
ompletely.Removing the Se
ond Degenera
yGiven the additional degenera
y whi
h was en
ountered in the SWFT spa
e,one 
an further develop a problem-spe
i�
 diversity measurement. In this
ase, our idea is to 
onsider the wavepa
ket spa
e, and more expli
itly, toevaluate the di�eren
es between the population of rotational levels, ∣∣∣a(t)
j

∣

∣

∣

2,as the measurement of diversity between ni
hes. The implementation itselfis straightforward, due to the fa
t that the ve
tor of population 
oe�
ients isgiven by the alignment-routine. Sin
e the 
oe�
ients are normalized, subje
tto the normalization postulate of Quantum Me
hani
s, it is fairly simple toestimate the ni
he radius in this 
ase.Ni
he Radius: Wavepa
ket Spa
e A

ording to the Quantum Me
han-i
s normalization postulate, the wavepa
ket 
oe�
ients in the N -dimensionalHilbert spa
e are normalized:
N
∑

j

∣

∣

∣a
(t)
j

∣

∣

∣

2
= 1



194 Chapter 9. Dynami
 Mole
ular AlignmentIn the wavepa
ket treatment for removing the se
ond degenera
y, these 
o-e�
ients play the role of the de
ision parameters, as far as the diversitymeasurement is 
on
erned.The 
al
ulation of r of Eq. 3.3 simply reads:
r =

1

2

√

√

√

√

Nrot
∑

j=1

∣

∣

∣
a

(t)
j

∣

∣

∣

2
=

1

2With q = 3 and Nrot = 20, Eq. 3.5 yields:
ρ =

1
2

3
1
20

≈ 0.47 (9.11)Thus, we set it to ρ = 0.5. We 
hoose to employ only the CMA+ kernel inthis 
ase, subje
t to plain as well as Hermite parameterizations, aiming toshow feasibility of the de�ned diversity measure.This newly-de�ned diversity-measurement for the alignment problem hasbeen observed to be su

essful. The obtained pulses in the temporal domainhad indeed di�erent 
hara
teristi
s, and in parti
ular their shapes di�ered ina satisfying manner. We 
onsider here the results obtained when the Hermiteparameterization was employed. The best ni
he obtained in every run wastypi
ally of the optimal 
lass known to us: Both the 
osine-squared alignmentyield, as well as the pulse shape and the population pro�le, were asso
iatedwith the best solutions reported previously. The se
ond-best ni
he was arepresentative of a sub-optimal set of solutions: It had a lower value of 
osine-squared alignment yield and a di�erent pro�le of population. However, notethat the third-best lo
ated ni
he was not typi
ally an interesting solution,as it had dramati
ally lower alignment values in 
omparison to the �rst twoni
hes. The temporal pulse-shapes themselves were very weakly 
orrelated.Typi
al solutions of best and se
ond-best ni
hes are plotted in FiguresA.23 and A.25, with their 
orresponding SWFT pi
tures in Figures A.24 andA.26.Dis
ussionWe would like to summarize our numeri
al observation of the applied ni
hingalgorithms to the dynami
 mole
ular alignment problem. Ni
hing with theCMA+ kernel performed best, while always obtaining three ni
hes of high-quality laser pulses. The DR2 found the best solution, in 
onsisten
y withour previously reported observations, but did not perform well on the se
-ondary ni
hes. The CMA-
omma failed to obtain satisfying ni
hing results.The original 
al
ulation of the ni
he radius was not su

essful at thepra
ti
al level, as reported for the population transfer problem. After intro-du
ing a fa
tor of 0.5 to the original value, the ni
hing pro
ess was observed



9.8. Appli
ation of Ni
hing 195to be su

essful. The obtained pulse-shapes were typi
ally weakly 
orrelated,as required.As far as the algorithmi
 performan
e is 
on
erned, we adopt the 
on
lu-sions drawn for the appli
ation of ni
hing to the population-transfer problem.We thus as
ribe the failure in pra
ti
e of the originally 
al
ulated ni
he ra-dius, as well as the 
ompromised performan
e of the 
omma-strategy kernelson the se
ondary ni
hes, to the highly 
onstrained nature of the lands
apewhen underposed to a radius-based ni
hing framework.Furthermore, we have applied a physi
s numeri
al assessment, at thequantum rotational pi
ture, with the so-
alled SWFT te
hnique. The lat-ter has supported previous observations 
on
erning the 
orrelation betweenoptimization routines in 
ombination with parameterizations to 
on
eptualquantum stru
tures. This observation revealed that all three ni
hes of agiven run, whi
h di�er su�
iently at the laser-pulse design level (tempo-ral domain), typi
ally share the same 
on
eptual quantum stru
ture at theSWFT pi
ture (wavepa
ket spa
e). We o�ered another diversity measure,whi
h relies on the physi
s information, in order to remove this se
ond de-genera
y. This approa
h indeed su

eeded in that, and obtained multiplesolutions 
orresponding to di�erent 
on
eptual designs.





While the growing 
orpus of knowledge 
ould be represented bythe diameter of an expanding 
ir
le, the horizons of ignoran
eand open questions would be then represented by the area ofthat 
ir
le.Chinese proverb
Summary and OutlookOur journey has gone so far through the realms of Natural S
ien
es, whilekeeping a guiding tor
h of Computing and Operations Resear
h. The journeyis 
oming to its 
losure, and thus we would like to summarize it.Our starting point was the �eld of Evolution Strategies, a 
omputationaldis
ipline whi
h stems from Evolutionary Biology. We presented it in Chap-ter 1, and des
ribed in detail a new generation of its algorithms, the so-
alledDerandomized Evolution Strategies. We suggested to 
onsider these state-of-the-art ES variants as powerful optimization methods with lo
al-sear
h
apabilities.Chapter 2 was the gateway to ni
hing, and treated a wide spe
trumof related topi
s. In parti
ular, we deepened furthermore into the worldof Biology, exploring the topi
s of diversity and organi
 variations. Weturned from there ba
k to the optimization arena, where we 
onsidered ade�nition of the attra
tion basin, the part of the sear
h lands
ape whi
his equivalent to the e
ologi
al ni
he. We dis
ussed the important issue ofpopulation diversity within Evolution Strategies. Espe
ially, we reviewedprevious resear
h 
ondu
ted on the loss of diversity in ES, due to two main
omponents: Sele
tive pressure (take-over e�e
t), and drift (neutral e�e
ts,asso
iated with both re
ombination and sele
tion). We thus rea
hed the
on
lusion that an Evolution Strategy whi
h employs a small populationwill inevitably lose its population diversity.At the same time, we presented 
al
ulations whi
h suggested that ESwith small populations are subje
t to a so-
alled mutation drift. The latterallows for easy translation of populations from one lo
ation to another, ane�e
t that has the potential to boost fast spe
iation. This observation thusprovided us with further motivation to apply ni
hing with DES, algorithmi
variants whi
h typi
ally employ small populations.This was followed by a survey of 
lassi
al ni
hing methods, mainly fromthe GA �eld. We 
on
luded this introdu
tory 
hapter with postulating ourmission statement with respe
t to ni
hing. In short, we argued that a ni
hingte
hnique should attain the optimal interplay between the partitioning intostable subpopulations and the exploitation of ea
h ni
he by means of ane�
ient optimizer with lo
al-sear
h 
apabilities.Armed with this mission statement, and motivated by various results197



198 Summary and Outlooksuggesting that DES would be an attra
tive 
hoi
e for algorithmi
 kernelsin a ni
hing framework, we a

epted upon ourselves the 
hallenge. Chap-ter 3, the 
ore of Part I, introdu
ed our proposed framework of ni
hing inderandomized-ES, subje
t to a �xed ni
he-radius approa
h. The frameworkwas inspired by biologi
al 
on
epts and by 
lassi
al GA ni
hing te
hniques.In biologi
al terms, the proposed algorithm was asso
iated with a spe
ia-tion model of individual alpha-males. Following a detailed des
ription ofour method, we outlined a testbed of arti�
ial multimodal 
ontinuous land-s
apes. Upon the appli
ation of the proposed algorithm to the sear
h ofminima in these lands
apes, we analyzed the numeri
al observation with theso-
alled MPR Analysis. The latter allowed us to derive parametri
 valuesthat typi
ally de�ne the behavior of ea
h DES variant as a ni
hing kernel.Our observation 
on
luded that the CMA plus-strategy, whi
h has the lowestni
hing a

eleration, performed better than the other DES variants. Our pro-posed explanation for that 
onsidered the ni
hing problem as a 
onstrainedoptimization problem, where a plus-strategy is argued to have an advantagefor ES.Chapter 4 was a dire
t extension of Chapter 3, and it aimed at treat-ing the ni
he radius problem. By employing the CMA algorithmi
 kernel,we proposed two di�erent approa
hes for self-adaptation of ni
he-radii andni
he-shapes, based on step-size 
oupling and the appli
ation of the Maha-lanobis distan
e, respe
tively. We tested the various proposed variants onarti�
ial multimodal lands
apes, in
luding lands
apes with even and unevenspread of optima. The performan
e was highly satisfying, and was investi-gated by means of the MPR Analysis.In Chapter 5 we introdu
ed our ni
hing framework into the multi-obje
tivearena. Our stated mission was to treat multi-global optimization problems.More spe
i�
ally, our goal was to boost diversity in the de
ision spa
e, andby doing so to o�er more 
hoi
e in the typi
ally 
on�i
ting de
ision makingpro
ess. We derived a multi-parent ni
hing-CMA variant for that purpose,and showed that the appli
ation to a spe
i�
 set of multi-obje
tive problemsrequired only mild algorithmi
 adjustments. The observed performan
e washighly satisfying, and provided us with the desired proof of 
on
ept.Chapter 6 was the gateway to Part II, reviewing the main topi
s of OCTand OCE in the 
ontext of optimization. It outlined various important the-oreti
al results, whi
h 
on
luded that 
ontrollable un
onstrained quantumsystems have extrema that 
orrespond to perfe
t 
ontrol, or to no 
ontrolat all. Furthermore, perfe
t 
ontrol 
ould be typi
ally obtained with only�rst-order (gradient) information while 
limbing-up the QC lands
ape; Atthe top of the lands
ape, there is an in�nite number of attainable optimalpoints. Despite the fa
t that these results are valid for "perfe
t" theoreti
allands
apes with no 
onstraints, they play an important role in posing QC



Summary and Outlook 199optimization problems, and in suggesting 
ertain remarkable properties thatmight be instantiated in pra
ti
e. Some of the work reported here 
orrobo-rated some of these properties.Our pra
ti
al work on Quantum Control systems began in Chapter 7,where we 
onsidered two systems of two-photoni
 pro
esses both in simu-lations and in the laboratory. Upon analysis of pre-mature 
onvergen
e ofDES variants on these lands
apes, due to the unrestri
ted sear
h employedby them, we introdu
ed the so-
alled wrapping operator into the ES frame-work. The CMA outperformed the other algorithms on those lands
apes,even without using its se
ond-order (
ovarian
e) information. We foundthese results to be an experimental 
orroboration of the OCT lands
apeanalysis dis
ussed in Chapter 6.The quantum rotational framework, whi
h 
onstituted a 
onsiderable partof our resear
h, was treated in this study at several levels throughout Chap-ters 8 and 9. Chapter 8 laid out the Quantum Me
hani
al foundations of therotational framework, and posed the so-
alled population transfer problem.The latter was investigated by means of simulations at di�erent laser intensi-ties, whi
h revealed a ri
h lands
ape with a wide variety of optimal solutions.Moreover, it was observed that the number of independent solutions 
riti
allydepends on the di�
ulty of the problem, determined by the laser intensity.The study of the rotational population transfer problem was 
on
luded withthe appli
ation of our ni
hing algorithms. The latter required the de�nitionof a tailor-made distan
e metri
, due to invarian
e properties of the 
ontrolphase fun
tion. The numeri
al simulations obtained good ni
hing results,where the elitist CMA kernel performed best. Due to the fa
t that the orig-inal ni
he-radius 
al
ulation for this lands
ape failed in pra
ti
e, as well tothe fa
t that the 
omma-strategies did not perform well on se
ondary optima,we spe
ulated that the introdu
tion of a radius-based ni
hing approa
h tothis lands
ape posed a highly-
onstrained optimization problem.Last but not least, the dynami
 mole
ular alignment problem was ex-tensively investigated in Chapter 9. We began the 
hapter by providing themotivation for obtaining mole
ular alignment, and then formally posed theproblem. Following a straightforward appli
ation of DES to the problem wefurther approa
hed it from multiple angles. We developed a parameteriza-tion method, that was shown to boost the 
onvergen
e of DES on the align-ment lands
ape. Moreover, we introdu
ed a simpli�ed variant of the originalalignment problem, at zero Kelvin temperature, whi
h allowed an improvedinvestigation from the Physi
s perspe
tive. The examination of 
ertain DESvariants subje
t to spe
i�
 parameterizations resulted in a fruitful study ofoptimality, where two 
lasses of solutions, optimal and sub-optimal, wererevealed. This optimality study also 
on
luded that despite the 
onsider-able di�eren
e between the 
omposition of the optimized wavepa
ket andthe maximally attainable wavepa
ket, the obtained yield in the optimizationwas typi
ally fairly 
lose to the maximally attainable yield. This ex
ellent



200 Summary and Outlookbehavior was explained by means of the variational prin
iple.We pro
eeded with optimizing the alignment problem subje
t to a dy-nami
 intensity environment. This resulted in a new perspe
tive on theevolution of laser pulses, and 
on�rmed furthermore our understanding ofthe optimal stru
tures within laser pulses applied to this problem.This was followed by the employment of a multi-
riteria approa
h tothe alignment problem, while 
onsidering the minimization of the total se
-ond harmoni
 generation signal as a se
ondary obje
tive with respe
t to thealignment yield obje
tive. Due to the heavy 
omputational 
ost of the sim-ulator, we introdu
ed the so-
alled Kriging Metamodel in order to boost our
al
ulations. This appli
ation 
on�rmed our suspi
ion of the existen
e of a
on�i
t between the two obje
tives, whi
h had been treated previously bymeans of a punishment term.Finally, we applied our ni
hing algorithms to the alignment problem. Byfollowing the tailor-made distan
e metri
 introdu
ed in Chapter 8, our �rstround of 
al
ulations obtained satisfying results. All the di�erent ni
hesrepresented, nevertheless, the same 
on
eptual quantum design, as expe
tedfrom our previous investigation of optimality. Thus, we 
arried out a se
ondround of 
al
ulations, where the distan
e between the ni
hes was measuredin the wavepa
ket spa
e. The latter a
hieved the goal of removing the ob-served degenera
y. We linked the failure of the originally 
al
ulated ni
heradius to the 
ompromised performan
e of the 
omma-strategy kernels onthe se
ondary ni
hes, and as
ribed both to the highly 
onstrained nature ofthe lands
ape when underposed to a �xed radius-based ni
hing framework.Upon 
on
luding this study, the message that we would like to post isthree-fold. Firstly, we would like to en
ourage the appli
ation of ni
hingmethods to high-dimensional real-world hard problems, for providing thede
ision makers with the 
hoi
e among several optimal or near-optimal so-lutions. As was demonstrated here, the proposed ni
hing framework withDES kernels was 
apable of providing satisfying results on the investigatedQuantum Control lands
apes. Furthermore, we showed that the employ-ment of a domain-spe
i�
 tailor-made diversity measure is possible, whenne
essary. Se
ondly, we believe that the important multiple optima identi�-
ation task has not yet attra
ted the proper attention of the s
ientists in theEvolutionary Computation 
ommunity, and some would even 
laim that itis often negle
ted. Therefore, we hope that a 
orresponding sub-
ommunitywithin the EC 
ommunity will emerge in the near future. Thirdly, we arguethat the �eld of Quantum Control is a highly attra
tive testbed for opti-mization methods, as well as a ri
h arena of 
hallenging open problems. Assu
h, it should enjoy the powerful 
apabilities of state-of-the-art Evolution-ary approa
hes, at all possible levels: multi-
riterion optimization, ni
hingte
hniques, optimization in environments with un
ertainty, et
.



Summary and Outlook 201OutlookWe believe that we 
ompiled a genuine interdis
iplinary study, with twomain 
ontributing 
omponents: The �rst, the introdu
tion of ni
hing withthe powerful kernels of Derandomized ES variants to the arena of multimodalfun
tion optimization, and the se
ond, the introdu
tion of Quantum Controlto state-of-the-art evolutionary approa
hes. We, nevertheless, believe thatthere are still various dire
tions for future resear
h.It would be interesting to further apply our proposed ni
hing frameworkto additional sear
h lands
apes, either arti�
ial or from the real-world ap-pli
ations domain. In addition, the multi-globality goal in multi-obje
tiveoptimization 
ould be further explored, by means of extended algorithmi
developments and by means of an appli
ation to pra
ti
al optimization prob-lems.Another 
hallenging dire
tion would be the development of additionalni
hing frameworks with DES kernels whi
h do not utilize a ni
he-radiusbased approa
h. As devoted followers of the No Free Lun
h Theorem,we believe that there is always room for 
ompeting methods.On the Quantum Control front, there are still many open resear
h topi
sthat are related to our study. At the experimental level, it would obviouslybe ex
iting to optimize in the laboratory the Dynami
 Mole
ular Alignment.These experiments are approa
hing 
ount-down at Amolf-Amsterdam, uponthe 
ompletion of this dissertation.On that note, Quantum Control Experiments introdu
e many possibleoptimization topi
s for future resear
h. Su
h topi
s are the investigation ofnoise and its e�e
t on algorithmi
 performan
e, robustness of obtained 
on-trols, the appli
ation of ni
hing as well as multi-
riteria optimization in theexperimental learning-loop, and others.By introdu
ing these 
hallenges we 
on
lude this study, whi
h hopefullyturned out to be an enjoyable natural 
omputing experien
e for the reader.We would like to end with the simple 
all: "keep it natural!".





Appendix AAdditional FiguresWe present here additional �gures in full-
olor format.
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Figure A.1: A snapshot gallery: The adaptation of the 
lassi�
ation-ellipses,subje
t to the Mahalanobis metri
 with the updating 
ovarian
e matrix, withthe CMA+ kernel on the 2D Flet
her-Powell problem. Images are taken inthe box [−π, π]2. Contours of the lands
ape are given as the ba
kground,where the X's indi
ate the real optima, the dots are the evolving individuals,and the ellipses are plotted 
entered about the peak individual. A snapshot istaken every 4 generations (i.e., every 160 fun
tion evaluations), as indi
atedby the 
ounter.
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Figure A.2: A 3D-snapshot gallery: The adaptation of the 
lassi�
ation-ellipses, subje
t to the Mahalanobis metri
 with the updating 
ovarian
ematrix, with the CMA+ kernel on the 3D Flet
her-Powell problem. Imagesare taken in the box [−π, π]3. The ellipses are 
entered about the evolvingpeak individuals. A snapshot is taken every 20 generations (i.e., every 800fun
tion evaluations), as indi
ated by the 
ounter.
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Figure A.3: A 3D-snapshot gallery: The adaptation of the 
lassi�
ation-ellipses, subje
t to the Mahalanobis metri
 with the updating 
ovarian
ematrix, with the CMA+ kernel on the 3D A
kley problem. Images aretaken in the box [−2, 2]3. The ellipses are 
entered about the evolving peakindividuals, and are observed to adapt simultaneously. A snapshot is takenevery 25 generations (i.e., every 1750 fun
tion evaluations), as indi
ated bythe 
ounter.
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Figure A.4: Population transfers from J = 0 to J = 4 obtained in 80 runs ofthe DR2 algorithm with Ωge = 80×1012s−1 (top), along with the 
orrelation
oe�
ient between the solutions, as de�ned in Eq. 8.16 (bottom). The solu-tions that perform best are highly 
orrelated. Pixels in white 
orrespond to
ross-
orrelation value of 1 (after rounding-o�).
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Figure A.5: Population transfers from J = 0 to J = 4 obtained in 80runs of the DR2 algorithm with Ωge = 120 × 1012s−1 (top), along with the
orrelation 
oe�
ient between the solutions, as de�ned in Eq. 8.16 (bottom).The solutions that perform well 
an be divided into a �nite group of solutionsthat are highly 
orrelated within the group but not with solutions outsidethe group. Pixels in white 
orrespond to 
ross-
orrelation value of 1 (afterrounding-o�).
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Figure A.6: Population transfers from J = 0 to J = 4 obtained in 80 runs ofthe DR2 algorithm with Ωge = 160×1012s−1 (top), along with the 
orrelation
oe�
ient between the solutions, as de�ned in Eq. 8.16 (bottom). Manynear-perfe
t solutions exist that are only weakly 
orrelated to ea
h other.Pixels in white 
orrespond to 
ross-
orrelation value of 1 (after rounding-o�).
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Figure A.7: Contourplot of 〈cos2(θ)
〉 as a fun
tion of A and ∆ as de�nedin Eq. 9.6 for a peak Rabi frequen
y of Ωge = 180 · 1012s−1. The 
olors
ale ranges from 0.3551 (blue) to 0.688 (red). Figure 
ourtesy of ChristianSieds
hlag [162℄.



212 Appendix AAlignment and Revival Stru
ture of two obtained solutions. Thin red line:Alignment; Thi
k bla
k line: Laser pulse intensity.

Figure A.8: A typi
al optimal solution, obtained by the DR2-plain; Align-ment yield: < cos2 (θ) >= 0.9622.

Figure A.9: A typi
al sub-optimal solution, obtained by the CMA-plain: Asmooth exponential envelope of the revival stru
ture is observed; Alignmentyield: < cos2 (θ) >= 0.9505.



Additional Figures 213Sliding Window Fourier Transform applied to the revival stru
tures ofobtained solutions (e.g., thin-red alignment 
urve of Figure A.8). Thevalues are log-s
aled, and represent how high the rotational levels of themole
ules are populated as a fun
tion of the intera
tion time.

Figure A.10: DR2 with plain-parameterization: The 4th rotational level,
orresponding to J = 6, is mostly populated after the intera
tion.

Figure A.11: CMA with plain-parameterization: All �ve �rst rotational lev-els are populated gradually after the intera
tion.



214 Appendix ASliding Window Fourier Transform applied to the revival stru
tures ofobtained solutions: 
ontinued.

Figure A.12: DR2 with Hermite-parameterization: The four �rst rotationallevels are populated gradually after the intera
tion.

Figure A.13: CMA with plain-parameterization: The 4th rotational level,
orresponding to J = 6, is mostly populated after the intera
tion.



Additional Figures 215Attainment surfa
es for the bi-
riteria optimization of the Dynami
 Mole
-ular Alignment problem.

Figure A.14: Left: 20% Attainment Surfa
es; Right: zoom-in.

Figure A.15: Left: Median Attainment Surfa
es; Right: zoom-in.

Figure A.16: Left: 80% Attainment Surfa
es; Right: zoom-in.



216 Appendix ANi
hing for the Dynami
 Mole
ular Alignment problem; Best-ni
he results:Revival stru
ture and the 
orresponding SWFT pi
ture.

Figure A.17: Best ni
he: < cos2 (θ) >= 0.9524.

Figure A.18: SWFT pi
ture of the best ni
he's solution.



Additional Figures 217Ni
hing for the Dynami
 Mole
ular Alignment problem; 2nd-best ni
heresults: Revival stru
ture and the 
orresponding SWFT pi
ture.

Figure A.19: 2nd-best ni
he: < cos2 (θ) >= 0.9513.

Figure A.20: SWFT pi
ture of the 2nd-best ni
he's solution.



218 Appendix ANi
hing for the Dynami
 Mole
ular Alignment problem; 3rd-best ni
heresults: Revival stru
ture and the 
orresponding SWFT pi
ture.

Figure A.21: 3rd-best ni
he: < cos2 (θ) >= 0.9466.

Figure A.22: SWFT pi
ture of the 3rd-best ni
he's solution.



Additional Figures 219Ni
hing in the wavepa
ket spa
e; A typi
al best-ni
he: Revival stru
tureand the 
orresponding SWFT pi
ture.

Figure A.23: Optimal ni
he: 〈cos2 (θ)
〉

= 0.9596.

Figure A.24: Optimal ni
he: 4th rotational level, 
orresponding to J = 6, ismostly populated after the intera
tion.



220 Appendix ANi
hing in the wavepa
ket spa
e; A typi
al 2nd-best ni
he: Revivalstru
ture and the 
orresponding SWFT pi
ture.

Figure A.25: Sub-optimal ni
he: 〈cos2 (θ)
〉

= 0.9472.

Figure A.26: Sub-optimal ni
he: 3rd rotational level, 
orresponding to J = 4,is mostly populated after the intera
tion.



Mathemati
ians: You 
annot work with them,you 
annot work without them.John Doe
Appendix BComplete-Basis Fun
tionsHere is a brief summary of the fundamental mathemati
al 
on
epts be-hind the Complete-Basis-Fun
tions Parameterization, as presented in Se
-tion 9.2.2. This part is mainly based on Abramowitz [173℄ and Kaplan [174℄.Let f (x) be given in the interval a ≤ x ≤ b, and let

ξ1 (x) , ξ2 (x) , . . . , ξk (x) , . . . (B.1)be fun
tions whi
h are all pie
ewise 
ontinuous in this interval.The set {ξk (x)}∞k=1 is 
alled 
omplete if it 
an span any pie
ewise 
on-tinuous fun
tion f (x), e.g.,
f (x) =

∞
∑

k=1

ckξk (x) , (B.2)where the 
oe�
ients ck are given by:
ck =

1

Bk

∫ b

a
f (x) ξk (x) dx, Bk =

∫ b

a
[ξk (x)]2 dx (B.3)The 
onvergen
e is guaranteed by the so-
alled 
ompleteness theorem. Ex-pli
itly, the series

Rm =

∫ b

a

(

f(x)−
m
∑

k=1

ckξk (x)

)2

dx =

∫ b

a
(f(x)− Sm(x))2 dx (B.4)
onverges to zero for su�
iently large m:

lim
m→∞

Rm = 0, (B.5)where we denoted the sequen
e of partial sums as Sm(x):
Sm(x) =

m
∑

k=1

ckξk (x) (B.6)221



222 Appendix BBy de�nition, the 
onvergen
e of the series of fun
tions is equivalent to the
onvergen
e of Sm(x) to f(x):
lim

m→∞
Sm(x) = f(x) (B.7)The Fourier (Trigonometri
) SeriesA trigonometri
 series is an expansion of a periodi
 fun
tion in terms of asum of sines and 
osines, making use of the orthogonality property of theharmoni
 fun
tions. Without loss of generality, let us 
onsider from nowon the interval [0, L]. Let f(x) be a single-valued fun
tion de�ned on thatinterval, then its trigonometri
 series or trigonometri
 expansion is given by:

f̃(x) =
1

2
a0 +

∞
∑

k=1

ak cos

(

2πk

L
· x
)

+
∞
∑

k=1

bk sin

(

2πk

L
· x
) (B.8)If the 
oe�
ients ak and bk satisfy 
ertain 
onditions, then the series is 
alleda Fourier series.If f(x) is periodi
 with period L, and has 
ontinuous �rst and se
ond deriva-tives for all x in the interval, it is guaranteed that the trigonometri
 series of

f(x) will 
onverge uniformly to f(x) for all x; This is referred to as satisfyingthe Diri
hlet 
onditions. We shall refer in this study to the trigonometri
series as the Fourier series.Other Sets of Fun
tionsIf one is indeed interested in periodi
 fun
tions, there is no natural alternativebut using the trigonometri
 series. However, if one is 
on
erned with otherrepresentations of a general fun
tion over a given interval, a great variety ofother sets of fun
tions is available, e.g.:
• Legendre polynomials, Pk(x):

Pk(x) =
(2k − 1)(2k − 3) · · · 1

k!

{

xk − k(k − 1)

2(k − 1)
xk−2+

+
k(k − 1)(k − 2)(k − 3)

2 · 4(2k − 1)(2k − 3)
xk−4 − · · ·

}
(B.9)whi
h 
an also be de�ned via Rodrigues' formula:

P0(x) = 1 Pk(x) =
1

2kk!

dk

dxk

(

x2 − 1
)k
, k = 1, 2, . . . (B.10)If f(x) satis�es the Diri
hlet 
onditions mentioned earlier, then therewill exist a Legendre series expansion for it in the interval −1 < x < 1.For illustration, the �rst 10 Legendre polynomials are plotted in FigureB.1.
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Figure B.1: The First 10 Legendre Polynomials.
• Bessel Fun
tion of the First Kind and of Order l, Jl(x):

Jl(x) =

∞
∑

k=0

(−1)k xl+2k

2l+2k · k! · Γ (l + k + 1)
(B.11)with Γ(α) as de�ned in Eq. 1.36. Given a �xed l ≥ 0, the fun
tions

{√x Jl (λlkx)}∞k=1 form an orthogonal 
omplete system over the inter-val 0 ≤ x ≤ 1.
• Hermite polynomials, Hk(x):

Hk(x) = (−1)k exp
{

x2
} dk

dxk

(

exp
{

−x2
})

, k = 0, 1, . . . (B.12)The Hermite polynomials form a 
omplete set of fun
tions over thein�nite interval −∞ < x < ∞, with respe
t to the weight fun
tion
exp

(

−1
2x

2
).

• Chebyshev polynomials of the First Kind , Tk(x):
Tk(x) =

k

2

⌊k/2⌋
∑

r=0

(−1)r

k − r

(

k−r
r

)

(2x)k−2r , k = 0, 1, . . . (B.13)The Chebyshev polynomials of the First Kind form a 
omplete set offun
tions over the interval [−1, 1] with respe
t to the weight fun
tion
1√

1−x2
.



224 Appendix BHigher DimensionsAn expansion by means of a 
omplete set of fun
tions 
an be generalized forhigher dimensions. For illustration, let us 
onsider the two-dimensional 
aseof the trigonometri
 series. The fun
tions cos(2πk
L ·x)·cos(2πl

L ·y), sin(2πk
L ·x)·

cos(2πl
L ·y), cos(2πk

L ·x)·sin(2πl
L ·y), and sin(2πk

L ·x)·sin(2πl
L ·y) form an orthonor-mal 
omplete system of fun
tions in the box [(0, 0), (0, L), (L, 0), (L,L)].Given a fun
tion in that domain, f(x, y), its expansion 
an then be writ-ten in the form:

f(x, y) =

∞
∑

k=0

∞
∑

l=0

λkl ·
{

akl cos(
2πk

L
x) cos(

2πl

L
y)+

+bkl sin(
2πk

L
x) cos(

2πl

L
y) + ckl cos(

2πk

L
x) sin(

2πl

L
y)+

+dkl sin(
2πk

L
x) sin(

2πl

L
y)

}

(B.14)
CorollaryAn in�nite series of 
omplete basis fun
tions 
onverges to any �reasonablywell behaving� fun
tion. Hen
e, it is straightforward to approximate a givenfun
tion with a �nite series of those fun
tions, i.e., by 
utting its tail froma 
ertain point. In prin
iple, the sum Sm(x) (Eq. B.6) 
an always be foundto a desired degree of a

ura
y by adding up enough terms of the series.For pra
ti
al appli
ations, the 
orollary is that every fun
tion 
an be ap-proximated using a series of 
omplete basis fun
tions, to whatever desiredor pra
ti
al a

ura
y. Moreover, this 
orollary 
an be easily generalized toany desired dimension.
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Samenvatting (Dut
h)Op alle niveaus van het dagelijks leven word je regelmatig ge
onfronteerd metsystemen die in hun natuurlijke omgeving fun
tioneren en daarbij een zekeremate van optimaal gedrag vertonen. Zulk optimaal gedrag vormt hierdooreen belangrijke inspiratiebron voor allerlei gebieden. Binnen het vakgebiedNatural Computing is het de bedoeling berekeningste
hnieken te ontwikke-len die zo goed mogelijk gebundelde vers
hijnselen uit de natuur benaderen,op basis waarvan deze te
hnieken op hun beurt vaak heel goed presteren ininformatieverwerkingspro
essen. Uit een lange lijst van natural-
omputing-deelgebieden zijn we in het bijzonder geïnteresseerd geraakt in het uitermateboeiende gebied van Organi
 Evolution - Organis
he Evolutie - en in zijnrekentegenhanger, het zogenoemde gebied van de Evolutionaire Algorith-men (EA). Door een optimalisatieprobleem naar een kunstmatig-biologis
heomgeving om te zetten, benaderen EA inderdaad bepaalde stukjes uit deDarwinistis
h dynami
a en streven die EA er daarbij naar, goed passendeoplossingen te bereiken in termen van de probleemsituatie. Daarbij is eenpopulatie van mogelijke oplossingen onderhevig aan kunstmatige, dat wilzeggen gesimuleerde variatie. Vervolgens overleven zulke mogelijke oplossin-gen een dergelijke simulatie op basis van 
on
rete 
riteria voortvloeiend uithet gekozen sele
tieme
hanisme.De oorspronkelijke bedoeling van ons onderzoek was om bepaalde vari-anten van EA, Evolutionaire Strategieën geheten (ES), uit te breiden naardeelpopulaties van pilot-oplossingen die parallel toegroeien naar vers
hillendeoplossingen van het probleem. Dit idee is gebaseerd op een begrip uit de evo-lutietheorie, organi
 spe
iation, de organis
h-evolutionaire ontwikkeling persoort. Waar het hier op neer komt is, dat de manier van denken binnenNatural Computing dieper dient in te gaan op theorieën uit de Evolution-aire Biologie en in het li
ht van de gewenste evolutionaire soortontwikkeling
reatieve oplossingen dient te vinden voor de kunstmatige populatie. Dezogenoemde Ni
he-te
hnieken vormen de uitbreiding van EA naar deelpopu-laties met ieder hun eigen evolutionaire ontwikkeling. Zij zijn al bestudeerdvanaf het begin van de EA en wel voornamelijk binnen de populaire variantvan de Genetis
h Algorithmen (GA). Naast de theoretis
he uitdaging omzulke te
hnieken te ontwerpen, daarbij kra
htig ondersteund door biologie-geinspireerde motivatie, zijn er ook goede gronden vanuit de praktijk om243



244 Samenvattingdit te proberen. Met name vanuit het vakgebied van de besliskunde, datal re
htstreeks baat heeft bij de opkomst van het gebied van globale opti-malizering, wordt duidelijk dat er dringend behoefte is aan meervoudigheidvan vers
hillende optimale oplossingen. In een ideaal geval zullen deze meer-voudige oplossingen, zoals verkregen uit de optimalisatie-aanpak, onderlingeen hoge mate van diversiteit vertonen en zullen zij vers
hillende 
on
eptueleontwerpen voor oplossingen vertegenwoordigen.Terwijl we de bedoeling hadden dit onderzoek voornamelijk te ri
htenop ni
he-te
hnieken in ES, waren we er tevens vanaf het begin op uit dealgorithmes waar we op uit zouden komen, te gebruiken voor praktis
hetoepassingen in het pas ontsloten gebied van Quantum Control (QC). Ditlaatste biedt een enorme vers
heidenheid aan veel-dimensionale 
ontinue op-timalisatieproblemen, zowel op theoretis
h als op experimenteel niveau. Indit opzi
ht heeft QC de potentie een ideale testomgeving te zijn voor evo-lutionaire optimalisatie, in het bijzonder voor ni
he-aanpakken. Dit komtdoor enkele opmerkelijke karakteristieken van zogeheten QC-lands
happen.Typerend voor zulke lands
happen is, zoals bewezen in QC-theorie, dat zeoneindig veel optimale oplossingen hebben. Door dit alles is de 
ombinatievan ni
he-onderzoek en zijn toepassingen op QC-lands
happen voor ons heelintrigerend. Toen we deze overweldigende, ideale rijkdom aan oplossingenbinnen QC-lands
happen dan ook eenmaal hadden opgemerkt, hebben webesloten een op zi
hzelf staand deel van dit proefs
hrift te wijden aan Quan-tum Control. In symbolis
he zin vormt deze interdis
iplinaire studie daarmeeeen gesloten natural-
omputing-
irkel, waarin biologis
h-georiënteerd onder-zoek van organis
he evolutie, met name die binnen een soort, bijdraagt aande ontwikkeling van rekenmethoden om toepassingen binnen de natuurkundeals geheel op te lossen en in het bijzonder binnen Quantum Control. Naarons idee wordt deze symbolis
he zienswijze nog verder versterkt door hetsto
hastis
he karakter van EA. Aldus, biologis
h geïnspireerd door Evolu-tionaire Biologie in het algemeen en door organi
 spe
iation in het bijzonderen tevens op s
herp door de drijfveer meervoudig optimale oplossingen tewillen vinden voor het beter nemen van beslissingen in praktijsituaties, doenwe in deze studie verslag van onze reis, vertrokken vanuit diversiteit in denatuur, beland bij 
on
eptuele ontwerpen in Quantum Control.Dit proefs
hrift bestaat uit twee delen: Deel I introdu
eert een ni
he-framework voor een klasse van state-of-the-art ES-algorithmen, namelijk deDerandomized Evolution Strategies (DES), en gaat in op het uitproberenvan de voorgestelde algorithmen in kunstmatige lands
happen. Deel II geefteen overzi
ht van de voornaamste aspe
ten van Quantum Control binnende algemene 
ontext van globale fun
tie-optimalisatie. Vervolgens wordende experimentele waarnemingen van de DES algorithmen gepresenteerd entevens die van de voorgestelde ni
he-algorithmen zoals toegepast op ver-s
hillende QC-systemen, zowel in laboratoriumsituaties als op vers
hillendeniveaus van numerieke simulatie.
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