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Chapter 1

Introduction

These days, the words DNA, genes, chromosomes, evolution and mutants have
become commonplace. Movies such as Jurassic Park, cartoons like the Teenage
Mutant Ninja Turtles or Pokemon, and forensic TV series such as CSI have
introduced the main concepts of genetics and genomics to a broad audience. At
the time of this writing, the Dutch newspapers discuss the genome of Marjolein
Kriek, the first woman who’s complete DNA has been sequenced, and headlines
question whether the Dutch Cabinet will reach consensus on the issue of embryo
selection by genetic screening. Genetically modified vegetables can be bought in
all supermarkets and transgenic bacteria produce insulin for diabetes patients.
It is clear that, only forty years after the discovery of the genetic code and the
establishment of the central dogma of molecular biology (see Box 1.1), the genetics
revolution has a major impact on society.

And yet, the fields of genetics and genomics are still in their infancy. If we aim
to understand the properties, behavior and evolution of living systems, unraveling
the genetic code and recording sequences are only the beginning. To understand
why, it is useful to compare cells to computers. Very much like computers, which
respond to input signals such as the keyboard, the mouse and messages from
the internet, cells respond to environmental clues such as temperature changes,
chemical gradients and mechanical stress. Based on such signals, cells make
complex decisions and adjust their behavior accordingly. Therefore cells, like
computers, are information processing machines. In this analogy, the discovery
of DNA as the main biological medium for information storage is similar to
the discovery of a computer’s hard drive. And the unraveling of the genetic
code can perhaps be compared to the revelation that information on the hard
drive is encoded in bits that are organized in bytes. Clearly, such discoveries
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Box 1.1: The central dogma

The central dogma of molecular biology is a statement about the information flow of
hereditary information in all living organisms. The dogma states that information is
stored in and inherited through deoxyribonucleic acid (DNA) molecules. Pieces of
these molecules can be copied or transcribed into ribonucleic acid (RNA) molecules.
This task is performed by multi-subunit enzymes called RNA polymerase (RNAp). In
many cases, the produced RNA is subsequently used as a template for the production of
a specific protein; the RNA is then called messenger RNA (mRNA). In all prokaryotes
and in a number of eukaryotes, one unit of transcription (transcription unit or TU)
can contain multiple genes. In such cases, the co-transcribed set of genes is called
an operon. In the process of translation, molecular machines called ribosomes read
the chain of nucleotides that constitute the mRNA. This sequence of nucleotide
specifies the chain of amino acids that make up the protein. Each triplet of nucleotides
specifically codes for one amino acid in the chain. The protein is assembled by the
ribosome while reading the RNA.

Information therefore (normally) flows in one direction only: DNA specifies RNA,
and RNA specifies protein.

would be important breakthroughs for hypothetical scientists trying to unravel
the internal workings of a computer, but nevertheless only small steps towards
understanding the behavior of a complete PC running a full-fledged operating
system. A similar gap separates knowing DNA sequences or even lists of gene
functions from understanding cellular behavior.

In order to bridge the gap, at least two things are required. First: more
information. Indeed, both small-scale and massive high-throughput experiments
all around the world now produce vast amounts of data on molecular functions,
genomic organization, gene expression, regulatory DNA sites, phylogeny, inter-
actions between proteins, localization of gene products and many, many other
aspects of living systems. Inevitably, analyzing, interpreting and coupling these
data sets has become a major part of biology and has lead to a new discipline:
bioinformatics. Second: a deeper understanding of biological mechanisms. Even if
the gene products and cellular components involved in a given process are known,
it is usually far from trivial to understand how these constituents give rise to the
observed behavior or which functions they convey. Due to the complexity of the
systems under study, a profound understanding often requires the formulation
and analysis of quantitative models. In essence, such models are often not very
different from models that have been developed for physical systems in the course
of the past centuries. Consequently, formalisms from physics are now successfully
being applied to biological problems. The work presented in this thesis is intended
as a contribution in this direction.

In this work, we focus on the phenomenon of transcription regulation. This
term refers to the mechanisms used by cells to dynamically adjust the rate at which
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genes are transcribed (see Box 1.1). Transcription regulation is one of the main
mechanisms allowing cells to respond to extra-cellular and intra-cellular signals.
The overarching question connecting all chapters in this thesis can be summarized
as: what are the mechanisms involved in transcription regulation, and to what
extent do these process shape the organization of genomes? In our attempt
to answer these questions, we mainly focus on prokaryotes (in particular the
bacterium Escherichia coli) and on one of the less complex eukaryotic organisms:
Saccharomyces cerevisiae (baker’s yeast).

Below, we introduce a number of concepts and results that are used in the
subsequent chapters. It is not our intention to present an exhaustive review of
each of the subjects, but rather to provide readers that are not familiar with these
topics with a minimal introduction to the essential concepts. First, we discuss
the process of transcription regulation and the framework used in quantitative
models describing these processes. Next, in Section 1.2, we briefly introduce some
basic results from the field of evolutionary population genetics.

1.1 Transcription regulation

Transcription regulation is one of the main mechanisms that allow cells to adjust
their behavior to external and internal clues. By regulating the rate at which
genes are transcribed, cells can rapidly adapt their protein and RNA content to
their capricious environments. As these proteins and RNA molecules function as
enzymes and structural building materials, they determine the properties of the
cell to a large extent. In unicellular organisms such as most bacteria, transcription
regulation is responsible for an enormous range of processes such as circadian
clocks, DNA repair, the cell cycle, and responses to different food sources and
temperature changes. In multicellular organisms, it is also a crucial factor in cell
differentiation.

The processes of transcription regulation are mediated by a special class of
proteins called transcription factors (TFs). TFs are capable of binding rather
specifically to certain DNA sequences, called TF-binding sites or operators. As a
result, they can interfere with the transcription process of particular genes. If
a TF has the capacity to increase the rate at which a gene is transcribed, it is
called an activator. Conversely, if it tends to lower the rate of transcription, it is
termed a repressor. Whether a TF is an activator or a repressor depends on the
structure of the TF, but also on the location of its binding sites. Some TFs, in
particular in bacteria, can act as an activator or as a repressor depending on the
context and are therefore called dual regulators.

Many TFs are sensitive to some external signal. For instance, small molecules
(ligands) such as cyclic AMP or sugars may bind to TFs. In such examples, the
conformation of the TF changes allosterically upon binding and consequently also
its DNA-binding affinity or specificity alters. Repression or activation of certain
genes can thus be relieved or induced depending on physical and chemical signals.
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The genes coding for the transcription factors themselves are typically regulated
as well, by yet other TFs. The set of these regulatory dependencies between TFs
and their target genes invokes the picture of a network of genes. Such a network
can be depicted as a graph. Transcription units (TUs; see Box 1.1) are then
represented as nodes, and regulatory interactions between two TUs are depicted
as directed links between the corresponding nodes. Such networks are called
transcription regulatory networks (TRNs).

1.1.1 Binding the DNA

Transcription factors and RNA polymerase (RNAp) bind to specific sites on the
DNA. The chromosome of E. coli contains about 4.6 million base pairs; therefore,
there are more than 9 million sites where each molecule could bind. Hence in order
to bind to the correct site with high probability, DNA-binding molecules need
to recognize their target sites with high precision. In other words, DNA-binding
molecules need to be highly specific. This raises many questions about the nature
of the binding reactions. How can binding sites be this specific? Which physical
parameters are relevant to the specificity? How quickly can a molecule find
its target site and which mechanisms are involved in these kinetics? Many of
these questions can, and have been, studied using physical models. Below, we
summarize some basic facts that underly the model in Chapters 2 and 3.

DNA binding is mediated by electrostatic interactions and hydrogen bonding
Most information about DNA-binding molecules is due to detailed chemical
experiments, many of which date back to the late seventies. These experiments
have shown that DNA binding is mainly mediated by electrostatic interactions
and hydrogen bonding of the protein residues with the major and minor grooves
of the DNA helix (von Hippel and Berg, 1986). The structures of transcription
factors are indeed specifically adapted to fit in these grooves.

The first three-dimensional structures of transcription factors became available
in the early eighties and were all examples from E. coli (Baumberg, 1999). The
structures of these TFs all fell into the class of so-called Helix–Turn–Helix (HTH)
motives. The binding domain of TFs in this class consists of two alpha helices
separated by a tight turn. The spacing of these helices, about 34Å, is equal to
the spacing between the consecutive major grooves of the DNA. Indeed, TFs of
the HTH type, such as CRP, λcro and λcI, bind to their operator sequences by
inserting the HTH domain in the major grooves of the operator.

Since the discovery of the HTH structure, many other motives have been
discovered (Harrison, 1991). Most of them rely on alpha helices, but exceptions
are also known (Baumberg, 1999). Some of the motives occur exclusively in
eukaryotic species, such as the so-called zinc fingers (Alberts et al., 1994).

Binding sites: specific, pseudo-specific & unspecific binding
In the literature, often a distinction is made between specific and unspecific
binding; unfortunately, these terms are not always properly defined. As this
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distinction is relevant in our models, we discuss it here.
Experiments have shown (e.g. Kabata et al. (1993)) that transcription factors

and RNAp can bind to DNA in two different modes. In the first mode, the binding
affinity for a given site depends strongly on the base-pair sequence of the site and
is therefore called (sequence) specific. The distinction between different sequences
is made mainly through hydrogen-bonds (von Hippel and Berg, 1986). The
nucleotides of the DNA and the amino acids in the TF can form hydrogen-bonds
only if the hydrogen-bond donors and receptors in the TF and the nucleotides
are properly aligned. Recent work on the lac repressor LacI has shown that it
folds in a particular way when it is bound specifically (Kalodimos et al., 2004); in
this state it wraps around the DNA and makes contact with the major grooves.

Specific binding occurs at the physiologically functional binding sites, but can
also occur at non-functional sites if their sequence happens to be similar to the
binding sequence of the DNA-binding molecule. We choose to call such sites
pseudo-operators, following Berg et al. (1981), Winter and Von Hippel (1981)
and Winter et al. (1981). If we wish to distinguish binding to operators from
binding to pseudo-operators, we refer to the latter as pseudo-specific binding.

The second mode of binding hardly depends on sequence and is therefore
called non-specific. This mode relies mainly on electrostatic interactions with
the DNA backbone (Mossing and Record, 1985; Kalodimos et al., 2004) and is
considerably weaker than specific binding to wild-type operators. Due to these
non-specific interactions, a large fraction of the DNA-binding molecules that
are not bound at their functional sites are bound non-specifically to the DNA;
in the case of the TF LacI, for instance, only 10% of the proteins are free in
the cytoplasm (Kao-Huang et al., 1977). This behavior may have a functional
role. Assuming a DNA-binding molecule can “slide” along the DNA once it is
non-specifically bound—which is observed in, for instance, the case of RNAp
(Kabata et al., 1993)— the problem of finding its functional site on the DNA
is reduced from a three-dimensional problem to a one-dimensional one (Richter
and Eigen, 1974; Berg et al., 1981; Winter and Von Hippel, 1981; Winter et al.,
1981). If the speed at which target sites are found is relevant, models predict
that a balance between 1D and 3D diffusion is optimal. Indeed, experiments
suggest that the association rate of LacI may be 100–1000 times higher than
the estimated 3D-diffusion-limited rate (Riggs et al., 1970; Berg et al., 1981).
However, whether this can indeed be attributed to sliding along the DNA is still
subject of debate (e.g. Gowers and Halford (2003)).

Physical models of TF–DNA binding
The modeling of protein–DNA interactions in terms of statistical physics was
pioneered in classical papers by Otto Berg, Robert Winter and Peter von Hippel,
starting from the early eighties (Berg et al., 1981; Winter et al., 1981; von Hippel
and Berg, 1986; Berg and von Hippel, 1987; Berg, 1988; Berg and von Hippel,
1988; Berg, 1990, 1992). Their models have recently been supplemented by others
(e.g. Stormo and Fields (1998); Sengupta et al. (2002); Gerland and Hwa (2002);
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Gerland et al. (2002)). For our purposes, rather minimal models suffice.

In the simplest cases, we are interested in reactions of the kind

X + O Kd←→ XO, (1.1)

where O is the DNA site to which the molecule X binds, and Kd is the dissociation
constant of the binding, defined as the concentration of X at which the equilibrium
occupancy of O is one half. If we denote the concentration of X by [X], the
fractional occupancy of O in equilibrium as [XO] and define [O] ≡ 1− [XO], then
the law of mass action states that in equilibrium:

Kd = [X] [O]
[XO] . (1.2)

Next, we define the affinity q of X as

q ≡ [X]
Kd

= [XO]
[O] . (1.3)

From Equations 1.2 and 1.4 and the relation [O]+[XO] = 1 it immediately follows
that

[XO] = q

1 + q
. (1.4)

This relation holds for specific, unspecific and pseudo-specific binding alike.

Equation 1.4 can also be derived from a statistical mechanics viewpoint. We
call the partition sum of a single molecule of X that is not bound ZX; formally,
ZX is a sum (or integral) of Boltzmann factors, where the summation runs over
all internal and external degrees of freedom of the molecule in the unbound state.
The partition sum of the unbound operator we denote by ZO. Similarly, ZXO is
defined as the partition sum over all states of the complex XO. In this partition
sum, the different binding modes (specific or unspecific) are both included.

We now denote the number of molecules of type X present in the cell by
n. Assuming that molecules that are not bound do not mutually interact (i.e.
behave like ideal particles), the partition sum Zoff of states in which none of the
molecules is bound at O can be written as

Zoff = ZO
(ZX)n
n! , (1.5)

whereas Zon, the partition sum of all states in which a molecule is bound, equals

Zon = ZXO
(ZX)n−1

(n− 1)! . (1.6)
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The probability that the system is in the bound state, pon, then follows as

pon = Zon

Zon + Zoff
= Zon/Zoff

1 + Zon/Zoff
. (1.7)

Comparison with Equation 1.4 leads to the identification q = Zon/Zoff, and

Kd = 1
V

ZOZX

ZXO
, (1.8)

where V is the volume of the cell. Note that ZX, ZO and ZXO each include an
integral over the center of mass positions of X, O and XO respectively. Each
of these partition sums should therefore scale with the volume of the cell, V .
Defining

Z∗X ≡
ZX

V
, Z∗O ≡

ZO

V
, Z∗XO ≡

ZXO

V
, (1.9)

leads to
Kd = Z∗OZ

∗
X

Z∗XO
, (1.10)

demonstrating that Kd is independent of the volume of the cell.
Now also the free energy of binding follows immediately as

∆Fb ≡ −kBT log
(
Zon

Zoff

)
= −kBT log

( [X]
Kd

)
. (1.11)

Note that, by this definition, the binding energy is negative if the free energy
of the bound state is lower than that of the unbound state; large negative
binding energies thus correspond to strong binding. Clearly, ∆Fb depends on the
concentration of X.

Competition between binding sites

We mentioned that, in general, DNA-binding molecules can bind to all DNA sites.
This implies that any physiologically functional binding site has to compete with
other possible sites. In the previous section we ignored this; here we estimate,
using a simple model, the influence of this genomic background on the occupancy
of a given site. We use these results in Chapters 2 and 3.

Every site i on the DNA has its own binding free energy ∆Fi. As in the
previous section, we define this binding free energy such that it includes both
the specific and unspecific binding modes. The partition sum of all states in
which the molecule is bound at some site on the “background” DNA, Zback, can
therefore be written as:

Zback =
∑
i

e−β∆Fi . (1.12)
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Figure 1.1: A DNA binding site for a certain molecule can only have a large occupancy if it
binds the molecule much better than other sites on the DNA with which it competes. The
figure shows the number of standard deviations z that the binding energy of the site needs to
deviate from the mean binding energy in order to obtain an occupancy of 1/2, as a function
of the standard deviation σ itself. Plots are given for different values of N/n. For each N/n,
the minimal value of z lies on the line z = βσ, as is shown graphically. For large σ, all lines
asymptotically converge to z = βσ/2.

Here, as usual, β ≡ 1/kBT , where kB is the Boltzmann constant and T is
the temperature. In general, we do not know the binding energies of all these
background states. However, we do know that these energies are the result
of multiple contributions of individual contacts between the residues of the
DNA-binding molecule and base pairs in the operator. It is therefore plausible
that the probability distribution of binding energies in the background can be
approximated by a normal distribution N (β∆F |βµ, βσ), in which βµ and βσ are
the mean and the standard deviation. Given this distribution and the fact that
the number of sites is very large (N ≈ 107 in E. coli), we can estimate Zback as
follows:

Zback = N
〈
e−β∆Fi

〉
{all sites i}

≈ N
∫ ∞
−∞
N (x|βµ, βσ) e−x dx (1.13)

= N

∫ ∞
−∞
N (x| − βµ, βσ) ex dx = N

∫ ∞
0
L(y| − βµ, βσ) y dy (1.14)

= N exp
(
−βµ+ (βσ)2

2

)
. (1.15)

In the second line we introduced the coordinate transformation y = exp(x), and
the lognormal distribution L (y| − βµ, βσ). In the final line, we use the fact that
the mean of a lognormal distribution characterized by parameters −βµ and βσ is
given by exp(−βµ+ (βσ)2/2).

We again denote the number of molecules of X contained in the cell by n.
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As we noted, many DNA-binding molecules are bound to the DNA most of the
time; therefore, we use the simplifying approximation that X is always bound
somewhere on the DNA. In that case, the occupancy of a site with binding energy
∆Fb, taking into account the competition with the background states, can be
written as

pon = R

1 +R
, (1.16)

R ≡ Zon

Zoff
= n exp(−β∆Fb)

Zback
= n

N
exp

(
−β(∆Fb − µ)− (βσ)2

2

)
. (1.17)

This result shows that the occupancy of the operator does not only depend on
the mean binding free energy of the background states, but also on the variance
of the background free energies. In order to have a reasonable occupancy of the
operator, we should have R ≈ 1 (corresponding to pon = 0.5); now we compute
the number of standard deviations z(σ) that ∆Fb needs to deviate from the mean
µ in order to obey R = 1:

z(σ) ≡
∣∣∣∣∆Fb − µσ

∣∣∣∣ = 1
βσ

log
(
N

n

)
+ βσ

2 . (1.18)

We thus establish that, given an occupancy of one half, z depends strongly on
the standard deviation. In Fig. 1.1 we plot z(σ) for several values of N/n. For
very low or very high standard deviations, z becomes very large; between these
limits, z goes through a minimum. It can be shown that, at this point,

zmin = βσmin =
√

2 log
(
N

n

)
. (1.19)

For N ≈ 107 and n ≈ 100, we arrive at zmin ≈ 4.8. Apparently, in this simplified
model, a binding site should have a binding energy that is at least 4.8 standard
deviations below average in order to have an occupancy of one half. This
is sufficient only if the standard deviation has the optimal value of 4.8 kBT ;
otherwise, the binding energy needs to be even more exceptional. If we relax
our assumption that X is always on the DNA, this only leads to even higher
estimates.

Indeed, in E. coli, the standard deviation of binding energies of TFs to the
background is of the order of 5 kBT (see for instance Mustonen and Lassig (2005)
for estimates of the distribution for CRP binding energies in E. coli).

Of course, the exact functional forms and values derived above do depend
on our assumption that the binding free energies of the background states are
normally distributed. However, the general message is much less sensitive to these
assumptions. This message is: since the background partition sum is proportional
to the mean of the Boltzmann factors exp(−β∆F ) over the sites, the partition sum
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is dominated by the lowest energies (best binders). As a result, the occupancy
depends strongly on the variance of the energies.

Binding energy
In the case of sequence-specific binding, the binding free energy of a site depends
on its sequence ~s. Several experiments on TFs have suggested that, approximately,
the individual nucleotides si ∈ {A, C, G, T} contribute independently and additively
to the binding free energy. This is only approximately true (e.g. Fields et al.
(1997) and Roulet et al. (2002)), but nevertheless allows for a good approximation
(Benos et al., 2002). We can therefore write

∆F (~s) =
l∑
i=1

Ei(si), (1.20)

where l is the length of the binding site in base pairs, which is typically between
6 and 20 bp, and Ei(b) denotes the contribution of base pair b at position i to
the total free energy of binding.

For a few DNA-binding molecules, the function Ei(b) has been measured
using detailed mutational studies (e.g. Fields et al. (1997)). In other cases, these
energies can be estimated using known binding sequences. Qualitatively, the
estimation procedure can be understood as follows. The set of known binding
sequences is different from a random set of sequences in that it only contains
sequences that have a (relatively) high affinity for the TF. This implies that
the mean binding energy of the sequences in the set of known binding sequences
must be lower than expected at random. (Remember that we defined better
binders to have a lower binding energy.) Consequently, one should expect that,
in the set of known binding sequences, at any given position i, base pairs b
that contribute strongly to the binding energy (i.e. for which Ei(b) is low) are
statistically over-represented. Conversely, if, in a large set of binding sequences, a
base b occurs more often at position i than expected at random, this is evidence
for a low value of Ei(b).

This qualitative argument can be turned into a quantitative one (Berg and von
Hippel, 1987; Djordjevic et al., 2003; van Nimwegen, 2007). Assuming only that
the ensemble of binding sequences for a certain TF is characterized by an average
binding energy 〈∆F 〉, the maximum entropy principle (Jaynes and Bretthorst,
2003) predicts that the occurrence frequency of a pair (i, b) in the set depends
exponentially on Ei(b) (van Nimwegen, 2007). Alternatively, the same conclusion
follows if one assumes that the energies of binding sites are all in a rather narrow
range around some value 〈∆F 〉; in this case, the argument is equivalent to the
derivation of the Boltzmann factor in the canonical ensemble. The energies Ei(b)
can hence be related to the logarithm of the occurrence frequencies. A more
profound Bayesian framework can be used to compute the likelihoods of energy
values given the set of binding sequences; this framework is reviewed in van
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Nimwegen (2007).
Mandel-Gutfreund and Margalit (1998) estimated the contribution of each

amino-acid–nucleotide interaction to the binding free energy between TFs and
DNA, using the coordinates of 53 solved protein–DNA co-crystals. To this end,
they counted the number of times a certain amino acid was in close contact with
a base pair, including hydrogen bonds and hydrophobic interactions. Such counts
can again be used to estimate the relative energies of such interactions, leading
to a 20× 4 matrix estimating the interaction energies for each amino-acid–base-
pair combination. We use this matrix in Chapters 2 and 3 to model TF–DNA
interactions in a coarse-grained manner.

1.1.2 Regulation of transcription initiation in prokaryotes

We now turn to the process of transcription regulation. We limit our discussion
to mechanisms in prokaryotes. In eukaryotes, transcription regulation is known
to be considerably more complex. Nevertheless, most of the basic mechanisms
discussed below are expected to play a role in eukaryotes as well.

Transcription is the process that copies the information on the DNA into RNA
molecules. This multistep process is catalyzed by RNA polymerase, which is a
multi-subunit enzyme. Its binding site, the (core) promoter, is mainly defined
by two stretches of six nucleotides located 10 and 35 base pairs upstream of the
start of transcription; these sites are called the −10 and −35 hexamers. When
bound to the promoter, RNAp first forms a complex called the closed complex.
Next, RNAp locally catalyzes the melting of a stretch of DNA about 12 to 16
base pairs long. At this point, the resulting RNAp–DNA complex is called the
open complex. The polymerase subsequently initiates transcription. At first, the
so-called initiation complex transcribes at a low rate; but after the transcription of
about 10 base pairs RNAp releases one of its components (the σ factor, which was
responsible for the initial recognition of the promoter) and changes conformation.
The resulting elongation complex then starts transcribing the DNA at a much
higher rate: about 50 bp per second (Browning and Busby, 2004; Alberts et al.,
1994; Baumberg, 1999).

In theory, each step in this process could be influenced by other proteins
interacting with the transcription machinery; such interactions can therefore be
used to regulate the rate of transcription. But most of the transcription factors
that have been studied to date mainly influence the very first steps of the process:
the recognition of the promoter by the RNAp–σ-factor holoenzyme and the
initiation process. The models used and developed in this thesis to describe and
understand transcription regulation all deal with processes of this kind.

The first physical-chemical model of transcription regulation were introduced
in the early eighties by Gary K. Ackers and Madeline A. Shea (Ackers et al., 1982;
Shea and Ackers, 1985). Their work focussed on the regulation of the genes of
the bacteriophage λ, which is a virus infecting E. coli. Even though quite some
work has been done in this field since then, the main assumptions underlying the
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gene
0-10-35

TF1 RNAP
TF1Ea

Figure 1.2: Cartoon illustrating the standard mechanisms for regulation of transcription
initiation. In order to start transcription, RNA polymerase needs to bind to the core promoter,
consisting of (at least) the −10 and −35 consensus hexamers. Transcription factors binding
to sites overlapping with the core promoter (these sites are indicated in gray) can reduce the
occupancy of the promoter by RNAp, thereby lowering the transcription rate. On the other
hand, TFs binding close to the core promoter (in blue) can recruit RNAp to its site. Often,
the recruitment is due to a direct contact between the activator and one of the sub-domains
of RNAp. The energy associated with this contact, Ea, effectively leads to an increased
affinity of RNAp for its site if the activator is bound.

models have not changed (Bintu et al., 2005a,b; Buchler et al., 2003).
Most models of transcription regulation rely on the assumption that the rate

of transcription of a given transcription unit is proportional to the equilibrium
fractional occupancy of the core promoter, i.e. the fraction of time an RNAp
molecule is bound to the promoter. This is a good approximation if the equi-
libration time of the RNAp–promoter binding is very short compared to the
rate at which isomerization of RNA polymerase from the closed to the open
complex takes place. This is usually the case, and the transcription rate A of the
transcription unit in the absence of any regulation is then simply given by

A ∝ pon = Zon

Zon + Zoff
= qp

1 + qp
= 1

1 + q−1
p
, (1.21)

given the affinity qp of RNAp for the promoter (see Equation 1.4 and 1.16). This
shows that the transcription rate of the gene is a Hill function of the concentration
of RNAp, with a Hill coefficient equal to 1.

By binding to the DNA on specific sites, transcription factors can influence the
fractional occupancy of the core promoter by RNAp and hence the transcription
rate of the transcription unit. This influence can have a positive sign, in which
case we speak of activation, or a negative one, which is called repression. Below,
we introduce the main mechanisms of repression and activation and describe them
quantitatively.

Repression

The most direct mechanism to repress transcription is by steric hindrance (Müller-
Hill, 1998). In this case, a TF binds to a site close to or overlapping with the
core promoter and thus directly impedes the binding of RNAp to the promoter
(see Fig. 1.2). If we denote the affinity of the repressor for its operator by qr and
assume that, at any time, either the repressor or RNAp can be bound, but not
both, then we can adjust Equation 1.21 to describe this repression mechanisms
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formally:

Zoff = 1 + qr,

Zon = qp,

A ∝ pon = Zon

Zon + Zoff
= 1

1 + q−1
p (1 + qr)

. (1.22)

Clearly, the repression becomes more significant with increasing repressor concen-
tration. If the repressor concentration vanishes (qr = 0), we recover Equation 1.21.

It is also possible to indirectly repress a gene by interfering with an activation
system. We call such a process anti-activation and discuss this and other indirect
repression mechanisms in Chapter 2. Other repression systems involve, for
instance, looping of DNA; these are not treated here.

Activation
Like repression, activation can be achieved in several ways. The most standard
method is recruitment of RNAp to the core promoter (see Fig. 1.2). Here, the
activator binds to a binding site located such that it does not hinder the binding
of RNAp. Instead, the bound activator touches one of the subunits of RNAp
(e.g. the αCTD subunit or the σ factor) when it is bound, effectively stabilizing
the bound state of RNAp. Writing the affinity of the activator as qa and the
contact energy between RNAp and the activator as Ea, we can again compute
the occupancy of the core promoter:

Zoff = 1 + qa,

Zon = qp (1 + ω′qa) ,

A ∝ pon = Zon

Zon + Zoff
= 1

1 + q−1
p R

, (1.23)

where we made use of the definitions

ω′ ≡ e−βEa , (1.24)

R ≡ 1 + qa
1 + ω′qa

. (1.25)

Evidently, if qa is large, R ≈ 1/ω′, so that effectively the activator increases the
affinity qp of RNAp with a factor ω′. In the other limit, where qa = 0, we again
retrieve Equation 1.21.

Activation can also occur by other mechanisms than direct recruitment of
RNAp. A notable example is the transcription factor MetR, which, at the
merT promoter of E. coli, manages to activate transcription by twisting the
DNA between the recognition hexamers of the core promoter. This way, it
properly aligns these hexamers for RNAp binding (Summers, 1992). Effectively,
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mechanisms such as these can be treated by the same equations as above; Ea
should then be interpreted as the difference between the free energy of the state
where both the activator and RNAp are bound and the sum of the binding
energies of both molecules independently.

In Chapter 2 several indirect activation mechanisms are discussed, including
anti-repression.

Complex regulation and cooperativity
Most of the best-known promoters are relatively simple. They are regulated by
one or two transcription factors and each of these factors binds to few sites at
the promoter. As we point out in Chapter 2, an analysis of the known binding
sites shows that this is not typical; many promoters contain multiple binding
sites of several transcription factors. Clearly, the expression of certain genes is
determined by many signals. This indicates that the “decisions” made by the
bacterium can be rather complex. In almost all cases, the multi-dimensional
response functions of these promoters have not been measured in detail.

One important reason why transcription factors often have multiple binding
sites close to each other, is because this allows the transcription rate of the
target gene to respond to changes in the TF concentration in a more stepwise
fashion (less gradual). This requires that the TF molecules bind cooperatively
to these binding sites. One speaks of cooperative binding if the binding of one
molecule facilitates the binding of another one. This is often due to a direct
contact between the bound TFs, but it is also possible that the binding of one of
the molecules changes the conformation of the local DNA such that the affinity
of the other molecule increases.

As an example, we quantify the rate of transcription as a function of TF
concentration for a simple cooperative repression system. We assume that a
TF binds cooperatively to two operators with affinity qr, one of which overlaps
with the core promoter. Without cooperativity, the Boltzmann factor of the
state in which both operators are occupied would be q2r ; with cooperativity, this
Boltzmann factor is increased by a certain factor we call ω; typical values of ω
are 0–100. Then, the transcription rate can be computed as

Zoff = 1 + 2qr + ωq2r ,

Zon = qp (1 + qr) ,

A ∝ pon = Zon

Zon + Zoff
= 1

1 + q−1
p R

, (1.26)

with
R ≡ 1 + 2qr + ωq2r

1 + qr
. (1.27)

Due to the cooperativity, the regulatory factor R now contains a large quadratic
term in the numerator; this results in a steeper response of pon to the repressor
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Figure 1.3: Cooperative repression. Here, a system is considered where a repressor can bind to
two operators, one of which overlaps with the core promoter. The two lines show pon as a
function of the repressor concentration (in arbitrary units) for two values of the cooperativity
factor ω, which quantifies the interaction between repressors bound to the operators. Both
curves have been scaled such that they reach pon = 0.5 at [X] = 1. Clearly, the curve for
ω = 30 (a realistic value) shows a steeper switching than the one for ω = 1 (corresponding to
no cooperativity).

concentration. Fig. 1.3 shows this effect. Additional binding sites and fine-tuning
of their affinities can increase the steepness even more; we show examples in
Chapter 2.

Some promoters behave as logic gates
Bacteria often have to make logical decisions. A famous example is the regulation
of the sugar utilization system in the bacterium E. coli (Müller-Hill, 1996). In
order to uptake and digest different sugars, such as glucose, lactose, galactose
and arabinose, E. coli needs to produce particular sets of proteins that catalyze
the required metabolic processes. However, these sugars are not always present
in the environment. As the production of the proteins requires an investment
in terms of energy and other resources, it would be quite inefficient to express
these genes constitutively. Hence, E. coli decides when to transcribe the genes
and when not to, depending on the availability of the sugars.

In order to make an informed decision, E. coli measures the concentrations
of various sugars in the environment. This is achieved by particular TFs that
each specifically bind (derivatives of) one of the sugars. The concentrations of
the TF–ligand complexes inside the cell therefore reflect the availability of the
particular sugars in the environment. The genes required for the uptake and
digestion of the sugars are directly regulated by these TFs. Since the DNA binding
affinities of the TFs change upon ligand binding, the transcription rates of the
sugar genes are dynamically adjusted to the concentrations of the sugars.
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However, glucose is E. coli’s preferred source of energy, because it allows for
the highest instantaneous growth rate. The genes coding for the uptake and
degradation of the other sugars are therefore also turned off if there is sufficient
glucose in the environment. For instance, the lactose operon is transcribed at
a high rate only if there is lactose and no glucose in the environment. This
illustrates that the promoter of the lac genes effectively functions as a logic gate,
that is, as a device that integrates several input signals (sugar availability reflected
in TF concentrations) to produce one output signal (the transcription rate or
expression level of the regulated transcription unit) according to the Boolean
logic function ANDN (A AND Not B). In general, many of the decisions taken
by cells can be categorized using the language of Boolean logic (Buchler et al.,
2003; Kuhlman et al., 2007). In Table 2.1 the names of the different logic gates
with two inputs are summarized.

It should be kept in mind, however, that descriptions in terms of Boolean
logic are a simplification. In many cases, the actual response of a gene is more
complex, and with reason. In fact, the lac system is again a good example.
Detailed measurements show that, if the lac operon is in the “off” state, it is
still being transcribed at a low but non-zero basal rate. For the functioning
of the system this is crucial: in order to measure if lactose is present in the
environment, it is critical that at all times at least some lactose could be taken up
by the cell. This requires that a small amount of the enzyme LacY, the transport
protein (permease) responsible for the uptake of galactosides, is being synthesized
constitutively.

In Chapter 2 we study complex mechanisms of transcription regulation and
show how overlapping binding sites and cooperativity can be combined to construct
all transcriptional logic gates with two inputs.

1.2 Evolutionary population genetics

Any living system is the result of a long process of evolution. Evolutionary
population genetics is the field that studies how the genetic composition of
a population of organisms evolves under evolutionary forces such as natural
selection, stochastic reproduction (drift), migration and sexual selection. In
several chapters we try to understand the organization of the genome from
an evolutionary perspective; then the field of evolutionary population genetics
becomes crucial.

Many of the important results of population genetics date back to the 1950s
and 1960s. Nowadays, it is an advanced field of mathematical biology. Through
a multitude of models the influence of the many relevant biological parameters
have been studied. Obviously, this is not the place to review the field. Instead,
below we derive the basic results that are relevant in the remainder of this thesis,
based on the well-known Wright–Fisher model. For an excellent and accessible
introduction we refer to the lecture notes of Joseph Felsenstein, which are freely
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available online1 or to any of the many textbooks available.
In Chapter 5 we present simulation results exploiting an expression for the

probability of fixation of a mutant in a population of haploids, as a function of the
fitness effect of the mutation and the population size. This relation can be derived
in several ways. Below, we introduce a version of the so-called Wright–Fisher
model and then derive the fixation probability using the diffusion approximation
first used by Kimura (1962).

1.2.1 A Wright–Fisher model with selection

The Wright–Fisher model is a simplified model for the population genetics of
populations consisting of haploid organisms. It assumes that the population has
a fixed size N and reproduces in discrete, non-overlapping generations. Each
individual organism o in the population, with genome go, has a fitness Fo, which
is defined as the expectation value of the number of offspring that the organism
will have in the next generation. As the population size is fixed, the average
fitness has to be 1. Therefore it is useful to introduce the selection coefficient so
as so ≡ Fo − 1.

Given the population in generation t, the population of the next generation,
t + 1, is chosen by stochastically sampling genomes from the population in
generation t. The probability that a randomly selected individual from generation
t+ 1 is a child of organism o from generation t is chosen to be proportional to
the fitness of o:

po = 1 + so∑
o′ 1 + so′

= 1 + so
N

. (1.28)

The number of offspring of o, denoted by k, is therefore a random variable Ko

with a binomial probability distribution:

P bin(Ko = k | N) =
(
N

k

)
pko(1− po)N−k. (1.29)

The mean of this distribution is µo = Npo = 1 + so, which shows that indeed
the expectation value of the number of offspring of o is equal to its fitness. The
variance of the distribution is σ2

o = Npo(1− po).

1.2.2 Fixation probability

In a finite population, any mutant will on the long run either go extinct, or take
over the population. In the latter case, we say that the mutant becomes “fixed”
in the population. The probability for a mutation to eventually become fixed
depends on the selection coefficient of the mutant: clearly, mutations that increase
the fitness of an organism are more likely to become fixed than ones that decrease

1Joseph Felsenstein, Theoretical Evolutionary Genetics
http://evolution.genetics.washington.edu/pgbook/pgbook.html
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it. We now derive the fixation probability for a mutant in the framework of the
Wright–Fisher model, using the diffusion approximation introduced by Kimura
(1962).

We assume that, due to a mutation in one of the individuals, the population
now contains two versions of a certain locus in the genome: A and a. Initially, in
generation t0, the population contains i individuals with the new, mutated version
A of the locus. These organisms have selection coefficient sA. The remaining
(N − i) individuals have selection coefficient sa = 0.

The number of individuals with A is likely to change in the next generation.
Assuming i is given, the number of individuals bearing A in the next generation,
j, is a random variable with a probability distribution P (j|i). This distribution is
determined by Equation 1.29, but we do not compute it yet. We do note however
that, if sA is small, P (j|i) is expected to be very small except when |i− j| is small;
we need this below.

We introduce the probabilities ui that the locus A becomes fixed in the
population given that it has i copies in generation t0. For these probabilities the
following relation holds:

ui =
∑
j

P (j|i)uj . (1.30)

Diffusion approximation
It is convenient to now introduce the following notation. The variable p ≡ i/N is
the fraction of population that carries A. We use ∆p ≡ (j − i)/N to denote the
change in p after one generation, and U(p) ≡ u(i/N) as the fixation probability,
which is a function of the initial fraction of the population bearing A. Then
Equation 1.30 can be rewritten as:

U(p) =
∑
∆p

Pp(∆p)U(p+ ∆p), (1.31)

where Pp(∆p) is the probability of a change ∆p after one generation given the
initial fraction is p.

Now we introduce an approximation of Equation 1.31 by considering U(p) as
a continuous function of a now continuous variable p. Hence, summations are
replaced by integrals. Also, we use the fact that Pp(∆p) is small except when ∆p
is small to approximate U(p+ ∆p) in Equation 1.31 by a second order Taylor
approximation:

U(p) ≈ U(p)
∫
ε
Pp(ε) dε+ ∂U(p)

∂p

∫
ε
Pp(ε) ε dε+ 1

2
∂2U(p)
∂p2

∫
ε
Pp(ε) ε2 dε. (1.32)

Note that
∫
ε Pp(ε) dε = 1. The factor

∫
ε Pp(ε) ε dε should be identified as the

mean change in p after one generation given the initial state p and will be called
M(p). Similarly, the factor

∫
ε Pp(ε) ε2 dε is the second moment of the distribution
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Pp(ε), and is called V (p). This simplifies relation 1.32 considerably:

M(p)∂U(p)
∂p

+ V (p)1
2
∂2U(p)
∂p2 ≈ 0. (1.33)

This can be recognized as a diffusion equation with drift that can be solved
formally:

U(p) =
∫ p
0 G(x) dx∫ 1

0 G(x)
, (1.34)

where
G(x) ≡ exp

(
−2
∫ x

c

M(y)
V (y) dy

)
. (1.35)

The constant c is a meaningless factor that cancels in Equation 1.34.

Diffusion approximation applied to the Wright–Fisher model

In order to finish the derivation of the fixation probability as a function of the
selection coefficient sA of the mutant and the population size N , we have to derive
M(p) and V (p) for the Wright–Fisher model. For this it is useful to introduce
the probability q that a randomly selected individual in generation t0 + 1 has
genotype A:

q = i(1 + sA)
i(1 + sA) + (N − i)(1 + sa)

= p(1 + sA)
p(1 + sA) + (1− p)(1 + sa)

. (1.36)

This means that the number of individuals carrying A in generation t0 + 1 is
binomial:

P (j|i) =
(
N

j

)
qj(1− q)N−j . (1.37)

The mean of this distribution is 〈j〉 = Nq and the variance is σ2 = Nq(1 − q).
Therefore the mean change M(p) = M(i/N) can be derived as

M(p) = 1
N

∑
j

(j − i)P (j|i)

 = 1
N

(Nq − i) = sAp(1− p)
1 + sAp

. (1.38)

The second moment of the change, V (p), can be expressed as

V (p) = 1
N2

∑
j

(j − i)2P (j|i)

 = 1
N2

(〈
j2
〉
− 2i 〈j〉+ i2

)
. (1.39)
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Using the fact that the variance σ2 of P (j|i) obeys σ2 =
〈
j2
〉
−〈j〉2, we can write

V (p) = 1
N2

(
σ2 + 〈j〉2 − 2i 〈j〉+ i2

)
(1.40)

= q(1− q)
N

+ q2 − 2pq + p2. (1.41)

This allows one to compute the ratio

M(p)
V (p) = NsA(1 + psA)

1 + sA +N(1− p)ps2A
(1.42)

= NsA −N(1− p)s2A +O(s3A). (1.43)

In the second line we used a Taylor expansion around sA = 0; assuming that
sA � 1, we can ignore the terms of order s2A and higher so thatM(p)/V (p) ≈ NsA.
If we insert this into Equation 1.34 and perform the integration, we arrive at:

U(p) =
1− e−2NsAp

1− e−2NsA
. (1.44)

This is the result we were aiming for: it expresses the probability of fixation of a
mutation A with selection coefficient sA, given that currently a fraction p of the
population carries the mutation. A special case of this equation is the situation
when exactly one mutant is introduced to the population, so that i = 1 and
p = 1/N . We call the fixation probability of that mutant, as a function of sA,
PK(sA):

PK(sA) = U(1/N) =
1− e−2sA

1− e−2NsA
. (1.45)

We will use this result several times in the subsequent chapters; it is often referred
to as the Kimura–Ohta fixation probability function for haploid organisms.

1.2.3 Limits

The Kimura–Ohta fixation probability derived in the previous section can be
simplified in several limiting cases:

X If Ns is large and negative, the fixation probability approaches zero expo-
nentially:

PK(s) =
1− e−2s

1− e−2Ns ≈ e−2|s|(N−1), (for Ns� −1). (1.46)

As the population size of bacterial populations is typically very large (esti-
mates are at least of the order of 105 to 107), this is already the case for
rather small values of |s|. In other words: deleterious mutations usually do
not get fixed.
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X If |Ns| � 1, or in other words, if the mutation is nearly neutral, the
exponents in the equation can be approximated up to linear order, so that

PK(s) =
1− e−2s

1− e−2Ns ≈
s

Ns
= 1
N
, (for |Ns| � 1). (1.47)

This makes sense, as in the neutral case each individual in the population
should have an equal probability to become fixed in the population; this
directly leads to a fixation probability of 1/N .

X If 1� sN � N (weak selection), then Equation 1.45 reduces to:

PK(s) =
1− e−2s

1− e−2Ns ≈ s, (for 1� sN � N). (1.48)

So: if s is small but non-zero, the fixation probability is approximately equal
to the fitness difference s.

X If Ns� 1,

PK(s) =
1− e−2s

1− e−2Ns ≈ 1− e−2s, (for Ns� 1). (1.49)

This shows that the fixation probability for a considerably advantageous
mutation approaches 1 exponentially.

1.2.4 Fixation rates

Given these fixation probabilities and mutation rates, we can derive the rates at
which certain mutations are fixed in the population. Suppose that a particular
mutation occurs with rate µ in each organism in the population, and results in a
selection coefficient s. Then the rate at which this mutation occurs in the total
population is µN , and the rate at which it is fixed in the population is therefore
given by

µf (s) = µNPK(s). (1.50)
The approximations from the previous section can be applied again. For neutral,
weakly selected and strongly selected mutations, the rates can be approximated
by, respectively:

µf (s) ≈


µ if |Ns| � 1,
µNs if 1� Ns� N ,
µN(1− e−2s) if Ns� 1.

(1.51)

The rate at which neutral mutations become fixed in the population apparently
does not depend on the population size. On the other hand, fitness differences
get more and more significant with increasing population size.
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Chapter 2

Transcription regulation
by transcription factor modules

The designs of both eukaryotic and prokaryotic cis-regulato-
ry regions are usually highly complex. They frequently con-
sist of both repetitive and overlapping transcription factor
binding sites. To unravel the design principles of such pro-
moter architectures, we have designed in silico prokaryotic
transcriptional logic gates with predefined input–output re-
lations using an evolutionary algorithm. The resulting cis-
regulatory designs are often composed of modules that con-
sist of tandem arrays of binding sites to which the transcrip-
tion factors bind cooperatively. Moreover, these modules of-
ten overlap with each other, leading to competition between
them. Our analysis thus identifies a new signal integration
motif that is based upon the interplay between intra-modular
cooperativity and inter-modular competition. We show that
this signal integration mechanism drastically enhances the
capacity of cis-regulatory domains to integrate signals. Our
results provide a possible explanation for the complexity of
promoter architectures and could be used for the rational
design of synthetic gene circuits.
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2.1 Introduction

Cells continually have to make logical decisions. Many of these decisions are taken
in the cis-regulatory regions of genes, which can function as analog implementa-
tions of logic gates (Buchler et al., 2003; Istrail and Davidson, 2005; Yuh et al.,
1998). A classical example is the lactose system in the bacterium Escherichia
coli, where the lac operon is strongly expressed only if the concentration of active
CRP, due to the absence of glucose, is high and that of active LacI, due to the
presence of lactose, is low. This network can be interpreted as a logic gate with
two input signals, namely the concentrations of the transcription factors (TFs)
CRP and LacI, and one output signal, the expression level of the operon; indeed,
this gate could be classified as an ANDN gate. The lactose system has been
studied in much detail both theoretically and experimentally and is now fairly
well understood (Jacob and Monod, 1961a; Müller-Hill, 1996; Ptashne and Gann,
2002; Setty et al., 2003). However, even in prokaryotes, many cis-regulatory
regions are much more complex than that of the lac operon. Fig. 2.1, taken
directly from the EcoCyc database v9.5 (Keseler et al., 2005), shows four typical
examples. The cis-regulatory regions often contain long tandem arrays of TF
binding sites. Moreover, many TFs can both activate and repress the same operon.
Perhaps most strikingly, TF binding sites often overlap with one another.

We have performed a statistical analysis of the importance of repetitive and
overlapping binding sites in E. coli, based on the EcoCyc database (Keseler et al.,
2005). The results are shown in Fig. 2.2. We find that 37% of the TF–operon
interactions are mediated by more than one binding site and 39% of the binding
sites overlap with at least one other site. The question arises what kind of
functionality these complex structures can convey (Müller-Hill, 1998). Here
we present theoretical results that suggest that these intricate structures are a
consequence of the functional requirement of cis-regulatory domains to integrate
signals. Our results identify a new mechanism for signal integration during
transcriptional regulatory control, which is based upon the interplay between
cooperative binding of TFs to adjacent sites and competitive binding of TFs to
overlapping sites.

To elucidate the origin of the complicated structures shown in Fig. 2.1, we
have adopted a novel approach. Using an evolutionary algorithm (Francois
and Hakim, 2004), we have designed prokaryotic cis-regulatory domains with
predefined functions in silico. In our approach, no specific promoter architectures
are specified a priori: the space of possible architectures is sampled in an unbiased
manner. This makes it possible to discover new architectures and find the optimal
design for a cis-regulatory domain that is consistent with a required function.
The design principles of these architectures are then extracted a posteriori. As
we will show below, this approach has allowed us to reveal new design principles
of transcriptional regulation, which would have been difficult to obtain using the
more conventional approach of studying particular architectures.

In order to design prokaryotic cis-regulatory domains, we have developed a
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Figure 2.1: Examples of complex E. coli promoters. Figs. (a)–(c) are copied from the EcoCyc
database (Keseler et al., 2005). Fig. (d) is described in Richet and Sogaard-Andersen (1994).
Blue blocks denote TF binding sites that have an activating effect; gray blocks denote
repressor sites. White sites can both activate and repress transcription. Note that repetitive
and overlapping binding sites occur frequently. Understanding this kind of promoters requires
detailed quantitative information about binding affinities and interactions.
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Figure 2.2: (a) Histogram of the number of binding sites responsible for each interaction
between a TF and an operon, according to the EcoCyc database (Keseler et al., 2005). Note
that multiple sites are common; e.g., the cis-regulatory region of focA, has as many as 11
binding sites for NarL. (b) Histogram of the number of binding sites overlapping with each
binding site (Keseler et al., 2005). For example, bin 1 with hight 300 should be interpreted
as: there are 300 binding sites that overlap with exactly 1 other binding site. Overlap is
common; some ArcA sites in the sodA regulatory region overlap with as many as 11 sites.
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novel model of prokaryotic transcriptional regulation, in which the input–output
relation of an operon is deduced from the amino-acid sequences of the TFs and the
base-pair sequence of the cis-regulatory region of the operon. To go from sequence
to network function (which in this case is given by the input–output relation of
the cis-regulatory region), the model contains the following key ingredients (see
Fig. 2.3):

1. Each TF can bind anywhere on the cis-regulatory region; conversely, this
directly implies that to a given location, all TFs can bind;

2. The affinity of a TF for a certain location is determined by its DNA
sequence and the amino-acids in the DNA-binding domain of the TF; the
binding energies of the amino-acid–base-pair contacts are extracted from a
matrix that is based on crystallographically solved protein–DNA complexes
(Mandel-Gutfreund and Margalit, 1998);

3. TFs cannot overlap in space, even though binding sites can overlap along
the DNA; TFs thus compete with each other for binding to overlapping
sites;

4. TFs that bind close to each other on the DNA exhibit a cooperative interac-
tion (Ptashne and Gann, 2002);

5. The transcription rate of operons is controlled via the mechanism of “regu-
lated recruitment”, meaning that TFs function by stimulating or hindering
the binding of RNA polymerase (RNAp) to the DNA (Ptashne and Gann,
2002). Even though this is the dominant mechanism in prokaryotes, we
note that several alternative mechanisms are used as well. To describe
the input–output relationship for an operon quantitatively, we employ the
statistical mechanical approach developed by Shea and Ackers (Shea and
Ackers, 1985) and Buchler et al. (Buchler et al., 2003).

This model makes it possible to design cis-regulatory domains by performing
rounds of mutation and selection in an evolutionary algorithm. Because the input–
output relation is completely specified at the microscopic level of the amino-acid
sequences of the TFs and the base-pair sequences of the cis-regulatory regions,
new architectures can be obtained by introducing mutations at the microscopic
(sequence) level, while the structures are selected at the macroscopic level of the
input–output relation. Importantly, neither the architectures of the cis-regulatory
regions, nor the functional form of the gene regulatory functions, have to be
specified a priori: in the course of our simulations, TF binding sites emerge
naturally as sites with a particularly high affinity for a certain TF.

We have used our approach to design all possible transcriptional logic gates
with two input signals and one output signal (see Table 2.1). These gates have
been studied by Buchler et al. (2003) using a rational design approach. Our
simulations, however, unravels new design principles. In spite of the simplicity
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Figure 2.3: Illustration of the model. The cis-regulatory region consists of N = 100 base pairs
directly upstream of the transcription start site. In E. coli, most TFs bind to this region,
although binding sites are also found downstream of the transcription start site; mechanisms
requiring such downstream sites are excluded by our model. A TF binding domain counts
M amino acids, which can bind M = 10 base pairs (Madan Babu and Teichmann, 2003;
Pérez-Rueda and Collado-Vides, 2000). When two TFs bind within a distance less than k = 3
base pairs, they interact with energy ETF–TF; this is indicated by a blue connection between
the TFs. When a TF binds close to the RNAp, we assume an interaction energy ETF–P. The
core promoter, consisting of the −10 and −35 hexamers, is indicated; when the RNAp binds
to it, it blocks both hexamers and the spacer between them. The TF that binds overlapping
with the RNAp is gray, to indicate that it represses transcription by steric hindrance; the
blue TF is an activator, since it recruits RNAp. The white TFs bind too far upstream from
the core promoter to influence the transcription rate.

of the model, quite complex functionality can emerge. In particular, we find
that promoter architectures are often constructed from modules that consist of
tandem arrays of binding sites to which TFs can bind cooperatively (see Fig. 2.4).
Furthermore, these modules often overlap, leading to competition between them.
We show that the intricate interplay between intra-modular cooperativity and
inter-modular competition allows for a wide range of regulatory functions.

2.2 Model of transcriptional regulation

We assume that the transcription rate of an operon is proportional to the fraction
of time RNAp is bound to the promoter (Shea and Ackers, 1985; Buchler et al.,
2003; Bintu et al., 2005a,b). The model we use to compute this quantity is
illustrated in Fig. 2.3. The RNAp–σ complex binds only to the −10 and −35
hexamers, called the core promoter, and we determine its binding energy by
comparing the core promoter to a large set of real E. coli promoters (Lisser and
Margalit, 1993; Berg and von Hippel, 1987, 1988; Berg, 1988)(see Appendix 2.A
for details). We ignore the fact that, in some promoters, the affinity of the
RNAp for the promoter is enhanced by interactions of its α C-terminal domain
with DNA upstream of the −35 hexamers. TFs can bind to any site in the
cis-regulatory region. Whenever a TF binds to the DNA, each amino acid
interacts with exactly one base pair, and the total binding free energy is the
sum of the contributions of each amino-acid–base-pair contact. This is known
to be a reasonable approximation for many TFs (Fields et al., 1997; Stormo and
Fields, 1998; Benos et al., 2002; Berg and von Hippel, 1987, 1988), even though
exceptions have also been documented (Roulet et al., 2002). The binding energies
associated with each amino-acid–base-pair contact are extracted from a matrix
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TFs operon activity
c1 c2 AND ANDN XOR OR NOR EQU ORN NAND
low low off off off off on on on on
low high off off on on off off off on
high low off on on on off off on on
high high on off off on off on on off

Table 2.1: Truth tables of transcriptional logic gates. Logic gates are devices that perform
elementary binary computations, mapping multiple input signals to one output signal. Here
we consider transcriptional logic gates with two inputs and one output. The table specifies,
for each gate, the status of the operon (“on” or “off”) for all TF concentrations c1 and
c2 (“low” or “high”). Gates that are identical to one of the shown gates up to TF labels,
and those that depend on only one TF, are disregarded. In our simulations, concentrations
above (below) 500nM are considered high (low). The acronyms of the gates summarize their
function: the operon of an AND gate should only be transcribed when both c1 and c2 are
high. The acronym ORN stands for “or not”: the gate is “on” if c1 is high or c2 is not high.
The EQU gate is “on” if the input concentrations are equal (either both low or both high).
The activity of the “NOR” (Not OR) gate is, in all conditions, opposite to the activity of the
“OR" gate.

based on crystallographically solved protein–DNA complexes (Mandel-Gutfreund
and Margalit, 1998). The results, however, do not depend critically upon the
precise values of the matrix elements; random matrices with the same mean and
standard deviation give similar results. Note that some real TFs can bind ligands
or can become phosphorylated; in that case the TF concentration in our model
corresponds to the concentration of the DNA-binding form of the TF.

The model allows for two types of TF–TF and TF–RNAp interactions (see
Fig. 2.3) (Ptashne and Gann, 2002). Firstly, we include steric hindrance: mo-
lecules cannot overlap in space. Secondly, we include a cooperative interaction
of energy ETF–TF between any pair of TFs when they bind within a distance
of k base pairs. Likewise, if a TF and RNAp bind close together, we assume
a synergetic energy ETF–P (Busby and Ebright, 1994). We thus assume that
TFs can bind cooperatively with themselves, with RNAp and with other TFs.
We note that, although some TFs are known to have all these properties (for
instance MalT and MelR), it is unlikely that this is the case for all TFs. Our
results will show, however, that combinations of some of these properties allow
for a myriad of promoter functions. In our simulations we used k = 3 and
ETF–TF = ETF–P = 3.40 kBT or 2.0 kCal/mol (so that exp(βETF–TF) = 30.0)
(Buchler et al., 2003).

Such protein–protein interactions could have various origins. Many TFs
interact by direct contact between patches on their surface. We note that these
interactions are very weak and are therefore not likely to be detected in large-scale
experiments such as those of Butland et al. (2005). However, cooperativity can
also result from bending, stretching or super-coiling of the DNA by one of the



30 2 Regulation by modules

molecules, affecting the binding affinity of the other (Berg et al., 2004; Ptashne
and Gann, 2002). At the level of description of our model, such mechanisms can
be described in the same way as cooperativity by direct contact. This means that
most effects of local chromosome structure are implicitly included in the model.
However, the model does not allow action at a distance. Therefore, mechanisms
involving global chromosome structure, such as DNA looping, are not included.
Also, mechanisms that rely on direct interactions between the RNAp and TFs
bound further upstream, for instance through contact with the flexible RNAp
α C terminal domain, are not possible in our model, even though it could be
extended to incorporate such effects (Buchler et al., 2003).

We use the statistical mechanical approach developed by Shea and Ackers
(1985) and Buchler et al. (2003) to describe the input–output relationship for
an operon in a quantitative way (see Appendix 2.A and Section 1.1.2 of the
Introduction chapter). In order to compute the influence of each TF on the
transcription rate in a tractable way, we have developed a fast algorithm that
efficiently takes into account all TF–DNA, TF–TF and TF–RNAp interactions
(see Appendix 2.A).

2.3 Evolutionary design of logic gates

We have used the model and an evolutionary algorithm to design transcriptional
logic gates consisting of one operon, regulated by two TFs. Typically, 250 gates,
with initially random DNA and amino-acid sequences, were subjected to cycles
of mutation and selection. In each cycle, point mutations were introduced; the
probability of a mutation occurring within a given cis-regulatory region or TF
was 0.85 and 0.3 respectively—but the results do not depend strongly on these
values. Next, the top 20% of the gates were selected and the others were removed.
To complete the cycle, we finally refilled the empty slots by copying randomly
chosen genotypes from the selected gates.

In order to select the top 20% of the gates, we define a fitness function that
quantifies the quality of the gate. The transcription rate A of a gate depends on
the concentrations c1 and c2 of the two TFs: A = A(c1, c2). First, we compute
the transcription rate for 16 values of (c1, c2) in the range 0–1000 nM; for the
AND gate in Fig. 2.5, these 4× 4 values are depicted as dark dots. For each of
these points, we determine how far A deviates from a goal function G(c1, c2),
which is defined by the logic gate we are trying to obtain. Next, we compute
the sum of the squares of these deviations. If this quantity is small, then the
fitness is considered high. (Refer to Appendix 2.A for more details.) Our fitness
function selects for rather steeply-switching gates, since the switching is required
to take place between ci = 333 nM (considered low) and ci = 667 nM (considered
high). We also implicitly assume that all conditions are equally important; each
of the 16 points has an equal weight in the fitness function. In reality, this is not
necessarily the case: the fitness cost of a gene being “on” at a wrong time, need
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not match the cost of one that is “off” when it should not be (see also Berg et al.
(2004)). In order to elucidate general design principles, we select for idealized
promoter functions, although, clearly, in nature the input–output relations can
be more intricate; an example is the lac promoter, which is not a perfect ANDN
gate (Setty et al., 2003).

2.4 Results: cis-regulatory constructs

Figs. 2.4 and 2.5 show typical simulation results for the gates in Table 2.1. Clearly,
the architectures can be quite complex. Interestingly, the final constructs do not
depend much on the initial conditions; this can be regarded as a simple example
of convergent evolution. Moreover, they are remarkably similar to the structures
found in E. coli, as we now describe.

2.4.1 Homo-cooperative auxiliary sites provide steep responses

We can distinguish two kinds of binding sites. Binding sites from where the
TFs directly interact with the RNAp are called primary sites. Primary activator
sites are located right next to the −35 hexamer of the core promoter, whereas
primary repressor sites directly overlap with the core promoter. The remaining
binding sites are called auxiliary or secondary sites (Müller-Hill, 1998). These
sites provide cooperativity. The main function of cooperativity between identical
TFs, called homo-cooperativity, is to create steep responses (Buchler et al., 2003;
Alberts et al., 1994). We find that both activating and repressing binding sites
are regularly supported by (tandem arrays of) auxiliary sites.

Activation
In cooperative arrays of activation sites, the auxiliary site furthest removed from
the core promoter usually has the strongest affinity. This can be seen in the
cis-regulatory regions of EQU, ORN, XOR and ANDN. Further analysis shows
that this pattern enhances the steepness of response (see Appendix 2.B). The
steepness is optimal if the binding affinities of the furthest site and those of the
other sites differ by a factor 2 to 14, depending on the strength of the promoter,
the value of the interaction energies (ETF–P and ETF–TF) and the number of
tandem repeats: this way, the steepness can be enhanced up to 27%. A similar
result was presented in (Bintu et al., 2005b) for systems with one auxiliary site, in
the context of the regulation of the phage λ promoter PRM. We therefore predict
that activating auxiliary sites in real promoters regularly have a higher affinity
than their primary sites.

It may be useful to repeat that we define auxiliary sites as sites that do
not interact directly with the RNAp. If, in real E. coli promoters, any of the
upstream sites does interact with RNAp, for instance via direct contact with
the α C-terminal subdomain of the RNAp, then such a site is, by definition, a
primary site. If such a distant primary site is accompanied by an auxiliary site,
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then this auxiliary site still needs to have a higher affinity than its primary site
in order to maximize the steepness of response.

In E. coli, homo-cooperative activation occurs regularly. For example, the TFs
of the LysR family often bind to two sites, one at −65 and the other close to the
−35 hexamer of the core promoter (Wagner, 2000; Schell, 1993). In some cases,
the TFs bind cooperatively to these sites; in these cases the site at −65 has a
stronger affinity than that near −35 (Wilson et al., 1995; Lamblin and Fuchs,
1994), as one would expect from our results. Another example is the activation
of the PRM promoter in bacteriophage λ by CI, which binds more strongly to the
auxiliary site (OR1) than to the primary activation site (OR2) (Shea and Ackers,
1985; Bintu et al., 2005b). We note however, that this example is complicated by
the fact that OR1 and OR2 are also involved in repressing the PR promoter. We
will get back to this in the next subsection.

Repression
In contrast to the activation modules, the auxiliary sites in repressor complexes
are usually much weaker than the primary ones (e.g. ORN and EQU). Further
analysis (see Appendix 2.B) shows that the steepness of repression is optimal
if the primary site has a 5 to 50 times higher affinity than the auxiliary sites
(depending on the promoter strength, the values of the interaction energies and
the number of tandem repeats). This pattern can increase the maximal steepness
of the response by about 70%, as compared to the case where all sites have an
equal affinity. As weak auxiliary sites of repressor systems are not only sufficient,
but even optimal, it seems highly unlikely that evolution would maintain strong
auxiliary repression sites if steep responses are beneficial (see Appendix 2.B). We
therefore predict that auxiliary sites in real repressor systems should often be
weak.

Indeed, most well-characterized repressor systems in E. coli have auxiliary
operators (Müller-Hill, 1998; Rojo, 2001), many of which are weak. For example,
the two cooperative Fur-binding sites that overlap the core promoter on the
pColV-K30 plasmid are supported by an array of low affinity auxiliary sites
(Escolar et al., 2000). A second example is the duo of dnaA promoters, 1P and
2P (Lee and Hwang, 1997). At low concentrations DnaA represses only 1P, but
at high concentrations it blocks both promoters, as a result of the cooperative
binding of up to four DnaA monomers to weak binding sites overlapping the 2P
region (Lee and Hwang, 1997). Other examples are the TrpR repressor on the trp
promoter (Jeeves et al., 1999) and the Fis repressor on the aldB promoter (Xu
and Johnson, 1995). Finally, the gltA–sdhC intergenic region contains at least
two high-affinity ArcA–P repressor sites, one overlapping the gltA promoter and
one blocking the sdhC promoter; at higher ArcA–P concentrations both binding
regions broaden until ArcA–P covers a region of about 230 bp, suggesting ArcA–P
oligomerization on the DNA (Lynch and Lin, 1996; Shen and Gunsalus, 1997).

In the previous subsection, we mentioned the activation of PRM by CI in the
bacteriophage λ as an example of cooperative activation, and argued that steep
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activation requires that the auxiliary site OR1 should be considerably stronger
than the primary site OR2. Interestingly, the same CI binding sites OR1 and
OR2 are also involved in repressing the PR promoter. But the binding sites
now have reversed roles: from the point of view of promoter PR, OR1 is the
primary repressor site, and OR2 is auxiliary. However, since we just argued that,
in repressor systems, primary sites should be stronger than auxiliary sites, we
conclude that both for steep activation of PRM and for steep repression of PR,
site OR1 needs to be stronger than site OR2, as is indeed the case.

As a final remark on homo-cooperativity, we point out that, while cooperativity
is used widely, as Fig. 2.1 shows, many of the better characterized promoters,
such as the lac promoter, have a simpler architecture. It should be realized that
the number of binding sites not only depends upon the complexity of the desired
input–output relation, but also upon the required steepness of the response. If,
for instance, we select for simpler gates with a weaker response function, we do
obtain simpler promoter architectures (data not shown).

2.4.2 Hetero-cooperativity provides conditional responses

While the benefit of homo-cooperativity is to create steep responses, the function
of cooperativity between different molecular species, hetero-cooperativity, is rather
to integrate signals. It can be used whenever a response should be conditional
on the presence of more than one TF. A good example is the AND gate. As
with the OR gate, this gate requires a weak promoter— this ensures that the
operon is not transcribed when both TFs are absent. In contrast to the OR gate,
however, the AND gate should be on only when both TF1 and TF2 are present.
The activation is therefore mediated by a TF1 binding site that is too weak to
be functional by itself. Next to this site a stronger TF2 binding site is present.
Only when TF1 and TF2 are both present, they bind cooperatively and induce
activation (Buchler et al., 2003). The remaining sites can bind either TF1 or TF2
and are responsible for the steepness of the response.

Activation
Hetero-cooperative activation is found regularly in naturally occurring promoters.
A good example is the activation of the melAB operon by MelR, which binds
to four sites (Wade et al., 2001). A CRP binding site is present between MelR
sites 2 and 3. Here, CRP binds cooperatively with the downstream MelR sites.
This increases their fractional occupancy, resulting in transcription activation.
Another excellent example is the malKp promoter (see Fig. 2.1(d)), which is
discussed below (Richet and Sogaard-Andersen, 1994; Richet, 2000).

Repression
The CytR regulon provides an example of hetero-cooperative repression. CytR
often binds cooperatively with cAMP–CRP to form a repression complex. Good
examples are udp (Brikun et al., 1996), nupG (Pedersen et al., 1995), tsx-p2
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(Gerlach et al., 1991) and deoP2 (Shin et al., 2001); see also (Tretyachenko-
Ladokhina et al., 2001; Meibom et al., 1999). Recently, it has also been shown
that Lrp and H-NS act cooperatively at the rrnB promoter (Pul et al., 2005).

2.4.3 Competition between modules

Whenever binding sites overlap, competition between TF complexes occurs. It
is well known that the core promoter often overlaps with an operator; this is
a standard repression mechanism (Müller-Hill, 1998). The role of overlapping
TF binding sites in signal integration has been less commented on. Clearly, a
repressor which binds to an operator overlapping with an activator site can be
used to create anti-activation. Likewise, anti-repression occurs when a binding
site overlaps with a repressor site, but not with the core promoter. But the full
potential of this type of competition becomes clear only when it is combined
with cooperativity. Our NOR, NAND, EQU, and XOR gates serve as instructive
examples.

Sharpening repression by competitive activation
The NOR gate (see Figs. 2.4, 2.5 and Table 2.1) combines competition and
homo-cooperativity. This gate contains both activator and repressor sites for
each TF. The single activator sites are strong compared to the repressor sites;
as a result, activation dominates at low TF concentrations. However, as the
TF concentrations increase, the affinity of the repressor module grows more
rapidly; this is the result of the homo-cooperativity between the repressor sites.
Consequently, at high TF concentrations repression dominates. The function of
the activating sites is thus to counteract repression at low concentrations, thereby
increasing the switching steepness. As it turns out, whenever we select for steep
repression, we also get activation. The general message is that using competing
modules containing different numbers of homo-cooperative binding sites, a TF can
effectively be both an activator and a repressor, depending on its concentration.

The NAND gate looks rather similar to the NOR gate, but uses hetero-
instead of homo-cooperativity. Repression dominates only if both TF1 and
TF2 are present in sufficient concentrations. This shows that by combining
competition and hetero-cooperativity, a TF can either be an activator or a
repressor, conditionally on the concentration of another TF.

Intra-modular cooperativity and inter-modular competition
In the EQU gate all mechanisms act in concert. In an EQU gate the operon
must be on when the concentrations of both TFs are low; this requires a strong
promoter. If either TF1 or TF2 is present, the operon must be off; this requires
homo-cooperative repression modules, which block the binding of RNAp when
either TF1 or TF2 is present. However, if both TF1 and TF2 are present in
similar concentrations, the operon must be on; this requires a hetero-cooperative
activation module that counteracts the effect of the homo-cooperative repression
modules.
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In the XOR gate, the same mechanisms act, but in an opposite manner: if
both TFs are absent, the operon should be off; this requires a weak promoter.
If one of the two TFs is present, the operon should be on; this demands homo-
cooperative activation modules, which recruit the RNAp when only one of the
two TFs is present. If both TFs are present, however, the operon should be off;
this requires a hetero-cooperative repression module that neutralizes the actions
of the homo-cooperative modules when both TFs are present.

In both gates, the homo-cooperative and hetero-cooperative modules have
to compete with one another. This is achieved via the binding of the TFs to
overlapping binding sites. Which module wins the competition depends upon the
TF concentrations, the number of TFs in the modules and upon the quantitative
details of the protein–protein and protein–DNA interactions. In Appendix 2.C
we discuss minimal models of both gates quantitatively.

Similar mechanisms are known to occur in E. coli. The malKp promoter (see
Fig. 2.1(d)) provides a good example, although its full input–output relation
is more complex than those of the logic gates studied here. In the presence of
CRP, MalT binds to three tandem sites to form the activation complex (Richet
and Sogaard-Andersen, 1994; Richet, 2000). In the absence of CRP, however,
MalT binds with relatively high affinity to an alternative triplet of repressor sites
that overlaps the activation complex, thereby repressing malK. As in the EQU
gate presented here, the activation complex has to compete with the repression
complex; the CRP concentration determines whether MalT acts as a repressor or
as an activator (Richet and Sogaard-Andersen, 1994; Richet, 2000).

2.5 Discussion and outlook

We have developed a model of transcriptional regulation and applied it to the
evolutionary design of transcriptional logic gates in prokaryotes. Our approach has
revealed new design principles, which would have been difficult to predict using a
rational design approach. In particular, our analysis stresses the importance of
the interplay of the following mechanisms:

1. homo-cooperative interactions between TFs within modules;

2. hetero-cooperative interactions between TFs within modules;

3. competition between TF modules. Using these mechanisms only, a wide
range of input–output relations can be produced, including the full repertoire
of cis-regulatory logic gates with two input signals and one output signal.

The resulting constructs make extensive use of cooperative tandem binding
sites. Homo-cooperativity is often used as a means of achieving high Hill coef-
ficients. In such tandem arrays of binding sites, weak sites can be important.
In repressive arrays, auxiliary sites are usually weak, while in activating arrays
the auxiliary sites tend to have the highest affinity. Hetero-cooperativity allows
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for regulation conditional on the presence of more than one TF species. Hetero-
cooperativity within modules thus plays a central role in integrating different
signals; in the gates studied here, a hetero-cooperative module only becomes active
if both TFs are present. Nevertheless, we wish to emphasize that while many
promoters in nature exhibit long arrays of binding sites (see Figs. 2.1 and 2.2), it
is not likely that all TFs of E. coli have the capacity to bind cooperatively into
such long arrays. It should be realized, however, that for most gates, modules
consisting of two or three cooperative sites are sufficient, although additional sites
add to the quality of the gates and to the sharpness of the responses.

The capacity to integrate signals is dramatically enhanced by the competition
between different modules, as summarized in Table 2.2. Competing modules
allow the integration of signals, because (a) both homo- and hetero-cooperative
modules can act as activator modules or as repressor modules, and (b) when
the concentrations of the TFs vary, also the relative activities of the activating
and repressing modules change. How their activities change with the TF concen-
trations, depends upon the strength of the TF–DNA, TF–TF, and TF–RNAp
interactions. It also depends upon the degree of cooperativity: the number of
binding sites in a module not only determines the steepness of the response, but
also affects the concentration range in which the module is active. For instance,
a large module will dominate an overlapping, but smaller one at sufficiently
high TF concentrations, even when the individual TFs in the larger module
have a weaker affinity for the DNA. Indeed, not only hetero-cooperativity, but
also homo-cooperativity can play an essential role in signal integration (see also
Fig. 2.8).

Our results provide a possible explanation for the complexity of cis-regulatory
regions found in E. coli, which, indeed, often contain tandem TF binding sites
and overlapping sites. Our analysis suggests that these complex architectures are
a natural consequence of the basic mechanisms of transcriptional regulation and,
on the other hand, the function of cis-regulatory domains to integrate signals.
While we focus here on prokaryotes, it should be clear that similar integration
mechanisms might also operate in the cis-regulatory domains of transcription units
in eukaryotes; ample anecdotal evidence exists, e.g., for the role of adjacent and
overlapping TF binding sites in signal integration during embryonic development
of the sea urchin (Yuh et al., 1998) and Drosophila (Gilbert, 2003). Our results
also emphasize that understanding the complex promoters observed both in our
simulations and in nature, requires quantitative knowledge of binding affinities
and interactions: from the binding site locations only, it is often not possible to
distinguish an AND gate from an OR, nor a NAND from a NOR.

In this chapter, we have used our evolutionary design method to design cis-
regulatory domains of single operons. This method, however, could also be
applied to design larger networks, such as multi-input modules (Shen-Orr et al.,
2002). As the network size increases and regulons become larger, we expect that
it will become increasingly more difficult to fulfill all constraints imposed on the
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low high

lo
w

hi
gh

c1

c2

On: homo-cooperative
activation by TF2 
if promoter is weak

On: hetero-cooperative
activation if not activated
homo-cooperatively

On: homo-cooperative
activation by TF1 
if promoter is weak

On: strong promoter

Off: homo-cooperative
repression by TF2
if promoter is strong

Off: homo-cooperative
repression by TF1
if promoter is strong

Off: hetero-cooperative 
repression if not repressed
homo-cooperatively

Off: weak promoter

Table 2.2: Table summarizing which homo- or hetero-cooperative activation or repression
modules are needed to obtain a particular transcriptional logic gate. The table consists of four
quadrants, corresponding to different TF concentrations c1 and c2 (each being low or high).
Each quadrant is divided into two parts (white and gray), corresponding to the alternative
promoter states (on or off). As an example, the AND gate is on only if both TF1 and TF2
are present; this requires a hetero-cooperative activation module. In contrast, an OR gate
should be on if either TF1 or TF2 is present. This requires homo-cooperative activation
modules for each of the species, because the promoter is weak (the gate must be off when
both species are absent); however, since the activation modules do not compete with one
another, a hetero-activation module is not required: the homo-cooperative activation modules
also turn the gate on when both TFs are present. In general, the design can be most easily
understood by first considering the design constraints when both TFs are absent, then the
requirements when one of the two are present, and lastly the design constraints when both
TFs are present. The EQU and XOR gates discussed in this chapter illustrate this perhaps
most clearly. Note that the EQU gate is an example of a gate in which a hetero-activation
module is required, despite the fact that the promoter is strong; the hetero-activation module
is needed to counteract the two homo-cooperative repression modules when both TFs are
present.
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promoter and TF sequences. For these larger networks, not only positive design—
selecting for desired TF–DNA interactions—but also negative design— selecting
against unwanted TF–DNA interactions—may be an important design criterion.
Our approach can also be extended to design feedback networks. By selecting
transcription networks containing multiple genes based on their dynamics, we
can design feedback systems like transcriptional oscillators (Francois and Hakim,
2004). In the next chapter, we use our method to design a bi-stable switch.

Here, we used our method to design transcriptional logic gates. For this
reason, our evolutionary algorithm was not designed to mimic natural or directed
evolution. However, with suitable modifications and extentions, our approach
could also be used to study questions that are pertinent to the evolution of
functional promoter regions, such as what are the pathways of evolution, and
how does the evolution of logic gates depend upon factors like population size,
neutral drift, and mutation rates.

Finally, the proposed signal integration mechanism of intra-modular coop-
erativity versus inter-modular competition could be tested experimentally by
rationally designing cis-regulatory constructs. But perhaps more interesting
would be to see whether an evolutionary design method can be used. Recently,
Yokobayashi et al. demonstrated experimentally that directed evolution can
be used to change protein–DNA and protein–protein interactions in a ratio-
nally designed, but non-functional gene circuit to obtain a functional network
(Yokobayashi et al., 2002). Perhaps a similar method can be used to design, by
experiment, transcriptional logic gates with desired input–output relations. Since
no specific promoter designs have to be imposed, it would be interesting to see
whether the resulting architectures exploit the signal integration mechanism of
competing binding site modules.
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2.A Detailed description of the model of transcription regulation

The model needs to address four quantities: (i) the binding affinities of each
transcription factor (TF) for every possible site on the cis-regulatory region, (ii)
the affinity of RNAp–σ for the core promoter, (iii) the interactions between the
molecules, and finally (iv) the transcription rates based on these affinities and
interactions. We discuss each of these issues below.

Binding of TFs to DNA
TFs can bind anywhere on the cis-regulatory region. The affinity of a TF for
a given site is determined by the DNA sequence at the site and the amino-acid
sequence in the DNA binding pocket of the TF. We assume that, whenever a TF
a binds to a binding site O, each amino acid interacts with exactly one base pair,
and that the total binding free energy Ea,O is the sum of the contributions of
each amino-acid–base-pair contact. This means that the binding free energy of a
TF a with amino acids ai to a binding site O with base pairs Oi is given by

Ea,O =
M∑
i=1

Uai,Oi .

Here Uλµ is a 20 × 4 matrix containing the binding free energies associated
with each amino-acid–base-pair contact. We used a matrix given in Mandel-
Gutfreund and Margalit (1998), based on christallographically solved protein–
DNA complexes (see Section 1.1.2 of the Introduction chapter).

Finally, the binding affinity qa,O of TF a for site O follows from

Ka,O = α e−βEa,O , qa,O = ca
Ka,O

. (A2.1)

Here, Ka,O denotes the dissociation constant and ca denotes the concentration of
TF a. The proportionality factor α in Equation A2.1 is determined by the free
energy of all other sites that compete with O for binding of the TF. Initially, we
used α = 107 nM, but also found that the results do not depend critically on this
value. Later, we used Equation 1.13, an estimate for the total contribution of the
background states, to compute the value of α separately for each TF. The same
designs were found.

Binding of RNAp
In our model, the RNAp–σ complex binds only to the core promoter. We
determine the binding free energy of RNAp–σ for a core promoter p by comparing
the −10 and −35 hexamers to a large set of real E. coli promoters, taken from
reference (Lisser and Margalit, 1993). To every base pair pi at position i within
the −10 and −35 hexamers, we assign a score si; it equals the fraction of real
E. coli promoters that have pi at that particular position, normalized by the
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random fraction 1/4. Next, the binding energy Ep of the RNAp to that particular
core promoter can be estimated by (Berg and von Hippel, 1987, 1988; Berg, 1988):

Ep = kBT
∑
i∈p

log(si).

The dissociation constant of the binding reaction, Kp, and the binding affinity of
the RNAp for the promoter, qp, now follow from the equations

Kp = α′e−βEp , qp = cp
Kp
∝ cp

∏
i∈p

si. (A2.2)

The proportionality factor α′ in Equation A2.2 again includes the competition
between site p and all other places the RNAp could possibly be; it should be
chosen such that pon is close to unity in case of a small number of mismatches,
but decreases rapidly as mismatches accumulate. For the results shown, we used
α′ = 107 nM.

TF–TF and TF–RNAp interactions
The interaction between the molecules consists of two parts. In the first place, we
include steric hindrance: TFs and RNAp cannot overlap in space. When bound
to the DNA, TFs occupy M base pairs and mutually exclude each other and
RNAp. Bound RNAp is assumed to block the consensus hexamers and the spacer
in-between. In the second place, we include an unspecific attractive interaction
between TFs whenever they bind close to each other— that is, within a distance
of k = 3 base pairs. To this interaction we associate an energy ETF–TF of 2–4
kBT , such that ω ≡ exp(βETF–TF) ≈ 30 (Buchler et al., 2003). Likewise, if a
TF and RNAp bind close together, we assume a similar interaction free energy
ETF–P; Again, ω′ ≡ exp(βETF–P) ≈ 30.

Transcription rates
We assume, following Shea and Ackers (1985) and Buchler et al. (2003), that the
transcription rate A of an operon is proportional to the fraction of time pon an
RNAp is bound to the core promoter. This assumption is reasonable provided the
kinetics of the binding and unbinding of RNAp are sufficiently fast in comparison
to the transition rate from the closed to the open complex (see Section 1.1.2). In
that case the binding reaction is near equilibrium and the fractional occupancy is
given by

A ∝ pon = Zon

Z
. (A2.3)

Here Zon is the partition sum of all states in which an RNAp molecule is bound,
and Z is the total partition sum. This approach is used widely (Shea and Ackers,
1985; Buchler et al., 2003; Bintu et al., 2005a,b; Graham and Duke, 2005). We
note however, that this model does not apply to all cases: for instance, some
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TFs function by regulating the rate of the transcriptional steps after the initial
binding of RNAp to the core promoter, and in some cases a tight binding of
RNAp to the core promoter might negatively influence the transition rate to the
so-called open complex.

Computing the partition sums

In the previous subsections, we explained how to compute the TF binding affinities
for each possible position on the cis-regulatory region, the affinity of RNAp for the
core promoter, and all interaction energies, given the sequences and concentrations
of the molecules. This allows us in principle to compute the Boltzmann factor
W (s) of every state s and the hence the partition sum Z of the system. But since
we assumed that TFs can bind anywhere on the DNA, the total number of states
or configurations can easily become huge. In fact, a minimal network consisting of
only one operon and two TFs with N = 80 and M = 10, counts more than three
million distinct configurations. We developed a scheme that nevertheless allows
us to compute the partition sum for a given promoter in an efficient manner.

We use the following conventions (see Fig. 2.3). We refer to the stretch of
DNA ranging from base pair i−M + 1 to base pair i as site i. We denote the
binding affinity of TF a for site i, as defined in Equation A2.1, by qa,i. Next we
define

Qi ≡
∑
a

qa,i.

Finally we consider a series Zi of partial partition sums (−N ≤ i ≤ 0), defined as
the partition sum of all possible states in which sites with a number bigger than
i are not occupied and no RNAp is bound.

Let s be the state where TFs a1 . . . am are bound to sites x1 . . . xm respectively.
Then in Buchler et al. (2003) it is explained that the Boltzmann factor W (s) of s
equals

W (s) =

∏
u 6=v

ωu,v

( m∏
u=1

qau,xu

)
,

where

ωu,v =


ω if site u and v are 0 to k bp apart,
0 if site u and v overlap,
1 else.

This implies that for the series Zi, the following recurrence relation holds:

Zi = QiZi−M−k +Qiω (Zi−M − Zi−M−k) + Zi−1

= Qi ((1− ω)Zi−M−k + ωZi−M ) + Zi−1, (A2.4)
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with starting conditions

Zi =
{

0 for i < −N ,
1 for −N < i < −N +M .

We can express Zoff, Zon and pon in terms of the Zi as

Zoff = Z0, (A2.5)
Zon = qp (ω′Zx + (1− ω′)Zx−k) , (A2.6)

pon = 1
1 + Zoff/Zon

. (A2.7)

Here x is the base pair just next to the core promoter (x = −37). The conclusion
is that, in order to compute pon, one only needs to compute the Qi, apply
Equation A2.4 N times, and finally fill in expressions A2.5, A2.6 and A2.7. Note
that the time required to compute pon using this algorithm scales linearly with N ,
M , and the number of TFs. This shows that the scheme is fast and can therefore
be applied to networks consisting of many genes and TFs.

Fitness function
In order to select the gates, we need a fitness function that quantifies their quality.
We now describe the fitness function we used. The transcription rate A of a
gate depends on the concentrations c1 and c2 of the two TFs: A = A(c1, c2).
We use concentrations in the rage 0 to 103 nM; concentrations below (above)
cmid ≡ 500 nM are considered low (high). Each truth table t then defines a goal
function Gt(c1, c2); the perfect analog AND gate, for instance, has the following
response:

A(c1, c2) ∝ pon(c1, c2)
= GAND(c1, c2) = θ(c1 − cmid)θ(c2 − cmid),

where θ(x) is the Heaviside step function. We define the fitness function R as
follows. First, we compute pon(c1, c2) for 16 values of (c1, c2); for the AND gate
in Fig. 2.5, these 4× 4 values are depicted as dark dots. For each of those points,
we determine how much pon(c1, c2) deviates from the goal function Gt(c1, c2);
next we compute the sum of the squares of these deviations. If this quantity
is small, the fitness is considered high. The following equation summarizes the
measure:

R = −
3∑

i,j=0

{
pon

(2i
3 cmid,

2j
3 cmid

)
−Gt

(2i
3 cmid,

2j
3 cmid

)}2
.



44 2 Regulation by modules

2.B Affinities of auxiliary sites

One of the main functions of auxiliary binding sites is to create steep responses
to changes in TF concentrations. In the results of our simulations, we observed
that the auxiliary sites of repressors are often weak, while in case of activator
sites they are often strong. Moreover, in activator systems, the auxiliary site
furthest removed from the core promoter usually has the highest affinity. Here
we demonstrate that these patterns further enhance the steepness of response.

The basic idea is as follows. If the affinity of an auxiliary site is very low, the
effect of the site vanishes. On the other hand, if its affinity becomes very large,
the auxiliary site will always be occupied. In that case, the auxiliary site merely
increases the affinity of the primary site with a constant factor (ω in our model).
The effect of this is equivalent to lowering the dissociation constant of the primary
site with the same factor, which shows that in this limit the cooperativity is lost
as well. Somewhere between these limits, an optimum must be present. This
optimum is different for activating sites and repressing sites.

It is possible to analyse the situation for any number of auxiliary sites. Below
we show the results for two auxiliary sites. (See Fig. 2.6.)

Repression
We assume that a promoter has one primary repressor site and two auxiliary
sites (Fig. 2.6(a)). The primary repressor site O1 has a dissociation constant K,
whereas the auxiliary sites O2 and O3 have dissociation constants K/r2 and K/r3.
The question then is: what values of ri maximize the steepness of the response?

As before, we compute pon according to Equation A2.3. The partition sums
are:

Zon = qp

(
1 + (r2 + r3)

( cr
K

)
+ r2r3ω

( cr
K

)2
)
,

Zoff = 1 + (1 + r2 + r3)
( cr
K

)
+ (r2ω + r3 + r2r3ω)

( cr
K

)2

+ r2r3ω
2
( cr
K

)3
.

gene
0-10-35

TF1TF RNAP
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0-10-35

TF1
TFTFTF
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(b)

Figure 2.6: Illustration of the repression (a) and activation (b) system discussed. In both
cases, the TF has three binding sites; O1 is in both cases the primary site, while O2 and O3
are the auxiliary binding sites.
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The concentration of repressor is denoted by cr.
We use three different measures of the steepness of response:

1. We optimized the slope shalf of the response plots at the TF concentration
at which the expression level is half maximal (chalf); we choose K such that
chalf = 500 nM. The results are shown in Fig. 2.7(a), where we use ω = 50
and qp = 10. The figure shows that shalf can be increased considerably
(69%) by optimizing the relative affinities of the auxiliary sites. The best
result is obtained at r2 = 0.017 and r3 = 0.091, confirming that, ideally,
repressive auxiliary sites are much weaker than their primary sites.

2. We fitted the response plots to Hill functions, defined as

Hr(cr) = A
1 + (cr/K)n /f
1 + (cr/K)n ,

where f is the maximum fold change in expression level and n is the value
of the Hill coefficient (Buchler et al., 2003). We optimized the value of the
Hill coefficient n as a function of r2 and r3. The resulting plots (not shown)
are very similar to those found using the first method; n can be increased
by 63% by choosing r2 = 0.011 and r3 = .057.

3. We optimize the slope sinf at the inflection point of the response curve. Now,
we choose K such that this point is at 500 nM. Fig. 2.7(c) shows that sinf
can be increased by 70% if we fine-tune the affinities of the different binding
sites. Again the auxiliary sites are weak: r2 = 0.014 and r3 = 0.11.

All methods show that weak auxiliary sites of repressor systems are not only
sufficient, but even optimal. Therefore it is highly unlikely that evolution would
maintain strong auxiliary repression sites, if a steep response is beneficial. Of
course, this argument only holds for auxiliary sites that do not have a second
function. If an auxiliary site also functions as an anti-activator (i.e., it prevents
the binding of an activator by overlapping with its binding site) a higher affinity
may be required.

Interestingly, our results also show that site 2 should ideally be weaker than
site 3. Note, however, that site 3 can be interpreted as an activator site for site 2;
this situation is therefore analogous to the activation system, which we discuss
below.

Activation

Here we present the case of cooperative activation by two auxiliary TF binding
sites. We use the same conventions as in the previous subsection. For this system,
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Figure 2.7: Response plots of the cooperative repressor (a and c) and activator (b and d)
systems. All plots show the responses at r2 = r3 = 1 and the ones for optimized parameters.
In figures (a) and (b) we optimized the slope at half maximal repression (a) or half maximal
activation (b); we fixed this point at 500 nM. In figure (c) and (d) we optimized the slope
at the inflection point of the curve, fixing this point at 500 nM. In the repressor system we
chose qp = 10, while in the activation system qp = 0.3; in both cases ω = ω′ = 50. Clearly,
steepness of response of the repressor system increases considerably if the relative affinities of
the binding sites are fine-tuned. The same holds for the activation system, albeit to a much
lesser extent.
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the partition sums become:

Zon = qp
(
1 + (ω′ + r2 + r3)

( ca
K

)
+ (r2r3ω + r2ωω

′ + r3ω
′)
( ca
K

)2

+ r2r3ω
2ω′

( ca
K

)3)
,

Zoff = 1 + (1 + r2 + r3)
( ca
K

)
+ (r2ω + r3 + r2r3ω)

( ca
K

)2

+ r2r3ω
2
( ca
K

)3
,

where ca is the concentration of the activator TF.
Again we use three different measures for the steepness of response.

1. We optimize the slope shalf at the concentration chalf at with the expression
level is half maximal. We adjust K such that chalf = 500 nM. The results
are shown in Fig. 2.7(b), where we use ω = ω′ = 50 and qp = 0.3. The
optimal parameter set, r2 = 1.74 and r3 = 12.3 provides an increase in shalf
of 11%. Note that the affinity of O3 is much higher than those of the other
sites.

2. We fit the plots to the Hill function defined as:

Ha(ca) = A
f−1 + (ca/K)n

1 + (ca/K)n . (A2.8)

The results (not shown) are very similar to those obtained by the previous
method. The gain in terms of n is a modest 11%.

3. We maximize the slope sinf at the inflection points of the plots, adjusting K
such that cinf = 500 nM (Fig. 2.7(d)). Optimally, r2 = 1.97 and r3 = 14.4,
which results in a 27% increase in sinf.

The results show that, in order to be optimal, the auxiliary activation sites
need to be as strong or stronger than the primary site. This is in stark contrast
with the results for homo-cooperative repression, where we saw that the auxiliary
sites need to be weak. Also, the site furthest removed from the core promoter
has the highest affinity, as we found in our simulations. The increase in steepness
resulting from the tuning of the binding affinities, however, is rather modest.
Whether in real genetic systems the selection pressure for steep activation is
usually strong enough to attain and maintain the optimal affinity ratios in a
mutation–selection balance, is unclear.
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2.C Minimal models for the complex gates

Some of the gates that resulted from the simulations have a rather complex design.
Here, we describe simplified quantitative models for the EQU gate and the XOR
gate; a simplified description provides more insight into their essential features.
The other gates can be described in a similar manner.

The EQU gate
For the EQU gate, the essential ingredients of our minimal model are: a strong
promoter, homo-cooperative repression for each of the two TFs, and hetero-
cooperative activation when both TFs are present. For simplicity, we make the
following assumptions:

1. All repression sites have an equal dissociation constant Kr; all activation
sites have dissociation constant Ka.

2. The number of sites in each homo-cooperative repression module is the same
and equal to nr; the number of sites for the TF α in the hetero-cooperative
activation module is na,α.

3. We neglect states in which incomplete modules are bound; of a module
either all sites or none of the sites are occupied.

4. The modules exclude each other on the DNA: only one of the modules can
be bound at a time.

5. We assume that the TFs bind to their specific binding sites only; we thus
neglect the affinities for the other binding sites on the DNA.

For this minimal model we can compute the partition sums as follows:

Zoff = 1 + (qr,1)nrωnr−1 + (qr,2)nrωnr−1 + (qa,1)na, 1(qa,2)na, 2ωna, 1+na, 2−1,
(A2.9)

Zon = qp
(
1 + ω′(qa,1)na, 1(qa,2)na, 2ωna, 1+na, 2−1) . (A2.10)

Here we used:

qr,α = cα
Kr

, qa,α = cα
Ka

. (A2.11)

Note that in Zoff we do not only count states in which the repression modules
are bound, but also states in which the activation sites are occupied by TFs (but
with no RNAp bound). Note also that Zoff and Zon are bivariate polynomials
in the concentrations cα. The order of these polynomials is determined by the
number of binding sites in the modules; the coefficients of each term are set by
the dissociation constants. Equation A2.7 shows that pon can be written in terms
of the ratio of these polynomials.
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Figure 2.8: Response plots resulting from the simplified models of XOR and EQU gates. The
concentration units are µM. (a) EQU gate with the following parameters: qp = 6, Ka = 11µM,
Kr = 3µM, na, 1 = na, 2 = 2, nr = 3 and ω = 30. (b) An EQU gate without homo-cooperative
repression modules (na, 1 = na, 2 = nr = 1). Note that, although the values in the corners of
the plot are consistent with an EQU gate, the full performance is poor. This shows that the
complex behavior of the EQU gate requires homo-cooperative modules. Further parameters
are: qp = 10, Ka = 3µM, Kr = 0.01µM and ω = 30. (c) XOR gate with parameters qp = 0.2,
Ka = 7µM, Kr = 4µM, nr, 1 = nr, 2 = 2, na = 3 and ω = 30. (d) Typical XOR gate with no
homo-cooperative activation (nr, 1 = nr, 2 = na = 1). The gate could hardly be classified as
an XOR gate, showing that homo-cooperative activation is essential to obtain reasonable
XOR gates.
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We now consider the design constraints for obtaining an input–output relation
that corresponds to an EQU gate. To this end, we first consider the limit in which
one of the TFs is present in much larger concentration than the other. An EQU
gate requires that in this limit, the expression level, and thus pon, should be low.
When the concentration c1 is kept constant and c2 is increased, pon approaches a
limit value that is determined by the terms of highest order in c2 in Zoff and Zon.
It is given by

lim
c2→∞

pon =



ω′qp

1 + ω′qp
if nr < na, 2,

ω′qp(c1)na, 1

(Ka/Kr)nr(Ka/ω)na, 1 + (c1)na, 1(1 + ω′qp)
if nr = na, 2,

0 if nr > na, 2.

If nr < na, 2, then pon will approach unity, instead of zero as required: since for
the EQU gate the promoter should be strong, ω′qp/(1 + ωqp) ≈ 1. If nr = na, 2,
the expression level depends on Ka, Kr, nr and na, 1; a judicious choice of their
value can allow for an expression level that is consistent with an EQU gate.
If, however, nr > na, 2, then the expression level in the above limit is much
more robust to the precise parameter values: if the concentration of TF1 is kept
constant, then at sufficiently high concentration of TF2, TF2 will always repress
transcription, as required for an EQU gate.

We now consider the scenario in which both concentrations become large. If we
keep c1 = c2 and increase both concentrations, then, as long as na, 1 + na, 2 > nr,
the limit value is again

lim
c1,c2→∞

pon = ω′qp
1 + ω′qp

. (A2.12)

A good way to construct an EQU gate is therefore to choose the modules such
that na, 1 + na, 2 > nr (so that the operon is transcribed when c1 and c2 are
both high), but to take nr > na, 1 and nr > na, 2 (so that the operon is repressed
when only one of the two TF concentrations is high). One obvious choice is
na, 1 = na, 2 = 2 and nr = 3. This result is shown in Fig. 2.8(a). It is seen that
this gate can indeed be classified as an EQU gate.

The EQU gate that results from our simulations (see Fig. 2.4) deviates slightly
from this design (Fig. 2.8(a)): the number of repressor sites of TF1 is higher
than expected on the basis of the assumptions of the minimal model, so that the
requirement na, 1 + na, 2 > nr is not fulfilled. However, there are three points
worthy of note:

1. most of the repressor sites are very weak; the extra repressor sites only play
a major role at much higher TF concentrations than shown in Fig. 2.5;

2. the assumption of the minimal model that the modules mutually exclude
each other completely, while instructive, is not entirely consistent with
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the assumptions underlying the full model discussed in this chapter: it is
possible for the complete hetero-cooperative activation module to bind, while
simultaneously the repressor sites that do not overlap with the activation
module, are also occupied;

3. whereas the previous points concern the simplicity of the assumptions of
the minimal model, this point is more fundamental. In our simulations,
we selected the gates not just based on their behavior in the limits of high
concentrations: we also selected for a steep repression curve. The resulting
gate is thus a compromise between the requirement of a steep response—
favoring a high number of repression sites—and maximal activation when
both TFs are present.

Fig. 2.8(c) shows the result for an EQU gate with no homo-cooperative
repression modules (na, 1 = na, 2 = nr = 1). In the limit that c1 → 0 and c2 →∞
and in the limit that c1 →∞ and c2 → 0, the expression level approaches zero,
as required for an EQU gate. Nevertheless, the input–output relation differs
markedly from the gate with homo-cooperativity (Fig. 2.8(a)); indeed, one could
argue that the gate without homo-cooperativity does not classify as an EQU gate.
This shows that homo-cooperativity does not only allow for a steep response, but
also can play an important role in signal integration.

The XOR gate
For the XOR gate, the essential ingredients of the minimal model are: a weak
promoter, homo-cooperative activation by each of the two TFs, and hetero-
cooperative repression when both TFs are present. We make the same simplifying
assumptions as in the previous section. However, here the number of sites in each
of the activation complexes is denoted by na, while the number of sites of TF α
in the hetero-cooperative repression complex is nr,α. This results in the following
expressions:

Zoff = 1 + (qr,1)nr, 1(qr,2)nr, 2ωnr, 1+nr, 2−1 + (qa,1)naωna−1 + (qa,2)naωna−1,

Zon = qp
(
1 + ω′(qa,1)naωna−1 + ω′(qa,2)naωna−1) .

When both TFs are absent, the operon should be off; therefore an XOR gate
needs a weak promoter. When increasing c2 at constant c1, or c1 at constant
c2, activation should occur. The limit value of pon for cα → ∞ depends on na
and nr,α; if na > nr,α, activation wins the competition with repression. In the
limit of high concentrations of both TFs (c1 = c2, c1 → ∞), the XOR should
be off. This is satisfied if (nr, 1 + nr, 2) > na. One option is therefore to choose
nr, 1 = nr, 2 = 2 and na = 3. Fig. 2.8 shows the result for this minimal model.

The XOR gate that results from our simulations (see Fig. 2.4 and 2.5), again
deviates slightly from this design. The number of repressor sites of TF2 is higher
than anticipated, so that the requirement na > nr, 2 is not fulfilled. As for the
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EQU gate, on the one hand this is due to the simplicity of the minimal model,
while on the other hand it is a result of the selection for a steep response.

Fig. 2.8(d) shows the result for an XOR gate without homo-cooperative
activation modules— the activation when either TF1 or TF2 is present, is non-
cooperative (nr, 1 = nr, 2 = na = 1). It is seen that the performance of the gate
is poor. This again shows that homo-cooperativity can be a useful mechanism
for shaping complex input–output relations.

2.D Extending the model

Our simplified model can easily be extended.
One clear limitation of the model is that all transcription factors interact

with the same energy. In reality, the interaction between some TFs is strongly
cooperative, whereas others do not seem to recruit each other at all. This
limitation of the model can be removed if we allow the TF–TF interaction
energies between all TFs to evolve independently. An elegant way to implement
this, is to endow each TF with two interaction surfaces: one at the “front” of
the TF and one at the “back”. These surfaces can be represented as lists of
amino acids with length L. We assume that TFs that bind close together interact
through direct contact between their interaction surfaces. Then we can model the
TF–TF interactions analogous to the TF–DNA interactions: we assume that the
interaction energy is the sum of independent amino-acid–amino-acid interactions,
i.e.

Ea,b =
L∑
i=1

Vai,bi .

Here a and b are the amino-acid vectors describing the interaction surfaces of
both transcription factors, and Vλµ is a 20× 20 matrix containing the binding
free energies associated with each amino-acid–amino-acid contact. The recursive
algorithm can be adjusted to take into account the different interaction energies
without significant changes in its complexity.

In the current model, each TF has length M . It would be possible to allow for
varying TF sizes. This again requires adjustments to the algorithm, but in this
adjusted scheme the computation time will still scale linearly with all relevant
parameters.
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Chapter 3

Auto-regulation and bi-stability in
transcription regulation

The transcription regulatory network of Escherichia coli con-
tains very few feedback loops. Yet, feedback can be of great
importance. For instance, a surprisingly large fraction of the
transcription factors in E. coli regulate their own expression.
A second example is the famous bacteriophage λ switch: this
bi-stable system functions by virtue of feedback loops.
In Chapter 2 we used a statistical-mechanical model of tran-
scription regulation and an evolutionary algorithm to design
transcriptional logic gates. There, feedback was excluded
by the method. Here, we again design small functional net-
works, but use an adjusted scheme in which feedback can
be exploited. First, we apply the method to construct a bi-
stable switch. Interestingly, the resulting designs are very
reminiscent of the genetic switch of bacteriophage λ. Sec-
ond, we again design transcriptional logic gates, but now
allow them to use auto-regulation. We analyze the design
principles of the resulting logic gates and confirm that they
use auto-regulation to shape their response functions.
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3.1 Introduction

In control theory, feedback is a crucial concept. Feedback loops can be used in
control networks to construct, among others, memory modules and oscillators, or
to increase the robustness of systems. Indeed, loops are exploited in regulatory
networks ranging from neural and metabolic networks to the cruise controls of
cars. Therefore it is perhaps surprising that in prokaryotic transcription networks
feedback loops are actually very rare (Shen-Orr et al., 2002). There are, however,
a few exceptions to this rule.

A first exception is the famous genetic switch of the bacteriophage λ (Ptashne,
2004). The core of this switch is provided by two genes, cI and cro, coding for two
transcription factors (TFs), Cro and CI, that repress each others transcription.
As a result, the system has two stable states: one in which the concentration of
CI is high and cro is repressed, and another in which the concentration of Cro is
high and cI is repressed. The two steady states are crucial for the survival and
spreading tactics of the phage, which rely on its ability to switch between two
different life styles (Jacob and Monod, 1961b; Ptashne, 2004).

When it first infects an E. coli cell, the phage often incorporates itself in
the DNA of the bacterium and stays there in a dormant state. During every
division of the E. coli cell, the phage is copied along with the DNA of E. coli
and transmitted to the daughter cells. This stage is called the lysogenic state.
At the molecular level, the lysigenic state corresponds to the condition in which
the repressor CI is present in high concentrations and all other genes are turned
off. This peaceful life style may last for many cell generations. But if the E. coli
DNA is damaged, for instance by UV radiation, the situation drastically changes.
In response to the damage, the E. coli cell activates the stress (SOS) response
system. This involves an increase in the cellular concentration of the protein
RecA; this enzyme plays a key role in the SOS response but as a side effect also
cleaves CI. Hence, the repression of cro gene is released and the genetic switch
flips. This has dramatic consequences: it activates a cascade in which the λ
phage enters the aggressive lytic state. Now, the DNA of the phage is copied
many times and the heads and tails of the viral particle are produced. About
90 minutes later, the E. coli cell bursts open, releasing many copies of the phage
that are ready to infect a new cell.

Another feedback motive in transcription regulation is auto-regulation. Shen-
Orr et al. (2002) showed that, in E. coli, many TFs regulate their own transcription;
in fact, many more than would be expected in randomized networks. As the
data set originally used by Shen-Orr et al. is now outdated, we analyzed the
occurrence of auto-regulation in the currently known transcription regulatory
network using the RegulonDB database (Salgado et al., 2001). We found 95 TFs
with known binding sites in the intergenic region directly upstream of the operon
that codes for them; this amounts to 59% of the known transcription factors. Of
these 95 TFs, 71 auto-repress and 32 auto-activate (8 TFs have binding sites for
auto-activation as well as for auto-repression). Clearly, auto-repression occurs
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more often than auto-activation, but both are strongly over-represented.
Why is auto-regulation this common? In regard to auto-repression a number of

functions have been suggested. In the first place, auto-repression can contribute
to the robustness of the expression level with respect to fluctuations in the
transcription rate (Savageau, 1974; Becskei and Serrano, 2000). The second
suggestion is that negative feedback can be used to increase the response speed of
the regulated gene (Rosenfeld et al., 2002). In the third place, negative feedback
can lead to oscillations in the presence of time delays (Elowitz and Leibler, 2000).
All three effects have been demonstrated in vivo (Becskei and Serrano, 2000;
Rosenfeld et al., 2002; Elowitz and Leibler, 2000). On the flip side, negative
feedback can reduce the sensitivity to input signals (Hornung and Barkai, 2008).

Positive feedback tends to have an effect opposite to negative feedback: it
slows down responses and tends to amplify intrinsic fluctuations. At first sight, it
seems unlikely that these qualities are often beneficial. Yet, a slow response can be
used as a low frequency filter combining a sensitive response to persisting signals
with a filtering of fast fluctuations in the input signal (Hornung and Barkai, 2008).
A special feature of auto-activation that may occasionally be useful is that it can
lead to bi-stability (refer to Box 3.1 for details).

Here, we propose that auto-activation may be useful in shaping the response
functions of cis-regulatory constructs. Transcription factors that auto-regulate
are typically regulated by other TFs too: in fact, we found 23 auto-regulating
transcription factors (72% of the auto-activators) that are known to have at
least two additional inputs (other TFs). The response of the regulated TF to
changes in the input concentrations must therefore be the result of an interplay
between regulation and auto-regulation. Conversely, this strongly suggests that
auto-regulation could be used to shape these responses.

In Chapter 2 we studied the mechanisms of transcriptional regulation; we
used an evolutionary algorithm to design transcriptional logic gates and extracted
design principles from the results. In that study, feedback was excluded by the
model. Here, we use an adapted version of the method to design small networks
that do exploit feedback.

First, we use the method to design a genetic switch consisting of two genes,
each coding for TFs. We describe the dynamics of the TF concentrations as
ordinary differential equation and select for networks that have two stable states.
During the evolutionary process, binding sites for both TFs can emerge on the
cis-regulatory regions of both genes. Surprisingly, the resulting switches are
conceptually very similar to the phage λ switch: apart from mutual repression,
they exploit auto-activation.

Second, we again design transcriptional logic gates, but this time allow the
designs to use feedback. It turns out that many of the resulting designs do use
auto-regulation; we describe two mechanisms that are at work in several gates.
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Box 3.1: Conditions for bi-stability due to positive feedback

If a TF activates its own transcription, this can lead to a bi-stable system. However,
this depends crucially on the shape of the function pon(c), which characterizes the
response of the transcription rate as a function of the activator concentration c. Here,
we derive strong conditions for bi-stability, inspired by the formalism of Cherry and
Adler (2000).

We assume that the dynamics of the concentration c can be described by:

dc
dt = a pon(c)− d c. (3.1)

Equilibrium values of c then should satisfy pon(c) = (d/a)c, or equivalent, the
equilibria are those values where the functions pon(c) and y(c) ≡ (d/a)c cross. Since
pon(0) ≥ 0 = y(0) and pon(a/d) ≤ 1 = y(a/d), the Intermediate Value Theorem
implies that such a crossing should occur at least once in the interval c ∈ [0, a/d]
(assuming pon(c) is continuous). In order to have multiple equilibria, at least three
crossings are required, two of which correspond to stable equilibria and one of which
is unstable. In an unstable equilibrium, p′on(c) ≥ d/a). If there is one unstable
equilibrium in the interval c ∈ 〈0, a/d〉, this directly implies that there are (at least)
two stable ones too; therefore, the system is bi-stable if there is one value c∗ for which
pon(c∗) = (d/a)c∗ and p′on(c∗) > d/a. Conversely, if the system if bi-stable, there is a
value c∗ for which pon(c∗) = (d/a)c∗ and p′on(c∗) ≥ d/a.

To derive if a given function pon(c) can give rise to multi-stability for at least some
values of d and a, we can combine the two requirements above. We then obtain
that bi-stability is possible if there is a value c > 0 for which c∗p′on(c∗) > pon(c∗) or,
equivalently,

sup
c>0

(
c p′on(c)
pon(c)

)
> 1. (3.2)

Conversely, if the system is bi-stable, supc>0

(
c p′on(c)
pon(c)

)
≥ 1.

Applied to the case where pon(c) is a simple Hill function,

pon(c) = cn

Kn + cn
, (3.3)

one can show that

sup
c>0

(
c p′on(c)
pon(c)

)
= sup
c>0

(
nKn

Kn + cn

)
= n. (3.4)

From this we conclude that, if pon(c) is a Hill function, bi-stability is possible for
certain values of a, d and K, provided n > 1.

We note that the above analysis relies on a deterministic description in terms of real-
valued concentrations. This is not always justified; in models that take into account
the stochastic character of interactions and discrete particle numbers, bi-stability
could occur even at n = 1 (Lipshtat et al., 2006).
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3.2 Models and methods

Below, we discuss the models we used to design the genetic switch and the logic
gates.

3.2.1 The genetic switch

To design switches, we consider networks consisting of 2 genes, tf1 and tf2, that
each code for a transcription factor: TF1 and TF2 respectively. Each of these TFs
can regulate the transcription of both genes by binding to their promoter regions.
Therefore the transcription rate of each gene is a function of the concentrations
c̃i of both TFs.

Transcription rates
In order to compute the transcription rate of each gene, we use the same formalism
as in Chapter 2. To summarize, each TF can bind to all sites on both cis-regulatory
regions, with affinities that depend on the sequence of the site and the sequence
of the TF (cf. Section 2.2). Steric hindrance prevents TFs from binding to
overlapping sites, yet TFs binding close to each other (within a distance of
k = 3bp) experience a cooperative interaction energy ETF–TF. As before, the
transcription rate of a gene i is assumed to be proportional to the fractional
occupancy of its (core) promoter, denoted by p(i)

on (c̃1, c̃2). The calculation of these
occupancies is completely analogous to our method in Chapter 2.

Evolutionary algorithm
As in Chapter 2, we use an evolutionary algorithm to design our networks. We
again subject a population of ≈ 200 elementary networks to rounds of mutation
and selection. However, our selection procedure is quite different from the one
used before. In Chapter 2, we designed transcriptional logic gates and therefore
directly selected for specific functional forms of pon(c̃1, c̃2). Now, we are not
directly interested in these input–output relations, but instead base our selection
scheme on the dynamical properties of the two-gene networks.

Dynamics of the concentrations
We model the dynamics of the concentrations of both TFs by a system of non-linear
ordinary differential equations:

dc̃1
dt̃ = a p(1)

on (c̃1, c̃2)− d c̃1, (3.5)

dc̃2
dt̃ = a p(2)

on (c̃1, c̃2)− d c̃2. (3.6)

Here we assumed first-order degradation of both TFs, with degradation constant
d, and that the protein production rate is proportional to p(i)

on (c̃1, c̃2) with propor-
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tionality constant a. Note that this deterministic description neglects all sources of
stochasticity and ignores time delays in the transcription and translation process.

It is convenient to introduce new, dimensionless variables. The concentrations
of the TFs are maximal if the genes are transcribed at their maximal rate, which
means that p(i)

on(c̃1, c̃2) = 1. In this case the steady state concentrations are
easily derived from Equation 3.5: c̃max = a/d. We define the new dimensionless
concentrations ci(t) as

ci(t) ≡
d

a
c̃i(t̃), where t ≡ d t̃. (3.7)

As cmax = (d/a)c̃max = 1, the scaled concentrations ci are guaranteed to stay
within the interval [0, 1]; their dynamics are described by:

dc1
dt = p(1)

on (c1, c2)− c1, (3.8)

dc2
dt = p(2)

on (c1, c2)− c2. (3.9)

The nullclines of this system of differential equations are implicitly given by
the relations p(1)

on (c∗1, c2) = c∗1 and p
(2)
on (c1, c∗2) = c∗2. The intersections of these

nullclines are the equilibrium points of the system. In a bi-stable system, at least
three equilibrium points are required, one of which is unstable (see Cherry and
Adler (2000)). Our evolutionary algorithm is designed to shape the functions
p
(i)
on(c1, c2) such that two stable equilibrium points are obtained.

Fitness function

We select for two stable states: one in which c1 = cmax ≡ 1 (“high”) and one in
which c1 = cmin ≡ 0 (“low”). We therefore use a fitness function that heuristically
measures the stability of these states. To that end, we numerically propagate the
system of differential Equations 3.8 for two different initial conditions. In the
first initial condition, c1 is rather high, and we monitor if c1 stays high. In the
second initial condition, c1 is quite low and we measure if it stays low.

More precisely, we first use the starting condition (c1, c2) = (0.8, 0.2). In this
case, we want c1(t) to approach cmax as time progresses; in order to quantify to
what extent this happens, we record c1(t) at discrete time points t1 = 1.5, t2 =
3.0, . . . , t8 = 12.0 and compute F1 ≡

∑8
i=1(cmax − c1(ti))2. If this number is low,

the system performs well on the first test. The second time we propagate the
system with initial condition (c1, c2) = (0.2, 0.8) and require c1(t) to converge to
cmin. This time we compute F2 ≡

∑8
i=1(cmin − c1(ti))2; low values of F2 again

indicate good performance. The fitness of the system is now defined as

F ≡ 8− (F1 + F2).
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The constant 8 is included to ensure that the fitness values are always positive.
Note that we implicitly do not only select for bi-stability, but also for a rapid
convergence to the stable states.

A similar technique has been used before by Francois and Hakim (2004). The
main difference with their approach is that we explicitly use an underlying model
of transcription regulation. As a result, we do not fix the response functions
of the genes a priori; instead, they are determined by the architectures of the
promoters, which evolve at the level of the base-pair and amino-acid sequences.
Consequently, the evolutionary algorithm can exploit a wide range of nonlinear
response functions. In Francois and Hakim (2004), the response functions are
fixed beforehand, and evolution acts at the level of reaction equations and rate
constants. Contrary to our model, their model also includes additional reactions
between gene products such as (hetero)dimerization and active degradation.

3.2.2 Logic gates

We now discuss the setup we use for the design of the logic gates. The model
considers two transcription factors, TF1 and TF2, regulating one gene, tf3, which
itself codes for a transcription factor TF3. All TFs are allowed to bind to the
cis-regulatory region of tf3. We do not impose that auto-regulation should occur,
but the system is free to exploit it by developing binding sites for TF3.

The models of TF binding and transcription regulation are precisely the same
as in Chapter 2. However, in order to compute the output concentration of
TF3, we now need to take into account the effects of auto-regulation. We do
this in the following way. Below, we describe our model for the dynamics of the
concentration of TF3. Given input concentrations of TF1 and TF2 (c1 and c2),
the concentration of TF3 will converge under these dynamics towards a steady
state. This steady state is considered the output of the gate.

Dynamics of concentration of TF3
Analogous to Equation 3.8, we model the dynamics of the concentration c̃3(t̃) of
TF3 by the following differential equation:

dc̃3
dt̃ = a pon(c̃1, c̃2, c̃3)− d c̃3, (3.10)

which can again be simplified using dimensionless variables ci(t) = (a/d)c̃i(t̃):

dc3
dt = pon(c1, c2, c3)− c3. (3.11)

Note that pon is now a function of all three TF concentrations. Two of these
concentrations, c1 and c2, are considered to be the inputs of the gate. Assuming
that the system is mono-stable, each set of input concentrations (c1, c2) defines
an equilibrium value c∗3 which is considered the output of the system. This
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equilibrium value obeys the condition c∗3 = pon(c1, c2, c∗3). It can be computed
straightforwardly by propagating the differential equation 3.11 for any initial
condition c3(0) until c3(t) converges.

Since auto-activation is allowed, the system can in principle become bi-stable
(see Box 3.1). In bi-stable systems, the output concentration c∗3 is not uniquely
defined by the input concentrations, as it depends on the initial condition c3(0).
Hence, such systems do not qualify as logic gates. Our fitness function (described
below) is therefore designed to penalize bi-stability. However, as the method does
not exclude bi-stability for all possible input values, we also check a posteriori if
the results are bi-stable.

Fitness function
The fitness function that we use is of the same type as the one in Chapter 2
(see 2.A), except that we now consider c∗3 to be the output of the gates in stead of
pon. To avoid bi-stability, we always compute the steady state value c∗3 twice for a
given input (c1, c2): once using initial condition c3(0) = 0, and once for c3(0) = 1.
In the fitness function, both resulting steady state values are compared to the
goal function; if they are significantly different, at least one of them must deviate
significantly from the goal, which directly results in a fitness penalty.

3.3 Results

We now turn to the results of our simulations; we start with the genetic switch
and then continue with the logic gates.

3.3.1 The genetic switch

Within less than 1000 generations, a good switch is found; in the subsequent
generations the result changes very little. In different runs, with various random
seeds and population sizes, we always find very similar response curves and
promoter architectures, irrespective of the initial DNA and TF sequences.

Network and promoter architectures
The basic architecture of the final network is that of the classical toggle switch
(Cherry and Adler, 2000; Warren and ten Wolde, 2004a, 2005). It is remarkably
similar to the bacteriophage λ switch. Gene tf1 cooperatively represses gene tf2
and vice versa. However, the promoter regions (see Fig. 3.1) show that both
genes also exploit auto-activation, which stabilizes the steady states and increases
the speed at which these are reached. The phage λ uses this mechanism too: it
is known that the λ repressor CI not only represses Cro, but also auto-activates
its own expression by recruiting RNAp to its promoter. Indeed, mutants of the
phage that do not auto-activate show a strongly reduced stability of the lysogenic
state (Ptashne, 2004).

The mutual repression is achieved by homo-cooperative repression modules.
These modules directly overlap with the core promoter, but also completely
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Figure 3.1: Response plots and promoters of the genetic switch emerging from the simu-
lations(Cherry and Adler, 2000; Warren and ten Wolde, 2004a, 2005). Binding sites that
have an activating effect are depicted in blue; gray sites lead to repression of transcription.
Dark colors denote high affinities, light colors mean low affinites. The basic architecture
of the final network is that of the classical toggle switch. Note that the two genes have
nearly identical response plots, apart from the interchanged axis labels. Both the cartoons of
the cis-regulatory regions and the response plots show that both genes auto-activates and
represses each other. The cooperativity of the activation and repression modules results in
steep response curves, which is required for bistability (Cherry and Adler, 2000; Warren and
ten Wolde, 2004a, 2005).

overlap the auto-activation modules. The repression modules therefore act at
the same time as direct repressors and as anti-activators. Again, this feature is
mirrored in the phage λ. The Cro binding sites all overlap with the CI operators.
Therefore Cro not only directly represses cI, but also prevents auto-activation by
CI; Cro is both a repressor and an anti-activator of cI.

The response plots of both genes are remarkably similar (see Fig. 3.1). The
promoter structures are also very much alike. This may be somewhat surprising,
since the fitness function is not symmetric in both genes: it prescribed the
dynamics of c1 only. However, implicitly the evolutionary pressures on c1 and c2
are very similar. When c2 is high, it has to repress tf1 as strongly as possible,
which implicitly means that c2 should increase rapidly to its maximal value;
when c2 initially is low, it should not repress tf1, which implies that it should
decay as fast as possible. Therefore, the requirements on the response of tf2 are
similar to the requirements on tf1. Interestingly, when we explicitly imposed these
requirements on c2 by adopting a fitness function that prescribed the dynamics
of both genes, a functional switch was never found (within a simulation time of
20.000 generations). Instead, the system was trapped in a local fitness maximum
where c1 ≈ c2 ≈ 0.5. This illustrates the fact that, as we demonstrate below,
the evolutionary path taken in case of the asymmetric fitness function is not
symmetric in both genes, even though the final state is.
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Time traces
We explained that, in order to compute the fitness of a given network, we compute
time traces of the system for two initial conditions. Fig. 3.2 shows three examples
of such time traces. The examples are taken from three different stages of the
evolutionary process: from the initial generation, from the final generation, and
from an intermediate one (generation 400). In generation 0, the DNA and TF
sequences are still random, and therefore none of the genes has a functional
promoter1 (p(i)

on(c1, c2) ≈ 0). Therefore the concentrations decay exponentially
(Fig. 3.2(a) and (b)). The fitness value of such a network is very low: F = 0.39.
After 400 generations, the system is still mono-stable (Fig. 3.2(c) and (d)), but the
equilibrium point is reached very slowly— the explanation follows below. This
leads to a much higher fitness value: F = 7.33. In the final result, depicted in
Fig. 3.2(e) and (f), the switch is fully functional: concentration c1 indeed converges
quickly to cmax or cmin depending on the initial condition. This network is truly
bi-stable (F = 7.62).

Phase portraits
The dynamics of these networks can better be assessed from the phase portraits
of the corresponding differential equations. In Fig. 3.3, the time traces from
Fig. 3.2 are depicted on top of the vector field ~v(c1, c2) defined by the differential
equations:

~v(c1, c2) =
(
p
(1)
on (c1, c2)− c1
p
(2)
on (c1, c2)− c2

)
. (3.12)

The phase portrait in Fig. 3.2(a), belonging to a network from generation
0, shows that all concentrations directly decay to zero irrespective of the initial
conditions. This is markedly different from the phase portrait of the final solution,
Fig.3.2(c). This figure clearly features two separate basins of attraction, separated
roughly by the diagonal c1 = c2. The two corresponding stable equilibria are
(c1, c2) = (1.0, 0.0) and (c1, c2) = (0.0, 0.92).

Fig. 3.2(b), the phase portrait after 400 generations, is less straightforward. It
confirms that the network is still mono-stable at this stage, the equilibrium point
being (c1, c2) = (0.6, 0.0). But at low values of c2, the concentrations change
very slowly, as indicated by the short vectors in that region; as a result, it takes
a long time for the system to converge to the equilibrium concentrations. This
way, the network obtains a relatively high fitness value even though it is not
bi-stable. The slow convergence is due to the fact that TF1 auto-activates its
own production: TF1 binds cooperatively to three binding sites on the promoter
of tf1. We can understand the consequences of the auto-activation as follows. As
the basal transcription rate p(1)

on (0, 0) is non-zero, it must be that at sufficiently

1As in this case none of the promoters is functional, the initial conditions (with reasonably high
concentrations) are not realistic. However, the time traces are computed only to test if the networks
are bi-stable and therefore are not required to correspond to biologically relevant scenarios.
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(a) Initial system. Starting condition:
c1 = 0.8, c2 = 0.2.
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(b) Initial system. Starting condition:
c1 = 0.2, c2 = 0.8.
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(c) Intermediate result after 400 gen-
erations. Starting condition: c1 = 0.8,
c2 = 0.2.
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(d) Intermediate result, after 400 gen-
erations. Starting condition: c1 = 0.2,
c2 = 0.8.
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(e) Final result, after 3000 genera-
tions. Starting condition: c1 = 0.8,
c2 = 0.2.
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(f) Final result, after 3000 generations.
Starting condition: c1 = 0.2, c2 = 0.8.

Figure 3.2: Time traces of the networks resulting from the simulation. In every generation
of the algorithm, we test the quality of each network in the population by computing the
dynamics of the concentrations as a function of time. We use two sets of initial conditions:
(c1, c2) = (0.8, 0.2) (Figs. (a), (c), (e)) and (c1, c2) = (0.2, 0, 8) (Figs. (b), (d), (f)). Figs. (a)
and (b) show time traces of a network from generation 0, which has random DNA and TFs.
The genes do not have a functional promoter yet, and therefore all concentrations decay
exponentially. Figs. (c) and (d) display the time traces of a network after 400 generations.
Gene 2 still does not have an active promoter, but gene 1 has developed a (weak) one. The
non-monotonous behavior of c1 in Fig. (d) reflects that gene 1 represses gene 2. After the
decay of concentration c2, c1 increases slowly, which is due to auto-activation of TF1. Finally,
in Figs. (e) and (f) the switch is complete. The system now clearly is bi-stable.
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Figure 3.3: Phase portraits of the systems of differential equations corresponding to (in-
termediate) results of the simulations. The thick blue lines correspond to the time traces
also shown in Fig. 3.2. Fig. (a) shows the typical behavior of a networks from generation 0
(before evolution). Since none of the genes has a functional promoter yet, there is only one
equilibrium point: (c1, c2) = (0, 0). Fig. (b) corresponds to an intermediate result, after 400
generations. The system still has only one equilibrium, (c1, c2) ≈ (0.6, 0), but this point is
approached only very slowly from initial condition (c1, c2) ≈ (0.2, 0.8). Fig. (c) depicts the
end result, which is clearly bistable; it has three equilibrium points, one of which is unstable.
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low concentrations of TF1 and TF2, dc1/ dt = p
(1)
on (c1, c2)− c1 > 0. This means

that if c1 is initially in this regime, it will rise until it is equal to p(1)
on . However,

due to the auto-activation, p(1)
on (c1, c2) is an increasing function of c1. For certain

affinities of the TF1 binding sites, dc1/ dt = p
(1)
on (c1, c2) − c1 stays positive yet

small for a considerable range of values of c1. As a result, c1 will increase very
slowly when it is in this range.

In generation 400, the role of TF2 is still limited. However, TF2 does already
repress TF1, as in the end result. Consequently, c1 decreases while c2 is large,
but increases again after c2 has decayed. This behavior contributes to the fitness
because the repression by c2 is most influential when the system starts from the
second initial condition (c1, c2) = (0.2, 0.8), in which case c1 should indeed be
low.

Evolutionary path
The state of the system after 400 generations illustrates the evolutionary path
taken in our simulations. This path can schematically be summarized as follows:

1. tf1 develops a functional promoter;

2. TF2 starts repressing TF1 if c2 is high;

3. TF1 develops auto-activation to slow down the dynamics; consequently, if
c2 is initially high, it stays high for a while, whereas if it is initially low, it
temporarily stays low;

4. The system becomes bi-stable due to the auto-activation of TF1;

5. TF2 develops a (low) basal expression to repress TF1 constitutively.

6. TF1 starts to repress TF2 if c1 is high;

7. TF2 develops auto-activation to increase the speed of convergence to the
steady state;

These steps occur roughly in the given order, even though some steps may be
reversed or occur in overlapping time intervals, depending on the initial conditions.

Presumably, the selection pressure applied in our algorithm is not comparable
to the selection pressure on real switches such as the phage λ; for that reason, we
do not claim that the path taken in the simulations is similar to the evolutionary
path that produced the phage λ switch.

3.3.2 Logic gates

We now turn to the logic gates. Refer to Table 2.1 for the definitions and names
of the different logic gates.

For each gate, we performed simulations with several initial conditions and
random seeds. Many of the logic gates resulting from our simulations indeed
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Figure 3.4: AND gate using auto-activation conditional on the presence of other TFs. The
regulated gene tf3 codes for a transcription factor TF3 that binds to its own cis-regulatory
region. The resulting auto-activation, however, depends on the presence of TF1 and TF2.
Fig. (b) shows the response plot of the cis-regulatory region depicted in Fig. (a).

exploit auto-regulation. Several gates, such as the AND and and ANDN gates use
the designs of Chapter 2 in some runs, and new designs using feedback in other
ones. Other gates, notably the NOR and the NAND, always use auto-regulation
in our simulations.

We identified two feedback mechanisms that are used in several gates; we
describe them below.

Conditional auto-activation
The first mechanism we termed conditional auto-activation. This mechanism
occurs regularly in the gates in which cooperative activation plays a key role,
such as the AND and the ANDN gates. As an example, Fig. 3.4 shows the
design of an AND gate. Overall, this AND gate is very similar to the one
described in Chapter 2: a hetero-cooperative activation module is responsible for
activation in the presence of both TFs. However, the hetero-cooperative module
now also contains a binding site for TF3, which leads to a positive feedback loop.
Importantly, TF3 bound at its binding site cannot directly recruit RNAp to the
promoter; instead, it binds cooperatively with the hetero-cooperative activation
module. As a result, the auto-activation is conditional on the presence of TF1
and TF2. As the concentrations of TF1 and/or TF2 increase, the auto-activation
gains in strength, leading to a sharp response.

The basic mechanism can be studied in a much simpler system. In Fig. 3.5,
we compare two activation mechanisms for a transcription factor TF1 regulating
a gene tf2 that codes for another transcription factor, TF2. In the first scenario,
only a homo-cooperative activation module is present, consisting of two binding
sites for TF1. In the second secenario, we replace the auxiliary TF1 site by a
binding site for TF2, thus introducing conditional auto-activation (see Fig. 3.5(b)).
We optimize the binding sites in both designs in order to maximize the steepness
of response, and compare the response plots (Fig. 3.5(a)). The design using
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Figure 3.5: Conditional auto-activation vs. cooperative activation. The plot (a) compares
the response plots corresponding to the two activation systems depicted schematically in
Fig. (b). In both alternatives, TF1 activates the expression of a gene tf2 coding for another
transcription factor, TF2. In the first scenario, TF1 binds cooperatively to a pair of activator
sites. In the second scenario, one TF1 site is replaced by an operator for TF2, which introduces
a positive feedback loop that depends on the presence TF1. The binding affinities of all sites
are chosen such as to optimize the sharpness of the response. The plots demonstrate that the
responses of the two designs are comparable.

conditional auto-activation indeed produces a response that is comparable in
steepness to the conventional design with two binding sites. It is, however, not
better than the conventional one. This explains why cooperative activation and
conditional auto-activation show up as alternatives in our simulations.

Auto-activation can sharpen repression

A second feedback pattern emerges in gates in which repression is important, such
as the NAND, NOR and EQU gates. As it turns out, whenever steep repression
is required, we also find auto-activation. Fig. 3.6 shows a representative design
for the NAND gate that uses auto-activation; the resulting response plot shows
an excellent NAND gate— in fact, it performs much better than the design in
Chapter 2.

To explain the mechanism that is responsible for the steepness of the switch,
we again analyze a less complex example. In Fig. 3.7, we compare two scenarios.
In the first scenario, a transcription factor TF1 cooperatively binds to a pair of
repressor sites to inhibit the gene tf2, which codes for another transcription factor
TF2. In the second scenario we use the same configuration, but add an activator
site for TF2. Thus, auto-activation competes with cooperative repression. In
order to compare the two designs, we keep the basal expression level of the two
scenarios fixed, and also impose the concentration chalf1 at which the transcription
rate is half-maximal. Given these constraints, we optimize the steepness of both
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Figure 3.6: NAND gate using auto-activation to sharpen the repression curve. The regulated
gene tf3 is repressed by a hetero-cooperative module consisting of binding sites for TF1 and
TF2 (Fig. (a)). However, tf3 codes for a transcription factor TF3 that binds to its own
cis-regulatory region. At low concentrations of TF1 and TF2, the resulting auto-activation
competes with the repression module; as a consequence, the response to the concentrations
of TF1 and TF2 is very sharp (Fig. (b))
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Figure 3.7: Repression combined with auto-activation. Fig. (a) shows the response plots of
two slightly different repression systems, shown schematically in Fig. (b). In both cases, a
transcription factor TF1 represses a gene tf2 coding for a second transcription factor by
binding cooperatively to two repressor sites. In the second scenario, an activator site for TF2
is present as well, which induces auto-activation. The second scenario constitutes a more
effective repression system than the first. The presence of auto-activation allows for a much
weaker core promoter (qp ≈ 1); as a result, the displacement of RNAp from the promoter by
the repressor is more effective as the concentration of TF1 increases.
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designs2. As can clearly be seen in Fig. 3.7(a), the second scenario results in a
much more effective repression. Qualitatively, this can be understood as follows.
In the absence of TF1, the gene TF2 auto-activates. As a result, the bare promoter
strength (RNAp affinity) does not need to be very high in order to obtain a
considerable expression level. At high concentrations of c2, the low RNAp affinity
makes it easier to displace RNAp from the promoter, leading to a more complete
repression.

3.4 Discussion, conclusions and outlook

We showed that our model can be used to design transcription networks that
can exploit feedback. We used it to design a genetic switch. Imposing only
that the system should have two stable states, a switch was obtained that is
remarkably similar to the phage λ switch. The design used mutual repression
and auto-activation to create two stable states.

We also used the model to design logic gates that are free to use feedback.
The resulting designs shed new light on the use of auto-regulation. The result
show that auto-regulation is likely to emerge in quite common functions such
as AND gates. We described two mechanisms that are used in multiple gates.
First, if auto-activation is conditional on the presence of other TFs, it can give
rise to sharp responses that are not due to multiple binding sites of the TF. This
mechanism can be an alternative to cooperative activation, for instance if the
input TF is not capable of homo-cooperative binding. Second, auto-activation
can strongly contribute to the sharpness and effectiveness of repression systems.
Whenever sharp repression is required, auto-activation can be useful. These
mechanisms may help explain the large number of auto-activators present in
E. coli.

We showed that auto-activation can be particularly useful in repression systems.
Therefore, it would be interesting to test if TFs that auto-activate are often
regulated by repressors.

In none of the simulations we found auto-repression. On the one hand, this
is rather surprising given the large number of known auto-repressors in E. coli.
On the other hand, we mentioned in the introduction that the known functions
of auto-repression are that it increases stability and can create rapid responses.
In our method, such qualities are not being rewarded: as we use deterministic
differential equations to model the dynamics of the gates, we ignored fluctuations,
and since our selection scheme is based on the steady states of the system, the
response speed was irrelevant too. In reality, these qualities may of course be
important, which might explain the abundance of auto-repressors in E. coli. In
future work, it would be interesting to use stochastic models or to select for fast
responses; perhaps auto-repression shows up under those conditions. Indeed,

2In fact, the first scenario is fixed by these constraints, whereas in the second scenario one degree
of freedom remains undetermined, allowing for optimization.
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preliminary results suggest it does.
As we ignored response speed and stability in our approach, the resulting

designs could be bad performers on these criteria. We mentioned that auto-
activation is indeed known to reduce response speed in some situations and to
increase the amplitude of fluctuations. Clearly, this may be a problem in some
cases. On the other hand, a slow response can be turned into a positive feature
as well, as it filters high-frequency noise, and fluctuations may in some cases
be beneficial, for instance for stochastic switching (Kussell and Leibler, 2005).
Indeed, the fact that auto-activation is found so often in E. coli demonstrates
that the associated reduction of the response speed and the amplification of
fluctuations can apparently be circumvented, tolerated or used.
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Chapter 4

Chance and necessity in
chromosomal gene distributions

By analyzing the spacing of genes on chromosomes, we find
that transcriptional and RNA-processing regulatory sequen-
ces outside coding regions leave footprints on the distribu-
tion of intergenic distances. Using analogies between genes
on chromosomes and one-dimensional gases, we constructed
statistical null models to describe the data. We have used
these models to estimate typical upstream and downstream
regulatory sequence sizes in various species. Deviations from
the models reveal bi-directional transcriptional regulatory re-
gions in S. cerevisiae and bi-directional terminators in E. coli.
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4.1 Probability distributions of intergenic distances

More and more genomes get sequenced and the locations of their open reading
frames (ORFs) can be determined to a high accuracy. As a result, we now know
the chromosomal locations of most genes of a variety of species. This information
has been studied and used extensively for various aims. In this chapter, we step
back and wonder: Can we not only characterize, but also understand the way
genes are distributed over chromosomes?

We focus on the distributions of distances between genes on chromosomes.
Presumably, these distributions are shaped in part by random processes. By
various mechanisms, base pairs are regularly inserted or deleted from the genome,
and sequences are inverted, shuffled and duplicated. Such processes tend to
randomize the distribution of ORFs over a given chromosome. On the other
hand, natural selection could lead to a bias in the actual distribution if there
is a functional reason for genes to be spaced in a particular way (Warren and
ten Wolde, 2004b). We use stochastic models to study which features of the
distribution of intergenic distances can be explained by random processes only,
and which features require an explanation in terms of functionality.

It turns out that models about the distribution of genes on a chromosome can
typically be mapped to existing models of 1D gasses: particles in a one-dimensional
space. This allows one to use standard methods of statistical mechanics to compute
the quantities of interest.

Interestingly, we thus identify universal features that can be explained by
statistical considerations only. But the deviations from the random models are
at least as interesting. We study the distributions of genes in Saccharomyces
cerevisiae and Escherichia coli in detail, and show that the deviations from
our random models indeed lead to interesting predictions about transcription
initiation and termination in these species.

4.2 Models

In this section we introduce three models: the “Ideal-Gas” model, the “Tonks-Gas”
model, and the “Constant Force” model. Each model follows from the previous
by imposing one extra constraint to the system.

4.2.1 The Ideal-Gas model

The “Ideal-Gas” (IG) model is the simplest and most naive model. It assumes
that the ORFs on a chromosome are distributed at random. This assumption
leads to the following predicted properties of the distance distributions.

In the first place, the probability distribution of the distances between all
ORFs, measured from their closest ends, can be computed analytically and to
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Figure 4.1: Distance distributions of S. cerevisiae chromosome 4. The two figures at the top
compare the distance distributions to the predictions of the “Ideal-Gas” (IG) model, while the
lower two show the predictions of the “Tonks-Gas” (TG) model. The left figures show that,
at long distances, the IG model and the TG model are equivalent and both correctly describe
the data. The figures at the right zoom in on the short-distance data. It is evident that the
peak in the data at distances shorter than 1 kbp is not explained by the IG model. The TG
model does show a peak (correlations) at short distances, but this peak looks qualitatively
different from the data. In particular, at n < 300 bp, the real data show a “dip” in the
distribution that is not present in the TG model.
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good approximation is a straight line:

PIG, all(n) = 2
L

(
1− n

L

)
. (4.1)

Here L is the length of the chromosome, and n is the distance measured in
base pairs. Figures 4.1(a) and (b) compare this model to the distribution of
S. cerevisiae. As one can verify, this model applies at long distances , but at
shorter distances this description breaks down: there is a clear peak in the actual
distribution at short distances (n < 1000 bp) which is not explained by the
Ideal-Gas model.

The second prediction is that the distribution of distances between neighboring
genes (i.e. the lengths of intergenic regions) should be geometric (exponential) as
long as n� L. The exponent is proportional to the density of genes:

PIG(n) = ρ e−ρn, (n� L). (4.2)

where the number density ρ is defined as ρ ≡ N/L, N being the number of
genes. Clearly, an geometric distribution is a good description for distances
n > 300 bp in S. cerevisiae (see Fig. 4.1(a)), and even for shorter distances in
E. coli (Fig. 4.1(b)), but at very short distances this behavior breaks down in
both cases. Besides, the value of ρ predicted by the IG model is too low to fit the
actual exponential decay.

4.2.2 The Tonks-Gas model

To account for the peak in the distance distributions at short distances, we
introduce an extra component to the model. A clear error in the IG model is
that it allows the genes to overlap much too often. The S. cerevisiae genome, for
example, is very dense: about 72% of the genome is occupied by ORFs. If the
genes would be distributed according to the IG model, then 78% of the genes
should overlap with at least one other gene1, whereas in reality, only about 9%
do.

For simplicity, we now assume that genes do not overlap at all, but otherwise
are distributed at random. This model is formally equivalent to a one-dimensional
gas of polydisperse hard particles, also known as a poly-disperse Tonks Gas (Tonks,
1936). The consequence of the assumption that overlap never occurs, becomes
visible if we compare the Tonks-Gas (TG) distribution with the IG distribution.
Indeed, the Tonks-Gas distribution has a peak at very short distances (see
Fig. 4.1(d)), but is indistinguishable from the IG model at longer distances

1If the average size of a gene is 1350 bp, then on a chromosome with length 1.5Mbp and containing
830 genes (packing fraction 72%) the probability for a certain gene to not overlap with any other
gene equals (1− 2× 1350/1 500 000)829 ≈ 0.22.
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(Fig. 4.1(c)). Also, the nearest neighbor distribution changes to

PTG(n) =
(

ρ

1− θ

)
e−nρ/(1−θ), (4.3)

where θ ≡ Nµ/L is the packing fraction and µ is the average gene length. Note
that the average length of the intergenic regions decreases with a factor (1− θ)
compared to the IG model.

The TG model clearly shows that “excluded-volume” interactions between the
genes can explain, on the one hand, the peak in the distance distribution at short
distances, and on the other hand the steepness of the exponential curve fitting
the distribution of intergenic regions. However, there still is a clear discrepancy
between the data and the Tonks-Gas model, especially in the S. cerevisiae case.
This discrepancy is that for very short distances (roughly, n < 200 bp), the actual
data show a clear dip (see Fig. 4.1 and 4.3(a)). Apparently, genes are not in each
others close proximity as often as expected.

4.2.3 The Constant-Force model

The observation that ORFs are rarely very close together (see Fig. 4.1 for Sac-
charomyces cerevisiae) inspires the definition of the Constant-Force (CF) model,
illustrated in Fig. 4.2. We hypothesize that the underrepresentation of closely
spaced ORFs is caused by functional sequences directly upstream and downstream
of the ORFs, which we call upstream and downstream control regions (UCRs and
DCRs). UCRs include basal promoters, cis-regulatory regions and 5’ untrans-
lated regions (UTRs); DCRs consist of 3’ UTRs, transcriptional terminators and
RNA-processing signals. If ORFs approach each other closely, these regions need
either to overlap or to be very short, which makes such configurations less likely.
To test this hypothesis, we divide the intergenic regions into three subsets, called
tandem (T), convergent (C) and divergent (D). (See Fig. 4.2.) Intergenic regions
in subset T should contain one DCR and one UCR, whereas C and D intergenic
regions contain two DCRs and two UCRs respectively. As UCR sequences are
generally longer than DCRs, we expect that D regions are on average longer than
T regions and C regions are shortest, which is indeed the case (see Figs. 4.3(a)
and 4.4).

These observations inspire the following extension to the Tonks-Gas model.
We assume that all ORF configurations are equally probable, except for the
following constraints: (i) ORFs do not overlap; (ii) UCRs and DCRs can overlap
with each other or with ORFs, but every overlapping base pair (bp) in a particular
configuration makes this configuration a factor q less probable. For simplicity, we
assume that in a given organism all UCRs and DCRs have a fixed length, π and
τ respectively.

This model is equivalent to a one-dimensional system of hard particles with a
finite-ranged, repulsive, constant-force interaction. Tandem, convergent and diver-
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Figure 4.2: The Constant-Force model. This model assumes that a 5’ UTR, a basal promoter
and a cis-regulatory region are present upstream of every ORF. We call this the upstream
control region (UCR), and assume it has a fixed size π. Downstream of each ORF, the 3’
UTR and possibly a transcriptional terminator and RNA processing signals are present, to
which we jointly refer as the downstream control region (DCR), assumed to have length τ .
The figure shows that ORFs neighboring on the DNA can have three mutual orientations:
divergent (D), tandem (T) or convergent (C). This also leads to three kinds of intergenic
regions: D regions contain two UCRs, while T regions contain one UCR and one DCR, and
C regions have two DCRs. In S. cerevisiae, the frequencies of D, T and C regions are 26.3%,
48.3% and 25.4% respectively, which is close to the random proportions 1:2:1. This holds for
most fungi. In E. coli, T regions are more frequent due to the organization of its genes in
operons (17.5%, 66.7% and 15,7%).

gent ORF pairs interact at a range π + τ , 2τ and 2π, respectively. This mapping
enables us to use the formalism of statistical physics to compute the probability
distributions corresponding to this model analytically (see Appendix 4.A).

4.3 Results

We have used the CF model to study the distributions of intergenic distances in
more detail. Below, we describe the results for E. coli and several other fungal
species.

4.3.1 The CF model fits the C and T distribution of S. cerevisiae

The CF model fits the distributions of S. cerevisiae convergent and tandem
intergenic distances remarkably well (see Fig. 4.3(c); we describe the fit pro-
cedure in 4.C). The fit parameters are τ = 61bp for DCRs and π = 196 bp
for UCRs. These numbers provide a course estimate of the space required for
the transcriptional and translational regulatory signals and RNA processing in
S. cerevisiae.
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Figure 4.3: Probability distributions of intergenic distances in S. cerevisiae and E. coli. (a)
Probability distributions of intergenic regions in S. cerevisiae. The distributions of distances
between convergent (C), divergent (D) and tandem (T) gene pairs. C intergenic regions are,
on average, shorter than T regions; the D regions are longest. Note also that the divergent
distribution has a bimodal shape, with a peak at n ≈ 275 bp and one at n ≈ 500 bp. Inset:
the distribution of all intergenic regions is exponential for distances larger than 300 bp (scale
parameter: 335 bp), but has a “dip” at shorter distances. This dip, we argue, is a footprint
of UCRs and DCRs. (b) As panel (a), but for E. coli. The T distribution in the main plot is
exponential, except for an accumulation in the first bin. This accumulation is the result of
intergenic regions inside operons, which are not separated by control regions and therefore
can be arbitrarily close together (Lesnik et al., 2001). The C distribution is also exponential,
except for a peak at 20–60 bp, where S. cerevisiae has a “dip” instead. We predict that
this peak is the result of bi-directional terminator sequences. The inset again shows that
the distribution of all intergenic regions is largely exponential (scale parameter: 145 bp).
(c) Simultaneous fit of the Constant Force (CF) model to the C and T distributions of
S. cerevisiae. The model fits the data surprisingly well. (d) The D distribution of S. cerevisiae
and the expected distribution according to the CF model. Clearly, the bi-modal shape of the
data is not consistent with the CF model. We predict that the set of divergent intergenic
regions in S. cerevisiae consists of two subpopulations: those containing two independent
cis-regulatory regions, responsible for the second peak, and those containing one bi-directional
cis-regulatory region.
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Figure 4.4: Distributions of intergenic distances, broken down into three different subsets
(convergent, tandem, divergent pairs), for four fungi and four additional eukaryotes. Consis-
tently, the convergent gene pairs are, on average, closer together than the tandem ones. The
divergent genes are furthest apart. Note also that the divergent distribution is bimodal for
all fungi, suggesting the presence of bi-directional promoters in all of them.
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Name of organism UCR length/bp DCR length/bp q

S. cerevisiae 196± 4 61± 1 0.985± 0.001
C. glabrata 296± 4 66± 2 0.983± 0.001
K. lactis 295± 5 38± 2 0.987 ± 0.001
D. hansenii 141± 4 28± 2 0.976± 0.001

Table 4.1: Estimates for the UCR and DCR sizes for various fungal species. The errors given
in the table are the uncertainties of the fit parameters and as such should not be interpreted
as variances of these quantities in the genome.

Our UCR length prediction of 196 bp is in excellent agreement with the
distribution of transcription-factor-binding sites near S. cerevisiae start codons,
which has its peak at 100–200 bp from the start codon (Harbison et al., 2004). Our
DCR prediction of 61 bp is supported by bioinformatics analyses of S. cerevisiae
3’ RNA processing signals, which show that the majority of these sequences is
within 20–90 bp of the stop codon (van Helden et al., 2000). However, Graber et
al. predict longer 3’ UTRs (Graber et al., 2002) and recent experiments show that
the median of 3’ UTRs lengths is ≈ 91 bp (David et al., 2006), which suggests
that our DCR estimate is on the low side. In Appendix 4.B we show that more
refined models can provide quantitative agreement.

4.3.2 Typical UCR and DCR sizes for other fungi

We repeated this approach to estimate the UCR and DCR lengths for three
additional fungi using only the ORF coordinates as input. (See Table 4.1 and
Fig. 4.7). We found that UCRs are consistently longer than DCRs. The UCR
and DCR lengths seem to vary independently of each other, and no dependence
on gene density is apparent. Recently, it has been shown that the distribution
of “rigid DNA” in cis-regulatory regions of fungi correlates with the position
of transcription-factor-binding sites (Tirosh et al., 2007). Our estimates for the
UCR lengths correlate well with the position of rigid DNA in these fungi.

4.3.3 S. cerevisiae contains many bi-directional UCRs

We now turn to the spacing of divergent pairs in budding yeast. Interestingly,
the corresponding distribution has a bimodal shape (see Fig. 4.3(d)) that is even
more pronounced in other fungi (Fig. 4.6). The first, narrow peak is centered on
275 bp; the second peak is broader and is maximal around 550 bp. This shape is
not consistent with the CF model.

Apparently, many divergent intergenic regions are very short: 29% are <
300 bp. Because few (10%, 280 out of 2801) tandem intergenic regions, containing
only one UCR, are < 200 bp, it seems unlikely that two independent UCRs could
fit in divergent intergenic regions with a length of the order of 275 bp. Hence we
propose that the set of divergent gene pairs is composed of two sub-populations.

The first population, corresponding to the second peak, consists of pairs of
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genes that are regulated independently. The other sub-population consists of
gene pairs that share a bi-directional cis-regulatory region, that is, a regulatory
region containing elements such as transcription factor binding sites that regulate
the expression of both flanking genes. Such a coupling could force genes to
preserve their proximity, thus causing the deviation from the CF model. While
bi-directional cis-regulatory regions are ubiquitous in E. coli (Warren and ten
Wolde, 2004b), only a few bi-directional UCRs have been reported in S. cerevisiae
(Bell et al., 1995; Liu and Xiao, 1997; Aranda et al., 2006; Ishida et al., 2006).
Based on Fig. 4.3(d), we predict that about 30% (426 out of 1471) of the divergent
pairs are regulated by a shared cis-regulatory region. (A file containing the best
candidates is available online2.)

If this is true, then one would expect co-expressed divergent pairs to be
overrepresented in the first peak rather than the second. We tested this using a
large set of expression data; indeed, this is the case for positively correlated pairs
(p < 0.002; see 4.D.1 for the details of the analysis). Negatively correlated pairs
are typically not in the first peak. This contrasts with bi-directional UCRs in
bacteria, in which dual regulators often act as a repressor for one of the genes
and as an activator for the other, resulting in anti-correlated expression patterns.

We also used Gene Ontology (GO) annotations (Ashburner et al., 2000) to
test whether the divergent neighbors in the first peak are more often functionally
related than those in the second peak. Adopting the information-theoretic measure
of Resnik (1998) to quantify the similarity between GO terms, we indeed found
this to be the case (p < 9× 10−4 for biological process, p < 5× 10−5 for cellular
component; see 4.D.2).

See Box 4.1 on the BIO3–5 cluster for an illustrative example of a possibly
bi-directional promoter in S. cerevisiae.

4.3.4 E. coli has many bi-directional terminators

As mentioned above, bi-directional promoters are well-characterized in E. coli.
We now show that the distribution of convergent gene pairs in E. coli provides
evidence for bi-directional transcriptional terminators, which are much less well
described.

In accordance with the CF model, the C distribution has an exponential
signature (see Fig. 4.3(b)). Convergent intergenic regions are expected to contain
two DCRs. Given the typical size of Rho-independent terminators (≈ 40 bp)
the CF model predicts a dip at short distances (< 80 bp). Instead, there is a
significant excess of intergenic regions of size 20 to 60 bp (p = 10−13 ; see 4.D.3).
It is unlikely that two terminators would fit into such short intergenic regions.

Rho-independent terminator sequences function by stem–loop formation of the
RNA transcript, and hence are largely palindromic. As the complementary strand
of a palindromic sequence is a palindrome too, some terminators can function
bi-directionally. Indeed, a few bi-directional terminators have been identified

2http://www.sciencedirect.com/science/journal/01689525
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Box 4.1: The BIO3, BIO4, BIO5 cluster in Yeast

It is instructive to discuss one interesting example in Yeast: the BIO3, BIO4 and
BIO5 cluster (Phalip et al., 1999). All genes in this cluster are involved in the biotin
biosynthesis pathway. BIO3 and BIO4 are transcribed in a divergent orientation
from a short intergenic region of length 222 bp (which falls into the first peak in the
length distribution of divergent intergenic regions) and are tightly co-expressed. The
orthologs of BIO3 and BIO4 in E. coli are BioA and BioB; these genes are closely
spaced divergent neighbors as well (87 bp), and are simultaneously repressed by BirA
binding to their shared UCR. Phalip et al. already speculate that a similar mechanism
is at work in S. cerevisiae (Phalip et al., 1999), but the mechanism of co-expression of
these genes has not been studied in detail. BIO4 and BIO5 are tandem neighbors,
and are only 55 bp apart, Clearly, this cluster has many of the features that we see
in our statistical analysis. We therefore suggest that detailed experimental work on
the regulation of the BIO cluster might illuminate some important mechanisms that
shape the distribution of genes over the S. cerevisiae chromosome.

experimentally (Postle and Good, 1985). Moreover, Lesnik et al. (2001) used an
algorithm called RNAMotif to identify putative terminators and predicted that
many of them could function bi-directionally. Given that most terminators in
E. coli start within 60 bp downstream of their ORF (Lesnik et al., 2001), genes
sharing a bi-directional terminator should usually be close together; this suggests
that the peak in the distribution at short distances is caused by bi-directional
terminators.

To explain the data, at least 86 bi-directional terminators should be present;
this would imply that as many as 23% of the operons use a bi-directional terminator
(see 4.D.3).

We tested this, using the data of Lesnik et al. (2001)3. Indeed, putative
terminators that RNAMotif classifies as bi-directional have a tendency to occur in
short, convergent intergenic regions, corroborating our hypothesis (p < 0.0003,
see 4.D.4 and 4.D.5) (Salgado et al., 2000).

4.3.5 The operon structure of E. coli is evident from the T distribution

The T distribution of E. coli, like the C distribution, nicely follows the exponential
distribution predicted by the CF model. However, at short distances, a clear
excess of pairs is found. As we pointed out in the introduction section, this excess
is due to the operon structure of the E. coli genome. This hypothesis can be
tested conclusively by computing the distribution of distances between neighboring
tandem genes on the borders of operons for all known operons. Fig. 4.5 shows
that in this distribution the peak at short distances has completely disappeared;

3Although no statistical test is presented, a similar conclusion is reached by Yachie et al. (2006)
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Figure 4.5: Distribution of distances between ORFs at borders of operons in E. coli. Note
that tandem neighbors are not likely to be very close together (n < 100). Tandem neighbors
within the same operon do not show this ”repulsion” (Fig. 4.3). This supports the idea that
the repulsion between ORFs observed in all species, is indeed a consequence of regulatory
regions.

this conclusively shows that this peak is due to tandem genes within operons.
Fitting the CF model to the T distribution results in τ + π ≈ 125 bp, which is as
expected.

The fact that genes within operons are much more closely packed than those
at the boundaries of operons, has been recognized some time ago, and has been
used for some years to predict operon boundaries (see, for instance, Salgado et al.
(2000)).

4.4 Concluding remarks

The largest limitation of the current model is the assumption that the UCRs and
DCRs have fixed sizes. Especially in higher eukaryotes, UCR and DCR lengths
often have a high variance; in these cases, it is necessary to include this in the
model. In the Supplement we show that this can be done and how more realistic
potentials can be chosen.

That being said, the simple CF model describes many universal characteristics
of the gene spacing. It not only quantitatively describes the exponential decay
at large distances, but also the ”repulsion” at short distances due to UCRs and
DCRs in prokaryotes and eukaryotes alike. In E. coli and fungi, this repulsion
provides information about the typical length of UCRs and DCRs using only the
ORFs coordinates as input. The model can also serve as a null model for the
spacing of genes: deviations from it lead to meaningful predictions about the
presence of operons, bi-directional promoters or terminators.
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4.A The constant-force model

In this section we provide additional information about the Constant-Force (CF)
model.

4.A.1 Assumptions

As we explained in the main text, the CF model is based on three assumptions.
First, we assume that ORFs cannot overlap. Second, in a given organism, upstream
control regions (UCRs) and downstream control regions (DCRs) have a fixed
size (π and τ , respectively). Third, we assume that these control regions can
overlap with each other and with nearby ORFs, but that such overlaps are not
likely. More precisely, we assume that whenever a base pair from such a region
overlaps with another functional region, be it an ORF, a UCR or a DCR, it makes
that particular configuration a factor q less probable. For simplicity, we make no
distinction between the different kinds of overlap.

A useful analogy can be drawn with a physical system. The proposed model
is formally equivalent to a one-dimensional system of hard particles with finite-
ranged repulsive interactions. The interaction determined by our assumptions is
an interaction with a constant force. The range of the interaction depends on the
mutual orientation of the neighboring genes. Divergent gene pairs are separated
by two UCRs and therefore start interacting at a distance 2π. Convergent pairs
have two DCRs in their intergenic region and therefore have an interaction range
of 2τ . Lastly, intergenic regions between tandem pairs contain one DCR and one
UCR, leading to an interaction range π + τ . This analogy allows us to use the
formalism of statistical physics to compute the probability distribution of the
intergenic distances for this model analytically; the complete derivation follows
below.

4.A.2 Derivation of the distance distributions: CF interaction with fixed range

In the CF model described above, the interaction range of the particles depends
on their mutual orientation (convergent, divergent or tandem). We first derive
the distance distribution for a slightly simpler system, in which the interaction
range does not depend on the orientation.

We consider a one-dimensional space (representing the chromosome) of length
L′ containing N − 1 particles (representing ORFs). We choose to describe the
system in the micro-canonical ensemble, with fixed total energy E. The state of
the system can be described by a vector ~n = (n1, n2, . . . , nN ), where ni is the
length of the ith inter-particle space. The sum of these numbers, L ≡

∑
i ni, is

the total free space in the system. The value of L is fixed and L � 1. As the
particles occupy part of the total space, L < L′.

For now we assume that the particles interact with a finite-ranged CF potential
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U(n), defined as:
U(n)
kBT

=
{
ε(r − n) if n < r,
0 if n ≥ r,

(A4.1)

where r is the range of the interaction, and ε is the energy associated with an
overlap of one base pair (in units of kBT ); it is related to q as ε = − ln(q).

In order to compute the probability distribution of intergenic distances, we
divide the system into two subsystems. Subsystem 1 (S1) is a particular, but
arbitrary, inter-particle space x, while subsystem 2 (S2) is the rest of the system.
We will compute the probability distribution P (nx) of the length nx of space x.
We define the multiplicity function of subsystem S2, called Ω2(L2, E2), as the
number of states accessible for S2 given the available free length for S2, L2, and the
available energy for S2, E2. Note that L2 = L−nx and E2 = E−E1 = E−U(nx).
Then the probability that inter-particle space x has length nx is proportional to
the number of states that are accessible to the rest of the system, S2, given that
x has length nx:

P (nx) ∝ Ω2
(
L− nx, E − U(nx)

)
. (A4.2)

By definition, the entropy σ2(L2, E2) of S2 is the logarithm of Ω2(L2, E2).
Therefore,

P (nx) ∝ eσ2(L−nx,E−U(nx)). (A4.3)
Assuming that nx is small compared to L and that U(nx) is small compared to
E, we can now expand the entropy as follows:

σ2(L− nx, E − U(nx)) = σ2(L,E)− nx
∂σ2(L,E)

∂L
− U(nx)

∂σ2(L,E)
∂E

+ . . .

(A4.4)

Note that by the standard Maxwell relations,

(∂σ2/∂E)L = 1/kBT and (∂σ2/∂L)E = p/kBT, (A4.5)

where T and p are the temperature and the pressure of the system. If N is large,
the higher order terms are negligible.

Now we can combine the expansion in Equation A4.4 with Equation A4.3 and
obtain:

P (nx) ∝ e−(nxp+U(nx))/kBT . (A4.6)
We can calculate this in full using the definition of the potential in Equation A4.1,
arriving at:

P (nx) =
{
c e−nx(λ−ε) if nx < r,
c e−nxλ+εr if nx ≥ r.

(A4.7)

Here λ is defined as λ ≡ p/kBT . As we picked inter-particle space x arbitrarily,
this probability distribution holds for all inter-particle spaces. The number c is a
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normalization constant. Given r and ε, the value of λ is fixed if we impose the
mean inter-particle distance: ∫

nxP (nx) dnx = L

N
. (A4.8)

Note that, beyond the interaction range, the distribution is exponentially
decreasing. Within the interaction range, the distribution is also exponential, but
the sign of the exponent depends on the size of ε: if the repulsion is strong (ε > λ),
the exponent becomes positive in the interaction range. We also note that if
either the range r or the repulsion ε is set to zero, the distance distribution simply
becomes a single exponential. This is the result for the Tonks-Gas model (Tonks,
1936).

4.A.3 CF interactions with different ranges

In the previous subsection we discussed a CF model in which each particle
interacts with its neighbors according to one fixed interaction range. In the
relevant case, however, the interaction range depends on the mutual orientation
of the particles. The interaction potentials for convergent (C), tandem (T) and
divergent (D) pairs can be written as follows:

UC(n)
kBT

=
{
ε(2τ − n) if n ≤ 2τ ,
0 if n > 2τ ,

UT(n)
kBT

=
{
ε(τ + π − n) if n ≤ τ + π,
0 if n > τ + π,

(A4.9)

UD(n)
kBT

=
{
ε(2π − n) if n ≤ 2π,
0 if n > 2π.

It is rather straightforward to adjust the calculations in the previous section to
this case.

We again divide the system in two parts, S1 and S2, in which S1 consists of one
inter-particle region called x, and S2 is the rest of the system. The derivation in
the previous section applies without alteration up to Equation A4.6, irrespective
of the orientation corresponding to x (that is: C, T or D). Only in the step from
Equation A4.6 to Equation A4.7, the difference in the potentials for D, T and C
becomes relevant. As a result, the distributions for the C, T and D intergenic
regions all have the form of Equation A4.7, except for a different range r, and a
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different normalization factor c:

PC(n) =
{
c1 e−n(λ−ε) if 0 ≤ n ≤ 2τ ,
c1 e−nλ+2τε if n > 2τ ,

PT(n) =
{
c2 e−n(λ−ε) if 0 ≤ n ≤ τ + π,
c2 e−nλ+(τ+π)ε if n > τ + π,

(A4.10)

PD(n) =
{
c3 e−n(λ−ε) if 0 ≤ n ≤ 2π,
c3 e−nλ+2πε if n > 2π.

(A4.11)

Here the prefactors c1, c2 and c3 are defined as

c1 = λ(λ− ε)
λ− ε exp(2τ(ε− λ)) ,

c2 = λ(λ− ε)
λ− ε exp((τ + π)(ε− λ)) , (A4.12)

c3 = λ(λ− ε)
λ− ε exp(2π(ε− λ)) .

We note that the CF model has four parameters: λ, τ , π, and ε. However,
if we impose the average length of the intergenic regions, this again leads to a
constraint that eliminates one of the parameters. As the total system is a mixture
of D, C and T intergenic regions in proportions fD : fC : fT (in most genomes
roughly 1:1:2), this constraint becomes:∫

n
fDPD(n) + fCPC(n) + fTPT(n)

fD + fC + fT
dn = L

N
. (A4.13)

We used Monte Carlo simulations to check the validity of these equations and
found excellent agreement.

4.B More detailed models

The CF model is purposely oversimplified. Such simplified models, with few
parameters, provide insight into the essential ingredients of the mechanisms
studied. At the same time the simplicity of the CF model leads to certain
artifacts. Here we show that such artifacts can be alleviated by more detailed
models. Below we discuss how one can allow for varying UCR and DCR lengths,
and how alternative interaction potentials can be chosen, with distance-dependent
forces.
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4.B.1 Polydisperse UCRs and DCRs

The distributions of the CF model have a sharp peak; this is an artifact of our
assumption that all UCRs and all DCRs have the same length. We can extend
the model to describe systems with varying UCR and DCR lengths.

If UCR and DCR lengths vary, then this results in a varying interaction range
r. In general, due to differences in the UCR and DCR lengths, the interaction
range obeys probability distributions QC(r), QD(r) and QT(r) for the convergent,
divergent and tandem intergenic regions respectively. Then at a given pressure λ
the distributions of intergenic distances are given by

PC(n) =
∫ ∞
0

QC(r)P (n|λ, r) dr,

PD(n) =
∫ ∞
0

QD(r)P (n|λ, r) dr, (A4.14)

PT(n) =
∫ ∞
0

QT(r)P (n|λ, r) dr.

Here P (n|λ, r) is the probability distribution for the length n of an intergenic
region, given the interaction range r and the pressure λ; it depends on the the
form of the interaction potential. For instance, if the potential is that of the CF
model (Equation A4.1), then P (n|λ, r) is given by Equation A4.7. Note that we
retrieve the original CF model if we insert QC(r) = δ(r − 2τ), QD(r) = δ(r − 2π)
and QT(r) = δ(r − (τ + π)) in the above integrals.

In the case of S. cerevisiae, some studies (David et al., 2006; van Helden et al.,
2000; Graber et al., 2002; Perocchi et al., 2007) suggest that the distribution of
3’ UTRs is log-normal. We therefore assume that QC(r) is the distribution of the
sum of two numbers drawn independently from a log-normal distribution. A sum
of log-normally distributed random variables can be approximated reasonably by
another log-normal distribution. We therefore assume that QC(r) is log-normal
as well (with parameters µ and σ). The corresponding fit to the histogram of
convergent intergenic distances in S. cerevisiae is better than the fit of the CF
model and does not show the artifactual sharp peak (see Fig. 4.6). Nevertheless,
the mean of the best-fitting log-normal distribution (µ = 4.61, σ = 0.405,
mean = exp(µ+ σ2/2) = 109) is rather close to the estimate resulting from the
CF model (2τ = 122). Below we show that a better agreement with experiment
can be obtained if we allow for an alternative interaction potential.

4.B.2 Alternative potentials

In the CF model, we used the simple potential defined in Equation A4.1. This
potential was convenient because of its simplicity (only one parameter) and its
straightforward interpretation. It is, however, possible to generalize our approach
to alternative potentials. Equation A4.6 holds for any finite-ranged potential
U(n); this means that Equations A4.6 and A4.14 can be used to compute the
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Figure 4.6: Fits of two more detailed models to the length distribution of convergent intergenic
regions in S. cerevisiae. The fact that both models allow for nearly perfect fits shows that
one needs additional, independent information to distinguish between the various compatible
models. Left: CF model with log-normally distributed DCR lengths. Fit parameters for the
log-normal distribution: µ = 4.61, σ = 0.405, λ = 5.25, ε = 4.70× 10−2. Right: Log-normally
distributed DCR lengths and parabolic potential. Fit parameters: µ = 5.01, σ = 0.314,
λ = 4.95× 10−3, U0 = 4.11.

ORF spacing for arbitrary finite-range potentials.

4.B.3 Yeast DCRs

In the main text, we mentioned that the CF model predictions for the DCR
length are on the low side. Not much is known about termination sequences
in S. cerevisiae, but most of the poly-adenylation signals seem to occur within
70 bp from the stop codon (van Helden et al., 2000). Estimates for the median
3’ UTR length in S. cerevisiae range from 80 to about 100 bp (David et al., 2006;
Graber et al., 2002). These numbers are indeed a bit higher than our result of
61 bp in Table 4.1. This suggests that, even though the CF model does predict
the qualitative features of the distributions in Yeast, such as the exponential
tail of the distribution, in order to get accurate quantitative agreement with the
DCR lengths found in recent experiments, the assumptions of the CF model are
too crude. Using the above techniques, we can refine the model and get better
agreement.

First, recent studies suggest that the 3’ UTRs in Yeast can be approximated
by a log-normal distribution; we therefore now choose QC(r) to be log-normal
(with parameters µ and σ). Second, recent experiments strongly suggest that
many 3’ UTRs are long and that they often overlap considerably (David et al.,
2006; Perocchi et al., 2007); nevertheless, the ORFs hardly ever get closer together
than 120 bp. This suggests a model in which the force is not constant; instead,
the repulsion seems to be high at short distances, but low at longer distances.
One way to model this is to use the following quadratic potential instead of
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Equation A4.1:

U(n)
kBT

=

U0

(
1−

n

r

)2
n < r,

0 n ≥ r.
(A4.15)

The fit of this model (with µ, σ, U0 and λ as parameters, but a given mean
distance) to the convergent data is excellent (see Fig. 4.6); also, the resulting
log-normal distribution for QC(r) has a mean exp(µ+ σ2/2) = 160, which leads
to a mean DCR length of about 80 bp. This is in good agreement with the
experimental results.

In the study of van Helden et al. (2000), poly-adenylation signals were found
at about 35 bp and 55 bp downstream of the stop codon of ORFs. It is tempting
to speculate that these sequences are responsible for the strong repulsion starting
at a distance of about 120 bp in convergent intergenic regions.

4.B.4 Higher eukaryotes

In Fig. 4.4 and 4.7 the intergenic distance distributions for various different
organisms are shown. Strikingly, the simple CF model can very well describe the
qualitative features of all these model organisms, such as the exponential tail of
the distributions and the dependence of the distributions on orientation.

In complex, multicellular eukaryotes, control regions typically are very long and
exhibit a high variance (e.g. Hajarnavis et al. (2004)). As the lengths and variances
increase, the assumptions of the constant force model become less justified. Above
we have shown that the CF model can be extended to incorporate alternative
potentials and polydisperse interaction ranges. This allows us to produce excellent
fits to the data for all organisms. Nevertheless, when it comes to predicting the
length distributions of UCRs and DCRs for higher organisms, the results depend
too sensitively on the choice of the potential to produce meaningful predictions.
Therefore we refrain from using the fit parameters for D. melanogaster, A.
thaliana, C. elegans and P. falciparum as predictions for the DCR and UCR
lengths.

4.C Fitting procedure

Fig. 4.4 shows the distributions of intergenic distances for four different fungi and
four additional eukaryotes, broken down into three different subsets (convergent,
tandem, divergent). Here we describe the procedure we used to fit the model to
these data. Since the divergent set does not fit the data—we argued that this is
due to bi-directional promoters—we only fit the C and T data. This is sufficient
to obtain estimates for π and τ .

The C and T distributions are also displayed in Fig. 4.7 in log-linear scale,
combined with fits of the CF model. We used these fits to estimate UCR and
DCR sizes in these species. The fit parameters are given in Table 1.
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Figure 4.7: Maximum likelihood fits of the CF model to the distance distributions of four
fungi and four additional eukaryotes. Despite the simplicity of the CF model, it does capture
the qualitative features of each of the genomes, such as the dependence of the ORF spacing
on relative orientation, and the exponential tails. The fits are used to estimate the sizes of
UCRs and DCRs for the fungi; see Table 4.1. Such quantitative estimates are probably not
reliable for the higher eukaryotes, for which the model assumptions may be too crude.
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We adopt a maximum likelihood method to fit our model to the data and to
determine the errors in the fit parameters. For a given set of observed intergenic
distances ({nC} and {nT} for convergent and tandem pairs, respectively), Bayes’
rule states that the likelihood of a set of fit parameters obeys

P (π, τ, λ, ε |{nC}, {nT}) = P ({nC}, {nT}|π, τ, λ, ε)
P (π, τ, λ, ε)

P ({nC}, {nT})
.

Here P (π, τ, λ, ε) is the prior probability distribution, which we take to be uniform.
In that case

P (π, τ, λ, ε|{nC}, {nT}) ∝ P ({nC}, {nT}|π, τ, λ, ε).

The parameter values with maximal likelihood are therefore those that maximize
P ({nC}, {nT}|π, τ, λ, ε).

In practice, it is more convenient to work with the logarithm of the likelihood,
as

log (P ({nC}, {nT}|π, τ, λ, ε)) = log

 ∏
n∈{nC}

PC(n)
∏

n′∈{nT}
PT(n′)


=

∑
n∈{nC}

log (PC(n)) +
∑

n′∈{nT}
log (PT(n′)) .

The functions PC(n) and PT(n) were given in Equation A4.11. If we define

X≤C ≡
∑

n∈{nC}
n≤2τ

n, X>
C ≡

∑
n∈{nC}
n >2τ

n, X≤T ≡
∑

n∈{nT}
n≤τ+π

n, X>
T ≡

∑
n∈{nT}
n>τ+π

n,

and call the total number of convergent and tandem pairs nC and nT, this reduces
to

log (P ({nC}, {nT}|π, τ, λ, ε)) = nC log(c1) + nT log(c2)− (λ− ε)
(
X≤C +X≤T

)
− λ

(
X>

C +X>
T
)
+ 2nCετ + nTε(τ + π),

(A4.16)

which can be maximized straightforwardly. To avoid possible influences of rare
outliers, we only used values of n that fall in the domain that is plotted Fig. 4.7.
This is correct if we modify c1 and c2 in Equation A4.16 such that, given the
domain D, ∫

D
PC(n) dn =

∫
D
PT(n) dn = 1. (A4.17)

If we plot the likelihood as a function of one of the parameters, while keeping
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the other parameters at their maximum likelihood value, the plot can very well
be approximated by a Gaussian. We use the standard deviation of this Gaussian
as the error in the maximum likelihood parameter values.

In the main text, we discussed the values of τ and π, but not of q. The
probability that two randomly chosen base pairs are the same and could therefore
overlap is 1/4. The fact that q is much higher than 1/4 shows that “overlap” is
much easier than expected based on this argument. This could reflect the density
of functional elements, but also the flexibility of functional sequences, and the
fact that regulatory regions are not mono-disperse.

4.D Statistical tests

In this section we describe the statistical tests that are mentioned in the main
text. The tests

4.D.1 Co-expressed divergent pairs in S. cerevisiae are closer together than expected

In the main text, we state that co-expressed divergent gene pairs in S. cerevisiae
have a tendency to have short intergenic regions. We tested this hypothesis as
follows.

We used the expression data compiled by Dr. Andre Boorsma and Prof.
Harmen J. Bussemaker to compute, for each neighboring pair of genes, the
Pearson’s correlation coefficient of their expression in about 900 experiments4.
These coefficients were usually low (< 0.3). We then split the set of divergent
pairs into two subsets: those with a low correlation coefficient (< 0.3), called set
1, and those with a high one (≥ 0.3), called set 2. Next, we used a rank sum test
to check whether the intergenic regions in set 2 are indeed shorter than expected
at random.

The rank sum test was performed as follows. We first ranked the intergenic
regions according to their length. Then, we computed the sum of the ranks of the
intergenic regions in set 2; we call it R. Next, we randomized the ranks in the
data set 107 times, each time computing the rank sum of set 2 in the randomized
data. Finally, we counted the number of times R was smaller or equal to the rank
sums obtained from the randomized data. The results show that the ORF pairs
with a high correlation coefficient are significantly closer together than the ones
with a low one (p < 0.002).

We checked that the observed signal is not due to paralogous gene pairs by
excluding them from the set and repeating the test; this did not change the result.
As a control experiment, we tested whether the same signal is also present in

4See the following references for the original publications: Boer et al. (2003); Boorsma et al.
(2004); Bro et al. (2003); Chu et al. (1998); Daran-Lapujade et al. (2004); Devaux et al. (2001);
Fleming et al. (2002); Gasch et al. (2000, 2001); Harris et al. (2001); Hughes et al. (2000); Lagorce
et al. (2003); McCammon et al. (2003); Mnaimneh et al. (2004); Murata et al. (2003); Sahara et al.
(2002); Spellman et al. (1998); Tai et al. (2005); Yoshimoto et al. (2002)
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Figure 4.8: Distance distributions for divergent, neighboring gene pairs with high or low
correlation in their expression, in S. cerevisiae. The figure shows that pairs with a high
correlations coefficient are more likely to be close together than the ones with low correlation
coefficients. This fact supports the hypothesis that the pairs in the first peak have a shared,
bidirectional cis-regulatory region.

the set of tandem neighbors. This is not the case (rank sum test: p = 0.56). We
note, however, that a similar signal was present in the set of convergent pairs
(p < 2× 10−4); we have no satisfactory explanation for this fact.

The mean intergenic distance in set 1 is 721 bp; in set 2, it is 558 bp. The
difference in the distance distributions of both sets is visually apparent (see
Fig. 4.8).

4.D.2 Divergent genes in S. cerevisiae are more likely to be associated with the same
process or component if they are close together

We studied whether there is an association between intergenic distance and
functional similarity in divergent gene pairs in S. cerevisiae. In order to do this,
we need to be able to quantify the functional similarity between two given genes.
For this purpose we used the GO annotations of the GO Consortium (version
5.463 of Aug. 22 2007, see Ashburner et al. (2000)) and the information-theoretic
measure for semantic similarity proposed by Resnik (1998).

The Gene Ontology is a hierarchical vocabulary of terms that can be assigned
to genes. It falls apart into three independent taxonomies, each defined to describe
one aspect of genes: the biological process they are involved in, the molecular
function they perform and the cellular component they are associated with. Pairs
of GO terms can be linked by five types of relations, such as the “is a” or “is part
of” relations. For instance, as the nuclear membrane is part of the nucleus, the
GO term “nuclear membrane” is related to the term “nucleus” through an “is
part of” relation. Through such relations, the GO terms form a hierarchy.

Note that if a gene is assigned the term “nuclear membrane”, meaning that
it is associated to the nuclear membrane, it is implicitly also assigned the term
“nucleus” owing to the “is part of” relation. For convenience we will use the
following notation: if the assignment of the term b implies the assignment of term
a through “is a” or “is part of” relations, we write b⇒ a.
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The semantic similarity measure defined by Resnik (1998) was first proposed
for and applied to the processing of natural language. Applied to the GO ontology
it provides, for each pair of GO terms a and b, a similarity score. For this, it uses
the information content of each term, which is a function of the probability value
p(a) that is assigned to each term a. We define p(a) as the fraction of the genes in
the given organism that has either been assigned a or any other term b for which
b⇒ a holds. The information content is then defined as I(a) ≡ − log(p(a)).

The similarity measure s(a, b) is defined in terms of the information content:

s(a, b) ≡ max
c∈C

I(c) in which C = {c | a⇒ c and b⇒ c}. (A4.18)

If, for a given aspect α (biological process, molecular function or cellular
component), gene A has been assigned GO terms a1 . . . an, and gene B has been
assigned term b1 . . . bm, then we define the similarity between genes A and B on
this aspect as:

S(A,B, α) ≡ max
i,j

s(ai, bj). (A4.19)

Thus we can compute similarity values for each gene pair and for each aspect of
the GO ontology.

If a certain gene did not have any assignment for some aspect, then the
similarity score with any other gene was considered undefined on this aspect, and
the gene was excluded from the analysis corresponding to this aspect.

We performed the following statistical tests. First, we divided the data set
in two subsets, set 1 and set 2. The first set consisted of all divergent pairs
that were in the “first” peak and set 2 contained all divergent neighbors that
were further apart. As the bordering value we chose d = 2π = 375 bp, since
intergenic regions that are longer than that value can easily accommodate two
independent promoters. We applied a Wilcoxon–Mann–Whitney rank-sum test
to challenge the null hypothesis that the similarity scores of the pairs in set 1 and
set 2 are drawn from the same distribution. We repeated this test for each aspect
of the GO. The test results are p = 8.8 × 10−4, p = 0.06 and p = 4.8 × 10−5

for biological process, molecular function and cellular component respectively.
We also ran a Spearman rank correlation test on the data, which resulted in the
values p = 2.0× 10−5, p = 0.24 and p = 1.3× 10−5.

We conclude that the similarity scores belonging to the aspects biological
process and cellular component are associated with intergenic distance. We do not,
however, find a significant association between molecular function and intergenic
distance. This is not very surprising, as proteins with a similar molecular function
(e.g. “DNA binding” proteins), can act in very different processes and cellular
components, so that there is no clear a priori reason to co-regulate them using a
shared UCR.

We repeated this analysis for the convergent and tandem gene pairs. For the
convergent pairs, none of the statistics were significant. However, the tandem pairs



4.D Statistical tests 95

showed a similar pattern as the divergent ones; the Spearman rank correlation
test resulted in p = 4.6× 10−5, p = 0.41 and p = 1.8× 10−5 for biological process,
molecular function and cellular component respectively.

4.D.3 Greater than expected number of convergent intergenic regions with length
20–60 bp in E. coli

Here we show that the number of convergent intergenic regions with a length in
the range 20–60 bp, is significantly larger than expected in E. coli.

In the calculation below, we estimate the significance of the peak in a very
conservative way. We take the best-fitting exponential probability distribution
as our null distribution (the fit is shown in Fig. 1(b) in the main text; its scale
factor equals 145 bp). This way, we underestimate the statistical significance of
the peak as we ignore the fact that the CF model actually predicts a dip in the
distribution at the place of the peak.

Given the exponential null distribution, the fraction of the sample that is
expected in the domain 20–60 bp is 0.21. Since the total number of convergent
pairs is 543, the number of pairs in this domain is a random variable X that is
distributed binomially with p = 0.21 and N = 543. The observed number of pairs
in this domain in E. coli is 198; the probability for this to happen given the null
distribution is P (x ≥ 198; p = 0.21, n = 543) < 10−13.

Based on the numbers above we should have expected 0.21× 543 = 114 pairs
in the domain 20–60 bp. The actual observed number is 198; this means that we
need about 86 bi-directional terminators to explain the data. If we assume that
E. coli has 750 operons, we estimate that at least (2× 86/750)× 100% = 23% of
the operons is terminated by a bi-directional terminator.

4.D.4 In E. coli, putative terminators in C regions are more often bi-directional than
those in T regions

Here we show that the fraction of putative terminators that is classified as bi-
directional by RNAMotif software (Lesnik et al., 2001), is larger in C regions than
in T regions.

The statistical test was performed as follows. Our null hypothesis is that
the terminators in the C region are a random sample from the total set of
terminators in C or T regions. In total, the C and T regions together contain 1198
putative terminators, of which 222 are classified as bi-directional by RNAMotif.
The C regions contain 378 putative terminators, of which 104 are bi-directional
according to RNAMotif. If the 378 are chosen at random from the total set of
1198 terminators, then the number of terminators in the sample that are classified
as bi-directional is a hypergeometric random variable. The probability to observe
at least 104 bi-directional terminators in a random sample of 378 terminators,
taken from a set of 1198 terminators containing 222 bi-directional ones, equals
1× 10−7.
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4.D.5 Putative bi-directional terminators in C regions tend to occur in short regions

The fraction of the putative terminators in convergent intergenic regions that
could be bi-directional (according to the RNAMotif algorithm) is significantly
larger in short intergenic regions (< 100 bp) than in long ones. We used the
same statistical test as in the previous subsection. In total, the C regions contain
378 putative terminators; of these, 104 are classified as bi-directional. The short
convergent intergenic regions contain 158 putative terminators, of which 62 are
bi-directional according to RNAMotif. The probability to observe at least 62
bi-directional terminators in a random sample of 158 terminators, taken from a
set of 378 terminators containing 104 bi-directional ones, is 2× 10−5.

4.D.6 Convergent operons that are close together are not more often functionally
related

We tested whether the convergent operons that are close together (< 70 bp) are
more likely to be active in the same biological process or cellular component
than ones that are further apart. For this we used the GO annotations from the
GOA Database (Camon et al., 2004)(version date: September 9. 2007). The
same method was used as in Section 4.D.2, except that we now had to perform
the analysis on the level of operons rather than genes. In order to compute the
similarity between two operons, we compared the GO assignments for each gene in
the first operon with each gene in second; the maximum of these scores was used
as a similarity measure for the operons. We did not find a significant signal for
any of the aspects of the Gene Ontology (molecular function: p = 0.20; biological
process: p = 0.25; cellular component: p = 0.27).
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Chapter 5

The role of terminator loss
in the evolution of genomes

Any genomic sequence is continuously challenged by muta-
tions such as nucleotide substitutions, insertions, deletions
and inversions. Those sequences that are not under suffi-
cient purifying selection are therefore likely to be destroyed
sooner or later. Here we study the implications of this use-
it-or-lose-it principle for the destiny of transcriptional ter-
minator sequences in prokaryotic genomes. Terminators of
genes that are not expressed for an appreciable period of
time experience a significantly reduced purifying selection.
This introduces the risk of terminator loss. We argue that
the loss of a terminator can directly lead to the emergence
of operons and the utilization of bi-directional terminators.
To prove the concept, we present a simple model of genome
evolution and developed a novel simulation scheme based on
population genetics. In this model, operons and shared ter-
minators indeed emerge spontaneously. Moreover, the model
reproduces the spacing of genes in the model prokaryotes
Escherichia coli and Bacillus subtilis, including the charac-
teristic close spacing of genes in operons and the differences
in spacing between convergent, divergent and tandem gene
pairs.
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5.1 Introduction

In evolution, the maxim “Use it or lose it” holds quite generally. Any genomic
sequence that is not under sufficient purifying selection is destined to be washed
away by a continuous stream of mutations. For example, transcription factor
binding sites that are not being used most of the time are likely to be lost. It has
been suggested that, for this reason, genes that are not being used most of the time
are typically repressed when they are not necessary, rather than activated when
they are needed— only thus a constant selective force protects the transcription
factor binding site against deleterious mutations (Savageau, 1977). Here we
ask what this use-it-or-lose-it principle implies about the fate of transcriptional
terminator sequences in prokaryotic genomes (see Box 5.1). We argue that the
loss of terminators by random mutations can directly lead to the formation of
operons and the emergence of bi-directional terminators. Terminator loss can
thus play a critical role in shaping the spatial and orientational distribution of
genes along the genome.

An extended literature is devoted to the question why genes in many (mainly
prokaryotic) genomes are organized in operons. Two main lines of thought have
been brought forward. The first is based on the fact that genes within one operon
are naturally co-regulated and co-expressed (Jacob and Monod, 1961b; Price
et al., 2005b, 2006). Operon formation could therefore have evolved as a means
to co-express genes. Indeed, genes in one operon are often—but not always—
functionally related (de Daruvar et al., 2002). However, genes that are not in
the same operon can also be co-regulated by independent but similar promoters.
Assuming that from a functional perspective these two alternative arrangements
are equally valuable, the question rises which of these configurations is more likely
to emerge in the course of evolution. Some have argued that, in an evolutionary
context, two independent promoters are easier to develop than one operon, in
particular because in the latter case the two genes have to get in close proximity
by chance (Lawrence and Roth, 1996; Lawrence, 1999). Others have claimed the
opposite: that re-arrangements are frequent and that operons form more rapidly
than multiple promoters would, especially if complex transcriptional regulation is
required (Price et al., 2005b).

The second line of thought argues that clustering related genes does not
necessarily provide a fitness advantage to the organism per se, but instead allows
groups of genes that are jointly required for a selectable phenotype to spread to
other clades efficiently by horizontal gene transfer (HGT), thereby contributing
to the reproductive succes of these genes. This model is called the “selfish operon
model” (Lawrence and Roth, 1996). It provides a mechanism that gradually
drives together genes that are functionally interdependent. Thus, it also explains
that genes in a given operon are often functionally related. On the other hand,
the model predicts that essential genes are typically not in operons, which is
contradicted by empirical studies (Pal and Hurst, 2004; Price et al., 2005b).
Moreover, many operons contain genes that are not functionally related and new
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Box 5.1: Rho-dependent and Rho-independent transcriptional termination

In bacteria and bacterial phages, transcription termination is achieved by two mecha-
nisms: Rho-independent (also called “intrinsic”) or Rho-dependent termination.

Rho-dependent terminators rely on the binding of the protein Rho to the transcript.
Rho is a homo-hexameric protein; the hexamer forms a ring around the transcript.
When bound to the message, Rho can translocate in a 5’ to 3’ direction along the
transcript. This process is ATP-dependent; Rho acts as an ATPase. Even though
many details are not yet known, it is believed that Rho can catch up with the RNAp
when RNAp pauses at one of its pause sites. The subsequent interaction between the
Rho hexamer and RNAp leads to the termination of the transcript.

Rho-dependent termination is often highly regulated. Rho interacts with several
termination factors, such as NusA, NusB and NusG. This allows for a regulated
choice between alternative termination sites. (See Ciampi (2006) for a review on
Rho-dependent termination and further references.)

Rho-independent termination does not rely on the action of a particular protein.
Instead, the termination is triggered by the folding of the RNA transcript into a
stem-loop structure (see the Example below). The terminator generally consists of
two parts: a thymidine rich sequence of about twelve nucleotides, preceded by a
palindromic sequence that, as RNA, folds in a “hairpin”-like structure due to ordinary
Watson–Crick base pairing. How exactly these sequences force termination of the
transcript, is not fully understood (Lesnik et al., 2001; Alberts et al., 1994).

A Rho-independent terminator can be bi-directional, meaning that it is also func-
tional on the opposite strand. This results from the fact that the complementary
strand of the palindromic part of the terminator is automatically a palindrome too.
This means that the addition of a T-rich sequence on the complementary strand may
often be sufficient to turn a uni-directional terminator into a bi-directional one.

AATAGTCAAAAGCCTCCGGTCGGAGGCTTTTGACTTTCTGCTTACTGAATTTCGAAATTCAGTAAGCAGAAAGTCAAAAGCCTCCGACCGGAGGCTTTTGACTATT

AA

AGTCAAAAGCCTCCGCGGAGGCTTTTGACTGT TTTCTGCTTACTGAATTTC
TFolded RNA:

DNA:

Example: The P14-tonB transcriptional terminator

dyad symmetry T-rich
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operons form regularly from genes that have not been obtained by horizontal
transfer (Pal and Hurst, 2004; Price et al., 2005b). Also, even though the selfish
operon model does explain why interdependent gene sets would cluster on the
genome, it does not readily elucidate why the transcription units of these genes
would merge into one poly-cistronic transcription unit (TU). This final step
requires that co-regulation of the genes involved should at the very least not
impede their function, showing that co-regulation plays an important role in
the selfish operon model as well. Clearly, the selfish operon model and the co-
regulation model are not mutually exclusive and both mechanims might contribute
to some extent to the formation of operons.

In the discussions of both models, it is implicitly or explicitly assumed that
operons would not exist in the absence of any selective pressure to create them.
Here we suggest quite the opposite: even if operons do not have any selective
advantage (neither at the level of organisms, nor at the level of clusters of
genes), operons are expected to emerge. The reason is that the terminators that
define the borders of TUs are continually challenged by myriad mutations. On
evolutionary time scales they will survive only if they are under constant and
sufficient purifying selection. Whenever this is not the case, the terminator will
be lost, and operons form. As a proof of principle, we have developed a minimal
model of genome evolution and a novel simulation scheme based on Kimura–Ohta
population genetics. We show that, in this model, terminator loss directly leads
to poly-cistronic TUs. We therefore claim: neighboring tandem TUs are likely to
merge into operons unless there is sufficient selective pressure to express them
independently.

A related question is what are the consecutive mutational events that most
likely lead to the merging of mono-cistronic TUs into poly-cistronic ones. Neither
the co-regulation model nor the selfish operon model offer or imply such detailed
mechanisms and therefore most scenarios are compatible with both. We argue
that terminator loss is a likely first step in the merging of nearby TUs. We show
that a weak selection pressure on the lengths of RNA transcripts is sufficient to
explain the subsequent shortening of the intergenic region between the genes in
the newly-formed operon leading to the characteristic close spacing of genes in
operons. As it turns out, the same selection pressure also explains the fact that
both promoters and terminators tend to tightly flank the genes they belong to.

The sequences called Rho-independent or intrinsic terminators function by
virtue of their tendency to fold, when transcribed into RNA, into stable hair-pin
structures (Farnham and Platt, 1981). This requires that these sequences are
largely palindromic. By definition, the complementary strand of a palindrome
is palindromic as well, which explains why some terminators are bi-directional
(Postle and Good, 1985; Carlomagno et al., 1985). Such terminators can operate
on both strands of the DNA and can therefore be shared by two convergently
transcribed TUs. We argue that while terminator loss between tandem TUs
leads to poly-cistronic transcripts, terminator loss between convergent TUs can
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Figure 5.1: Cartoon illustrating the mutations allowed in our model. First, promoters and
terminators can be created from spacers. Second, uni-directional terminators can be converted
into bi-directional ones and vice versa. Third, promoters and terminators can be destroyed
by insertions and deletions, which turns them into regular spacers. Insertions and deletions
also result in changes in spacer lengths. Fourth, random pieces of DNA can be inverted.

lead to the exploitation of bi-directional terminators. The proposed selection
pressure on the lengths of transcripts predicts that such convergent pairs should
be very closely spaced, which is supported by the distribution of distances between
convergent gene pairs in E. coli and B. subtilis.

5.2 Model

Below we describe a minimal computational model that leads to the spontaneous
emergence of operons and shared bi-directional terminators due to terminator
loss; it also reproduces the spacing of genes and operons in model prokaryotes
such as E. coli and B. subtilis.

5.2.1 A daisy-chain genome

We represent the genome as a circular daisy chain consisting of objects of four
kinds: spacers (stretches of non-coding DNA), genes, promoters and terminators.
Each of these objects is endowed with several properties. First, each has a length
expressed in base pairs. Terminators, promoters and genes have fixed lengths,
whereas spacers can have any length. Second, promoters, terminators and genes
have an orientation: they are either on the positive strand or on the negative
strand. In addition, terminators can be bi-directional. Finally, genes have a
property that we call “color”. The colors of genes symbolize their expression
requirements. We impose that genes with different colors should be regulated
separately and therefore cannot be in the same operon.



102 5 Terminator loss

5.2.2 Four elementary types of mutations

To keep the model as transparent as possible, we allow for only four kinds of
mutations, represented schematically in Fig. 5.1:

1. insertion or deletion of a single base pair. If an insertion or deletion takes
place in a spacer, the length of the spacer is adjusted accordingly. If it
occurs in a promoter, a terminator or a gene, we assume that this destroys
it; as a result, the object is converted into a spacer with the correct length.

2. conversion of a uni-directional terminator into a bi-directional one, or vice
versa.

3. inversion of a randomly chosen piece of the chromosome. If one of the
end-points of the inverted piece is inside a promoter, a terminator or a
gene, this object is destroyed. The object then splits in two pieces that each
become a spacer. We note that multiple occurrences of random inversions
result in translocation of chromosomal segments; we therefore do not need
to explicitly include translocations in the model.

4. creation of a promoter or terminator: a piece of spacer is converted to a
promoter or a terminator with a random orientation.

5.2.3 Kimura–Ohta population genetics

Our simulations mimic the population genetics of a population of prokaryotes with
a population size N . We assume that various types of mutations (e.g. insertions,
deletions, inversions) occur in each of the individuals in this population. According
to Kimura–Ohta theory, eventually all mutants either go extinct or get fixed in
the population (Kimura, 1962; Kimura and Ohta, 1969). The probability for
a particular mutation i to become fixed depends on the selection coefficient si
associated with the mutation1 in the following way:

PK(si) =
1− e−2si

1− e−2Nsi
. (5.1)

The derivation of this equation was given in Section 1.2. In this derivation it
is assumed that the mutation rates are low enough to assume that individual
mutation events can be treated independently. Although this is generally not
correct, Equation 5.1 has been used successfully in several studies (e.g. Mustonen
and Lassig (2005)).

Since after each fixation event the population is clonal, one can represent the
population by a single copy of the genome. Writing the rate of mutations of
type m as µm, each particular mutation i of type m occurs in the population at

1If the fitness of the mutant is Fmut and the fitness of the rest of the population is F , then the
selection coefficient s is defined as s ≡ Fmut/F − 1.
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the rate µmN and gets fixed with an effective rate ui ≡ µmNPK(si). We have
developed a novel and efficient simulation scheme that ensures that each mutation
indeed occurs at this effective mutation-fixation rate (see 5.A).

5.2.4 Selection on genome length and gratuitous transcription

The fitness of the chromosome is defined in terms of the total length of the
genome and the total amount of gratuitous mRNA produced by the genome. We
assume that each promoter acts as the start of a TU. The TU ends with the
first terminator that is found downstream of this promoter and resides on the
same strand (or is bi-directional). This completely specifies the transcriptome
of the model chromosome. Note that by this definition, TUs can partly overlap.
Apart from genes, TUs may contain spacers, promoters and terminators (on the
complementary strand); such pieces of DNA lead to gratuitous transcription. The
total length of the gratuitous parts of TUs, summed over all TUs, is called S.
The selection coefficient s associated with a certain mutation is then determined
by the following rules:

X We assume that all genes are essential; this means that all genes need to
stay intact and that they need to reside in some TU. If this is not the case,
the organism is not viable (s = −∞, PK(s) = 0). As a consequence of this
rule, the sizes of genes are irrelevant in our model.

X Genes in one operon should have the same color (else: s = −∞, PK(s) = 0);

X In all other cases, the selection coefficient is given by

s = −α∆L− β∆S, (5.2)

where ∆L and ∆S are the changes due to the mutation in, respectively,
the length of the genome L and the gratuitous part of the transcriptome S.
One can interpret α as the normalized fitness cost of increasing the length
of the genome with one base pair, and β represents the normalized fitness
cost of transcription per base pair.

5.3 Results

Fig. 5.2 displays the distance distributions for convergent, tandem and divergent
gene pairs resulting from the simulations, juxtaposed with the real data from
E. coli and B. subtilis. The similarities between data and theory are striking.
Importantly, all distributions have an exponential tail; moreover, the convergent
and the tandem distributions have a clear peak, both in our simulations and in
the real data. This is discussed below.

The simulation results are a snapshot of the genome after 5.9×1010 generations,
which at a generation time of 1 hour corresponds to approximately 7 million
years. We note however that the dynamics of the simulation are sensitive to
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Figure 5.2: Simulation results compared to real data. The left figures show the frequency
distribution of intergenic distances in E. coli and B. subtilis for convergent, divergent and
tandem gene pairs. The right figures shows the same data for the simulated genomes after a
simulation time of 5.9× 1010 generations, which at a generation time of 1 hour corresponds
to approximately 7 million years. The parameters of these simulations are discussed in 5.A
and summarized in Table 5.1. The peak in the Tandem plot shows that operons have formed.
Both the real data and the simulations show a peak in the convergent distribution at 20 to
60 bp. In the simulations, this peak is caused by bi-directional terminators. This supports our
earlier hypothesis (Hermsen et al., 2008)) that this is also the case in the real prokaryotes.

the choice of parameters. For instance, a tenfold increase in the number of gene
colors would slow down the formation of operons considerably, whereas a higher
value of α leads to a speed-up of this process, as it decreases the mean fitness
cost of terminator loss. The evolutionary time should therefore be interpreted as
an order of magnitude estimate.

5.3.1 Spontaneous formation of operons

The distance distribution of tandem gene pairs resulting from the simulations
is bi-modal. This reveals that operons have formed: intergenic regions within
operons are, on average, much shorter than those between operons, resulting in the
bi-modal distribution. In the B. subtilis data this bi-modality is directly visible
as well; in E. coli, a peak at short distances is clearly present, but the bi-modality
is not as apparent. This may be a consequence of the fact that many operons in
E. coli have internal regulatory sequences, resulting in a broader distribution of
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Paths to operons
Terminator Loss Inversion

Figure 5.3: Paths to operons (see the legend in Fig. 5.1). In simulations of the model, operons
emerge spontaneously. The most frequent pathway is through terminator loss (left). First a
terminator between tandem genes is lost, leading to a poly-cistronic transcription unit (TU).
The intergenic region is now being transcribed, resulting in an altered selection pressure on
its length. Consequently, it is likely to shrink gradually. Finally, the internal promoter is
lost. A second pathway is mediated by an inversion, which directly brings a gene under the
control of another promoter (right).

distances between genes inside operons (Price et al., 2006).
We have identified two important paths of operon formation occuring in our

simulations (Fig. 5.3). In most cases, a terminator between two tandem genes
is first destroyed by a mutation. The probability for this mutation to become
fixed in the population depends on the length of the intergenic spacer; as a
result, most newly-formed poly-cistronic TUs have relatively short intergenic
spacers. Nevertheless, these lengths are typically larger than the average intergenic
regions inside operons. However, after the terminator loss has occurred, the
intergenic region is inside a TU. The selection pressure against gratuitous mRNA
subsequently alters the balance between effective insertion and deletion rates,
and tends to shorten the spacers further. Also, the internal promoter has become
unnecessary; any mutation destroying it leads to a slight fitness increase. As a
result, the promoter is removed and a genuine operon results. We stress that
the initial loss of the terminator is a rare event; afterwards, the process proceeds
“downhill”.

A second pathway is mediated by the inversion of a piece of DNA. As Fig. 5.3
shows, an inversion of a genome fragment can effectively move a set of genes to a
different operon.

5.3.2 Bi-directional terminators

The distribution of the convergent pairs clearly shows a peak at distances around
40–60 bp, as in the real data of E. coli and B. subtilis. In the simulations, this
is indicative of convergent pairs sharing a bi-directional terminator. The most
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Paths to shared terminators
Terminator Loss Inversion

Figure 5.4: Paths to shared terminators (see the legend in Fig. 5.1). The paths leading to
shared terminators in our simulations are similar to those leading to operons (see Fig. 5.3).
In the most frequent pathway (left), terminator loss occurs first; next, transcription of the
intergenic region leads to an altered selection pressure on the length of the intergenic region,
which tends to shorten it gradually. An inversion can directly lead to a similar configuration
(right).

likely process leading to this configuration is the following (see Fig. 5.4). The
first step is again that one of the terminators in the intergenic region between a
convergent pair is destroyed by a mutation. This happens very often, but usually
such mutants are not fixed in the population. In some cases, however, the other
terminator in the intergenic region can function bi-directionally. In this case, the
only fitness cost of this mutation is due to the gratuitous transcription of the
spacer that was originally between the terminators. If this spacer is not too long,
the fitness burden is small and the mutation has a chance to become fixed in the
population. After this, the insertion–deletion balance in the intergenic region is
biased towards deletions and drives the two genes towards each other, effectively
binding them together. Again, losing the first terminator is a rare event, but
afterwards the process continues downhill. This is strong support for our earlier
suggestion that the peak in the convergent distribution in E. coli is caused by
bi-directional terminators (Hermsen et al., 2008).

A second scenario is presented in Fig. 5.4; here, an inversion directly puts a
gene, including a promoter, in front of a bi-directional terminator.

In B. subtilis the peak in the convergent distribution is higher than in E. coli.
This may be explained by the fact that in B. subtilis Rho-dependent termination is
hardly used (de Hoon et al., 2005). Possibly, it therefore contains a higher fraction
of intrinsic terminators, and hence has a higher tendency to form bi-directional
terminators.
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5.3.3 Spacing of genomic elements

Both in the real data and in the simulation results, the tail of the probability
distributions of intergenic distances is exponential. In the model, this is due to the
fact that insertions and deletions of single base pairs are by far the most frequent
mutations. The lengths of intergenic regions are therefore largely determined by
the equilibrium statistics induced by these moves only. This raises a picture in
which big moves, such as inversions, promoter or terminator loss, translations
and gene duplications can be considered rare events; in between such incidents
the distances equilibrate with respect to the dynamics of the small mutations.

Assuming that this separation of time scales indeed holds, the following
detailed balance condition applies to the equilibrium probability distribution
Pu(l) of untranscribed spacers lengths:

Pu(l)
Pu(l + 1) = µdelPK(α)

µinPK(−α) . (5.3)

Here µin and µdel are the insertion and deletion rates per base pair, and PK
and α were introduced in Equations 5.1 and 5.2. Equation 5.3 shows that the
equilibrium distribution is geometric and that its scale factor is determined by
α, µin and µdel. In a similar fashion, the equilibrium length distribution Pt of
spacers that are being transcribed (from a single promoter) is given by

Pt(l)
Pt(l + 1) = µdelPK(α+ β)

µinPK(−α− β) . (5.4)

This equation holds for intergenic regions inside operons, but also for 5′ and
3′ untranslated regions (i.e. spacers that are located between a promoter and
the first downstream gene and spacers between a terminator and the first gene
upstream). The model therefore shows that a very simple fitness function that
only takes into account the cost of transcription and genome size can unify a
number of observations that are usually taken for granted: the facts that genes
in operons are generally closer together than genes on the border of operons and
that both promoters and terminators typically tightly flank the genes they belong
to. As we discussed, the same mechanism also provides a plausible explanation
for the observed peak in the distribution of convergent gene pairs.

If the mean length of un-transcribed spacers is l̄ and the mean of the transcribed
ones is m̄, then Equations 5.1, 5.3 and 5.4 imply the following relations with the
fitness costs (see Appendix 5.B):

α = 1
2N

(1
l̄

+ ln
(
µin
µdel

))
, (5.5)

α+ β = 1
2N

( 1
m̄

+ ln
(
µin
µdel

))
. (5.6)
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These equations demonstrate that the value of α cannot be determined from the
mean distance l̄ without knowledge of µdel and µin. In order to fit the model
value of l̄ to the genomic data, one can choose any value of α ≥ 0 and then adjust
µin/µdel or vice versa. In our simulations, we chose µin/µdel = 1 and adjusted α
to fit the value of l̄ of E. coli.

The value of β can be obtained by subtracting Equations 5.5 and 5.6. Esti-
mating that m̄ ≈ 13 bp and l̄ ≈ 125 bp in both E. coli and B. subtilis,

β = 1
2N

( 1
m̄
− 1
l̄

)
≈ 1

25N . (5.7)

This provides an estimate for the fitness cost of gratuitous transcription. The
observed distance distributions are consistent with a weak to moderate selection
on transcript lengths. Assuming a population size of at least N = 105, β is of
the order of 10−6. Unfortunately, this is too small to be measured directly in
competition experiments. We do note that the estimate of β is sensitive to some
simplifications of our model, such as our assumption that insertions and deletions
always span 1 bp.

The idea that the close spacing of genes in operons is due to the cost of
producing gratuitous mRNA leads to the prediction that highly-transcribed
operons have a closer spacing. This was studied by Price et al. (2006) and
turns out to be incorrect for E. coli due to the presence of internal promoters in
highly-expressed TUs. As we mentioned, internal promoters are never beneficial
in our simplified model; therefore, they are quickly removed by random mutations.
In reality, internal promoters clearly do play a role in regulatory fine-tuning.

In E. coli several gene pairs inside operons overlap slightly (Fukuda et al.,
2003). Often the third position of the stop codon of the first gene (UAA or UGA in
these cases) overlaps with the first position of the start codon of the second gene
(AUG). This configuration might have a functional reason due to translational
coupling (Fukuda et al., 2003). For simplicity, we did not include such advanced
mechanisms in our model. Similarly, the data show that the divergent pairs in
E. coli and B. subtilis can be very close together (< 80 bp); this is not possible
in our model, since divergent pairs are separated by at least twice the size of a
core promoter. In reality, the promoters of these gene pairs may in rare cases
overlap with each other or with the upstream open reading frame (Warren and
ten Wolde, 2004b); for instance, in E. coli the promoter relBp overlaps with ORF
ydfV, allowing for an unusually close spacing between these divergent genes (see:
EcoCyc database (Keseler et al., 2005)).

5.4 Discussion

We acknowledge that our simple model can not account for all known operon histo-
ries. For instance, newly formed operons are strongly enriched in so-called ORFan
genes (Price et al., 2005b). ORFan genes are genes that lack identifiable homologs
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outside of a group of closely related bacteria. This shows that innovations intro-
duced for instance by phages probably play an essential role in many cases of
operon genesis. Also, it has been shown that seemingly unlikely displacements of
genes in operons by horizontal gene transfer do occur (Omelchenko et al., 2003).
These and other observations suggest that many different mechanisms contribute
to some extent to the formation of operons. That being said, terminator loss is a
plausible first step in the fusion of two neighboring TUs.

Our model assumes that at least some terminators are under weak selection;
is this likely? Upon terminator loss, read-through leads to costly elongated
transcripts. If the first downstream TU is on the opposite strand, it can also
give rise to harmful antisense transcripts. Otherwise, if the downstream TU is
transcribed from the same strand, read-through is likely to alter its expression
profile due to co-transcription. Moreover, in both cases transcriptional interference
should be anticipated (Shearwin et al., 2005). It is therefore likely that many
terminators are under strong selective pressure and will not readily be lost.
However, several scenarios can be envisioned in which the selection pressure on a
terminator is strongly relaxed. First, in environments where the TU is repressed
the terminator is not being used, which should lead to a strongly reduced purifying
selection. Second, in some cases the sole effect of the co-transcription of a tandem
downstream gene is an increase in the expression level of that gene; the resulting
fitness effect then depends strongly on the current environment and can be weak.
Moreover, such an effect can be transient, as subsequent mutations can rapidly
compensate for the altered expression level. Third, if directly downstream of
the TU a terminator is present that could function bi-directionally, this could
alleviate the selection pressure on its terminator. Such scenarios indicate that
the mechanism proposed here can indeed occur in real systems. Terminator loss
is not necessarily terminal.

In this light, one might be surprised about the scarcity of operons in most
eukaryotic genomes. One could argue that in eukaryotic genomes, the loss of
a terminator sequence would also result in poly-cistronic RNAs; why does this
not lead to operons in eukaryotes? As it turns out, the process of translation
provides a natural barrier (Lawrence, 1999). In prokaryotes, ORFs are typically
preceded by a ribosomal binding site (the Shine–Dalgarno sequence, after Shine
and Dalgarno (1975)). The presence of this sequence directly upstream of a
start codon is sufficient to induce the assembly of a ribosome on the start codon,
irrespective of the location of the ORF on the mRNA (Alberts et al., 1994).
This means that, if two TUs merge as a result of terminator loss, the standard
translation machinery is directly able to translate all ORFs on the resulting
poly-cistronic mRNA. In contrast, in eukaryotes only the first ORF is translated
by default (Blumenthal, 2004). This is dictated by the standard translation
mechanism. Initially, the small ribosomal subunit binds to the 5′ end of the
mRNA; it then starts moving in the 5′ to 3′ direction until it finds the first start
codon. There the ribosome assembles and starts the translation process. When it
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encounters the stop codon, the ribosome disassembles and thus ignores the other
ORFs on the mRNA. Poly-cistronic mRNAs therefore require specific elements,
called internal ribosome entry sites (IRES), in order to enable the translation
of the consecutive genes (Blumenthal, 2004). Alternatively, poly-cistronic pre-
mRNA can be trans-spliced to create mono-cistronic mRNAs, as is common in
Caenorhabditis elegans (Blumenthal et al., 2002). Again specific sequences are
required to guide this process (Graber et al., 2007). The bottom line is that, in
eukaryotes, loss-of-function mutations in terminator sequences typically do not
result in functional poly-cistronic mRNAs, whereas in prokayotes they do.

Our model assumes that a small fitness cost is associated with gratuitous
DNA and gratuitous RNA. The showed that cost of gratuitous DNA can not be
computed from the distance distributions since the ratio µin/µdel is unknown, but
the cost of gratuitous RNA can be deduced within the context of the model. We
estimated that the fitness cost per base pair is very small. Nevertheless, it may
be possible to measure an effect on the bacterial growth speed in experimental
conditions if a large stretch of nucleotides is inserted in a transcribed region.

Evidence for the scenario of operon formation proposed here has been described
by Price et al. (2006), who have compared the gene order of E. coli to its relatives
to identify recently destroyed or formed operons. Loss of a terminator will result
in the merging of TUs that were already adjacent. Indeed, Price et al. conclude
that new operons often comprise functionally unrelated genes that were already in
proximity before the operon formed. Also, they find that modifications of existing
operons are often the result of merging, appending or prepending processes;
insertions of genes inside existing operons are more rare. This is consistent with
the terminator loss mechanism.

To obtain additional evidence, more direct phylogenetic tests of the terminator
loss scenario will have to be done. In Chapter 6 we will try to do so. If terminator
loss occurs at a sufficient rate, the model predicts the existence of pairs of
neighboring, tandem TUs that are independently transcribed in several related
clades or species but have merged in one (or several) of them. Currently it is
not straightforward to find such examples, as very little independent information
is available about the extent of TUs in prokaryotic species other than E. coli.
Hopefully, such obstacles will be resolved in the near future by additional genomic
information.
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5.A Methods

5.A.1 Simulating population genetics

According to the Kimura–Ohta theory, a mutation that occurs with a rate µ
in each individual in the population, becomes fixed in the population at a rate
µNPK(s), where PK(s) is the mutation-fixation probability if a mutation with
selection coefficient s, and N is the population size (see Section 1.2.4). Our goal
is to construct a simulation method that ensures that all possible mutations occur
at the correct mutation-fixation rate.

Our simulation scheme is an unusual Monte Carlo method. In Monte Carlo
schemes, trial moves (mutations) are performed and subsequently accepted or
rejected according to some acceptance rule that typically depends on the energy
change due to this move. The acceptance probability Pacc is usually based on the
Bolzmann factors of the old and the new state. In our scheme, we also perform
trial mutations, but now the acceptance probability depends on the selection
coefficient s corresponding to the mutation.

A straightforward way to arrive at the correct effective mutation-fixation rates
would be to try each mutation i of type m at a rate µmN (the rate at which
the mutation occurs in the total population) and then accept it with probability
Pacc(si) = PK(si) (the probability of fixation). This would indeed lead to the
correct mutation-fixation rate µmNPK(si). This method, however, would be
extremely inefficient for the following reason. Most mutations in the model are
either nearly neutral or strongly deleterious (s . 1/N), as is also expected for
real molecular systems (Kimura, 1979; Gillespie, 1991). For such mutations, the
acceptance probability PK(s) is very small (. 1/N) so that practically all trial
moves would be rejected.

The following scheme solves that problem. For every type of mutation m, we
selected a value smax,m such that for mutations i of type m the probability that
si > smax,m is negligible. Next, we assigned a decreased trial rate µmNPK(smax,m)
to trial moves of type m and accepted them with an increased probability

Pacc,m(si) ≡
PK(si)

PK(smax,m) . (A5.1)

This results in the correct effective rate for each mutation i of type m with
selection coefficient si, since

µmNPK(smax,m)× Pacc,m(si) = µmNPK(si). (A5.2)

By choosing the values smax,m as low as possible, a speed-up factor of ≈ 104 was
obtained. During the simulation, we monitored that the requirement si ≤ smax,m
was never violated.

To perform our trial mutations, we use an event-driven algorithm. This means
that, in each step of the algorithm, we make an inventory of all possible mutations
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quantity symbol value

promoter length π 40 bp
terminator length τ 23 bp
number of genes n 3454
number of colors c 3
population size N 105

rate insertion µin 1× 10−9 bp−1

rate deletion µdel 1× 10−9 bp−1

rate creation terminator µct 1× 10−12 per site
rate creation promoter µcp 1× 10−12 per site
rate uni- to bi-directional µub 5× 10−11 per terminator
rate bi- to uni-directional µbu 2.45× 10−9 per terminator
rate inversion µiv 1× 10−12 bp−1

fitness cost DNA length α 4× 10−8 bp−1

fitness cost transcription β 3.6× 10−7 bp−1

Table 5.1: Parameter settings for the simulations. Shown are the parameters belonging to the
simulation results for E. coli presented in Fig. 5.2. The same parameters were also used to
fit the B. subtilis data; the only difference is that in these simulations µub is chosen ≈ 12×
higher, leading to 10 times more bi-directional terminators.

and their rates. The sum of these rates determines the (Poissonian) probability
distribution of next-mutation times, which we use to stochastically determine
when the next mutation occurs in the population. Next we decide which particular
mutation to perform; the probability for a particular mutation to be chosen is
proportional to its rate.

5.A.2 Parameters

The parameters for the results presented in Fig. 5.2 are listed in Table 5.1 and
were based on the following considerations. Effective population sizes estimates
range from 105 to 108 (Berg, 1996); we used 105. The promoter length was chosen
to be typical for the core promoter in E. coli: 40 bp. We used EcoCyc database
(Keseler et al., 2005) to compute the mean length of known Rho-independent
terminator sequences in E. coli, and used the result (τ = 23 bp) for our simulations.
The insertion and deletion rates are estimated to be comparable to base pair
substitution rates (Berg and Kurland, 2002) which in E. coli is of the order of
≈ 1× 10−9 per replication (Drake et al., 1998). The creation of terminators has
to be a rare event, since otherwise intergenic regions would become littered with
gratuitous terminators. We therefore use a considerably lower rate for terminator
creation. For simplicity, the promoter creation rate is assumed to be equal to
the terminator creation rate. We assume that only a small fraction (2%) of the
terminators that are used uni-directionally could actually function bi-directionally.
Therefore the conversion from uni- to bi-directional is much slower than the
reverse process. Presumably, the latter could result from mutations in several
places in the terminator, which suggests that this rate should be a few times
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higher than the point mutation rate. Although inversions and translocations have
occurred regularly in the evolution of bacteria (Itoh et al., 1999; Zivanovic et al.,
2002), we expect these to happen considerably less often than small insertions
and deletions. As we explained in Section 5.4, the values of α and β tune the
average length of intergenic regions; we chose these values such as to fit the data
of E. coli. To fit the plots for B. subtilis, the same parameter values were used
as for E. coli, except for an increased fraction of promoters that can function
bi-directionally: 20%.

5.A.3 Initialization

Initially, the chromosome was prepared as follows. The genome contained 3553
genes in random orientations. Each gene has its own promoter and its own
terminator (no operons). The lengths of the spacers are prepared according to
the equilibrium probability distribution that would apply if the dynamics would
be completely dominated by insertions and deletions only (see Section 5.4). In
this equilibrium, the distribution of spacer lengths is shorter for spacers that are
transcribed than for spacers that are not, even though both distributions are
geometric.
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5.B Derivation of Equation 5.5

The mean length of the spacer regions is denoted by l̄. In order to achieve
this mean value in our model, the probability distribution P (l) of the length of
intergenic regions should obey:

P (l)
P (l + 1) = e1/l̄. (A5.3)

At the same time, equilibrium dictates that

P (l)µin(l + 1)PK(−α) = P (l + 1)µdel(l + 1)PK(α). (A5.4)

Here we used that, in a spacer of length l, there are l + 1 places where one can
insert a base pair, and that the fitness cost of an insertion or a deletion are s = α
and s = −α respectively. The rates µdel and µin are the deletion and insertion
rates. It follows that:

P (l)
P (l + 1) = µdelPK(α)

µinPK(−α) . (A5.5)

We now use Equation 1.45 and anticipate that α� 1 (which we can check at the
end of the derivation), and obtain

− µin
µdel

e1/l̄ = 1− e−2Nα

1− e2Nα . (A5.6)

If we define x ≡ e2Nα, the previous equation becomes quadratic in x; solving this
equation leads to

α = 1
2N

(1
l̄

+ ln
(
µdel
µin

))
. (A5.7)

This shows that, if we fix the mean l̄, the fitness cost of one base pair, α, depends
on the population size. This is not surprising, as we saw that the consequence of
fitness differences is proportional to the population size. We can also see that α
depends on the ratio of the insertion and deletion rate. As we do not know this a
priori ratio, we choose them equal in our model; in this case

α = 1
2Nl̄

. (A5.8)

In reality, l̄ ≈ 125 bp and N ≈ 105. This confirms that, indeed, α is a very small
fitness cost, in retrospect justifying our assumption earlier on.
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Chapter 6

The evolutionary dynamics of
intergenic distances

Intergenic distances change due to insertions and deletions.
As these mutations occur stochastically, the lengths of inter-
genic regions carry out a “random walk” on long time scales.
Here, we study this “diffusive” behavior by comparing the
distances between neighboring genes in E. coli with the dis-
tances between their orthologs in related species. These
data can be compared to a formal model based on a Mas-
ter equation. We show that the divergence of the lengths of
intergenic regions in Escherichia coli and Salmonella Typhi
is compatible with our model, but that insertions and dele-
tions larger than one base pair cannot be ignored, as they
contribute strongly to the speed of the divergence.
We also use the model to identify operons that may recently
have formed due to the merging of two transcription units.
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6.1 Introduction

On evolutionary time scales, the lengths of intergenic regions constantly change.
The static distributions of intergenic distances that we studied in Chapter 4
are a consequence of these evolutionary dynamics. Indeed, in Chapter 5 we
demonstrated that the distance distributions of bacteria such as Escherichia
coli and Bacillus subtilis can be reproduced by a strongly simplified model of
genome evolution. Here we take a closer look at the evolution of the lengths
of intergenic regions. We compare the distances between genes in E. coli to the
distances between their orthologs in two close relatives: Shigella dysenteriae
and Salmonella enterica subsp. enterica serovar Typhi (abbreviated below as
Salmonella Typhi or S.Typhi). This allows us to study how intergenic distances
of related species diverge in the course of time.

Intergenic regions grow and shrink due to insertions and deletions (jointly
referred to as indels). In intergenic regions, these indels are typically only a few
base pairs long1. As the occurrence of mutations is a stochastic process, one
would expect that the lengths of intergenic regions perform a “random walk” on
evolutionary time scales. We propose a stochastic model for the evolutionary
“diffusion” of intergenic regions and compare it to the divergence between E. coli
and S.Typhi.

As a first project, we focus on intergenic regions between tandem genes. This
has several reasons. First, tandem intergenic regions are particularly interesting
since they come in two flavors: those inside transcription units (TUs) and those
between them2. In Chapter 4 we demonstrated that the tandem intergenic regions
inside TUs (called intra-operon regions) are typically much shorter than the
ones between TUs (inter-operon regions). These differences in the mean length
have to reflect differences in effective mutation-fixation rates of indels. Therefore
the evolutionary “diffusion” of the lengths of intergenic regions should also be
different for the two types.

A second reason to focus on tandem intergenic regions has to do with our
predictions in Chapter 5. There, we suggested that tandem neighboring operons
could merge due to the loss of a terminator sequence. If this happens, the
intergenic region between the operons changes from type “inter” to type “intra”.
Conversely, if an operon would split in two parts, an intergenic region has to
switch from type “intra” to type “inter”. In both cases, the mode of diffusion
changes after switching. We model the influence of switching on the evolution of
the length of intergenic regions and compare the results with the data of E. coli
and S.Typhi to find operons that may have formed recently by a merging or
splitting event.

1The analysis of Messer and Arndt (2007) of indels in primates suggests that about one half of
the indels is only one nucleotide long; yet, rates can differ strongly between different organisms.

2We acknowledge that the border between these two categories is fuzzy: in the presence of internal
promoters and weak terminators some intergenic regions may be hard to classify. In the present
analysis we ignore these exceptions.
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3ʹ UTR

terminator

untranscribed spacer

promoter

5ʹ UTR

Shine-Dalgarno s.

(a) Intergenic region between transcription
units (type “inter”).

Shine-Dalgarno sequence

transcribed spacer

(b) Intergenic region inside a tran-
scription unit (type “intra”).

Figure 6.1: Intergenic regions between tandem genes exist in two types: those between
transcription units (a) and those inside a transcription unit (b). Intergenic regions of different
types have different compositions; for instance, inter-operon regions contain a promoter and
a terminator, whereas intra-operon regions do not. The blue parts of the DNA denote parts
that are being transcribed; see the legend in Fig. 5.1 for the meaning of the other symbols.

6.2 Short description of the model

In this section, we give a short description of our model. The model describes how
the lengths of intergenic regions evolve due to random insertions and deletions.
We cannot directly compare these dynamics to real data of E. coli, because
we know only the current lengths of its intergenic regions and not how long
these were in the past. This problem can be circumvented by comparing the
lengths of the intergenic regions in E. coli with those in related species, such as
S.Typhi. The idea is to use our model to predict the joint probability that a
given intergenic region has length n in E. coli and length m in S.Typhi. This
probability distribution can be compared to the data.

The probability that a given intergenic region has length n in E. coli and
length m in S. Typhi is different for the different types of intergenic regions (intra-
or inter-operon ones). Moreover, it is again different for intergenic regions in
which a merging or splitting event has taken place in one of the species. The
total joint probability function Jtotmn can therefore be written as

Jtotmn = w1Jintramn + w2Jintermn + w3Jmerge
mn + w4Jsplitmn , (6.1)

in which
∑
iwi = 1. The four terms correspond to the contributions of intra-

operon intergenic regions, inter-operon regions, those in which a merging event
has occurred, and those in which a splitting event has taken place. In writing
Equation 6.1, we implicitly assumed that the rates at which merging and splitting
events take place are low, so that we can neglect histories in which, in a given
intergenic region, more than one such event has occurred since the divergence of
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the two species from their common ancestor.
Below, we briefly describe our model and how we compute the quantities in

6.1; we refer to Appendix 6.B for more detailed derivations. The spirit of the
calculations is similar to the method presented by Mustonen and Lassig (2005),
who studied the evolution of the binding energies of transcription factor binding
sites; however, the dynamics of the two systems is clearly different.

6.2.1 Model assumptions

As we mentioned, we distinguish two types of tandem intergenic regions, referred
to as types “intra” and “inter”. These intergenic regions consist of various parts,
such as promoters or untranslated regions (UTRs). Intergenic regions of different
types have different compositions; this is illustrated in Fig. 6.1. Intergenic regions
of type “inter” contain a terminator and a promoter. Apart from these objects,
three “spacers” are present: one 3’ UTR, one 5’ UTR, and an untranscribed
spacer. Also, the downstream gene is preceded by a Shine–Dalgarno sequence or
ribosomal binding site. (Note that, in our definition, the 5’ UTR does not include
the Shine–Dalgarno sequence.) Intergenic regions of type “intra”, on the other
hand, do not contain terminators or promoters; we assume that they consist of a
transcribed spacer and a Shine–Dalgarno sequence.

An important (but reasonable) assumption is that the lengths of the promoter,
terminator and Shine–Dalgarno sequences are fixed. This means that only the
spacer lengths evolve—with this we mean the UTRs, the transcribed spacers and
the untranscribed spacers. The evolution of an intergenic region is then given by
the independent evolution of its spacers. Therefore it is sufficient for our model
to describe the dynamics of the different spacers.

The dynamics of the three kinds of spacers— transcribed spacers, untran-
scribed spacers and UTRs—are not the same. This is clear from the fact that
their average lengths are different: in E. coli, the average length of untranscribed
spacers is of the order of 125 bp, whereas UTRs and transcribed spacers are about
an order of magnitude shorter. This means that the balance between insertions
and deletions must be different for the various kinds of spacers. It is important to
appreciate that the relevant indel rates are the combined result of mutation and
selection. In fact, it is plausible that the mutation rates before selection are equal
in each type of spacer, and that the length differences reflect the dissimilarities in
the selection pressures acting on the different spacers. (See Section 1.2.4 of the
Introduction, Section 5.3.3 of Chapter 5 and Appendix 6.C.)

Even though the typical lengths of the different types of spacers are not the
same, we use one and the same model to describe their dynamics, be it with
different parameter values. The model is discussed below, but can be summarized
as follows. First: as most indels are very short, we make the convenient assumption
that all insertions and deletion have a length of 1 bp only. In the Results section
we examine the consequences of this assumption in some detail. Second: we
assume that the rates of insertions and deletions in a given spacer are equal at



6.2 Short description of the model 119

all possible sites. These two assumptions lead to the theory described below.

6.2.2 Master equation for spacers

In a spacer of length n, a deletion of length 1 bp can occur at n places; therefore the
total deletion rate should be proportional to n. Insertions can occur at n+1 places,
so that the total insertion rate should be proportional to n+ 1. Consequently,
longer intergenic regions are expected to “move” faster. These considerations can
be formalized in the following Master equation for the probability P (n, t) that a
given spacer has length n at time t:

dP (n, t)
dt = naP (n− 1, t) + (n+ 1)b P (n+ 1, t)− ((n+ 1)a+ nb)P (n, t).

(6.2)

Here a is the insertion rate per possible insertion point in the intergenic region,
and b is the deletion rate for any given base pair. We stress that a and b are
mutation-fixation rates—with this we mean rates at which mutations are fixed
in the population (see Section 1.2.4). The dynamics described by this Master
equation obey detailed balance, which is important in the derivations below.

If b > a, the equation has the equilibrium distribution

Peq(n) =
(
1− a

b

)
e− ln(b/a)n. (6.3)

The mean of this geometric distribution is (b/a− 1)−1 and is fixed by the ratio
b/a. Therefore b/a should be chosen appropriately for the three different kinds of
spacers (see Appendix 6.C).

6.2.3 The joint probabilities

From Equation 6.2, it is possible to compute the probability Gmo(t) that a spacer
of initial length o evolves to a length m in a time t. This amounts to solving the
Master equation (numerically) for the initial condition P (n, 0) = δno (where δno
is the Kronecker delta function).

We assume that the two species had their last common ancestor a time ta ago.
Suppose that, in this common ancestor, a particular spacer had an (unknown)
length na. The probability that this spacer now has length n in species 1 and
length m in species 2 is then given by the product Gnna(ta)Gmna(ta). As the
length na is unknown, the joint probability for a randomly selected spacer to have
length n in species 1 and m in species 2, Jnm(ta), can be computed by summing
over all possible values of na:

Jnm(ta) =
∑
na

Gnna(ta)Gmna(ta)Pa(na). (6.4)
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Here Pa(na) is the probability that the spacer had length na in the ancestor. If
we make the assumption that the length distribution of spacers in the common
ancestor was in equilibrium, then it follows that Pa(na) = Peq(na). Remember
that Peq(na) was defined in Equation 6.3. This enables us to simplify Equation 6.4
and to compute Jnm(ta) explicitly for given values of a, b and ta.

Once we have computed the joint probabilities Jnm(ta) for each type of spacer,
we can also compute the probability for a complete intergenic region to have
a length n1 in species 1 and a length n2 in species 2. The result is different
for the different types of intergenic regions (Jintramn for type “intra” and Jintermn for
type “inter”; see Equation 6.1). The calculation involves a suitable convolution
of the probabilities for the different spacers in the intergenic region; in addition,
the “static” objects such as the promoters and terminators should be taken into
account. We refer to Appendix 6.B for the details of these calculations.

Up to now, we have implicitly assumed that no merging or splitting event
occurred during the evolution of the intergenic region. We now turn to the
treatment of the merging and splitting processes.

6.2.4 Merging and splitting

If two neighboring operons merge, the inter-operon intergenic region between the
operons converts to type “intra”. If an operon splits in two parts, the opposite
happens. As we indicated, we assume that the rate at which merging and splitting
events occur is low, so that we can ignore the possibility that more than one of
these events has happened in a given intergenic region since the divergence of the
two species from their common ancestor. Also, for a given intergenic region, we
only consider histories in which a merging or splitting event occurred in only one
of the species—not in both.

When computing the joint probability for the splitting and merging modes (i.e.
Jmerge
mn and Jsplitmn ), we have to sum over the probabilities of all possible histories.

If an intergenic region is of type “intra” in species 1 and of type “inter” in species
2, this can be explained by two scenarios: either a splitting event has occurred
in species 2, or a merging has happened in species 1. Therefore, both scenarios
contribute to the total probability. Also, the splitting or merging could have
happened at any time between the divergence from the common ancestor (a time
ta ago) and the present. Therefore, we also have to integrate over all possible
splitting or merging times. For our model, this integral can be computed explicitly
(see Appendix 6.B).

A fundamental question is what happens to the lengths of the spacers at the
moment of the splitting or merging event. Many scenarios can be envisioned. In
case of operon merging, we proposed in Chapter 5 that the loss of a terminator
is a likely first step. Later, the promoter may be lost (or not: many operons
have internal promoters). Alternatively, a large deletion could remove both the
terminator and the promoter at the same time. Our model assumes that, at the
moment of merging, both the promoter and the terminator are destroyed, but their
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length is preserved. In other words, the total length of an intergenic region does
not change at the moment of a merging event. Of course, the mutation-fixation
rates of insertions and deletions do change upon merging; the model takes this
into account.

In case of operon splitting, again several scenarios can be imagined. One
possibility is that a promoter and terminator emerge from pre-existing sequences
due to base pair substitutions and other small mutations. Another scenario would
be that a promoter and/or a terminator is inserted as a whole, for instance due
to a recombination event with other parts of the DNA. In the first scenario, the
length of the intergenic region directly after splitting is equal to the length just
before it. This requires that the length of the intergenic region before splitting
was long enough to accommodate a terminator and a promoter. In the second
scenario, the length of the intergenic region makes a sudden jump at the moment
of splitting, as a promoter and terminator are inserted.

In fact, many hybrid scenarios can be envisioned. Maybe, first internal
regulation evolves. New promoters or terminators may initially overlap with one
of the genes; both may initially be weak. Clearly, our model is too coarse-grained
to describe all these options. In the results presented below, we assume that at
the moment of splitting a promoter and a terminator are inserted in the intergenic
region; the length of the region then increases instantaneously.

6.3 Results

We now present the results of our analysis.

6.3.1 The data: E. coli versus S. dysenteriae and S. Typhi

We compare the lengths of intergenic regions in E. coli to the lengths of their
orthologous intergenic region in S. dysenteriae and S.Typhi (see Appendix 6.A
for details on the selection of the orthologs). In Fig. 6.2, the resulting data are
represented in scatterplots.

Fig. 6.2(a) shows the data for Escherichia coli and Shigella dysenteriae. The
bacterium S. dysenteriae is very closely related to E. coli; many authors even
consider the genus Shigella as a part of E. coli (Pupo et al., 1997). One would
therefore expect that most intergenic distances in E. coli should be very similar to
those in S. dysenteriae. Indeed, almost all points fall on the main diagonal of the
scatterplot (the plot contains 832 points, so the outliers really are exceptions).

The species Salmonella enterica subsp. enterica serovar Typhi and E. coli both
belong to the family of enterobacteriaceae, but not to the same genus. This means
that the species are quite related, but much less so than E. coli and S. dysenteriae.
S.Typhi diverged from the E. coli lineage about 100 million years ago (Lawrence
and Ochman, 1998). Fig. 6.2(b) shows the scatterplot for S. Typhi vs. E. coli (651
points). As expected, this plot shows much less correlation between the distances
than the plot for S. dysenteriae. Due to insertions and deletions in the intergenic
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Figure 6.2: Scatterplots of the length of tandem intergenic regions in E. coli compared to their
length in S. dysenteriae (Fig. (a)) and S.Typhi (Fig. (b)). As S. dysenteriae is very closely
related to E. coli, almost all intergenic regions have a similar length in both organisms, as
apparent from the concentration of points on the diagonal of the plot. S.Typhi is a more
distant relative of E. coli; clearly, their conserved intergenic regions are less similar in length.

regions of both species, the plot shows a much wider scatter. Below, we study if
the characteristics of this scatterplot are compatible with the model described
above.

6.3.2 The model can fit the data

As the density of points in the scatterplots is very low in most regions, it is hard
to directly compare the scatterplots to the probability distributions computed
from our model. Therefore, we study two key signatures of the distribution
and compare these to our model. To this end, we make use of a coordinate
transformation. Given the lengths n1 and n2 of a certain intergenic region in
E. coli and S.Typhi, we define:

x ≡ n1 + n2

2 , (6.5)

y ≡ n1 − n2

2 . (6.6)

The coordinate x is the mean length of the intergenic region in the two species,
and y is a measure of the distance between the point (n1, n2) and the diagonal
n1 = n2 of the scatterplot. In terms of these coordinates we can define two
functions characterizing the scatterplots: the probability distribution ρ(x), and
the function σy(x), defined as the standard deviation of y for points with a given



6.3 Results 123

0

 0.004

 0.008

 0.012

 0.016

0  100  200  300

pr
ob

ab
ili

ty

(n1+n2)/2

theory
data

(a) Probability density as a function of
(n1 + n2)/2.

0

20

40

60

80

st
an

da
rd

 d
ev

ia
ti

on

0  100  200  300
(n1+n2)/2

theory
data

(b) Standard deviation of (n1 − n2)/2 as
a function of (n1 + n2)/2.

Figure 6.3: Fits of the model to key aspects of the scatterplots: the probability density ρ(x),
where x = (n1 + n2)/2, and the standard deviation σy(x) in y ≡ (n1 − n2)/2 as a function of
x. The model can fit the data reasonably well; yet, the fit parameter ta (the time that passed
since the divergence of E. coli and S.Typhi from their common ancestor) is unrealistically
high: ta = 16/b• (see text). The size of σy(x) can therefore not be explained by insertions as
deletions of single nucleotides.

value of x.
The functions ρ(x) and σy(x) can be interpreted as follows. Shortly after

divergence, the distances in both species are (almost) equal. This means that
x ≈ n1 ≈ n2. Therefore, ρ(x) ≈ P (n1) ≈ P (n2), where P (ni) denotes the length
distribution of intergenic regions in species i. At this point, y ≈ 0 for all intergenic
regions, so that σy(x) ≈ 0 for all x. As time progresses, the values of n1 and n2
de-correlate. Hence, σy(x) increases with time for all x. At the same time, ρ(x)
evolves too; for instance, the variance of ρ(x) decreases as n1 and n2 de-correlate.

We computed the functions ρ(x) and σy(x) both for the data in Fig. 6.2(b)
and for our model, using ta (the divergence time) as a fitting parameter. The
remaining parameters (the indel rates, the fraction of the intergenic regions that
are of type “intra”, and the lengths of promoters, terminators and Shine–Dalgarno
sequences) are chosen based on the static length distributions of intergenic regions
(see Appendix 6.C). The results are presented in Fig. 6.3. Both plots demonstrate
that our model fits the data quite well. The plot 6.3(b) shows that, in accordance
with our model, longer intergenic regions “diffuse” faster than short ones.

Only at small x, where the distributions are dominated by intergenic regions
of type “intra”, our model predicts a diffusion that is slightly too fast relative to
the diffusion at larger x; this is evident from the peak in the model (at ≈ 60 bp)
that is not observed in the data. In our model, this peak is a consequence of the
following. Consider an intergenic region of length ≈ 70 bp of the type “inter”.
This intergenic region must have very short spacers, since a large fraction of
it is occupied by a promoter and a terminator. Hence, the rate of change of
this intergenic regions is very low. Intergenic regions of the type “intra” with a
similar length contain quite a long spacer, and therefore have a much higher total
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insertion and deletion rate.
We could produce a better fit by lowering the insertion and deletion rates for

transcribed spacers as compared to those of the untranscribed spacers; this can
remove the peak (see Appendix 6.C). However, we do not have a clear explanation
why the diffusion of transcribed spacers would be much slower than that of the
untranscribed ones. One possibility is that, in reality, long transcribed spacers
are likely to contain internal promoters or other sites for internal regulation. This
could impose evolutionary length constraints that are not included in the model.

6.3.3 Required number of mutations far too high

Even though the fits shown in Fig. 6.3 are quite good, it turns out that the fit
parameter ta is not in the correct range: ta ≈ 16/b•, where we use 1/b• as our
unit of time, b• being the deletion rate in the UTRs (the highest rate in the
system). This means that the measured standard deviation σy(x) is expected
to occur only after about 16 deletions and a similar number of insertions have
occurred on average at every site in the spacers. If this would be correct, no
homology whatsoever should be expected between intergenic regions of E. coli
and S. Typhi, except for sites that are under selection. This is not consistent with
the high level of sequence similarity observed (e.g. Mustonen and Lassig (2005)).
We conclude that the differences in the lengths of intergenic regions between
E. coli and S.Typhi cannot be attributed to indels of single base pairs only.

Our initial assumption that all insertions and deletions have a length of 1 bp
is apparently incorrect; yet, the fits in Fig. 6.3 are reasonable. This raises two
questions. The first is: What is the influence of indels larger than 1 bp on the
evolution of the lengths of intergenic regions? The second question is: Under
which conditions can our simple model be used as an approximation of models
that do include larger indels, by interpreting the parameters a and b as “effective”
insertion and deletion rates that represent the total effect of indels of all sizes?
We now address these questions within a class of models that do include indels
larger than 1 bp.

6.3.4 Larger insertions and deletions

We replace our initial model (that we call the “restricted” model) by a more
general one. In our extended model, indels can be larger than 1 bp, but are still
assumed to be short: we assume that indels of length d or larger can be ignored.
The Master equation describing the evolution of spacers can then be written as:

dP (n, t)
dt =

∑
0<i<d

bi(n+ 1)P (n+ i, t) +
∑

0<i<d
ai(n− i+ 1)P (n− i, t) (6.7)

−
∑

0<i<d
bi(n− i+ 1)P (n, t)−

∑
0<i<d

ai(n+ 1)P (n, t).
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Here ai is the rate of insertions of length i per insertion site and bi is the rate
of deletions of length i per possible locus. A subtle point is that in a spacer of
length n, insertions of any size can occur in n+ 1 places, whereas deletions of
length i can occur in only n− i+ 1 places. For d = 2 we retrieve our restricted
model; the description becomes more general if a larger d is chosen.

The dynamics described by the Master equation 6.7 depend on all parameters
ai and bi. However, different combinations of parameter values may result in a
similar behavior. To study what are the relevant (combinations of) parameters, we
now approximate the Master equation by a Fokker–Planck equation (van Kampen,
1992). This requires that we from now on consider n as a continuous quantity
and P (n, t) as a probability density function over the positive real numbers. We
assume that d is small compared to the length scale at which P (n, t) varies; under
this assumption, we can replace P (n + i, t) and (n − i + 1)P (n − i, t) by their
second order Taylor expansions around i = 0:

P (n+ i, t) ≈ P (n, t) + i
∂P (n, t)
∂n

+ 1
2 i

2 ∂
2P (n, t)
∂n2 ,

(n− i+ 1)P (n− i, t) ≈
(

(n− i+ 1)− i(n− i+ 1) ∂
∂n
− i2(n+ 1)

2
∂2

∂n2

)
P (n, t).

Thus we arrive at the following Fokker–Planck equation:

dP (n, t)
dt =

(
− ∂

∂n
(B −A(n+ 1)) + 1

2
∂2

∂n2D(n+ 1)
)
P (n, t), (6.8)

in which the constants A, B and D are defined as

A ≡
∑

0<i<d
i(bi − ai), B ≡

∑
0<i<d

i2bi, D ≡
∑

0<i<d
i2(bi + ai). (6.9)

This is a diffusion equation with a drift term, in which both the diffusion coefficient
and the drift coefficient are linear in n.

Apparently, in the regime where we can use the Fokker–Planck approximation,
the evolution of the system is fixed by the three lumped parameters D, A and
B. The parameter D sets the time scale of the diffusive part of the dynamics,
whereas A and B scale the speed and length dependence of the drift term. In
the restricted model (d = 2), the parameters reduce to A = b − a, B = b, and
D = b+ a.

The Equations 6.9 show that D and B are sums of the indel rates, weighted by
their length squared. This means that indels of length i > 1 contribute strongly
to these values, even if the rates ai and bi decrease with i. This holds to a
lesser extent for A, in which the rates are weighted linearly by their length. The
restricted model, which does not take into account indels with i > 1, is therefore
likely to strongly underestimate the speed of the dynamics, and in particular of
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the diffusion part; this explains that it needs unreasonably high indel numbers to
fit the data.

This effect can easily lead to an underestimation of the diffusion speed of two
orders of magnitude. The following toy model illustrates this. Suppose that the
rates ai and bi decays linearly as a function of i, according to

ai =
{
a1(11− i)/10 if 0 < i ≤ 10,
0 else,

(6.10)

and
bi =

{
b1(11− i)/10 if 0 < i ≤ 10,
0 else,

(6.11)

In this case, D = 121(a1 + b1). Ignoring the indels with i > 1 in this case indeed
leads to an underestimation of D by a factor 121.

Apart from the overall speed of the dynamics, what else changes when we
allow for larger indels? By writing the Fokker–Planck equation as

dP (n, t)
dt = D

(
− ∂

∂n

(
B

D
− A

D
(n+ 1)

)
+ 1

2
∂2

∂n2 (n+ 1)
)
P (n, t), (6.12)

it is clear that the solution of the equation is fixed by the parameters B̃ ≡ B/D
and Ã ≡ A/D except for an overall scaling of the time. It follows that the
steady-state solution of Equation 6.12, Pst(n), can be written in terms of the two
parameters Ã and B̃ only; indeed,

Pst(n) ∝ (1 + n)2B̃−1e−2Ãn. (6.13)

This is the product of an exponential factor depending on Ã and a second factor
depending on B̃. In contrast, the steady-state solutions of our restricted model
were strictly exponential (see Equation 6.3). This means that our restricted model
can certainly not be used as an approximation for the extended model, unless
B̃ ≈ 1/2. Conversely, if we do assume that B̃ ≈ 1/2, then our restricted model
can approximate the dynamics of the extended model with any set of parameter
values D and A (provided D ≥ A, which is true by definition: see Equation 6.9)
by choosing effective rates a and b such that D = b+ a and A = b− a.

To summarize, assuming that indels are typically short so that the system is
approximated well by the Fokker–Planck equation, the restricted model should
be able to fit the data for some values a and b, provided that B̃ ≈ 1/2. From the
definition of B̃ this means that

∑
i i

2bi ≈
∑
i i

2ai. The fact that the restricted
model works reasonably well suggests that this relation holds approximately.
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Figure 6.4: Probability density of the merging and splitting modes resulting from our model
(ta = 16/b•) compared with the real data. Two small groups of point, indicated in Fig. (b),
occur in the domains of the scatterplot where intergenic regions are expected that recently
underwent a merging or splitting event.

6.3.5 Outliers are candidates for merging or splitting

In Fig. 6.4 we compare the results of our calculations of the merging/splitting
pathways to the data. The total joint probability density for the merging and
splitting modes as resulting from our model calculations is shown in Fig. 6.4(a).
The results shown correspond to the time point ta = 16/b• (the value of the fit
parameter in Fig. 6.3). The intergenic regions in which a merging or splitting
event has recently taken place are expected to appear in particular regions of
the graph, where one of the distances is rather small, and the other distance
is rather large. These results should be compared with the data in Fig. 6.4(b).
We identified two small clusters of points that are located in the correct part of
the scatterplot. The positions of these points suggest that they correspond to
intergenic regions in which a merging or splitting event has recently taken place.

The two clusters contain 5 and 2 points. However, the intergenic regions
included in the plot were selected using a very strict criterium on the conservation
of the flanking genes (see Appendix 6.A). Using a slightly less strict criterium plus
a manual check, we could select several more examples; the final set contained 14
intergenic regions that are long in S.Typhi and short in E. coli and 4 in which
the opposite is the case. These intergenic regions and their sizes are listed in
Table 6.1.

We studied the intergenic regions in Table 6.1 in detail. For several reasons, it
is hard to decide if merging or splitting event has indeed occurred in a given region.
To start with, in many cases there is no experimental evidence proving that a
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E. coli S. Typhi

gene pairs n1 gene pairs n2

caiD caiE 6 caiD caiE 112
glpG glpR 19 glpG glpR 93
hisG hisD 6 hisG hisD 103
hypA hypB 4 hypA hypB 70
lexA dinF 19 lexA dinF 179
panB panC 12 panB panC 126
radA nadR 21 radA nadR 151
rpsG fusA 28 rpsG fusA 97
sdaB ygdG 22 sdaB exo 111
ubiH visC 23 visB visC 129
wcaJ wzxC 2 wcaJ wzxC 102
yafD yafE 4 yafD yafE 78
ybhS ybhR 11 t2072 t2073 116
ygiF glnE 23 t3122 glnE 118

(a) n1 < n2

E. coli S. Typhi

gene pairs n1 gene pairs n2

dnaG rpoD 195 dnaG rpoD 15
flgF flgG 172 flgF flgG 14
uup pqiA 130 t1858 pqiA 15
yfhK yfhG 165 t0292 yfhG 2

(b) n1 > n2

Table 6.1: List of intergenic regions that lie in those areas of the scatter plot (Fig. 6.4(b))
that are associated with merging or splitting processes. The intergenic regions in E. coli and
their ortholog in S.Typhi are specified by the pairs of genes flanking them. The numbers n1
and n2 are the lengths of the regions in E. coli and S.Typhi respectively.

given intergenic region is of type “inter” or “intra”. Algorithms predicting operons
in E. coli are largely based on the lengths of the intergenic regions and therefore
do not offer completely independent information. In S.Typhi, the extents of the
majority of transcription units have not been determined experimentally and
predictions are typically based on knowledge about E. coli. Through sequence
analysis, promoter and terminator predictions have been made (e.g. Huerta and
Collado-Vides (2003); Lesnik et al. (2001); Kingsford et al. (2007)), but these have
a limited accuracy and scope (for instance, terminator predictions are limited to
Rho-independent terminators).

Nevertheless, some patterns can be identified in the data. We discuss them
now.

Intergenic regions similar to uup–pqiA: overlapping internal promoters
Four cases are very similar: dnaG–rpoD, hypA–hypB, uup–pqiA and rpsG–fusA.
We use the region uup–pqiA as an example.

The intergenic region uup–pqiA is long in E. coli (130 bp) and short in S. Typhi
(15 bp). We do not know of any direct experimental evidence showing if uup and
pqiA are co-transcribed in E. coli. Given the length of the intergenic region in
E. coli and the fact that the two genes are not obviously functionally related, one
would expect that the uup–pqiA region is between two operons in E. coli. This
is also predicted by Price et al. (2005a). In S.Typhi, the region is very short
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Figure 6.5: Phylogenetic tree of the species in the text. The information for this tree was
taken from Price et al. (2006).

and therefore more likely to be an intra-operon region. As the length of the
orthologous region in Yersinia pestis, a closely related out-group species (see the
phylogenetic tree in Fig. 6.5), is 129 bp—very similar to the length in E. coli—
this suggests that the operons have merged in S. Typhi. This scenario is supported
by the predictions of both Lesnik et al. (2001) and Kingsford et al. (2007) (using
the software RNAMotif and TransTermHP respectively) of a Rho-independent
terminator in the uup–pqiA intergenic region in E. coli, but not in S.Typhi.

However, some subtleties cast doubt on this scenario. Experimentally, two
promoters, pqiAp1 and pqiAp2, have been found inside the open reading frame
uup in E. coli (Koh and Roe, 1995). From these promoters, pqiA is transcribed.
In this light, it is hard to imagine that the terminator predicted by RNAMotif and
TransTermHP actually exists: in that case one would expect the transcripts from
both promoters pqiAp1 and pqiAp2 to terminate on this terminator and therefore
never to reach pqiA. Hence an alternative scenario should be considered. In this
scenario, the genes uup and pqiA are in the same operon, both in E. coli and in
S.Typhi. The promoters pqiAp1 and pqiAp2 would then be internal promoters
allowing for regulatory fine-tuning of the expression of pqiA. The deletion in
S.Typhi of part of the intergenic region could in that case be without severe
consequences, because it contains neither a promoter nor a terminator. On the
other hand, this scenario does not readily explain the apparent conservation of
the unusual intergenic length in E. coli and Yersinia pestis.

The three cases dnaG–rpoD, hypA–hypB and rpsG–fusA are very similar to
the example uup–pqiA. In all cases, the intergenic region is short in one species
and long in the other, suggesting a merging or splitting event; but in each case
internal promoters have been found overlapping with the gene directly upstream
of the intergenic region (i.e. in uup, dnaG, hypA and rpsG), suggesting the
alternative scenario.

Intergenic regions similar to glnE–ygiF : recent deletion of intervening genes
Several intergenic regions are similar to glnE–ygiF. We present this region as an
example.

The region glnE–ygiF is rather short in E. coli (23 bp). This short spacing
suggests that the flanking genes are in the same operon—which is also predicted
by Price et al. (2005a)—but there is no direct experimental evidence for this. In
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S.Typhi the region is quite long: 118 bp. Given that the spacing is even wider
in Yersinia pestis (144 bp) it seems likely that part of the intergenic region was
deleted in E. coli and the flanking operons merged as a result of this.

An alternative scenario presents itself if we study the same region in Vibrio and
Shewanella species. These bacteria are even more distantly related to E. coli and
S. Typhi than the Yersinia— see the phylogenetic tree in Fig. 6.5. In both Vibrio
and Shewanella, the two genes glnE and ygiF are separated on the chromosome
by one to six other genes, depending on the species. Some of these genes are
coded on the same DNA strand as glnE and ygiF, and some on the opposite
strand; this strongly suggests that in (at least some of) these species, the genes
glnE and ygiF are not in the same operon. Apparently, the intervening genes
have gradually been deleted or translocated in the recent course of evolution.
Therefore, the length differences of the intergenic region in E. coli, S.Typhi and
Yersinia can be interpreted in two ways. The first interpretation is that the
intergenic region is of type “intra” in E. coli and of type “inter” in S.Typhi and
Yersinia; the second interpretation argues that the length difference could be the
result of an incomplete deletion of one or more intervening genes followed by a
process of erosion that happens to have advanced more in E. coli. In the latter
case, the genes glnE and ygiF could be in the same operon in all three species.

In our data set, the intergenic regions lexA–dinF and wcaJ–wzxC are also of
this type: in other organisms these gene pairs are separated by one or several
genes, suggesting a recent deletion of intervening genes. Deletion of intervening
genes was also identified by Price et al. (2006) as one of the important mechanisms
of operon formation; they present several examples.

Intergenic regions similar to sdaB–ygdG: recent insertion or translocation of genes
The intergenic region sdaB–ygdG is short in E. coli (22 bp) but rather long in
S.Typhi (111 bp). In both species, it is not known if the genes are in the same
transcription unit. It is relevant here to consider the upstream neighborhood of
this locus. Both in E. coli and in S.Typhi the gene order is: ygdH–sdaC–sdaB–
ygdG. The proteins SdaC and SdaB are clearly functionally related: SdaC is a
serine transporter and SdaB a serine deaminase. The other genes, ygdG and
ygdH, are not obviously related.

Interestingly, in several less closely related bacteria, such as the Yersinia,
Shewanella and Vibrio species, sdaC and sdaB are also next to each other, but
at a very different position on the chromosome. In these species, ygdH and ygdG
are neighbors. This strongly suggests that a stretch of DNA containing sdaC and
sdaB has been translocated after divergence of E. coli and S. Typhi from Yersinia,
and that it has been inserted between ygdH and ygdG.

Again, at least two scenarios could explain the length difference between E. coli
and S.Typhi. First, it is possible that the operon sdaC–sdaB was first inserted
including a terminator. In that case, the short intergenic distance between sdaB
and ygdG in E. coli suggests that the sdaC–sdaB operon subsequently merged
with the transcription unit of ygdG, possibly through the loss of a terminator.
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Second, the operon sdaC–sdaB may have been inserted without a terminator.
In this case, ygdG became part of the operon from the start. Directly after the
insertion, the intergenic distance sdaB–ygdG may have been long, which it still
is in S.Typhi; in E. coli, deletions could have removed parts of it.

Several other intergenic regions show signs of recent insertion of one of the
flanking genes. Sometimes these genes seem to have been translocated from other
parts of the chromosome, and sometimes they may have been acquired through
horizontal gene transfer. Examples are: caiD–caiE, radA–nadR and yafD–yafE.
Price et al. (2006) also mention horizontal transfer and re-arrangement as an
important mechanism for operon formation.

Remaining intergenic regions
In some of the remaining cases, the intergenic region under consideration is short
in all related organisms; the long intergenic distance in E. coli or S.Typhi is the
exception. This holds for flgF–flgG, hisG–hisD, ybhS–ybhR and yfhK–ythG. In
all these cases, the extent of the transcription units is unknown. In yfhK–ythG a
promoter is predicted by Huerta and Collado-Vides (2003).

The lengths of the remaining regions, panB–panC and ubiH–visC, vary ex-
tensively between organisms. For instance, panB and panC overlap with three
nucleotides in the Pseudomonas, Shewanella and Shigella species— this shows
that they are in the same operon in these species. The intergenic region is quite
short in Vibrio (11 bp), Buchnera (15 bp) and E. coli (12 bp), but rather long in
Yersinia (88 bp), Shewanella (69 bp) and S.Typhi (129). It is unclear what this
variability conveys.

6.4 Conclusions

We presented a stochastic model to describe the evolution of the lengths of
intergenic regions. By comparing the lengths of intergenic regions in E. coli to
those of their orthologs in S. dysenteriae and S.Typhi, we could fit our model
to real data. The data show that the distances perform a diffusion-type motion
with drift. The data are compatible with a model in which both the diffusion
rate and the drift are linear functions of the length of the intergenic regions, as
was predicted by the model.

However, our initial assumption that insertions and deletions are all 1 bp long
leads to an unreasonable value of a fit parameter: unrealistically high numbers of
mutations are required to fit the data. This shows that the differences between
the lengths of intergenic regions in related species cannot be explained by indels
of 1 bp only. Indeed, by analyzing a more general model, we demonstrated that
larger indels can contribute strongly to the time scales of the diffusion. Yet, the
initial, restricted model can be used as an approximation of the more general one,
provided the indels are small and

∑
i i

2ai ≈
∑
i i

2bi. In this case, the insertion
and deletion rates in the initial model should be re-interpreted as effective rates
that reflect the effect of the indels of all sizes together.
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More detailed models could be constructed if more information becomes avail-
able about the distributions of insertion and deletion lengths in bacterial genomes.
Such information could be obtained through careful analysis of alignments of
intergenic regions of several bacteria. This is, however, not a straightforward
endeavor. In order to distinguish between insertions and deletions, the sequences
of at least three closely related species should be aligned, and the typical artifacts
of alignment algorithms such as gap attraction should be avoided.

Our calculations also address the scenarios in which, during the divergence
from the common ancestor, two operons merged or one operon was split in one
of the lineages. These computations lead to the prediction of intergenic regions
in which a merging or splitting event may recently have taken place. These
intergenic regions are long in one of the species (E. coli or S. Typhi), and short in
the other. In most cases, the extents of the relevant transcription units in E. coli
and/or S.Typhi have not been determined experimentally, which makes it hard
to conclude if a splitting or merging event has indeed taken place. Yet, a close
examination of the candidates suggests that other mechanisms than merging or
splitting events may also lead to intergenic regions with very different lengths
in two related species. These include: (i) internal promoters, which in some
cases (partly) overlap with one of the open reading frames; (ii) recent deletions of
genes, and (iii) recent insertions or translocations. It would be interesting to see
if expression patterns could shed more light on the candidate regions and their
recent evolutionary history.
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6.A The data for the scatterplots

In order to create the scatterplots in Fig. 6.2, we first identified orthologous gene
pairs between E. coli and each of the other organisms by aligning them using the
NCBI blastp program. We used amino acid sequences downloaded from NCBI
Genbank3. As the (apparent) lengths of some intergenic regions can be (and in
fact are) affected by errors in the open reading frame predictions of the flanking
genes, we used a very strict criterium for inclusion in our data set: genes were
considered orthologs only if their sequence identity was at least 40% and the
length of the alignment was at least 95% of the longest of the two genes.

Next, we used the selected orthologs to list all pairs of tandem neighbors
in E. coli that were preserved as tandem neighbors in the other species. The
intergenic regions between these gene pairs were included in the data set.

6.B Details of the model

Here, we discuss the derivations and computational aspects of the model in
more detail. The calculations are similar in spirit to the method described in
(Mustonen and Lassig, 2005), dealing with the evolution of the binding energies
of transcription factor binding sites.

6.B.1 The evolution of spacers

We assume that the evolution of the intergenic regions is determined by the
evolution of the spacers that they contain. These spacers come in three different
kinds: UTRs, untranscribed spacers and transcribed spacers. The basic model of
the evolution of the distances is the same for each of these, except for different
insertion and deletion rates a and b. The Master equation and steady-state
probability distribution for the spacers are given in Equations 6.2 and 6.3.

We can numerically approximate the time evolution of this system by imposing
a maximal length N . Given such a maximal length, the Master equation 6.2
reduces to a system of N linear differential equations; in vector and matrix
notation, it can be written as:

d~p(t)
dt = M~p(t), (A6.1)

3http://www.ncbi.nlm.nih.gov/
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where

Mnm =



(n+ 1)b if n+ 1 = m,

na if n = m+ 1,
−(n+ 1)a− nb if n = m < N,

−nb if n = m = N,

0 else.

(A6.2)

Here ~p(t) is defined by pn(t) ≡ P (n, t). This set of equations can easily be solved
numerically. Defining E as the matrix having the eigenvectors ~v1 . . . ~vN of M as
columns, we can define

D ≡ E−1ME, (A6.3)
where D is a diagonal matrix. The solution of Equation A6.1 is then given by

~p(t2) = EeD(t2−t1)E−1~p(t1), (A6.4)

which can be computed straightforwardly for given t1, t2 and initial condition
~p(t1). We also define the matrix Gnm(t2, t1) as the probability to evolve, given
length m at time t1, to length n at time t2:

G(t2, t1) ≡ EeD(t2−t1)E−1. (A6.5)

Evidently, G(t2, t1) only depends on the difference between t2 and t1; it is therefore
useful to also define

G(t) ≡ EeDtE−1. (A6.6)

Here we are interested in the situation where two organisms evolved indepen-
dently after their divergence from a common ancestor, a time ta ago. We set out
to compute the probability Jnm(t) of finding a spacer of length n in species 1
that has a length m in species 2. This distribution can be computed given the
distance distribution in the common ancestor, Pa(n):

Jnm(ta) =
∑
o

Pa(o)Gno(ta)Gmo(ta). (A6.7)

Note that at ta = 0,

Jnm(0) =
∑
o

Pa(o)δnoδmo = δnmPa(n), (A6.8)

confirming that, at time ta = 0, the organisms are identical so that Jnm(0) = 0 if
m 6= n.

After a long period of evolution, the length distribution of spacers in an
organism should converge to the equilibrium distribution given in Equation 6.3.
In the following, we assume that this convergence had already taken place in
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the common ancestor of the two species4. This means that Pa(n) = Peq(n). We
indicated before that detailed balance holds for the dynamics described in the
Master equation 6.2. Therefore, we can exploit the following detailed-balance
relation,

Peq(m)Gnm(t) = Peq(n)Gmn(t), (A6.9)
to simplify expression A6.7:

Jnm(ta) =
∑
o

Gno(ta)Gmo(ta)Pa(o) =
∑
o

Gno(ta)Gmo(ta)Peq(o) (A6.10)

=
∑
o

Gno(ta)Gom(ta)Peq(m) = Gnm(2ta)Peq(m).

This shows that the independent evolution of species 1 and species 2 from an
unknown ancestor over a time ta is equivalent to the evolution of species 2 from
species 1 in a time 2ta. This time reversal of the evolutionary process is possible
only because of detailed balance. In the second line of Equation A6.10 we also
used that ∑

o

Gno(t1)Gom(t2) = Gnm(t1 + t2). (A6.11)

As we mentioned, the above theory applies to all three types of spacers, except
that the parameters a and b are different for the different types (see Appendix 6.C).
To distinguish quantities such as a, P (n) and Gnm for the transcribed and the
untranscribed spacers in the remaining sections, we use the following notation.
We use the label ? to indicate that a quantity is a property of the transcribed
spacers (e.g. J?nm(ta)). To show that a quantity belongs to the untranscribed
spacers, we use the label ◦ (e.g. G◦nm(t)). The notation for the UTRs is introduced
below; it uses the label •.

6.B.2 The evolution of the UTRs

Intergenic regions of type “inter”, always contain two UTRs: one 3’ UTR and one
5’ UTR (see Fig. 6.1). As we assume that these evolve under the same dynamics
(have equal insertion and deletion rates a• and b•), it is convenient to describe
the evolution of the total length of the two UTRs with a single Master equation,

4It may be illuminating to point out that, in this model, the length distributions of the two species
are in equilibrium at all times. Both organisms start with the distribution of their common ancestor,
which we assume has equilibrated during the many millions of years of evolution before the speciation
event. Next, each of the organisms evolves independently, but stays in equilibrium. However, directly
after the speciation, the lengths in both species are perfectly correlated. This correlation does change
in the course of evolution, and our method is aimed at describing this de-correlation process.
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given by:

dP •(n, t)
dt = (n+ 1)a•P •(n− 1, t) + (n+ 1)b•P •(n+ 1, t)

− ((n+ 2)a• + nb•)P •(n, t). (A6.12)

Note the difference between this equation and Equation 6.2: given the total length
n of the two UTRs together, the number of places where an insertion can occur
is n+ 2. In the models for single spacers, this is n+ 1.

For the equilibrium probability distribution P •eq(n), the detailed balance
relation

a•(n+ 1)P •eq(n− 1) = b•nP •eq(n) (A6.13)
holds; from this the equilibrium solution follows:

P •eq(n) ∝ (n+ 1) exp
(
−n ln

(
b•

a•

))
. (A6.14)

Again, the system can be approximated numerically by imposing that n ≤ N ,
leading to the following system of linear differential equations:

d~p(t)
dt = M•~p(t), (A6.15)

where

M•nm =



(n+ 1)b• if n+ 1 = m,

(n+ 1)a• if n = m+ 1,
−(n+ 1)a• − nb• if n = m < N,

−nb• if n = m = N,

0 else.

(A6.16)

As for Equation A6.4, the solution follows from solving the eigensystem of this
matrix. Also, the correlation matrix G•(t) and the joint probability matrix J•(ta)
can be defined as in Equation A6.6 and A6.10.

6.B.3 Combining the evolution of the UTRs and the untranscribed spacer

In the end, we are interested in the evolution of the length of the complete
intergenic regions instead of the dynamics of the spacers separately. In the
intergenic regions of type “intra”, only the transcribed spacer evolves, so that the
evolution of this type of regions is directly given by the evolution of these spacers
(see Fig. 6.1). This is not the case for the intergenic regions of type “inter”:
remember that intergenic regions of this type consist of one untranscribed spacer
and a pair of UTRs. Here we combine the results from the previous sections to
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construct the dynamics for the intergenic regions of the “inter” type.
We define the correlation function G•◦(l, l′, t|l′′, l′′′) as the probability that an

intergenic region with total UTR length l′′ and untranscribed spacer length l′′′
evolves, after a time t, to the state in which the UTR length is l and the spacer
length l′. As the evolution of the spacer and the UTRs are independent, we can
write:

G•◦(l, l′, t|l′′, l′′′) = G•l′′l(t)G◦l′′′l′(t). (A6.17)

The joint probability J•◦nm(t) of the total length of the two spacers is less
obvious. We have to sum over the distance distribution of the ancestor, Pa(l, l′),
and over all ways n and m could be a sum of the lengths of the untranscribed
spacer and the UTRs:

J•◦nm(t) =
∑
l,l′

∑
l′′≤n

∑
l′′′≤m

Pa(l, l′)G•◦(l′′′,m− l′′′, t|l, l′)G•◦(l′′, n− l′′, t|l, l′).

(A6.18)
As we assumed that the distance distributions in the ancestor were in equilibrium
and that the different spacers evolve independently,

Pa(l, l′) = P •eq(l)P ◦eq(l′), (A6.19)

so that

J•◦nm(t) =
∑
l,l′

∑
l′′≤n

∑
l′′′≤m

P •eq(l)P ◦eq(l′)G•◦(l′′′,m− l′′′, t|l, l′)G•◦(l′′, n− l′′|l, l′)

=
∑
l,l′

∑
l′′≤n

∑
l′′′≤m

P •eq(l)P ◦eq(l′)G•l′′′l(t)G◦m−l′′′,l′(t)G•l′′l(t)G◦n−l′′,l′(t)

=
∑
l≤m

∑
l′≤n

P •eq(l)P ◦eq(m− l)G•l′l(2t)G◦n−l′,m−l(2t). (A6.20)

Here we again used detailed balance (Equation A6.9) and Equation A6.11 to
eliminate the summation over the ancestral distribution.

Splitting and merging of operons
In the previous section, we described the evolution of intergenic regions inside
operons and between operons. We implicitly assumed that operons would not
split or merge. If they do, this means that an intergenic region that used to be
between two operons, is suddenly inside an operon. As a result, it will start to
evolve differently. Similarly, if an operon splits, an intergenic region that used
to be inside an operons, is suddenly between two operons. Here we derive the
probabilities to find an intergenic region that has length n in one species and
length m in the other species, given that a splitting event or a merging event has
occurred in one of the species.

We assume that the rates at which operons merge or split, vm and vs, are
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very low. In that case, the switching events hardly disturb the equilibrium length
distributions of the spacers and UTRs, and the results of the previous sections still
hold to good approximation. Under this condition, we can also neglect scenario’s
in which, in a given intergenic region, more than one switching or merging event
has taken place since the divergence of the two species. We also ignore the option
that, in a given intergenic region, a merging or splitting event could have taken
place in both organisms.

Merging

We first consider the scenario in which a merging of operons takes place in one of
the species— say, in species 2. The merging could have taken place at any time
since the common ancestor, which means that we have to integrate over time. In
that case the joint probability that the total length of the spacers is m in species
1 (in which the intergenic region is of type “inter”), and n in species 2 (in which
it is of type “intra”), can be written as:

Jmmn = 1
ta

∫ ta

0
dt

m∑
i=0

N∑
j=0

N−j−π−τ∑
k=0

P •(i)P ◦(m− i)G•ji(ta + t)G◦k,m−i(ta + t)G?
n,j+k+π+τ (ta − t). (A6.21)

As we explained in Section 6.2.4, here we assume that, at the moment of merging,
the promoter and terminator are destroyed, but their total length π+τ is preserved
and therefore added to the total spacer length. It should also be noted that the
length of the Shine–Dalgarno sequence is preserved in the merging process and
therefore not relevant in these calculations; it should however be added to m and
n to arrive at the total length of the intergenic regions.

With some effort, the time integration can be worked out explicitly. In order
to do this, we have to use the definitions (Equation A6.6) of the correlation
functions G•, G◦, and G?:

G•(t) ≡ E•X•(t) (E•)−1
, (A6.22)

G◦(t) ≡ E◦X◦(t) (E◦)−1
, (A6.23)

G?(t) ≡ E?X?(t) (E?)−1
, (A6.24)

in which

X•(t) ≡ eD•t, X◦(t) ≡ eD◦t, X?(t) ≡ eD?t. (A6.25)

Clearly, the time dependency is only in the (diagonal) matrices X•(t), X◦(t) and
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X?(t). This means that we can write Equation A6.21 as

Jmmn = 1
ta

m∑
i=0

N∑
j,o,p,q=0

N−j−π−τ∑
k=0

P •(i)P ◦(m− i)E•jo(E•)−1
oi E◦kp(E◦)−1

p,m−iE?nq(E?)−1
q,j+k+π+τ∫ ta

0
dtX•oo(ta + t)X◦pp(ta + t)X?

qq(ta − t). (A6.26)

Next we use that X•oo(t) = exp(e•ot), where e•o is the oth eigenvalue of the matrix
M•; similar expressions hold for X◦ and X?. Therefore the integration can be
performed explicitly:∫ ta

0
dtX•oo(ta + t)X◦pp(ta + t)X?

qq(ta − t) =

(e•o + e◦p − e?q)−1
(
e2(e•o+e

◦
p)ta − e(e•o+e

◦
p+e

?
q)ta
)
. (A6.27)

This means that:

Jmmn = 1
ta

m∑
i=0

N∑
j,o,p,q=0

N−j−π−τ∑
k=0

P •(i)P ◦(m− i)E•jo(E•)−1
oi E◦kp(E◦)−1

pm−iE?nq(E?)−1
qj+k+π+τ

(e•o + e◦p − e?q)−1
(
e2(e•o+e

◦
p)ta − e(e•o+e

◦
p+e

?
q)ta
)
. (A6.28)

This summation can now be carried out numerically5.
In practice, a brute force summation requires a sum over six indices (i, j, k, o, p

and q) for each value of m and n. This would result in a calculation time scaling
as O(N8), which is out of the question for N ≈ 400. A more efficient factorization
can reduce the required number of steps to O(N4).

Splitting
To describe the histories in which an operon splits, we use a similar method. Here,
however, we have to decide what happens to the length of the intergenic region at
the moment the splitting occurs. Before the splitting, the intergenic region only
contains a transcribed spacer and a Shine–Dalgarno sequence; after the splitting

5 The factor (e•o + e◦p − e?q)−1 in Equation A6.28 can become very large if e•o + e◦p − e?q happens to
be very small. This is likely to occur for some values of (o, p, q), and in these cases the numerical
evaluation may fail. Therefore, it is safer to use an algorithm that detects such cases and then uses a
Taylor approximation of the integrand in Equation A6.27 for ε ≡ e•o + e◦p − e?q � 1/ta:∫ ta

0
dtX•oo(ta + t)X◦pp(ta + t)X?qq(ta − t) ≈ (ta +

1
2
εt2a + . . .) exp((e•o + e◦p + e?q)ta )
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has occurred, we have two UTRs, a promoter, a terminator and an untranscribed
spacer. The question rises whether the promoter and terminator evolve from
preexisting sequences or are added to the sequence. The same question can be
raised about the UTRs.

In reality, both processes may occur. It is imaginable that some promoters
develop from scratch, whereas others may arise from duplications of other se-
quences, for instance in recombination events. As far as we are aware, there is no
compelling evidence for either scenario, or for other alternatives. We therefore
make a convenient choice: at the moment of splitting, a promoter is inserted
including the 5’ UTR, and a terminator is inserted including the 3’ UTR. Now,
we still need to choose the total length of the UTRs. We choose to draw the
inserted UTRs from the equilibrium distribution of the UTR lengths, which was
given in Equation A6.14.

Given these model choises, the probability to find a total spacer length n in
species 1 and a total spacer length m in species 2, given that a splitting event
occurred in species 2, can be written as:

Jsmn = 1
ta

∫ ta

0

N∑
j=0

m∑
i=0

P ?(n)G?
jn(ta + t)G◦ij(ta − t)P •(m− i). (A6.29)

The time integration can again be done explicitly and leads to

Jsmn = 1
ta

N∑
j,o,p=0

m∑
i=0

P ?(n)P •(m− i)E?jo(E?)−1
onE◦ip(E◦)−1

pj (A6.30)

(e?o − e◦p)−1
(
e2(e?o−e

◦
p)ta − e(e?o−e

◦
p)ta
)
.

6.C Parameter choices

The parameters of the model presented in this chapter are: the total length of a
promoter plus a transcriptional terminator (π + τ ; only the sum is relevant), the
size of a Shine–Dalgarno sequence (s), the fraction of intergenic regions that is
of type “intra” (λ = w1 + (w3 +w4)/2; see Equation 6.1) and the insertion and
deletion rates for each type of spacer (i.e. a? and b? for the spacers inside operons,
a◦ and b◦ for the untranscribed spacers, and a• and b• for the UTRs). Here we
describe the parameters we chose in the simulation results that we presented.

For the lengths of the promoters, terminators and Shine–Dalgarno sequences
we used π + τ = 50bp and s = 5bp. The results are not very sensitive to these
values; changing s, for instance, merely leads to a shift of all distance distributions.
A good fit to the static distance distributions is obtained if 55% of the tandem
intergenic regions is assumed to be of type “intra” (λ = 0.55).

The values of the insertion and deletion rates are less straightforward. We
explained on page 106 that the mean length n̄ of a given type of spacers is
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determined by the ratio b/a according to n̄ = (b/a− 1)−1. A good fit of the
static distance distributions is obtained if we take n̄◦ = 125 bp, n̄? = 25 bp, and
n̄• = 10bp. This procedure fixes three ratios of mutation rates, but not their
absolute values; effectively it reduced the number of parameters from six to three.

Mutation rates in the result shown
For the results presented in the plots of Fig. 6.3 we chose the remaining parameters
using the following rationale. The rates a and b are mutation–fixation rates—
that is, rates at which indels become fixed in the population. As we explained in
Chapter 1 (page 18), such rates are a product of the rate at which mutations occur
in the population (µins and µdel for the insertions and deletions respectively) and
the probability that they subsequently become fixed. We now make the plausible
assumption that the bare insertion and deletion rates per base pair (i.e. µins and
µdel), are equal for all spacers; the differences in the mutation–fixation rates for
the differend kinds of spacers are thus assumed to be the result of differences in
the selection acting on the spacers.

As in Chapter 5, we assume that the bare insertion and deletion rates are
equal (µins = µdel) and that the differences between the mutation–fixation rates
a and b are due to the costs of dispensable DNA. The fitness cost s per base pair
is different for the different kinds of spacers, and is determined by their mean
length n̄:

n̄ =
(
b

a
− 1

)−1
=
(
µdelPK(s)
µinsPK(−s) − 1

)−1
=
(
PK(s)
PK(−s) − 1

)−1
(A6.31)

Here PK(s) is the Kimura–Ohta fixation probability as defined in Section 1.2.2.
From this equation, s can be computed for given n̄. Thus, from the values of n̄◦,
n̄?, and n̄• the fitness costs s◦, s?, and s• can be derived. Hence, all mutation
rates are determined up to the multiplicative factor µins(= µdel). This factor is
eliminated by taking b• = µdelPK(s•) as our unit of time.

Alternative choices
The reasoning above determines all mutation rates, but at the cost of some
assumptions. Alternatively, one could use the three parameters that remain after
fixing the mean spacer lengths as fitting parameters for the functions ρ(x) and
σy(x). As this increases the number of free fit parameters from one (the time ta in
units of b•) to three (the time ta, the ratio r•◦ ≡ b•/b◦ and the ratio r•? ≡ b•/b?),
this obviously leads to better fits than those in Fig. 6.3 (data not shown). In
particular, this procedure leads to lower values for a? and b?, partly eliminating
the peak in Fig. 6.3(b). It is not clear why these rates should be lower; one
possibility is that, if transcribed spacers are long, this may be because of internal
regulation, which could lead to evolutionary constraints that are not included in
the model.
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Summary

A defining property of living systems is their ability to respond to signals. These
signals are of a physical or chemical nature: for instance, many organism detect
light intensities (seeing), mechanical forces (feeling), and the presence of certain
molecules in the environment (smelling and tasting). Their responses to such
clues are not arbitrary. They have evolved to allow organisms to adjust their
behavior to varying environments and circumstances, and ultimately to increase
their chances to survive and create offspring.

It is no surprise that humans can see, smell, taste and feel, nor that they adjust
their behavior on the basis of such sensory information. But it is less obvious
how micrometer-sized single-cellular creatures such as bacteria can obtain, weight
and exploit knowledge of a multitude of physico-chemical quantities. Yet, they
obviously do. Bacteria swim towards food sources and to warmer places, they
synchronize their biological clocks to circadian rhythms, monitor the density of
their colony, measure the osmolarity of their environment and assess which types
of sugars are available.

Bacteria often have to make logical decisions. A famous example is the sugar
utilization system in the bacterium Escherichia coli. In order to uptake and
digest different sugars, such as glucose, lactose, galactose and arabinose, E. coli
needs to produce particular sets of proteins that catalyze the required metabolic
reactions. However, these sugars are not always present in the environment. As
the production of the proteins requires an investment in terms of energy and other
resources, it would be quite inefficient to produce them constitutively. Hence,
E. coli decides when to make these enzymes and when not to, depending on the
availability of the sugars. As it turns out, glucose is E. coli’s preferred source of
energy, because it allows for the highest growth rate. Therefore, E. coli produces
the proteins necessary for the digestion of other sugars only if these sugars are
present and no glucose is found in the environment. This illustrates that the
bacteria integrates several input signals (sugar availabilities) to make the decision.
In this example, the decision procedure can be described by the Boolean logic
function ANDN (A AND Not B). In general, many of the decisions taken by
cells can be categorized using the language of Boolean logic.

Cells implement many decisions at the level of transcription. Transcription is
the molecular process by which genes (stretches of DNA containing the information
required for the synthesis of one protein6) are copied (transcribed) to a different
molecular medium: RNA. These RNA copies are produced by a multi-subunit

6Some genes actually code for a stable RNA molecule instead of a protein.
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molecular machine called RNA polymerase (RNAp). Each of these RNA molecules,
so-called messenger RNAs or mRNAs, is subsequently used as a template for the
assembly of one particular protein. As a consequence, the rate at which a gene is
transcribed determines (to a large extent) how many copies of the corresponding
protein are produced.

The term transcription regulation refers to the processes used by cells to
regulate the rate at which specific genes are transcribed. The resulting changes
in protein concentrations are of crucial importance, because proteins determine
many of the cell’s properties. Many proteins serve as enzymes, which modulate
the rate at which chemical processes occur in the cell; as structural elements,
they constitute many of the cellular structures; and other proteins operate as
tiny motors converting chemical energy to mechanical motion. In conclusion, by
modulating the transcription rates of sets of genes, cells can drastically alter their
protein content, and consequently their behavior and appearance.

The regulation of transcription is mediated by a special family of proteins.
These proteins are called transcription factors and function by virtue of their
ability to bind rather specifically to particular DNA sequences. Such sequences
are typically located close to the starting points of genes, where RNAp initiates
the transcription process. When transcription factors bind to their binding sites,
they can influence the efficiency of the first steps of the transcription process and
hence change the transcription rate.

The work described in this dissertation concerns with, on the one hand, the
mechanisms of transcription regulation, and on the other hand, the consequences
of these processes for the organization of genomes. The analyses are based on
theoretical models, but published experimental data are being used to test these
models and their predictions. In our work, we mainly focus on prokaryotes,
featuring the bacteria Escherichia coli in the leading role— even though various
other organisms play a supporting part.

Mechanisms of transcription regulation

Experiments have identified several mechanisms by which bacteria regulate tran-
scription rates. Most of these mechanisms rely on fact that transcription factors
are able to either recruit other molecules to the DNA or, conversely, to prevent
them from binding. For instance, if a transcription factor recruits RNAp to
its binding site on the DNA (called the promoter), it activates transcription.
If, on the other hand, it obstructs the binding of RNAp, then transcription is
inhibited. This way, the transcription rate of genes can be made to depend on
the concentrations of certain (active forms of) transcription factors.

Interestingly, transcription factors need relatively simple physical properties
in order to function. In bacteria, transcription factors freely diffuse through
the cell; because of the small diameter of a bacterial cell (in the order of a
micrometer), a protein needs about 0.1 s to diffuse from one end of the cell to the
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other, which makes active transport unnecessary. Transcription factors interact
with the DNA and with other molecules (including other transcription factors)
due to electrostatic interactions and hydrogen bonds. They can preclude another
molecule (e.g. a transcription factor or RNAp) from binding to the DNA by
binding strongly to a site that overlaps with the binding site of the another
molecule.

In the Chapters 2 and 3 of this thesis, we ask what kind of functionality
can in principle be obtained with these mechanisms, recruitment and hindrance,
only. For this purpose, we formulate a model of transcription regulation. In this
model, transcription factors can bind specifically to sites on the DNA. They can
also recruit other molecules to the DNA if they bind sufficiently close together.
Binding sites can overlap; molecules thus compete for binding to particular sites
on the DNA. Subsequently, we use the formalism of statistical mechanics to
calculate which fraction of the time molecules are bound. We use this model and
an evolutionary algorithm to design transcription-regulatory systems that perform
a pre-defined function and we thus explore the space of possible mechanism.

The simple mechanisms of recruitment and hindrance turn out to be immensely
versatile. We show that, using rather complex distributions of binding sites,
transcription regulation can perform all possible Boolean logic operations with
two inputs. The functional designs often consist of modules of tandem binding
sites to which transcription factors can recruit each other. This cooperative
behavior leads to sharp responses of the transcription rate as a function of TF
concentrations. But more intricate effects can be obtained if the modules (partly)
overlap with each other, introducing competition for binding at the level of these
complexes. Which module dominates in such a competition can depend strongly
on the concentrations of the different transcription factors, which can be exploited
to integrate different signals.

The complex designs that we describe are not unrealistic. We demonstrate
that many real promoters in the bacterium Escherichia coli contain large numbers
of transcription factor binding sites, and that overlap between these sites is
extremely common. Also, transcription factors often bind to more than one
binding site in a given promoter region— in exceptional cases, up to eleven sites
for a single transcription factor have been documented.

Another world of possibilities is entered if we allow the systems to use feedback.
In the simplest case, this means that the gene that is being regulated codes for
a transcription factor that influences its own transcription rate (called auto-
regulation). It has been shown that this allows for fine-tuning of the dynamical
properties of these systems— e.g. their robustness to noisy signals or their
response speed. We demonstrate that auto-regulation can also be used to achieve
a more efficient repression mechanism and that it allows for alternative ways to
integrate signals.

Again, the mechanisms we find are realistic. Auto-regulation is very common
in E. coli: 59% of the transcription factors are known to bind to their own
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promoter region, and this is likely a lower bound since our current knowledge of
regulatory interactions is far from complete. The mechanisms we discovered shed
new light on the possible functions of these feedback systems, most of which are
not yet elucidated.

Chromosome organization

The processes of transcription and transcription regulation also has a considerable
impact on the way genes are distributed on chromosomes. To start with, all
regulatory sequences, such as binding sites for RNA polymerase and transcription
factors, take up space on the DNA and thereby influence the spacing between
genes. Indeed, regulatory sequences directly before and after genes leave footprints
on the frequency distribution of distances between genes. (Here distances are
measured in base pairs.) Therefore the statistical properties of the distances
between genes reveal many properties of the gene regulatory mechanisms used in
the organisms.

Distances between genes
In order to study the frequency distributions of distances between genes in detail,
we compare them with random models. We exploit that, mathematically, these
random models are equivalent to models of one-dimensional gases. In this analogy,
genes correspond to gas particles and the DNA acts as a one-dimensional, finite
space.

In the most naive model, the genes are distributed completely at random.
This is formally equivalent to an ideal gas. This model does not describe the
data well, because genes usually do not overlap. Therefore, a second model is
proposed; here we assume that genes are distributed at random, except that they
do not overlap. This model is analogous to the so-called Tonks gas: a gas of
hard particles in one dimension. The Tonks gas model offers a better description
of the gene distributions, but fails to explain why genes have a tendency to
keep a certain minimal distance from each other. This inspires the final random
model, called the Constant-Force model. In the Constant-Force model, we assume
that the genes are accompanied by regulatory sequence that occupy space and
therefore “push” the genes apart. This leads to a picture in which the genes
are distributed at random, except that they do not overlap and repel each other
at short distances. The Constant-Force model provides a good fit to the gene
distributions in species such as E. coli and Saccharomyces cerevisiae (Baker’s
yeast).

The typical lengths of upstream and downstream regulatory regions are fit
parameters of our model. This means that, by fitting our model to the distribution
of genes in a particular organism, we can estimate the lengths of these upstream
and downstream regulatory sequences using only the positions of genes as input.
We use this to estimate lengths for various organisms.
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The genomic data deviate from the Constant-Force model on several points.
These deviations lead to interesting biological predictions. For instance, in most
fungi, the distribution of distances between divergent gene pairs—neighbor-
ing genes that are transcribed from opposite DNA strands and in diverging
directions—is bi-modal, strongly suggesting that their genomes contain many
bi-directional promoters. Similarly, in E. coli we find a significant access of con-
vergent gene pairs—neighboring gene pairs that are transcribed from opposite
strands and in a converging orientation— that are unusually closely spaced; we
predict that these gene pairs share a bi-directional terminator. We test all these
predictions using expression data, Gene Ontology annotations and terminator
predictions; the results indeed corroborate our hypotheses.

Operons
A special feature of most (if not all) prokaryotes and a few eukaryotes, is that their
genes are organized in so-called operons. An operon is a cluster of several genes
that are in one transcription unit. This means that the transcription machinery
produces one long messenger RNA that contains all these genes. Genes in one
operon are usually very closely spaced, and are always coded on the same strand—
in so-called tandem orientation. As a result, the set of tandem neighboring gene
pairs in such genomes consist of two populations: those pairs of genes that are in
the same operon, and those that are in different operons. Correspondingly, the
sequences between those genes (intergenic regions) are either inside an operon or
between two operons. This division is visible in the distribution of the distances
between tandem gene pairs: it is largely consistent with our random model, except
that a considerable excess of gene pairs is found at short distances. Thus, the
distribution of distances reveals the presence of operons.

A subject of ongoing debate is why genes are organized in operons. One
school of thought argues that operons are used to co-regulate genes. Indeed, if
several genes need to be expressed in a correlated fashion—perhaps because
they have a related function— this could be achieved by placing them in one
operon. Others argue that operon formation relies on horizontal gene transfer:
the exchange of genes between organisms of different species. The horizontal
transfer of a set of functionally interdependent genes may be more successful if
they are organized in one cluster (an operon) than if they are dispersed on the
genome. Therefore, operons may be “selfish” structures: their abundance could
be due to their reproductive success rather than due to their added value for the
organism.

These two arguments have one thing in common: they both silently assume
that operons would not exist in the absence of any selective pressure to create
them. In Chapter 5 we suggest quite the opposite: even if operons do not have any
selective advantage (neither at the level of organisms, nor at the level of clusters of
genes), they are expected to emerge. The reason is that two neighboring tandem
genes are naturally in the same operon, unless there is a transcriptional terminator
sequence in the intergenic region between them. This means that, in a sense,
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operons are the default: only if there is sufficient and persistent evolutionary
pressure to regulate genes independently, transcriptional terminators and private
promoters are expected to emerge in the course of evolution. Moreover, existing
terminators are continually challenged by myriad mutations. On evolutionary
time scales they will survive only if they are under constant and sufficient purifying
selection. Whenever this is not the case, the terminator will be lost, and operons
form immediately.

The above picture holds only for prokaryotes. In prokaryotes, all that is
required to produce a new operon is the removal of a transcriptional terminator
between tandem genes. In eukaryotes, this is generally not enough, because
the eukaryotic ribosomes, which use the mRNA templates to assemble proteins,
cannot deal with mRNAs containing more than one gene, unless the mRNA
contains an internal ribosome entry site (IRES). Without such a special sequence,
the ribosome translates the first gene on the mRNA only, and ignores the other
genes. This explains why operons are much more rare in eukaryotes than in
prokaryotes.

To prove the concept, we present a simplified model of genome evolution and
developed a novel simulation scheme based on population genetics. In simulations
of this model, operons and shared terminators indeed emerge spontaneously.
Moreover, the model reproduces the spacing of genes in the model prokaryotes
Escherichia coli and Bacillus subtilis, including the characteristic close spacing
of genes in operons and the differences in spacing between convergent, divergent
and tandem gene pairs. As a side effect, it also explains why promoters and
terminators usually tightly flank the genes they regulate.

Evolution of intergenic distances
Intergenic regions grow and shrink due to insertions and deletions. In intergenic
regions, these mutations are typically only a few base pairs long. As the occurrence
of mutations is a stochastic process, one would expect that the lengths of intergenic
regions perform a “random walk” on evolutionary time scales. In Chapter 6 we
propose a stochastic model for this evolutionary “diffusion” of intergenic regions.

This idea can be tested using data from closely related species. If a speciation
event occurs, giving rise to two different species, the intergenic distances in
the two resulting species are initially expected to be equally long. However,
on evolutionary time scales, random insertions and deletions will lead to a de-
correlation of these distances. This process is the combined effect of the random
walks performed by the two species independently; therefore we can test our
model by comparing the intergenic distances of two related species.

We compare our model to the divergence of the intergenic distances in Es-
cherichia coli and Salmonella enterica subsp. enterica serovar Typhi. We focus on
intergenic regions between tandem gene pairs. As we described, such intergenic
regions come in two kinds: those “between” operons and those “inside” operons.
The intergenic regions in the these two groups have rather different compositions:
for instance, those of type “between” contain a transcriptional terminator, whereas
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those “inside” do not. Also, the typical lengths of the two kinds of intergenic
regions are very different. This implicates that the evolutionary diffusion of these
different types is also not the same.

The main ingredients of the model are as follows. We assume that intergenic
regions consist of, on the one hand, elements that have a fixed length (e.g.
transcriptional terminators and promoters), and, on the other hand, “spacers”,
whose length can change substantially. The rate at which mutations occur in
spacers is assumed to depend linearly on their length, since a longer spacer
contains more places where an insertion or deletion can take place. Therefore,
longer intergenic regions are expected to change faster. These considerations can
be formalized using Master equations and Fokker–Planck equations, which allow
for quantitative predictions.

The diffusion model fits the data of E. coli and S. Typhi well. The data clearly
show bigger changes in longer intergenic regions, and the diffusion of the two types
of spacers is indeed different. The fit parameters also show that the divergence
between E. coli and S.Typhi cannot be explained by insertions and deletions of
single base pairs only. Indeed, calculations show that larger mutations can have
a large influence on the speed of the evolution of the lengths of intergenic regions,
even if they occur at a low rate.

The model can also be used to compute what happens if an operon splits in
two, or if two operons merge. This is particularly relevant in the light of our
suggestion in Chapte 5 that operons may form by merging processes that result
from the loss of terminator sequences. If an operon splits in two, one intergenic
region has to switch from type “inside” to type “between”. Conversely, if two
operons merge, an intergenic region has to change from type “between” to type
“inside”. Consequently, also the mode of diffusion of this intergenic region changes.
Calculation of these processes allow for the identification of intergenic regions in
which such a merging or splitting event may have taken place. We discuss these
candidate regions in detail.
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Samenvatting

Een van de bĳzondere eigenschappen van levende wezens is dat ze kunnen reageren
op prikkels. Veel organismen nemen bĳvoorbeeld veranderingen waar in lichtin-
tensiteit (zien), mechanische krachten (voelen), en de concentratie van bepaalde
moleculen in de omgeving (ruiken en proeven). Ze reageren natuurlĳk niet voor
niets op zulke waarnemingen: deze reacties zĳn gedurende miljoenen jaren van
evolutie ontwikkeld zodat organismen zich kunnen aanpassen aan veranderingen
in hun omgeving, en uiteindelĳk een grotere kans hebben te overleven en zich
voort te planten.

Het zal geen verrassing zĳn dat mensen kunnen zien, voelen, ruiken en proeven,
en ook niet dat zĳ hun gedrag aanpassen naar aanleiding van hun zintuiglĳke
waarnemingen. Maar het is een stuk minder vanzelfsprekend hoe ééncellige
organismen die niet groter zĳn dan een duizendste van een millimeter, zoals
bacteriën, kennis over allerlei fysisch-chemische grootheden kunnen verkrĳgen,
afwegen en uitbuiten. Toch doen ze dat. Bacteriën zwemmen op voedsel af,
zoeken een warm plekje op, zetten hun biologische klok gelĳk, beoordelen de
dichtheid van hun kolonie, meten de osmotische druk van hun omgeving en houden
in de gaten welke soorten suikers er voorhanden zĳn— om maar een paar dingen
te noemen.

Transcriptieregulatie is één van de belangrĳkste mechanismen die cellen ge-
bruiken om te reageren op hun omgeving, en bovendien het onderwerp van dit
proefschrift. De Hoofdstukken 2 en 3 gaan over transcriptieregulatie in bacteriën.
We onderzoeken de mechanismen van transcriptieregulatie en wat hun moge-
lĳkheden en beperkingen zĳn. In de Hoofdstukken 4, 5 en 6 beschouwen we
hoe transcriptieregulatie de indeling van genomen beïnvloedt. Alle analyses zĳn
gebaseerd op theoretische modellen, maar we gebruiken experimentele gegevens
om deze modellen en hun voorspellingen te testen. We concentreren ons voorna-
melĳk op prokaryoten (organismen die geen celkern hebben), met de darmbacterie
Escherichia coli in de hoofdrol—maar voor verschillende andere organismen is
een bĳrol weggelegd.

Transcriptie en transcriptieregulatie
Cellen nemen veel van hun beslissingen op het niveau van transcriptie. Transcriptie
is het moleculaire proces waarbĳ genen (stukken DNA die de instructies bevatten
voor het maken van één enkel type eiwit7) worden gekopieerd (getranscribeerd).
Dit kopieerproces wordt uitgevoerd door een moleculaire machine die RNA-

7Sommige genen coderen voor een stabiel RNA-molecuul in plaats van een eiwit.
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polymerase heet (RNAp). Het kopie heeft een net andere structuur dan DNA
en wordt mRNA genoemd. Elk mRNA-molecuul wordt vervolgens gebruikt als
blauwdruk voor het maken van een specifiek eiwit. Daardoor bepaalt de frequentie
waarmee de transcriptie van een bepaald gen plaatsvindt grotendeels hoeveel
kopieën van het corresponderende eiwit in de cel aanwezig zĳn.

Transcriptieregulatie is het proces waarmee cellen reguleren hoe vaak bepaalde
genen worden getranscribeerd. Indirect worden hiermee dus de eiwitconcentraties
in de cel gereguleerd. Dit is heel belangrĳk, omdat eiwitten allerlei eigenschappen
van de cel bepalen. Veel eiwitten functioneren bĳvoorbeeld als enzymen, die de
snelheid van chemische reacties in de cel beïnvloeden. Andere eiwitten zĳn de
bouwstoffen waaruit de meeste structuren in de cel zĳn opgebouwd. En weer
andere eiwitten werken als minuscule motortjes die chemische energie omzetten
in mechanische beweging. Kortom, door de transcriptiesnelheid van groepen
van genen te reguleren, kunnen cellen hun samenstelling drastisch aanpassen en
daardoor ook hun gedrag en vorm.

Bĳ de regulatie van transcriptie speelt een speciale familie van eiwitten een
grote rol. Deze eiwitten heten transcriptiefactoren. Ze functioneren doordat
ze kunnen binden aan specifieke stukken DNA. Deze “parkeerplaatsen” zĳn
meestal vlak bĳ de beginpunten van genen te vinden, daar waar de RNAp
begint met het transcriptieproces. Wanneer transcriptiefactoren binden aan
hun bindingsplaatsen kunnen ze de efficiëntie van de eerste stappen van het
transcriptieproces beïnvloeden en daardoor ook de frequentie veranderen waarmee
transcriptie plaatsvindt.

Logische beslissingen
Bacteriën moeten vaak logische beslissingen nemen. Een beroemd voorbeeld is
de manier waarop E. coli zĳn maaltĳd kiest. E. coli haalt zĳn energie uit suikers;
maar om de verschillende soorten suikers, zoals glucose, lactose, galactose en
arabinose te kunnen opnemen en verteren, moet hĳ een aantal eiwitten (enzymen)
produceren die de benodigde stofwisselingsreacties stimuleren. De verschillende
suikers zĳn meestal niet allemaal aanwezig in de omgeving van de bacterie. Omdat
de productie van de eiwitten onder andere energie kost, zou het niet erg efficiënt
zĳn om ze continu aan te maken. Daarom beslist E. coli afhankelĳk van de
beschikbaarheid van de suikers welke enzymen hĳ wel of niet wil produceren.

In feite gaat E. coli nog een stapje verder. Omdat hĳ het snelst kan groeien
als hĳ glucose eet, is dat zĳn favoriete maaltĳd. Daarom produceert E. coli de
eiwitten die nodig zĳn voor de vertering van, zeg, lactose, enkel als er lactose
beschikbaar is en geen glucose. Dit laat zien dat de bacterie meerdere gegevens
—de beschikbaarheid van de verschillende suikers—betrekt bĳ zĳn beslissing.
De besluitprocedure is, kort gezegd: maak eiwitten LacY, LacZ en LacA alleen
als er lactose is en niet glucose. De relatie en niet is een voorbeeld van een
Boolese functie (zie Kader 1 voor meer uitleg).

Deze besluitprocedure wordt met behulp van transcriptieregulatie uitgevoerd.
Dat werkt als volgt. E. coli bevat een speciale transcriptiefactor, genaamd LacI.
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Kader 1: Boolese logica en logische poorten

In veel wetenschapsgebieden wordt een speciale indeling van logische redeneringen
gebruikt. Deze wordt de Boolese logica genoemd, naar de 19e-eeuwse Britse wiskundige
en filosoof George Boole, die er de grondlegger van is.

We kunnen de Boolese logica introduceren aan de hand van een paar voorbeelden.
Sommige beslissingen zĳn van het type A en B. Hier staan A en B voor willekeurige
uitspraken. Een goed voorbeeld is als iemand zegt: “Ik ga alleen zeilen als het zonnig
weer is en het bovendien waait”. Als we de uitspraak “Het is zonnig weer” nu A
noemen en de uitspraak “Het waait” aanduiden met B, dan heeft de beslissing om te
gaan zeilen inderdaad de vorm “Ik ga zeilen als A en B”. Een andere uitspraak kan
zĳn “Ik ga alleen fietsen als het zonnig weer is en het bovendien niet waait”. Deze zin
is van het type A en niet B. Op deze manier bestaat er een hele verzameling aan
Boolese functies, waaronder en, of, en niet, of niet, etcetera.

Een apparaatje dat een van de Boolese beslissing kan uitvoeren, heet een logische
poort. Zulke logische poorten vormen de basis van alle digitale elektronica. Het
voorbeeld in de tekst over de maaltĳdkeuze van E. coli laat zien dat bacteriën blĳkbaar
een mechanisme bevatten dat kan functioneren als een logische poort. Eigenlĳk is de
bacterie dus een soort analoog computertje.

Deze transcriptiefactor bindt in de afwezigheid van lactose op een speciale plek
aan het DNA. Daardoor verhindert hĳ de transcriptie van de genen die coderen
voor de eiwitten LacY, LacZ en LacA; deze eiwitten worden in afwezigheid van
lactose dus niet geproduceerd. Maar, als er wel lactose in de omgeving is, dan
bindt lactose aan de transcriptiefactor LacI8. LacI verandert hierdoor van vorm;
in deze vorm bindt het veel slechter aan het DNA en blokkeert het de transcriptie
niet langer. De transcriptiefactor CRP doet iets soortgelĳks, maar dan voor
glucose: CRP activeert transcriptie als er geen glucose aanwezig is. Op deze
manier worden de lactose-genen alleen gebruikt als er lactose is maar geen glucose.

Mechanismen van transcriptieregulatie

Door middel van ingewikkelde experimenten zĳn een aantal mechanismen ontdekt
die bacteriën gebruiken om de transcriptiesnelheid te reguleren. De meeste
van deze mechanismen werken doordat transcriptiefactoren andere moleculen
helpen bĳ hun binding aan het DNA, of precies andersom, ze daarbĳ hinderen.
Bĳvoorbeeld, als een transcriptiefactor de RNAp helpt bĳ het binden aan zĳn
bindingsplaats (deze wordt de promoter genoemd), dan wordt de transcriptie
geactiveerd. Als, aan de andere kant, de transcriptiefactor de binding van RNAp
blokkeert, dan wordt transcriptie onderdrukt.

In de Hoofdstukken 2 en 3 van dit proefschrift bestuderen we welke types
8Dit is niet helemaal waar: eigenlĳk bindt niet lactose aan LacI, maar allolactose. E. coli zet

lactose om in allolactose.
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Kader 2: Evolutionaire algoritmes

Biologische evolutie is het samenspel van mutaties en (natuurlĳke en seksuele) selectie.
Mutaties zorgen er voor dat verschillende individuen in een populatie niet precies
hetzelfde genoom hebben. Individuen die door hun genoom beter in staat zĳn zich
voort te planten dan anderen, krĳgen gemiddeld meer nakomelingen; genen die de
voortplantingskansen verhogen hebben dus grote kans om in de loop van de tĳd in
steeds grotere aantallen voor te komen. Door miljoenen rondes van mutaties en selectie
kunnen zo organismen ontstaan die heel goed zĳn aangepast op hun omgeving. In de
natuur heeft het proces van evolutie in de loop der miljoenen jaren heel geavanceerde
organismen opgeleverd.

Een evolutionair algoritme is een type computerprogramma dat een evolutionair pro-
ces nabootst om oplossingen te vinden voor een bepaald complex (ontwerp)probleem.
De computer slaat eerst een groot aantal willekeurige ontwerpen in zĳn geheugen
op. Die eerste, willekeurige ontwerpen zĳn in het algemeen heel slechte oplossingen
voor het betreffende probleem. Vervolgens kiest het programma de beste ontwerpen
uit, kopieert ze een aantal keer, en brengt er hier en daar willekeurige wĳzigingen
in aan. Sommige ontwerpen zĳn er waarschĳnlĳk slechter op geworden, maar een
paar zĳn wellicht iets verbeterd. Weer selecteert het programma de beste ontwerpen.
Na heel veel rondes van muteren en selecteren kan zo een heel geavanceerde ontwerp
worden geconstrueerd. Een leuk aspect aan deze methode is dat je op deze manier
iets ingewikkelds kunt ontwerpen, zonder dat je de oplossing zelf hoeft te bedenken.

Wĳ gebruikten een evolutionair algoritme om DNA-sequenties te vinden die als
logische poorten kunnen functioneren. Het algoritme vond vaak oplossingen die we
zelf nog niet hadden bedacht.

beslissingen in principe kunnen worden geïmplementeerd met de mechanismen
die bekend zĳn. Om dat uit te zoeken, formuleren we een kwantitatief model van
transcriptieregulatie. We combineren dit model met een evolutionair algoritme
basale om transcriptieregulatiesystemen te ontwerpen die een door ons gekozen
functie vervullen. Zo kunnen we het scala aan mogelĳke ontwerpen verkennen.
In Kader 2 is meer te lezen over evolutionaire algoritmes.

Het blĳkt dat de eenvoudige mechanismen van transcriptieregulatie enorm
veelzĳdig zĳn. Met behulp van vrĳ complexe patronen van bindingsplaatsen
kunnen alle mogelĳke logische beslissingen met twee input-signalen worden ge-
ïmplementeerd. De beste ontwerpen bestaan uit modules van bindingsplaatsen
die allemaal direct naast elkaar liggen. De transcriptiefactoren die aan deze
plaatsen binden, helpen elkaar bĳ het binden. Dit coöperatieve gedrag leidt tot
een scherpe reactie van de transcriptiefrequentie als functie van de concentraties
van de transcriptiefactoren. Meer geavanceerde effecten kunnen worden bereikt
als de modules (gedeeltelĳk) met elkaar overlappen. Dat introduceert competitie
op het niveau van modules, die immers niet tegelĳk gebonden kunnen zĳn. Welke
module domineert, kan in zulke situaties sterk afhangen van de concentraties van
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de verschillende transcriptiefactoren. Dit kan worden uitgebuit om verschillende
signalen tegen elkaar af te wegen.

De mogelĳkheden worden nog meer vergroot als we terugkoppeling (feedback)
toelaten. In het meest eenvoudige geval codeert het gereguleerde gen voor een
transcriptiefactor die op zĳn beurt zĳn eigen transcriptiefrequentie reguleert.
Dit heet auto-regulatie. Het is aangetoond dat dit het mogelĳk maakt om
de dynamische eigenschappen van de systemen af te stellen—bĳvoorbeeld, de
gevoeligheid voor ruis of de reactie-snelheid. Onze resultaten tonen aan dat auto-
regulatie ook een efficiënter repressiemechanisme mogelĳk maakt en alternatieve
mechanismen biedt voor het integreren van signalen. De mechanismen die we
vinden werpen een nieuw licht op de mogelĳke functies van feedback-systemen in
transcriptieregulatie.

Chromosoom-organisatie

De processen van transcriptie en transcriptieregulatie hebben een grote invloed
op de manier waarop genen verdeeld zĳn over chromosomen. Alle stukken DNA
die een rol spelen in transcriptieregulatie, zoals de bindingsplekken voor RNAp en
transcriptiefactoren, nemen plaats in beslag op het DNA. Daardoor beïnvloeden
ze de afstanden tussen genen. Inderdaad zien we dat deze sequenties direct vóór
en na genen hun sporen achterlaten op de kansverdelingen van afstanden tussen
genen. Omgekeerd onthullen de statistische eigenschappen van de afstanden tussen
genen allerlei informatie over de regulatiemechanismen die door het organisme
worden gebruikt.

Afstanden tussen genen
Om de kansverdelingen van de afstanden tussen genen goed te bestuderen, verge-
lĳken we ze met modellen. We maken er gebruik van dat, wiskundig gezien, deze
modellen precies overeenkomen met modellen van één-dimensionale gassen. In
deze analogie komen genen overeen met gasdeeltjes en het DNA speelt de rol van
een één-dimensionale, eindige ruimte.

Het beste model is het Constantekrachtmodel. In dat model nemen we aan
dat de genen worden vergezeld door sequenties ten behoeve van de regulatie die
plaats innemen en daarom de genen als het ware uit elkaar houden. De genen
zĳn willekeurig verdeeld, behalve dat ze zelden overlappen en elkaar op korte
afstanden “afstoten”. Dit model komt erg goed overeen met de verdelingen in
organismen zoals E. coli en Saccharomyces cerevisiae (bakkersgist).

De genoomdata wĳken op verschillende punten af van het Constantekracht-
model. Deze afwĳkingen leiden tot interessante biologische voorspellingen. Bĳ-
voorbeeld, in de meeste schimmels heeft de kansverdeling van afstanden tussen
divergente genen—naburige genen die in tegengestelde richting en in divergente
oriëntatie worden afgelezen— twee pieken, wat sterk suggereert dat deze genomen
veel bi-directionele promoters bevatten. Net zoiets is het geval in E. coli: we
vinden een flink overschot aan convergente gen-paren—naburige genen die in te-
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Kader 3: Promoters en terminators, hoofdletters en punten

Je kunt je DNA voorstellen als een lange reeks letters, net als een tekst. In
die vergelĳking is een gen zoiets als een zin.qpenvaosvkHet verwarrende is dat
tussen de genen op het DNA ook veel letters staan die geen betekenis hebben.

Bovendienkunnengenenookonderstebovenwordengeschreven. Dit is allemaal niet
zo’n probleem, omdat er codes op het DNA staan die vertellen waar een gen begint en
waar hĳ eindigt. Het beginsignaal heet een promoter en kan het best vergeleken wor-
den met een hoofdletter, die immers het begin van een zin aangeeft. Het eindsignaal
is een terminator en heeft dezelfde functie als een punt.

Bĳ het bekĳken van de afstanden tussen genen van schimmels vonden we aanwĳ-
zingen dat veel promoters bi-directioneel kunnen zĳn. Dat wil zeggen dat ze twee
kanten op functioneren.

ozoujedatkunnenillustreren.

Zoals u ziet, gebruikt deze
zin dezelfde hoofdletter als de vorige zin. Dat kan natuurlĳk alleen maar omdat beide
zinnen met een heel speciale letter beginnen die ook op z’n kop bruikbaar is.

In Escherichia coli vinden we juist sterke aanwĳzingen voor veel bi-directionele
terminators. Dezezingebruiktdezelfdepuntalsdevorigezin Dat kan omdat een
punt er omgekeerd precies hetzelfde uitziet als rechtop. Dat geldt ook voor bi-
directionele terminators; deze sequenties zĳn bĳ benadering palindromen (sequenties
die symmetrisch zĳn, waardoor je ze in twee richtingen kunt lezen, zoals het woord
“meetsysteem”).

gengestelde richting en in convergente oriëntatie worden afgelezen—die bĳzonder
dicht bĳ elkaar verblĳven; we voorspellen dat deze gen-paren een bi-directionele
terminator delen (zie Kader 3).

Operons
Een speciale eigenschap van de meeste (zo niet alle) prokaryoten en een paar
eukaryoten is dat hun genen zĳn georganiseerd in zogenaamde operons. Een operon
is een kluster van genen die samen worden getranscribeerd tot één mRNA. Genen
in een operon bevinden zich meestal heel dicht bĳ elkaar en worden ook in dezelfde
richting afgelezen; ze hebben een zogenaamde tandem oriëntatie. Daardoor bestaat
de verzameling van tandem gen-paren in zulke genomen uit twee groepen: de
gen-paren die in hetzelfde operon zitten, en de paren die in verschillende operons
zitten. De sequenties die tussen deze genen in liggen bevinden zich daardoor ofwel
in een operon of tussen twee operons. Deze tweedeling is ook zichtbaar in de
verdeling van afstanden tussen tandem genen: deze is grotendeels consistent met
ons model, behalve dat een duidelĳk overschot aanwezig is op korte afstanden.
Door dat overschot verraadt de verdeling van afstanden de aanwezigheid van
operons.

De vraag waarom genen zĳn georganiseerd in operons, is een onderwerp van
continu debat. De meningen zĳn grofweg verdeeld in twee kampen. Het eerste
kamp betoogt dat operons gebruikt worden om genen te co-reguleren. Als een
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aantal genen in een gecorreleerde manier tot expressie moeten worden gebracht—
bĳvoorbeeld omdat ze een gerelateerde functie hebben—dan kan dit inderdaad
worden bewerkstelligd door ze in één operon te plaatsen. Het andere kamp is van
mening dat de formatie van operons het gevolg is van de “horizontale overdracht”
van genen: het feit dat genen soms worden overgebracht van het ene naar het
andere organisme. Operons die verschillende of zelfs alle benodigde genen bevatten
voor een bepaalde functie, zouden een grotere kans kunnen hebben om succesvol
te worden overgebracht naar andere organismen dan losse genen. Daarom zouden
operons “egoïstische” structuren kunnen zĳn: hun bestaan zou dan het gevolg
zĳn van hun succesvolle verspreiding en niet zozeer van hun toegevoegde waarde
voor het organisme.

De twee genoemde argumenten hebben een ding gemeenschappelĳk: ze ne-
men beiden stilzwĳgend aan dat operons niet zouden bestaan in afwezigheid
van enige selectiedruk om ze te creëren. In Hoofdstuk 5 beargumenteren wĳ
precies het omgekeerde: zelfs als operons geen enkel selectief voordeel met zich
meebrengen—noch op het niveau van het organisme, noch op het niveau van
het operon zelf—dan nog zĳn operons te verwachten. De reden is dat twee
tandem buurgenen van nature in hetzelfde operon zĳn, tenzĳ er zich tussen hen
in een terminatorsequentie bevindt. Dit betekent dat, in zekere zin, operons
de “default”-indeling zĳn: alleen als er voldoende en aanhoudende evolutionaire
druk bestaat om de genen onafhankelĳk te reguleren, kan men verwachten dat
in de loop van de evolutie terminators en onafhankelĳke promoters ontstaan.
Tegelĳkertĳd worden bestaande terminators continu op de proef gesteld door
allerlei soorten mutaties. Op evolutionaire tĳdsschalen zullen zĳ enkel overleven
als ze constant onder voldoende selectiedruk staan. Wanneer dat niet het geval
is, zal de terminator verdwĳnen en een operon ontstaan.

Om aan te tonen dat dit concept hout snĳdt, presenteren we een eenvoudig
model voor de evolutie van genomen en ontwikkelden we een nieuw simulatiesche-
ma gebaseerd op het wetenschapsgebied van de populatie-genetica. In simulaties
van dit model ontstaan inderdaad spontaan operons en gedeelde terminators.
Bovendien reproduceert het model de verdeling van genen in de organismen E. coli
en Bacillus subtilis, inclusief de karakteristieke clustering van genen in operons
en de verschillen in de afstanden tussen convergente, divergente en tandem gen-
paren. En passant verklaart het ook waarom promoters en terminators zich in
het algemeen heel dicht bĳ het bĳbehorende gen bevinden.

De evolutie van afstanden tussen genen
Op evolutionaire tĳdsschalen groeien en krimpen de afstanden tussen genen als
het gevolg van invoegingen en verwĳderingen van stukjes DNA. In de regio’s
tussen genen zĳn deze stukjes typisch heel kort. Aangezien het vóórkomen van
deze mutaties een kansproces is, zou je verwachten dat de lengtes van deze regio’s
op de lange duur een zogenaamde “random walk” beschrĳven. In Hoofdstuk 6
beschrĳven we een stochastisch model voor deze evolutionaire “diffusie” van
sequenties tussen genen.
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Dit idee kan getest worden met behulp van gegevens over gerelateerde or-
ganismen. Direct nadat twee soorten ontstaan uit een gezamenlĳke voorouder,
zouden de regio’s tussen genen in beiden organismen even lang moeten zĳn. Maar
in de loop der tĳd zullen invoegingen en verwĳderingen ervoor zorgen dat de
afstanden gaan verschillen. We kunnen ons model dus testen door de afstanden
tussen genen in twee gerelateerde organismen te vergelĳken met berekeningen
aan het model. We vergelĳken ons model met de gegevens van Escherichia coli
en Salmonella enterica subsp. enterica serovar Typhi.

Het model kan ook worden gebruikt om te berekenen wat er gebeurt als een
operon opsplitst of wanneer twee operons samensmelten. Door berekeningen aan
dit proces kunnen we regio’s opsporen waarin wellicht recentelĳk een samenvoeging
of splitsing heeft plaatsgevonden.
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