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1 Introduction

1.1 Introduction

Sensing and responding to external signals are essential for any living organism. In order
to survive, organisms have to measure signals from the environment, and react to them.
Let us first briefly consider how we take care of these tasks ourselves, before we move
to a much simpler organism, the unicellular Escherichia coli. It turns out that, besides
the obvious differences, there are also large resemblances.
For measuring signals we use our senses, such as vision, hearing, taste, smell and touch.
Subsequently, the response takes place in our neural system. Our brain is a very com-
plex computer that has evolved to be extremely good at certain tasks, such as pattern
recognition and detection of changes in the environment. In general, it is trained by
evolution to react in the best possible way to the environment. The brain as a whole
is immensely complex. However, it helps to think of it as a collection of very many -
about 100 billion - subunits, called neurons, each of which is connected to, on average,
700 other neurons to form a large interconnected circuit.
The working of a single neuron is easier to understand. A single neuron is able to per-
form a number of simple, but important tasks. Its first task is to measure input signals.
The input of the signal usually takes place at the dendrites, branched extensions that
conduct impulses from adjacent cells inward toward the soma (cell body). Since the
input signal may be very complex, it should first be processed in the soma. Importantly,
if multiple, possibly contradicting input signals are received, the different signals first
have to be integrated.
Next, the signal has to be transmitted to a possibly distant part of the cell. Signal
transduction takes place through the axon(s). Nerve cells can receive and transmit sig-
nals without significant loss of signal strength. To this end, they can amplify signals.
Furthermore, a nerve cell can respond on different time scales. That means that the cell
has both short and long term memory. Finally, an output signal is given by the release of
neurotransmitters at the synapses at the axon terminal. These neurotransmitters bind
to chemo-receptors at the cell surface of, for instance, the dendrite of another neuron.
The output of a neuron is an all-or-none signal.
Let us now have a look at the bacterium Escherichia coli, which is arguably the most
studied bacterium and the best-understood organism. It lives in the gut of warm-blooded
animals, such as human beings. E. coli has a spherocylindrical shape; it is about one
micrometer in diameter and two-and-half long, and it is propelled forward by a number
of flagellar rotary motors, which are randomly distributed over its cell surface. How
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does a simple bacterium like E. coli sense external signals, and how does it respond to
them? E. coli does not have the senses that we have, nor does it have a brain in the
form of a neural network. In fact, the bacterium consists of one single cell, like a single
neuron. Still, E. coli is able to take decisions, for instance concerning how to respond
to changing nutrient signals.
The most obvious requirement for any form of life to be able to survive is that it should
be able to collect enough nutrients. At the end of the nineteenth century, bacteria were
shown to move in the direction of attractants, as well as away from repellents. This
mechanism was termed chemotaxis. A swimming E. coli bacterium continually decides
whether to keep swimming forward, or to look for a better swimming direction. As the
bacterium is too small to measure concentration gradients, it makes a temporal com-
parison: If the nutrient concentration increases over time, it keeps swimming in the
same direction, and if it decreases, it picks a new swimming direction at random. Thus,
the bacterium switches between only two different modes: It either swims in a forward
direction (a so-called run, or it stops swimming and reorients into another direction (a
so-called tumble).
Julius Adler, a pioneer in the field of chemotaxis, found that E. coli contains a signal
transduction mechanism similar to the synaptic response in higher eukaryotes: Certain
chemicals that act as an input signal bind to chemo-receptors at the cell surface, which
in turn regulate the activity of enzymes within the cytoplasm, catalyzing the activation
of a secondary messenger.
Many of the above-mentioned aspects of the working of a nerve cell are also present in
the chemotaxis system of E. coli. The first task of the chemotaxis pathway is to measure
the input signal, namely concentrations of nutrients and other chemicals. The detection
of chemicals occurs via binding of the molecules to a cluster of chemo-receptors that is
typically located at one or both poles of the cell (see Fig. 1.1). At the receptor cluster,
different signals are integrated, leading to one single response output. Furthermore, the
input signals are also amplified at the receptor cluster, since the input signal may be
extremely weak. Since E. coli makes temporal comparisons of the ligand concentrations,
it also needs a memory for the concentration at earlier times. This memory, as we will
describe below, is provided by chemical reactions taking place at the receptor cluster.
The receptor cluster can thus perform a large number of computational tasks. Indeed,
it may be considered the central processing unit of the chemotaxis system.
After the input signal has been processed by the receptor cluster, it is transmitted from
the cluster to the flagellar motors (see Fig. 1.1). The signal is transmitted by a messen-
ger protein, called CheY, which diffuses from the receptor cluster to the flagellar motors.
Upon binding of activated CheY molecules, the flagellar motors are biased to change
their direction of rotation from counterclockwise (CCW) to clockwise (CW), resulting
in a tumble. Also in this last step of the chemotaxis pathway, the signal is strongly
amplified. Like the output of a neuron, the output of the chemotaxis pathway is an
all-or-none signal: each motor rotates either in the CW or in the CCW direction.

The chemotaxis network of E. coli thus has an information processing capacity that
rivals that of modern electronic circuits. Yet, its design principles are markedly differ-
ent. In a biochemical network such as the chemotaxis pathway of E. coli the signals
are processed via molecules that chemically and physically interact with one another.
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Figure 1.1 The chemotaxis pathway of E. coli. W stands for CheW,
A for CheA, Y for CheY, Z for CheZ, R for CheR, B for CheB, p for a
phosphoryl group and m for a methyl group. Upon binding of repellent to
the trans-membrane receptors, or upon release of food, the activity of the
receptors increases. As a consequence, the autokinase activity of CheA,
that is linked to the receptors via the adaptor CheW, increases. CheA
donates its phosphoryl group either to the messenger protein CheY, or
to the methylesterase CheB. Phosphorylated CheY binds to the flagellar
motors to increase their clockwise bias and, therefore, the tumble fre-
quency. Thus, addition of repellent in the end leads to a higher tumbling
frequency, as expected. The phosphatase CheZ increases the rate of de-
phosphorylation of CheYp by an order of magnitude. At a timescale slow
as compared to ligand binding and signalling, the phosphorylated adap-
tation protein CheB demethylates the trans-membrane receptors, making
them less active and thereby restoring the average phosphorylation level.
Receptor methylation happens by the methyltransferase CheR. Receptor
methylation counteracts the binding of attractant and leads to a higher
kinase activity.

These molecules behave stochastically. They often move in an erratic fashion, namely
by diffusion, and also the chemical and physical interactions are probabilistic in nature.
Since chemical networks of living organisms need to be highly dynamic, the interactions
are often relatively weak, i.e., on the order of 1 to 10 kBT. This means that cooper-
ative interactions are needed to amplify signals. A paradigm example is the receptor
cluster of E. coli, which has been successfully modeled as an Ising system [1]. Clearly,
to understand the performance of a biochemical network, we have to use concepts from
statistical physics, such as diffusion, biochemical noise, and cooperative interactions.
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This makes biochemical networks not only of interest to biologists, but, increasingly,
also to physicists.
The E. coli chemotaxis pathway is an ideal model system, precisely because such a large
body of biological data is available. Decades of biological experiments have provided
a wealth of information on the topology and the rate constants of the network, and
new technological developments have made it possible to study the network in unprece-
dented detail. For example, the distribution of individual molecules within a single cell
can be traced via fluorescent labeling of the molecules, and even the interactions be-
tween two protein species can be made visible via fluorescence resonance energy transfer
(FRET). In combination with more conventional biochemical assays, these techniques
allow the study of the effect of, for instance, the spatial distribution of the molecules
on the response of the network. As another example, new techniques allow the precise
measurement of power spectra of the switching dynamics of the flagellar motors, that
contain much information on the design principles of the motors. The more quantitative
the experiments become, the more quantitative the system can be modeled.

More generally, understanding biochemical networks is not only of fundamental interest,
but also has implications in the food industry, health and energy. It is increasingly rec-
ognized that many diseases are caused not by the malfunctioning of single proteins, but
rather by malfunctioning of the network as a whole. Moreover, much effort is devoted to
manipulating signalling and metabolic networks of algae, to increase energy production
for biofuels. While the E. coli chemotaxis system is relatively simple and may seem
to bear no relevance for these developments, it should be recognized that this system
exploits network motifs, which are omnipresent in both prokaryotes and eukaryotes. For
example, the intracellular chemotaxis pathway consists of a so-called push-pull network,
in which two enzymes (CheA and CheZ, respectively, see Fig. 1.1) covalently modify a
substrate (CheY). Such push-pull networks constitute the building blocks of many signal
transduction pathways in prokaryotes and eukaryotes. Homologues of the two central
proteins CheA and CheY are widely conserved among different species. Furthermore,
virtually all motile prokaryotes use essentially the same mechanism to regulate their
motility. Since E. coli plays a role in the flora of the gut, and since also toxic strains
exist, it is of importance to the food industry as well as to drug design. In addition,
maybe the ultimate example of nanotechnology is given by the rotary flagellar motor of
E. coli, which has the design of an electromotor, but is no larger than 50 nm in diameter.

In the remainder of this chapter, we first give an overview of the three modules of the
chemotaxis system. We discuss the receptor cluster in considerable detail, since that has
been studied extensively in the past years, both theoretically and experimentally. We
then discuss the second and third module of the chemotaxis system: the intracellular
signal transduction pathway and the flagellar motors. We end this chapter with a brief
summary of the contents of this thesis.
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1.2 The receptor cluster

1.2.1 Structure

At the beginning of the chemotaxis pathway are a large number of trans-membrane
receptors that bind to chemo-attractants and -repellents. These receptors form homo-
dimers [2], which act as the functional units for ligand binding. In addition, the receptors
form a stable complex with the kinase CheA and the adaptor protein CheW [3, 4]. The
structure of the cytoplasmic portion of the trans-membrane receptors has been deter-
mined to be a long α-helical coiled coil. The tails of three receptor dimers are thought
to come together, such that the receptors form trimers of dimers [5]. Genetic analysis
also supports the idea of interactions between three dimers [6]. As trimers of receptor
dimers are stable against the presence of CheW, CheA, ligand, and the methylation
state, Studdert and Parkinson argued that trimers of dimers form the basic building
blocks for the signaling complexes [7]. The trimers of dimers, however, are still not the
largest aggregates: the receptors form a cluster at the cell pole [8]. The nature of the
interactions between the trimers of dimers has yet to be unraveled.
Within the receptor cluster, there are five different types of receptors, and each of them
can respond to multiple stimuli. Two of these, the serine receptor Tsr and the aspartate
receptor Tar are present in high abundance, whereas the other three receptor types Trg,
Tap and Aer are present at very low concentrations. It is commonly assumed that the
chemo-receptor dimers can be in either of two conformational states: an active con-
formation stimulating auto-phosphorylation of the kinase CheA, and an inactive one,
inhibiting CheA auto-phosphorylation. Upon binding of chemo-attractant to the re-
ceptor cluster, or upon release of a repellent, the receptor activity decreases. Binding
of a repellent and unbinding of an attractant have the opposite effect and lead to an
increased receptor activity.

1.2.2 Adaptation

On its search for food, E. coli senses concentration gradients rather than absolute con-
centrations [9]. Namely, if the bacterium starts out at a certain fixed concentration, and
later arrives at some other concentration, it will return to its old swimming behavior
after some time. This is due to adaptation [10].
Importantly, the adaptation reactions are much slower than the reactions that constitute
the response: ligand binding and the phosphorylation reactions. This separation of time
scales makes it possible to respond to changes in the ligand concentration at short time
scales, and adapt to these changes on longer time scales.
Adaptation could in principle take place at various stages of the adaptation pathway.
However, it happens near the beginning of the chemotaxis pathway, by resetting of the
receptor activities via methylation by CheR and demethylation by CheB. As a con-
sequence, the concentration of CheYp always remains near the sensitive range of the
flagellar motors. This would not have been the case if, for example, the motors had
been responsible for adaptation. An interesting question is, why adaptation does not
take place at an even earlier stage of the chemotaxis pathway, namely, by modifying
the affinity of the receptor cluster, such that always about half of the receptors would
be occupied by ligand molecules. The advantage would be, that the sensitivity of the
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receptor cluster is largest if fifty percent of the receptors is occupied by ligand molecules.
However, E. coli would in that case not be able to respond to concentrations that are
so low that not enough ligand molecules are present to cover half of the receptors. Wild
type E.coli is in fact able to respond to the binding of a few ligand molecules.
The ability of E. coli to adapt to different background concentrations is remarkable: the
concentration range over which E. coli is able to adapt is very wide. E. coli responds to
successive increases in its concentration over a range spanning over five orders of mag-
nitude, from 0.3 µM to 0.1 M of the artificial attractant α-methylaspartate [11]. The
adaptation mechanism must work nearly perfectly, since the behavior of E. coli is almost
independent of the background concentration.
A possible explanation for the near-exact adaptation was given by Barkai and Leibler
[12]. They proposed a scheme in which CheB only methylates active receptors, whereas
CheR demethylates both active and inactive receptors. In this case, adaptation is not
only exact; it is also robust. That means that the concentrations of the different net-
work components, as well as the rate constants and diffusion coefficients, need not have
specific values in order for the adaptation mechanism to work; a bacterium adapts to its
steady state irrespective of its system parameters. This does not, however, mean that
the steady state of the chemotaxis system is independent of the system parameters. On
the contrary, variations in the system parameters lead to behavioral variability between
the individual bacteria of a colony: every bacterium adapts to its own steady state. This
is indeed known to be the case experimentally. Interestingly, the model predicts that
the steady-state tumbling frequency and the adaptation time of an individual bacterium
are strongly correlated, something that had been found in experiments before [13].
The mechanism for robust adaptation as proposed by Barkai and Leibler [12] is consis-
tent with a large body of experimental observations. It is widely believed that CheR
indeed methylates active as well as inactive receptors [14, 15], whereas CheB demethy-
lates only active receptors [16, 17]. Furthermore, Alon et al. verified that E. coli’s
adaptation mechanism is not only exact, but also robust [18].

Barkai and Leibler stated that mechanisms will in general adapt robustly if the mod-
ification and demodification rates only depend on the activity of the receptors. For
example, if the methylation rate r by CheR is constant, and the demethylation rate bA
by CheB is proportional to the activity A of the cluster, then the change in the methyla-
tion level z is given by dz/dt=r-bA. In steady state, the activity is then constant: A=r/b.
Thus, as the activity is independent of the methylation level, adaptation is robust. Yi
et al. [19] ascribe the property of robust adaptation to integral feedback and they prove
that perfect adaptation is always equivalent to integral feedback control. In fact, the
adaptation needs not be exact, but must be accurate enough to keep the cells near the
middle of the flagellar motor response curve [20]. This keeps the sensory pathways from
saturating, and allows cells to remain sensitive to concentration changes over a wide
range of chemical environments.

1.2.3 Receptor interactions and amplification

Impressively, E. coli responds to very small changes: smaller than one percent in the re-
ceptor occupancy with aspartate over concentrations spanning three orders of magnitude
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[21]. A net change in Tar occupancy by aspartate of 0.4% can result in a 22% increase
in the CCW motor rotation bias [22]. This means that input signals are amplified very
strongly to produce a response.

Bray et al. proposed that interactions between the receptors in a regular lattice could
lead to a strong amplification of the signal if neighboring receptors would be sensitive to
each other’s activity [23]. The binding of a single attractant molecule could then lead to
a large cluster of inactive receptors. Particularly, if neighboring receptors interact in an
Ising-type fashion, enormous signal amplification can be obtained if the system is close
to the critical point [1, 24]. In the latter model, receptors are assumed to flip between an
active and an inactive state with probabilities dependending upon three energy inputs:
ligand binding, methylation level due to adaptation, and the activity of neighbouring
receptors.

Since no method exists to directly measure the activity of the receptor cluster, Sour-
jik and Berg came up with a nice way to measure the activity indirectly [25]. In steady
state, the rate of phosphorylation of CheY by CheA – which is proportional to the recep-
tor activity – equals the rate of dephosphorylation by CheZ. Sourjik and Berg therefore
used FRET to measure the interaction between CheY and CheZ as a measure for the
activity of the receptor cluster. They found that a small increase in the concentra-
tion of α-methyl aspartate produced a large decrease in CheA activity. By comparing
the change in receptor occupancy expected from measured binding curves to different
methylated forms of the receptor, they concluded that the decrease in CheA activity is
about 35 times greater than the relative change in receptor occupancy.

Mello and Tu [26] were able to fit the response curves as measured by Sourjik and
Berg in [25] quite accurately, using a mean-field Ising-type model. They considered Tar
and Tsr receptors, for which the energy difference between the active and the inactive
state depends on ligand binding, on the methylation state, and the activity of the other
receptor species. Interactions between the Tar and Tsr receptors turned out to be
necessary to fit the data.

The key observation they made, was that different strains, for which the Tar receptors
were known to be in the same, fully unmethylated state, responded totally differently
to methylaspartate. In particular, the part of the response curves corresponding to the
response through the Tar receptor differed markedly between the two strains. Since the
methylation levels of the Tsr receptors were known to be different for the two strains,
Mello and Tu postulated that there is a strong coupling between the Tar and Tsr recep-
tors, and that the interaction depends on the methylation state of the receptors.

Ames et al. found that the receptors have a preference for the formation of mixed
clusters, which also speaks for heterogeneous interactions [6].

Experiments by Gestwicki and Kiessling added to the proof of the importance of
heterogeneous interactions between the different receptor species [27]. By artificially in-
creasing the clustering between the receptors through the addition of multivalent attrac-
tants that bind to the low-abundant Trg receptor, the response to serine was increased
over 100-fold. Interestingly, the response decreased if the Tar or Tap receptors were not
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expressed, clearly suggesting that the Tar and Tap receptors, which do not bind serine,
assist in responding to serine.

The experimental observations mentioned above suggest that the response strongly
depends on the composition of the receptor cluster. This is indeed what Sourjik and
Berg found [28]. CheA and CheW turn out to play an important role in the connectivity
between the receptors. Also, the expression levels of the different receptor types play
a major role. For example, increasing the level of expression of either Tar or Tsr in
a tsr tar tap strain gave responses to MeAsp or serine with Hill coefficients increasing
from 2 to 10, respectively. Such a large Hill coefficient cannot be obtained by assum-
ing only interactions within trimers of dimers. The dependence of the cooperativity on
the receptor connectivity can be explained via clusters of increasing size in terms of an
MWC model [29]. In the MWC model, a cluster of N binding sites can be either in an
active or in an inactive form. The binding of each attractant molecule multiplies the
relative probability for the inactive state by a constant factor. This factor is also equal
to the ratio of the dissociation constants of attractant for inactive and active states of
the receptors. The MWC model of size N is equivalent to an Ising model of size N with
infinite coupling strength in an external magnetic field. Mello and Tu were indeed able
to fit the data from Sourjik and Berg by using a generalized MWC model [30]. As in
their Ising model, heterogeneous interactions between the receptor types turned out to
be of crucial importance.
Keymer et al. [31] also used the MWC model to fit the results of Sourjik and Berg [25].
They made the observation that there exist two regimes of the MWC model, depending
on the energetics of a single receptor. In the first case, the receptor is active most of
the time if no attractant molecule is bound. Upon addition of attractant, the receptor
will turn to the inactive state. This transition will become sharper and sharper if more
receptors are added to the cluster, since the energy difference between the active and
the inactive states increases more rapidly. The affinity for ligand, however, will stay the
same. In the other case, the receptor is already in its inactive state most of the time,
even if no attractant has been added. Upon addition of attractant, the receptor will
stay in the active state. The Hill coefficient will always be one, no matter how large the
receptor cluster is. However, the sensitivity will increase for larger cluster sizes. Thus,
in the former case, receptor coupling leads to a higher Hill coefficient, while in the latter
case, receptor coupling leads to higher sensitivity to ligand. Both regimes are present in
the measurements of Sourjik and Berg.

Shimizu et al. proposed an elegant model for the structure and functioning of the
receptor cluster [32]. According to the model, the receptor dimers form a regular two-
dimensional lattice, based on the trimer-of-dimers configuration. Herein, the ends of
the receptor dimers are inserted into a hexagonal array of CheA and CheW molecules.
Downstream signalling can then take place at the outer CheA plane of the cluster.
Locked between the CheA plane and the membrane, there is a separate compartment
for adaptation of the receptors via (de-)methylation by the adaptation enzymes CheR
and CheB. The adaptation enzymes CheR and CheB could move via a mechanism termed
molecular brachiation [33]. This mechanism is based on the fact that the adaptation
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molecules have a dumbbell shape: The active domain and the binding domain are sep-
arated by a flexible linker. If both domains have an intermediate binding affinity for
the receptors, the molecule as a whole can bind firmly, while it can, at the same time,
rapidly diffuse through the receptor cluster. Compartmentalized or not, the adaptation
molecules remain bound to the receptor cluster, and are very efficient in methylating
and demethylating the receptors.

1.3 The intracellular chemotaxis network

The topology of the chemotaxis network is similar to that of a push-pull network [34]. In
a push-pull network, two antagonistic enzymes, Ea and Ed, reversibly modify a substrate
molecule X. The enzyme Ea activates X to form X∗, whereas the enzyme Ed deactivates
X∗ to form X. Both reactions obey Michaelis-Menten kinetics, which means that the
enzymes bind tightly to their substrate before they can modify them:

Ea + X
ka

f

⇋
ka

b

EaX
ka

cat→ Ea + X∗ (1.1)

Ed + X∗
kd

f

⇋

kd
b

EdX
∗ kd

cat→ Ed + X (1.2)

We will now make two assumptions: i) the total substrate concentration is much larger
than the enzyme concentrations, and ii) the enzymes are saturated with their substrates
which means that nearly all enzyme is present in the bound forms EaX or EdX

∗. Under
these conditions, both enzymes work at their maximum rates, so that the production
rates of the two Michaelis-Menten reactions are simply constant; they do not depend on
the substrate concentrations:

d[X∗]

dt
≈ ka

cat[Ea]T (1.3)

and

d[X]

dt
≈ kd

cat[Ed]T (1.4)

Therefore, since the conversion of X to X∗ and the conversion in the other direction, of
X∗ to X happen at constant rates, the fastest of the two reactions will in the end simply
convert all of its substrate into product. If the maximum rates for the two reactions lie
very close together, a small change in either rate can cause a dramatic change in the
concentration of modified substrate. This mechanism is termed zero-order ultrasensitiv-
ity.

Vaknin and Berg showed that the spatial distribution of the components of a push-
pull network can have a drastic influence on the response [35]. They used single cell
FRET experiments to measure the interations between CheYp and CheZ. It was known
that CheZ can bind to CheAs, a short, non-phosphorylating version of CheA, and that
CheAs enhances the activity of CheZ [36]. It turned out that, although CheZ is a diffu-
sive protein, binding to CheYp preferentially takes place at the receptor cluster. Thus,
both phosphorylation (by CheA) and dephoshorylation of CheY (by CheZ) take place



16 Introduction

at the receptor cluster. In steady state, the concentration profile of CheYp is then ho-
mogeneous. This could be advantageous, as all the flagellar motors experience the same
concentration of CheYp. It is an interesting question what other consequences there are
of the colocalization of the antagonistic enzymes (see chapters 2 and 5). In [35], also a
non-localizing CheZ mutant was studied. In this case, the steady state profile of CheYp
is to a good approximation exponentially decaying:

[Yp](x) = [Yp](0) exp(−x/λ). (1.5)

where x is the distance from the cell pole, λ =
√

D/µ, D is the diffusion coefficient and
µ is the phosphatase rate of Yp per second, which is assumed to be constant over the
cell length.

1.4 The flagellar motors

The flagellar motors of E. coli pretty much resemble an electromotor, the most obvious
difference being that it is only 50 nm in diameter. E. coli’s motor consists of a stator
and a rotor. The power source is an electrochemical gradient across the inner membrane
of the cell. Driven by the electrochemical gradient, protons move through the stators,
which as a consequence undergo a conformational change, and exert a force on the rotor,
causing it to turn one step further. As it turns out, the rotation of the motor is tightly
coupled to proton translocation [37, 38].

The force that the motor can apply, depends on how fast the motor rotates [39, 40, 41].
The force is nearly constant if the motor rotates at low and intermediate speeds, until
it reaches a knee value, and then declines rapidly at high rotation speeds.
Based on these experiments, Xing et al. proposed a model that is consistent with the
above observations [42]. Importantly, according to their model, protons can only move
through the rotors at specific angular positions of the rotor, as the ion channels open
up. With this condition, the knee in the torque-speed relation can be reproduced.

Thus far, we have only considered rotation of the motor in one direction. However,
the motor can rotate in two directions: counterclockwise (CCW), corresponding to the
swim state, and clockwise (CW), giving rise to a tumble. The rotor contains 26 FliM
units, which can each bind a CheYp molecule. Binding of CheYp leads to a sharp
increase of the CW bias. Scharf et al. found quite a scharp response curve, with an
apparent Hill coefficient of 4, via population-averaged measurements [43]. They were
able to fit their switching data and motor bias of the motor by an MWC model, the
same model that is used to explain the sharp response of the receptor cluster.

Cluzel et al. repeated the same experiments, but with a fluorescently labelled mutant
of CheY [44]. They found that the CW bias depends sigmoidally on the concentration
of CheYp with an apparent Hill coefficient around 10 (see Fig. 1.2). Cluzel et al. pro-
posed that the steep input-output characteristic of the motors is related to a cooperative
binding process of the CheY-P molecules to the FliM subunits. However, this turned
out not to be the case. In [45], the binding of CheYp to FliM was measured with FRET.
Here, the binding of CheYp to FliM does not seem to be strongly cooperative. This was
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Figure 1.2 The sharp response curve of the rotation direction of the
motors as a function of the CheY-P concentration. The curve has an
apparent Hill coefficient of 10. The figure was taken from Ref. [44]

confirmed in [46]. This means that the chemotactic signal is amplified within the motor,
subsequent to the CheYp binding.
A one-dimensional Ising model [47] or an MWC model could account for the ultrasensi-
tive dependence of the CW bias on the CheYp concentration.

Korobkova et al. discovered that motor switching is a non-exponential process [48]
and that there are long-time correlations up to 15 minutes. They attribute these corre-
lations to the slow methylation dynamics of the receptor by CheR and CheB. They also
found that each individual bacterium has its own, personal, switching dynamics. In a
new experiment, Korobkova et al. took power spectra from binary time series of motor
switching, and found that these exhibited a peak around 1 Hz [49]. In chapter 6 we will
develop a model for the switching of the bacterial flagellar motor.

1.5 Outline

In this thesis, we focus on the second and third module of the chemotaxis pathway: the
transduction of the signal from the cluster to the flagellar motors and the switching of
the motors. As mentioned, the intracellular chemotaxis pathway consists of a push-pull
network, which can strongly amplify signals via the mechanism of zero-order ultrasen-
sitivity. In the modelling of these networks, it is commonly assumed that the system
is well-stirred, meaning that the components are uniformly distributed in the system
at all times. However, the chemotaxis system is not a well-stirred system. The mes-
senger CheY diffuses in the cytoplasm. In contrast, CheA, the enzyme that activates
the messenger, is located at the receptor cluster. The spatial distribution of CheZ, the
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enzyme that deactivates the messenger, is less clear. It had long been believed that
CheZ is distributed in the cytoplasm, but recent experiments [25] show that CheZ is
also located at the receptor cluster. In particular, a recent study by Vaknin and Berg
[35] showed that the spatial distribution of CheZ can markedly affect the response of the
network: the spatial distribution affects both the sensitivity and the gain of the network.

In chapter 2 of this thesis, we perform a detailed mean-field analysis of the effect
of the spatial distribution of the antagonistic enzymes on the steady-state response of
a generic push-pull network. The principal finding is that the spatial distribution can
dramatically affect the gain. The gain is maximized when the enzymes are either colo-
calized in one region of the cell or uniformly distributed in the system. Depending on
the diffusion constants, however, the gain is strongly reduced when the antagonistic en-
zymes are spatially separated.

In the next chapter, we specifically address the question whether the commonly ac-
cepted model of the chemotaxis system of E. coli can explain the experiments by Vaknin
and Berg [35]. We argue that this is probably not the case and that this model needs
to be augmented. In the subsequent chapter we present such a model. In this model,
a small, yet highly active fraction of CheZ is located at the receptor cluster, while the
remainder freely diffuses in the cytoplasm. This model can describe the experimental
results of Vaknin and Berg and is consistent with a large body of other experimental data.

The analyses presented in chapters 3 and 4 are mean-field analyses using chemical
rate equations. In such mean-field analyses, it is assumed that the concentrations are
large and that fluctuations can be neglected. In chapter 5 we perform particle-based
simulations of push-pull networks. These particle-based simulations take into account
the discrete nature of the components, the stochastic character of their interactions,
as well as their spatial distribution. We compare the response of a network in which
all components freely diffuse in the cytoplasm with the response of a network in which
the antagonistic enzymes are located at the receptor cluster. We find that the spatial
distribution of the enzymes can strongly affect the response dynamics. However, the
steady-state input-output relation is quite insensitive to the spatial distribution of the
enzymes; indeed, our results support the use of chemical rate equations, if one is inter-
ested in the steady-state response.

In chapter 6 we study the switching dynamics of the flagellar motors. Recently,
Cluzel et al. measured power spectra of the motor switching dynamics of both wild-type
and mutant cells [49]. The power spectra of mutant cells, that are believed to reflect the
intrinsic switching dynamics of the motor, exhibit a pronounced peak around 1 Hz [49].
This peak means that the switching is non-Poissonian, and that there is a characteristic
time scale on which the motors switch. We point out that the peak in the spectrum im-
plies that the switching dynamics is coupled to a non-equilibrium process. We argue that
this non-equilibrium process is the relaxation behaviour of the flagellum. In particular,
we predict that the peak is caused by the interplay between the exponential dependence
of the intrinsic motor switching rate on the load, and the relaxation behaviour of the
flagellum, which determines the load on the motor. In essence, the switching process can
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be described by a two-state model, with a switching propensity function that increases
with time.
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2 Enzyme colocalization can

drastically affect signal

amplification

Push-pull networks are ubiquitous in signal transduction pathways in both prokaryotic
and eukaryotic cells. They allow cells to strongly amplify signals via the mechanism
of zero-order ultrasensitivity. In a push-pull network, two antagonistic enzymes control
the activity of a protein by covalent modification. These enzymes are often uniformly
distributed in the cytoplasm. They can, however, also be colocalized in space, for instance,
near the pole of the cell. Moreover, it is increasingly recognized that these enzymes
can also be spatially separated, leading to gradients of the active form of the messenger
protein. In this chapter, we investigate the consequences of the spatial distributions of the
enzymes for the amplification properties of push-pull networks. Our calculations reveal
that enzyme localization by itself can have a dramatic effect on the gain. The gain is
maximized when the two enzymes are either uniformly distributed or colocalized in one
region in the cell. Depending on the diffusion constants, however, the sharpness of the
response can be strongly reduced when the enzymes are spatially separated. We discuss
how our predictions could be tested experimentally.

2.1 Introduction

Living cells are information processing machines. In order to process information reli-
ably, signals often need to be amplified. To this end, cells can employ a variety of ampli-
fication mechanisms. Signals can be amplified via positive feedback, cooperative binding
of signaling molecules to receptors, or interactions between receptor molecules [23]. An-
other principal mechanism for signal amplification is zero-order ultrasensitivity [34, 50].
This mechanism operates in so-called push-pull networks, which are omnipresent in
both prokaryotes and eukaryotes. In a push-pull network, two enzymes covalently mod-
ify a component in an antagonistic manner (see Fig. 2.1). One well-known example is
a network in which a kinase phosphorylates a component, and a phosphatase dephos-
phorylates the same component. If both enzymes operate near saturation, then the
modification reactions become zero order, which means that the reaction rates become
insensitive to the substrate concentrations. Under these conditions, a small change in the
concentration of one of the two enzymes (the input signal), will lead to a large change in
the concentration of the modified protein (the output signal) [34, 50]. The amplification
properties of push-pull networks have been analyzed in detail [34, 50, 51, 52, 53, 54, 55].
In these studies, however, it is assumed that the antagonistic enzymes are uniformly
distributed in space. Yet, it is increasingly recognized that in many systems one or both
of the two antagonistic enzymes are localized in space, for instance at the cell pole. Here,
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Figure 2.1 A push-pull network. Two enzymes, Ea and Ed, covalently
(de)modify the components X and X∗, respectively. The activating enzyme
Ea provides the input signal, the unmodified component X is the detection
component and the modified component X∗ provides the output signal.

we address the question how the spatial distribution of the antagonistic enzymes affects
the amplification properties of push-pull networks.

If the two antagonistic enzymes are separated in space, then gradients of the mes-
senger protein can form [56, 35, 57, 58, 59]. Recently, a number of protein gradients
have been observed experimentally in both prokaryotic and eukaryotic cells. For exam-
ple, in Escherichia coli cells, the kinase CheA and the phosphatase CheZ control the
phosphorylation level of the messenger CheY, which transmits the chemotactic signal
from the receptor cluster to the flagellar motors. In wild-type cells, the kinase and the
phosphatase are both localized at the receptor cluster [60], and, as a result, the steady-
state concentration profile of CheY is uniform [35]. However, in E. coli mutants, where
the phosphatase is distributed in the cytoplasm, gradients of CheY have recently been
observed [35]. Other examples of protein gradients include Caulobacter, in which MipZ
gradients guide chromosome segregation and division site selection [61]. In eukaryotic
cells, gradients of Ran, Stathmin, and HURP proteins aid in the formation of the mi-
totic spindle by providing directional cues for microtubule growth [62, 63, 64, 65]. More-
over, in eukaryotic cells, the kinases in the mitogen-activated protein kinase (MAPK)
cascade often bind to scaffold proteins, while the phosphatases are distributed in the
cytoplasm [66]. This will lead to concentration gradients of the activated kinases, which
can become particularly important if the scaffolds are located near the membrane.

In this study, we compare the amplification properties of a canonical push-pull net-
work, where all components are uniformly distributed in space, with those of a network in
which the enzyme that provides the input signal is localized at one end of the cell, while
all the other components can freely diffuse through the cell. In the latter case, the con-
centration profile of the messenger—the output signal—is non-uniform. Previous studies
have focused on the time-dependent concentration profiles of the messenger [56, 58, 59]
and on the ‘control’ of diffusion over protein fluxes [67] in similar systems. Here, we
examine the effect of the spatial distribution of the enzymes on the amplification prop-
erties of push-pull networks. To this end, we compute for both systems the steady-state
input-output relations. Our analysis reveals that the spatial distribution of the enzymes
can have a dramatic effect on the capacity of push-pull networks to amplify input sig-
nals: the maximum gain of the network in which one enzyme is localized at one end of
the cell, while the other is not, can be much lower than that of the network in which
the components are uniformly distributed in space. Importantly, this effect occurs over
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a range of diffusion constants, protein concentrations, and enzymatic activities that is
typical for living cells.

In the next section, we first present the input-output relations for both networks.
We show that the gain can be much reduced when the enzymes are spatially separated,
and demonstrate that the magnitude of this effect depends upon the diffusion constants
of the diffusing components. To elucidate the dose-response curves, we discuss in the
subsequent sections the spatial concentration profiles in both the low and high activa-
tion limits. This analysis reveals that the maximum gain in the non-uniform system
is reduced, because the response of the network depends on the position in the cell.
Interestingly, the calculations also show that separating the enzymes in space does not
only attenuate strong signals by limiting the maximum response, but can also enhance
the propagation of weak signals.

2.2 Results

2.2.1 The input-output relation

Goldbeter and Koshland showed that if the antagonistic enzymes in a push-pull net-
work operate near saturation (see Fig. 2.1), a small change in the concentration of
the activating enzyme Ea can lead to a large change in the output, the modified mes-
senger X∗ [34]. The enzymes become more saturated with substrate when either the
Michaelis-Menten constants KM,a and KM,d decrease, or the total substrate concentra-
tion [S]T = [X] + [EaX]/L + [EdX

∗] + [X∗] increases. Fig. 2.2a shows the steady-state
input-output relation for a push-pull network in which all the components are uniformly
distributed in space, for different substrate concentrations. It is seen that as the sub-
strate concentration is increased, the sharpness of the response is drastically enhanced.
This is the hallmark of the mechanism of zero-order ultrasensitivity.

In many systems, such as the bacterial chemotaxis network of E. coli [35], the two
antagonistic enzymes are colocalized at the same pole, while the detection component
X and the messenger X∗ can diffuse through the cytoplasm. While the time-dependent
response curves of such a network will differ from those of the two networks considered
here, the steady-state dose-response curves will be identical to those of a network in
which all the components are homogeneously distributed in the cytoplasm. The response
curves shown in Fig. 2.2a thus also pertain to push-pull networks in which the two
enzymes are colocalized at one end of the cell, while their substrates freely diffuse in the
cytoplasm. Indeed, also in these networks the mechanism of zero-order ultrasensitivity
can strongly amplify input signals.

Spatially separating the enzymes reduces the gain. Fig 2.2b shows the dose-response
curves for a push-pull network in which the activating enzyme Ea is localized at one
pole of the cell, while the other components diffuse in the cytoplasm. Three points
are worthy of note. The first is that the maximum output signal, the concentration of
the messenger X∗, is much lower than that of the corresponding network in which all
components are uniformly distributed in space (see Fig. 2.2). In fact, while in the spa-
tially uniform network, the fraction of modified substrate, [X∗]T/[S]T, always approaches
unity if [Ea]T/[Ed]T becomes large, in the non-uniform network the fraction of modified
substrate saturates to a lower level: even when the concentration of activating enzyme
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Figure 2.2 The input-output relation of the push-pull network shown
in Fig. 2.1 as a function of the total substrate concentration [S]T, for the
case in which all components are uniformly distributed in space (a) and for
the case in which the activating enzyme is located at one end of the cell,
while the other components can diffuse freely through the cell (b). Here,

[X∗]T/[S]T =
∫ L

0
dx[X∗]T(x)/

∫ L

0
dx[S]T(x). In (a) and (b), [Ed]T = 0.5 µM,

KM,a = KM,d = 0.5 µM, and k3 = k6 = 25s−1. In (b), the diffusion
constant is D = 10 µm2s−1. The inset shows the logarithmic gain g ≡
∂ ln [X∗]T/∂ ln [Ea]T. It is seen that the sharpness of the response increases
markedly with increasing substrate concentration when all the components
are uniformly distributed in space (a), but much less so when the activating
enzyme Ea is located at one pole of the cell, while the deactivating enzyme
Ed is distributed in the cytoplasm. When both enzymes Ea and Ed are
located at one pole, the steady-state dose-response curve is identical to
that in (a).

is much higher than that of the deactivating enzyme, not all substrate X is converted
into X∗. The second point to note is that as the total substrate concentration decreases,
the inflection point of the dose-response curve shifts to lower values of [Ea]T/[Ed]T. The
last, and perhaps most important, point to note is that the sharpness of the response of
the network is much weaker than that of the network in which the enzymes are either
colocalized or uniformly distributed in space. The insets of Fig. 2.2 shows the logarith-
mic gain, g ≡ ∂ ln [X∗]T/∂ ln [Ea]T, as a function of [Ea]T/[Ed]T for both networks ([Ed]T
is kept constant). It is seen that for both low [Ea]T/[Ed]T and high [Ea]T/[Ed]T the gain
is small and fairly similar for both networks, while for the symmetric networks consid-
ered here, at [Ea]T ≈ [Ed]T the gain is maximal, but smaller for the network in which
the enzymes are spatially separated. Hence, spatially separating the two antagonistic
enzymes reduces the maximum gain of a push-pull network.

The dose-response curves strongly depend on the diffusion constants. The extent to
which the spatial separation of the opposing enzymes can change the response of the
network depends on the magnitude of the diffusion constant of the components. This is
illustrated in Fig. 2.3. This figure shows the input-output relation of a push-pull network
where the activating enzyme is located at one end of the cell, while the other components
diffuse freely in the cytoplasm, for different values of the diffusion constant. This network
is in the zero-order regime: the total substrate concentration is large compared to the



Results 25

1010.1

1

0.8

0.6

0.4

0.2

0

[X
* ] T

/[
S

] T

[Ea]T/[Ed]T

Uniform

D=10

D=5

D=1

10

5

0

1010.1

g

[Ea]T/[Ed]T

Figure 2.3 The input-output relation of a network in which the acti-
vating enzyme is located at one pole, while the other components can
freely diffuse in the cytoplasm, for different values of the diffusion con-
stant D (in µm2s−1) of the cytoplasmic components. The inset shows the
logarithmic gain g ≡ ∂ ln [X∗]T/∂ ln [Ea]T. It is seen that the gain of the
push-pull network strongly increases with increasing diffusion constant. If
D → ∞, the dose-response curve approaches that of the push-pull net-
work in which the components are uniformly distributed in space (and
that of the network in which the enzymes are colocalized). The total
substrate concentration is [S]T = 20 µM, the total concentration of the
deactivating enzyme is [Ed]T = 0.5 µM, the Michaelis-Menten constants
are KM,a = KM,d = 0.5 µM, and the catalytic rate constants are k3 = k6 =
25s−1.

concentrations of the enzymes and the Michaelis-Menten constants. Yet, for low values of
the diffusion constants, the response is rather weak. As the diffusion constant increases,
however, the sharpness of the response markedly increases. For D → ∞, the input-
output relation approaches that of a push-pull network in which all components are
either uniformly distributed in space, or colocalized in one region of the cell.

Spatially separating the enzymes attenuates the propagation of strong signals, but can

enhance the transmission of weak signals. Fig. 2.3 shows that in a zero-order network in
which only the activating enzyme is localized at one pole of the cell, the concentration
of X∗ decreases with decreasing diffusion constant when [Ea]T > [Ed]T, but increases
with decreasing diffusion constant when [Ea]T < [Ed]T. This means that when the input
signal is strong (high kinase activity), the response of a network in which the enzymes
are spatially separated is weaker than that of a network in which the enzymes are either
uniformly distributed or colocalized in space; conversely, when the input signal is weak
(low kinase activity), the spatially non-uniform network can respond more strongly than
a uniform network. Spatially separating the antagonistic enzymes will thus attenuate
strong input signals, but can also amplify weak input signals.
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Figure 2.4 The concentration profiles for X∗ (a) and EdX
∗ (b) in a push-

pull network in which the activating enzyme is located at one pole of the
cell, while the other components are distributed in the cytoplasm, for
three different concentrations of the activating enzyme. For all curves,
[S]T = 20 µM, [Ed]T = 0.5 µM, KM,a = KM,d = 0.5 µM, k3 = k6 = 25s−1,
and D = 10 µm2s−1.

Mechanism: concentration gradients

To explain the effect of enzyme localization on the amplification properties of push-pull
networks, it is instructive to consider the effect of diffusion on the input-output relation:
in the limit that D → ∞, the response of the network in which the activating enzyme is
located at the pole, while the other is distributed in the cytoplasm, approaches that of a
network in which the enzymes are either uniformly distributed in space or colocalized at
the pole. The effect of diffusion on the response curves can be understood by considering
the effects of diffusion on the spatial concentration profiles.

In a push-pull network where the antagonistic enzymes are either uniformly dis-
tributed or colocalized in space, the steady-state spatial concentration profiles of the
freely diffusing components are uniform across the cell. In a push-pull network where
the two antagonistic enzymes are spatially separated, concentration gradients of the
freely diffusing components can form. Fig. 2.4 shows for a zero-order network in which
the activating enzyme is located at one pole of the cell, while the other is not, the concen-
tration profiles of X∗ and EdX

∗, for three different (total) concentrations of the activating
enzyme Ea, [Ea]T. The concentrations of X∗ and EdX

∗ are highest near the pole where
X is activated, and decay in the cytoplasm where X∗ is deactivated. Moreover, the
concentration profiles increase as [Ea]T increases. These gradients impose fundamental
limits on the maximum gain of the system.

To clarify the effect of diffusion on the concentration profiles and the input-output
relations, it is instructive to recall that, in general, the spatio-temporal evolution of [X∗]
is given by the interplay of activation, deactivation and diffusion of X∗:

∂[X∗]

∂t
= D

∂2[X∗]

∂x2
+ Jδ(x) − γ(x). (2.1)

Here, J denotes the influx of X∗ into the system, while γ denotes the deactivation rate
of X∗ at position x. If the formation of the enzyme-substrate complexes is fast, then J
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and γ are given by

J = k3[Ea]TL
[X](0)

KM,a + [X](0)
(2.2)

γ(x) = k6[Ed]T
[X∗](x)

KM,d + [X∗](x)
. (2.3)

Here, [Ea]T ≡ [Ea]+[EaX] and [Ed]T ≡ [Ed]+[EdX
∗] are the total concentrations of Ea and

Ed, respectively. Combining Eq. 2.20 with Eq. 2.21 reveals that the total concentration
profile of Ed, [Ed]T(x), is constant in space if, as assumed here, the diffusion constants of
the enzyme Ed, and that of the enzyme bound to its substrate, EdX

∗, are the same. The
synthesis rate of X∗ depends upon the concentration of X at contact and hence upon
the concentration of X∗ at contact; similarly, the deactivation rate of X∗ at position x
depends upon the concentration of X∗ at x. This is important to note, because, as we
discuss below, the dose-response curves are determined by the sensitivities of the influx
J and the deactivation rate γ to changes in the substrate concentration. We will now
first discuss the input-output relations of zero-order push-pull networks, and then briefly
the response curves of push-pull networks that are in the linear regime.

2.2.2 Push-pull networks in the zero-order regime

Figs. 2.4-2.6 show the concentration profiles and dose-response curves of push-pull net-
works that are in the zero-order regime. We now discuss the limits of weak and strong
activation separately.

2.2.3 Weak activation

We first consider the regime in which the concentration of the activating enzyme is
lower than that of the deactivating enzyme, corresponding to Figs. 2.5a-c. In the limit
that [Ea]T ≪ [Ed]T, [X] will be large and [X∗] will be small. As a consequence, Ea is
saturated with its substrate X, while Ed is not saturated with its substrate X∗. Because
Ea is saturated, the influx of X∗ into the system is constant (i.e. independent of [X]
and [X∗]) and given by J = k3[Ea]TL (see Eq. 2.2). Because Ed is unsaturated, the
deactivation rate γ is proportional to [X∗]: γ(x) = µ[X∗](x), with µ = k6/KM,d[Ed]T (see
Eq. 2.3). This means that in this regime the deactivation rate per particle is constant.

With the influx J being constant and the deactivation rate γ being proportional to
[X∗], Eq. 2.1 can be solved analytically. Defining the characteristic decay length of X∗

to be λ =
√

D/µ, then, if L ≫ λ, the solution is

[X∗](x) =
Jλ

D
exp(−x/λ). (2.4)

Eq. 2.4 reveals that when D increases, the profile decays more slowly, and the concen-
tration of X∗ at contact decreases. When D increases, the X∗ molecules diffuse away from
the pole more rapidly. Because in the regime considered here, namely [Ea]T ≪ [Ed]T,
the influx of X∗ is constant and independent of D, the concentration of X∗ close to the
pole will decrease when the molecules diffuse away more rapidly, while the concentration
further away will increase. In fact, in this limit the total concentration of X∗, [X∗]cell,
is independent of the diffusion constant; this can be verified by integrating Eq. 2.4 over
the whole cell, which yields [X∗]cell = J/µ. The fact that the total concentration of [X∗]
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Figure 2.5 Profiles of [X∗] (a and d), [EdX
∗] (b and e) and [Ed] (c and

f). a - c: Low concentration of activating enzyme, [Ea]T = 0.5[Ed]T; d-f:
High activating enzyme concentration, [Ea]T = 1.5[Ed]T. For the other
parameter values, see Fig. 2.4.

is independent of the diffusion constant, means that the response of the network does
not depend upon the spatial distribution of the enzymes.

When [Ea]T increases, [X∗] increases and [X] decreases. As a result, Ea becomes less
saturated, while Ed becomes saturated. Hence, the influx J will at some point become
sensitive to X, while the deactivation rate γ will no longer be proportional to [X∗].
However, in the zero-order regime considered here, the total substrate concentration [S]T
is large as compared to the enzyme concentrations and the Michaelis-Menten constants.
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This means that as [Ea]T is raised, such that [X](0) decreases and [X∗](0) increases,
initially Ea will remain fully saturated, while Ed will become saturated. This implies
that there is a range of Ea concentrations, where the influx J is still constant, but the
deactivation rate γ is no longer proportional to [X∗]. In this regime, the concentration
of X∗ increases with decreasing diffusion constant. Indeed, in this range, where [Ea]T <
[Ed]T, the spatially non-uniform network will respond stronger than the spatially uniform
network (see Figs. 2.3 and 2.5a-c).

Here we give a more intuitive explanation for the observation that a network in which
the enzymes are spatially separated can respond stronger than a network in which the
enzymes are similarly distributed in space. Ultimately, it is a consequence of the non-
linear enzyme-substrate binding curve and the resulting hyperbolic dependence of the
deactivation rate γ on [X∗] (see Eq. 2.3). More specifically, this effect can arise when
the diffusion constant is low and/or the deactivating enzyme operates close to, but not
at, saturation in the uniform system; in this uniform system, X∗ is distributed evenly
through the cell and all particles X∗ experience the same deactivation rate µ. In the
spatially non-uniform system, [X∗] is higher near the pole. If all the deactivating enzyme
molecules would operate in the linear regime, i.e. if all deactivating enzyme molecules
would not be saturated, then all particles X∗ would still experience the same degradation
rate µ; in this scenario, the increase in the number of X∗ particles close to the pole would
precisely balance the decrease in the number of X∗ particles further away from the pole,
as compared to the uniform network. However, if the concentration of the deactivating
enzyme with respect to that of its substrate is lower, i.e. if the enzyme operates close
to saturation, then the scenario can arise that the deactivating enzyme molecules near
the pole become saturated (Fig. 2.5 b), while in the corresponding uniform network
they are not. In this scenario, the X∗ particles that are located close to the pole in the
non-uniform network experience a lower effective deactivation rate than the X∗ particles
in the spatially uniform network. This will enhance the response of the non-uniform
system as compared to that of the uniform system.

2.2.4 Strong activation

We now discuss the effect of the diffusion speed on the concentration profiles of X∗ when
[Ea]T > [Ed]T (see Figs. 2.5d-f). In this regime, [X] is low and [X∗] is high. This reverses
the saturation behavior of the antagonistic enzymes: while in the weak-activation limit
Ea is saturated and Ed is unsaturated, now Ea is unsaturated and Ed is fully saturated.
This also reverses the sensitivities of the influx J and the deactivation rate γ to changes
in the substrate concentration. Indeed, in the strong-activation regime not the influx J
is constant, but rather the deactivation rate: γ = k6[Ed]T (see Eq. 2.3).

In the limit that the deactivation rate γ is constant, Eq. 2.1 can be solved in steady
state. The solution is

[X∗](x) = c0 + c1x +
1

2
c2x

2, (2.5)

where c2 = k6[Ed]T/D, c1 = −k6[Ed]TL/D, and c0 = [X∗](0) = [S]T− [Ed]T(1+k6/k3(1+
KM,a/[Ea]T)). It is seen that in the high-activation regime, the concentration profile
decays algebraically, rather than exponentially, as in the limit of weak activation. This
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is precisely because in the high-activation regime the total deactivation rate γ is constant
in space, while in the weak-activation limit γ is proportional to the concentration of X∗,
which varies in space. In fact, in the weak-activation limit the deactivation rate per
particle is constant in space and equal to µ. In contrast, in the strong-activation regime,
the deactivation rate per particle is not only lower than µ on average, but also varies
in space: the higher [X∗] as compared to [Ed]T (which is constant in space and sets the
total deactivation rate), the lower the deactivation rate per particle; activated particles
close to the pole thus experience a lower deactivation rate and hence travel further on
average before they are deactivated.

The expression for c0 = [X∗](0) reveals that as [Ea]T increases, the concentration
of X∗ close to the pole where Ea is located, increases. In the limit that [Ea] → ∞,
[X∗](0) → [S]T − 2[Ed]T ≈ [S]T, which means that close to the pole of the cell where
the activating enzyme is located, all the substrate X is converted into X∗ and EdX

∗ (see
Fig. 2.5d). Importantly, Fig. 2.5d also shows that as the distance from the pole increases,
the fraction [X∗]T(x)/[S]T(x) decreases, even in the limit that [Ea]T ≫ [Ed]T. When
[Ea]T ≫ [Ed]T, all the substrate molecules at the pole will indeed be modified. However,
these molecules will then diffuse away from the pole into the cytoplasm, where they can
be demodified by the deactivating enzyme molecules, but not remodified. Hence, when
the activating enzyme is spatially separated from the deactivating enzyme, it will never
be possible to convert all the substrate molecules in the system (see Fig. 2.2). This is
in marked contrast with the situation in which the activating and deactivating enzymes
are not spatially separated. In this case, all substrate molecules can be converted into
X∗ when [Ea]T ≫ [Ed]T (see Fig. 2.2).

The expression for c0 = [X∗](0) also reveals that in the limit that [Ea]T ≫ [Ed]T, the
concentration of X∗ at x = 0 is independent of the diffusion constant. However, while
[X∗](0) does not depend on the diffusion constant, the rate at which [X∗](x) decays with
the distance from the pole, does depend on it. Eq. 2.5, with c1 = −k6[Ed]TL/D, shows
that the concentration profile of X∗ decays more slowly when the diffusion constant
increases (see also Fig. 2.5d). These two observations, when taken together, imply that
the total concentration of X∗ in the whole system increases with increasing diffusion
constant. This can be verified by integrating Eq. 2.5 over the length of the cell, which
gives [X∗]cell ∼ a − b/D, where a and b are positive constants.

These results can be understood by comparing the influx of X∗ with the efflux of
X∗. When [Ea]T > [Ed]T, the deactivation rate is constant and hence independent of
the diffusion constant. Since the total deactivation rate of X∗ is independent of the
diffusion constant, the total influx of X∗, which in steady state must balance the total
efflux by deactivation, is also independent of the diffusion constant. The influx of X∗

depends on [EaX] and thus on the concentration of X∗ at x = 0, as discussed above.
Hence, the concentration of X∗ at x = 0 must be independent of the diffusion constant.
A more intuitive explanation is as follows: As the diffusion constant increases, the X∗

molecules will diffuse away from the pole more rapidly. This would tend to lower the
concentration of X∗ at x = 0. However, this process is accompanied by an increase in the
flux of X towards the pole ([S]T(x) is constant); because in the strong activation limit
Ea is unsaturated, this would tend to increase [EaX] and thereby the influx of X∗, which
would raise the concentration of X∗. In steady state, these processes balance each other
such that the concentration of X∗ at contact does not depend on the diffusion constant.
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However, while [X∗](0) does not change with the diffusion constant, the X∗ molecules
do diffuse away from the pole more rapidly when the diffusion constant increases. This
means that the total concentration profile of X∗ must increase with increasing diffusion
constant (see Fig. 2.3). Indeed, only in the limit that D → ∞ and [Ea]T ≫ [Ed]T,
can all the substrate molecules be converted into X∗ (see Fig. 2.3 and Fig. 2.5d). In
the strong-activation limit, spatially separating the antagonistic enzymes thus always
weakens the response, in contrast to the behavior in the weak-activation limit.

It should also be noted that the decay length of the concentration profile of X∗,
given by c1 = −k6[Ea]TL/D, does not only depend upon the diffusion constant, but also
upon the activity of the deactivating enzyme. In the spatially non-uniform system, the
maximum response (i.e. the response when [Ea]T ≫ [Ed]T) decreases as the catalytic
activity of the deactivating enzyme, k6, increases. The reason is that the X∗ molecules
will travel a shorter distance before they are deactivated, when the deactivation rate is
higher. The extent to which spatially separating the enzymes weakens the maximum
response thus depends upon both the diffusion constant and the deactivation rate of the
X∗ molecules.

2.2.5 Space-dependent amplification

Fig. 2.6 shows that if the activating enzyme is localized at one pole of the cell, while
the deactivating enzyme can freely diffuse through the cytoplasm, the response of the
network will depend upon the position in the cell. As can be deduced from Figs. 2.4
and 2.5, [EdX

∗] depends significantly on the position in the cell when [Ea]T < [Ed]T.
When [Ea]T > [Ed]T, however, [EdX

∗] becomes virtually independent of the position x,
because then all the deactivating enzyme molecules are saturated. The opposite trend
is observed for [X∗]: when [Ea]T < [Ed]T, [X∗] is low everywhere in the cell, while if
[Ea]T > [Ed]T, [X∗] strongly depends upon the position in the cell. The reason is, as
discussed in the previous section, that even when [Ea]T ≫ [Ed]T, not all X can be
converted into X∗ if the two antagonistic enzymes are spatially separated.

Interestingly, the average response of [EdX
∗] in the spatially non-uniform system is

very similar to that in the system in which the two enzymes are not spatially separated.
Yet, the response of [X∗] does differ markedly between the two systems. This is a result
of the strong non-linearity in the amplification mechanism of zero-order ultrasensitivity:
because the activation and deactivation reactions are zero-order in the substrate con-
centrations [X] and [X∗], respectively, even when k3[EaX] is only marginally larger than
k6[EdX

∗], predominantly all X molecules will be converted into X∗ [51].
Lastly, Fig. 2.6a shows that the inflection point of the dose-response curve depends

on the position x in the cell. The inflection point shifts to higher [Ea]T/[Ed]T as the
distance from the anterior pole increases; this effect becomes more pronounced as D
decreases (data not shown). The fact that the inflection point depends on the position
x is one of the principal reasons why the response in the spatially non-uniform system
is weaker than that of the uniform system.
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Figure 2.6 Dose-response curves of the push-pull network in which the
activating enzyme is localized at one pole of the cell, while the other
components diffuse in the cytoplasm, for different positions in the cell (x =
0 corresponds to the solid left most curve, while x = 3 µm corresponds to
the solid right most curve); a) profiles of [X∗] and b) profiles of [EdX

∗]; note
that the response becomes sharper further away from the pole. The dottes
curves correspond to the average or integrated response of the non-uniform
system, while the dashed curves correspond to the uniform system. The
inset shows the logarithmic gain g ≡ ∂ ln [X∗]/∂ ln [Ea]T at the respective
positions in the cell (x = 0, 1, 2, 3, µm). For the parameter values, see
Fig. 2.4.

2.2.6 Push-pull networks in the linear regime

Push-pull networks in living cells are not always in the zero-order regime [51, 45]. In the
linear regime, push-pull networks do not amplify signals, but can enhance the reliability
of cell signaling by making it robust against fluctuations in the concentrations of the
components due to noise in gene expression [68]. It is therefore meaningful to study
how the input-output relation of a push-pull network in the linear regime depends upon
the spatial distribution of the antagonistic enzymes. A push-pull network in the linear
regime is given by:

Ea + X
k1→ Ea + X∗ (2.6)

Ed + X∗ k2→ Ed + X (2.7)

The steady-state concentration profiles for these linear push-pull networks can be derived
analytically.

The principal result is that for push-pull networks that are in the linear regime,
spatially separating the antagonistic enzymes always weakens the response. This can
be seen by comparing the response curve for [S]T = 0.4KM in Fig. 2.2a with that in
Fig. 2.2b. The reason why for linear networks spatially separating the enzymes reduces
the response in the strong-activation limit is the same as that for zero-order networks.
The reason that, in contrast to zero-order networks, also in the weak-activation limit
the response is weakened, is more subtle. In zero-order networks that are in the weak-
activation limit, Ea is saturated and, consequently, the influx J is independent of the
concentration of X at the pole. In linear networks, Ea is unsaturated and the influx J
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is proportional to [X](0). As D decreases, [X∗](0) tends to increase and [X](0) tends to
decrease ([S]T(x) is constant in space). Because in the linear regime J is proportional to
[X](0), this would lower the influx of X∗, which, in turn, would lower the concentration
of X∗. Spatially separating the antagonistic enzymes thus amplifies weak signals if the
push-pull network operates in the zero-order regime, but not in the linear regime.

2.3 Discussion

In a push-pull network that operates deeply in the zero-order regime, the activation rate
is given by k3[Ea]T, while the deactivation rate is given by k6[Ed]T; both rates are thus
independent of the substrate concentration. If both enzymes are uniformly distributed,
or colocalized, then essentially all substrate molecules will be activated when k3[Ea]T >
k6[Ed]T, while they will be predominantly deactivated when k3[Ea]T < k6[Ed]T. To drive
the modification reactions to completion, it is indeed essential that the antagonistic
enzymes are not spatially separated. If the antagonistic enzymes are separated, then
the enzyme with the lower global activity, can locally still have a higher activity than
the other enzyme. More in general, spatially separating the enzymes means that the
balance between activation and deactivation depends upon the position in the cell, and
this “smearing” of the response always tends to reduce the sharpness of the global
response curve.

If information about changes in the environment has to be transmitted, then the
gain—the change in the output divided by the change in the input—is a critical quantity.
In fact, the maximum gain is then usually the most relevant quantity, because signaling
networks are often tuned to this point of maximum gain: the input-output function of
a module and the concentration of its input signal are often optimized with respect to
each other. The intracellular chemotaxis network of E. coli provides a clear example:
the steady-state intracellular concentration of the messenger CheYp is around 3 µM,
which is precisely the concentration at which the flagellar motors respond most strongly.
Our analysis shows that from the perspective of signal amplification, the best strategy
is to either colocalize the antagonistic enzymes or to uniformly distribute them in space:
spatially separating the enzymes always weakens the maximum response.

Nevertheless, as mentioned in the introduction, spatial gradients of messenger pro-
teins are often observed. Indeed, maximizing the gain is not the only design principle
in cell signaling. Firstly, while in some cases, such as E. coli chemotaxis, the signal has
to be transmitted to a large number of places throughout the cell’s cytoplasm or mem-
brane [58], in other cases the signal has to be transmitted to distinct regions, such as the
nucleus, or be confined to a small region near the membrane, as in the yeast pheromone
response where the shmoo tip has to be formed locally; in this scenario, spatial gradients
might be important, since they allow the cell to confine signaling to a narrow domain be-
low the cell membrane [56, 59]. Secondly, a sharp response may not always be desirable.
In order to respond strongly to changes in the input signal over a broad range of input
signal strengths, the cell does not only need a sharp response curve, but it also needs
to develop elaborate adaptation mechanisms that can reset the network to the point of
maximum gain. In E. coli, for instance, the methylation and demethylation enzymes
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CheR and CheB continually adjust the activity of the receptor cluster, such that the
steady-state intracellular CheYp concentration is at 3 µM. A weaker response curve,
however, would allow the cell to have a reasonable working range without adaptation
mechanisms. In this scenario not only the maximum gain would be important, but, in
fact, the full response curve. Thirdly, it might not always be possible to maximize signal
amplification by optimizing the input-output function of a module with respect to its
incoming signal, because, for instance, the downstream module also has to respond to
other incoming signals, while the signal also has to act on other downstream modules;
the yeast MAPK pathways, which exhibit cross talk, provide a prominent example of
such a scenario. It seems likely that in this case the full response curve, with the absolute
concentrations of the components, is important. In this context it is interesting to note
that spatially separating the antagonistic enzymes weakens strong signals by reducing
the maximum output signal (Figs. 2.3 and 2.5a), while it can enhance weak signals if
the network operates in the zero-order regime (Figs. 2.3 and 2.5d). This dependence of
the input-output relation on the spatial distribution of the antagonistic enzymes could
be exploited by cells to relay different environmental signals specifically.

The analysis performed here is essentially a mean-field analysis. It is assumed that
the concentrations are large and that fluctuations can be neglected. However, in the
living cell, the concentrations are often low, which means that fluctuations can be im-
portant. This is particularly relevant for push-pull networks. Their high gain not only
amplifies the mean of the input signal, but will also amplify the noise in the input sig-
nal [69, 70, 55]. Moreover, when the modification reactions become more zero order, the
intrinsic fluctuations of the push-pull network, i.e. noise resulting from the modification
reactions themselves, will also increase [52]. In fact, it has been shown that when push-
pull networks operate deeply in the zero-order regime, fluctuations can lead to a bimodal
response [54]. All these analyses of the effect of noise on the amplification mechanism of
zero-order ultrasensitivity have been performed under the assumption that the enzymes
are uniformly distributed in the cytoplasm. It would clearly be of interest to study the
effect of enzyme (co)-localization on the noise characteristics of push-pull networks.

Finally, could our predictions be tested experimentally? To test our predictions, one
would ideally like to perform an experiment on a system with a canonical push-pull
network in which all the parameters—concentrations of components, rate constants, dif-
fusion constants—are kept constant, except for the spatial location of one of the enzymes.
This clearly seems a very difficult experiment to perform, and to our knowledge, no such
experiment has been performed yet, with the possible exception of the experiment by
Vaknin and Berg [35]. Vaknin and Berg studied the effect of phosphatase localization on
the response of the intracellular chemotaxis network of E. coli cells. This network has
a topology that is very similar to that of the canonical push-pull networks considered
here, and it is believed that in the wild-type cells both the kinase and the phosphatase
are localized at the cell pole. Vaknin and Berg compared the response of wild-type
cells to that of mutant cells, in which the phosphatase was mutated such that it freely
diffuses in the cytoplasm. They found that the spatial distribution of the phosphatase
can have a marked effect on the the sharpness of the response, which seems to support
the principal conclusion of our analysis. We would like to emphasize, however, that to
assess the importance of the spatial distribution of the antagonistic enzymes in a push-
pull network, a careful, quantitative analysis of the network is required. First of all,
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our analysis shows that both the quantitative and qualitative consequences of enzyme
localization, depend upon the regime in which the network operates. For instance, our
calculations reveal that if the activation rate is independent of the messenger concen-
tration, and if the deactivation rate is linear in the messenger concentration, then the
localization of the phosphatase should have no effect at all on the response curve. Sec-
ondly, it is quite possible that in the mutant cells not only the spatial distribution of the
enzymes is different, but also their expression level, or even other parameters such as
rate constants. In fact, experiments by Wang and Matsumura suggest that the activity
of the phosphatase in the E. coli chemotaxis network is enhanced at the receptor cluster
[36]. Clearly, different rate constants would also tend to change the response curve of
the mutant cells with respect to that of the wild-type cells. To elucidate the effect of
enzyme localization on the dose-response curve of a network, thus requires quantitative
experiments and quantitative modeling. In a future publication, we will present a de-
tailed analysis on the importance of phosphatase localization in the chemotaxis network
of E. coli.

2.4 Methods: The push-pull network

A push-pull network consists of two Michaelis-Menten reactions (see also Fig. 2.1):

Ea + X
k1

⇋
k2

EaX
k3→ Ea + X∗ (2.8)

Ed + X∗ k4

⇋
k5

EdX
∗ k6→ Ed + X (2.9)

Here, Ea is the activating enzyme that provides the input signal, and Ed is the deactivat-
ing enzyme. The substrate X is the unmodified messenger that serves as the detection
component and X∗ is the modified messenger that provides the output signal; EaX de-
notes the activating enzyme bound to its substrate X and EdX

∗ is the deactivating
enzyme bound to its substrate X∗.

If all the components are uniformly distributed in space, then the chemical rate
equations that correspond to this network are:

∂[X∗]

∂t
= k3[EaX] − k4[Ed][X

∗] + k5[EdX∗] (2.10)

∂[X]

∂t
= k6[EdX

∗] − k1[Ea][X] + k2[EaX] (2.11)

∂[Ea]

∂t
= (k2 + k3)[EaX] − k1[Ea][X] (2.12)

∂[EaX]

∂t
= k1[Ea][X] − (k2 + k3)[EaX] (2.13)

∂[Ed]

∂t
= (k5 + k6)[EdX

∗] − k4[Ed][X
∗] (2.14)

∂[EdX
∗]

∂t
= k4[Ed][X

∗] − (k5 + k6)[EdX
∗] (2.15)

Here, [...] denotes the concentrations of the species. The steady-state input-output curve
of this network can be obtained analytically [34].
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We compare the behavior of this network to that of a network in which the activating
enzyme Ea is located at one pole of the cell, while the other components can freely
diffuse in the cytoplasm. The cell is assumed to be cylindrically symmetric. Since we
are interested in the mean concentration profiles, it is meaningful to integrate out the
lateral dimensions y and z. We thus consider a simplified 1D model, with concentrations
as a function of x only. This leads to the following reaction-diffusion equations:

∂[X∗]

∂t
= D

∂2[X∗]

∂x2
+ k3[EaX]δ(x) − k4[Ed][X

∗] + k5[EdX∗] (2.16)

∂[X]

∂t
= D

∂2[X]

∂x2
+ k6[EdX

∗] − k1[Ea][X]δ(x) + k2[EaX]δ(x) (2.17)

∂[Ea]

∂t
= (k2 + k3)[EaX] − k1[Ea][X](0) (2.18)

∂[EaX]

∂t
= k1[Ea][X](0) − (k2 + k3)[EaX] (2.19)

∂[Ed]

∂t
= D

∂2[Ed]

∂x2
+ (k5 + k6)[EdX

∗] − k4[Ed][X
∗] (2.20)

∂[EdX
∗]

∂t
= D

∂2[EdX
∗]

∂x2
+ k4[Ed][X

∗] − (k5 + k6)[EdX
∗] (2.21)

The components Ea and EaX are localized in the membrane at one end of the cell; the unit
of their concentrations is number of molecules per area. The other components diffuse
in the cell. Their concentrations, which are in units of number of molecules per volume,
depend on the position x in the cell, where x measures the distance from the pole at
which Ea and EaX are localized; only in Eqs. 2.18 and 2.19 is the x dependence explicitly
indicated to emphasize that the Ea-X association rate depends on the concentration of
X at contact. Zero-flux boundary conditions are imposed at both cell ends. The steady-
state input-output relations of the network described by Eqs. 2.16-2.21 were obtained
numerically by discretizing the system on a (1D) grid and propagating Eqs. 2.16-2.21 in
space and time until steady-state was reached.

We consider a cell with the typical dimensions of an E. coli cell: the length of the
cell, L, is thus on the order of 3 µm [35]. We assume the same diffusion constants for
all the components that can diffuse in the cytoplasm. This is for reasons of simplicity;
it is not essential for the main conclusions of our work. To focus on the effect of enzyme
localization on the input-output relation, we assume for both networks that k1 = k4, k2 =
k5, k3 = k6; the Michaelis-Menten constants for the modification and demodification
reactions are thus the same: KM,a ≡ (k2 + k3)/k1 = KM,d ≡ (k5 + k6)/k4. To compare
the two networks on equal footing, the total concentration of activating enzyme, [Ea]T ≡
[Ea]+[EaX], was chosen such that [Ea]

nu
T = L[Ea]

u
T, where [Ea]

nu
T is the concentration (per

unit area) in the non-uniform system and [Ea]
u
T is the concentration (per unit volume) in

the spatially uniform network. This choice ensures that the total number of activating
enzyme molecules in the whole cell is the same for both systems. We therefore report
[Ea]T ≡ [Ea]

u
T.

In the calculations, we vary the concentration of the activating enzyme, Ea, which
is the input signal. The total concentration of the deactivating enzyme, Ed, is kept
constant at [Ed]T = 0.5 µM; the rate constants are fixed at k1 = k4 = 108 M−1s−1,
k2 = k5 = 25 s−1, k3 = k6 = 25 s−1, corresponding to Michaelis-Menten constants of
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KM = KM,a = KM,d = 0.5 µM. We have studied extensively the effect of changing the
diffusion constant D and the total substrate concentration [S]T ≡ [X]T + [X∗]T, where
[X]T ≡ [X] + [EaX]/L is the total concentration of X and [X∗]T ≡ [X∗] + [EdX

∗] is the
total concentration of X∗. Their base-line parameters, however, were: D = 10 µm2s−1

and [S]T = 20 µM. The magnitude of the diffusion constant [71], as well as the values of
the Michaelis-Menten constants, enzyme concentrations, and substrate concentrations,
are typical for prokaryotic [45] and eukaryotic cells [51].
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3 The canonical model of E. coli

chemotaxis

Push-pull networks, in which two antagonistic enzymes control the activity of a mes-
senger protein, are ubiquitous in signal transduction pathways. A classical example is
the chemotaxis system of the bacterium Escherichia coli, in which the kinase CheA and
the phosphatase CheZ regulate the phosphorylation level of the messenger protein CheY.
Recent experiments suggest that both the kinase and the phosphatase are localized at the
receptor cluster, and Vaknin and Berg recently demonstrated that the spatial distribu-
tion of the phosphatase can markedly affect the dose-response curves [Proc. Natl. Acad.
Sci. USA 101, 17072-17077 (2004)]. We argue, using mathematical modelling, that the
commonly accepted model of the chemotaxis network cannot explain the experimental ob-
servations of Vaknin and Berg. It should be noted that the experiments can be explained
if one allows for the possibility that the mutant cells operate extremely far outside their
sensitive range, which seems to contradict the observation that these mutants are able to
chemotax.

3.1 Introduction

The protein network that controls chemotaxis of Escherichia coli is arguably the most-
studied and best-characterized signal transduction pathway. Its relative simplicity makes
it an ideal model system for studying signal amplification, integration, transduction,
and adaptation. The network consists of three parts: i) a cluster of receptors at the cell
membrane, which detects the extracellular ligand; ii) the intracellular signaling path-
way, which transmits the signal from the receptor cluster to the flagellar motors; iii) the
network that controls the response of the flagellar motors. The intracellular signaling
pathway is a push-pull network that consists of a kinase, CheA, that phosphorylates the
messenger protein CheY and a phosphatase, CheZ, that dephosphorylates the phospho-
rylated messenger protein CheYp. In wild-type cells, CheA is localized exclusively at the
receptor cluster, and also CheZ is predominantly localized at the receptor cluster [60].
Recently, however, Vaknin and Berg studied mutants in which CheZ can no longer bind
the receptor cluster, as a result of which it is uniformly distributed in the cytoplasm
[35]. They observed that the response of these mutant cells differs strongly from that of
wild-type cells. Inspired by this observation, we showed in the previous chapter that the
spatial distribution of the antagonistic enzymes by itself can have a dramatic effect on
the response [72]. We have also seen, however, that the effect depends upon the regime
in which the network operates. Here, we address by detailed mathematical analysis of
the commonly accepted model of the E. coli chemotaxis network whether the difference
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in response between wild-type and CheZ mutant cells can be explained by the different
spatial distribution of CheZ in these cells. We find that this is not the case. Also realistic
changes in parameters such as rate constants and protein concentrations do not seem
sufficient to explain the difference in response. In the next chapter, we propose a new
model that can explain the experiments proposed by Vaknin and Berg [35].

The commonly accepted model of the intracellular chemotaxis network of E. coli is
described by the following set of chemical reactions:

A
βk0→ Ap (3.1)

Ap + Y
k1

⇋
k2

ApY
k3→ A + Yp (3.2)

Yp + Z
k4

⇋
k5

YpZ
k6→ Y + Z (3.3)

In this network, the phosphorylated form of the messenger, CheYp (Yp), transmits the
signal from the receptor cluster to the flagellar motors. The phosphorylation level of
CheY is regulated by a kinase CheA (A) and a phosphatase CheZ (Z). The input to
the signal transduction pathway is βk0, where β is a parameter between zero and one
that reflects the activity of the receptor cluster and k0 denotes the maximum rate of
autophosphorylation of CheA. The value of β depends on the ligand concentration [L]:
β ≡ β([L]); β shifts to lower (higher) values upon the addition of attractant (repellent).
In order for E. coli to adapt to a changing ligand concentration, the activity of the
receptor cluster, β, is also modulated by the methylation and demethylation enzymes
CheR and CheB, respectively.

In wild-type E. coli cells, not only CheA, but also CheZ is localized at the receptor
cluster [60]. In these cells, CheZ is anchored to the receptor cluster by a variant of
CheA, CheAs, which lacks enzymatic activity. In a recent experiment, Vaknin and Berg
compared the response of wild-type cells to that of CheZ mutant cells, in which CheZ
does not bind to CheAs, but diffuses in the cytoplasm [35]. They studied the response
of the chemotaxis network by measuring the interaction between CheZ and CheYp using
FRET imaging. While the input of the network was thus the concentration of ligand,
the measured output was proportional to the total, integrated concentration of CheYp

bound to CheZ, [YpZ] (see also Eq. 3.3).
Vaknin and Berg found that the colocalization of the antagonistic enzymes has a

marked effect on the dose-response curve [35]. In wild-type cells, in which CheA and
CheZ are colocalized at the receptor cluster, the response of [YpZ] to changes in the
concentration of the attractant serine is more sensitive than in mutant cells, in which
CheZ is distributed in the cytoplasm. Moreover, in CheRcheB cells, which lack the
methylation and demethylation enzymes, the response to the addition of serine is also
sharper when CheA and CheZ are colocalized at the receptor cluster [35].

In the next section, we show that the experiments of Vaknin and Berg [35] impose
strong constraints on any model that aims to describe the intracellular chemotaxis net-
work. In the subsequent section, we argue that the commonly accepted model does not
meet these constraints: neither changes in the spatial distribution of CheZ, nor realistic
changes in the rate constants and protein concentrations seem sufficient to explain the
differences in the response curves of the mutant and wild-type cells. Indeed, we argue
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that the experiments of Vaknin and Berg demonstrate that the the commonly accepted
model needs to be augmented.

3.2 Decomposing the response

Analysis of the dose-response curves of Vaknin and Berg [35] is complicated by the fact
that it is determined by both the response of the receptor cluster to the binding of ligand
and by the response of the intra-cellular signaling pathway to changes in the activity of
the receptor cluster. However, these two networks can be viewed as two independent
modules connected in series, which can be analyzed separately, as we will argue now.

The first module is the receptor cluster. Its activity, β, depends upon the concentra-
tion of ligand, [L], and upon the methylation states of the receptors, which is controlled
by the methylation and demethylation enzymes CheR and CheB, respectively. However,
the dynamics of receptor methylation and demethylation by CheR and CheB is much
slower than that of receptor-ligand (un)binding and phosphorylation and dephosphory-
lation of CheY; in fact, this separation of time scales allows E. coli to both respond and
adapt to a changing ligand concentration. This separation of time scales also makes it
possible to model the response to ligand at short time scales without explicitly taking
into account the (de)methylation dynamics; different ambient conditions, or the absence
of CheR and CheB in CheRCheB cells, will lead to different methylation states of the
receptors, yet can be modeled implicitly by taking different functional forms for βk0([L]).

The second module of the chemotaxis network, the intracellular signal transduction
pathway, is described by the set of reactions in Equations 3.1-3.3. The input of this
network is βk0, while the output is the concentration of CheYp, [Yp], or, as in the
experiments of Vaknin and Berg, the total concentration of CheYp bound to CheZ,
[YpZ] [35]. The response curve of this network, [YpZ](βk0), depends upon the spatial
organisation of the network, and will thus be different for wild-type cells and CheZ
mutant cells. Importantly, [YpZ](βk0) is independent of the methylation states of the
receptors. We assume that [YpZ](βk0) also does not depend upon the presence of CheB,
although phosphorylated CheA can phosphorylate not only CheY but also CheB, leading
to another form of adaptation on a time scale longer than that of the response; we will
come back to this in the next chapter. Thus, we assume that [YpZ](βk0) of CheRCheB
cells is the same as that of wild-type cells; the presence of CheR and CheB only affects
βk0([L]).

If the receptor cluster and the intracellular chemotaxis pathway are two independent
modules connected in series, the response function [YpZ]([L]) is given by the composite
function [YpZ] (βk0([L])). This is illustrated graphically in Figure 3.1. Panel A shows
the response of [YpZ] to the addition of serine, as obtained from the experimental data
of Vaknin and Berg, who measured with FRET the response of [YpZ] to changes in
[serine] [35]. Panels B and C show functions [YpZ](βk0) and βk0([L]), respectively,
that together reproduce the data in panel A. This decomposition is not unique, but, as
we will discuss in more detail below, the combination of experimental results on wild-
type cells, CheRCheB cells, and CheZ mutant cells, imposes strong constraints on the
decomposition.

The experiments of Vaknin and Berg [35] allow us to verify whether the receptor
cluster and the intracellular signaling pathway are indeed two independent modules
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Figure 3.1 Decomposition of a dose-response curve. A. A dose-response
curve taken from [35]. The concentration of CheY bound to CheZ [YpZ]
was measured with FRET as a function of the concentration of the at-
tractant Serine. As explained in the main text, this response can be de-
composed into the response of [YpZ] to the activity of the receptor cluster
βk0 (panel B) and the response of the activity of the receptor cluster to
the concentration of Serine (panel C). Panel D is an augmentary line that
helps to visualize the conversion between panels B and C.

connected in series. Vaknin and Berg performed experiments on four bacterial strains:
wild type CheR+CheB+CheZ cells, CheR−CheB−CheZ cells lacking CheR and CheB,
CheR+CheB+CheZ∗ cells with mutant CheZ proteins that cannot bind the receptor
cluster, and CheR−CheB−CheZ∗ cells lacking CheR and CheB and with CheZ∗ (CheZ
mutated). As discussed above, we assume that βk0[L] is the same for wild type and CheZ
mutant cells, but not for wild type and CheR−CheB− cells; in contrast, [YpZ](βk0) is the
same for wild type and CheR−CheB− cells, but not for wild type and CheZ∗ cells. If the
receptor cluster and the chemotaxis network are two independent modules connected in
series, then it should be possible to describe the response curve [YpZ]([L]) of each of the

four strains using two of the following response curves: [YpZ]Z
wt

(βk0) or [YpZ]Z
∗

(βk0),

and βkR+B+

0 ([L]) or βkR−B−

0 ([L]). In other words, all the four response curves measured

in [35] should be of the composite form [YpZ]{Z
∗,Zwt} (βkRB±

0 ([L])
)

.
To demonstrate that this is the case, we show in Figure 3.2 [YpZ] in cells contain-

ing wild-type CheZ as a function of [YpZ] in cells containing mutant CheZ, both for
CheR−CheB− and CheR+CheB+ cells. These figures are obtained from Figures 5A and
5C of Ref. [35], which show the renormalized FRET signal (FRET([L])/FRET([L]=0))



Decomposing the response 43

1

0.8

0.6

0.4

0.2

0
0.80.60.40.20

F
R

E
T

 f
o
r 

w
t 
c
e
lls

 (
a
.u

.)

FRET for CheZ
*
 mutants (a.u.)

RB
-

RB
+

Figure 3.2 The relation between the four FRET signals of Figs. 5a and
5c in [35]. FRET signals of bacterial strains that differ only in the type
of phosphatase—wild-type CheZ versus a non-localizing mutant–are plot-
ted as a function of each other. This was done both for strains lacking
the adaptation proteins CheR and CheB (squares) and for strains with
CheR and CheB (circles). The FRET signals on the vertical and horizon-
tal axes are linked via equal concentrations of attractant in the response
curves. Because of the decoupling of the response of the intracellular sig-
nal transduction pathway from the response of the receptor cluster (see
Figure 3.1), equal concentrations of attractant correspond to equal activi-
ties of the receptor cluster if the CheRCheB states are the same, and equal
concentrations of [YpZ] correspond to equal activities of the receptor clus-
ter if the same type of phosphatase is present. As a consequence, the two
curves should overlap (see main text). This could be achieved by rescaling
only the FRET signal for the wild-type bacterium by a factor 0.5.

as a function of serine concentration for CheR−CheB− and CheR+CheB+ cells, respec-
tively. Since these figures show the renormalized FRET response, no absolute concen-
trations of [YpZ] can be obtained. The concentrations in Figure 3.2 are therefore given
in arbitrary units. This also means that the curves for CheRCheB+ and CheR−CheB−

cells in Figure 3.2 can be scaled with respect to each other. Now, if βk0[L] only depends
upon the presence of CheR and CheB while [YpZ] only depends upon the nature of CheZ,
it should be possible to scale these curves such that they coincide. Figure 3.2, which
is obtained by scaling the FRET signal for the wild-type CheR+CheB+CheZ cells by a
factor 0.5, shows that this is indeed possible. This supports the idea that the receptor
cluster and the intracellular pathway are two independent modules connected in series.

Figure 3.2 allows us to rescale the data of Figures 5A and 5C of Ref. [35] to obtain
[YpZ] as a function of [L]. The result is shown in Figure 3.3a, where the maximum [YpZ],
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Figure 3.3 Three models that reproduce the response curves of [35]. A.
The four response curves of Figure 5a in [35], rescaled according to Fig-
ure 3.2 and assuming a total concentration [Z]T = 1.1µM . Model I (light
grey data) is based on a linear dependence [YpZ](βk0) for cells containing
the non-localizing phosphatase mutant CheZ (see panel B). As a conse-
quence, the activity of the receptor cluster in panel C is proportional to
the concentration of CheYpCheZ for CheZ mutant cells in panel A. The
response [YpZ](βk0) for cells containing wild-type CheZ is extremely sharp
for model I (see panel B). Model II (dark grey data) is based on a linear
function of [YpZ](βk0) for cells with wild-type CheZ. As a consequence,
βk0([L]) is proportional to the dose-responses curve for cells with wild-
type CheZ (compare panels A and C). In this case, the response curve
[YpZ](βk0) for CheZ mutant cells is very concave. Model III was con-
structed by assuming that βk0([L]) is a linear combination of the response
functions of models I and II. The resulting response functions [YpZ](βk0)
in panel B are less extreme than those of models I and II.

obtained for CheR−CheB−CheZ cells at [L] = 0, was set to the total CheZ concentration
as reported in [45]. These response curves impose strong constraints on any model that
hopes to explain the response of CheYpCheZ to the addition of serine. It should be noted
that there are two free scaling parameters left, since both the x-axis and the y-axis of
Fig. 3.2 are in arbitrary units. The FRET signals for the two CheZ wt strains may be
scaled simultaneously, as well as the FRET signals for the two CheZ mutant strains.
In the modeling, we still allowed for this simultaneous scaling of the FRET signals.
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While Figure 3.2 supports the idea that the network that controls the response of
CheYpCheZ to changes in ligand concentration can be decomposed into two indepen-
dent modules, it does not uniquely prescribe how this decomposition should be made.
This is illustrated in Figures 3.3B-D, which show the response curves of three differ-
ent models, indicated by different colors, that all can explain the dose-response curves

of Figure 3.3A. Each model consists of two functions [YpZ]Z
wt

(βk0) and [YpZ]Z
∗

(βk0)

(Figure 3.3B) and two functions βkRB+

0 ([L]) and βkRB−

0 ([L]) (Figure 3.3C). For each

model, the four composite functions [YpZ]{Z
∗,Zwt} (βkRB±

0 ([L])
)

exactly reproduce the
four dose-response curves of Figure 3.3A. Model I (light dotted lines and points) re-

lies on the assumption that [YpZ]Z
∗

(βk0) is a straight line over the concentration range

of interest (see Figure 3.3B). This means that βkRB+

0 ([L]) and βkRB−

0 ([L]) are propor-
tional to [YpZ]([L]) of CheR+CheB+CheZ∗ and CheR−CheB−CheZ∗ cells, respectively;
this can be verified by comparing Figure 3.3A to Figure 3.3C. The remaining func-

tion [YpZ]Z
wt

(βk0) is now fully determined and can be constructed from βkRB+

0 ([L])

and [YpZ]([L]) of the CheR+CheB+CheZwt cells, and βkRB−

0 ([L]) and [YpZ]([L]) of the
CheR−CheB−CheZwt cells (see Figure 3.3B); this function has a strongly convex shape.

Model II (dark grey lines and points) relies on the assumption that [YpZ]Z
wt

(βk0) is a

linear function (see Figure 3.3B). In this case βkRB+

0 ([L]) and βkRB−

0 ([L]) are propor-
tional to [YpZ]([L]) of CheR+CheB+CheZwt and CheR−CheB−CheZwt cells, respectively

(see Figure 3.3A and Figure 3.3C). The functional form [YpZ]Z
∗

(βk0) now has a concave
shape (see Figure 3.3B). These two models are two extreme scenarios that both can
explain the data shown in Figure 3.3A.

In the following sections we will also consider models that have less extreme functional
forms for [YpZ](βk0); these models lie in between model I and model II. We construct
such models, starting from models I and II, by defining functions βk0([L]) as linear
combinations α βkII

0 ([L]) + (1 − α) βkI
0([L]), where α is a parameter between zero and

one; for α = 0 the model reduces to model I, while for α = 1 the model reduces to model
II. Model III (black lines and points) was constructed by putting α equal to 0.5. For

this model, [YpZ]Z
∗

(βk0) is slightly concave, whereas [YpZ]Z
wt

(βk0) is slightly convex.
The model that can describe the response of [YpZ] to changes in ligand concentration

should not only be able to reproduce the dose-response curves of Figure 3.3, it should
also satisfy other important conditions. Most importantly, wild-type cells can chemotax,
which means that in their adapted state they can respond to the addition as well as to the
removal of attractant. Bacteria lacking CheAs are able to chemotax towards attractants
as well, although less efficiently than wild-type bacteria [73]. These mutants are similar
to CheZ mutants in that the binding of CheZ to the receptor cluster is hampered in both
strains. The requirement that both strains can chemotax means that the concentration
of CheYp in the adapted state should be within the working range of the motor, i.e.
between 1 and 5 µM [44, 45]. This constraint turns out to be particularly hard to meet.

3.3 Original model: the canonical push-pull network

We now address the question whether the commonly used model for the chemotaxis
pathway of E. coli, as given by Equations 3.1-3.3, can describe the experimental results
of Vaknin and Berg [35]. We first study the effect of the spatial distribution of CheZ,
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thus leaving the other parameters unchanged. As we will show, the spatial distribution
of CheZ alone is not sufficient to explain their experimental results. We will then also
vary rate constants and concentrations to see whether the commonly accepted model
can describe these results.

To elucidate the effect of CheZ localization, we have computed the input-output
relations for a network in which CheA and CheZ are colocalized at the receptor cluster
(corresponding to wild-type cells) and for a network in which CheA is localized at the
receptor cluster, while CheZ is distributed in the cytoplasm (corresponding to CheZ
mutant cells); for both networks, the chemical reactions are given by Equations 3.1-3.3.
The steady-state input-output relations of these networks were obtained numerically by
discretizing the system on a 1D grid and propagating the chemical rate equations, which
are given in the Methods section, in space and time until steady state was reached.

As pointed out in the previous section, the input of the intracellular network is
not directly the ligand concentration [L], but rather βk0 (see Eq. 3.1), which implicitly
depends upon [L]. Importantly, we first assume that the functional dependence of β
on the ligand concentration [L], as well as the rate constants of all the reactions, is
the same for wild-type and CheZ mutant cells: this allows us to elucidate the effect of
colocalization of the antagonistic enzymes on the input-output relations. The model and
the values of its parameters were taken from Sourjik and Berg [45].

The principal results of our calculations are shown in Figure 3.4. This figure shows
for wild-type and CheZ mutant cells, the concentration of CheYpCheZ and CheYp as a
function of βk0 (see Equation 3.1); the bullets correspond to the state of the network after
adaptation [45]. Figure 3.4 shows that the model predicts that the spatial distribution
of CheZ affects the response to the addition of repellent or the removal of attractant,
which corresponds to an increase in β. More importantly, the model predicts that the
CheZ distribution should not affect the response to the addition of attractant: When
βk0 is lowered from its value βadaptedk0 in the adapted state, both the change in [Yp]
and [YpZ] do not depend much on the spatial distribution of CheZ. This result is thus in
contrast with the drastic effect of enzyme localization on the response found by Vaknin
and Berg [35].

The network given by Equations 3.1-3.3 is very similar to a canonical push-pull net-
work, in which two enzymes covalently modify a substrate in an antagonistic manner [34]
(see Methods for how these networks can be mapped onto each other). In chapter 2,
we have studied in detail the effect of enzyme localization on the response of a push-
pull network [72]. Our principal finding is that enzyme localization can have a marked
effect on the gain and sensitivity of push-pull networks, seemingly consistent with the
experiments of Vaknin and Berg [35], but contradicting the numerical results shown in
Figure 3.4. The resolution of this paradox is that both the quantitative and qualitative
consequences of enzyme localization depend upon the regime in which the push-pull
network operates. In particular, if the activation rate is independent of the substrate
concentration and if the deactivation rate is linear in the messenger concentration, then
phosphatase localization has no effect on the response curve [72]. This is precisely the
case for the chemotaxis network studied here. For βk0 < βadaptedk0, CheZ is unsatu-
rated [45] and the dephosphorylation rate of CheYp is thus proportional to [Yp]. The
influx J of CheYp is constant, i.e. independent of [Y]. This is not because the phos-
phorylation reaction is in the zero-order regime; this reaction is, in fact, in the linear
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Figure 3.4 Total, integrated concentration of CheYpCheZ,
∫ L

0
dx[YpZ](x), and CheYp,

∫ L

0
dx[Yp](x)dx, as a function of βk0

for the canonical model of the chemotaxis network of E. coli, shown in
Equations 3.1-3.3. The solid curves correspond to wild-type cells in which
CheA and CheZ are colocalized at the receptor cluster, while the dashed
curves correspond to the mutant cells in which CheA is localized at the
pole, while CheZ freely diffuses in the cytoplasm. The bullets correspond
to the adapted state of the system. The diffusion constant of the diffusing
components is D = 5µm2s−1 [71]. For other parameter values, see [45].

regime [45]. The influx J of CheYp at the cell pole is constant because a) in steady state
J = k3[ApY] = βk0[A] and b) in the weak activation regime CheA is predominantly
unphosphorylated ([A] ≈ [A]T), which means that [A] is fairly insensitive to the spatial
distribution of CheZ. Hence, according to the model of Equations 3.1-3.3, in this regime
the concentration of CheYp does not depend upon the spatial distribution of CheZ,
which is indeed what Figure 3.4 shows.

However, while the model of Equations 3.1-3.3 predicts that in wild-type cells the
response of [YpZ] to the addition of attractant does not depend on the location of CheZ,
the experiments by Vaknin and Berg clearly demonstrate that it does [35]. What could
be the origin of the discrepancy between the model predictions and the experimental
results of Vaknin and Berg? As mentioned above, the response of [YpZ] to the ligand
concentration [L] depends upon the response of [Yp] to the activity of the receptor
cluster, βk0, and upon the response of βk0 to the ligand concentration [L]. If we keep
with the assumption that the functional dependence of βk0 on [L], βk0([L]), is the same
for both wild type and CheZ mutant cells, the discrepancy between the predictions of
the commonly adopted model and the experimental observations of Vaknin and Berg
must lie in the dependence of [YpZ] on βk0. It is quite likely that the rate constants
and/or concentrations that are used in the calculations differ from those in vivo. It
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is also possible that the topology of the commonly accepted model of the intracellular
chemotactic pathway, Eqs. 3.1-3.3, is incorrect. In order to discriminate between these
two scenarios, we will, in the rest of this section, first address the question whether
it is possible to explain the experimental observations with the commonly accepted
model by allowing for different values of parameters such as rate constants and protein
concentrations. We will then argue that simply allowing for different parameter values
is probably not sufficient to explain the experiments of Vaknin and Berg, and that thus
the canonical model should be reconsidered.

Independently of the model parameters, it is always true that the rate of phospho-
rylation equals the rate of dephosphorylation if the system is in steady state. For the
commonly accepted model, i.e. Equations 3.1-3.3, this means that for both the spatially
uniform network in which CheA and CheZ are colocalized, and the spatially non-uniform
network in which CheZ is distributed in the cytoplasm, the following relation holds in
steady state:

βk0[A] = k6[YpZ] ∝ k6FRET. (3.4)

Here, “FRET” denotes the FRET signal, which is proportional to the total, inte-
grated, concentration of CheYp bound to CheZ, [YpZ]. For the regime of interest,
βk0 < βadaptedk0, the concentration of unphosphorylated CheA, [A], is essentially con-
stant for the conventional model, because only a small fraction of the total amount of
CheA is phosphorylated; below we discuss scenarios in which this relation might not
hold. Equation 3.4 thus shows that if [A] ≈ [A]T, the FRET signal only depends upon
the activity of the receptor cluster, βk0, and upon the phosphatase activity, k6, but not
upon other rate constants in the network, nor upon the expression levels of, for instance,
CheY and CheZ. Moreover, if [A] ≈ [A]T, the FRET signal, in this model, is linear in
the activity of the receptor cluster: FRET = cβ([L]), where c = k0[A]/k6 is the propor-
tionality constant. Incidentally, this explains the linear dependence of [YpZ] on βk0 for

βk0 < βkadapted
0 in Figure 3.4B.

The linear relation between [YpZ] and βk0 as predicted by the commonly accepted
model would mean that the dose-response curves, i.e. FRET([L]), solely reflect the
response of the receptor cluster to the addition of ligand, βk0([L]). Vaknin and Berg
report the renormalized FRET response: they normalize the FRET signal at ligand
concentration [L] to the FRET signal at zero ligand concentration, [L] = 0 [35]. If the
response of [YpZ] to βk0 would indeed be linear, then the renormalized FRET signal
would be given by FRET([L])/FRET([L] = 0) = β([L])/β([L] = 0). Hence, the propor-
tionality factor c would drop out. The renormalized FRET signal would thus be given
by the dependence of the activity of the receptor cluster on the ligand concentration,
βk0([L]). While plotting the renormalized FRET signal may mask potentially useful
information, this observation does allow us to draw an important conclusion: If βk0([L])
is the same for wild type and CheZ mutant cells, and as long as [YpZ](βk0) is linear, the
commonly accepted model cannot describe the experiments of Vaknin and Berg, even if
we allow for different parameter values for the rate constants or protein concentrations.

The experiments of Wang and Matsumura illustrate the importance of this conclu-
sion [36]. Their experiments suggest that the phosphatase activity is enhanced by its
interaction with CheAs, which localizes CheZ to the receptor cluster [36]. This would
predict that in the CheZ mutant cells (in which CheZ is distributed in the cytoplasm),
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the phosphatase activity, and hence k6, is lower. This would change the dependence of
[YpZ] on βk0 (see Equation 3.4); in particular, decreasing k6 would increase the slope.
However, as long as the dependence of [YpZ] on βk0 is still linear, the renormalized
FRET response would still be given by βk0([L]): merely changing the slope of [YpZ] as
a function βk0 does not change the renormalized FRET response. More in general, only
allowing for different rate constants or protein concentrations between the wild-type cells
and mutant cells is not sufficient to explain the data, if indeed βk0([L]) is the same for
both cells and [YpZ](βk0) is linear.

3.4 Changing parameters in the canonical model

In vivo parameter values are typically not known with high precision: protein concen-
trations are often known only approximately and rate constants are typically measured
in vitro rather than in vivo. We now address the question whether the experiments by
Vaknin and Berg [35] could be explained if we allow for different parameter values in
the commonly accepted model of the chemotaxis network of E. coli.

The critical ingredient in the above analysis is that [YpZ] varies linearly with βk0,
both for the wild-type and the CheZ mutant cells. We now first address the ques-
tion whether deviations from this linear relation could explain the data, and then how
these deviations might arise. The simplicity of the commonly accepted model, Equa-
tions 3.1-3.3, does not allow for a convex dependence of [YpZ] on βk0. Figure 3.3B then
immediately shows that any model that aims to describe the dose-response curves of
both the the wild-type cells and the CheZ mutant cells, should exhibit a linear relation-
ship [YpZ](βk0) for wild-type cells and a concave function [YpZ](βk0) for CheZ mutant
cells (dark grey data set). For this reason, we now try to simultaneously fit the dose-
response curves of FRET vs [serine] for both wild-type and mutant cells, by varying the
parameters for the mutant bacterium, while keeping the parameters for the wild-type
cells fixed.

Figures 3.5-3.8 show the effect of individually varying the rate constants k1, k3, k4 and
k6 of the commonly accepted model of the intracellular chemotaxis network (Equations
3.1-3.3). For every parameter set we show the response of: A) [Yp] as a function of the
receptor-cluster activity βk0; B) [YpZ] as a function of βk0; C) [A] as a function of βk0;
D) the FRET signal as a function of added ligand (serine). Every plot shows the result for
the wild-type cell with colocalized CheA and CheZ and with the baseline parameter set
(thin solid black line), together with the response curves of mutant cells with diffusive
CheZ, where each curve corresponds to a different value of the rate constant that is
varied. The calculations were repeated for different concentrations [A]T and [Y]T with
similar results (data not shown).

Figures 3.5C-3.8C show [A] as a function of βk0. It is seen that for low values
of βk0, [A] is essentially constant, and given by [A] ≈ [A]T. This is an important
observation. In steady state, βk0[A] = k6[YpZ] for the commonly accepted model of
the intracellular chemotaxis network. Hence, when [A] is constant, [YpZ] varies linearly
with βk0. Since the FRET signal is proportional to [YpZ], also the FRET signal varies
linearly with βk0, when [A] is constant. If the FRET signal is proportional to βk0,
then the renormalized FRET response is fully determined by the activity of the receptor
cluster: FRET([L])/FRET([L] = 0) = βk0([L])/βk0([L] = 0); it no longer depends upon
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Figure 3.5 Effect of varying k1 on the response of the commonly-adopted
chemotaxis model (Equations 3.1-3.3). The thin black line corresponds to
the predicted response of wild-type cells, the parameters of which are
kept constant (except βk0); the other thin lines correspond to predicted
response curves of CheZ mutant cells, where each line corresponds to a
different value of k1. Shown are the response of [Yp] (A), [YpZ] (B), [A] (C)
to changes in the activity of the receptor cluster βk0 and the FRET signal
as a function of serine concentration (D). By construction (see text), the
predicted FRET response of the wild-type cells (thin black line) coincides
with the measured response [35] (thick black line). Please also note that for
lower CheA-CheYp association rates (k1 = 105M−1s−1, dash-dotted line) in
CheZ mutant cells, the predicted FRET response shifts in the direction of
the one measured for CheZ mutant cells (grey thick line) [35]. The baseline
parameters are k1 = 108 M−1s−1, k3 = 750 s−1, k4 = 5 · 106 M−1s−1,
k5 = 0.5 s−1, k6 = 30 s−1, [Z]T = 1.1µM, [A]T = 5µM and [Y]T = 17.9µM
([45]) and D = 5 µm2s−1.

parameters of the intracellular network. The observation of [A] ≈ [A]T is thus important,
because a) it would justify the commonly made assumption that the renormalized FRET
response reflects the activity of the receptor cluster; b) it would mean that the commonly
accepted model cannot explain the difference in FRET response between wild-type cells
and CheZ mutant cells, since the spatial distribution of CheZ is assumed to only affect
the response of the intracellular network and not that of the receptor cluster.

Figure 3.5C shows that over the concentration range of interest (corresponding to

βk0 < βkadapted
0 ≈ 3s−1), [A] ≈ [A]T is fairly constant in wild-type cells and CheZ
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Figure 3.6 Effect of k3 on the response of the commonly adopted chemo-
taxis model (Equations 3.1-3.3). Shown are the response of [Yp] (A), [YpZ]
(B), [A] (C) to changes in the activity of the receptor cluster βk0 and the
FRET signal as a function of serine concentration (D). The baseline pa-
rameters are given in Fig. 3.5.

mutant cells with the baseline parameter set. This would justify the assumption that
the renormalized FRET response is a useful measure for the activity of the receptor
cluster. However, by the same token, it also means that the commonly accepted model
cannot explain the experiments by Vaknin and Berg [35].

Figures 3.5A–3.8A and 3.5B–3.8B show the response of [Yp] and [YpZ] as a function
of βk0. There exists a simple relation between the curves [YpZ](βk0) and [Yp](βk0). In
steady state, [Yp][Z] = KMZ[YpZ], where KMZ = (k5 + k6)/k4. Since, [Z] = [Z]T − [YpZ],
[Yp] can be expressed in terms of [YpZ] as [Yp] = KMZ[YpZ]/([Z]T − [YpZ]). This relation
immediately gives the functional form of [Yp](βk0) when [YpZ] depends linearly on βk0.

We now address the question why [A] as a function of βk0 is initially constant, and
then suddenly decreases. To this end, we will exploit the mapping between the E. coli
chemotaxis network and the canonical push-pull network, as discussed in the appendix.
This mapping is particularly useful for understanding the response of [Yp] and [YpZ]
and hence the FRET signal to changes in the activity of the receptor cluster βk0. This
is illustrated in Figures 3.9 and 3.10 for a spatially uniform push-pull network in the
zero-order and linear regime, respectively; as discussed in [72], this also corresponds to a
push-pull network in which the enzymes are colocalized at one end of the cell. In steady
state, the chemotaxis network obeys the following relation:

βk0[A] = k1[Ap][Y], (3.5)
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Figure 3.7 Effect of k4 on the response of the commonly-adopted chemo-
taxis model (Equations 3.1-3.3). Shown are [Yp] (A), [YpZ] (B), [A] (C)
as a function of βk0, and the FRET signal as a function of serine con-
centration (D). Please note that for a lower CheZ-CheYp association rate
(k4 = 105M−1s−1, dashed line) in CheZ mutant cells, the predicted FRET
response of CheZ mutant cells agrees fairly well with the experimentally
measured one (thick grey line) [35]. The baseline parameters are given in
Fig. 3.5.

where we have assumed that k2 = 0. The idea is now that [Ap] and [Y] are fully
determined by the total concentration of phosphorylated CheA, [Ap]T ≡ [Ap] + [ApY],
as in a canonical push-pull network: [Ap] ≡ [Ap]([Ap]T) and [Y] ≡ [Y]([Ap]T). The
functions [Ap]([Ap]T) and [Y]([Ap]T) can be obtained analytically [34], and they are
shown in Figs. 3.9-3.10A and 3.9-3.10B, respectively. The concentration of [Ap]T, in
turn, is controlled by the value of βk0. To obtain [Ap]T as a function of βk0, we rewrite
the above equation as

βk0 ([A]T − [Ap]T) = k1[Ap]([Ap]T)[Y]([Ap]T), (3.6)

where [A]T ≡ [A] + [Ap]T is the total concentration of CheA. This equation can now be
solved for [Ap]T as a function of βk0. The behavior of the solution can be understood by
plotting the left-hand side and the right-hand side of the above equation separately, as
is illustrated in Figures 3.9C and 3.10C for networks in the zero-order and linear regime,
respectively; the intersection yields the value of [Ap]T. The panels D in these figures
show [A] = [A]T− [Ap]T as a function of βk0. Since all the other concentrations [Y], [Yp],
[ApY], and [YpZ] are determined by [Ap]T, the state of the system is now fully specified.
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Figure 3.8 Effect of changing k6 on the response of the commonly-
adopted chemotaxis model (Equations 3.1-3.3). Shown are: [Yp](βk0)
(A), [YpZ](βk0) (B), [A](βk0) (C), FRET([serine]) (D). Please note that
for a lower phosphatase activity in CheZ mutant cells (k6 = 3s−1, dashed
line), the predicted FRET response agrees quite well with that measured
experimentally (thick grey line) [35]. The baseline parameters are given
in Fig. 3.5.

Figs. 3.9 and 3.10 show the results for a symmetric push-pull network in the zero-
order and first-order regime, respectively. For the zero-order network, it is seen that
[A](βk0) has two distinct regimes. The first corresponds to the regime in which the
phosphatase activity is larger than the kinase activity, and [Y] is large (Fig. 3.9A); note
that since the network is zero-order, also the concentration of [A] is low (Fig. 3.9B).
Because [Y] is high in this regime, the initial slope of k1[Ap][Y] as a function of [Ap]T is
large (Fig. 3.9C). The second regime corresponds to the one in which the kinase activity
exceeds the phosphatase activity; [Yp] is large and [Y] is low; because [Y] is now very
low, the slope is essentially reduced to zero (Fig. 3.9C). The situation differs markedly
for a push-pull network in the linear regime. In this regime, the concentration of [Y]
changes gradually as a function of [Ap]T (Fig. 3.10A) and this leads to a gradual change
in the slope of k1[Ap][Y] as a function of [Ap]T (Fig. 3.10C). This gradual change in the
slope manifests itself as a gradual change in [A](βk0) (Fig. 3.10D).

Fig. 3.11C shows for the E. coli network the rate of CheAp production and CheAp

deactivation, corresponding to the left-hand side (lhs) and right-hand side (rhs) of Equa-
tion 3.6, respectively, as a function of [Ap]T. The rate of CheAp deactivation (rhs) is
given by k1[Ap]([Ap]T)[Y]([Ap]T). As shown in Fig. 3.11B, for the E. coli network
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Figure 3.9 Mapping of a symmetric network with a topology of that of
the canonical E. coli chemotaxis network (Equations 3.1–3.3) onto a sym-
metric canonical push-pull network (Equations 3.21-3.22), for networks
that are in the zero-order regime. k1 = k4 = 36 µM−1s−1; k3 = k6 = 10 s−1

(KM = 0.28 µM); ST = [Y]T = 16.7 µM; [Ed]T = [Z]T = 1 µM;
[A]T = 5µM. In panel C: the black line is given by the right-hand side
of Eq. 3.6, i.e. k1[A]([Ap]T)[Y]([Ap]T); the dashed lines are given by the
left-hand side of Eq. 3.6, i.e. βk0([A]T − [Ap]T); the different dashed lines
correspond to different values of βk0 : βk0 = 1, 2, 3, 4, 5, 6 s−1. The inter-
section of the solid and dashed curves yields [Ap]T as a function of βk0.
When [Ap]T is determined, the state of the system is fully determined.

[Ap] ≈ [Ap]T. Hence, the slope of the rhs of Equation 3.6 is given by k1[Y]([Ap]T). Fig.
3.11A shows [Y]([Ap]T). It is seen that [Y] is high for low values of [Ap]T; this explains
the large initial slope of k1[Ap][Y] as a function of [Ap]T in Fig. 3.11C. Fig. 3.11A
also shows that as [Ap]T is increased, [Y] decreases strongly. This explains the strong
drop in the slope of k1[Ap][Y] (rhs) as [Ap]T is increased. Because k1[Ap][Y] (rhs Eq.
3.6) initially rises rapidly with [Ap]T and then levels off abruptly, the intersection with
the curve βk0[A] (lhs Eq. 3.5), which determines the steady state, initially occurs for
very low values of [Ap]T as βk0 is increased from zero. Only when the activity of the
receptor cluster, βk0, is such that the total CheAp concentration becomes large enough
to decrease [Y], does [Ap] increase and [A] decrease, as shown in Fig. 3.11D. Put dif-
ferently, initially the CheAp molecules that are produced, immediately react with CheY
molecules to yield CheA molecules again. This keeps the concentration of CheAp low.
However, in this process, the concentration of CheY does decrease, and this reduces the
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Figure 3.10 Mapping of a symmetric network with a topology of that of
the canonical E. coli chemotaxis network (Equations 3.1–3.3) onto a sym-
metric canonical push-pull network (Equations 3.21-3.22), for networks
that are in the linear regime. The different dashed lines correspond to
different values of βk0 : βk0 = 2, 4, 6, 8, 10, 12 s−1. k1 = k4 = 3.6 µM−1s−1;
k3 = k6 = 100 s−1 (KM = 28 µM); ST = [Y]T = 16.7 µM; [Ed]T = [Z]T =
1 µM; [A]T = 5µM.

rate at which CheAp molecules are dephosphorylated. At some point, [Y], and hence
the rate of CheAp dephosphorylation, has decreased so much, that the concentration of
CheAp will rapidly rise.

We are now in a position to understand how the response curves change as the rate
constants are varied. As k1 is decreased, the push-pull network becomes more linear, as
a result of which the concentration of [Yp] decreases more gradually as [Ap]T increases.
Moreover, as k1 is decreased, the rate at which CheAp molecules are dephosphorylated
decreases. These two effects combine to yield a more gradual change in the rate of
CheAp deactivation (the rhs of Eq. 3.6) as a function of [Ap]T; as seen for the symmetric
push-pull network in the linear regime (Fig. 3.10C), such a gradual change in k1[Ap][Y]
as a function of [Ap]T, means that [A] starts to decrease at lower values of βk0 and then
does so more gradually (see Fig. 3.5). When k3 is decreased, the network enters the zero-
order regime more deeply, and the response becomes similar to that of the symmetric
push-pull network in the zero-order regime (compare Figs. 3.9 and 3.6). When k4 is
decreased, [Y] decreases at lower values of [Ap]T and does so more gradually, since the
network becomes more linear; consequently, [A] starts to decrease at lower values of βk0

(Fig. 3.7C). Lastly, when k6 is decreased, [Y] decreases more sharply for lower values of
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Figure 3.11 Mapping of the canonical E. coli chemotaxis network (Equa-
tions 3.1–3.3) onto a push-pull network (Equations 3.21-3.22). The solid
line corresponds to the rate of CheAp production as given by the right-
hand side of Eq. 3.6, while the dashed lines correspond to the “de-
cay” rate of CheAp as given by the left-hand side of Eq. 3.6; each
dashed line corresponds to a different value of βk0: from left to right,
βk0 = 2, 4, 6, 8, 10, 12 s−1. The intersection of the solid and dashed lines
yield [Ap]T in steady state. Please note that since the rate of CheAp deac-
tivation (solid line) initially increases rapidly with [Ap]T, [A] as a function
of βk0 is essentially constant and given by [A] ≈ [A]T for low values of
βk0, as shown in panel D. If [A] ≈ [A]T, [YpZ] increases linearly with the
activity of the receptor cluster, βk0, since in steady state βk0[A] = k6[YpZ]
(see, e.g., Fig. 3.5). k1 = 100µM−1s−1; k3 = 750 s−1; k4 = 5 µM−1s−1;
k6 = 30 s−1; [S]T = [Y]T = 17.9 µM ; [Ed]T = [Z]T = 1.1 µM; [A]T = 5µM.

[Ap]T. As a result, [A](βk0) starts to decrease at lower values of βk0 and then does so
more strongly (Fig. 3.8C). Please note that in all cases, when [A] is no longer constant
and equal to [A]T, [YpZ](βk0) is no longer a straight line, but becomes a concave function
(Figs. 3.5B–3.8B). As discussed in Section 3.2, such a concave function for CheZ mutant
cells over the concentration range of interest, could make it possible to simultaneously
fit the measured dose-response curves for wild-type and CheZ mutant cells [35].

To show the degree of agreement with experiment that can be obtained, we present
in Figures 3.5D–3.8D the predictions of the canonical model for the FRET signal as a
function of ligand concentration for both wild-type and CheZ mutant cells. These curves
are obtained as follows. First, we note that [YpZ]([L]) is given by [YpZ](βk0([L])). For
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wild-type cells, [YpZ] is linear in βk0, which means that apart from a proportionality
factor, βk0([L]) is given by [YpZ]([L]). The latter is obtained up to a scaling factor by the
FRET data in Fig 5c of [35], which can be fitted to a Hill function. Hence, βk0([L]) can
be described by a Hill function βk0([L]) = C1

1+([L]/KD)nH
, where KD and nH can directly

be obtained from the fit to the FRET data. The constant C1 is given by the value of
βk0 at zero ligand concentration, i.e. in the adapted state: C1 = βkadapted

0 ; we chose the

constant such that [Yp](βkadapted
0 ) ≈ 3µM, which is in the middle of the working range

of the motor. Note that, by construction, the FRET response of wild-type cells, as
predicted by the canonical model, agrees with that observed experimentally. The FRET
curves for the CheZ mutant cells can now be obtained by combining the computed
[YpZ](βk0) for these cells with βk0([L]), which is assumed to be the same for both wild-
type cells and CheZ mutant cells; thus, not only KD and nH are the same, but also
βkadapted

0 and hence C1; as discussed before, this relies on the assumption that there is
no feedback from CheY to the activity of the receptor cluster, which could affect the
value of βk0 in the adapted state.

The results of this procedure are shown in Figs. 3.5D-3.8D. For the wild-type cell, the
predicted dose-response curve indeed coincides with the experimental curve as measured
in [35], while for the mutant cells the predicted response curves typically deviate from
those measured experimentally. A good simultaneous fit to the dose-response curves of
the wild-type and CheZ mutant cells can be obtained by assuming a lower value of the
catalytic rate k6 for the CheZ mutant cells (see Fig. 3.8D). Both the lower sensitivity
for the mutant cells as well as the increased sharpness of the dose response curve are
reproduced if the catalytic activity of CheZ, k6, is approximately ten times lower for
the mutant cells than for the wild-type cells. The idea that this could explain the data
of Vaknin and Berg [35] is supported by the experimental observation that the binding
of CheZ to CheAs at the receptor cluster seems to increase the catalytic activity of
CheZ [36].

Although the fit to the dose response curves is good, it can also be seen from
Figs. 3.8A and 3.8B that the concentration of CheYp and the concentration of CheYpCheZ
are at their maximum values for the mutant cells when they are in their adapted state,
i.e. when βk0 ≈ βkadapted

0 . If the level of [Yp] is at its maximum level, it is impossible
for the mutant cells to respond to repellents. Furthermore, since [Yp] is constant as a
function of βk0 around the adapted state, βk0 must be lowered by a large amount upon
the addition of attractant before the mutant cells can respond. Chemotaxis thus seems
impossible for the mutant cells. However, it is known that bacteria with a non-localizing
phosphatase are able to chemotax towards attractants, although less efficiently than
wild-type bacteria [73]. Hence, while a lower catalytic activity of diffusive CheZ with
respect to localized CheZ can explain the experimentally observed change in the dose-
response curve [35], it seems inconsistent with the observation that the mutants are still
able to chemotax.

A similar behaviour is seen in Fig. 3.7 for a ten times lower value of the association
rate k4 of CheYp to CheZ: although the dose response curves for wild-type and mutant
bacteria can be simultaneously fitted, the mutant cells would adapt to the maximum
values of both CheYp and CheYpCheZ. Furthermore, [YpZ] is much lower for the mutant
cell than for the wild-type cell as can be seen from Fig. 3.7B, in contrast with the
observations in [35]. We therefore argue that the commonly accepted model of the
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intracellular chemotaxis network needs to be refined. In the next chapter, we present
such a model.

3.5 Summary

The experiments by Vaknin and Berg on the effect of CheZ localization on the dose-
response curves of E. coli [35] impose strong constraints on the design of a model of the
intracellular chemotaxis network. These experiments unambiguously demonstrate that
the second derivative of [YpZ](βk0) of CheZ wild-type cells is larger than that of CheZ
mutant cells (see Figure 3.3). The topology of the intracellular chemotaxis network of
the canonical model (Equations 3.1–3.3) is such that the second derivative of [YpZ](βk0)
must be equal to or smaller than zero: according to the canonical model the response
curve cannot be convex. One way to fit the data is to assume that the response curve
[YpZ](βk0) of CheZ wild-type cells is a straight line over the concentration range of
interest, while [YpZ](βk0) of CheZ mutant cells is concave. The canonical model can
yield such response curves. However, this scenario requires that in the CheZ mutant
cells, some of the rate constants, such as the phosphatase activity, differ strongly from
those in wild-type cells. This seems unlikely, but cannot be ruled out. Moreover, it is
unclear whether according to this model, CheZ mutant cells will be able to chemotax,
since the concentration of CheYpin the adapted state is outside the working range of the
motor.

3.6 Methods

The canonical model of the intracellular chemotaxis network of E. coli is given by the
chemical reactions shown in Equations 3.1–3.3. When CheA and CheZ are colocalized
at the receptor cluster, the concentration profiles of CheY and CheYp are uniform in
space, and the concentrations can be obtained by solving the following chemical rate
equations:

∂[Yp]

∂t
= k3[ApY] − k4[Z][Yp] + k5[YpZ] (3.7)

∂[Y]

∂t
= k6[YpZ] − k1[Ap][Y] + k2[ApY] (3.8)

∂[A]

∂t
= k3[ApY] − βk0[A] (3.9)

∂[Ap]

∂t
= βk0[A] + k2[ApY] − k1[Ap][Y] (3.10)

∂[ApY]

∂t
= k1[Ap][Y] − (k2 + k3)[ApY] (3.11)

∂[Z]

∂t
= (k5 + k6)[YpZ] − k4[Z][Yp] (3.12)

∂[YpZ]

∂t
= k4[Z][Yp] − (k5 + k6)[YpZ] (3.13)

Here, [X] denotes the concentration of species X.
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When CheZ cannot bind the receptor cluster and thus diffuses in the cytoplasm,
concentration gradients of CheY and CheYp will form. We will assume that the cell is
cylindrically symmetric, and we will integrate out the lateral dimensions y and z. We
thus consider a simplified 1-D model, with concentrations as a function of x. This leads
to the following reaction-diffusion equations:

∂[Yp]

∂t
= D

∂2[Yp]

∂x2
+ k3[ApY]δ(x) − k4[Z][Yp] + k5[YpZ] (3.14)

∂[Y]

∂t
= D

∂2[Y]

∂x2
+ k6[YpZ] − k1[Ap][Y]δ(x) + k2[ApY]δ(x) (3.15)

∂[A]

∂t
= k3[ApY] − βk0[A] (3.16)

∂[Ap]

∂t
= βk0[A] + k2[ApY] − k1[Ap][Y](0) (3.17)

∂[ApY]

∂t
= k1[Ap][Y](0) − (k2 + k3)[ApY] (3.18)

∂[Z]

∂t
= D

∂2[Z]

∂x2
+ (k5 + k6)[YpZ] − k4[Z][Yp] (3.19)

∂[YpZ]

∂t
= D

∂2[YpZ]

∂x2
+ k4[Z][Yp] − (k5 + k6)[YpZ] (3.20)

The components CheA, CheAp and CheApCheY are localized at one end of the cell; the
unit of their concentrations is the number of molecules per area. The other components
diffuse in the cell. Their concentrations, which are in units of number of molecules per
volume, depend upon the position x in the cell, where x measures the distance from
the pole at which CheA, CheAp and CheApCheY are localized; only in Equations 3.17
and 3.18 is the x dependence explicitly indicated to emphasize that the CheAp-CheY
association rate depends on the concentration of CheY at contact. Zero-flux boundary
conditions are imposed at both cell ends. The steady-state input-output relations of the
network described by Equations 3.14–3.20 were obtained numerically by discretizing the
system on a (1-D) grid and propagating these equations in space and time until steady
state was reached.

Appendix: Mapping between canonical push-pull network and chemotaxis
network

The commonly accepted model for the cytosolic signal transduction pathway in the E.
coli chemotaxis system is given by Eqns. 3.1-3.3. The system is very similar to the
canonical push-pull network, given by the following chemical reactions:

Ea + X
k1

⇋
k2

EaX
k3→ Ea + X∗ (3.21)

Ed + X∗ k4

⇋
k5

EdX
∗ k6→ Ed + X (3.22)
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In steady state, a direct mapping is possible between both networks. This can be seen by
comparing the chemical rate equations and the total concentrations for the two systems:

Chemotaxis networkvs.Canonical push − pull network

d[Y]

dt
= k2[ApY] + k6[YpZ] − k1[Ap][Y] ⇔d[X]

dt
= k2[EaX] + k6[EdX

∗] − k1[Ea][X]

d[Yp]

dt
= k5[YpZ] + k3[ApY] − k4[Z][Yp] ⇔

d[X∗]

dt
= k5[EdX

∗] + k3[EaX] − k4[Ed][X
∗]

d[YpZ]

dt
= k4[Z][Yp] − (k5 + k6)[YpZ] ⇔d[EdX

∗]

dt
= k4[Ed][X

∗] − (k5 + k6)[EdX
∗]

d[Z]

dt
= −d[YpZ]

dt
⇔d[Ed]

dt
= −d[EdX

∗]

dt
d[ApY]

dt
= k1[Ap][Y] − (k2 + k3)[ApY] ⇔d[EaX]

dt
= k1[Ea][X] − (k2 + k3)[EaX]

d[Ap]

dt
= −d[ApY]

dt
− d[A]

dt
⇔d[Ea]

dt
= −d[EaX]

dt
(3.23)

d[A]

dt
= k3[ApY] − βk0[A] (3.24)

[Y]T = [Y] + [Yp] + [YpZ] + [ApY] ⇔[X]T = [X] + [X∗] + [EaX] + [EdX
∗]

[Z]T = [Z] + [YpZ] ⇔[Ed]T = [Ed] + [EdX
∗]

[Ap]T = [Ap] + [ApY] = [A]T − [A] ⇔[Ea]T = [Ea] + [EaX] (3.25)

As dA
dt

in Eqn. 3.23 equals zero in steady state, it follows that the steady state of the
chemotaxis model with total concentrations [Y]T, [Z]T and [Ap]T is identical to the
steady state of a push-pull network with total concentrations [X]T, [Ed]T and [Ea]T,
respectively. The remaining concentration of unphosphorylated A is then [A] = [A]T −
[Ap]T (Eqn. 3.25) and βk0 equals k3[ApY][A]−1 (Eqn. 3.24). This mapping also holds
for non-uniform networks with any spatial arrangement of the enzymes, e.g., with the
activating enzyme localized at one end of the cell and the deactivating enzyme freely
diffusive.

The commonly accepted chemotaxis model is thus simply a push-pull network of
which the concentration of activating enzyme [Ea]T is tuned via the parameter βk0 while
the concentration of deactivating enzyme [Ed]T is kept constant. The steady state of a
push-pull network with given substrate and enzyme concentrations is fully determined
by the ratio of the catalytic activities k3/k6 and the Michaelis-Menten constants KM,a ≡
(k2 + k3)/k1 and KM,d ≡ (k5 + k6)/k4, as can be verified from the above system of
equations. Therefore, the steady state of the chemotaxis model is fully determined by
the same combination of parameters, together with βk0. In particular, we can, without
loss of generality, set k2 and k5 equal to zero—they only affect the response via their
effect on the Michaelis-Menten constants.



4 Differential affinity and

catalytic activity of CheZ

We present a model of the chemotaxis network of Escherichia coli, in which a small
fraction of the phosphatase is localized at the receptor cluster, while the remainder freely
diffuses in the cytoplasm; moreover, the phosphatase at the cluster has a higher binding
affinity for the messenger protein and a higher catalytic activity than the phosphatase in
the cytoplasm. This model is consistent with a large body of experimental data and can
explain many of the experimental observations of Vaknin and Berg. More generally, the
combination of differential affinity and catalytic activity provides a generic mechanism
for amplifying signals that could be exploited in other two-component signaling systems.
We also argue that, as the linear relation between the measured FRET signal and the
activity of the receptor cluster would break down in this scenario, recent modeling studies,
which aim to explain the chemotactic gain in terms of the activity of the receptor cluster,
should be reconsidered.

4.1 Introduction

In biology, it has long been believed that the intra- and extracellular information is
encoded in the chemical and physical states of the components of the signal transduc-
tion pathway. However, it is now clear that the information can also be encoded in the
concentration levels of the signalling components. The concentration levels of messenger
proteins are typically controlled by the action of enzymes. In a wide class of systems, the
activity of an activating enzyme is modulated via its interaction with receptor molecules,
which respond to the extracellular signal. In these systems, the activity of the deacti-
vating enzymes is often assumed to be constant. The canonical model of the chemotaxis
network of Escherichia coli, as discussed in the previous chapter, is a prime example
of such a system. Here, we present a model in which the activity of the deactivating
enzyme is not constant, but depends upon the spatial position of the deactivating en-
zyme within the cell. We show that this spatial dependence of enzymatic activity can
markedly enhance the sharpness of the response.

In the previous chapter, we argued that the commonly accepted model of the chemo-
taxis system of E. coli cannot explain the recent experimental observations of Vaknin
and Berg [35]. This canonical model is based upon the observation that in wild-type
cells CheZ is active at the receptor cluster. However, we argue that a close examination
of the data of Vaknin and Berg reveals that a large fraction of CheZ is still present in
the cytoplasm. Moreover, this and other data suggest that the activity of CheZ that is
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distributed in the cytoplasm differs from that of CheZ that is localized at the receptor
cluster.

In this chapter, we present a refined model of the intracellular chemotaxis network
of E. coli. The key ingredients of this model are: 1) in wild-type cells, a small, yet
significant, fraction of CheZ is bound to the receptor cluster, while the remainder freely
diffuses in the cytoplasm [35]; 2) the fraction of CheZ at the cluster has a higher binding
affinity for the substrate CheY than that of cytosolic CheZ; 3) also the catalytic activity
of CheZ bound to the cluster is higher than that of CheZ in the cytoplasm [36]. This
model bears similarities to that recently proposed by Lipkow [74], although our model
neither requires oligomerization of CheZ at the receptor cluster nor shuttling of CheZ
between the cytoplasm and the receptor cluster. In the section 4.2 we show using a
simplified model how the combination of differential binding affinity and differential
catalytic activity provides a novel mechanism for amplifying signals: As the activity of
the receptor cluster and hence that of the kinase CheA is increased from zero and CheY
becomes phosphorylated, CheYp first binds CheZ at the receptor cluster; only when
CheZ at the receptor cluster is saturated, does CheYp bind CheZ in the cytoplasm;
since CheZ at the cluster has a higher catalytic activity than CheZ in the cytoplasm,
the response of CheYp is sigmoidal. In the section 4.3 we present a more detailed model,
which also takes into account cooperative binding of CheYp to CheZ [75, 76]. We show
that this model can explain the response of E. coli to changes in serine concentration,
as measured by Vaknin and Berg [35].

4.2 Differential affinity and catalytic activity of CheZ

The analysis in the previous chapter suggests that the commonly accepted model of
the intracellular signaling pathway is incomplete. Also other experimental observations,
discussed below, suggest that this network is more intricate. Based on these observations,
we present a refined model of the intracellular chemotaxis network of E. coli.
The Model The key ingredients of our model are:

1. In wild-type cells, a small fraction of CheZ, of 10-20%, is bound to the receptor
cluster, while the remainder diffuses freely through the cytoplasm. Figure 2b of
Vaknin and Berg [35] shows the cyan signal, coming from CFP fused to CheZ, after
the addition of attractant. This signal represents the spatial distribution of CheZ.
The figure suggests that about 10-20% of CheZ is bound to the receptor cluster,
with the remainder more or less homogeneously distributed in the cytoplasm. This
estimate is consistent with that based on the known chemistry of CheZ binding
to the receptor cluster. CheZ can be localized to the receptor cluster via binding
to CheA, which is part of the receptor cluster. CheA exists in two forms, CheAs

and CheAL, which can form the following dimers: CheALCheAL, CheALCheAs,
and CheAsCheAs. The first two, CheALCheALand CheALCheAs, have catalytic
activity and can transfer phosphoryl groups to CheY [77, 78, 79, 80]; the third,
the homodimer CheAsCheAs, does not have catalytic activity, but can bind CheZ.
Experiments have shown that CheZ binds selectively to CheAs [81, 36, 82]; in fact,
as Lipkow [74] argued, the experiments of [36] suggest that CheZ predominantly
binds the CheAsCheAs homodimer, and not the CheALCheAs heterodimer. Fol-
lowing Lipkow [74], we estimate that the number of CheAsCheAs homodimers is



Differential affinity and catalytic activity of CheZ 63

about 360, while the number of CheZ dimers is about 1600 [83]. If we assume
that each of the CheAsCheAs homodimers strongly binds one CheZ dimer, we
arrive at the estimate that about 20% of the CheZ dimers is bound to the cluster,
consistent with the estimate based on the FRET data of Vaknin and Berg [35].

2. In wild-type cells, CheYp has a much higher affinity for CheZ bound to CheAs

than for CheZ freely diffusing in the cytoplasm. Figure 3a of Vaknin and Berg
[35] shows that in wild-type cells in their adapted state, the total amount of [YpZ]
in the cytoplasm roughly equals that of [YpZ] at the receptor cluster; yet, as
mentioned above, Figure 2b of Ref. [35] shows that the total amount of CheZ at
the cluster is about 10-20% of that in the cytoplasm; this strongly suggests that
CheZ bound to CheAs at the receptor cluster has a higher affinity for CheYp than
CheZ in the cytoplasm. We conjecture that the affinity between CheYp and CheZ
at the cluster is higher, because of the close physical proximity between CheA,
where CheY is phosphorylated, and cluster-bound CheZ: a CheY molecule that
has just been phosphorylated by a CheAp dimer at the cluster, can very rapidly
bind cluster-bound CheZ, leading to a higher association rate.

3. In wild-type cells, CheZ bound to CheAs at the receptor cluster has a higher phos-
phatase activity than CheZ in the cytoplasm. The experiments of Wang and
Matsumura [36] suggest that the interaction of CheZ with CheAs enhances its
dephosphorylating activity.

4. In CheZ mutant cells, CheZ cannot bind to CheAs at the cluster. CheZ in these
cells has the same phosphatase activity and the same binding affinity for CheYp

as CheZ in wild-type cells that is not bound to CheAs at the cluster. As crystal-
lographic data [84] and mutagenesis data [81, 74] suggest, we assume that in the
CheZ mutant proteins only the domain that allows CheZ to interact with CheAs

is affected; the part that allows CheZ to interact with CheYp is thus assumed to
be unaffected in these mutants.

The canonical model, described in the previous chapter, is given by the reactions:

A
βk0→ Ap (4.1)

Ap + Y
k1

⇋
k2

ApY
k3→ A + Yp (4.2)

Yp + Z
k4

⇋
k5

YpZ
k6→ Y + Z (4.3)

The model proposed here is described by this set of reactions, but includes the additional
reactions:

Yp + Zb

k7

⇋
k8

YpZb
k9→ Y + Zb (4.4)

Here, the total concentration of localized CheZ, [Zb]T = [Zb]+[YpZb], is low as compared
to the total concentration of CheZ, [Z]T. Furthermore, the association rate k7 and the
catalytic activity k9 of localized CheZ, are high as compared to the corresponding rates
k4 and k6 for diffusive CheZ. As we will show below, the critical parameters of this
model are the fraction of CheZ bound to CheAs at the receptor cluster, the ratio of the
association rates k7 : k4 and the ratio of the catalytic activities k9 : k6.
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The model presented here is similar to that of Lipkow [74] in that both assume that
part of CheZ can bind the cluster. However, the models also differ in two important
aspects: 1) in the model of Lipkow [74], the binding of CheZ to CheAs is conditional on
the binding of CheZ to CheYp; consequently, while in our model the bound fraction of
CheZ is fairly constant in time, in the model of Lipkow [74] the amount of CheZ bound
to the cluster depends upon the current stimulus level: for instance, in her model, after
the removal of attractant, CheZ moves from the cytoplasm to the cluster upon binding
of CheYp; 2) in the model of Lipkow [74], the binding of one CheYpCheZ molecule to a
CheAs homodimer, can nucleate the formation of oligomers of CheYpCheZ at the cluster.
The chemotaxis pathway of E. coli might exhibit CheZ oligomerisation and shuttling of
CheZ between the cytoplasm and the cluster. However, our calculations reveal that this
is not necessary; the conditions listed above, are both necessary and sufficient to explain
the FRET data of Vaknin and Berg [35]. Moreover, the relative simplicity of our model
makes it possible to elucidate the mechanism by which differential enzyme-substrate
binding affinity and differential catalytic activity can sharpen the response curve.

Figures 4.1–4.3 show how the total amount of CheYpCheZ and CheYp is affected by
varying the critical parameters in this model: the fraction of CheZ bound to the cluster
(Figure 4.1), the rate k7 at which CheYp associates with CheZ at the cluster (Figure 4.2),
and the catalytic rate k9 of CheZ at the cluster (Figure 4.3); the baseline parameters are
given in Fig. 4.1. In all figures, the solid black line corresponds to CheZ mutant cells;
the solid grey line corresponds to CheZ wild-type cells with the baseline parameter set;
the dashed and dotted lines correspond to the results of the CheZ wild-type cells, where
the parameter of interest is either increased or decreased (see caption for parameter
values). The black and grey symbols correspond to the experimental results of Vaknin
and Berg [35], as described in section 3.2 (Decomposing the response); the value of α was,
somewhat arbitrarily, taken to be α = 0.65, which means that [YpZ](βk0) is sigmoidal for
CheZ wild-type cells and hyperbolic for CheZ mutant cells. The origin of the hyperbolic
curve of the CheZ mutant cells is similar to that which underlies the response curves
of the commonly accepted model: [YpZ] ∝ βk0[A], where initially, as βk0 increases
from zero, [A] ≈ [A]T is constant but then decreases as [Ap] increases significantly (see
section 3.3 (Original Model)). We will now discuss the origin of the sigmoidal curves of
[YpZ](βk0) of the wild-type cells.

Figures 4.1–4.3 show that the response curves of [YpZ](βk0) of CheZ cells effectively
consist of two parts, corresponding to the binding of CheYp to cluster-bound CheZ and
freely diffusive CheZ, respectively. When βk0 is low, a CheY molecule that has just been
phosphorylated by a CheA dimer at the cluster, will most likely bind a CheZ dimer that
is bound to the cluster because of the close physical proximity between CheA and cluster-
bound CheZ; this is modeled by imposing a higher association rate between CheYp and
cluster-bound CheZ, as compared to that between CheYp and freely diffusive CheZ:
k7 > k4. Since cluster bound CheZ has a high phosphatase activity, the concentration of
CheYp and hence CheYpCheZ will initially increase only slowly with βk0. Nevertheless,
at some point CheZ at the cluster will become saturated with CheYp. When βk0 is then
increased further, a phosphorylated CheY molecule can no longer bind a cluster-bound
CheZ dimer. It will then diffuse into the cytoplasm, where it can bind freely diffusive
CheZ. Since the catalytic activity of CheZ in the cytoplasm is lower than that of CheZ
bound to CheAs at the cluster, [YpZ] and [Yp] will now quickly rise. This combination of
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Figure 4.1 The effect of the total amount of CheZ that is bound to
the cluster, as given by [Zb]T, on the response of [YpZ] (FRET) and [Yp]
in the differential affinity-and-catalytic-activity model (Equations 4.1-4.3
and Equation 4.4). The solid black line corresponds to the prediction of
our model for CheZ mutant cells, while the solid grey line corresponds to
the model prediction for wild-type cells, in which [Zb]T = 0.1µM. The
dashed and dotted lines correspond to the model prediction for wild-type
cells with [Zb]T = 0.05µM and 0.2µM, respectively. The symbols cor-
respond to the experimental data of Vaknin and Berg [35]. The circles
correspond to CheZ mutant cells with CheR and CheB, the squares corre-
spond to CheZ mutant cells without CheR and CheB, the triangles corre-
spond to wild-type cells and the inverted triangles correspond to wild-type
cells without CheR and CheB. Since the affinity of CheYp for CheZ that
is bound to the cluster, CheZb, is much higher than that for CheZ that
freely diffuses in the cytoplasm, CheYp first binds CheZ that is bound
to the receptor cluster, CheZb; only when CheZb is essentially saturated,
does CheYp bind freely diffusive CheZ. As [Zb]T is increased, the inflection
point separating the first from the second regime shifts to higher values
of βk0 and to higher values of [YpZ]—to a good approximation, at this
point [YpZ] ≈ [Zb]T. The baseline parameters are: k1 = 3 · 106 M−1s−1,
k3 = 750 s−1, k4 = 3 · 106 M−1s−1, k6 = 30 s−1, k7 = 3 · 109 M−1s−1,
k9 = 130 s−1, [Y]T = 17.9 µM, [Z]T = 1 µM, [Zb] = 0.1 µM
and [A]T = 5 µM (for parameter values, see [85, 45]). The diffusion
coefficient of all cytosolic components is 5 µm2s−1; all enzyme-substrate
dissociation rates were set to zero.

differential affinity and differential catalytic activity thus provides a generic mechanism
for enhancing the sharpness of the response.
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Figure 4.2 The effect of the rate of association between CheYp and CheZ
bound to the receptor cluster, k7, on the response of [YpZ] and [YpZ]
in the differential-affinity-and-catalytic-activity model (Equations 4.1-4.3
and Equation 4.4). The solid black line and black symbols corresponds to
the CheZ mutant cells (see also Figure 4.1), while the solid grey line and
grey symbols correspond to wild-type cells, in which k7 = 3 · 109M−1s−1;
the dashed and dotted lines correspond to wild-type cells with k7 = 3 ·107

and k7 = 3 · 108M−1s−1, respectively. Please note that as k7 is lowered,
the distinction between the two regimes becomes less sharp, because more
CheYp molecules diffuse into the cytoplasm before they will bind CheZ
molecules. For parameter values, see the caption of Figure 4.2.

We can now understand the effect of varying the critical parameters in this model.
As the fraction of CheZ that is bound to the cluster increases (from dashed to solid grey
to dotted in Figure 4.1), the amount of CheYp needed to saturate cluster-bound CheZ
increases, leading to a shift of the inflection point in [YpZ](βk0) to higher values of βk0.
However, while increasing the fraction of cluster-bound CheZ shifts the inflection point
to higher values of βk0, it does not significantly change the initial slope of [YpZ](βk0), nor
does it change the slope [YpZ](βk0) after the inflection point: these slopes are determined
by the catalytic activities of cluster-bound CheZ and freely diffusive CheZ, k9 and k6,
respectively. This can be seen in Figure 4.3: as the catalytic activity of k9 is increased
(from dotted to solid grey to dashed), the initial slope of [YpZ](βk0) decreases. Please
also note that since the slope of [YpZ](βk0) after the inflection point is determined by
parameters of freely diffusive CheZ, it is similar to the initial slope of [YpZ](βk0) of the
CheZ mutant cells, which indeed only contain freely diffusive CheZ. Figure 4.2 illustrates
the importance of the association rate. As the rate of association between CheYp and
cluster-bound CheZ decreases (from solid grey to dotted to dashed), the response curve
[YpZ](βk0) of CheZ cells moves towards that of the CheZ mutant cells. The reason is
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Figure 4.3 The effect of the catalytic rate of CheZ bound to the receptor
cluster, k9, on the response of [YpZ] and [Yp] in the differential-affinity-
and-catalytic-activity model (Equations 4.1-4.3 and Equation 4.4). The
solid black line and black symbols corresponds to the CheZ mutant cells
(see also Figure 4.1), while the solid grey line and grey symbols correspond
to wild-type cells, in which k9 = 130s−1; the dotted and dashed lines
correspond to wild-type cells with k9 = 65 and k9 = 260 s−1, respectively.
Please note that as k9 is increased, the initial slope of [YpZ](βk0) of wild-
type cells, which is inversely proportional to k9, is decreased; the slope of
the second regime is, to a good approximation, inversely proportional to
the catalytic activity of freely diffusive CheZ, k6, and thus fairly constant.
Please also note that since the height of the inflection point is given by
[YpZ] ≈ [Zb]T and thus independent of k9, the inflection point shifts to
higher values of βk0 with increasing k9.

that as the rate of association between CheYp and cluster-bound CheZ is lowered, it
becomes more likely that a phosphorylated CheY molecule diffuses into the cytoplasm,
where it will be dephosphorylated by freely diffusive CheZ with a lower catalytic activity.

The refined model is able to explain the measured difference between the response
curves for the CheZ mutant cells and the CheZ wild-type cells. However, while the
response curves of Vaknin and Berg [35] can be reproduced by the model, this is not
the only constraint. As discussed above, both wild-type and CheZ mutant cells should
be able to chemotax [73]. This means that the model should give CheYp concentrations
between 1 and 5 µM for both strains in the adapted state [45]. As can be seen from the
fit used in Figures 4.1-4.3, in the CheZ mutant, the CheYp concentration is 8 µM in the
adapted state, which is well outside this range.
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Figure 4.4 FRET vs. βk0 and [Yp] vs. βk0 for the best fit of the full
differential-affinity-and-catalytic activity model, which includes coopera-
tivity in CheZ (Equations 4.1-4.3, and Equations 4.4, 4.5 and 4.8). The
FRET signal is assumed to be proportional to [YpZ]+2 [(Yp)2Z]+[YpZb]+
2[(Yp)2Zb]; the value of α = 0.75 (see Fig. 3.3). The dotted vertical line
denotes the value of βk0 in the adapted state. The parameter values are
k1 = 3 ·106 M−1s−1, k3 = 750 s−1, k4 = 3.6 ·105 M−1s−1, k6 = 7.5 s−1,
k7 = 6 ·108 M−1s−1, k9 = 40 s−1, k10 = 3 ·107 M−1s−1, k12 = 30 s−1,
k13 = 9 · 108 M−1s−1, k15 = 160 s−1; [Y]T = 17.9 µM, [Z]T = 1 µM,
[Zb]T = 0.1 µM and [A]T = 5 µM (for parameter values, see [76, 85, 45]).
The diffusion coefficient of all cytosolic components is set to 5 µm2s−1; all
enzyme-substrate dissociation rates are zero.

4.3 The effect of cooperativity

In the models presented so far, the phosphatase reactions were described by simple
Michaelis-Menten reaction kinetics. Experiments by Eisenbach and coworkers, however,
show that the activity of CheZ depends in a cooperative manner on the CheYp and
CheZ concentration [75, 76]. As the activity of the receptor cluster, βk0, is changed,
the concentration of [Yp] changes, but not the total concentration of CheZ, [Z]T. It
is thus important to understand how the response curve [YpZ](βk0) is affected by the
cooperative dependence of phosphatase activity on CheYp concentration. In this section,
we present a simple model for the cooperative dependence of the phosphatase activity
on CheYp concentration, which can be solved analytically.

The model is based upon the following assumptions: 1) a single CheZ dimer can
bind up to two CheYp molecules; 2) CheZ can dephosphorylate CheYp in both CheYp-
bound states, thus dephosphorylation can occur when only a single CheYp molecule is
bound or when two CheYp molecules are bound. This model can be described by two
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coupled Michaelis-Menten reactions. For CheZ in the cytoplasm, the dephosphorylation
reactions are given by Equation 4.3 in combination with the reactions

YpZ + Yp

k10

⇋
k11

(Yp)2Z
k12→ Y + YpZ (4.5)

Cooperativity arises when 3) the binding of the first substrate molecule facilitates the
binding of the second one; 4) the catalytic activity is higher when two substrate molecules
are bound than when one is bound. This can be shown mathematically. In steady state,
the phosphatase activity is given by

d[Y]

dt
=

[Z]T[Yp](k6 + k12[Yp]/KM,2)

KM,1 + [Yp] + [Yp]
2/KM,2

, (4.6)

where [Z]T is the total concentration of CheZ and KM,1 = (k5 + k6)/k4 and KM,2 =
(k11 + k12)/k10 are the Michaelis-Menten constants of Equation 4.3 and Equation 4.5,
respectively (see Appendix A for a derivation). It can be seen that if k12 ≫ k6 and if
KM,1 ≫ KM,2, the desphosphorylation rate is given by

d[Y]

dt
=

k12[Z]T[Yp]
2

KM,1KM,2 + [Yp]
2 . (4.7)

This is a Hill function with a Hill coefficient of 2 and a concentration at which the rate is
half maximal (the inflection point) given by Keff

M =
√

KM,1KM,2. In Appendix A we give
an extended analysis of this model, which shows that it can fit the in vitro data of Blat
and Eisenbach [76] not only qualitatively, but also quantitatively. We nevertheless would
like to emphasize that the rate constants derived from this fit to the in vitro data should
be interpreted with care, since they might differ from the in vivo values. In particular,
diffusion-limited rates will often be lower in living cells due to a lower diffusion constant,
and a detailed analysis of this model (see Appendix A) suggests that in this system this
might be the case.

The reaction scheme described by Equations 4.1-4.3 and 4.5 describes the activity of
cytosolic CheZ. The corresponding rate equations for localized CheZ are given by

YpZb + Yp

k13

⇋
k14

(Yp)2Zb
k15→ Y + YpZb (4.8)

in combination with Equation 4.4. Like in the differential affinity model of the previous
section, we assume that both the affinity to CheYp and the phosphatase activity of CheZ
are enhanced when CheZ is localized to CheAs at the receptor cluster. This means that
the association rates k7 and k13 are much larger than the corresponding association rates
for cytosolic CheZ, and that the catalytic activity k15 is larger than the catalytic activity
k12 for cytosolic CheZ.

Figure 4.4 shows [YpZ](βk0) and [Yp](βk0) for CheZ wild-type cells and CheZ mutant
cells [35]. In combination with a response curve for βk0 vs. [Serine] with α = 0.75, the
four dose-response curves in Figs. 5a and 5c of [35] are reproduced. Comparing Figure
4.4 with Figs. 4.1–4.3 of the simplified differential-affinity-and-activity model shows
that the cooperative dependence of the phosphatase activity on CheYp concentration
does not dramatically affect the dose-response curves, a conclusion that was also reached
by Sourjik and Berg [45]. As before, [YpZ](β) is in agreement with experiment, both
for CheZ wild-type and CheZ mutant cells. Moreover, the [Yp](βk0) response curve of
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the CheZ wild-type cells agrees with experiment in the sense that the concentration of
CheYp equals 2µ M in the adapted state, which is within the working range of the motor.
The concentration of CheYp in the CheZ mutant cells in their adapted state is around
5µM, which is lower than that in the simplified differential-affinitiy-and-activity model,
but still at the high end of the working range of the motor.

4.4 Discussion

We have presented a new model that can explain the experimental results of Vaknin
and Berg [35]. In this model, [YpZ](βk0) of CheZ wild-type cells is sigmoidal, while
[YpZ](βk0) of CheZ mutant cells is hyperbolic. The model relies on the assumption
that a small fraction of CheZ is localized at the receptor cluster, while the remainder
freely diffuses in the cytoplasm; moreover, it assumes that CheZ localized at the receptor
cluster has both a higher binding affinity for CheYp and a higher catalytic activity than
CheZ in the cytoplasm. All these assumptions seem to be supported by experiment
[35, 36, 74].

In essence, the model that we propose consists of a push-pull network with one
activating enzyme, CheA, and two deactivating enzymes, CheZ bound to the cluster
and CheZ that freely diffuses in the cytoplasm. Our analysis shows that the competition
between these two deactivating enzymes for binding and deactivating the substrate can
yield an ultrasensitive response even when the push-pull network does not operate in the
zero-order regime. In fact, this mechanism of differential-affinity-and-catalytic-activity
is evocative of the “branch point effect”, in which the interdependence of the activities
of two branch-point enzymes that compete for a common substrate can yield an abrupt
change in the flux through one of the enzymes [86]. In essence, in the model proposed
here the two fractions of CheZ give rise to two different types of deactivating enzymes.
Indeed, the spatial dependence of the activity of CheZ only acts to create two types
of deactivating enzymes; the proposed could also work in a well-stirred model if one
assumes that there exist two types of deactivating enzymes.

If the response function [YpZ](βk0) of wild-type cells is sigmoidal, and not a straight
line as the canonical model of the intracellular chemotaxis network predicts, then the
large number of recent studies on signal amplification by the receptor cluster has to
be reconsidered [23, 1, 26, 24, 87, 30, 31, 88, 89]. If the relation between [YpZ] and
βk0 would be linear as the commonly accepted model predicts, then the renormalized
FRET response would be given by the dependence of the activity of the receptor cluster,
βk0, on the ligand concentration [L]. This would justify the studies that describe the
‘front end’ amplification of the chemotaxis network, namely the response of [YpZ] to
changes in [L], in terms of the signal amplification properties of the receptor cluster
[23, 1, 26, 24, 87, 30, 31, 88, 89]. However, if the dependence of [YpZ] on the activity
of the receptor cluster, βk0, would not be linear, then the front end amplification would
not be fully determined by the response of the receptor cluster to changes in the ligand
concentration. Indeed, to explain the front-end gain, the extent to which the signal is
amplified as it is transmitted from the receptor cluster to YpZ would then also have to
be taken into account.
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While the model presented here can describe the dose-response curves as reported by
Vaknin and Berg [35], a number of issues remain. The first is that in the full differential-
affinity-and-catalytic-activity model, which takes into account CheZ cooperativity, the
total concentration of [Yp] in adapted CheZ mutant cells is on the border of the working
range of the motor, while experiments on mutant cells lacking CheAs, which localizes
CheZ to the receptor cluster [73], suggest that CheZ mutant cells can chemotax. This
raises an interesting question, which to our knowledge has not been studied yet: How
strongly does the efficiency of chemotaxis depend upon the concentration of CheYp in
the adapted state? In particular, how well must that be inside the working range of
the motor? It is conceivable that cells with [Yp] at the high end of the motor’s working
range can chemotax, albeit less efficiently. Another possibility is that CheZ mutant cells
can chemotax, because [Yp] forms spatial gradients inside CheZ mutant cells [35]: while
[Yp] at some motors will be outside the motor’s working range, [Yp] at other motors
might be inside the working range of the motor.

But perhaps the most likely explanation is that CheYp provides a negative feedback
loop on the activity of the receptor cluster via CheB and CheAp. The concentration of
CheYp in the adapted state is determined by the activity of the receptor cluster in the
adapted state, which is controlled by the activity of the methylation and demethylation
enzymes CheR and CheB, respectively. We have assumed that there is no feedback from
the concentration of CheYp onto the activity of these enzymes and hence no feedback
on the activity of the receptor cluster, βk0. Accordingly, in our model, βk0 in the
adapted state, βkadapted

0 , is the same for CheZ wild-type cells and CheZ mutant cells.
However, CheAp cannot only phosphorylate CheY, but also CheB: CheY and CheB thus
compete with one another for phosphorylation by CheAp [68]. Moreover, phosphorylated
CheB has a higher demethylation activity than unphosphorylated CheB. Hence, as [Yp]
increases and [Y] decreases, [CheBp] increases. This decreases the activity of the receptor
cluster, βk0, which in turn tends to decrease [Yp]. As a result of this negative feedback
loop, it is conceivable that [Yp] in the CheZ mutant cells is lower than that predicted
by our model assumptions, and hence within the motor’s range.

Vaknin and Berg measured not only the response to the addition to serine, but also
the response of CheYpCheZ to changes in aspartate concentration [35]. They found
differences in the response between CheZ wild-type cells and CheZ mutant cells when
α-methylaspartate was used as an attractant with CheR−CheB− cells expressing only
the aspartate receptor, Tar. However, no differences were detected when these experi-
ments were repeated with either aspartate or α-methylaspartate in wild-type cells. In
our model, the overall response of [YpZ] to changes in ligand concentration [L] is de-
termined by two independent modules connected in series: [YpZ](βk0([L])). A different
attractant only leads to a different response of the receptor cluster, βk0([L]): the re-
sponse of [YpZ](βk0) to changes in the activity of the receptor cluster βk0 is assumed
to be independent of the type of attractant—while [YpZ](βk0) depends upon the nature
of CheZ, it is the same for serine and aspartate. Our model would therefore predict
that the response to aspartate also differs between CheZ wild-type cells and CheZ mu-
tant cells, in contradiction with the experimental results of Vaknin and Berg [35]. It is
conceivable that to explain these observations, the spatial organisation of the receptor
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cluster, in particular the spatial position of CheZ with respect to the aspartate and ser-
ine receptors, has to be taken into account, and that a full particle-based model [90, 91]
is required to explain the response to both aspartate and serine.

Lastly, could our predictions be tested experimentally? Our model yields a clear
prediction for the relation between the concentration of CheYp and that of CheYp bound
to CheZ; in our model [Yp] as a function of [YpZ] deviates strongly from the functional
dependence as given by simple Michaelis-Menten kinetics. By simultaneously measuring
the interaction between [Yp] and CheZ using one FRET pair, and the interaction between
[Yp] and the FliM proteins of the rotary motors using another FRET pair, it might be
possible to extract the relation between the concentration of CheYp and CheYpCheZ.

4.5 Methods

The reaction-diffusion equations for the models described here are solved in the manner
analogous to that described in the previous chapter.

Appendix A Cooperativity in the phosphatase reaction

Cooperativity in the dephosphorylation of CheYp by CheZ was first shown by Blat et
al. [75]. A quantitative study of the cooperativity in CheYp dephosphorylation was
presented in [76]. In this section we discuss a model of CheZ activity that can describe
the experimental data of Blat et al. [76]. We will show that this model can accurately
reproduce the experimental data of Eisenbach et al., although, as we will discuss, it
seems likely that some of the rate constants obtained might differ from those in vivo.
We also note here for clarity that since the experiments were performed in vitro and no
CheAs was present, the results apply to dephosphorylation of CheYp by diffusive CheZ
and not to CheZ localized at the receptor cluster.

The model for the phosphatase activity is given by Equations 4.2–4.3. Together with
the phosphorylation reaction of CheY, this yields the following model for the experi-
mental setup of Ref. [76]:

Y
AcP→ Yp (4.9)

Yp + Z
k4

⇋
k5

YpZ
k6→ Y + Z (4.10)

YpZ + Yp

k10

⇋
k11

(Yp)2Z
k12→ Y + YpZ (4.11)

Here, the first reaction describes the phosphorylation reaction in the in vitro experi-
mental setup of Eisenbach et al. [76], in which CheY is continuously phosphorylated by
acetyl phosphate AcP. Please note that Z corresponds to one CheZ dimer.

Figure 1c in [76] shows the results on the kinetics of CheY dephosphorylation by
CheZ. CheYp, in the presence of acetyl phosphate, was instantaneously mixed with a
small amount of CheZ. The total concentration [CheY]T was 5 µM and the concentration
of CheZ dimers was 0.1 µM–much lower than in a living cell. The rate of phosphorylation
of CheY by AcP was also low, 0.207 s−1 [76]. Four relevant quantities can be extracted
from the phosphorylation kinetics in Fig. 1c of [76], i) the time duration of the delay, ii)
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Figure 4.5 Effect of varying the parameters of the cooperative model
(Equations 4.10–4.11) on the phosphatase kinetics. The upper panels show
the concentrations of [(Yp)2Z] (upper three curves) and of [YpZ] (lower
three curves) as functions of time. The lower panels show the evolution of
the concentration of CheYp upon addition of CheZ. The concentration of
CheYp does not go to zero because CheY is continuously phosphorylated
by AcP, as in the experimental setup [76]. The insets show a magnification
of the initial delay. A. Effect of k4. B. Effect of k6. C. Effect of k10. D.
Effect of k12. The parameter values are 0.2 (dotted), 1 (solid) and 5
(dashed) times the baseline parameters of Fig. 4.7.

the value of d[Yp]/dt after the transient, iii) the size (and presence) of the undershoot
before the steady state is reached and iv) the steady state concentration of CheYp.

Figure 4.5 shows the effect of individually varying the parameters on the phosphatase
kinetics. We assume that the two backward rates k5 and k11 are zero, since the dissoci-
ation rates are smaller than the catalytic rates [92]. The initial delay is determined by
the time it takes for [(Yp)2Z] to reach its maximum level. In the limit that the binding
of CheYp to CheYpCheZ is much faster than the association of CheYp to CheZ, i.e.
if k10 ≫ k4, the delay is dominated by k4 (see Fig. 4.5A). The association rate k4 is,
however, sufficiently fast, such that after this transient, a steady state can be reached
in which CheZ is predominantly in the state (Yp)2Z. In this regime, the overall phos-
phatase activity per CheZ dimer is to a good approximation given by k12, and the slope
of [Yp](t) is given by k12[Z]T.

The undershoot of [Yp](t) in Fig. 4.5 arises from the subtle interplay between a
number of factors. After a short transient of about 0.1 s, essentially all CheZ dimers
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Figure 4.6 Effect of varying the parameters of the cooperative model
(Equations 4.10–4.11) on the specific phosphatase activity. A. Effect of
k4. B. Effect of k6. C. Effect of k10. D. Effect of k12. The parameter values
were 0.2 (dotted), 1 (solid) and 5 (dashed) times the baseline parameters
of Fig. 4.7.

are in the (Yp)2Z state. In this state, the phosphatase activity of the CheZ dimers
is high, and the concentration of CheYp drops rapidly. Importantly, when a CheYp

molecule in a (Yp)2Z complex is dephosphorylated, a YpZ complex is produced. When
the concentration of CheYp is high, this complex can immediately rebind another CheYp

molecule, from which another catalysis reaction can take place. However, after about
1 − 2 s, the concentration of CheYp has dropped so much that the rate of association
between CheYp and CheYpCheZ decreases significantly. The concentration of (Yp)2Z
now decreases, while the concentration of YpZ increases. Since the phosphatase activity
of YpZ is lower than that of (Yp)2Z, the concentration of CheYp will now increase again,
until a new steady state is finally reached.

One would expect that the steady state concentration of CheYp can only decrease if
any of the four association constants or catalytic activities is raised. Interestingly, this
does not hold for k6 (see Fig. 4.5B). While the total steady state catalytic activity of
YpZ, as given by k6[YpZ], increases for larger values of k6, the total catalytic activity of
(Yp)2Z, k12[(Yp)2Z], decreases by a larger amount; the reason is that as k6 increases, the
concentration of (Yp)2Z decreases. Consequently, the total steady state catalytic activity
of YpZ and (Yp)2Z together decreases as k6 is raised. This increases the concentration
of CheYp.
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Figure 2a in [76] shows the specific phosphatase activity of CheZ as a function of
the concentration of CheYp. The relevant quantities in Fig. 2a in [76] are the degree of
cooperativity and the limiting value of the specific phosphatase activity. The effect of in-
dividually varying the parameters k4, k6, k10 and k12 on the specific phosphatase activity
can be seen in Fig. 4.6. To analyse the dependence on these variables, we will first derive
an expression for the phosphatase activity in steady state in the cooperative model given
by Eqs. 4.10 and 4.11. First, d[Z]/dt = 0 gives [Yp][Z] = (k5 +k6)/k4[YpZ] ≡ KM,1[YpZ].
Next, d[(Yp)2Z]/dt = 0 leads to [Yp][YpZ] = (k11 + k12)/k10 [(Yp)2Z] ≡ KM,2[(Yp)2Z].
The total concentration of CheZ equals [Z]T = [Z] + [YpZ] + [(Yp)2Z]. Via elimination
of [(Yp)2Z] and [Z], [YpZ] can be expressed as

[YpZ] =
[Z]T[Yp]

KM,1 + [Yp] + [Yp]
2/KM,2

. (4.12)

The concentration of the doubly-bound state is given by

[(Yp)2Z] = [YpZ][Yp]/KM,2, (4.13)

Since the production rate of CheY is equal to k3[YpZ] + k6[(Yp)2Z], it follows that

d[Y]

dt
=

[Z]T[Yp](k6 + k12[Yp]/KM,2)

KM,1 + [Yp] + [Yp]
2/KM,2

. (4.14)

The network behaves cooperatively if the numerator is quadratic in [Yp] and the de-
nominator only marginally depends on [Yp] when [Yp] is small. This is achieved if k12

is much larger than k6 and if KM,1 is larger than KM,2: in the limit that k6 ≪ k12 and
KM,1 ≫ KM,2, the dephosphorylation rate is given by

d[Y]

dt
=

k12[Z]T[Yp]
2

KM,1KM,2 + [Yp]
2 . (4.15)

This is a Hill function with a Hill coefficient of 2 and a concentration at which the rate
is half maximal (the inflection point) given by Keff

M =
√

KM,1KM,2. This can be verified
from Fig. 4.6. An increase in either the association constant k4 or k10 by a factor C, or a
decrease by the same factor of either the catalytic activity k6 or k12 leads to an increase
in one of the Michaelis-Menten constants by the same factor and therefore to an increase
by a factor

√
C of Keff

M . A change in k12 by a factor C additionally leads to a C times
higher limiting phosphatase activity. The value of k12 can therefore be determined from
the maximum phosphatase activity in Figure 2a in [76].

The best simultaneous fit to Figs. 1c and 2a of [76] is shown in Fig. 4.7. The used rate
constants are k4 = 0.36(2.0) ·106 M−1s−1, k6 = 7.5(5.0) s−1, k10 = 3(3) ·108 M−1s−1

and k12 = 30(10) s−1. These values were also used as the baseline parameters in
Fig. 4.6. While the best fits of the cooperative model show good agreement with the
experimental data, it should be stressed that these experiments were performed in vitro
rather than in a living bacterium. Therefore, it is well possible that the actual rate
parameters in a living cell differ from those determined here. For example, it is well
known that the diffusion coefficient in vitro can be ten times higher than that in a living
cell. This means that especially diffusion-limited association reactions can slow down in
vivo. We assume that the value of k10 is ten times lower in vivo than in vitro: in vivo,
kcell

10 = 3 · 107 M−1s−1; we assume that k4 is unchanged, since that rate is not diffusion
limited.
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Figure 4.7 Best fit of the cooperative model to Figs. 1c and 2a of [76].
The parameter values are: k4 = 0.36(2.0) ·106 M−1s−1, k6 = 7.5(5.0) s−1,
k10 = 3(3) · 108 M−1s−1, k12 = 30(10) s−1.

Appendix B The full model

The full model for the intracellular chemotaxis network of E. coli is given by the following
chemical reactions (see the main text):

A
βk0→Ap (4.16)

Ap + Y
k1

⇋
k2

ApY
k3→ A + Yp (4.17)

Yp + Z
k4

⇋
k5

YpZ
k6→ Y + Z (4.18)

Yp + Zb

k7

⇋
k8

YpZb
k9→ Y + Zb (4.19)

YpZ + Yp

k10

⇋
k11

(Yp)2Z
k12→ Y + YpZ (4.20)

YpZb + Yp

k13

⇋
k14

(Yp)2Zb
k15→ Y + YpZb (4.21)

In this model, in wild-type cells CheZ is present both bound to the receptor cluster,
indicated by Zb, and freely diffusive. The majority of CheZ is assumed to be diffusive,
but the affinity for CheYp as well as the catalytic activity is much larger for the localized
fraction of CheZ (for parameter values, see the caption of Fig. 4.8).

Fig. 4.8 shows the response of the concentration of CheYp and the FRET signal to
changes in the activity of the receptor cluster, βk0. We assume that the FRET signal is
given by: FRET ∝ [YpZ]+2[(Yp)2Z]+ [YpZb]+ 2[(Yp)2Zb]. It is seen that the functions
FRET(βk0) and [Yp](βk0) consist of two parts. In the first regime, corresponding to low
concentrations of CheYp, the fraction of CheZ that is localized to the receptor cluster is
not yet saturated. In this regime, CheYp that is produced by CheAp at the cluster will
rapidly bind to CheZ at the cluster. While the FRET signal increases in this regime due
to binding of CheYp to CheZb, the concentration of CheYp hardly increases due to the
large phosphatase activity of CheZb. The second part of the response curves corresponds
to the regime in which CheZb is fully saturated. In this regime, a CheYp molecule that
is produced at the receptor cluster, can no longer bind a CheZ dimer that is bound to
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the receptor cluster; it will therefore diffuse into the cytoplasm, where it will bind a
diffusive CheZ dimer. This CheZ has a lower phosphatase activity than CheZb and, as
a result, the concentration of CheYp, as well as the FRET signal, will rise rapidly.

As discussed in the main text, if the activity βkadapted
0 of the receptor cluster is the

same for wild-type and CheZ mutant cells, it is difficult to have [Yp]
adapted in the working

range of the motor for both types of cells. As we discuss now, a cooperative (super-
linear) dependence of the phosphatase activity on [Yp] makes it easier to satisfy this
constraint. First, we note that the constraint that [Yp] should be within the working
range of the motor for both wild-type and CheZ mutant cells is satisfied more easily
if [Yp] for diffusive CheZ is a concave (hyperbolic) function of βk0. Such a concave
functional form can be obtained when the phosphatase activity depends super-linearly
on [Yp]: In steady state, the kinase activity d[Yp]/dt is given by βk0[A] = k1[Ap][Y]
and equal to the phosphatase activity d[Y]/dt. If [A] ≈ [A]T, the kinase activity is
proportional to βk0, which means that in steady state the specific phosphatase activity
d[Y]/dt is proportional to βk0. If the specific phosphatase activity (and hence βk0)
increases super-linearly (up to quadratically) with [Yp] for low [Yp] as in the cooperative
CheZ model, [Yp] as a function of βk0 has a concave form, as can also be seen in Fig.
4.6.

We now briefly discuss the effect of varying the rate constants and the diffusion
constant on the response curves [Yp](βk0) and FRET(βk0), as shown in Fig. 4.8. The
effect of changing the parameters related to the kinase reactions, k1 and k3, is similar
to that of changing these rate constants in the canonical model, as discussed above. In
particular, as long as [A] ≈ [A]T, the total phosphorylation rate is independent of k1

and k3, and [Yp] and FRET are fairly insensitive to changes in these rate constants.
The parameters k4, k6, k10 and k12 correspond to dephosphorylation reactions by

CheZ in the cytoplasm. Clearly, changing these rate constants only affects the second
regime of the response curves [Yp](βk0) and FRET(βk0), in which CheZ bound to the
cluster is saturated (see Fig. 4.8). The influence of varying these parameters on [Yp](βk0)
can be deduced from the corresponding panels in Fig. 4.6, which shows the phosphatase
activity for diffusive CheZ. Since the kinase activity βk0[A] equals in steady state the
phosphatase activity d[Y]/dt, [Yp](βk0) is also given by [Yp](d[Y]/dt[A]T). Thus, by
inverting the axes of Fig. 4.6, one can deduce the change in [Yp](βk0) upon varying k4,
k6, k10 and k12. As expected, changing the catalytic rate k12 has the largest effect on
the response curve.

The parameters k7, k9, k13, and k15 are rate constants associated with reactions of
CheZ that is bound to the cluster; these rate constants correspond to, respectively, k4,
k6, k10 and k12 of reactions of CheZ in the cytoplasm. As such, the effect of varying
the parameters k7, k9, k13 and k15 on the response curve can be deduced from the effect
of changing the parameters k4, k6, k10 and k12, discussed above. However, since CheZ
bound to the cluster is present in low concentrations, and has a much higher affinity for
CheYp and a higher catalytic activity, the magnitude of the effect is markedly different.
In particular, changing k7, k9 and k13 hardly has any effect. This is because CheZ at
the cluster is strongly driven to the (Yp)2CheZ state. For precisely the same reason, the
largest effect is observed for changes in the catalytic rate k15.

The last graph in Fig. 4.8 shows the effect of varying the diffusion coefficient D. The
diffusion coefficient is assumed to be equal for all diffusive components. A decrease in D
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Figure 4.8 The effect of varying the different parameters of the full
model of the intracellular chemotaxis network (Equations 3.1–4.8) on
the response curves [Yp](βk0) and FRET(βk0); here FRET ∝ [YpZ] +
2[(Yp)2Z] + [YpZb] + 2[(Yp)2Zb]. A: k1; B: k3; C: k4; D: k6; E: k7; F:
k9; G: k10; H: k12; I: k13; J: k15; K: D. The baseline parameters are
k1 = 3 106 M−1s−1, k3 = 750 s−1, k4 = 3.6 105 M−1s−1, k6 = 7.5 s−1,
k7 = 6 108 M−1s−1, k9 = 40 s−1, k10 = 3 107 M−1s−1, k12 = 30 s−1,
k13 = 9 108 M−1s−1, k15 = 160 s−1, D = 5 µm2s−1, [Y]T = 17.9 µM,
[Z]T = 1 µM, [Zb]T = 0.1 µM and [A]T = 5 µM. The parameter values
are 0.2 (dotted), 1 (solid) and 5 (dashed) times the baseline parameters.
Exceptions are k13 : k13 = 1.8 108(dotted), 6 109 (solid) and 3 1010 M−1s−1

(dashed) and the diffusion coefficient: D = 3 (dotted), 5 (solid) and 10
µm2s−1 (dashed). The vertical lines indicate the adapted state for the
baseline parameter set.

has the effect that larger gradients of CheYp arise. As a consequence, the concentration
of CheYp integrated over the whole cell decreases. Since also larger gradients of YpZ
and (Yp)2Z occur, the total concentrations of YpZ and (Yp)2Z decrease as well for
lower values of the diffusion constant; this explains the decrease in FRET signal with
decreasing diffusion constant.



5 Particle-based simulations on

the effects of colocalization of

antagonistic enzymes

The activity of messenger proteins is commonly controlled by two antagonistic enzymes.
Recent experiments on the chemotaxis system of Escherichia coli have revealed that such
enzymes can be colocalized at the plasma membrane. We perform particle-based Monte
Carlo simulations to study how the response characteristics of a push-pull network are
influenced by colocalizing the antagonistic enzymes in a membrane. To this end, we com-
pare the response dynamics and the steady-state input-output curve of a system in which
the enzymes are distributed in the cytoplasm to those of a system in which the enzymes
are both localized at the membrane. We find that colocalization leads to a wide distri-
bution of enzyme-substrate association times, which implies that colocalization can have
a strong influence on the response dynamics; in particular, it allows for both rapid and
slow signalling. However, colocalization by itself does not change the average enzyme-
substrate association time. Consequently, colocalization does not affect the steady-state
input-output relation. We also develop simple mean-field theories, which give a good
description of the steady-state response curves. These results support the use of chemi-
cal rate equations for predicting the steady-state response curves, but also highlight that
spatially resolved, stochastic models are required if one is interested in the distribution
of response times.

5.1 Introduction

In the modelling of biochemical networks, the dominant paradigm has been to con-
sider the living cell to be a spatially uniform system, analogous to a well-stirred reactor.
However, in recent years it is increasingly recognized that biochemical networks not only
operate in time, but also in space [93]. One key role of biochemical networks is to pro-
vide spatial information. Arguably the best example is embryonic development, where
spatial gradients in the concentrations of morphogens encode the positional information
for differentiating cells [94]. Also within single cells, biochemical networks often have to
provide positional information, for instance during cell division. An elegant example is
provided by the bacterium Escherichia coli, where three proteins locate the cell center
via an oscillating reaction-diffusion pattern [95]. The importance of spatio-temporal
dynamics of biochemical networks is, however, not limited to providing spatial informa-
tion. Spatial fluctuations due to the diffusive motion of messenger proteins can provide
a major source of noise in gene expression [96], which could be exploited for generating
phenotypic diversity in a population of genetically identical cells. In preventing cross-
talk between signal transduction pathways, spatial separation of shared components is
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believed to be an important mechanism [97]. Localizing signalling components onto
scaffold proteins provides a mechanism for modulating the amplitude and duration of
transmitted signals [98]. Furthermore, recent studies suggest that spatial localization of
(co)receptors in the immune response plays a critical role in amplifying incoming signals,
allowing the immune system to discriminate between foreign cells and those of the host
[83]. In this paper, we address the question whether colocalizing the two antagonis-
tic enzymes of a push-pull network to a membrane, can enhance the sharpness of the
input-output relation.

A well-known example of colocalization is given by the chemotaxis system of E.
coli, in which the kinase CheA and the phosphatase CheZ together control the activity
(phosphorylation level) of the messenger protein CheY. Recent experiments have shown
that both enzymes are colocalized at the receptor cluster near the cell pole [35]. It has
been argued that colocalizing the antagonistic enzymes CheA and CheZ is advantageous,
because it leads to a uniform concentration profile of the messenger protein CheY [57],
which in turn facilitates a concerted response of the flagellar motors. In chapter 2, we
showed using a mean-field analysis based on macroscopic reaction-diffusion equations
that the spatial distribution of the two antagonistic enzymes can have a dramatic effect
on the input-output relation of the network. We compared the response of a system in
which the enzymes are either uniformly distributed in space or colocalized at the cell
pole, to the response of a network in which the enzymes are spatially separated, with
one enzyme localized at the cell pole and the other freely diffusing in the cytoplasm.
Our mean-field analysis revealed that spatially separating the two antagonistic enzymes
reduces both the gain and the maximum response of a push-pull network; interestingly,
it also showed that spatially separating the enzymes can also enhance the transmission
of weak signals [72].

Recently, it has been conjectured that colocalization of the two antagonistic enzymes
in a push-pull network could enhance the association rate between the antagonistic
enzymes and their substrate [99]. For the chemotaxis system of E. coli, Silversmith
argued that the “Generation of CheYp by the proximal CheA kinase would result in high
local concentrations of both CheYp and the CheZ C-helix, which would further increase
the probability of their collision and subsequent association” [99]. If the two antagonistic
enzymes are colocalized, the position at which the messenger protein is activated by the
activating enzyme, is close to the point at which it is deactivated by the deactivating
enzyme. This close physical proximity, Silversmith argued, could enhance the association
rate between the enzyme and its substrate. A higher enzyme-substrate association rate,
in turn, may be beneficial, since it brings the push-pull network deeper into the zero-
order regime, which enhances the sharpness of the response [34].

In this paper, we investigate whether colocalization of two antagonistic enzymes at
a cell membrane can indeed enhance the enzyme-substrate association rate and thereby
increase the sharpness of the response of a push-pull network. To address this ques-
tion, a mean-field approach based on macroscopic reaction-diffusion equations cannot
be used, since it cannot describe the behavior of a system at a distribution of length
scales. We hypothesized that the following distinct length scales are important: 1) the
distance between the antagonistic enzymes on the membrane; 2) the distance between
the enzymes on the membrane and the substrates in the cytoplasm. These two length
scales together determine the probability that a substrate molecule that has just been
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activated by an activating enzyme at the membrane, can rapidly bind to a deactivating
enzyme at the membrane, and vice versa.

To go beyond a mean-field analysis, we performed particle-based simulations of a
push-pull network. To this end, we have developed a simulation scheme in which the
particles are propagated on a lattice. This scheme, which is discussed in more detail in
section 5.5.2, is fast and allows for a detailed study on the effect of enzyme colocalization.
In the results section, we then compare the response of a network in which all components
are uniformly distributed in the cytoplasm, with the response of a network in which the
antagonistic enzymes form a checkerboard pattern at one end of the cell (see Fig. 5.1). In
such a configuration, the turnover rate of the substrate can be enormous, as the substrate
can rapidly diffuse from one enzyme to the next. A central question will be whether
this rapid turnover rate of the substrate can give rise to an enhanced response sharpness
or sensitivity. As we will show, colocalization per se is not sufficient to enhance the
sharpness of the response. The reason is that even though activated substrate molecules
will often have a much shorter lifetime, this is balanced by the fact that they also
often have a much longer lifetime: when a substrate molecule diffuses away from the
membrane and into the cytoplasm, it takes much longer to find the antagonistic enzyme,
as compared to the case in which the enzymes are both distributed in the cytoplasm.
While this phenomenon changes the response dynamics, it does not change the average
enzyme-substrate association time; the steady-state input-output relation is therefore
not significantly influenced.

5.2 The system

In the following, we will consider a generic push-pull network, as given by the following
reaction scheme:

Ea + X
k1

⇋
k2

EaX
k3→ Ea + X∗ (5.1)

Ed + X∗ k4

⇋
k5

EdX
∗ k6→ Ed + X (5.2)

Here, Ea and Ed denote the activating and deactivating enzyme molecules, respectively,
and X∗ and X denote the active and inactive substrate molecules, respectively. Without
loss of generality, we will set the backward rates k2 and k5 to zero.

The main focus of this section is to compare the response characteristics of a push-
pull network in which the antagonistic enzymes are colocalized to a membrane at one
pole of the cell to those of a push-pull network in which the enzymes are distributed in
the cytoplasm. Colocalization of the enzymes at the cell pole is modelled by putting the
antagonistic enzymes in a 2D checkerboard pattern in the first plane of the simulation
box, as shown in Fig. 5.1. The active and inactive substrate molecules, X∗ and X,
respectively, diffuse through the three-dimensional half-space bounded by the enzyme
lattice. Please note that in between one Ea and one Ed molecule one substrate molecule
can bind to the membrane. This allows for a rapid turnover of the substrate molecules:
for example, an X molecule that has just been turned into an active X∗ molecule by
an Ea particle will be placed adjacent to an Ed molecule with a probability 4/6; in the
next time step this molecule can then immediately bind to an Ed molecule leading to its
deactivation.
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Figure 5.1 Colocalization of the antagonistic enzymes of a push-pull net-
work to a membrane at one end of the cell. The enzymes are immobile and
are arranged in a checkerboard configuration. The substrate molecules can
freely diffuse in the cytoplasm, but can also occupy the space in between
the enzyme molecules at the membrane. The density of X∗ is indicated
by different grey scales. The density of X∗ is largest near Ea, where X∗

is produced, and lowest near Ed, where X∗ is deactivated. In the lattice
columns that do not contain an enzyme molecule, the concentration of X∗

(and X) is constant.

Concerning the case in which the enzymes are distributed in the cytoplasm, we will
consider a scenario in which both the substrate and the enzyme molecules freely diffuse
in the cytoplasm. However, to elucidate the underlying dynamics, we will also consider
a scenario in which the substrate molecules diffuse freely, but the enzymes are fixed in
space, either in a random configuration or in a regular “crystalline” array.

In all LRD simulations, the simulation box consists of 2240 lattice sites with a lattice
constant of 30 nm: 4×4×140 sites for the checkerboard configurations and 10×14×16 for
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the other configurations. Periodic boundary conditions were employed in all directions.
The parameter values are given in the figure captions. The simulations were all run for
3 × 104 s after an equal equilibration time.

We will study this system by solving, in zero-dimensions, the chemical rate equations
corresponding to Eqs. 5.1 and 5.2 and by performing LRD simulations, as described in
the previous section. We will also develop for both scenarios a simple mean-field analysis
that takes into account the effect of spatial concentration gradients (see below).

5.3 Results

5.3.1 Colocalization does not sharpen the response

The principal result of our analysis is shown in Fig. 5.2. Figure 5.2A shows the con-
centration of active substrate X∗, [X∗], as a function of the catalytic activity of the
activating enzyme, k3, for a push-pull network in the linear regime, while Fig. 5.2B
shows [X∗] as a function of k3 for a system in the zero-order regime. It is seen that in
both regimes, the LRD results for the scenario in which the enzymes are colocalized at
the cell pole are virtually indistinguishable from the results for the scenario in which the
enzymes are distributed in the cytoplasm. Clearly, colocalization does not significantly
change the steady-state input-output relation.

The reason that colocalizing the antagonistic enzyme does not significantly affect the
response curve is that colocalization does not enhance the average enzyme-association
rate as Silversmith conjectured [99]. This is illustrated in Fig. 5.3. This figure shows
the distribution of lifetimes of an active substrate molecule, X∗, for the different con-
figurations of the enzymes. It is seen that when the enzymes are distributed in the
cytoplasm (random and 3D lattice configurations), the distribution of lifetimes is expo-
nential, which is to be expected. When the antagonistic enzymes are colocalized at the
receptor cluster, the distribution is markedly different. The probability that an active
molecule has a short lifetime, is much higher when the enzymes are colocalized at the
cell pole than when the enzymes are distributed in the cytoplasm (see Inset). This is
due to a pathway in which a substrate molecule that has just been activated by an Ea

molecule at the cell pole, rapidly binds to an Ed molecule at the cell pole. Colocalization
indeed leads to a higher fraction of substrate molecules that have a very short lifetime,
as Silversmith argued [99]. However, this is compensated by the fact that a large frac-
tion of (in)active substrate molecules manages to escape from the cell pole before they
are (de)activated, and diffuses into the cytoplasm. For these molecules, it takes much
longer before they are (de)activated, as compared to the case in which both enzymes
are distributed in the cytoplasm. Indeed, colocalization not only leads to a much larger
fraction of substrate molecules with a very short lifetime, but also to a higher fraction
of substrate molecules with a longer lifetime. In fact, these two effects precisely balance
each other, such that the average lifetime of a substrate molecule is the same in both
scenarios.

That the average lifetime is not affected by the spatial distribution of the enzymes is
perhaps not a trivial result. It is instructive to make an analogy with a simple reversible
reaction A + B ↔ AB, and consider a system in which the A molecules are immobile
and the B molecules have to diffuse from one A molecule to another, in order for a
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Figure 5.2 The response of the network, as measured by the concen-
tration of X∗, as a function of the catalytic activity of the activating
enzyme, k3, for different spatial arrangements of the enzymes. Fig. A
shows the response of the system in the linear regime ([S]T/KM,d = 0.5),
while Fig. B shows the response of the system in the zero-order regime
([S]T/KM,d = 20). The dashed black line corresponds to the prediction
of the chemical rate equation, in which it is assumed that the system
is spatially uniform. The black triangles correspond to the LRD simu-
lation results for a system in which the enzymes are colocalized to the
membrane; the solid black lines correspond to the predictions of the
mean-field analysis of Eqs. 5.9–5.15. The dark-grey circles correspond
to the LRD simulation results for a system in which the enzymes are
immobilized onto a 3D regular, simple cubic lattice; the dark-grey lines
correspond to the mean-field predictions of Eqs. 5.22–5.26. The as-
terisks correspond to the LRD simulation results in which the enzymes
(as well as the substrate molecules) can freely diffuse in the cytoplasm.
The light-grey inverted triangles correspond to the case in which the en-
zymes are put in a quenched, random configuration. In Figs. A and
B, k1 = k4 = 1.08 108 M−1s−1, and [Ea]T = [Ed]T = 0.22 µM, corre-
sponding to 8 molecules of each enzyme species; in Fig. A, k6 = 180 s−1,
[S]T ≡ [X] + [EaX] + [X∗] + [EdX

∗] = 0.83 µM, corresponding to 30
molecules; in Fig. B, k6 = 18 s−1, [S]T = 3.3 µM, corresponding to 120
molecules. In all cases, the diffusion constant of the diffusive species is
D = 1 µm2s−1.

reaction to take place. We can then ask how the distribution of waiting times in between
a dissociation and a subsequent association reaction, i.e. the lifetime of a B molecule,
depends on the configuration of A molecules and how the equilibrium [A][B]/[AB], which
is given by the ratio of the average dissociation time over the average association time,
depends upon that configuration; in this comparison the overall densities of the molecules
are considered to be the same. It is clear that the distribution of waiting times strongly
depends upon the configuration of A molecules: if the A molecules are close together
in space, then the distribution will have a large peak at short times, but also a long
tail at long times, as compared to a scenario in which the A molecules are randomly
distributed in space. However, we know that since this is an equilibrium system, detailed
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Figure 5.3 Distribution of lifetimes for X∗, for three different spatial ar-
rangements of the antagonistic enzymes. The dark-grey line corresponds
to the scenario in which the antagonistic enzymes form a regular, simple
cubic lattice. The light-grey curve corresponds to the scenario in which the
enzymes adopt a quenched random configuration. The black curve corre-
sponds to the case in which the enzymes are colocalized to the membrane
at one end of the cell, as shown in Fig. 5.1. The inset shows the same data
zoomed in on early times. It is seen that when the enzymes are colocalized
to the membrane, the distribution of X∗ lifetimes is broad: many substrate
molecules that have just been activated by Ea, will rapidly rebind to the
membrane and be deactivated by Ed other activated substrate molecules
will, however, escape from the membrane and diffuse into the cytoplasm.
For these molecules it will take much longer before they are deactivated by
Ed. However, while the distribution of lifetimes is much broader when the
enzymes are colocalized, as compared to the case in which the enzymes
are distributed in the cytoplasm, the average is, to a very good approx-
imation, the same. This explains why the response curves, as shown in
Fig. 5.2, are hardly affected by the spatial arrangement of the enzymes.

balance dictates that the concentration of bound molecules AB does not depend upon
the spatial distribution of the A molecules. The resolution of the paradox is that the
average association time does not depend upon the configuration of the A molecules:
the short waiting times are precisely balanced by the long waiting times.

Now, the push-pull network is not an equilibrium system: a substrate molecule
that has just been activated by an Ea molecule has to diffuse to an Ed molecule in
order to become deactivated; the deactivated substrate molecule then has to diffuse to
an Ea molecule again, to become reactivated. This process generates cycles in state
space, which reflect the fact that a push-pull network is a non-equilibrium system that
requires energy as an input. In fact, these cycles give rise to concentration gradients of
substrate molecules around the enzyme molecules. As we discuss in more detail below,
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these gradients do affect the response curve. However, the effect of these gradients is
small, and to the extent that they can be neglected, the insensitivity of the location
of the chemical equilibrium of a reversible reaction to the spatial distribution of the
immobile species implies that the steady-state response curve of a push-pull network
does not depend upon the spatial distribution of the enzymes: the response curve of
a push-pull network depends on the occupancy of enzyme with substrate; the average
occupancy of an enzyme molecule is determined by the ratio of the average enzyme-
substrate association time and the average time it takes to catalyze the (de)modification
reaction; in the equilibrium system, the average occupancy of an A molecule with a B
molecule is given by the ratio of the average A − B association time and the average
A − B dissociation time; while the enzyme-substrate association time is analogous to
the A−B association time, the catalysis reaction is analogous to the A−B dissociation
time. Since we know that the average A − B association time and hence the average
occupancy of an A with a B molecule does not depend upon the spatial distribution
of the A species, it follows that also the average enzyme occupancy does not depend
upon the spatial distribution of the enzymes. This explains why enzyme colocalization
by itself is not sufficient to change the response curve.

5.3.2 Colocalization changes signal timing

While Fig. 5.2 shows that colocalization of the antagonistic enzymes to the cell pole
does not significantly influence the steady-state input-output relation, Fig. 5.3 reveals
that it does change the timing of activation. The broad distribution of lifetimes when
the enzymes are colocalized implies that colocalization leads to a broad distribution of
times over which the substrate molecules are activated. Indeed, colocalization allows for
strong signalling at early times and for signalling at late times.

5.3.3 Gradients change the input-output relation

Figure 5.2 shows the prediction of the chemical rate equations in zero dimensions for the
response curves (dashed black line). It is seen that the prediction agrees fairly well with
the results from the LRD simulations, both when the system is in the linear regime (Fig.
5.2A) and when it is in the zero-order regime (Fig. 5.2B). Yet, deviations from the LRD
simulation results can also be observed. These deviations could have various origins.
While the LRD simulations take into account the discrete nature of the components,
the stochastic character of their interactions, and resolves the stochastic motion and
the non-uniform distribution of the particles in space, the chemical rate equations are
based on a mean-field analysis that makes a number of assumptions. In particular,
it assumes that: a) there are no spatial concentration gradients in steady state; b)
there are no spatio-temporal correlations. For instance, the overall enzyme-substrate
association rate is given by k1〈NEa

NX(σ)〉/V 2, where Nα is the copy number of species
α, and NX(σ) is the number of X molecules in contact with the Ea molecules; σ is the
cross-section for the Ea-X association reaction and V is the volume of the system. If the
diffusion constant is high and/or the intrinsic association rate, which is the association
rate given that the reaction partners are at contact, is low, the species are uniformly
distributed at all times. In such a well-stirred system, the enzyme-substrate association
rate can then be approximated as k1〈NEa

NX〉/V 2. The chemical rate equations make
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the further assumption that: c) there are no temporal correlations. This means that the
enzyme-substrate association rate can be approximated as k1〈NEa

〉〈NX〉/V 2 = k1[Ea][X].
As we will show now, the difference between the LRD simulation results and the

predictions of the chemical rate equations are predominantly due to concentration gra-
dients. We will now present a simple mean-field analysis for the scenario in which the
enzymes are colocalized and for the scenario in which they are distributed in the cy-
toplasm. These mean-field analyses take into account the concentration gradients, but
neglect the temporal correlations. We will show that they give a remarkably good pre-
diction for the input-output relation, both when the system is in the linear regime and
in the zero-order regime.

Enzymes colocalized at the membrane: mean-field model
When the enzymes are colocalized to the plasma membrane, small gradients will arise
around the activating and deactivating enzymes. This is illustrated in Fig. 5.1.

The activating and deactivating enzymes form a checkerboard pattern in the first
plane of the lattice. The grey scale of the remaining lattice sites denotes the average
concentration of active substrate molecules X∗. In the lattice columns that start with
an activating enzyme molecule Ea, the concentration of X∗ is highest near Ea and then
decreases with the distance from the cluster; in the columns starting with Ed, the con-
centration of X∗ is lowest near Ed and then increases with distance from the membrane.
The total concentration [S]T = [X] + [X∗] is constant; the profiles of X are thus the
mirror image of those of X∗. In the lattice columns that contain no enzyme molecules,
the concentration profiles of X∗ and X are uniform, as explained in the appendix.

The mean-field analysis is discussed in detail in the appendix. Here, we present the
main results. The concentration profiles are given by

[X]oi
= [X]∞∀i (5.3)

[X∗]oi
= [X∗]∞∀i (5.4)

[X]ai
= [X]∞ − [C0] exp{(1 − i) K}∀i > 0 (5.5)

[X∗]ai
= [X∗]∞ + [C0] exp{(1 − i) K}∀i > 0 (5.6)

[X]di
= [X]∞ + [C0] exp{(1 − i) K}∀i > 0 (5.7)

[X∗]di
= [X∗]∞ − [C0] exp{(1 − i) K}∀i > 0 (5.8)

with K = arccosh(3) and [C0] = k3

5−exp(−K)
[EaX]
[Ea]T

1
6lD

. Here, [Q]ai
, [Q]di

, [Q]oi
denote, re-

spectively, the concentration of species Q in lattice site number i of a column starting
with an activating enzyme, a deactivating enzyme, or in a column that contains neither
an activating nor a deactivating enzyme. Furthermore, l is the lattice spacing and D
the diffusion coefficient.
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Once the concentration profiles are known, the rate equations can be derived straight-
forwardly. Below, they are compared to the uniform chemical rate equations:

Mean − field equations for lattice modelvs.Chemical rate equations

[EaX] + [Ea] = [Ea]T ⇔ [EaX] + [Ea] = [Ea]T (5.9)

[EdX
∗] + [Ed] = [Ed]T ⇔ [EdX

∗] + [Ed] = [Ed]T (5.10)

[X]∞ + [X∗]∞ + [EdX
∗] + [EaX] = [S]T ⇔ [X] + [X∗] + [EdX

∗] + [EaX] = [S]T

k6 [EdX
∗] = k1 [Ea]

(

1

3
[X]a1

+
2

3
[X]∞

)

⇔ k6 [EdX
∗] = k1 [Ea] [X] (5.11)

k3 [EaX] = k4 [Ed]

(

1

3
[X∗]d1

+
2

3
[X∗]∞

)

⇔ k3 [EaX] = k4 [Ed] [X∗] (5.12)

k3 [EaX] = k6 [EdX
∗] ⇔ k3 [EaX] = k6[EdX

∗] (5.13)

[X]a1
= [X]∞ − k3

C

[EaX]

[Ea]T

1

6lD
vs.[X] = [X]∞ (5.14)

[X∗]d1
= [X∗]∞ − k6

C

[EdX
∗]

[Ed]T

1

6lD
vs.[X∗] = [X∗]∞ (5.15)

Herein, C = 5 − exp{− arccosh(3)}. This system of eight equations can be numerically
solved for the eight variables [X]a1

, [X∗]d1
, [Ea], [Ed], [EaX], [EdX

∗], [X]∞ and [X∗]∞;
once [EaX] is known, [C0] can be computed, and the concentration profiles can then be
obtained from Equations 5.3–5.8.

The black data in Fig. 5.4 show the concentration profiles of X∗ in the lattice
columns starting with Ed, as a function of the distance from the membrane; the black
lines correspond to the mean-field prediction of Eqs. 5.9–5.15, while the black triangles
correspond to the LRD simulation results. Fig. 5.4A shows the concentration profile for
a system in the linear regime that is strongly activated (k3 = 6600 s−1, compare with
Fig. 5.2A); Fig. 5.4B shows the concentration profile for a system in the zero-order
regime that is strongly activated (k3 = 6600 s−1; compare with Fig. 5.2B). It is seen
that the mean-field prediction of Eqs. 5.9–5.15 is highly accurate, both when the system
is in the linear regime (Fig. 5.4A) and when the system is in the zero-order regime (Fig.
5.4B). Evidently, the effect of spatio-temporal correlations, which are not captured by
the mean-field analysis, is negligible.

The solid black lines in Figs. 5.2A and 5.2B show the mean-field prediction for the
steady-state response curves of a system in the linear and zero-order regime, respectively.
As expected on the basis of the accurate description of the concentration profiles, the
mean-field predictions for the response curves are in excellent agreement with the LRD
simulation results.
Enzymes in the cytoplasm: mean-field model
When the enzymes are colocalized in a plane, an accurate mean-field analysis can be
developed, as described above. When the enzymes are distributed in the cytoplasm,
such an analysis is highly non-trivial, especially when the enzymes also diffuse. The
antagonistic enzymes act as sinks and sources of substrate molecules, which gives rise to
concentration gradients of X and X∗ around the activating and deactivating enzymes.
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Figure 5.4 Concentration profiles of X∗ for different spatial arrangement
of the antagonistic enzymes. The profiles give the concentration of X∗ as
a function of the distance to the deactivating enzyme Ed. (A) Results
for a network in the linear regime; (B) Results for a network in the zero-
order regime. The black triangles show the LRD simulation results when
the enzymes are colocalized to the membrane; the black lines show the
mean-field predictions of Eqs. 5.9–5.15; shown are the concentration of
X∗ within one column containing a deactivating enzyme Ed, as a function
of the distance to that enzyme. The grey circles are LRD simulation re-
sults when the enzymes are immobilized on a simple-cubic lattice; the grey
lines correspond to the mean-field predictions of 5.22–5.26. The inverted
light-grey triangles correspond the scenario in which the enzymes adopt a
quenched, random configuration. Please note that the substrate concen-
tration gradients are sharper when the system is in the linear regime (Fig.
A). This is because in the linear regime the enzymes are predominantly
unoccupied and thus act as strong sinks for the substrate molecules, while
in the zero-order regime they are saturated, yielding a reflecting boundary
condition for the substrate molecules.

When the enzymes are distributed in 3D space, these gradients interfere with one an-
other, especially when the enzymes diffuse. We will show, however, that a simple anal-
ysis, which assumes that on length scales larger than the average spacing between the
enzyme molecules the substrate concentration profiles are uniform, gives a reasonable
description of the system.
Linear regime In the linear regime, the enzymes are predominantly unoccupied by
substrate molecules. This allows for a simple, yet fairly accurate, description of the sub-
strate concentration gradients around the enzyme molecules. Let’s focus on one enzyme
molecule, say an Ed molecule. The diffusion equation that describes the concentration
profile of X∗ around that enzyme molecule is

∂t[X
∗](x) = D∇2[X∗](x). (5.16)
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We can solve this diffusion equation in steady state, ∂t[X
∗](x) = 0, with the following

boundary conditions:

[X∗](x → ∞) = [X∗]∞ (5.17)

4πσ2D
∂[X∗]

∂x

∣

∣

∣

∣

x=σ

= k4[X
∗](σ) (5.18)

Concerning the first boundary condition, we assume that the concentration profiles of
the substrate molecules are uniform, except in the vicinity of the enzyme molecules.
This seems a strong assumption, since diffusion gives rise to gradients that decay as 1/r.
However, if the concentrations of the enzymes are sufficiently low, then the presence of
the other enzyme molecules around an Ed molecule can be neglected. On a length scale
given by the average distance between the enzyme molecules, the concentration of X∗ is
then, to a good approximation, given by [X∗]∞.

The second boundary condition reflects the fact that an Ed molecule acts as a sink for
the X∗ molecules. Importantly, since the system is assumed to be in the linear regime,
the enzyme is, by definition, unoccupied most of the time. This means that the flux due
to diffusion at contact, which is written on the left-hand side of Eq. 5.18, is given by
the concentration of X∗ at contact, [X∗](σ) (where σ is the cross section or the reaction
distance of the enzyme-substrate reaction), times the association rate k4.

The diffusion equation, Equation 5.16, can now be solved with these two boundary
conditions, yielding

[X∗](r) = [X∗]∞ + ([X∗]r=σ − [X∗]∞)
σ

r
(5.19)

with the concentration of X∗ at contact given by

[X∗]r=σ =
k44πσD[X∗]∞
k4 + 4πσD

(5.20)

≡ keff
4 [X∗]∞ (5.21)

where keff
4 is the effective association rate, which takes into account that the overall

reaction rate depends on both the rate at which substrate molecules diffuse to the enzyme
molecules, given by kD = 4πσD, and the reaction rate at contact, k4: 1/keff

4 = 1/k4+1/kD

[100]. For the unmodified substrate molecules X a similar analysis can be applied.
This leads to the following set of rate equations:

Mean − field analysis for 3D latticevs.Chemical rate equations

[EaX] + [Ea] = [Ea]T ⇔ [EaX] + [Ea] = [Ea]T (5.22)

[EdX
∗] + [Ed] = [Ed]T ⇔ [EdX

∗] + [Ed] = [Ed]T (5.23)

[X]∞ + [X∗]∞ + [EdX
∗] + [EaX] = [S]T⇔ [X] + [X∗] + [EdX

∗] + [EaX] = [S]T

k3 [EaX] = k6 [EdX
∗]⇔ k3 [EaX] = k6 [EdX

∗] (5.24)

k3 [EaX] = keff
1 [Ea] [X]∞vs. k3 [EaX] = k1 [Ea] [X] (5.25)

k6 [EdX
∗] = keff

4 [Ed] [X∗]∞vs. k6 [EdX
∗] = k4 [Ed] [X∗] (5.26)

The last two equations reveal that the effect of the substrate concentration gradients
can, in this simple model, be captured by replacing the intrinsic association rates, k1

and k4, respectively, by the effective association rates, keff
1 and keff

4 , respectively. The
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last three equations show in combination with Equations 5.18 and 5.21, that in steady
state, JX

in = JX
D = JX

out = JX∗

in = JX∗

D = JX∗

out, where Jα
in, Jα

D, Jα
out, are the influx,

flux due to diffusion, and outflux of species α, respectively. For instance, the influx
of species X∗ is given by JX∗

in = k3[EaX], while the outflux of species X∗ is given by
k4〈NEd

NX∗(σ)〉/V 2 ≈ keff
4 [Ed][X

∗]∞, where Nα is the copy number of species α. This
illustrates that each substrate molecule undergoes the cycle X → EaX→ X∗ → EdX

∗→
X . . . , where in steady state the flux along the cycle is constant.

Figure 5.4A shows the concentration profiles as obtained from the LRD simulations
(grey circles) and as obtained by numerically solving Eqns. 5.22-5.26 (grey line) for a
system in the linear regime. Figure 5.2A compares the input-output curve as measured in
the LRD simulations to the prediction of Eqns. 5.22-5.26 (grey line) for the same system.
It is seen that the solution of the diffusion equation, Equation 5.19, underestimates the
concentration profiles around the enzyme molecules (Fig. 5.4A). Yet, this simple analysis
gives a remarkably accurate prediction for the dose-response curves (Fig. 5.2A).

The critical assumption in the above analysis is that the outflux of X∗ is given by
JX∗

out = k4〈NEd
NX∗(σ)〉/V 2 ≈ keff

4 [Ed][X
∗]∞, and similarly for X. This assumption seems

reasonable when the system is in the linear regime: in this regime, the enzyme molecules
are predominantly unoccupied; as a consequence, when a substrate molecule encounters
an enzyme molecule, the two can react with an intrinsic association rate k1 or k4; this
gives rises to concentration gradients given by Equation 5.19 and an outflux of X∗ that
is simply given by the total number of Ed molecules times k4[X

∗](σ), and an efflux of X
that is given by the total number of Ea molecules times k1[X](σ).
Zero-order regime In the zero-order regime, one or both of the enzyme species are
highly saturated with substrate. For instance, if the input signal k3 is high, Ed will be
predominantly occupied by X∗ molecules. As a result, most of the collisions of the X∗

molecules with the Ed molecules will be non-reactive. This tends to lower the effective
Ed-X

∗ association rate and reduce the gradient of X∗. Fig. 5.4B (grey lines) shows
that Equation 5.19 indeed leads to a poor prediction for the substrate concentration
profile when the system is in the zero-order regime. Nevertheless, even though the
average concentration profile is close to a uniform profile, the average enzyme-substrate
reaction time is, to a good approximation, given by 1/keff . We have therefore plotted
the prediction of Eqns. 5.22-5.26 for the response curve of a system in the zero-order
regime in Fig. 5.2B. It is seen that the agreement with the LRD simulation results is
surprisingly good.

5.3.4 Gradients can both reduce and enhance the response

The results above demonstrate that substrate concentration gradients can reduce the
strength of the response. However, substrate concentration gradients can also enhance
the response of the network. This is illustrated in Fig. 5.5. This figure shows the
response of a system with a lower association rate between the activating enzyme Ea and
substrate X. By comparing the LRD simulation results (symbols) with the prediction of
the chemical rate equations (dashed black line), which ignores spatial gradients, it is seen
that concentration gradients can indeed enhance the response of a push-pull network.

In order to understand the effect of substrate concentration gradients on the response
curve, it should be realized that when the diffusion constants of X and X∗ are the same,
the concentration gradient of X near Ea is the same as that of X∗ near Ed, once the system
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Figure 5.5 Response of X∗ as a function of k3 when the Ea-X association
rate is such that it limits the response; compared to Fig. 5.2, the Ea-X
association rate is reduced by a factor ten (k1 = 1.08 107M−1s−1). For ex-
planation of lines and symbols, see Fig. 5.2. By comparing the symbols,
which are the LRD simulation results, with the dashed black line, which
corresponds to the prediction of the chemical rate equation that ignores
spatial concentration gradients, it is seen that gradients can not only re-
duce the response, as shown in Fig. 5.2, but also enhance the response.
The reason is that the effect of the reduction of the enzyme-substrate asso-
ciation rate resulting from the substrate concentration gradients, is larger
for the minority substrate species.

is in steady state. This statement reflects the fact that in steady state, the diffusive flux
of X∗ from Ea to Ed which is given by D∇[X] must equal the diffusive flux of X from
Ed to Ea which is given by D∇[X∗]. This means that if we write the concentration
of X in contact with Ea as [X](σ) = [X]∞ − ǫ, where ǫ denotes the deviation from the
uniform profile [X]∞ due to the gradient, then the concentration of X∗ at contact with
Ed is given by [X∗](σ) = [X∗]∞ − ǫ. Now, if [X] is high and [X∗] is thus low, then the
relative decrease in the Ea-X association rate, given by ([X] − ǫ)/[X]), will be small ,
while the relative decrease in the Ed-X

∗ association rate, ([X∗] − ǫ)/[X∗]) will be large.
As a result, the production of X∗, which is given by J∗ = k3[EaX] = k1[Ea][X](σ), will
decrease more as a result of the gradient than the production of X, which is given by
J = k6[EdX

∗] = k4[Ed][X
∗](σ). Thus, when the diffusion constants of X and X∗ are

equal, concentration gradients will decrease the concentration of X∗ when [X∗] is high,
and increase [X∗] when [X∗] is low. This is precisely what is observed in Figs. 5.2 and
5.5: in Fig. 5.2, [X∗] is large when k3 is large; in this regime, gradients reduce the
response; in Fig. 5.5, [X∗] is small even when k3 is large, because of the limiting Ea-X
association rate; in this regime, gradients enhance the response.
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5.4 Discussion and conclusions

It is becoming increasingly clear that enzymes are often colocalized to the plasma mem-
brane. Here, we address the question how colocalization affects the response character-
istics of a push-pull network using particle-based simulations. The principal result is
that colocalization per se does not strongly affect the steady-state input-output relation
(see Fig. 5.2). The reason is that to the extent that spatial concentration gradients
can be neglected, the spatial distribution of the enzymes does not affect the degree to
which they are saturated with substrate. The average enzyme occupancy is determined
by the ratio of the catalytic rate and the effective association rate. Colocalization leads
to a wide distribution of association times: as compared to the scenario in which the
enzymes are distributed in the cytoplasm, enzyme colocalization leads not only to a
higher probability of short association times, but also to a higher fraction of substrate
molecules with long enzyme-association times (see Fig. 5.3). The net result is that the
average association time, and hence the average enzyme occupancy, is unaffected by the
spatial distribution of the enzymes.

The wide distribution of enzyme-substrate association times in the scenario in which
the enzymes are colocalized, means that the dynamics of the response of the network to
an external signal will be markedly different from the well-stirred case. Colocalization
allows for signalling at both early and late times. Controlling the times over which the
substrate molecules are activated may be exploited in directing a specific response in
downstream signalling pathways. For instance, recent experiments have shown that in
some MAPK pathways, specificity is encoded in the duration of MAPK activation [101].
Our prediction that colocalization affects the distribution of response times could be
tested in experiments that monitor time courses of activated proteins, for instance using
Förster Resonance Energy Transfer (FRET).

Comparing the LRD simulation results with the predictions of mean-field analyses,
shows that the effect of spatio-temporal correlations is small, even though the copy num-
bers are relatively small: while the total number of substrate molecules varied between
30 and 120 molecules, the total number of molecules of each enzyme species was only 8.
The main deviations from the predictions of the chemical rate equations are due to the
presence of substrate concentration gradients, both in the scenario that the enzymes are
colocalized and in the scenario in which the enzymes are distributed in the cytoplasm
(Fig. 5.4). Simple mean-field models that take into account the spatial concentration
gradients, give a remarkably good description of the steady-state input-output curves
(Fig. 5.2). These results support the use of chemical rate equations for describing the
steady-state response curves, even when the copy numbers are as low as 10. However, if
one is interested in the distribution of response times, then stochastic, spatially-resolved
simulation schemes are required—the wide distribution of time scales, as observed for
the system in which the enzymes are colocalized, cannot be captured by mean-field
reaction-diffusion equations.

We should discuss one limitation of our current model that could affect our con-
clusions. In our model, the maximum intrinsic association rate, k1, is given by the
diffusion-limited association rate: a reaction can occur only when a trial diffusion move
leads to an overlap between reaction partners; this move is accepted with a probability
P = k1∆t/l3, with ∆t = l2/(6D); consequently, the maximum association rate, obtained
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by taking P = 1, is given by k1 = l3/∆t = 6lD, which is the diffusion-limited rate for a
system on a lattice. With an alternative scheme, it would be possible to achieve higher
intrinsic association rates: for instance, a scheme in which two reaction partners can re-
act with a probability Preact when they are adjacent on the lattice, and particles diffuse
by making hops with a probability Phop < Preact, will yield intrinsic association rates
that are higher than the diffusion-limited rate. This will generate larger concentration
gradients of substrate molecules around the enzyme molecules. Indeed, it would be of
interest to study whether a) also in this regime colocalization of the enzymes has only a
small affect on the steady-state input-output relation; b) whether the mean-field anal-
yses given here still give a good description of the response curve. Yet, it should be
realized that the biological relevance of such a study strongly depends on the values of
the intrinsic protein-protein association rates in nature. If we assume that the maximum
intrinsic association rate is given by the time scale on which two proteins in close prox-
imity diffuse over a molecular length scale λ into contact, then kmax

a would be given by
kmax

a = 4πσ2D/λ; the enhancement over the diffusion limited rate, kD = 4πσD, would
thus be kmax

a /kD = σ/λ. Clearly, if we assume that the molecular length scale λ is given
by the diameter of the proteins, σ, then the maximum association rate is given by the
diffusion-limited rate, which is, indeed, precisely the value we have taken here. In gen-
eral, however, λ could be smaller than σ, leading to a higher intrinsic association rate.
To our knowledge, intrinsic protein-protein association rates have not been measured
systematically. This would require experiments in which not only the effective associa-
tion rates are measured, 1/keff = 1/ka + 1/(4πσD), but also the diffusion constants of
the proteins.

Lastly, we would like to mention that while the close physical proximity between
the antagonistic enzymes that arises from colocalization might not by itself affect the
response curve, the interplay between colocalization and other factors could change the
steady-state input-output relation. For instance, if the substrate molecules have an affin-
ity for the membrane, or for a receptor cluster at the membrane as in the chemotaxis
system of E. coli, then this could enhance the substrate concentration at the membrane.
If both enzymes are colocalized at the membrane, then this higher substrate concentra-
tion could increase the overall enzyme-substrate association rate and thereby enhance
the sharpness of the response.

5.5 Methods

5.5.1 Overview of techniques to simulate biochemical networks

The conventional approach to simulate biochemical networks is to write down the dif-
ferential equations corresponding to the chemical rate equations, and to propagate the
equations in time. In this approach, the evolution of the network is deterministic: it is
assumed that the concentrations are large and that fluctuations can be neglected. If the
spatial distribution of the components is important, the macroscopic reaction-diffusion
equations can be solved numerically. While this technique describes the network in time
and space, it does assume that fluctuations are unimportant and that the evolution of
the network is deterministic.
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The most popular scheme to take into account fluctuations is the Gillespie algorithm
[102]. The Gillespie algorithm is a kinetic Monte Carlo algorithm [103] that allows the
efficient simulation of the zero-dimensional chemical master equation. This approach
takes into account the stochastic character of chemical reactions and the discrete nature
of the components. However, it does assume that the system is well-stirred. The scheme
can therefore not be used when there are spatial concentration gradients. Moreover,
even when there are no concentration gradients on average, the scheme may not be
applicable. Even when the system is spatially uniform on average, the zero-dimensional
master equation does make the assumption that the particles are uniformly distributed
in space at all times; the approach thus relies on many non-reactive collisions in between
the reactive collisions to stir the system. The validity of this assumption increases as the
probability of reaction upon collision decreases, thus as the intrinsic reaction rate (the
reaction rate when the reactants are at contact) decreases. The scheme also becomes
more accurate as the diffusion constant increases—the higher the diffusion constant,
the more the system is stirred in between the reactive collisions. The accuracy of this
approach decreases as the concentrations of the components decrease. This is interesting,
because the scheme is typically used at low concentrations, where the stochastic character
of the reactions and the discrete nature of the components becomes important. But at
sufficiently low concentrations, not only the stochastic character of the reactions becomes
important, but also the spatial fluctuations due to the diffusive motion of the components
[96].

If the spatial distribution of the components and the stochastic character of the
interactions are important, several approaches can be taken. One class of techniques is
based upon the reaction-diffusion master equation [104, 105, 106, 107]. In this approach,
the system is divided into little cells; components can react within each cell and diffuse
from one cell to the next. Importantly, it is assumed that within each cell, the system
is well-stirred; the approach thus relies on a length scale on which the particles are
uniformly distributed. Another class of techniques simulate biochemical networks at the
particle level in time and space. While schemes based on the reaction-diffusion master
equation are relatively fast at higher concentrations, particle-based schemes are more
efficient at low concentrations of the components. Moreover, the assumption of the
existence of a length scale on which the system is uniform, becomes less accurate as the
concentrations of the components decrease.

In recent years, several particle-based techniques have been developed. One class of
techniques is based upon Brownian Dynamics [108, 109, 110, 111]. In Brownian Dy-
namics, the particles are propagated according to the overdamped limit of the Langevin
equation. When two reaction partners happen to meet each other, they can react with
a probability that is consistent with the reaction rate. Brownian Dynamics is a truly
particle-based simulation scheme, but has the disadvantage that small time steps are
needed in order to properly resolve the collision events. We have recently developed
a particle-based scheme, called Green’s Function Reaction Dynamics (GFRD) [90, 91],
that uses Green’s functions to concatenate the propagation of the particles in space with
the chemical reactions between them. The crux of GFRD is to exploit the Green’s func-
tions to set up an event-driven algorithm, in which the system jumps from one reaction
event to the next. This event-driven nature makes it possible to make large jumps in
time and space when the particles are far apart. However, in the system considered here,
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all reactions take place at the membrane, where the reactants are close to each other.
This makes GFRD relatively inefficient.

We have therefore developed a particle-based simulation scheme in which the particles
are propagated on a lattice. The lattice-based nature makes the algorithm very fast, since
one can rapidly check for overlap with potential reaction partners. In the next section,
we describe our lattice-based reaction-diffusion algorithm, which, for convenience, we
will refer to as Lattice Reaction Dynamics (LRD).

5.5.2 Lattice Reaction Dynamics (LRD)

In most lattice-based simulation schemes of reaction-diffusion systems, all the particles
are first propagated in space, without checking for overlap; in the second step, particles
that occupy the same lattice site can react with a probability as given by the reaction
rate. These algorithms propagate the system according to the reaction-diffusion master
equation; they are indeed very similar to the schemes of [104, 105, 106, 107]. However,
these algorithms do not take into account excluded volume interactions.

LRD takes into account excluded volume interactions. The particles are propagated
on a simple cubic lattice of Mx × My × MZ = M lattice sites. Each particle takes
up exactly one lattice site and at most one particle can occupy a single lattice site—
this reflects the excluded volume interactions. The lattice spacing, l, corresponds to
the typical size of a protein. Each time step ∆t, each diffusive particle can hop to a
neighboring lattice site with a probability pα if the neighboring site is unoccupied; if the
chosen lattice site is occupied and no reaction between the two particles can occur, the
trial displacement is rejected. At low densities, when excluded volume interactions can be
neglected, the particles of type α will move with a diffusion coefficient Dα = l2/(6pα∆t).
In what follows, we assume that the diffusion coefficients of all the different species are
the same, and that pα = 1.

Next, we will discuss how unimolecular and bimolecular reactions are taken into
account. For this purpose, let us consider the reversible chemical reaction

A + B
ka

⇋
kd

C, (5.27)

Herein, ka is the intrinsic association rate, i.e. the association rate given that a pair of
particles A and B is at contact; kd is the intrinsic dissociation rate, which is the rate that
a C particle dissociates into a particle A and a particle B that are at contact. In LRD, a
pair of particles A and B can react when a move of either an A or a B particle leads to
an overlap of these two particles. The probability Pacc,u→b that such an overlap leads to
a reaction is related to the intrinsic association rate ka, as described below. Conversely, a
C particle can dissociate into a pair of A and B particles with a probability Pacc,b→u that
is related to the intrinsic dissociation rate kd. In LRD, the association and dissociation
moves are constructed such that detailed balance is obeyed [112]. The detailed-balance
condition for one given pair of particles A and B is

Pu(rA, rB)Pgen,u→bPacc,u→b = Pb(rC)Pgen,b→uPacc,b→u (5.28)

Here, Pu(rA, rB) is the probability that the A and B particles are not bound and at
position rA and rB, respectively; Pb(rC) is the probability that the particles form the
bound particle C at position rC ; Pgen,u→b and Pacc,u→b are the probabilities of generating
and accepting the association moves, respectively, while Pgen,b→u and Pacc,b→u are the
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probabilities of generating the dissociation moves. The probabilities Pu(rA, rB) and
Pb(rC) can be obtained by noting that the probability P (rNA

A , rNB

B , rNC

C ; {NA, NB, NC})
that the system has (NA, NB, NC) molecules and that these molecules are located at
positions {r1

A, · · · , rNA

A }, {r1
B, · · · , rNB

B }, {r1
C , · · · , rNC

C } is

P (rNA

A , rNB

B , rNC

C ; {NA, NB, NC}) =
qNA

A,cmqNB

B,cmqNC

C,cm

Q , (5.29)

where qX,cm is the partition function corresponding to the degrees of freedom of the
center of mass of a particle X, and Q is the canonical partition function of the system.
The ratio of probabilities of being in the bound vs unbound state is therefore given by

Pb(rC)

Pu(rA, rB)
=

qC,cm

qA,cmqB,cm
≡ Keq =

ka

kd
, (5.30)

where Keq is the equilibrium constant. The detailed-balance condition, Equation 5.28,
then becomes

Pgen,u→bPacc,u→b

Pgen,b→uPacc,b→u
=

ka

kd
. (5.31)

In practice, we have adopted the following simulation scheme

1. Select a particle.
2. If the particle is

(a) a C particle, then
(i) Try to dissociate the particle with probability Pacc,b→u = kd∆t.
(ii) If accepted: put either the A or the B particle at the site previously

occupied by the C particle with a probability of a half; attempt to put
the other particle onto one of the z neighbouring sites; if this neigh-
bouring site is occupied, reject the whole move.
If not accepted: attempt to move the C particle to one of the neigh-
bouring sites. If the attempted site is occupied, reject the move.

(b) an A or a B particle, then attempt to move the particle to one of the z
neighbouring sites. If the neighbouring site

(i) contains a reaction partner, then accept the move with a probability
Pacc,u→b = 1/2 N/(N−1)ka∆t, where N is the total number of particles
in the system. Put the C particle at either the site previously occupied
by A or by B with a probability of a half. If not accepted, put the
particle back at its original spot.

(ii) contains an other particle, reject.
(iii) is empty, then accept the move.

It can be verified that this scheme satisfies detailed balance:

Pb(rC)

Pu(rA, rB)
=

Pgen,u→bPacc,u→b

Pgen,b→uPacc,b→u

(5.32)

=
[2/N 1/z 1/2] (1/2 ka∆tN/(N − 1))

[1/(N − 1) 1/z 1/2] (kd∆t)
(5.33)

=
ka

kd
. (5.34)
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Here, the factors between the square brackets [. . . ] correspond to the generation moves,
while the factors between normal brackets (. . . ) correspond to the acceptance moves.
Typically, N is large enough that the factor N/(N − 1) can be neglected. The as-
sociation move is then accepted by ka∆t/2, where the factor 2 comes from the fact
that there are two ways of generating an overlap (selecting A and moving it onto B,
and vice versa). Typically, association rates are given in units of volume per second.
In this case, the trial association move should be accepted with a probability ka∆t/(2l3).

Appendix: Mean-field model Colocalization

We will derive mean-field relations for the steady state concentrations of substrate and
enzyme for a push-pull network in which the antagonistic enzymes are arranged in a
two-dimensional checkerboard pattern, for the setup described in Fig. 5.1. The activat-
ing enzymes Ea and deactivating enzymes Ed form a checkerboard pattern in the first
plane of the lattice. The greyscale of the remaining lattice sites denotes the average
concentration of active substrate X∗. We will consider a cell that is very long in the
direction perpendicular to the plane formed by the enzymes, with periodic boundary
conditions in all three dimensions.

We will refer to the lattice sites in the columns starting with Ea by a0, a1, a2, ..., to
the lattice sites in the columns starting with Ed by d0, d1, d2, ... and to the lattice sites in
the columns without any enzymes by o0, o1, o2, .... The enzymes themselves are located
at positions a0 and d0.

If the system is in steady state, gradients of substrate will arise around the enzymes.
Because the activating and deactivating enzymes act as sources and sinks for X∗, re-
spectively, the concentration of X∗ is highest near Ea and lowest near Ed, as indicated
by the greyscales in Fig. 5.1.

In the following, we will make use of the symmetries of the system. First, it can be
seen that all columns starting with an activating enzyme are equivalent. The same holds
for all columns starting with a deactivating enzyme, and all columns not containing any
enzymes. Next, since the system is in steady state, the rate at which X is converted to
X∗ by the activating enzyme Ea equals the rate at which X∗ is converted back to X by the
deactivating enzyme Ed. As a consequence, the gradients of X and X∗ around the acti-
vating enzymes are exactly opposite to the respective gradients around the deactivating
enzymes. Interchanging all activating and deactivating enzymes therefore has the result
that all gradients are inverted. However, the effect of interchanging all activating and
deactivating enzymes can also be achieved by shifting the whole system by one lattice
spacing over the diagonal of the checkerboard. For the set of columns in between the
enzymes, which stays at the same position under both transformations, this means that
inverting the gradients leaves the concentrations unaltered. Therefore, the concentra-
tions of X and X∗ must be constant in these columns: the values are the same as the
concentrations far away from the enzymes, Xoi

= X∞ and X∗
oi

= X∗
∞ (i = 0 . . .∞). It

also follows from the symmetry of the system that the concentration gradients of X are
exactly opposite to the gradients of X∗ at all lattice sites, such that the total substrate
concentration ST is constant over space.
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For all lattice sites that are not directly neighbouring an enzyme, the steady state
concentrations of X and X∗ are fully governed by the homogeneous diffusion equation,
also called the Laplace equation. On a lattice, the solution to the Laplace equation
satisfies the condition that all local concentrations equal the average over the six neigh-
bouring lattice sites:

0 =
∆[X]ai

∆t
=

D

l2

(

4 [X]oi
+ [X]ai−1

+ [X]ai+1
− 6 [X]ai

)

∀i > 1 (5.35)

0 =
∆[X]di

∆t
=

D

l2

(

4 [X]oi
+ [X]di−1

+ [X]di+1
− 6 [X]di

)

∀i > 1 (5.36)

0 =
∆[X∗]ai

∆t
=

D

l2

(

4 [X∗]oi
+ [X∗]ai−1

+ [X∗]ai+1
− 6 [X∗]ai

)

∀i > 1 (5.37)

0 =
∆[X∗]di

∆t
=

D

l2

(

4 [X∗]oi
+ [X∗]di−1

+ [X∗]di+1
− 6 [X∗]di

)

∀i > 1 (5.38)

Herein, [...] denotes the local concentration of the different components, which is defined
as the probability that a particle occupies a given lattice site divided by the volume l3

of a lattice site. ∆[...]
∆t

denotes the change in concentration in a finite time step ∆t ≡ l2

6D
.

The solution to the above equations with the aforementioned boundary conditions is of
the form

[X]oi
= [X]∞∀i (5.39)

[X∗]oi
= [X∗]∞∀i (5.40)

[X]ai
= [X]∞ − [C0] exp{(1 − i) K}∀i > 0 (5.41)

[X∗]ai
= [X∗]∞ + [C0] exp{(1 − i) K}∀i > 0 (5.42)

[X]di
= [X]∞ + [C0] exp{(1 − i) K}∀i > 0 (5.43)

[X∗]di
= [X∗]∞ − [C0] exp{(1 − i) K}∀i > 0 (5.44)

with K = arccosh(3). This can be verified by substitution of Eqns. 5.39- 5.44 in
Eqns. 5.35- 5.38.

The value of [C0] can be determined from the boundary conditions, e.g.:

0 =
∆[X∗]a1

∆t
=

D

l2

(

4 [X∗]o1
+ [X∗]a2

− 5 [X∗]a1

)

+ k3
[EaX]

[Ea]T

1

6l3
(5.45)

=
D

l2

(

[C0] {exp(−K) − 5} + k3
[EaX]

[Ea]T

1

6lD

)

(5.46)

⇒ [C0] =
k3

5 − exp(−K)

[EaX]

[Ea]T

1

6lD
(5.47)

Eq. 5.45 describes the change in the concentration of X∗ per time step ∆t at position a1,
which is the position in the cytoplasm adjacent to an activating enzyme Ea. The first
three terms on the right-hand side describe the diffusive flux of X∗, while the last term
describes the influx of X∗ due to the production of X∗ at a0. The influx equals the local
concentration of Ea at position a0, l−3, times the probability that Ea is in the form EaX,
[EaX]
[Ea]T

, multiplied by the catalytic activity k3 and 1/6 since a molecule X∗ can be put in

one of the 6 sites that are adjacent to Ea. Now, the concentration profiles are known,
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the rate equations can be derived straightforwardly. They are shown in Eqs. 5.9–5.15
of the main text.



6 Switching dynamics of the

bacterial flagellar motor

Many swimming bacteria are propelled by flagellar motors that can rotate in two direc-
tions. Recent experiments by Cluzel and coworkers [Korobkova et al., Phys Rev. Lett 96,
058105 (2006)] showed that the switching dynamics of the rotary flagellar motor of Es-
cherichia coli exhibits a peak in the power spectrum. We present a statistical-mechanical
model for the switching dynamics of a bacterial flagellar motor. The model predicts that
the peak in the power spectrum is caused by the interplay between the relaxation dynamics
of the flagellum after a switching event and the exponential dependence of the switching
propensity on the torque that is exerted on the motor. The model also predicts that at
high viscous loads and low rotation speeds, the average switching frequency is fairly in-
dependent of the load, but that the switching frequency linearly decreases with speed for
rotation speeds higher than about 25-50 Hz.

6.1 Introduction

The bacterium Escherichia coli is able to swim towards attractants such as sugars, amino
acids, oxygen and minerals, and away from repellents like salts, acids, bases and alcohols.
It is propelled by several flagella. Each flagellum is under the action of a rotary motor,
which can rotate either in a clockwise (CW) or a counterclockwise (CCW) direction.
When all the motors run in the counterclockwise direction, the flagella form a helical
bundle and the bacterium swims smoothly. When one motor runs in the clockwise
direction, however, the connected flagellum adopts a semi-coiled or curled conformation
and the bacterium performs a so-called tumble. These tumble events randomize the cell’s
trajectory, and it is the modulation of their occurrence that allows E. coli to chemotax.
Here, we present a statistical-mechanical model of the switching dynamics of the rotary
motor. The model predicts that the peak in its power spectrum, as recently observed by
Cluzel et al. [49], arises from the interplay of the dependence of the switching frequency
on the load and the dynamics of the flagellum.

A cartoon of the bacterial flagellar motor is shown in Fig. 6.1. It consists of a
protein complex called the rotor, and a number of stator proteins that are fixed in the
inner membrane and the peptidoglycan layer. Forces applied by the stator proteins on
a ring of FliG proteins of the rotor protein complex drive the rotation of the rotor, and
thereby the rotation of the flagellum, which is connected to the rotor. The rotation
of the motor is powered by a flow of protons down an electrochemical gradient across
the cytoplasmic membrane. The switching of the rotation direction is determined by
the concentration of the phosophorylated form of the messenger protein CheY. The
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Figure 6.1 Cartoon of the flagellar motor of the bacterium E. coli. The
figure is taken from Ref. [114]

concentration of phosphorylated CheY, CheYp, depends upon the phosphatase activity
of CheZ and the kinase activity of CheA; the latter, in turn, depends upon the activity of
the receptor cluster, which is determined by the degree of receptor methylation, necessary
for adaptation, and ligand binding.

To elucidate the working principles of the bacterial flagellar motor, a number of
motor characteristics have to be understood. One is the torque-speed relationship of
the motor. At low speeds, the torque varies linearly with speed. Beyond a “knee”
velocity of around 200 Hz, however, the torque rapidly drops to reach zero at around
300 Hz [113]. Recently, Oster et al. developed a mathematical model [114] that is based
on the qualitative proposal of Blair and coworkers [115]. In this model, the binding
and unbinding of protons to the stator proteins drive conformational transitions of the
stator proteins, which, in turn, allow the stator proteins to exert a force on the FliG
rotor proteins. This model can describe the torque-speed relationship, as well as the
linear dependence of the motor rotation speed on the proton motive force at low and
high rotation speeds.

Another characteristic of the motor is the power spectrum computed from binary time
series of CW↔CCW switching. Recently, Cluzel and coworkers measured power spectra
by monitoring the rotation of a 0.5 µm latex bead connected to a flagellum [48, 49].
Intriguingly, the measured power spectra are not consistent with a two-state Poisson
process, in which the switching events are independent and the CW and CCW intervals
are uncorrelated and exponentially distributed. The power spectrum of wild-type cells
exhibits a power-law frequency dependence at low frequencies [48]. Experiments and
simulations by the same group [48] and theory by Tu and Grinstein [116] revealed that the
power-law dependence is due to the slow methylation dynamics of the receptor cluster,
which lead to fluctuations in the concentration of CheYp, and hence to fluctuations in
the CW↔CCW transition rates, on time scales longer than the intrinsic CW↔CCW
switching time scale. Cluzel et al. also measured power spectra of mutant cells in which
a mutant CheY protein, CheY∗, was stably preexpressed [48, 49]. This protein mimics
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the effect of CheYp, but does not need to be phosphorylated to bind to the motor. The
concentration of this mutant protein is thus not affected by the slow dynamics of the
chemotaxis network, and, consequently, it does not exhibit fluctuations on time scales
longer than the switching time. The power spectra of these mutant cells therefore reflect
the intrinsic switching dynamics of the motor.

The power spectra of these CheY∗ mutant cells do not exhibit a power-law behavior
at low frequencies, as the spectra of the wild-type cells do, but they exhibit a peak at
around 1 s−1 [49]. The peak means that there is a characteristic frequency at which the
motor switches. This cannot be explained by a memoryless, two-state Poisson process.
Cluzel et al. [49] suggest that an earlier model developed by Duke and Bray [47] might be
able to explain the peak in the power spectrum. In this model, the ring of FliM proteins
is modeled as a circular 1D Ising system, where each protein can exist in two distinct
conformational states, corresponding to the up and down spins of the Ising system. The
Ising system, however, is an over-damped, mesoscopic equilibrium system, and as we
show in the appendix, such a system cannot exhibit a peak in the power spectrum. The
peak means that the switching dynamics is coupled to a non-equilibrium process.

We argue that in order to explain the peak in the power spectrum, we have to
integrate a description of the switching dynamics of the rotor proteins with a description
of both the flagellum dynamics and the dynamics of the stator proteins that drive the
rotation of the rotor. The rotor protein complex is modeled as an MWC model [29], in
which the proteins of the complex continually and collectively switch between a clockwise
and a counter-clockwise conformational state. In a given conformational state, the FliG
rotor proteins interact with the stator proteins according to the model developed by
Oster and coworkers [114]. This model allows us to compute the propensity to switch
between the CW and CCW states as a function of the torque exerted on the rotor.
Our calculations predict that the switching propensity increases exponentially with the
external load. We argue that this property, in combination with the dynamics of the
flagellum, is key to understanding the peak in the power spectrum. After a motor has
switched direction, the flagellum first has to unwind. During this time, the switching
propensity is low. After this transient, however, the flagellum winds up and the torque
on the motor increases. Due to the exponential dependence of the switching propensity
on the applied torque, the switching propensity now increases rapidly. This system can
thus be characterized as a two-state system, in which the rate constants for switching
between the two states are not constant, but increase in time. This, according to our
model, is the explanation for the bump in the power spectrum.

In the next section, we first briefly present the model developed by Oster and cowork-
ers [114], upon which our model is based. We then present a simple analytical framework,
which can explain the torque-speed relation of the flagellar motor. This framework also
shows that the non-equilibrium dynamics that arises from the proton concentration gra-
dient cannot explain the bump in the power spectrum: the characteristic time scale
on which the stator proteins change their conformation in response to proton binding,
which ultimately drives the rotation of the rotor, is sufficiently slow for this process to
occur close to equilibrium. In the subsequent section, we discuss how we model the rotor
switching dynamics and show that the switching propensity exponentially increases with
the external load. We also show that, according to our model, the switching of the rotor
itself can be modeled as a two-state, memoryless Poisson process. However, Cluzel et
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al. did not directly monitor the rotation of the motor [48, 49], but rather the rotation of
a bead connected to the flagellum of a motor. In the next section, we therefore include
the dynamics of the flagellum. We show that this model can describe the peak in the
power spectrum. In the discussion section, we discuss possible extensions of our model,
and how our predictions could be tested. One important test would be to measure the
switching frequency as a function of the applied lead, which could be done by taking
beads of varying sizes. But perhaps the most important test of our model would be to
connect a small bead directly to the stub of a rotor that lacks the flagellum: this would
reveal whether the switching dynamics of the motor itself is memoryless or not.

6.2 The stator-rotor interaction

The interaction between the stator proteins and the rotor proteins is modeled according
to the model of Oster and coworkers [114], which is based upon the description of Blair
et al. [115]. Here, we briefly describe the main ingredients of the model.

According to the proposal of Blair, the motor cycle of each stator protein consists of
two “half strokes”. Let us imagine that the motor has only one stator protein. During
the first power stroke of the stator protein, two proteins bind the MotB D32 residues of
the stator protein [115] (Fig. 6.2). This leads to a thermally activated conformational
transition, which allows one MotA loop to exert a force on one FliG protein of the rotor
protein complex (Fig. 6.2). During the second stroke, the recovery stroke, the two
protons are released to the cytoplasm, which triggers another conformational transition
of the stator protein; during this conformational transition another MotA loop exerts a
force on the FliG protein. Thus, during the entire two-step cycle, the stator is almost
continuously engaged with the rotor, allowing for a duty ratio that is close to 1. At
the end of one two-step cycle, the stator has returned to its conformational state at the
beginning of the cycle, and the rotor has advanced by one step, corresponding to an
angle which is given by 2π divided by 26, the number of FliG proteins within the ring.

Fig. 6.3 shows the free-energy surfaces of this model, as proposed by Oster et al.
[114]. The different surfaces correspond to the different conformational states of the
stator protein. They consist of identical piecewise linear functions offset in the rotation
direction by half a wavelength 2π/26 and in height by a magnitude that is related to the
proton motive force. The hopping from one surface to the next corresponds to a proton
binding or unbinding event, followed by a conformational transition; the hopping rates
thus depend on both the rates of proton (un)binding and the conformational-transition
rates. After a hopping event, the new conformation allows the stator to exert a force on
the rotor; this power stroke is, for simplicity, modeled as a constant force. The sharp
peaks in the potentials prevent thermal fluctuations from taking the system down the
backside of the potential. This ensures tight coupling between rotation and proton flux.
Each motor cycle transports two protons from the periplasm to the cytoplasm, which
decreases the free energy of the system by 2 e × pmf, where pmf is the proton-motive
force.

In the experiments of Korobkova et al. the motion of the flagellum is visualized
via a latex bead connected to the flagellum [48, 49]. The bead exerts a force on the
rotor protein, which, effectively, tilts the energy surfaces shown in Fig. 6.3. When a)
the connection between the load and the motor is soft, b) the dynamics of the motor
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Figure 6.2 The rotor-stator interaction as proposed by Oster and Blair
et al. [115]. At the end of the previous cycle, one MotA loop of the stator
protein is in contact with the rotor. The binding of protons to the stator
protein induces a conformational transition of the stator protein. In the
new conformational state, the stator protein exerts a force on the rotor
with its other MotA loop. At the end of the first half step, the protons are
released, which induces a transition to the original conformational state.
During the second half stroke, the first MotA loop exerts a force on the
rotor.

is much faster than that of the load, and c) chemical transitions lead on average to a
fixed translation distance of the rotor, as in the current model, then the torque-speed
curves under conservative load and viscous load are identical [117, 118, 114]. However,
as we will show below, the type of load does markedly affect the CW ↔ CCW switching
dynamics.

So far, we have assumed that the motor has only one stator protein. Resurrection
experiments, however, suggest that in vivo the number of stator proteins is around 10
[119, 120]. At high load, the stator proteins act cooperatively, and the motor speed
increases with the number of stator proteins, which can be varied experimentally by
varying their expression level [119]; the model of Oster et al. can reproduce this obser-
vation [114]. The original model of Oster et al. also predicts that at zero external load,
the speed will decrease as the number of stator proteins increases, because the stator
proteins hinder each other [114]. However, very recent experiments by Yuan and Berg
clearly show that near zero external load the speed is independent of the number of sta-
tor proteins [121]. They also found that the Oster model could reproduce this behavior
if it was assumed that the stator proteins are connected to the rigid framework of the
cell wall via very soft springs, instead of infinitely stiff springs, as in the original Oster
model—soft springs essentially uncouple the stator proteins from each other. However,
to generate a speed that is independent of the number of stator proteins, the springs
had to be made so soft that they would stretch a distance of order 10 nm, which, as
Yuan and Berg point out, seems unlikely. We therefore focus here on a motor that has
only one stator protein. In future work, we will investigate the effect of the number of
stator proteins on the switching dynamics.
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Figure 6.3 The potential energies for the rotor-stator interaction in the
model as proposed by Oster and Blair et al. [115, 114]. At the end of the
previous cycle, the binding of protons to the stator leads to a conforma-
tional transition. In the new conformational state, the potential energy
for the rotor-stator interaction is shifted with respect to previous state. In
the new state, the one of the MotA loops of the stator exerts a constant
force on the rotor. As a consequence, the rotor will move over one half
period, until it reaches the next proton hopping window. At this position,
the protons are released to the cytoplasm, which induces a transition back
to the original conformational state. During the second half stroke, the
other MotA loop of the stator exerts a force on the rotor. The hopping
windows are denoted by dashed lines. The thermodynamic driving force
is ∆G = 2e × pmf.

The dynamics of a single stator protein pulling a load is described by the following
overdamped Langevin equation:

γM
dθ

dt
= −∂Us(θ)

∂θ
+ FL + ηM(t) (6.1)

Here, γM is the friction coefficient of the rotor; Us(θ) is the free-energy surface shown
in Fig. 6.3, with θ being the rotation angle and s a binary variable denoting the state
of the stator; FL denotes the external load and ηM(t) is a Gaussian white noise term of
magnitude

√
2kBTγM.

The transition (or hopping) rate for a stator protein to go from one energy surface
to another depends upon the free-energy barrier separating the two surfaces. We make
the phenomenological assumption that the hopping rate depends exponentially on the
free-energy difference, in a manner that obeys detailed balance. Furthermore, following
Blair and Oster et al., we assume that the access of the periplasmic protons to the
stator-binding sites is triggered by a rotor-stator interaction [115, 114]. This yields the
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Parameter Value Description
d 2π rad/26 Potential periodicity
pmf 76 mV Proton-motive force
∆G 5.88 kBT ∆G = 2e × pmf
k 3.5 104 s−1 Hopping prefactor
d1 0.05 d Position potential maximum
d2 0.1 d Position start power stroke
d3 0.9 d Center of transition window
d4 0.2 d Width of transition window
h1 25 kBT Height potential maximum
h2 10 kBT Height start power stroke
FM = −h2/(d − d2) 46 kBT rad−1 Force motor during power stroke
γM 1.7 10−3 kBT s rad−2 Friction coefficient motor

k̃0 0.3 s−1 Switching prefactor
γL 0.51 kBT s rad−2 Friction coefficient load
κ 0.22 kBT rad−2 Spring coefficient flagellum

Table 6.1 Parameters as used in the simulations.

following expression for the hopping rates:

ks→s′(θ) = k0w(θ) exp[∆Uss′(θ)/2], s, s′ = 0, 1 (6.2)

Here, k0 sets the basic time scale, and ∆Uss′(θ) = Us′(θ) − Us(θ). The function w(θ)
describes the proton hopping windows (see Fig. 6.3), which reflect the idea that the ion
channel through the stator is gated by the motion of the rotor.

Fig. 6.4 shows the torque-speed relation for this model as obtained from Langevin
dynamics simulations (symbols). It is seen that at high torques and low speeds, the
torque-speed relation is essentially linear, while at high speeds, the torque-speed curve
sharply drops to zero. The maximum velocity, at zero external load, is around 300 Hz,
as recently observed by Yuan and Berg for a motor with one stator protein [121]. The
parameter values used in the simulations are given in Table 6.1. All values are similar
to those used in [114].

To elucidate the torque-speed relation, it is instructive to consider the following
simple model. First, we assume that, apart from an offset, the energy surfaces U0(θ)
and U1(θ) are identical and given by U(θ). Secondly, we assume, for simplicity, that the
dynamics of the proton hopping onto the stator at the beginning of the first half stroke
is the same as that of the proton hopping off the stator at the beginning of the second
half stroke. The hopping rates k0→1(θ) and k1→0(θ) are then given by the same function
k(θ) (apart from an offset in θ). When the diffusive motion along the rotation angle θ is
fast as compared to the time scale on which the stator hops from one energy surface to
the next, then the motor speed ω is given by the effective hopping rate khop times the
average distance over which the motor progresses during one half cycle, 2π/(2 ∗ 26):

ω = khopπ/26, (6.3)
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.

with the effective hopping rate given by

khop =

∫ 2π/26

0

dθPS(θ)k(θ). (6.4)

Here, PS(θ) is the stationary distribution. When the diffusive dynamics is fast compared
to the hopping dynamics, the stationary distribution PS(θ) is, to a good approximation,
equal to the equilibrium distribution Peq(θ), which is proportional to exp[−βUeff(θ)];
Ueff(θ) is the effective potential, which depends on the energy surface U(θ), shown in
Fig. 6.3, and the the external load τL: Ueff(θ) = U(θ) + τLθ. The average speed is then

ω =
π

26

∫ 2π/26

0
k(θ) exp[−β(U(θ) + τθ)]

∫ 2π/26

0
exp[−β(U(θ) + τθ)]

. (6.5)

The motor torque is given by τM ≡ −
∫

dθPS(θ)∂U(θ)/∂θ. In the limit of slow
hopping dynamics, it is given by

τM =
−
∫ 2π/26

0
∂U(θ)/∂θ exp[−β(U(θ) + τθ)]

∫ 2π/26

0
exp[−β(U(θ) + τθ)]

, (6.6)

= −τL +
−kBT [exp[−β(U(θ) + τ)]]2π/26

0
∫ 2π/26

0
exp[−β(U(θ) + τθ)]

, (6.7)

≈ −τL, (6.8)

where in going from Eq. 6.7 to Eq. 6.8 we used the fact that the probability for the
stator to be at the boundaries of the periodic potential well is very small. The last
line shows that when the hopping dynamics is slow and the stator properly samples the
energy surfaces, the motor torque equals the external load. In this limit, the motor does
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Figure 6.5 The stationary distribution PS(θ) (dashed line) and the equi-
librium distribution Peq(θ) (solid line) of observing a rotation angle be-
tween θ and θ+dθ for high load (τM = 260 kBT ; panel A) and zero external
load (panel B).

not work against its own friction associated with moving over the energy surfaces. This
can be understood by noting that for an equilibrium system, the fluctuation-dissipation
theorem implies that the random forces must balance the frictional forces. In this con-
text, it is instructive to consider the opposite limit from the one considered here, namely
that in which the hopping dynamics is much faster than the diffusion dynamics along
the energy surfaces. In this limit, the motor torque is given by τM = τL + γMω; for a
viscous load, this reduces to τM = (γL + γM)ω.

As mentioned, the critical assumption in deriving Eqs. 6.5 and 6.8 is that the sta-
tionary distribution is given by the equilibrium distribution. Fig. 6.5 shows the sta-
tionary distribution PS(θ) and the equilibrium distribution Peq(θ), for two points on the
torque-speed curve. It is seen that for low speeds and high torques, the assumption
of equilibrium dynamics is an excellent one; for high speeds and low loads, however,
deviations are noticeable. Fig. 6.4 shows the predictions of Eqs. 6.5 and 6.8, which can
be evaluated analytically since the energy surfaces consist of piecewise linear potentials.
It is seen that the agreement with the stochastic simulation results is quite good. As
we will discuss below, this observation is important for understanding the switching
dynamics.

We can now explain the shape of the torque-speed curve [114]. Increasing the load,
which has the effect of tilting the energy surfaces (Fig. 6.3), shifts the distribution PS(θ)
to lower values of θ. In the low speed regime, this decreases the probability of being in
the hopping window, and thereby the effective hopping rate khop and hence the speed
(see Eqs. 6.4 and 6.5). The sharp drop of the torque-speed curve at high speeds is a
result of the fact that in this regime, the distribution PS(θ) is peaked beyond the center
of the hopping window [114]. Decreasing the load moves the system against the flank of
the next potential period, which leads to a sharp drop of the motor torque.

6.3 The rotor switching dynamics

In E. coli, the fraction of time the motor rotates in the clockwise direction, the so-called
clockwise (CW) bias, is controlled by the concentration of the intracellular messenger
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Figure 6.6 Two energy surfaces of the motor, corresponding to the
CCW and CW states of the rotor, for a given conformational state of
the stator protein. In total, each cycle of the motor is characterized by 4
surfaces, corresponding to the different conformational states of the stator
and rotor proteins.

protein CheYp. This protein modulates the CW bias by binding to the ring of FliM
proteins. This ring is connected to the ring of FliG proteins, which interact with the
stator proteins (Fig. 6.1).

The molecular mechanism of the switch is unknown. However, it is widely believed
that the binding of CheYp molecules to individual FliM molecules causes a change in
their conformation. Following earlier work, we assume that each FliM protein can exist
in either a CW or CCW conformational state and that binding of CheYp shifts the
relative stability of these two conformational states [43, 122, 47]. Moreover, we assume
that also each FliG protein can exist in either a CW or CCW conformational state.
In principle, we could model the whole rotor complex as an Ising system, where each
protein molecule is modeled as a spin that can exist in two states, corresponding to
the CW and CCW conformational states; in this model, the interactions between the
protein molecules would be modeled via spin-spin coupling constants JMM, JMG and JGG,
corresponding to FliM-FliM, FliM-FliG, FliG-FliG interactions, respectively. However,
to limit the number of parameters, we will model the rotor complex as an MWC model
[29]. In this model, the energetic cost of having two protein molecules in two different
conformational states is prohibitively large. Consequently, at any given moment in time,
all proteins of the rotor complex are in the same conformational state; when the proteins
change their conformation, they do so in concert. In this limit, we can speak of the rotor
being in either the CW or the CCW state.

When the rotor complex switches from one state to another, the interactions between
the FliG proteins and the stator proteins change, due to the new conformational state
of the FliG proteins. In our model, there are two energy surfaces, corresponding to
the CW and CCW states of the rotor, for each of the two conformational states of a
stator protein. Thus, one motor cycle is described by 4 energy surfaces, U r

s , with the
subscript s = 0, 1 denoting the state of the stator protein and the superscript r = 0, 1
the state of the rotor protein. We assume that the two rotor surfaces corresponding
to a given state of the stator are simply each other’s mirror image (the potentials are
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flipped in the θ direction), but offset by an energy difference ∆Ubias that is given by the
CW bias PCW = exp(−β∆Ubias)/(1+ exp(−β∆Ubias) (see Fig. 6.6). As before, we make
the natural phenomenological assumption that the instantaneous rotor switching rates
depend exponentially on the free-energy difference:

kr→r′

s = k̃0 exp[∆U rr′

s (θ)/2], r, r′ = 0, 1; s = 0, 1, (6.9)

where ∆U rr′

s (θ) = U r′

s (θ) − U r
s (θ). Importantly, the instantaneous switching rate does

not depend upon the applied load, although the average, effective switching rate does
depend upon the applied load, as discussed below. The Langevin dynamics along the
“reaction coordinate” θ is again given by Eq. 6.1, but with Us(θ) replaced by U r

s (θ).
Fig. 6.7 shows the rotor switching dynamics when the load is conservative. The

conservative load is modeled as a constant force in a direction opposite to that of the
direction of the rotor (see Eq. 6.1); after the rotor has switched direction, the conser-
vative force instantaneously changes sign. Fig. 6.7A shows the average switching rate
in the forward and backward switching direction as a function of the conservative load.
As expected, the CCW → CW switching rate increases as the CW bias increases. More
interestingly, the switching rate increases exponentially with the external load. This is
one of the main results of this study. As we describe below, it is key to understanding
the bump in the power spectrum.

The exponential dependence of the switching rate on the torque can be understood
by noting that the overall switching rate is given by

kr→r′

switch =

∫

dθPS(θ)k
r→r′ (6.10)

where, as before, PS(θ) is the stationary distribution and we have dropped the sub-
script s, because we assume that apart from an offset U0(θ) = U1(θ). As the external
load is increased, the stationary distribution P (θ) shifts to lower values of θ when the
motor runs in the CW direction of increasing θ (Fig. 6.5). In this region, the driving
force for switching, ∆U r→r′, is larger (Fig. 6.6). Since the switching rate kr→r′(θ) de-
pends exponentially on ∆U r→r′ (See Eq. 6.9), the overall switching rate kr→r′

switch increases
dramatically with external load.

Fig. 6.7B shows the power spectra of the switching dynamics. It is seen that the
power spectrum is given by a Lorentzian, which shows that the switching dynamics can
be modeled as a random telegraph process. Clearly, with a conservative force, there is
no peak in the power spectrum. This is perhaps surprising, because, as described in
the previous paragraph, the switching rate depends upon the position within one period
of the potential; if the system would move at a constant speed along the successive
energy surfaces, then the switching rate would periodically be higher, which would lead
to peaks in the power spectrum [96]. However, as discussed in the previous section,
on the time scale of a hopping event, the system properly samples one period of the
potential. Moreover, on the time scale of a rotor switching event, which is on the
order of τswitch = 0.1 − 1 s, the stator undergoes many hopping events, i.e. on the
order of Nhop = τswitch × ω × 26, where 26 is the number of FliG proteins and ω is
the motor rotation rate, which is on the order of 100 − 300 Hz. Clearly, on the time
scale of switching, the system effectively integrates over the rough features of the energy
surfaces.
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Figure 6.7 Switching dynamics with conservative load. A: The switch-
ing rate in the forward CW → CCW and backward (CCW → CW) di-
rection for CW bias = 0.1, 0.5, and 0.9. Note that due to the symmetry
of our model, the switching dynamics in the forward (backward) direction
for CW bias = x, equals the switching dynamics in the backward (for-
ward) direction for CW bias = 1− x. The inset shows the same data in a
semi-logarithmic plot. B: Power spectra for CW bias = 0.1, 0.5 and 0.9

6.4 Flagellum dynamics

In the model discussed above, after a switching event, the torque exerted by the bead on
the motor immediately changes sign and instantaneously reaches its steady-state value.
However, in the experiments of Cluzel et al., the switching of the motor was visualized
via a large, 0.5 µm latex bead that was attached to the flagellum [48, 49]. We argue
that the flagellum dynamics is critical for understanding the switching dynamics of the
flagellar motor.

We model the flagellum as a harmonic spring with spring constant κ, although the
precise form of the bead-rotor potential is not important. Denoting the position of the
load (bead) with θL, we obtain the following equations of motion for, respectively, the
load and the motor:

γL
dθL

dt
= κ(θ − θL) + ηL(t) (6.11)

γM
dθ

dt
= −∂U r

s (θ)

∂θ
− κ(θ − θL) + ηM(t) (6.12)

Here, γL is the friction coefficient of the bead, and ηL is a Gaussian white noise term
of magnitude

√
2kBTγL. The 0.5 µm latex bead, as used by Cluzel et al. in their

experiments [49], is large on microscopic length scales. We therefore take γL ≫ γM,
which means that the effect of the stochastic motion of the bead on the motor dynamics
is negligible.

Fig. 6.8 shows the switching characteristics of this system. The parameter values
used in the simulations are given in Table 6.1. The parameter values for the switching
prefactor and for the spring coefficient of the flagellum were obtained by fitting to the
results in [49]. All other values, corresponding to motor rotation, are similar to those
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Figure 6.8 The switching dynamics of a motor with viscous load. Panel
A: Distribution of waiting times for the forward CW → CCW transition
and backward CCW → CW transition, for CW bias = 0.1, 0.5 and 0.9.
Panel B: The power spectra for CW bias = 0.1, 0.5 and 0.9.

used in [114]. We show the dynamics of the bead instead of the motor, since that has
been measured experimentally; however, the switching dynamics of the two are very
similar. Fig. 6.8A shows the distribution of waiting times, for CW bias = 0.1, 0.5,
and 0.9. These distributions agree remarkably well with those observed by Cluzel et
al. [49]. Firstly, the distributions are not exponential, as would be expected for a
random telegraph process. The distributions exhibit a clear peak, located between 0.1
and 1 s−1, depending on the CW bias. Secondly, the waiting-time distribution for the
forward (CW→CCW) transition shifts from a narrow distribution at CW bias = 0.1
to a broad distribution at CW bias = 0.9. Moreover, the position of the maximum
of the distribution shifts to longer times. All these features are in near quantitative
agreement with experiment. Lastly, our model is symmetric by construction—the CW
energy surface is the mirror image of the CCW surface. This means that in our model the
distribution for the forward (backward) transition for CW bias = x overlaps with that
for the backward (forward) transition for CW bias = 1−x. Intriguingly, the distributions
as measured by Cluzel et al. also exhibit this property to a very good approximation
[49]. This clearly supports the use of our symmetric model.

Fig. 6.8B shows the power spectra of our model, for CW bias = 0.5, and for CW
bias = 0.1, 0.9 (they are identical because of the symmetry of our model). It is seen
that the power spectra of our model exhibit a clear peak at ω ∼ 1 s−1. Moreover, the
peak is most pronounced when the CW bias = 0.5. These characteristics are observed
experimentally [49].

Our model predicts that the peak in the power spectra arises from the interplay
between the dynamics of the flagellum and the dependence of the switching propensity
on the load (Fig. 6.7A). The idea is illustrated in Fig. 6.9. Figure 6.9A shows a typical
time trace for the bead position, the rotor position, and the torque exerted by the rotor
on the bead via the flagellum. It is seen that after a switching event of the motor, the
bead initially keeps moving in its original direction. The flagellum, however, unwinds
and the torque between the bead and the flagellum decreases until it becomes zero when
the angular positions of the bead and the motor become equal. At this point the bead
changes direction and the flagellum starts to wind up; consequently, the torque between
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Figure 6.9 The mechanism of switching. A: Typical time traces for the
motor and bead position (upper panel) and for the torque exerted by the
rotor on the bead (lower panel), for CW bias = 0.5. B: The switching
propensity as a function of time after a switching event, for CW bias
= 0.1, 0.5, and 0.9. This figure is obtained by combining the switching
propensity as a function of the conservative load, as shown in Fig. 6.7A,
with the average torque as a function of time after a switching event, as
shown in panel A.

the bead and the rotor starts to increase. The peak in the power spectra can now be
understood by combining the time trace of the torque (Fig. 6.9A) with the dependence
of the switching propensity on the load (Fig. 6.7A); these can be combined to obtain
to a good approximation the switching propensity as a function of time, as shown in
Fig. 6.7B. Right after a switching event, the spring pulls the motor forward in its new
rotation direction; the probability to switch back is now very low (Fig. 6.7A). When
the distance between the motor and the bead increases again, however, the bead pulls
with increasing force on the motor in the backward direction. The switching propensity
now increases rapidly, as the switching rate depends exponentially on the external load
(Fig. 6.7B). The peak in the spectrum is precisely caused by the fact that the switching
propensity function is not constant in time, as for a Markovian Poisson process, but
increases with time.

Interestingly, Fig. 6.9B also shows that the switching propensity saturates after some
time. This plateau corresponds to the regime in which the distance between the bead
and the motor, and hence the torque, has reached a new steady-state value. If the motor
would predominantly switch in this plateau regime, then switching would reduce to a
Markovian Poisson process and there would be no peak in the spectrum. Indeed, to
obtain a peak, the motor has to switch in the regime in which the propensity function
increases with time. This means that the propensity function has to rise dramatically:
the switching survival probability as a function of time must have dropped to a low
value before the plateau regime is reached. In our model, this is the case, because the
switching propensity function depends exponentially on the applied torque.

The switching propensity as a function of time can also explain the change in the
waiting time distributions when the CW bias is varied (Fig. 6.8A). When the CW bias
is large, the backward CCW → CW transition rate is large (Fig. 6.7A). This means
that after a CW → CCW switching event, the propensity to flip back to the CW state
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increases rapidly with time. Indeed, the rotor most likely switches back to the CW
state before the CCW → CW switching propensity has reached its plateau value. This
explains the very narrow distribution of CCW intervals when the CW bias is large, as
observed in both the model (Fig. 6.8A) and experiment [49]. For the reverse transition,
from CW to CCW, the situation is qualitatively different. When the CW bias is large,
the forward CW → CCW is low, which means that after the rotor has switched to
the CW state, the propensity to switch to the CCW state only slowly increases with
time. The system can now enter the plateau regime in which the switching propensity
becomes constant in time. This constant propensity leads to an exponential tail in the
distribution of CW (CCW) intervals when the CW (CCW) bias is large, as observed in
both the distributions of the model (Fig. 6.8A) and those measured experimentally [49].

6.5 Discussion

Our model predicts that the peak in the switching power spectrum relies on two char-
acteristics of the rotary flagellar motor: 1) its propensity to switch depends upon the
load; 2) after a switching event, it takes a finite amount of time for the load to build
up, due to the slow relaxation dynamics of the flagellum. We expect that these features
are general characteristics of flagellar rotary motors, even when the details of the model
might be different.

Our calculations suggest that a useful coarse-grained model for understanding the
flagellar switching dynamics would be one in which the system stochastically flips be-
tween two states with time-dependent propensity functions (Fig. 6.9B):

CCW
kf(t)
⇋

kb(t)
CW, (6.13)

where the propensity functions are given by a “Hill function in time”:

kα(t) = kmax
tn

tnlag + tn
. (6.14)

The important parameters of this model are the lag time, tlag, the maximum propensity,
kα(t → ∞) = kmax, and to a lesser extent the sharpness of the transition, as determined
by n; in the limit n → ∞, the propensity function reduces to a step function in time.
The maximum propensity, kmax, does not depend upon the properties of the flagellum,
but it does depend upon the CW bias, which determines how the propensity function
depends upon the torque (Fig. 6.7A), and the maximum torque itself, which is deter-
mined by the drag coefficient of the load, γL, and the torque-speed relation of the motor;
to a good approximation, the maximum torque is given by the intersection of γLω and
the torque-speed curve. The lag time tlag and the coefficient n depend not only on the
torque-speed relation of the motor, but also on the dynamics of the flagellum. We have
modeled the connection between the bead and the rotor as a harmonic spring, but is
conceivable that more non-linear potentials would be more appropriate. In fact, it is
known that a flagellum adopts a helical conformation upon winding it in the counter-
clockwise direction, while it adopts a semi-coiled or curled conformation upon winding
it in the clockwise direction. In principle, this leads to an asymmetric potential, which
could make tlag and n different for the transitions in the two directions, even when the
CW bias = 0.5. We believe, however, that these aspects are not critically important.
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Figure 6.10 The switching frequency as a function of the viscous load.
The average switching frequency as a function of the drag coefficient (A)
and rotation speed (B).

What is important is that the time it takes to reach a critical torque and hence a critical
switching frequency is finite: the dynamics of the flagellum should not be too fast. In
this context, it is important to note that the flagellum has been observed to exhibit
dynamics at time scales of 0.1 s [123].

Perhaps the most critical prediction of our model is shown in Fig. 6.10. This figure
shows for CW bias = 0.5 the average switching frequency as a function of the drag
coefficient of the load (A) and the average switching frequency as a function of the
motor speed, if the motor were to run at constant speed in one direction (B). It is seen
that in the low speed, high torque regime, the average switching frequency is nearly
constant. For higher rotation speeds, the average switching frequency decreases almost
linearly with the rotation speed. Moreover, our model predicts that at zero external load,
switching is characterized by a two-state, memoryless Poisson process. These predictions
could be tested experimentally by monitoring the switching dynamics of a small bead
directly connected to the stub of a motor lacking a filament [121].

Appendix: Power Spectra of an equilibrium system

Let us consider a system with states indexed by i. Each state has a probability pi(t),
which evolves according to the master equation

dp

dt
= Mp(t) (6.15)

where M is the “master matrix”. Detailed balance is encoded in the matrix M and can
be defined as the existence of a vector p0 such that

M ijp
0
j = M jip

0
i . (6.16)

This vector satisfies the condition for a stationary probability

0 = Mp0 (6.17)
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The detailed-balance condition also implies that the matrix

M ′
ij =

√

p0
i

p0
j

M ij (6.18)

is symmetric. As a consequence, the eigenvectors and eigenvalues of M are real (and
non-positive) due to the fact that M is a “master matrix”. This means that one has ci,
pi and λi such that

λic
i = ciM , λip

i = Mpi (6.19)

0 = λ0 > λ1 > . . . ci
j =

pi
j

p0
j

∀i ≥ 0 (6.20)

p(t) =
∑

i

(

eλitbipi
)

, bi =
∑

j

ci
jpj(t = 0) (6.21)

If one considers a quantity N that adopts the values Ni in the states i, then the
correlation function can be expressed as

CN(t) =
∑

i

[(

∑

j

c0
jNjp

i
j

)

eλit

(

∑

j

ci
jNjp

0
j

)]

. (6.22)

Thus,

CN(t) =
∑

i

aie
λit (6.23)

and the power spectrum of the fluctuations of N derived from CN becomes a sum of
Lorentzians

SN(ω) =
∑

i

ki
λi

ω2 + λ2
i

(6.24)

It is easy to show that this sum does not have a “bump”, especially because kiλi > 0
which makes each term positive. This last inequality can be derived using the relation

(

∑

j

c0
jNjp

i
j

)

=

(

∑

j

ci
jNjp

0
j

)

(6.25)

. Therefore the detailed balance condition implies that there is “no bump” in the power
spectrum. It is important to realize that the detailed balance equality is a reversibility
relation based on the existence of an “energy” function log p0.

The same ideas apply to overdamped Langevin dynamics of the type

ẋi = −fi(x) + ηi (6.26)

as long as one has f (x) derived from a potential such that the Hessian is symmetric:

∂fi

∂xj

=
∂fj

∂xi

(6.27)
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It is important to realize that standard Langevin dynamics with noise does not obey
detailed balance. Indeed, the “forces” in

ẋ = v (6.28)

v̇ = −γv − ∂V (x)

∂x
+ η (6.29)

are not derived from an overall potential, allowing for “oscillations”. One should there-
fore understand detailed balance as a property of mesoscopic models with no inertia.
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Samenvatting

Een Computationele Studie

van E. coli Chemotaxis

Denken zonder brein

In dit proefschrift speelt de bacterie E. coli een centrale rol. Hij is langwerpig; 0.003
millimeter lang en 0.001 millimeter dik en beweegt zich voort door middel van een aan-
tal lange zweepstaarten. Hij leeft in ons darmkanaal, waar hij onder andere helpt bij
het verdrijven van schadelijke bacterien en schimmels. De bacterie E. coli bestaat uit
slechts een enkele cel. Toch kan de bacterie een aantal belangrijke beslissingen nemen
en taken uitvoeren. Een van de belangrijkste daarvan is het zoeken naar voedsel. E.
coli zal zich altijd voortbewegen in de richting van hogere concentraties van voedsel. Dit
verschijnsel, waarbij cellen zich bewegen als reactie op de aanwezigheid van voedsel of
andere aantrekkende of afstotende stoffen, heet chemotaxis. E. coli is zo klein, dat hij
onmogelijk richtingsgevoel kan hebben. De enige manier om voedsel te zoeken is, om
op goed geluk vooruit te zwemmen. Als hij merkt dat de hoeveelheid voedsel toeneemt,
zwemt hij verder door, maar wanneer de hoeveelheid voedsel afneemt, dan stopt hij
even, draait een aantal rondjes (dit wordt een tuimeling genoemd), en zwemt vervolgens
op goed geluk - in een willekeurige andere richting verder. Maar hoe neemt een eencel-
lige als E. coli de beslissing om te zwemmen of te tuimelen? Hij heeft namelijk geen
hersenen zoals wij. In plaats daarvan zijn in de bacterie eiwitmoleculen aanwezig, die
samen een netwerk vormen dat in staat is om deze beslissingen te nemen. Veel eiwitten
kunnen in twee (of meer) verschillende toestanden bestaan. Voor het gemak zullen we
deze toestanden de aan- en de uittoestand noemen. De cel bevat verschillende soorten
eiwitmoleculen, die elk hun eigen taak hebben. Een taak van een eiwit kan bijvoorbeeld
zijn, om in de aan-toestand over te gaan wanneer het aan een voedselmolecuul bindt.
Een ander eiwit kan als taak hebben om een aan- of uitsignaal door te geven van het ene
naar het andere eiwit. Samen vormen de eiwitten een netwerk dat ingewikkelde taken
kan uitvoeren, als een klein computertje. Zelfs de zweepharen van de bacterie bestaan
uit eiwitten, en die worden aangedreven door een motor, die weer uit andere soorten
eiwitten is opgebouwd.

Chemotaxis

Het eiwitnetwerk dat verantwoordelijk is voor het zwemmen van de bacterie in de richting
van voedsel, wordt het chemotaxisnetwerk genoemd, het onderwerp van dit proefschrift.
Kort gezegd bestaat het chemotaxisnetwerk uit drie componenten. De eerste component
is de “neus”, waar zich zogenaamde receptor-eiwitten bevinden, gespecialiseerd in het
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Figure 6.11 Een push-pull-netwerk. Het eiwit Y kan in twee toestanden
bestaan: Y (“uit”) en Y* (“aan”). Het enzym A stimuleert de omzetting
van Y naar Y*, en het enzym Z stimuleert de tegengestelde omzetting van
Y* naar Y.

herkennen van en binden aan voedseldeeltjes. Hier wordt ook de beslissing genomen
om ofwel verder te zwemmen, ofwel te tuimelen. De motoren vormen de laatste schakel
van het chemotaxisnetwerk. Zij kunnen in twee richtingen draaien. Draaien ze tegen de
klok in, dan vormen de zweepharen een bundel, en zwemt de bacterie netjes rechtdoor.
Als de motoren met de klok mee draaien, dan slaan de zweepharen uiteen, wat leidt
tot een tuimeling. Tussen de “neus” en de motoren bevindt zich het signaaltransductie-
netwerk, dat verantwoordelijk is voor het doorgeven van dit besluit aan de motoren. Een
eiwit CheY, speelt hierin een belangrijke rol. CheY kan in twee toestanden voorkomen:
“aan” en “uit”. CheY staat “aan” als de bacterie moet tuimelen, en “uit” als hij moet
zwemmen. In de hoofdstukken 2-5 van dit proefschrift richten wij ons op het middel-
ste gedeelte van het chemotaxisnetwerk, het signaaltransductie-netwerk. Het laatste
hoofdstuk gaat over de motoren.

Push-pull-netwerken

Laten we ons nu eerst richten op het tweede deel van het chemotaxisnetwerk, het
signaaltransductie-netwerk. Centraal staat het bovengenoemde eiwit CheY, of kortweg
Y, dat in twee toestanden voorkomt: Y (“uit”), en Y* (“aan”). Dit eiwitnetwerk bevat
slechts twee andere eiwitten, die de omzetting tussen Y en Y* stimuleren (zie figuur 1).
Zulke eiwitten worden enzymen genoemd. Het ene enzym, A, zet Y om in Y*, terwijl
het andere enzym Z, juist Y* omzet in Y. Dus Z bevordert de “uit”-toestand, en A
bevordert de “aan”-toestand. Aangezien A en Z in tegengestelde richting op Y werken,
wordt dit netwerk een push-pull-netwerk genoemd. We zullen nu laten zien dat een
push-pull-netwerk een heel goede signaalversterker is. We zullen dit uitleggen aan de
hand van figuur 1. Stel dat enzym A harder werkt dan enzym Z, bijvoorbeeld doordat
er een iets grotere hoeveelheid van enzym A aanwezig is dan van enzym Z. In dat geval
wordt alle Y omgezet in Y*, totdat er nauwelijks nog Y over is. Andersom, wanneer
enzym Z harder werkt dan enzym A, bijvoorbeeld, wanneer er iets meer van enzym Z
in de cel is dan van enzym A, wordt alle Y* omgezet in Y, totdat er nauwelijks nog Y*
is. Hoeveel Y* er uiteindelijk is, hangt dus heel sterk af van de verhouding tussen de
aanwezige hoeveelheden van de enzymen A en Z. Dit kunnen we goed zien in Figuur
2.3 in hoofdstuk 2 van dit proefschrift. De zwarte lijngeeft de totale hoeveelheid Y*
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aan, afhankelijk van de verhouding tussen de hoeveelheden van de enzymen A en Z.
Een dergelijke grafiek wordt een responscurve genoemd. Het is duidelijk dat er maar
weinig Y* in de cel aanwezig is wanneer er minder A is dan Z, en dat de hoeveelheid Y*
plotseling omhoog schiet wanneer er meer A is dan Z. Wanneer we de hoeveelheid van
het enzym A als ingangssignaal beschouwen, en de hoeveelheid Y* als uitgangssignaal,
betekent dit dat het uitgangssignaal van een push-pull-netwerk enorm kan veranderen
wanneer het ingangssignaal maar een heel klein beetje verandert. Zulke signaalversterk-
ing is van groot belang op vele plaatsen in de natuur. Overal waar zwakke signalen
gemeten worden vindt signaalversterking plaats. Een typisch voorbeeld is het vermogen
van onze ogen om te zien in het donker: we kunnen signalen waarnemen die slechts
bestaan uit enkele lichtdeeltjes.

Verdeling van de eiwitten over de cel

In de bovenstaande analyse van het push-pull-netwerk hebben we impliciet aangenomen
dat de drie eiwitten A, Z en Y gelijkmatig zijn verdeeld over de cel. In werkelijkheid zijn
de verschillende componenten van een eiwitnetwerk vaak zeer ongelijkmatig over de cel
verdeeld. Zo komt het vaak voor dat een aantal componenten samen complexen vormt.
In dit proefschrift staat de vraag centraal hoe de ruimtelijke verdeling van de compo-
nenten van een eiwitnetwerk de eigenschappen van het netwerk beinvloedt. Daarbij
spelen experimentele waarnemingen door Ady Vaknin en Howard Berg een belangrijke
rol []. Vaknin en Berg maakten gebruik van een nieuwe techniek, waarmee de interacties
tussen twee soorten moleculen binnen een enkele cel gevolgd kunnen worden. Hierbij
wordt het ene te onderzoeken eiwit gekoppeld aan een fluorescent eiwit, en het andere
te onderzoeken eiwit aan een ander fluorescent eiwit. Door met lasers op de bacterie
te schijnen, kunnen zowel de posities van de twee soorten eiwitten in de cel zichtbaar
worden gemaakt, alsook de posities waar de twee eiwitten aan elkaar binden. Met deze
techniek onderzochten Vaknin en Berg de interacties tussen de eiwitten Y en Z uit het
chemotaxisnetwerk van E. coli. Hoewel bekend was dat zowel de Y-moleculen als de
Z-moleculen over de hele cel verspreid voorkwamen, bleken de interacties tussen Z en Y
voornamelijk bij de “neus” van de cel plaats te vinden. De neus van de cel is dus de
plaats in de cel waar Y* in Y wordt omgezet door Z. Interessant is, dat de omgekeerde
reactie, waarbij Y in Y* wordt omgezet door A, ook bij de neus van de cel plaatsvindt.
Zowel de push-, als de pull-reactie vinden dus plaats bij de neus van de cel. Vaknin en
Berg voerden ook een experiment uit waarbij ze de structuur van het enzym Z zodanig
veranderden dat het niet meer aan de neus van de cel kon binden. Zoals verwacht von-
den de interacties tussen Y en Z nu verspreid door de hele cel plaats. Bovendien vonden
Vaknin en Berg dat deze cellen minder gevoelig reageerden op de toevoeging van voedsel.

Resultaten in dit proefschrift

In hoofdstuk 2 van dit proefschrift onderzoeken we wat de invloed is van de positie in
de cel van de enzymen A en Z, op de respons van een push-pull-netwerk. We vinden dat
de respons het scherpste is wanneer de twee enzymen zich op dezelfde plaats in de cel
bevinden: beide gebonden aan de neus, ofwel beide vrij rondbewegend. We vinden ook
dat er van de grote versterking nog maar weinig overblijft wanneer de enzymen A en Z
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van elkaar gescheiden zijn.
In dat geval is het niet langer zo dat ofwel alle Y wordt omgezet in Y*, ofwel alle Y*
in Y, zoals we hebben gezien in het generieke push-pull-netwerk. Wanneer de enzymen
ruimtelijk van elkaar gescheiden zijn kan het zo zijn dat, terwijl aan de ene kant van de
cel alle Y in Y* is omgezet door enzym A, aan de andere kant van de cel er juist relatief
meer Y is dan Y* door de aanwezigheid van Z. Dit leidt altijd tot een verzwakking van
de respons, zoals we in Figuur 2.3 in hoofdstuk 2 kunnen zien.
In hoofdstuk 3 passen we onze bevindingen van hoofdstuk 2 toe op het chemotaxis-
netwerk van E. coli. Zowel uit hoofdstuk 2, alsook uit de experimenten van Vaknin en
Berg blijkt dat de respons van het netwerk sterk kan afhangen van de lokalisatie van
de enzymen in de cel. Vaknin en Berg meten de respons van het chemotaxisnetwerk na
toevoeging van voedsel. Deze respons is de gecombineerde respons van de eerste twee
schakels van het chemotaxisnetwerk: zowel de respons van de “neus” als de respons van
het signaaltransductienetwerk spelen een rol. Wij stellen een algemeen model op voor de
respons van de “neus”, en koppelen dit model aan de respons van het signaaltransduc-
tienetwerk uit hoofdstuk 2. Echter, we redeneren dat voor geen enkele mogelijke combi-
natie van de respons van de “neus” aan die van het push-pull-netwerk, de resultaten van
Vaknin en Berg bevredigend verklaard kunnen worden. We concluderen daarom dat het
signaaltransductienetwerk van E. coli’s chemotaxissysteem niet beschreven kan worden
als een push-pull-netwerk, en dat het model voor het signaaltransductienetwerk daarom
verfijnd dient te worden.
In hoofdstuk 4 presenteren we een alternatief model voor het signaaltransductienetwerk
van E. coli’s chemotaxissysteem. Dit model is consistent met een groot aantal exper-
imentele waarnemingen. De belangrijkste ingredient van dit alternatieve model is dat
het enzym Z zowel voorkomt gebonden aan de “neus”, als in de rest van de cel. We pos-
tuleren dat de gebonden hoeveelheid Z weliswaar klein is ten opzichte van de resterende
fractie, maar wel veel effectiever werkt: het bindt sterker aan Y* en zet het sneller om
in Y. Met dit model zijn we in staat om de resultaten van Vaknin en Berg te verklaren.
In hoofdstuk 5 onderzoeken we de gevolgen van de colokalisatie van de enzymen A en
Z van een push-pull-netwerk aan de “neus” van de cel. In tegenstelling tot de eerdere
hoofdstukken, waar we rekenden met de concentraties van de verschillende eiwitten,
modelleren we het systeem ditmaal op het niveau van individuele moleculen. Zoals we
hebben gezien, vinden in dit geval alle omzettingen van Y naar Y* door A, en van Y*
naar Y door Z, aan de neus van de cel plaats. Wanneer we een enkel eiwit Y volgen dat
zich aan de neus van de cel bevindt, zien we dat dit enorm snel van toestand verandert:
zodra Y is omgezet in Y* door A, wordt het zo ontstane Y* weer omgezet in Y door
Z, en dit gaat zo door. Men zou kunnen verwachten dat dit effect de respons van het
push-pull-netwerk nog sterker maakt doordat de concentratie van Y dichtbij de neus
verhoogd zou worden. Namelijk, een van de eigenschappen van een push-pull-netwerk
is, dat de respons scherper wordt wanneer de concentratie van Y hoger wordt. Dit blijkt
echter niet het geval te zijn: de gemiddelde respons is vrijwel gelijk aan die van het
generieke push-pull-netwerk. Dat komt doordat de beschreven periodes van extreem
snelle omzettingen worden afgewisseld met zeer lange excursies van Y, waarin Y ver
wegbeweegt van de enzymen A en Z. Het gevolg is dat de gemiddelde concentraties van
Y en Y* precies even hoog zijn als in het geval van het generieke push-pull-netwerk.
Ook in deze studie vinden we dat de respons afhangt van ruimtelijke verdeling van de
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componenten van een push-pull-netwerk: hoe verder de enzymen A en Z van elkaar
verwijderd zijn, hoe minder scherp de respons is. Dit komt doordat er dan gebiedjes
ontstaan waar A het “wint” van Z, en gebiedjes waar Z de overhand heeft, waardoor er
ruimtelijke variaties ontstaan in de concentratie van Y*.
In hoofdstuk 6 modelleren we de motoren van E. coli, die de zweepharen laten rond-
draaien. In het bijzonder bestuderen we het “switchen” van de motor, waarbij de
draairichting van de motor verandert. In recente experimenten is het switchgedrag
van de motoren bestudeerd []. In deze experimenten werd een zeer klein bolletje aan
de zweephaar bevestigd om de rotatie van de motor te kunnen waarnemen. Vervolgens
werd gemeten hoe lang de motor gemiddeld in dezelfde richting bleef draaien. Verrassend
werd gevonden dat de motoren een sterke voorkeur hadden om al van richting te veran-
deren na een korte periode van ongeveer 0,2 tot 0,3 seconden. Gebaseerd op een eerder
model voor het draaien van de motor, stellen wij een model voor voor het switchen
van de motor. Een belangrijke voorspelling van ons model is, dat de motor sneller van
richting verandert wanneer er een grotere externe kracht op de motor wordt uitgeoefend.
Daarnaast is ons model gebaseerd op de experimentele gegevens dat de zweephaar een
spiraalvorm heeft, en dat deze spiraal in de andere richting wordt opgewikkeld wanneer
de motor van richting verandert. We verklaren de voorkeur voor korte switchtijden nu
als volgt: wanneer de motor net van richting is veranderd, begint de spiraal van de
zweephaar zich aanvankelijk af te wikkelen, en vervolgens op te wikkelen in de andere
richting. Naar gelang de spiraal verder wordt opgewikkeld, neemt de kracht op de motor
toe. Na een wachttijd van ongeveer 0,2 tot 0,3 seconden is de kracht op de motor dus-
danig hoog geworden, voornamelijk door de wrijvingskracht op het bolletje dat aan de
zweephaar bevestigd is, dat de kans om te switchen aanzienlijk begint te worden. Met
dit mechanisme zijn we inderdaad in staat om de experimentele switchtijd-verdelingen
te verklaren.
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Toen ik mijn promotieonderzoek op Amolf begon, wist ik maar weinig van wat er zich
binnen de levende cel afspeelt. Zo herinner ik me dat ik op mijn sollicitatie geheel on-
voorbereid bij Sander werd langsgestuurd, en echt geen idee had waar hij het over had;
ik herinner me alleen nog vaag het woord epistase. Gelukkig is daar langzaamaan veran-
dering in gekomen. Pieter Rein is voor mij een leermeester geweest op alle gebieden. Hij
vindt werkelijk alles interessant en kan over alles meepraten. Hoewel de naam van de
groep slechts de termen “bio” en “chemie” bevat, zijn wiskunde, informatica en vooral
natuurkunde zeker zo belangrijk. Niet alleen qua breedte, maar ook qua diepgang is
Pieter Rein ongeëvenaard. De klassieke werkbesprekingen namen vrijwel de hele dag
in beslag, mede dankzij Jeroens onverzadigbare interesse (jammer dat je maar eens per
week langskwam!), en wat later ook door Sorins onuitputtelijke ideeën. (Sorin, thank
you for the collaboration; you always come up with surprising new ideas (very inspiring
indeed!))
Pieter Rein, van jou heb ik enorm veel geleerd. Bedankt ook voor je grote enthousiasme
en betrokkenheid. Dank je wel!
Heleen, mijn excuses dat ik Pieter Rein zo vaak in beslag heb genomen, en dank je voor
de heerlijke couscous op de boot!
Bela en Daan, fantastisch dat ik bij julie altijd met vragen terecht kon, waarop jullie
bovendien altijd een antwoord hebben, namelijk het goede!
Beste Joost en Marcel, aan jullie heb ik mijn grote interesse voor statistische fysica te
danken. Jullie enorme enthousiasme en kunde stimuleerden mij om op dit gebied verder
te gaan. Dank voor de lange discussies, brainstorms en aanmoedigingen!
Harald, het was geweldig om je kamergenoot te zijn! Dank je voor je hulp, inspiratie en
gezelschap. Met mijn nieuwe kamergenoten zet ik toch maar geen Schnittke of Stock-
hausen op...
Rutger, bij jou kon ik altijd terecht voor vragen over de meest uiteenlopende onderwer-
pen. Verder is het altijd gezellig en eindigt de conversatie altijd in een goede grap.
Rosalind, thank you for your great help and for always being in a good mood!
Christian, bedankt voor de bijzondere boottochten en de mooie foto’s!
Marco, thanks for the tiramisu and the great holiday in Canada, and just for being a
nice colleague!
Thank you for your good company, my (former) fellow group members, Bas, Daiane,
Filipe, Josef, Pim, Thorsten and Wiet.
Rhoda and Suckjoon, thank you for an inspiring friendship!
Simon, enorm bedankt voor je hulp! Na een lange fotosessie bood je aan om even snel
een omslag voor me in elkaar te zetten. Uiteindelijk heb je hier minstens tweemaal tot
diep in de nacht aan gewerkt!
Dr. Frank en dr. Laura, dank voor jullie dagelijkse nachtelijke gezelschap! Heel veel
succes samen in de VS! En geniet ervan; ik denk dat maar weinigen zó graag werken!
Beste Adriaan, het was erg leuk om je collega op Amolf te zijn; het was altijd goed om



130 Dankwoord

je even te spreken. En de vogelavonturen vergeet ik nooit!
Sanne, ontzettend bedankt voor je hulp, enthousiasme en gezelligheid!
Niels, dank je voor het organiseren van alle spelletjesavonden en wandeltochten!
Liedewij en Sven, bedankt, onze trouwe concertbezoekers!
Daan, ik zal de voetbalpoule, de blubberrace en Donkey Kong missen!
Koos en Dorit, bedankt voor de gezelligheid in de Kerkstraat, en de heerlijke cocktails!
Ruud en Astrid, hopelijk kunnen we jullie overhalen om toch nog eens naar Noorwegen
te komen!
Hinco, bedankt voor de gezelligheid en de bootfeesten!
Julien, thanks for your ridiculous humor and nice drawings all over the place:-)
Gerbrand, wellicht tot ziens in Noorwegen!
Lars en Jan, bedankt voor de goede computerondersteuning!
Beste OR-mannen, het was een plezier om met jullie samen te werken!
Beste teamgenoten van de Maaiveldcompetitie Eva, Maarten, Gerbrand, Rimco en An-
nemieke, bedankt voor de intense en inspirerende samenwerking.
Thank you all, my dear colleagues, for making Amolf the nice place it is:
Aileen, Ana, Andrea, Anne, Anne Mie, Astrid, Behnaz, Benjamin, Bianca, Chantal,
Duncan, Eelco, Erny, Eva, Gertjan, Gijsje, Guillaume, Jan-Willem, Kim, Kostya, Iza,
Live, Jerien, Manju, Marian, Marileen, Marina, Marjon, Marjo, Matt, Mel, Nefeli, Nico-
las, Ndika, Nienke, Paige, Patrick, Philip, Philipp, Piet, Roland, Rutger, Sander, Sjoerd,
Svenja, Tatiana, Thomas, Trees, Wenbing, Willemijn and Wouter.
Beste Huygens-leden en olo’s, bedankt voor de gezellige vergaderingen, waar ik veel heb
geleerd, en waar ik lezingen over mijn passies mocht houden, zoals de verdeling van taart
en dronkemanswandelingen.
Marcelo, bedankt voor de inwijding in de tangomuziek, je enthousiasme en vertrouwen.
Je arrangementen zijn super en jouw cd heeft dit proefschrift begeleid!
Beste Bas, Reinout, Michael en Ruth, jullie ben ik zeer dankbaar voor het jarenlange
samenspel en de gezelligheid in strijkkwartet en -kwintet.
Beste Claire, Miriam, Pieter en Leonard, dank jullie voor de fantastische tijd in het Con-
CordeKwartet. Concerten, bruiloften, fotosessies, diners en lessen... altijd weer enorm
gezellig!
Miriam en Pieter, superleuk dat jullie straks naast mij komen staan op de grote dag, als
paranimfen!
Johan en Bart, beste makkers, helaas zien we elkaar veel te weinig. Maar, wanneer het
Aumann-trio weer bijeen is, is het goed!
En Kasper, nu heb ik eindelijk tijd om weer eens een potje te schaken!
Beste Opa, het is altijd fijn om u te zien. Altijd scherp en op de hoogte van alle nieuws,
en altijd met een enorme stapel dikke boeken, die u altijd al uit hebt...
Sas, mijn lieve zus, ik kijk ernaar uit om weer dichter bij je in de buurt te wonen. Het
is altijd een feest als je belt, of de telefoon opneemt. Succes met je talloze bezigheden,
en hopelijk tot heel snel!
Lieve pap en mam, dank jullie voor je enorme steun. Jullie zijn er altijd wanneer ik je
nodig heb. En ik waardeer het erg dat jullie op de belangrijke momenten toch altijd
kritisch blijven.
Kjære Clazien, Terje, Marius, Yrjan og farmor, tusen takk for at dere alltid husker
p̊a meg og tror p̊a meg!
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Tenslotte bedank ik jou, mijn lieve Siri. Jouw warmte en positieve instelling maken
niet alleen mij gelukkig, maar iedereen om je heen. Dank je voor je oneindige liefde,
vertrouwen en steun. Dat je hier de hele nacht bent gebleven om me te helpen is voor
jou een vanzelfsprekendheid. Je bent een engel.

Ik ben zeker mensen vergeten, daarvoor bij voorbaat mijn excuses. Mocht je in dit
dankwoord je naam niet terugvinden, en je vindt dat je best bedankt had mogen worden:
hierbij mijn hartelijke dank!

Siebe van Albada
Amsterdam, Juli 2008



132 Dankwoord


