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STELLINGEN

Neemt men in de in hoofdstuk Il van dit proefschrift afgeleide resultaten de li-
miet E; E,, dan verkrijgt men de overeenkomstige resultaten, behorende bij amorf
materiaal. Voor deze resultaten gelden dan echter niet meer de betrekkingen,
die in het geval von kristallijn materiaal het behoud van energie en impuls uit-

drukken,
Dit proefschrift, hoofdstuk III.

Het is mogelijk om de integraalvergelijking voor het gemiddelde aantal recoils
in een botsingscascade, die een gegeven impuls verkrijgen, op te lossen, door
een benadering voor de inhomogene term in deze vergelijking in te voeren.

Dit proefschrift, hoofdstuk III.

Het harde-bollen-model voor de interatomaire wisselwerking, zoals dat o.a. door
Leibfried en Mika gebruikt is, geeft —voor de berekening van verdelingen van
indringdiepten van projectielen in amorf materiaal — geen goede resultaten.

Dit proefschrift, hoofdstuk V,
G. Leibfried, Z.f.Phys. 171 1 1963,
G. Leibfried, K, Mika, Nukleonik 7 309 1965,

v

De waarschijnlijkheid van omlading van een ion, gereflecteerd aan een metaal -
opperviak, wordt beihvloed door de atomaire structuur van dat opperviak. De
verklaring van Dahl voor dit verschijnsel is niet toereikend.

P. Dahl, Abstracts 8th Int. Conf. on Phen. in lonized Gascs,

Wenen 1967, 51.
J.W. Gadzuk, Surface Science 6 133 1967.

\%

De theorie van Martynenko, over de verstuivingsverhouding van éénkristallen als
functie van de hoek met de normaal op het oppervick van de invalsrichting der
projectielen, bevat een tegenstrijdigheid.

Y.V. Martynenko, Sov.Phys. 6 1581 1965.



Vi

De bewering van De Wames, Hall en Chadderton, dat de 'klassieke limiet' van
de quantummechanische diffractietheorie voor door kristalviakken gechannelde
protonen een beter resultaat geeft dan de eenvoudige, klassieke theorie van
Lindhard, wordt niet bevestigd door de experimenteel verkregen resultaten van
Andersen, Davies, Nielsen en Andersen,
R.E. De Wames, W.F, Hall en L. T, Chadderton, te verschijne
J. Lindhard, Mat.Fys. Medd. Dan Vid Selsk 34 14 1965.
J.U. Andersen, J.A. Davies, K.O. Nielsen en—S.L. Andersen,
Nucl. Instr, 38 210 1965

Vil

De door Peek bewezen aequivalentie tussen de 'sudden approximation' en de
le Born-benadering met Hartree-Fock-golffuncties, is a priori duidelijk, evenal:
het feit, dat de toepasbaarheid van deze benaderingen twijfelachtig is.

J.M. Peek, Phys.Rev. 160 124 1967.

VI

Het bezwaar, dat de Langmuir-Taylor-detector voor alkalibundels met energie&r
hoger dan 3 eV minder effectief wordt, kan worden ondervangen door de functie
van de ioniserende draad en de cylinder-collector te verwisselen.

S. Datz en E.H. Taylor, J.Chem.Phys. 25 389 1956,
E. Hulpke en C. Schlier, Z.f.Phys, 207 294 1967.

IX

In die magnetohydrodynamisch stabiele plasma-experimenten, waar het plasma-
verlies uitsluitend bepaald wordt door het electrische veld in de grenslaag
tussen magneetveld en plasma, is het principigel onmogelijk deze verliezen
tegen te gaan door met uitwendige hulpmiddelen te trachten dit electrisch veld
te beihvloeden.

X

Voor integrale geschiedschrijving, zcals door Jan Romein bedoeld, is de film als
bronnenmateriaal van belang en wat betreft bepaalde aspecten van de 20° eeuw
historie zelfs een essentieel onderdeel.

Jan Romein: Eender en Anders Querido 1964,
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CHAPTER |

INTRODUCTION

The field of radiation damage and sputtering has been studied by many authors 12,

Radiation damage and sputtering are the phenomena which occur when a solid target
is bombarded with fons which have been accelerated to a high kinetic energy. This
kinetic energy will be supposed to have a value between 20 and 50 keV in all cases
which will be discussed in this thesis.

When such a projectile enters the target, it will collide with other atoms, to which
it will transfer kinetic energy. These, in their turn, will collide with other atoms and
so on. In this way a collision cascade originates in the target. If the target has a
crystalline structure, this cascade causes destruction in the lattice, which is called
radiation damage. Also some atoms can be ejected from the target in the course of
the cascade and this is called spufferlng. For short historical surveys of this phe-
nomenon we refer to the theses of Rol Fluit* and Weysenfeld

In this thesis we shall study the ranges (i.e. the distances travelled) of energetic
projectiles and the collision cascades caused by them. We have not the intention of
making explicit radiation damage calculations {e.g. the average number of Frenkel
pairs created by an incoming projectile), but to discuss the distribution of energies
and momenta of the recoil atoms in the cascade, from which such results may be
derived, Previous calculations on collision cascades have been made by Leibfried®
and Robinson 7:8, Leibfried has considered the recoil energy distribution function in
a single crystal with a hard sphere model for the interatomic interaction, while
Robinson has used other potentials for this interaction, but has limited his calcu-
lations to amorphous material.

Previous calculations of moments of ranges have been made by Leibfried” and Mika™ ,
who used a hard sphere model, by Lindhard and co-workers *!, who performed
machine calculations on the basis of a Thomas Fermi potential for the interatomic
interaction and by Baroody 12, who used both this model and the power-law inter-
action which will be described in this chapter. Baroody considers the case that
projectiles start from an infinitely extended plane inside an amorphous medium with
only one energy but in all possible directions with respect to the normal on the
surface. He then calculates moments of the distance from the planar source, reached
by these projectiles, up to the fourth order averaged over the cosine of the angle with
the normal made by their initial direction of motion.

If a projectile, which in most cases is a noble gas ion, enters a single crystalline
target in a transparent direction, it has a considerable probability of penetrating
into a very great depth through the open space between the rows of atoms in the
crystal 13:14, This is called channeling and will not be treated here.
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In this thesis we shall consider only monatomic target material, unless otherwise
stated. Furthermore the calculations will be based on a model which takes into
account two-body collisions only. As argued by Bohr!® and Lindhard !, atomic
inferactions in solids at relative energies in the range from 10 to 50 keV are de-
scribed with a satisfactory degree of accuracy with an interatomic potential of the
form

(1.1) V(r) ~ r-s

r being the distance between the centers of the atoms and s lying between 2 and 4,
In particular the case s = 2 is often used, because of simplifications in the neces-
sary mathematics, which occur in this case. The potential (1.1) can be interpreted
as a screened Coulomb potential.

z,z2,¢e
(1.2) V() = —— U('/a)

r

s-1
with the screening function U("/a) = lZ—S (—?;) where k_ is a constant of the order
unity.
Z, and Z, are the charge numbers of projectile and target atom respectively and
is a length which acts as an effective screening radius. Following Lindhard we shall
use for a the expression:

_1
(1.3) a=a .0.8853 (Z 12/3+222/3) ’

where a is the radius of the first Bohr orbit. The constant factor kg is of the order
of 1 and may be used as a fitting parameter in a comparison with experimental
results.

For this potential, Lindhard 1% has derived an approximate form for the differential
cross section do giving the probability that the projectile will suffer a collision in
which an energy between T and T + dT is transferred to a target atom, which is

b 2s-2, 2 2 s 41
{T “ ks YS Tm} T1+1/s

(1.4) do =

mlg

The derivation of this formula will be given in Appendix A.
22,7,¢®

, where m_ is the reduced mass
m v2 °
o]

in (1.4) b is Bohr's collision diameter b =
m

m
m, = ﬁ—, v is the relative velocity, T is the energy, transferred in the
o2 4mm
collision and T = —12—2
(m +m,)
the greatest energy transfer possible in a single collision. m; and m, are the masses
of respectively projectile and target particle. As for the remaining constant in

(1.4), it is an Euler Beta function

E =yE with E the initial energy of the projectile is



1 . st
Y, =3B (3; o1 )
Often it will be necessary to introduce explicitly an angle dependent differential
cross section dg', related to the angular and energy distribution of the participants
in the collision after the scattering. From the energy ~-and momentum conservation -

laws it can be shown that this can be done in the following way 9

(1.5 dc—doénn-——-——

E-T mytm, ml-mz)
E-T 2m1

2Vm1m2 2n2n

In this formula n.n ' and n.n " are the scalar products of the unit vector n in the
direction of notion of the projectile before the scattering with the unit vectors

n' and 0" respectively in the direction of motion of the projectile and of the hit
particle after the scattering. dQ' and dQ" are differential solid angles corresponding
to the scattered directions n' and 0" as given above. The factors (27) L are

normalizations.

Integrating (1.5) over dQ", the direction of motion of the hit particle, we obtain
the quantity which characterizes the angular distribution of the projectile alone

( ) . ’ E-T m +m, / E m, -m, do'
1.6qa = i - ——
d01 dod(n.n 3 2my EoT 2m1 > .

and conversely by integrating over d Q' we get the analogous one for the angular
distribution of the hit particle alone

. oy M, TN 9
(1.6b) dcz=dca(n.n"-‘—2—\/ /E)—
2V 27

m m
1 2

For the further developments it is necessary to consider the relation between the
differential cross section (1.4) and the function K (E,T) dT, which gives the proba-
bility that a particle of kinetic energy E will transfer an energy between T and

T +dT in a single collision. As we have excluded many-body interactions from our
calculations, K (E,T) is necessarily normalizable to unity

(1.7) fK(ET)dT—l .

It is evident from (1.4) that the total cross section f do is infinite.
0
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The integral diverges at the lower limit. It will turn out in the following chapters
that this does not prevent us from calculating the quantities in which we shall be
interested. However, for the clarity of the argument, we shall cut off the total
cross section at the lower limit ot some A, which may be taken arbitrarily small.
Then the function K (E,T) is defined as
do(E,T)

(1.8) K(E,T)dT = —————

f"da(ﬁ,n
A

from which (1.7) follows at once. An explicit calculation of K (E,T) gives the result
-1-1y/5
T

(875 =(ve) ")

(1.9 K(E,T) =

We must discuss the question of the applicability of classical mechanics to these
collisions. This question has been treated in great detail by Niels Bohr!®, and a
clear summary of it has been given by Rol3, Here we shall mention only the results.

The first condition is
(1.10) b >> }\/2n

which means that the De Broglie wavelength must be small compared to the effective
range of the interaction for which b, which has the meaning of the distance of
closest approach in a head=-on collision with Coulomb=interaction, is a measure.

The second condition is

A
27a

(1.11) 8 >>

where 8 is the scattering angle in the center of mass system. For scattering angles
of the order A/27maq, the uncertainty in the angle, due to the Heisenberg principle
becomes of the same order as the angle itself. We give a few values of the para-

meters k = b/ % and £/k = x/a (£ is the symbol, generally used for the ratio b/a).

Table
Species E k A /a dl e
Kr on Al 160 keV 3412.7 0.0002 1.6+ 1073 oV
Kr on Al 40 keV 6825.4 0.0004 1.6+ 1073 eV
Ar on Cu 50 keV 4651,5 0.0006 4,5. 1073 eV

Ar on Cu 20 keV 7354.8 0.0009 4.10% eV




The last column gives the energy transfers, corresponding to the lower limit of
classical scattering (1.10),

From this table it is evident that the conditions for the applicability of classical
mechanics fulfilled are in these cases.

According to Lindhard 1 the energy loss due to elastic collisions dominates, in the
energy range considered in this thesis, over the inelastic energy loss, due to the
stopping of moving atoms by the electrons of the solid target. Consequently, we shall
not introduce this electronic stopping effect explicitly. Its effect will be supposed to
be incorporated in the form of the inverse power potential, assumed for the inter-
atomic interaction,

* % %



CHAPTER 11

RANGES OF PROJECTILES IN AMORPHQUS

Lindhard et al’" have given a treatment of the total pathlength, travelled by a
projectile in an amorphous target and they have also calculated first - and second -
order moments of some range quantities. We shall generalize his treatment to higher
- order moments of these latter quantities for the power - potential cross sections
introduced in Chapter |,

Suppose a projectile starts with given klne’rlc energy E and a given direction of
motion characterized by the unit vector 7 froma point inside the target material
which we shall take as the origin of the co-ordinate system. This point can be
identified with the point of entrance of the projectile into the target. We must
keep in mind that the formalism which is developed in this chapter is based on a
model in which the target material is infinitely extended through all space. We
shall come back to this point later in this chapter. We begin our treatment with
supposing the projectile to be of the same species as the target atoms and further-
more that the successive collisions undergone by the projectile are uncorrelated.

We introduce the probability density function p(?,?;,E) such that the probability
that a proiecfile, starting from the origin with kinetic energy E and direction of
motion n;, will come to  rest in the element of volume dr” around the point with
vectorial co-ordinate T’ is given by p(r n,E) dr. Let the number of scattering
centra per_unit volume in the target be N. Then, if the projectile moves over a
distance A r, immediately ofter the beginning of its journey, the probability that
it will suffer within this distance a collision in which an energy between T and
T+dT is transferred to o target atom and that it will be deflected over the corre-
sponding scattering angle is given by N [ a7l da; (cf. (1.6)). After such a collision,
it has ’rhe kinetic energy E-T, and its direction of motion is given by the unit
vector n”', Its proboblhty to arrive in the chosen element of volume dr is then
given by p (=47, n', E=T)dr'. There is also the possibility that it will not be
scattered while movmg over the distance AT. The probability for this is

1-N a7 IAI do' and the probability for arriving in dr is then given by

p(r' -Ar,n, E) dr' . By combining these two possibilities and integrating over all
possible energy transfers T, we obtain for p the following equation
E

(2.1) p(TAE) = N|A?|fdc'p(?-[r’,ﬁ", E-T) +
A E
£ (1-N] m[m o(F-orm E)
A

A slight rearrongement gives



E
r,mE) -p(r-ATn,E - -
(e n )IA_r’pl(r ", n.E) = Nfdd'[p( r-Ar,n',E-T)-p(r-Ar,n,E)]

(2.2)

Because the rargetmaferlal is amorphous and since all scaHerlng events have azi-
muthal symmefry p(r,n E) can only be a functlon ofr=I71,Eand n= (r_rT)/r,
the cosine of the angle between the vector Y and the initial direction of motion n.
This is shown in Fig, 1, where the angle P is the azimuthal co-ordinate of the
volume element dr = 2 dr dndq) .

Fig. 1. [Illustration of the geometrical situation of an incoming projectile before g:;xd_gfter its collision.
The cosines of the angles 1, 2 and 3 are equal to respectively 7}, 7' and n.n'.

Hence
(2.3) p(_r:;,E) dr = p(rm,E)rdrdnde L

If we make use of this and take the limit |Ar I-' 0, (2,2) becomes after a simple
calculation



24 0z +l?'— ——Nfdc[ 0" ET)=p(em )|

The function p(r,n,E) is supposed to be an analytic function of its variables. This
implies that if we take the form (1.5) for do' and (1.4) for do the integral on the
right-hand side of (2.4) converges in the limit A = 0 and we shall take that limit
from now on.

According to the cosine rule of spherical trigonometry we can write

(2.5 nt=mmnt F1-n% 1 - P2 cos(9p_-9.)
2 1

where @, is the azimuthal angle of the scattering event (Cf. Fig. 1),1" is the angle
between the deflected direction of motion 0" and the co-ordinate vector 7. The
next step in the argument is the expansion of p (r,n,E) into Legendre polynomials of
the cosine n,

(2.6) plr,N,E) = Z (22 +1)p, (r E)P,(n)

£=0
This expansion, together with (2.5) is substituted into (2.4), which then becomes
(cf. Appendix B)

2.7 /S{ Lo, @) 2L
=0

or
N Pg _
+ Z{““])Pz-1(n) -2 ( £+1) Pm(n)} ralie
£=0

= Nfdcz (2£+1) {pl(rE T)P,(n)P (\[E T) (n)}

We decompose (2. 7} by equating the coefficients of the same Pp(n) on both sides.

This gives
0

P
(£+'|) [+1

- N(zzﬂfdc{p(r,E 05, (55)- p(r,E)}

We can now introduce moments of different order of the range, which are defined
as follows

0P,
ro b (10242 =H P _ypeny 2 “—
r

(2.8)

[o 0]

(2.9) p; (E) = 47/ p, (r,E)r™? dr
0



From this definition we can by multiplication of (2.8) with r “"™ and integration
over r obtain the following recurrence relation between the different moments

(2000 () (mgft =g (et n)pl ! = 241 Nfdc plET \/ >'F’1

Eq. (2.10) will be the starting point for the calculation of the different range quqnfl—
ties. Consider first the moment

ao

(2.11) —4n p (r,E)r2dr
v, =4[,

Evidently the fotal probability density function is normalized to unity which means
that w1 2m

(2.12) fffp(r,E,n)rzdr dndg =1
0 -1 0 !

If we now integrate both sides of (2.6) over all space, we find, due to the ortho-
gonality of the Legendre polynomials
[0 0]

(2.13) 1= 4ﬂfp (r E) Pdr= pg (E)
0 3
0
From this point, we are going to use explicitly Lindhard's form for the differential
cross section and we are going to express distances and energles in the reduced
dimensionless units, which have been introduced by him!!
We introduce the following quantities

(2.14) p=r.NTa® and E€=E—

It may be noted that € = a/b. Expressed in these units the power law differential
cross section becomes

(2.15) dog = Ei < Ysk5>2/s /s d7T
! s 2¢ € T14l/s

where T is the reduced transferred energy. Transforming r and E into p and € in
(2.4), we get with the help of (2.14) in the limit A = 0 the equation

2 2/s =
dp ., 1-n" ap =_1_<Ysks> 1s [ dT <—H. _ E'T> dQ'
(2.1¢) Tl—p+ 5 3n s\ 2¢ € .l71+1/s‘5\nn e ) om °
0

.l:p(p,n',e -1) - P(p:nrc):]
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A straightforward argument now leads to the analog of (2.11) in reduced variables

2170 (1) (2-0) py () ~£len+ Vpy (€)=

2/s €
k n
_(2£+7) (Ys s> 1/sf dt [ ) <Ie-’r>_ "
- sy B J ple-m P (V557 ) P ©

where p7 (€)= 47 b, (6,€) p
4]

24n

dp. Of course again p0 () = 1.

It will now be shown that from the recursion relation (2.17) it is possible to calculate
all higher moments forwhich (n +£) is even andnZ £ .
Consider the equation for the moment p1 (€). From (3.17 we find that the equation

for this moment is
2/s

(2.18) -3:53<IS—2L(ES—> ’Sj 1+1/S|:p1 £-1) \f—g - p! (e)]

To find the solution, we infroduce the variable of integration, y =1/c. (2.18) then
becomes

(2.19) -1 :sl (Yszl::s > f y—?{T/— [pi(EJr)Vl_-y-pi(e)]

We try as a solution p, () = ?\EZ/S, where A is independent of €. Substitution into
(2.18) yields for A the equation

(2.20) 1 =sl (Ys s ) f 1+1/S [ )2/s+ vz ]]
0

from which follows

(2.21) A =-

2/s 1

5 kS s
1 (Y > f dy [(1-)/) 2/ +1/2_i|
S 2 >,1+1/s

0

The integral in the denominator can be calculated by partial integration. The
result becomes

1

>2/s[(2/5+1/2 )B(1-17/s; /s + /2 ) = 1]

(2.22) A=

AR
(%
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In order to prove the uniqueness of this solution, we substitute into (2.18) the function
p*(e) = pH(e) - Ae?*, where A is given by (2.22), This results in the following equa-
tion for p*(€)

Because we have supposed that p(r,n,E) is an analytic function, it is easy to see from
its definition that the moment p (&) is also analytic in € and hence alsa p*(e).

Then it can be shown that the only possible form for p*(€) is p*(€) = a/Ye where a is
a constant, from which follows pl(g) = Ae?5+ a/Ve . As the physical boundary con-
dition, imposed on p(p,n,€) for € =0 implies that p1(0) =0, it follows that a = 0,
This argument is valid for the integral equations for the higher moments, which are
given hereafter as well.

The higher moments can be calculated in the same way. Take the moment p2 (e).

Eq. (2.17) gives
1 Uk o s dT
ex e = (F2) ) Ffeie o]

0

We have found that p,(€) = Ae?s, The procedure is precisely the same as in the
preceding case, only now we put Py ( g) = ke#s, A straightforward calculation then

gives

2\
(2.24) k =

Y 2/s
(s S> [/ B (1-Ys;%/9) -1]
For the moment pg (€) we find from (2.17)

Y 2/s €

e A oot R N RS AN

0

s

We try the solution p:(E) = p.&:4/ and find for p
2

Y%ksj"“ [ % (;i+ D B(1- /s s 1) - /sB(-Ts; Us) - 1]

In the same way all higher moments with n +¢ even and nZ ¢ can be found, In
general such moments p;(E) are proportional to £°*,

(2.26) u o=
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We shall now show how this calculation can be adapted to the case that the pro-
jectile differs in species from the target material. In that case the projectile has
charge number and mass respectively Z4 and m; and the target atoms Z, and mj.
Lindhard's expression for the differential cross section with angular distribution for
this case is given by (1.5), where the factor

m_+m "
L2 m)dﬁ_
21

2
mm,

6 nn“ -

can be dropped, because the hit particle is not considered in this calculation and
the corresponding variables do not occur in the quantities to be calculated.

It is evident that the argument, leading to Eq. (2.2) remains valid, except that we
must write YE instead of E in the upper limit of the integral. As before, the proba-
bility density p is a function only of r, Nand E, so an expansion into Legendre
polynomials is again possible. Finally for the moments p;(E) we arrive at the equatio

(2.27) (£ 1) (£-n) p, 1 (B) -£(L*+nt ) pyy €)=

YE
n m, +m 1’E-T m, - E n
- . _ 12 12 -
(2¢ I)Nfdcl:pﬂ(E ) Pz< m I E 2 \/ =) P 4B
A

by carrying out the same operations as for (2,10). (Cf. Appendix B). As before we
take the limit A = 0. We make the transformation

am
2.28 p=NnfY. de=m—2—— [ E=Z |
( ) aY.r an ZIZZeZ(m1+m2) b
The generalization of (2.17) is then
n-1 n-1
+ . - =
(2.29) (£+1) (£-n) Pyt (e) —g(L+n+1) pZ-l(E)
5 Ye -
(23-*1}(Ysks>2/'(Y£)1/sj‘ dt |: " (e-1) P <m1+m2 €-T +m1 M2 e'>
Yoo \ 26 REVARY 2\ 2m, J e 2m, let
0
n
Of course again pg (€) = 1, The equation for p}(E) reads B pl(e )]
Y k 2/s Ye m.+m m, -m
3 s s 1/Sjv dt lil { 1 2 €-T 1 2 € }
2,30) -3 = > € —— E-T = .2
(2:30) L \Ze ) MO T PN VT T Yoz
0

- pi(ﬁ)]

This is ogcig a linear integral equation which is solved by substituting the solution
p%(E) =\ €%* and introducing the variable of integration y =1/A¢e. The factor A"
can be calculated with the result



I K \2/s (m, 2/s+1/2 m -m, 2/s-1/2
(2.31) \! :[_ (Ys s> {m (1-7) + (1-v) -1+
¥ 2 2m, 2m1
1sy M +m -m, 2 1 1, 2
+Y ( ; 2 %/stip) B, (1 -Ys;Ys+'e) + 22 (/5= /2) BY (1= /s; /5= /o) -
m, m

| H
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In this formula B, denotes the incomplete Beta function

The calculation of the higher moments proceeds as in the case of equal mass. All
the p;wirh nZ £and n +£ even can be determined from (2.27).

We shall now give a geometrical mterpretoflon of the different moments.

From the preceding argument it is clear that po( ) is nothing but the probability of
finding the projectile qnywhere in space after it has completed its journey (cf.(2,13)).
The meaning of the moment pl(E) can be found from (2.3) and (2.6), expressed in
reduced units. To obtain it, we multiply both members of (2.6) with p.P;(n) = pn

and then integrate over all space. Using the orthogonality property of the P,, the

result is
@®

(2.32) pn=4nlp (p,¢) p3 dp= pi(e) .
g

Hence pi (€) is the average of the projection of the distance P from the origin,
reached by the projectile, on its initial direction of motion. Following Lindhard and
co-workers, we shall call this quonhtyp i

We obtom the interpretation of po( ) by multiplying both sides of (2.6) with

p =p P (n) and again integrating over all space. The result is

(2.33) pE)ptdp = pz(e)

gel
1]
IS
A
—
oT

So p0 (e) is the average square of the distance from the origin, reached by the
projectile. |n the same way an expression for pz(E) can be found by multiplying
(2.7) with p Py (n) = p2(3/21%- %) and integrating, This time the result is

2 2 _ 2
(2.34) %2 p*nP- 3% p* =p2 - %ol =p;(e)
o is defined by p, =pY 1 =1 and can be geometrically interpreted as the pro-
jection of the dlsfance p from the origin, reached by the pr0|echle on the plane,
perpendicular to . From Eqs L’Z .33) and (2.34) p? and p-l can be found separately,
because obviously p = p +pc (Cf. Fig. 2). g
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Fig. 2 Illustration of the geometrical meaning of p,p, andp, as introduced in the text. L denotes
the total length of the path, travelled by the projectile.

In this way all higher moments pz(E) withn +£ even and nZ £ can be calculated
and interpreted, A table of all moments up to 5th order will now be given and con-
versely the expressions of all moments of p, upfo 5th order in the moments p; (£)



1 p
3 ___—3 3 2
P, (E)=pp = 5PP1

= 2 2, 4
pi(e)=py+2p,P + 0L
4 _4,1 22 1 4
Py (E) =P  + 0P -5 P
4 _ 4 2 2, 3 4
P, (€)=p, -3 0P ¢ Py
5 _'s 32, 4
p,(e)=p, +2p.P1+P P
5 _ 5 1377 3 r:}
P, (€) =P, = 5 PP -5P,P
5 -5 _ s 32 15 4
P, (6) =0 -50,p 1+ PP,

and conversely

- 1
P, =p, (€)
- p2(e)+20p, ()
Pp S 3
— 3pi(e)+2p] (o)
pp"‘ 5
= _ 7y (£)+20p; (€) +8p(9)
Py 35
— 33.75p; (€) +35p; (€) + 1065 (€)
P 78.75

For the case that s = 2 (inverse square potential) it is clear from these results that
p® ~ g" for every n,
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The generalization of the preceding theory for the case of a mixture of two kinds of
atoms is straightforward, Suppose, we have a chemical compound A B, . The differ-
ential cross section for collisions of a projectile which is either an A~ or a B-atom

we denote by do, and da,, where

BI
2 1/s 2 2/s
by 252 2 2 dT na v k dy
a -% (2a ) _ ™ (XS )
(2.35%)  do, =< ( T 94 KT, vy - 2¢, o
and
b2 1/s 2 2/s
(2.359) do = 1 (_B 252 szz T) dT _ Tag <Ysks ) dy
. B 5 4 B s's B T1+1/S S ZEB y 1+1/s

We have supposed here that the exponent s is the same for the interaction of the
projectile with A= and B-atoms. Furthermore by and by are Bohr's collision dia-
meters for collisions of the projectile with A- and B-atoms, respectively, a, and a

B
are the corresponding screening lengths and T, =YAE and T, =7 E with

4myem
y - AB
AB 2
o Amy tm, )
Finally ’
a m a
(2.369% e, = 24 E=—2
A7 Z e3m, +m) b
; prlal (Mgt m A
an
a m a
(2.369) £, = 22 g
ZprZBe (my +mp) by

and in (2.35% y=T/T, andin (2.35%) y=T/T,

It is now again possible to write down an equation for the probability density functior
p (¥, 7, E). Suppose the projectile moves over a distance A T after beginning its
journey. The density of the amorphous target material is N such that there are
pN/p+q A-atoms and qN/p+q B-atoms per unit volume. The probability that it
suffers within AT collision in which energy between T and T+dT is transferred to a
target atom is equal to

Nlarl {p— do, + —- doB}
Ptq ptq
and the probability that it does not collide in At is

T
TA B

- p 9
1 —NIArI{p-I-— d0A+ N de'B}
qL P4 4




This enables us to write down the following generalization for the general range
equation

(2.37) p (T)m, N a7l {p—- fdc p( r-Ar n LE-T) +

+ 3 4o ) (r-Ar,n,E-T} +
p+q B
Ta B
+ (1 -NIArI((i do!+ L doé)) olr= TE)
P*q Ptq
do/; and do denote differential cross sections with the angular distribution after
scattering included (cf. (1.5)). From this point the procedure is precisely the same
as described in the earlier part of this chapter, i.e. use is made of the fact thatdue
to the gmorphous nature of the target, the function p (¥,n/E) depends only on
r,m= (n.r)/rand E and that it is an analytic function.
p (r,M,E) is expanded in Legendre polynomlals Pp(M), which expansion is substituted
into (2.37), after this has been rearranged in the form of (2.2). Next the coefficients
of the same P, (M) are equated on both sides and the spatial moments
o

p;(E) = 47pr(r,E) r™2 dr are introduced, After all these operations have been

carried out, we are left with the recursion relation

n-1
(2.38) (£+1) (£=n) py, 1(E) - KLt py | (B) =
TA
_ P dr_[ (e ' [ E
(2£+1)Np+qCAfT1+l/s Lp (E- T)P E 2m, {E-T 2m )_pﬂ E)jl !
. 1
B +
q dT [ n (E -7 Mty [
+(2 + -
@ +nN L cBOme/s P, €N P, (|5 vl = "‘1 ) lE):I

where we have taken the limitA = 0.
Here C, and Cy are the factors with which dT/THs is multiplied in (2.35% and
(2.35b) and m;, m, and my respectively the masses of projectile, A- and B-atoms.
As has been shown, the entire formalism can be expressed in reduced variables p
and €, but attention must now be paid to one point, namely that we have two kinds
of target atoms and consequently two possible choices of p and €, It is easy to
overcome this difficulty. We make the transformation
a,m
(2.39) o =Nmay,.r ade = —— 2 | F
o Z Z e*m +m)
_ 4m m A ATl A1

where y =
(m +m )
1 A
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If we now put € = fe and ap = ga, the recurrence relation can be expressed in

reduced varidbles

(2.40) (£+ 1) (£-n) pz 1(e) -z(z+n+1)p (e) N
2/s 1 s
_ p 1 ( s ks) f T m1+mA ) e
+1 — = €- U
= (22 )p+q Y, \ 26 Jy 1+1/s pz( R & 2m, E-T 2m1 Pl '
q 1 /Yk i eT m +mB g M~Mg \
+(20+1)— _<_S_S) f pl(e T)P = -——)-p“(s)
ptq sy, \2fg, JiH/s 2m, Lo
T
In the first integral y = —T— = L and in the second one Y=7:-° =
TA YAE YBE

Of course pg(E) =1, Consider the equation for the moment pi. This reads

1 /Yk 2/s -4 m-m,
_]=_E__<S_s> f [ {]_ A= } ]
prasYaN2E/ ) 1eiss pytea{19* - -y )™ m )" ©
(2.47)
rmytmy -lm, -m .
9 1 1 71 B} 1
+ - 2 +(1- -p.(e
ptq ST, <2f6> f 14175 [p (E'T){ ) 2m_ U A7 o L
0
As before we try the solution pl(e) = al e °, Substitution into (2.40) yields an
equation for ai , of which the solution is
1
o =|:_l_(Ysks >2/SLI dy {m1+mA(]_Y )2/s+1/2 m1+m Ay )2/s-1/2_
SYA 2 pralytss U 2m Y A
o ™
(2.42) i .
k \2/s m,+m 2/s¢1/2 m +m = -
1 /Y d /s+1/ 2/5-1/2
) SRl e
Ya PTayy i

The integrals converge at the lower limit and may by partial integration be reduced to
incomplete B-functions. Evidently the higher moments can be found in the same way
as before. In the equation for p7 (&) én Z fand n + £ even), which is obtained from
(2.40), the substitution p;(s) = cr‘}e n/s, immediately yields an equation for a; in
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terms of the proportionality factors of the lower-order moments, which have already
been calculated. We then know the range moments p}(e) as functions of the
energy €. The uniqueness of the solution may be proved in the same way as was
done in the case of (2.19), 55

This calculation has been carried out for the case of _ Kr-ions of various energies
on Al,O;, which has been measured by Domey et al.'®, They have bombarded
amorphous targets with ions of different kinetic energies, of which one consisted of
Al,0O,, and was bombarded with 85 Kr. The direction of incidence of the projectiles
was always normal to the surface. The technique was as follows.

A layer of oxyde has been formed anodically on the surface of a metal foil. It is then
bombarded with a monoenergetic beam of radioactive ions of normal incidence. The
activity of the target is measured after the bombardment. Then the oxyde layer is
dissolved and the activity is measured again. Repeating this experiment for different
thicknesses of the oxyde layer produces a curve which gives the fraction of the
projectiles transmitted through the layer as a function of its thickness.

Let us call f (E,pp)dpp the probability that an ion with reduced initial kinetic energy
€ will have a penetration depth between Pp and (S dp.. The curve, measured by
Domey et al, then represents in our formalism the quantity 1 -/ f(E,pp) dpp, as a
function of a, where a is the thickness of the oxyde layer, exp—rcgssed in reduced units,
The appearence of ~w in the lower limit of the integral is a consequence of the fact
that the theoretical model represents an ion starting at a given point in a given
direction in target material which is infinitely extended through all space. The
penetration depth could therefore conceivably be negative. In the actual experiment
this would correspond with the case that a projectile is reflected out of the target
material. It will turn out that the influence of this probability is negligible.

All moments up to 5th order have been calculated for s = 2, which means that all
p}(E) are proportional to €™. All integrals, occurring in the expressions for the
coefficients a, have been calculated numerically on an electronic computer. From
the moment p5(€) the moments up to 5th order of the reduced penetration depth
have been cafculofed with the help of the formulas, resulting from the geometrical
interpretation of the p;(s).

The factor k has been fitted to the experimentally measured value of the first-order
moment, i.e. the average penetration depth, as given in ref. 18. The authors express
the measured distances in units of pg/cm? which in the case of Al,0; corresponds
to 25.2 A. In dimensionless units as given by (2.39), referred to the system Kr=Al, it
means that with 1 fug/cm? there corresponds a distance p = 0.0907.

We consider three different values of the initial energy E of the 85Kr—ions, 40, 80
and 160 keV. In every case the constant k, is fixed by equating the theoretical
expression for pl (€) with the experimental value of the mean penetration depth. It
is calculated by multiplying ai as given by (2.42) where 1 = 8Kr, A = Al and

B = O, with the corresponding value of € and equating this to the experimental
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mean penetration depth, expressed in reduced units. The reduced energies €, the
experimental values of the average penetration depth and the resulting value of k_
are for these three cases given in the following table.

2
E (keV) 3 R, (ng/em”) CR k.
40 0.164 6.2 0.562 0.826
80 0.328 10.7 0.970 0.958

160 0.656 20.4 1.850 i

From the different moments of P, an approximate cumulative distribution function
for P. can be constructed with the help of an Edgeworth asymptotic expansionl?,
which has also been used by Baroody 12 in his range calculation. By a cumulative
distribution function F(x) we mean a function which denotes the probability that a
random variable X will be smaller than or equal to x, where F () = 1 and F (-o)
= 0. That such a cumulative distribution function (c.d.f) provides an adequate
description of the measured behaviour of the incoming projectiles follows from the
set-up of the experiment. What is measured are the fractions of the projectiles
which have not been stopped by layers of aluminium oxide of different thicknesses.
In terms of a c.d.f. this corresponds with 1-F(x), where x is a measure for the
thickness of the oxide layer.

The Edgeworth form for the c.d.f. is as follows:

2
(2.43)  F()@P(x) - [‘% v (x)] N [% 7% (9 + Y7_g 7 (x)] )

Y; _4 Y, Y, _(6) i
- 27 27 () s A0 (x):l + higher terms.
120 144 1296
pp -pP

E__ | P(x) is the Gaussian c.d.f.

Z2_ =2
Po” Pp
n) , . . .
is the nth derivative of the Gaussian normal curve

X
1 2
P(x =—‘Iet/2dt,i
2

X
Z(x) = e” 2 and Yl’ Y2 and Y3 are the following

V2

In this formula x =

-~ _ — _, 3/2
(2.449) v, =0} =362, + 20 )/ (02 -P2)
b 7 —3- 32 22 -4 = 2 2
2.44 = (O} 4075 -30° +120°5°+6 B
( ) v, =(p -4pp =30 *120 0] pp)/(pp p,)
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s L 5T . ez . T2e2 L B3 -
(p°-50"F 10070 +20p°p2 +30p% -60p P +24p° )
(2-44C)Y — p p P l’.}’_ ZPP PP pp P
3 2 =2 5/2
(p,-p,)

The function F(x) has been calculated for those values of B, , which corresponds
with the thicknesses of the oxide layers, measured by Domey c.s. and for incoming

energies of 40, 80 and 160 keV.

The comparison between theoretical and experimental results is shown in Fig. 3,
from which the conclusion may be drawn that the correspondence between theory
and experiment is quite satisfactory.

Fraction not yet stopped (%)
100

Ke® in Al, 0,

! 40 2
Penetration depth (pg/en®)

Figure 3. Comparison between the experimental results of Domey et al, for the penetration depth
distribution of Kr' -ions in AlyO3 with the theoretically calculated c.d.f. (2.43). The
lines have been drawn through experimental points and the dots represent caleulated values
f F(x) for diffe t val f —
of F(x) for different values o ( __)/( > _2] 1/2
X = - - >
e P e p pP pP

The variation in the factor kg in the cross section for different energies may be
interpreted as the influence of the change of the inelastic energy loss to atomic
electrons for different energies of the projectiles.

* k%
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CHAPTER Il

ON THE NUMBER OF LOW-ENERGY RECOILS
IN A COLLISION CASCADE

In this chapter the supposition that the target material is amorphous will be dropped.
Instead, we shall suppose that it has a poly- or mono-crystalline structure. The
quantity which will be calculated in this chapter is the so-called collision density,
denoted by ¥ (E;E;) and defined as follows.

V(E;Eq) dE; is the average number of recoils in the energy interval between E; and
E, +dE,, which are created in the course of a collision cascade, started by a pro-
jectile with kinetic energy E. We shall begin by supposing the projectile to be of
the same species as the target atoms. An important restriction on the average recoil
number must still be made, namely that we shall take into account only stationary
atoms, which receive an amount of kinetic energy between E| and E +dE | where
E, lies below a given boundary value E; from a moving atom, or atoms which in the
course of the collision cascade have received a kinetic energy above E; and then
lose so much in a single collision that after it they are in the interval (E{,dE;). We
are interested only in recoil energies below E, which in all cases in this thesis is
much smaller than E. The physical reason for the existence of the limit E;, which
has first been introduced by Leibfried?® is that for recoils with kinetic energy below
E, the laftice structure of the medium has a dominating influence on the further
energy and momentum distribution, whereas recoils with an energy above E, are
supposed to interact with the medium as if it were amorphous. When the projectile
enters the target, it will make a collision with a target atom, to which it will trans-
fer on energy T. Thereafter they will both make further collisions and in this way
start two subcascades. These two subcascades are supposed to be statisticatly inde-
pendent,

We introduce the function W(V) (E;E1 --E,), such that the probability that, in the
collision cascade, started by the projectile with kinetic energy E, there will be
created precisely v recoils in the energy interval (Ey, dE1) --=(E,, dE,) respectively
with the restriction described above, is equal to W v) (E;E; ---E,) dE; —==dE,. In
view of this restriction and because it is necessary for the argument which follows
we must state that for the case T <E,

v

I 8(T-E)

(3.1) W (T;E —-E) = 8
v i=1

vi
We shall give an explanation of this formula.
If a recoil in the collision cascade has an energy T= E; it cannot create any addi-
tional recoils and the only way it can contribute to the recoils E{---E,, created by
the projectile with probability w(v) (E;E, ---E,) is by being itself one of those re-
coils. Hence the Kronecker &, indicating that the confribution can consist of only
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one recoil. The Dirac &-functions then fix its energy on one of the prescribed values.

. i . v ) .
The next point which must be discussed is the normalization of w' ) It is normalized

according to .

O ——dE =
(3.2) 5 (WO (€, -—-E) dE, —=-dE =1 .

. A T oo
This means that the sum of the probabilities for any number of recoils with any
energy value between A and E in the cascade must necessarily be equal to 1.

It is clear that W(V) (E;Ey ==-E,) is a symmetric function of Ey ---E .
In view of the statistical independence of the two subcascades we can write for
wi(v) (E;El--—— Ev) the following equation

E
6.3 WhEE, ) = [kEmar ¥ — z we-Te € ).

w ta ‘
v -
: Wt ‘)(T"Eauﬂ'_— E“u)
Here K (E,T) is the energy transfer probability function, introduced in Chapter 1.
We have to sum over all possible values of w, such that u recoils are created by
the subcascade, caused by the projectile after the first collision and v -p by the
subcascade of the atom hit in the first collision. Besides that we must then also, for
every i, sum over all (L\i) possibilities P, to choose U particles out of v. The factor
(") is introduced to get the normalization correct, which can be checked by inte-
grating both sides of (3.3) over E; ---E and summing overv. Equation (3.3) can be
given a more specific form if we introduce (3.1) for the case that the energy with
which one of the subcascades is started is less then E. (3.3) then becomes

E-E;
W(V)(E'E ---E ) = K(E,T)dT g L z W(“)(E_T- E, ——Eg,)
! v 4 pzo(ﬁ) P tay au .
[ed
E _
(3 4) b ' : W(V p)(T’. Eo‘p +1_—_ Eav) !
' A . (v-p)
+ | K(E, AT £ — II §(T-E W E-T;E ---E +
f ( ' ) ;FZO(V)%%l i=16( al) ( ap,+1 av)
Ay M
- 4 (v-1)
s [ KEDITT Z28, 08T )W HmE, k)
P'ZO(V) Pa =t *1 . o+l =
E-Eg H

The last two terms on the right-hand side of (3.4) represent the probability that re-
spectively the target atom or the projectile comes directly in one of the energy
intervals (E, ,dE, ) as a result of the first collision.

1 1

At this point we introduce reduced distribution functions in the following way
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Ef
(v) W)
(3.5) W (6, -—-E,) —fvv (E;Ey--- E,) dE -~ dE_
This expresses the probability that inAa cascade in which v recoils are created with
energies below E;, Awill have energies in the specified intervals (E4,dE )»--«E ,dE)‘).
The average number of recoils created can now be written as Z v W v} (E) and the
average number created in the interval (E dE )

= _ (v)
(3.6) v (E;E)dE, = Z\Z’ le (E;E,)dE,
For this function we can derive an integral equation from (3.4) by integration over
dE, ---dE,, by multiplication with v and summation over v. The result is
E-Eg
ZvWEV)(E;El) = | KEDT 3 p {W(“)(E-T i )w(" W) +
v E Y p=0
. ‘ + p)w(*‘}(E -T) w(""‘)ﬂ X: }}
3.7 ‘ Wi (v-1)
f K(ET)AT 2 (BTE W, (E-D) + (w-) W, (E-TE,) )+
; 1
. -1
+f K(E,T)dT % <6(E-T—E ) w(()v Jmy + (\»-1)wfv )(T;E1)>
v
E-E(

We can replace (v-p) by p' and obtain then in the first term of the right-hand side
of (3.7) a double summation over the independent indices p and p'. Using the defi-
nition (3.6) and the normalization (3.2), Eq. (3.7) can be written as

E- Ef E
f K(E,T)dT ¥ (E-T;E ) IK(ETdT\,(TE)
Eg
+J K(E,T)dTé(T-El) f K(E, T)dT 6(E-T-E )

4 E-E;

[t has been shown in Chapter | that for y =1 (equal masses)

-1-1/s
(].]0) K(E,T) = ————T—-§II—-
s(a -
E
normalized to 1, according to IK(E T)dT = 1. Hence the left-hand side of (3.8) can
E

be written as [K(E,T) v (E; 1) dT. It is clear that the factor s( A L E_ ) then

cancels out afid we are left with the equation
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E—Ef E E
daT - —
eo [ S V) -f o ¥ (EE) +IT1 v (TE) +
4 g
1 1
+ 1+1/s * 1+1/s -
E, (E-E,)
which is equivalent to (3.8) .
We rearrange (3.9) as
E—Ef E
f L 'U(E-T;E)—V(E;E)]- f T SEE)
AR VR 1 1 Ti+t/s 1
@.0) 4 FoEy
dT  _ 1 1
+ ] T (1) + —— + = 0

1+1/ 1+1/s _ 1+1/
T 1+1/s E, (E-E ) 1+1/s

Because of the fact that E=> Ef>E1 the second and the last terms of (3.10) are very
small with respect to the others and will be neglected. For the remaining approximate
equation we try the solution T(E; E;) = C(E;,E,) E. Substitution yields for C the

equation

1-1/s 1-1/s

(E-E,) E -, 1
(3.11) -C +C + =0
1- 1/s 1-1/s E e

1-1/s _ A1-1/s

In the first term of (3.11), E; and A may be neglected with respect to E and it is
easily seen that the asymptotic result (E = o ) for the collision density then be-
comes

(1-1/5) E

(3.12) V(E;E)=CE= —————
Efl—l/s E1+1/s

From the results, obtained so far, an important conclusion can be drawn. In the be-
ginning of this chapter we have seen that the average recoil number V (E, E,) dE_ is
composed of two contributions, (1) those which are excited from zero kinetic energy
and (2) those which possess kinetic energy above E; and then are de-excited info
the interval (E;, dE;) by a single collision. If we had been interested in the first
contribution only, we would have taken the probability for de-excitation zero, that
is the last term in Eq. (3.4) would not have occurred and occurred and we would
have got Eq. (3.8) without the last term on the right-hand side with we have neg-
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lected already. From this argument we see the second contribution to the average
recoil number is much smaller than the first one.

Another interesting relation can be derived for v (E; E;) when use is made of the fact
that the sum of the energies of all recoils created in the course of the cascade, if
counted in the way that has been described at the beginning of this chapter, must

be equal to the initial kinetic energy of the projectile. The normalization relation
(3.2) can be rewritten as

Eg
v) _
(3.13) Ex | W (E;E -=-E )dE --<dE =E
v 1 v 1 v
0
v
On the left hand side of (3.13) we replace E by I E., which can be done,
i=1 B N
because for all combinations of recoil energies where Z E #E, W(v) = 0. We find then

E¢

v (v) i _
(3.14) %fii Ew (€ --E ) dE ---dE = E
4]

which is a symmetrical expression in the E,l and can be replaced by

Ef E;

5 IVE dE IW(V)(E;El———EV)dEZ---dE -
(3.15) U £ A v
) . i

N (V)(e. _
§fvElw (€ )dE =
0

Using (3.6) it is now immediately seen that the relation
By

(3.16) f £ V(E;E)dE =E it wollis
0

This is a general condition which the collision density must satisfy and it is clear
that the asymptotic result (3.12) does indeed satisfy it.

We shall now discuss the phenomenon of a collision cascade from the point of view
of probability theory. The cascade can be regarded as an unspecified but great
number of collisions ("events") in which one of the two participants in a collision
either does or does not come into the interval (E;,A E;). This means that it can be
conceived of as a series of Bernoulli trials with a variable probability for success in
each trial, which is given by the function
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(3.17) [K(E';El) + K(E';E'-El)] AE,

where E' is the kinetic energy of the moving atom before the collision. The proba-
bility that two moving atoms collide is neglected, so in every collision one partici-
pant has zero energy before the event.

-1-1
Consider the explicit form of E1 /s

K(E', E1) - -1/s 1-1/s

s(A 7 -E' )

In every collision, which is counted in the cascade E' > E;. If we choose the cut-
off energy A sufficiently small, so that A™15 S5 E /s, it is seen that only the
second term of (3.23) depends on E'. This means that there is a variable probability
for success in each trial only for the second contribution to the recoil number

v (E;E 1) AE |, mentioned previously, which in average is very small compcred to the
first one. We now make use of a theorem of mathematical statistics!, which states
that the number of successes in a series of Bernouilli-trials with variable chance of
success in each trial is approximately distributed according to a Poisson-distribution,
if the number of trials is large and the chance of success in each individual trial is
small. We can from this draw the conclusion that the number of recoils in the energy
interval (E, AE ), v(E;E,) AE ; has a Poisson distribution with mean V(E;E|)dE, as
given by (3.14). It follows from the properties of the Poisson-distribution that the
variance of the recoil number is given by

(3.18) (V(EE,)AE, - V(EE)AE )" = S(EE,)AE,

from which follows that the relative mean square deviation from the average recoil
number is (V(E;E1) AE4) L. It is interesting to compare our calculation with the
calculation of V(E;E )AE 0 when the atoms interact with each other as hard spheres.
This has been dome by Lelbfrled 20, The most characteristic property of the hard-
sphere interaction is that the energy transfer probability function K(E',T)dT =

=dT 7E' = K(E";E'-T) for equal masses. If we consider again the cascade as a series
of Bernoulli-trials, we now see that the probability for success (i.e. the probability
that 1 recoil in a collision will come into (E,AE;) now depends only onAE; and
not ¢n E,, though it is different in every collision, due to its dependence on E'.
From this follows that ¥(E;E,) cannot depend on E,, and indeed this independence
shows in the Leibfried result which is

VI(EE) = &h (cf. Fig. 4).
t 2
Ef
Finally we consider the case that the projectile differs in mass from the target atoms.
The only change this causes in the formalism is that the maximum possible energy
transfer in a two-particle collision is not the entire kinetic energy E but
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Fig. 4 The behaviour of V(E;E_) as a function of E_ for three different values of s,
The value of s = 1.1 represents the case of a weakly screened interaction. The horizontal straight

line is the result for the hard-sphere interaction.
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4dm m
1 2

m (ml~1-m2)2

where m; and m, are the masses of projectile and target atom respectively. K(E,T)
for this case is given by (1.8). The physical situation is further almost precisely the
same as in the case of equal masses. We assume y to be such that yE > E;. The pro-
bability for exciting stationary atoms from zero energy into (E;,dE,) is unchanged,
but there will be slightly less high-energy recoil atoms in the cascade, due to the
fact that the projectile can only transfer a part of its energy in one collision. The
amount of recoils which drop into (E|,dE,) from an energy above E; can therefore
only be smaller than in the equal mass case. The conclusion is that the average
recoil number and its variance are not significantly affected by a change in the mass

of the projectile.

It is possible to obtain some information on thedirection of motion of recoils, cre-
ated in a collision cascade. To this end we introduce the function W(V)(E, Y
E,, Ty ---E,,C,) representing the probability density function, such that a pro-
jectile (with the same mass as the target atoms) has the probability W(V)dEldCI——-
——dEde of causing a collision cascade in which will be created v recoils in the
energy |nferva|s dE ==~ dE, ond with directions of motion which make angles with
the initial direction of motion n of which the cosines lie in the intervals (¢ 142, )--
-—(Cv,dc ). The conditions for recoil creation, stated at the beginning of this
chapter are again supposed to be valid. This implies that W does not depend on
the azimuthal angles of the recoil momenta, because every collision of the cascade
has azimuthal symmetry and the medium is considered amorphous for all collisions we
take into account and is therefore azimuthally symmetric to all recoils with energy
= E; Due to the statistical independence of the two subcascades, started by the
participants in the first collision, it is possible to write down an equation analogous
o0 (3.3). But it must be realized that in this case not only the kinetic energies of
the participants after the collision are important, but also their directions of motion.
We must therefore use the scattering probability function K(E,T) multiplied by angle
dependent factors with the angular distribution , as has been done in Chapter | for
the differential cross section. The equation for the function W'Y/ then becomes

E
where o e ¢ ) = [kEnars@at-| B snn- Vi 2292
(3.19) vy nam
g E _LZ W(“)(E'T,_I’;I;Ea C' "'"Eu ,C:z )W(V' u)(T,:”,'E ICH —_-Ealc’l(ll )
P:‘](:}Pa t % T et e v v

In this equation C' and " refer to the cosines of the angles which the recoil momenta
make with the directions of motion of respechvely fhe projectile and the hit particle
after the collision, denoted respectively by n' and n". Their connections to the C are

(3.20) i A AR A cos(p_ -3 )
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(3.20b) e =g+ V-2 1 =70 cos (n-9_+¢,)

Here ¢, is the azimuthal angle of the scattering event and ¢, the azimuthal angle
of the recoil momentum. This situation is onologous to the one, described in Chapfer
1l concerning the relation between the angles n' and 1 (cf. Fig.1). The vectors 7,
' and n" lie in one plane, which is the reason that the angle ( 7~ P, P, ) occurs in

Eq. (3.20b).

The next step is the specialization of (3.25) to include the case that one of the
participants has an energy below E, after the first collision. To this end we state
that for the case E <<E,
(3.21) W(V)(EW'E t ---EC)=0 ﬁé(E—E)é(C -1

: AR R VY Vi 1 :
Like (3.1) this is a direct consequence of the restriction on the recoil number, intro-
duced in the beginning of this chapter, inasmuch that if the initial energy E is
smaller than E; there can only be one recoil in the cascade, namely the projectile
itself of whlch the energy then must be equal to one of the chosen energies E., and
its direction of motion must coincide with the initial direction of motion n.
Applying (3.27) to (4.25) we find the equation

. ("){EF,Er ——E T )=
- '-i-

= f K(E,)dT(mn" -lr)étn_' \IVE)dQ 49" 5 1 gyl Ve RGE T —-E T

-4 2m 21 p:O(u) L% !
E
- o f _*_* |d QII
whBkrRe g g, &) +f1< (£, T)dT s E=ys (v f1/E) S22
TEa! ““,l E 2n2 1
(3.22) A
hd 1 " (V-p.) g ) 1
£ iz s sl E )s(c" -DW TVE-T,RGE, T, ---E, Tu )
=0(“) Py Hi1iz1 *1 oy w1+l v oy
E
RN dae'de" Y \
f (E,T)dT60 -\/ She(nr- 1178 2 s 5 11 s(E-T-E, )6(C. -)
T 21 p=0 ( ) Pa 1i=1 1 (11
E-Eg Y
(V'p.) hndll 1" 1
wYHrRNE gt -—-E T )
p+l p+1 v v

The normalization of the function W(v)is as follows
1 E

(3.23) f fw (EmiE T, -—- L) dE dC - dE dT_ =
-1 A

We shall now introduce reduced probability functions as before



31

1 Ef

(V) — v -
@24 W, €RE e gr) - [ [WWeRer,—er e o de, ar,
-1 A

v
As before the average number of recoils created can be written as £ vW (E) and the

average number in the interval (E,,dE )(Cl,dC } as v

™)

(3.25) ;(EIK;EUCD dE]_dC 12% VW]_ (EI E’;Ellcl)dEldcl

For this function, an equation can be derived in the same way as was done for (3.6)
from (3.4), i.e. by multiplication with and summation over v and integration over

E2C o Ep € v The result becomes
F_—Ef
Ve L) = [ KEDT G D @ 75 4248
Eg
: [V(E-T,ﬁ',-El,cp F V(T AE L) )] '
Ef
+f|<(E,T)dT5(n""- EE;T)é(R?{“-VT/E) dzi "29 [N “E )8 (T ) +

A

(3.26)

+v(E—T,n';E1C'1)} +

E
—— BT de'do"
+ K(E,T)dTé(nn'—V—)é (nn -VT/ 8(E-T-E ) 8(C"}-1) +
E£ E l:

- f + V( || E C“)i]
which may be rearranged in the form
E-E;
= — -, E-T do'
VEmEL) = [ KEDTSRR-| =) 5 SE-THE, 0 +
E A

K(E,T)dT 8 n"-YT/E é% V(T,?'-;El,c;') i

(3.27) s
f m
+ fK(E,T)dTa(’r{'n’"-m) 5(T-E, )5(c"-1)di +

A
E-T NPT
+ f K(E,T)dT6 n-\[_E——)cs(E T-E)8(C-1) S5

li'.—Ef

As was done in Chapter |l with the range probability density function an expansion
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into Legendre polynomials is made
a
(3.29) v(E;E;,G,) :150(2 £+1) Vz(EiEl)Pg(C1)

and the addition theorem for Legendre polynomials (cf. App.B) is used.
(The variable n is dropped to simplify the notation. Furthermore we use the "closure
property" of the Legendre polynomials in the special form

. (2£+1) .
(3.29) s(T, - )zio 0 P, (C))

The substitution of (3.28) and (3.29) into (3.27) provides a set of equations for every
v, separately, because the coefficients of the same Pz(Cl) on both sides of the
equation must be equal. The general equation for —V-l(E;E1) reads

v, IKET (E-T ; E)P<\/_E;>+

E
(3.30) IKETdTv (T;€ )P, (VT/E) +2f (E,T)dTH(E-T-E ) P < E§> ¥
Er E EEq

{

fKETdTé(TE V1/8)

A
Consider the case £ =0, Then (3.30) becomes:

E_Ef E
T, EE) = [ KEDT T €T + [ KEDAT T, (TE,)
(3.31) o i,
o1 K(E,T>dT6<E—T—E)+%f (E,T)TE(T-E )
E-E A

f

If this equation is compared with (3.8), if is seen that the only difference is the
factor % in front of the last two terms. Its solution can be given straight away (with
the same degree of accuracy as before, (cf. 3.12)

(1-1/s) E

_ g 2 4w
(3.32) Vo (EE) =2 pl-1/s gl+t/s

Next we take the case £ =1, Equation (3.30) then becomes
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E-E
f
_v1(E,E1)=f K(E,T)dT v, (E-T,E,) \/E_;T +
(3.33) E a E —
+ fK(E,T)dT_vl (T;E,) VI/E + % f K(ET)AT 8(E-T-E, )| = +
Ef E¢ E-Ef
+ %f K(E,)dT8(T-E ) VI/E
A

This equation can be solved in the same way as (3.10). Rearrangement of (3.33)
gives :

E-E; E
dT  [— W’E-T — 1<) -
Af T1+1/S Vl (E-T,El) ? - Vl(E,El)] - f -F_l:;/T V1 (E;El)
(3.34 e
E
dT 1 1 1
+f V(T,E)VT/E+%\/—( ; ) -o.
T1+1/s 1 1 E 1+1/s _ 1+1/s
E, E1 (E El)

The second and last terms of (3.34) can be neglected for the same reason as in the

case of (3.10). For the remaining equation we try the solution v (E,E ) =

=C ( r 1) VE. Substitution yields for C, the equation
E-Eq E

’ E
1 1
(3.35) CIJ. L':E__T-”E:‘+le dT T 1V = =0
s LOVE JoqiHs VE E g 1+/s
A f: 1

“f

From (3.35) we find, after we neglect E and A with respect to E

-1
(3.3¢  C,=1% &
1-1/s - 1/2+1/s
E; E2
and the solution for 71 is
(1-1/s) VE
3.3 " EY) =) e
(3.37) vi(&E) =2 g 1-1/s g 1/241/s
f 1

So far we found from expansion (3.28) the terms V_O and v_1 . A physical interpre-
tation of these terms will now be given. .
If we integrate (3.28) over all values of C1 from -1 to 1, we get by definition the
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average number of recoils with energies between E1 and dEj, i.e. expression (3.12).
This can be restated in the form that (3.28) is multiplied with PO(Cl) = 1 and then
infegrofed Due to the orthonormality of the P, all terms of the expansion except

vy cancel. Hence 2 Vo = V(E;E|) which is immediately seen to agree with (3.32)
and (3.12). For vy an mterpretahon can be given also. We multiply (3.28) with
,.Y2mE on both sides and then integrate again over Ly = Py (Z1). This quantity is
equal to the component of the linear momentum of a recoil with kinetic energy be-
tween E; and E;+dE; in the initial direction of motion of the projectile.The integral

1

1
(3.38) f\/sz1 vV (EnmEL)dC
l1

represents therefore the average resulting component of the linear momentum in the
direction n of all recoils in the energy interval (E;,dE;). From the orthogonality
relations of the P (Cl) and (3.28) follows the relation

1 1 1 1

(3.39) IV EC, v (EmEL)dT

so the term V,(E;E,) is a measure for the resulting momentum of the recoils in

(E,, dE,).

Finally we shall show that the laws of energy and momentum conservation are satis-
fied by our expression for v and W We restate the normalization condition (3.29)
in the two following ways

Efq
(3.40) e s [(TwMen e E ¢ )dE.dC dE dt_ =
B 51 mi B G- L )akdly ——- dE dC =
d 0 -1
an F[ 1
(3.41) 2 Eszw (Em; 0, -E\C\)dE g, ---dE,dr, = VZmE
-1
We replace (3.40) by
Eg
v (V) — -
(3.42) gff_z E W (Em; E,T "mE L, )dE,dC, - dE I, = E
0o -1

v
which is permissible due to energy conservation in the cascade. Because W™ " isa
symmetric function in the variable pairs E;C., (3.40) can be replaced by
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fvEdEdc ffw (EGE € -—- E £ )dEdr, ——- dE dr =
(3.43) f g 121 27722 v \

= szva NEmE C)dE dE - E.
o -1

Using the definition (3.25) and the expansion (3.28) it is seen that this is equivalent
to

g
(3.44) ffElv (En/EC,)dE dT, = E.

A -1
The law of conservation of momentum demands that the sum of the momenta of all
recoils created in the cascade with energies E; must be equal to the initial momentum
of the projectile, which can be stated in the form that the sum of the components of

the recoil momenta in the direction n must be equal to the initial momentum of the
projectile and the sum of the components perpendlculcr to W must be zero. This can

be expressed mathematically by £,V 2mE, .G; = V2mE where the summation is over

all recoils in the cascade. This means that (3 41) can be replaced by
(3.45) 3 ff ¥ 2t ¢ wM e E g, - E,Gy)dE dC, --- dE,dC, = VZm,

v
As W " is a symmetric function in the sets of variables E, Ci (3.45) can be rewritten as

Ef 1
v), - =
(3.46) [ Jf L vV2mEg W' (En; E L --- EL )dE dC, -~ dE dr = V2mE

v
A -1

from which follows with the help of (3.30) for the case A= 1
Ef 4
(3.47) f f V2mE, v (E,n; €L )dE dT = VomE
RS

Eq. (3.47) is the integral of (3.38) over all recoil energies from A to E; and re=
presents therefore the sum of all recoil momentum components in the direction n.

It can now be checked using also (3.48), that our solution (3.32) and (3.37) for ¥
and v, satisfy the law of conservation of energy (3.44) and momentum (3.47) re-
spectively, if we take the limit A — 0, which we have done implicitly by neglecting
& in the solutions of equations (3.31) and (3.35).

*

* ok *
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CHAPTER IV

ON THE SPATIAL EXTENSION OF A COLLISION
CASCADE

In the preceding section we discussed the average number of low-energy recoils
that are created in the cascade of a projectile with kinetic energy E and direction
of motion n. In this section we shall discuss the spatial extension of these recoils,
i.e.where they are created witha given energy E; in the target material. This is done
also with the help of a calculation of moments, which will turn out to be closely
analogous to the one carried out for the projectile range.

We begin with the introduction of a probability function for the creation of v recoils
in the energy intervals dE ,~--dE, and in the elements of volume dr1 ———drv. Here
f} ---T are co-ordinate vectors with the point of entrance of the projectile as origin.
The target is again supposed to be single= or polycrystalline, and again only those
recoils are considered which are excited from zero energy into the intervals dE, --
--dE,, (E; -=- E_, =E{) or those with energy above E; which lose so much in a
smgle collision that affer it there are in one of those mtervals We denote this
probability by

(v) =
(4.1) W (E, n,El,r -—-E ,r) dE dr, ———dEvdrv .

1

The projectile is supposed to be of the same species as the target material.
For the case E <Ef we have, due to the above mentioned restriction the relation

P B ) =5 T &(E-E)S(F)

1
1 AR vi i=t i i

(4.2) w7 E

This means that if the projectile has an energy below E;, the only recoil in the cas-
cade is the projectile itself which is created at the point of entrance.

The function W(V) is normalized according to

7 Ef
o) (V) — - - -
(4.3) Yzo ffw (En;Ey, 7y === 7 )dE drf ---dE dF =
0 r?r_;

It may be remarked here that wi i symmetric in the pairs of variables El,_:
Integration of W) over coordinates _r.l ---r,, yields the tensity function for recoil
energies of Chapter Ill. We shall now derive the fundamental equation for this
function.

We suppose that the projectile, after its entrance into the target moves over a small
distance Ar. The probability for a collision with a specified energy transfer and a
specified deflection in the dlrechon of motion is then given by N |&7 | da”, after
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which koth participants in the collision begin statistically independent subcascades.
There is also the probability (1- NI AT 71do") that the projectile will suffer no

collision in the distance Ar.

The balance equation for the probability W(V) now reads as follows

T:E-Ef
W T - 7) = Navl f do'y ~ swMETw
13 vy u=0 ( ) P,
T= Ef
Eq ,fo ~Ar—==E, Ty = &1 . W(v-u)(T,n ";E Y -"E - A_) i
iy o(uap ap+1 L)
(4.4) T=E . i
P NIFL [ doE S ze,n ET-g )56, 0. W “)(T,'r?",-
u=0 u) 1 1 *i
g Ef Eq ,q “AT, === Eg 1y = AT)
P*l p,+1 v
+ Nl f oy 1 £6,,1 8(1E, (7, -a) W PE-T7;
p= fﬁfa =
- gy —hr-=-E 7 -
ah'*'l Iu}’“fl o %y I"’Lv X
+ (1- N|Ar|fdc (E n; E rl-Ar ——-Ev,rv-A_r‘)

At this point we introduce reduced probability functions

(V) — — — (V) — - - —
(4.5 W ERE,T, ---Ek,rx)-ff WERGE T ---E 7)) dE, | o --=dE dr,

j=1-m)

such that W( )dE dr1 --=dE, ch denotes the probability that in the cascade of v
recoils with energies between éand Ef there will be A in i‘he energy intervals
(E,,dE ) === (E,, dE;) and the elements of volume dr1 —-— dl . Let us define of
plobablhl‘y density function W(E,n /E }by

- - — - W(E}r_{fﬁ :?)
(4.6) W (E,m;E 7)) = EvV\r‘l(v)(E,n;El,rI) WEE ) = ————1-
v v (E E)

where v (E, E;) is given by (3.4).

One easily verlfles that W(E,n; E, r) is normalized in such a way thc:fder1 =1,

It can be interpreted as the probability of finding a recoil in dE dr when multiplied
with dE dr .
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By integration over Ez:?z ---E,, F:,, multiplication with and summation over v, the
equation for the recoil density can be derived from (4.4.). The result is
2w mE, T =
" 1 i 171
T=E-E

= Nla¥l f dao' = (utp") —‘J—-W(p)(E Tn E ,r -47) W( )(T) +
- pon' (uru)
f
p'l (P-) ("l) n g =
Wt T, E, T - +
Gy o ETDVL iy, A
T=E 5 1 .
+ Nla7l do' = (um')[ B §(E-T-E,) 6(; -AT) W(“)(T) +
! () ' 0
@7 TRk
W, mE o —a“)]
{uw)
T=E 5
+ NIaTl | do's (uﬂ.t')[ s (S(T-EQ(S(F;-A—F)W(ll )(E-T) +
pop! (utp) 0
™ ‘ o)
pow) e 2 (4o e -
+ (m——p")W1 (E-T,n ;El,ri-Ar):] +(1—N|Ar|fdc)§ le (E,n;El,rl-Ar)

This equation can with the help of (4.6) be rearranged to the form

W(E,nsE 4, r1) - W(E,mEq, ¥y ~B7)

I Ar
T=E-Ef T=E
= N f do'W(E-T,ﬁ';El,?l-A'r') +N f dc'W(T,ﬁ'",-El,F;-A?) -
(4.8) T=Ef T= Ef
-Nf do' W(E,miE,, T ~AT) + N f do' 6(T-E, )8 (T, - AT) +
T=4 T=E T=A
+ N f do' 8(E-T-E,)8(',-AT)
T=E- Ef

At this point the index | from¥; will be dropped. Taking the limit {AY] -0 and
using the explicit expression for do', given in Chapter 1, the following equation is
obtained
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2 2 1/s
AW L, 14n° W _ {E 2%-2 2 sz}
n —a " _— —7] N . a Y, k, .

B 4
E-E
dT s \’E-T>dQ'
. W(E- ’ Il H — )= *
[f Ti+L/s (E-T,m',r E1)6<nn E 21
A
(4.9) .
dT -, dQ"
f o= W, 0", )8 (" - VT/E) T Z
Eg
E Eg
T -
f 1d+1/s ,'r],r;El) + LAUN (r)z oy 8(T- E 8(n"-VT/E )
T 4n ¢ T
A
e JETN 4
+ 5(2 T 5 (e-1- )5<nn' - __> 2
4nr T1+1/S E 2n
E-E

f

We have made use of the fact that, due to the amorphous nature of the target
material the function W (E, n;r; E 1) depends only on the initial energy E, the recoil
energy E;, the scalar distance from the origin r = tl and the qucnhtyn ={r ?1')/ r,
which is the cosme of the angle befween the initial direction of notion n and the
radius vector T. The angles 7' and 0" are given by

T),z(r.nﬁ = = n..:(r.n")

Also as in Chapter Il we shall suppose that W(E,n, r; E;) is an analytic function of E,
which endbles us to take the limit A= 0. The integrals, occurring in the equations
which follow will then be convergent.

Again (cf. Chapter Il) we transform to Lindhard's reduced units for distances and
energies (2.14), which changes (4.9) info

€f
dQ'
> l:[ 1+1/W(E ™ :p € )62_71 -

n—+

W -1 aw=1<
dp P on s

[

+f W(t,n",p;e,)0" — de” +
/T'l,p "[,'1 /s MNP 1 2T[
Ef e
Q Q'
4nF’oT+/s 2T 4mp T .

E~E¢
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Here &' and 8" stand for & (nn' - E:—T) and 8 (nn" - Y1/€).

The integration over the azimuthal angle, contained in dQ' and dQ" is again over
the azimuthal of the scattering event @, as distinct from the azimuthal co-ordinate
9, of the chosen element of volume d7. Therefore, the relation (2.5) is again valid
as is an analogous one for ",

In order to solve (4.10) we apply the same procedure as in Chapter Il, i.e. the
function W(E,p,n;€,) is expanded in a series of Legendre polynomials as follows

2
(417 W(e,n,p;€)p dpdndp, = i;(z LDV (€05) P,(n)¢" dpdndg,
Here pzdpdndq)l is the volume element dr, expressed in reduced polar co-ordinates.

Substitution of (4.11) into (4.10) gives a recursion relation between the different
WE by equating the coefficient of the same Pl(n) on both sides

aW aW W w
(£+1) a£+1+z Bl ey L p(e-n) 2L -
P P

2/s

IO U

f ;:I'!r/ (23+1)W (e,p;E }+[

& Ef

f
8(p) dt 6(0) dt
+ 530 —7 | T &(t-€ )+6 f T b(e-t-€,)

4mp |

s(2£+1)W£(€-T,p;El) P, (\’i;_r> -

(4.12)
— (22 )W, (7;0,8)P, (V7 /2)  +

E -€
f

The derivation of (4.12) proceeds in precisely the same way as the derivation of
(2.8) and (2.7) (cf. Appendix B). The factor 5£ is introduced in the last two terms
of the right-hand side of (4.12) because these terms are independent of n.

Again as in the case of the ranges we define spatial moments, this time of the recoil
density

@

(4.13) M;(e;el) = 4nfwe(s,p;el)p“+2dp

The recursion relation for these moments can be derived by multiplication of (4.12)
with 4mp™2 and integration over p
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()M (£55) (Bt M), (556,) =

E-Ef
_(2£+1)< ) [I M(E'l:e) (2) _
Tl+1/s e
(4.14) s

- d’r n d
= M/z(e"el)+fm""z(“%)"g”T/E) +

S ef ef e
* —38 +8, 8, d7 s

6/606n0f Ti/s (t- e) f vy (E-T- £)

é €-g;

Before proceeding with the calculation of the moments, we shall discuss their
phgsmal or rather geometrical interpretation. Consider the lowest order moment
. From (4.11) and the orthogonality property of the P it follows that

0
(4.15) Mo(e;el) = 4nf Wo(e,p';el)pzdp =

21:00

ff fW(e nipie, )p’ dpdndcp

-1 0 0

The zero'th order moment is, therefore, obtained by integrating the recoil density
function over all space. Therefore M9 ol€;€)de | must of necessity be equal to the
average number of recoils, created in the energy interval (€1,de;) and hence identi-
cal with 3 (E;E )dE At the same time it gives the normalization of the recoil
density funchon W( €;0 ;€), as was shown in the discussion of Eq. (4.6). It is seen that
the substitution of £ =n =0 in (4,14) yields the equation (3.9 ) for V(E;El), if we
transform € back into E,

Consider next the moment Mi(e;el). From (4.11) and (4.13) it is evident that

1 2T oo

1
.16 Myeie) = [ [ [W(e,,mie )0 dpnnds,
-1 00
We can now interpret the quotient M ,el /M €,) as the average value of the

projection of the distances from the orlgm of the creafed recoils on the initial
direction of motion of the projectile. As in the Cose of the range, this quantity can
be written as 57y . Next, we take the moment M (e sl) From (4.11) and (4.13) we
find

12n @

2
(4.17) MO(E;EI) :fffW(E,p;T]; 61)p4dpdndq)1

-10 0
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The quotient Mg(e;el)/Mg(e;E,l) can now be interpreted as the average of the
square of the distance from the origin of the recoils in the_energy interval (€,,dg,),
produced in the collision cascade, and can be written as p2. From these examples
it will be clear that the geometrical interpretation of the quotient M ;/Mg is
analogous to the one of the moment p, in the case of the range. The moment
Mi(s;el) will now be calculated by sUbstitution of n = £= 1 into (4.14). On the
left-hand side we get then —3M8(E;El), which may be identified with

3(1-1/s) e
1-1/s 1+1/s
f 1

The complete equation can be written as

2/s €156
_(]-]/S)E :.!.(Y"k‘)h gl/s [f & MI(E-T;E) L
1-1/s 1+1/s s \2¢ B S VL L €
€ € 0
(4.18) f !
fod 1 ; dt 1
_f—__'c i Ml(s;.el) +f i M1(T"€:) Ve /e]
0 i

To find the solution, we proceed in the same way as in the case of the moments of
the range, that is, we introduce in (4.14) the variable of integration y =t/ . It
then becomes for n =£= 1.

(1-1/9 RNG A :

A Ll CER Y Ny LURN S Y oo (1o )

1-1/s 1+1/s s ( 2¢€ ) |jf MI(E T;e1)(1 )’)
! 0

(4.19)
1
dy 1 d ! l:'
- —2 MYe.e) + Y M (1 2
fm/s [eig) YR {rig)y

9 ele

Since £,<<<€ we neglect €;/€ with respect to 1.
As a solution to (4.19) we try the form (cf. the discussion ofter eq. (2.22))

(4.20) M:(€7€1) = \e!t?/s

where A is independent of € , and obtain by substitution an equation for A which
reads

2/s 1 1

(1-1/9) Y.k, d 3/2+2/s dy  3/242/5

(4.21) - e =1 < s ) A {f 11/5 l:(]—y) —1—| | f —y + }

£ - &E /s 5 2 y ) Jy
f 1 4] 0]
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The integrals on the right-hand side are now worked out with the resulting equation
for A ia
- v kT
=1 (2) {2z 0-ysa/zsy s

(
4,22) -
(4.22) Elf-l/sellﬂ/s 5

/2 1/s }

It follows from the theory of incomplete B-functions that the error we made by neg-
lecting € /e is of the order (e /t-: 3/2+1/s  We therefore have

1/s-1  —(1+1/s)

(1-1/s) g €

(4.24) A=
k 2/s

/s (Y2—5> ]:5(3/2+2/S)B(1 1/5:3/242/5) -5 -

3/2:-]/5]

The average depth under the surface of the recoils created in the energy interval
(€1,dEy) is given by the quohenf M (e i€, /MO(E ;€ ) = A\*€2/5, with A* =
_}\/(] ]/S) E1/S 1 -1 /s-1

1

The same calculation can be carried out for MO(E,EI) by substitutingn =2 ond £ =0
into (4.14). This gives for M the Followmg equation

€
dt 2
) [:f 1+1/sM (8 “Ti 1) -f11+1/sM0(€;€1)

0

1
-2M (e;e,) = 5/s (

€

(4.25)

dt
.L-1+1/s

2
M (Tig,)
o
(4.25) can be written in a form, analogous to (4.18). The solution is found by again
introducing the integration variable y =1 /€, and assuming the form Mz(s e ) =

w M5 This gives for % the equation
v,k g .
s s d)’ 1+1/s d 1+1/s
. -2A= = 1- -1+
(4 26) el 5/5 < 2 > KU 1+1/s|:( )’) jl f 1+1/s :I
R4 0

We have neglected again € /€ with respect to 1.and after carrying out the inte-

grations we find
2/S 'I ]
3/s+1

(4.27) -2\=5/s (Y—zs-) u[s-s(1+4/s)B(]—]/s;4/s+1)+
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from which # may be determined to be

(4.28) w = 22
Y 2/s 1
5/2 <—2—> [s+4 (r 1/s; 4/s+1) - 37——S+]]
3s+1
to an accuracy of the order (& /€) . The mean square of the distance from the

orn(gm of the recoils, created in the lntervql (€,,d€E,) is given by M(z)(e;el) /
Mo(Eg;e ) =n"e 45 where

2\

5/2 <_Y_2_>2/S [(s+4)B(1 =1/s;4/s+ 1) =s- 3/:“]

n* =

The analogy with the calculation of the range moments PZ( €) con be observed from
these two examples. All M£(£ €4 with n+ £ evenandn = z can be calculated
successively from the recurrence relation (4.14) by putting M (E, €)~ glt2n/s | \We
now want to generalize this treatment for the case that the pr0|ech|e differs from
the target material. We shall first consider the case that the maximum energy transfer
between the projectile and a target particle in a singie collision T,,, = YE << E-E,,
which means that the projectile can never lose so much energy in its first collision
that it retains less than E¢. In that case we introduce for the pro]ectile the proba-
bility function v(v )(E e, T - E, 7*), which has the same meaning as (4.1),

In its first collision after entrance into t¥1e target material it hits of course a target
atom which is of the same species as al| other target atoms. Furthermore, the normali-
zation of V(¥ is the same as that of w) (cf. (4.3)) and it is also symmetrlc in the
pairs of variables E , r,. From these facts, the balance equation for V), analogous
to (4.4) can be shown to be

1
e ®)
v P - - — —
=N/ a7l dd = -l—- TV (E-T,n';Eq ty ~ATEg tq =AT)
p.:o( ) P 1 1. vV v
T=E; [ T=E;
- — — — — — v
4.29) . WO H g Eq To =ATi Eq /T AN +N a7l f do' ¥ —— % Sp1 i
w1 opl v v p=0(V) P
- uio«
T=A
[ —D — — — —
0 &(T- E ra -AD) V T,T{';Ea e -Ar B ory -AT) +
i=1 p+l o p+t vy
T— E
+ (1- NI a7l f da') E Y E ,r -ar, ———Ev,r -4T)

T=4
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At this point the reduced distribution functionsViv), analogous to W(V) are intro-
duced and the recoil density in the collision cascade, caused by the projectile is
defined as

— - (V) - —
(4.30) V(E,n;E1 , r1) =3 VV1 (E,n;El, rl)

If we |nfegrafe (4.29) over E2, ro==-E, v' multiply withand sum over v, we find
for V (E, n; E T ) the equation

T=7E
Ve, 7) =NIT] [ do' VGET, g T -a7) 5
T=YE T=A T = F¢
“.31) +Nlarl Ido'W(T,ﬁ'";El,F; =& + N7l fddzs(TE) 5(r; -47)  +
T =E¢ T =yE T =A
+<1-N|A | f dc)V(EnEl,r ).

T=A
(4.31) is rearranged in the same way as (4.7) by bringing the term V(E,m;E = AT")
to the other side and dividing the equation by Arl . We then again drop the index
1 from rl, introduce the co-ordinates r and 1 and toke the limit | AY1— 0. Eq. (4.31)
is then reduced to a form corresponding to (4.9), when the explicit form of dg' is
introduced

Ve Uy 0 =V
k or r N 4 sVs'm
agm +m m -m i
l:f V(E- T,n,rE)&nn'-ﬁ’——— —;__2 .‘_iﬁ
1+1/s 2m1 2m1 21
(4.32)
YE
dT — - m1+m2
f ,'ﬂrf,‘E )+f W(T,T] 07 ;E )6<nnn- VT/E) .
1+1/s 1 1+1/s
T 2V m m
o E Ef N 12
" m m
d_Q+MI cll B(1-E,)5 (M - —— Vﬁ)d_g
2T qe2oTH 2\mm 2n

Here m and m, are the masses of respectively the projectile and the target atom.
We want to transform eq. (4.32) to the reduced units for energies and distances (cf.
(2.28) ). It must be realized that we now have two sets of reduced units, namely for
the case of the interaction between the projectile and a target atom and for the
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interaction of two target atoms amongst themselves. If we call the first set € and p,
the second set can be written as €'=a€ and p' =Bp, where a and B are constants
which can easily be calculated from the definition (2.28). This yields the following

reduced equation

2 k 2/s
aV+ 1-n7 dav _ 1 (Ys s > (ye) 1/s

dp p On  ys N2

Ye m_ +tm m_ =
N SEviemneiegs (R - 2= T,
) g tls 2m, | € 2m Ve-t/ 2m

n

e N
(4.33) Is dt dv oy Myt do
- Vien p-£1)+a-1/sf W(atn" Bpie )8 (nn"= m)
1+1/s e 1+1/s rha 1 27
0 & ¢, P T 2 'ﬂmlm2
6 dT ——— m +I'I'12 1
+ (Emz Of'“sf i S(ar-ae) 6( L v':/a) ﬁ]
41 (Bp) =T 2Vm m, 27

We can again expand the functions V and W into Legendre polynomials of n and
then introduce spatial moments, which are defined by

(4.349) N;(e;el) = 4nfvz(e, p;el)pm+2dp and
0

(4.34b) Mnl(t»:;ei) = 4n‘[Wz (ae;Bpig,) (Bp)n+2d(6p) .
0

This results in the moment equation

k 2/s
-1 n-1 C(2e+1y oY 1/s
(D (2N (€0,) = KB ING (ese) = == (_2T> (ye )
Ye m+m_  [E— m_ -m
[ 0 NE(E-T;Q).P ( i \/ + L2 V—E ) =
g TiH/s £ 2m, € 2m; le-t
Ye Ye m,+m
dT n 172
- N (e, )+ o Vop ) 9T M3(t;e, )P Vi/e ) +
Ti+1l/s £ 1 /s 4 17p 2V‘
0 €, i & MMy
-1/s
+6£06n0 o f1:1+1/s 8 (at-ae)

0

Because the moments N\n(e;el) have been found before, the N;(e;el) connbe calcu-
lated from this recursion relation. The geometrical interpretation of the Ny{e ;&) is
the same as that of the Mj(e:€,). N2, like M2 is obtained by integrating the recoil
density function V(g,n,pje,) over all space and is, therefore, the average number of
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the recoils created. Of course, like in the case of equal masses the average depth
of the created recoils i is now given by Nl( e,el)/NO(e 61), and the quoflenfs of all
higher moments and N have the same geometrical meanmg as M /Mo.
It has been argued in the preceding chapter that NO is not |nf|uenced by a change
in rhe mass of the projectile. It can then be shown that the case YESE-E, can be
analized as well and yields for the calculable moments the same results,

* ok %
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CHAPTER V

FURTHER DETAILS ON RANGE AND CASCADE
DISTRIBUTIONS AND COMPARISONS WITH
EXPERIMENT

In this chapter we shall make comparisons between moments of the range and of the
spatial cascade extension and we shall also consider ratios of range and cascade
moments amongst themselves !, Finally we shall compare some of the theoretical
results with experiments. As several authors 22,23 have made calculations on moments
of ranges and spatial distributions of radiation damage with the help of a hard-
sphere model, it will be useful to compare the results obtained by the use of a
power potential for the interatomic interaction in the preceding chapters, with the
same quantities, calculated with a hard-sphere model.

3
It can very easily be proved  that the differential cross section for an energy transfer
between T and T + dT in a collision between to rigid spheres can be written as

(5.1) do =0 (L

HS HS T

where Ty, = YE = maximum energy transfer and O g is the tofal cross section, which
is dependent on E. We shall determine it in the following way.

Consider the stopping power, i.e. the mean energy loss per unit path length of a
projectile with the energy E in target matter. This is defined as

T
m

1
(5.2) s:—-d-E—szdo
N dr
0

and for the power potential cross sections which we used hitherto it is equal to

(cf. (1.4))

2 1sT 1-Us 1-1/s
b — m C
. {_0252 2y 2 T } - Y E
s 4 sosom 1-1/s 1-1/s

(5.3) 5= SaEE

where C simply is the factor which remains if we separate the product

1-1/s _1-2/
y E "

1-1/s

out of the second member of (5.3).



49

For a hard-sphere cross section the stopping power becomes

T

_ dl _ 1
(5.4) Sps = | 10,5 (B Sh=40,,0(6) . T
0

We now define the total hard-sphere cross section 0 (E) by equating (5.3) and
(5.4) , from which follows that

2 c -1/s _-=2/s

(5.6) o (E) E

HS' T 1-1/s

The first quantity which we shall consider is the ratio

1 0 1
p,(e). M (gie))/M (28

which for normal incidence of the projectile is the ratio between the mean pene-
tration depth pi(e) of projectiles with incoming energy € and the mean depth

Mi(e;e)

0 .
Mi(€;€))

at which recoils of some energy below € are created. We shall take first the case
of equal masses of projectile and target particles. After a simple algebraic calcu-
lation, starting from (2.22) and (4.24a) it then turns out that

(5.6) pl(e) Mo(eie)  3/2+2/s  <x>

1
M1(5;€1) 3/2+1/s <xp>

where we denote by <<x> and << xp> the mean depth of penetration of the pro-
jectiles and of the radiation damage created respectively. This expression is almost
a constant for all exponents of interest, because it varies from 1.31 for s = 1.5 to
1.14 for s = 4, As all realistic interatomic potentials for collisions in the 20 to 50
keV energy range in which we are interested, behave approximately as inverse
power potentials with the exponent s in the interval mentioned here, it may be
concluded that the ratio <x> / <xp> will always be close to 1. Of course, it
follows from the results of chapters Il and |V that it is independent of the projectile
energy. So the ratio <x >/ < X5>> isin all cases considered above greater than
one, which means that for all potentials considered the average penetration depth of
the projectile is greater than the average depth of the damage created.

With the help of (2.31) and (4.38) we can calculate <x> / << xp> as a function
of the mass ratio m,/m | of target-atom and projectile masses. The result is given in
Fig. 5 and it shows that for not too different masses it remains of the order of 1.
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The same comparison can be made for the second-order moments of range and damage
extension. In this case attention is focused on the variances of the penetration and
damage depth, which are given by the expressions in the moments (Cf. Ch. I1).

1 2 2 2 1, _yy2
a —_ fouil -
(5.79) Leae) +2(e) - (oi(e))
and for the damage extension the analogous expression
]Mz(s-e + 2 M(e; Mi(e; 2
é o ! 1) E 2(5151) 1( Elel)
(5.7°) -

0
Mo(s;el) Mg(e;sl)

which in our present notation can be denoted by <Ax®> = <(x ~< x> )*>
and <Ax§> = <(xD- <XD>)2 >

(5.7° and (5.7b) have been calculated numerically both for the cases of equal and
unequal masses of projectile and target atoms. The results will be given numerically
for the equal mass case in the tables which follow, and which, of course, are based
on the results of chapters 1l and IV. As a function of the mass ratio they are shown
in Fig. 6. These tables contain also some other moments of interest, namely the first=
order ones <x> and <xp> and the mean square of the transverse extention

< y2 > and <y]23> , which expressed in the moments p;and M;/Mg are equal
to resp.

2 2
(5.8 <y?> =2/3 (py(€) - pyle))  and
M2(8;51) - M:(E;El
(5.89) <yl>=2/3 ( - )
M, (g;€)
TABLE (5.19)
2 2
<M > < ' >
S <X> /( EZ/S.CI) =S ;2
<xX> < x>
1.5 0.204 0.204 0.145
(0.258) (0.652) (0.064)
2 0.369 0.276 0.176
(0.417) (0.617) (0.095)
3 0.597 0.341 0.241
(0,619) (0.568) (0.159)
4 0.750 0.385 0.308
(0.750) (0.556) (0.222)
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1 Ys I(s b
The factor C1 = - |—
s

TABLE (5.1P)
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2/s 2 2 2 .

s <> /(e 'C1) <ax > /<xz> | < yD>/< xD>
1.5 0.156 0.337 0.130
(0.348) (0.489) (0.092)
2 0.295 0.380 0.157
(0.583) (0.451) (0.132)
3 0.505 0.407 0.220
(0.905) (0.423) (0.210)
4 0.656 0.429 0.286
(1.125) (0.429) (0.286)

The numbers between brackets in tables (5.1%) and (5.]b) give the corresponding
results for the hard-sphere model as defined in the beginning of this chapter.
The following tables give these same rations for the case s = 2 and different values

of m,/m e
TABLE (5.29)
2 2

<xX> < Ax" > <y >

my./my = — —
1 < x> <x>
0.1 0.842 0.058 0.018
0.25 0.577 0.125 0.044
0.5 0.453 0.195 0.089
1 0.369 0.275 0.176
2 0.297 0.409 0.343
4 0.229 0.710 0.674
10 0,153 1,684 1.671
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TABLE (5.29)

< xp> <Axp> <yi>
D D

0.1 0.692 0.434 0.192
0.25 0.489 0.437 0.181
0.5 0.376 0.386 0.152
1 0.295 0.380 0.157
0.241 0.457 0.257

0.198 0.623 0.485

10 0.143 0.215 1.153

Inthese tables it has been assumed that ZZ/Z1 = mz/ml.
204

<
<ug>

16

a8

Fig. 5 Ratio of the average penetration depth and average depth of created damage as a function

f th -rati .
o e mass-ratio mz/m1

From the results collected so far some interesting conclusions can be drawn.

Considering the first-order moments, we see that in all cases <x> > <xp>
for power scattering, which means that the projectile in the average comes to rest
behind the average depth of the cascade. It follows from tables (5.1°) and (5.1b)
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that for hard=-sphere interactions, at least in the equal mass case, the reverse is true.
It has already been mentioned that for power scattering <x> =~ < xp> .

As follows from Fig. 5 this is true for s = 2 for practically all values of m,/m, and
for s = 3 for my/m; Z 0.5. For extremely light projectiles, <x> and <xp>
become identical, while for extremely heavy projectiles the range becomes consider-
ably greater than the average demage depth,

sa3
AD
<AxD
1.5 4 s=2

Qs |

i ot 1 10 m_/m

10 S

Fig. 6 Ratio of the variances of penetration and damage depth as a function of mz/ml.

2
From tables (5.19%) and (5.]b) it followsthat for m_ = m _<Ax—2> =1.1+0.1 for
! 2 <AX_ >

1.5 s = 4, which means that it will be difficult to distinguish experimentally be-
tween Jange and domage distributions. For hard-sphere scattering we find
<Ax®>/<Ax2>=0.7+0.1, which means that the range distribution would be
narrower than the damage dlstrlbutlon. It is seen that for m; >> m, the range distri-
bution is much sharper than the damage distribution, while for m, << m, the damage
distribution is somewhat sharper than the range distribution. b)

Finally we mention the transverse extensions. It is found from tables (5.19) and (5.1
that

2 2 2
<y"™> /< x>

- / = 112002 o L= =160,
<y,>/ < x> <y,>

It is worthwhile to note that both range and damage distributions are much more
elongated for power scattering than for hard-sphere scattering. This has also been
found by Oen, Holmes and Robinson 24in numerical calculations on ranges of
energetic atoms (1 to 100 keV) in amorphous solids.
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We shall now make some comparisons of theoretical with experimental results. Un-
fortunately there is not sufficient experimental data to compare with all theoretical
quantities, calculated in the preceding chapters.

Domey et al.!® have measured the mean penetration depth < x> of 85Kr-l--ions into
amorphous Al,O,. In table (5.3) we give a comparison between values of <x> calcu-
lated with the power potential with s =2, used in Chapter ll, the hc:rd—sghere model
as defined in this chapter,the hard-sphere model as defined by Leibfried” and the
experimental ones. We have taken the factor k_ in the interaction potential to be 1.
It is observed that the values, obtained with Leibfried's model are much greater than
the others. This can be explained by the fact that in his model the hard-sphere
radius is defined by the distance of closest approach in a head-on collision between
projectile and target atom. The spheres are therefore as small as possible and the
target material has a maximal transparency.

TABLE (5.3)

E < x> <x> <X> < x>
HS L s=2 exp

10 34,21 85 32,52 60,48

20 68,42 170 65,04 93,24

40 136,84 340 130,08 156,24

80 273,68 680 260,16 269,64

160 547,36 1360 520,32 514,08

(o]
(All distances are given in A and the energies in keV.)

[t is seen that for energies above 20 keV the Leibfried hard=sphere model over-
estimates the mean penetration depth by roughly a factor 2. On the other hand the
power potential with s = 2 yields very satisfactory values. The hard-sphere model as
defined in this chapter gives values which are equally acceptable. This may be ex-
plained by the fact that the hard-sphere radius is defined here in such a way as to
yield the same stopping power as the s = 2 power potential,

In table (5.4) we compare the values of the mean spread about average for the three
potentials.
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TABLE (5.4)

E Yox? >- <xi \/<x2>-<x>i )/<><2>—<><>22
10 11,58 66,40 9,95 -
20 23,16 132,81 19,90
40 46,32 265,61 39,80
80 92,64 531,22 79,60

160 185,28 1062, 44 159,20

Although no experimental results are available for comparison with the theoretical
values of table (5.4), it is seen that the Leibfried model differs from the other two
with regard to the mean spread by o factor 6 to 7. The power potential and the hard
sphere model give comparable values although the mean spread is slightly lower for
the s = 2 power potential. Additional experimental data would provide further means
to discriminate between the various models.

McDonald and Haneman>> have bombarded Germanium crystals by noble gas ions of
500 eV and 1000 eV and subsequently have measured the sputtering ratio i.e. the
number of atoms, thrown out of the crystal per incoming ion, due to 200 eV Ar-ions.
Onderdelinden 14 has shown that the sputtering ratio of a single crystal is strongly
dependent on the accessibility of the open channels of the lattice (Cf. Chapter 1.
If damage is caused by bombardment many of these channels will be blocked by
interstitial atoms and it follows from Onderdelinden's work that the sputtering ratio
increases. This is what McDonald and Haneman indeed observe, when they measure
the change in the sputtering ratio as the atomic layers in which the damage is intro-
duced are successively eroded away. In this way the depth over which the sputtering
ratio is influenced, can be measured.

There is an uncertainty whether this change is caused by damage of the crystal
lattice, or by non channeling projectiles which are stopped in the lattice after they
have lost their initial kinetic energy. If the non channeling projectiles do not enter
an open direction, they interact with the lattice as if it were amorphous, and hence
the theory of Chapter Il may be applied to them. If they come to rest, after having
lost their energy, they also can block open channels, and therefore, can have the
same effect upon the sputtering ratio as interstitial atoms. We shall compare in
Table (5.5) the experimentally measured thicknesses of the layers over which the
sputtering ratio is changed with theoretical values of penetration depth of pro-
jectiles and damage extensions. For these we take the expressions

[N

1 2
< X > +<A><2>2 and <’xD> +<AxD> ,
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calculated for s = 2, which are the sums of the average depth plus the root mean
square deviation for the energies of 500 and 1000 eV with which the bombardment
were performed.

TABLE (5.5)

energy 500 eV 1000 eV

projectile He Ne Ar Kr He Ne Ar Kr
<x>+<Z>F 120 32 2 14 | 230 51 34 23
<x>+<>t w00 27 18 13| 200 2 29 20
Observed depth 26 16 13 16.5 40 35 30

o
All distances have been expressed in A. It is seen that both the theoretical range
and damage distributions are consistent with experimental results. Only the bom-
bardment with 100 eV He-ions produces results which cannot be explained by
theory. This may be due to the fact that He=ions of so low an energy will not pro-
duce a significant amount of damage, due to the low stopping power. Also Schight
and Kistemaker c.s.28 pointed out that for the case Z <<Z, it is not allowed to
neglect the explicit contribution to the stopping of the electron gas of the target
matter, which we have done throughout this work.

08

06+

Fig. 7 Comparison of calculated range and damage distribution, f (x) and fD(x), with experimental
results, obtained by 1 keV Kr' bombardment of Ge 25,
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Finally we give a theoretical range and damage distribution, calculated with the
help of an Edgeworth expansion (cf. Chapter Il (2.43)) from first-, second- and
third-order moments of the penetration depth x for 1 keV Kr*-ions in Germanium,
together with points measured by McDonald and Haneman, It is seen that there is a
close agreement between range and damage distribution and a satisfactory agree-

ment between the calculated and measured distributions for depthts above 10 A (cf.
fig. 7.

Ericsson et al.?’ have used proton channeling to estimate the depth of the domaged
region in Si (cf. fig. 2 of this reference). This Si-target had been doped with 40 keV
Sb-ions at room temperature. They concluded that the discorded region does not
extend significantly beyond the depth of the implanted layer of Sb-ions. From

2/m =0.23 and Fig. 5 we find <x >/ < xp> = 1.18 for s = 2 and 1.45 for
s=3. Toking account of the half-width of both distributions we find

x> + <Ax2E>? 0.96 s=2

< x> +<Ax]§>% .22 s=3

which is consistent with the experimental results.

Parsons Gnd Balluffi 27 bombarded thin films of metastable amorphous Germanium
with Xe'-ions with energies from 20 to 160 keV. They observed crystallized regions
in an electron microscope and determined the distribution of the apparent diameter
of these regions. They observed that the most probable diameter is closely equal to
the average range of the projectile measured along the path, which according to
Lindhard 1t whould be about 20% greater than the average projected range <“x >,
which we have calculated. Assuming the crystallized regions to be identical with
regions covered by collision cascades, we may identify the apparent cluster dia-
meter with the transverse extension of the cascade, since the observations are made
perpendicular to the ion beam direction. A gocd approximation for the transverse
extension is given by

2
D:2\/<y;> i <z[2)> = 2\J2< Yo~ T 0.9T <xp> 5=

=2
0.98<Cxp> s=3

<xp>and < y123 > are calculated with the help of the results of Chapter IV and
Tables (5.2) for the energies used in this experiment. It turns out that the results do
not agree with the experimental ones, The mosf probable diameter of the crystallized
regions increases with the energy of the Xe'-projectiles but much slower than is pre-
dicted by our theory.
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APPENDIX A

DERIVATION OF THE DIFFERENTIAL CROSS
SECTION FOR AN INVERSE POWER POTENTIAL
INTERACTION

Let us suppose that a particle with a kinetic energy in the keV range is scattered

by a stationary one. If we want to calculate the differential cross section, we must
start from o given interaction potential between them. For this we choose the general
form of a screened Coulomb potential

212262
(A1) V(r) = U (/)

r

We consider the problem in center-of-mass co~ordinates and want to calculate the
angle of deflection @ as a function of the impact parameter p. To find a simple
approximate result we shall use the momentum approximation, which means that the
interaction of the moving particle with the stationary one is treated as a small
perturbation on its initial motion, so that the deflection is assumed to be small and
the path nearly rectilinear. If K, (x) denotes the component of the force, perpendicu-
lar to the rectilinear path at the point with distance x from the point of closest ap-
proach if there would have been no interaction (this point has the distance p from
the scatterer) the deflection is given by

o
\ r Ki(x)dx
(A.2) 8 = | ——
oy N0 Y
m. m
where m is the reduced mass and v is the relative velocity.
0 m1+m2

Kl(x) is given by

(A.3) K () = -
p
¢p2+xz

K| can be calculated explicitly by differentiating (A.1) with respect tor.
We get then

where cos ¢ = -rE- =

Z,Z,e? z z2e2
K ={ 2 Ve - 2 U] cos
r ra

Hence
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ZZ&200

fd {COS P/GCOSQ)' oscpu'<q a )}coscp
pa cos @
(A.5) 22 Zze 2 ] o . o
= ——=— | cospdg 1= U( ) . U ( )}
myv ) p a cosQ acosQ a cos ¢
b
=295
p a
myie 27 7 _e2
where g (y) = fcosqadcp {U(%)-C—O%U (coscp)} qndb=1—22 is Bohr's
m v

0
collision diameter.

We now take for U(r/a) the screening function, introduced in Chapter I.

k s a1t
(A9 Ute/e) = = (£)

which is substituted in the expression for g (p/a) which then becomes

/2 T/2

k s-1 s-1
(A7) g(P/a)=—ss—quJcoscp.s<°c:SCP> =kS (%) fcosscpdcp g
0

The integral in (A.7) is equal to the Beta function % B (T’ %) and is denoted byy .
Finally we obtain from (A.5) for the angle of deflection

(A.8) 8 = bksas‘ly —
from which

bks as'ly 1/s
(2
0

We now introduce as a new variable the energy transfer in a collision, which is
given by
4m1m2
(A.10) T=T sin?8/2 with T.= —212 F
m m 2
(m N mz)

As this treatment is based on the supposition that ® is small, this relation can be
replaced by
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@2

m 4

N|=

(A1) T =T

T
or@ =2 (—)
Tm

and this is substituted into (A.9), with the result

bk &'y T & 15
(A.12) p =(———")
272

The differential cross section which is the probability that the moving particle will
suffer a collision in which it transfers a kinetic energy between T and T +dT, can
now be written as

2 2 2s-2
bka vy T Y 41

(A.13) da=nd(p2)=l{ : ““}
4 T1+1/S

s
which is the result which we wanted to prove.

Though this result has been derived for soft collisions (i.e. small energy transfers
and small deflections 8) only, it turns out by comparison with exact cross sections
that for small exponents s, the approximation is surprisingly good, even for head-on
collisions. In the following table the results as calculated by Lindhard are given for
differents, and T=T_ (head-on collision)

s 1 1.5 2 3

da(exact)

_ 1 1.15 0.97 0.65
do(Eq.(A.13)

As the error, made in the momentum approximation is greatest for head-on collisions
we see that values of s between 1 and 2 provide an excellent approximation over the
entire energy transfer interval. Also the case s =3 may provide a better approxima-
tion than appears from this table, because head-on collisions are very improbable
and do not have much weight in an averaging process over all possible collisions.

* ok 0k
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APPENDIX B

DERIVATION OF EQUATION (2.7)
Our starting point is the equation

op 1-n° aP
@40 22+ T Nfdc [p(rn E-T) - (r,n,E)]

r

The meaning of the different symbols has been explained in the text,
We now want to substitute the expansion

(2.6) p(rm,E) = £ (2£+1)p,(r,E) P, (M)
£=0
We shall consider first the left-hand side of (2.4). This becomes
o 2 dP,(n)
op 1 ®
(B.1) 5 @er)n—EP () + —L5 (24+) p £
L0 ar £ r g0 dn
To reduce this further, we use the recurrence relation
5. 9P, (M)
(8.2) (1-n%) =£P, ,(n) -£nP,(n)
£ £
dn
which yields on substitution into (B.1)
aP, P,
69 I @enn—L pm+3 @) Le o) -mem]

£=0 ar £=0

We now use another relation between the Py, namely
(B.4) 2) P (n) = (L+)P  (n)+£P  (n) .
£ £ +1 £ -1

The substitution of this relation in both the summations occurring in (B.3) gives the
result

- 0P, ® , Pe
;v;o{g P}3 -1(n) +(t+l)Pz+1 (n)} #+£§0{£(“]) P£_1(n) -£(L+1) Pl+1 (n)} T-

(B.5)
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which is the left-hand side of Eq. (2.7). Consider now the right-hand side of (2.4),
in which we shall write the differential cross section explicitly with the angular
distribution as given in Eq. (1.5) and substitute (2.6). It then becomes (equal masses.)

(B.6) ijfZJG(S(nn -\/_———> d( ) —_ 2 (22+1) p'e {r,E-T) Pz(n') -

l— l
a -1 0 E P
p (Il) z(')

We now use the fact that 1,1' and nn' are connected through the cosine law of
spherical trigonometry and use the addition theorem of the Legendre-polynomials
which states for our case

67y B () =) By +2 & D gm0 o)
' £ £ £ met (m+L)' 2 £ 2 1

Due to the fact that we have to integrate over @, from O to 271 the summation over
the associate polynomials disappears. As the value of nn' is fixed by the &-function
we are left with

E
N[ do¥ 2z+1)[ (r,E-T) P ( E)P (n) - p,(r,E) P, (M)
E/ £ £ £
£=0
A
which is the right-hand side of (2.7).

The derivation for the case of unequal masses proceeds in the same way. Only the
deflection angle "n"' has a different value (cf. Chapter ).

* kK
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SUMMARY

In this thesis a theoretical treatment is given of the penetration depth of projectiles
with kinetic energies in the keV region which enter into amorphous substances and
of the collision cascades between target atoms, caused by them. In the latter case
we have supposed the target material to be single- or polycrystalline.

In Chapter | we give a short review of previous work, done in these fields by various
authors and we give the form of the interaction potential and of the differential
cross-section on which the calculations in the following chapters are based. The
potential is proportional to an inverse power of the interatomic distance with an
exponent s between 2 and 4 and the corresponding differential cross-section is given

by -1/s dT
T1+1/s

do=CE

where C is a proportionality factor, E the initial kinetic energy and T the energy
transfer in the collision.

In Chapter Il a theory of the penetration depth of projectiles in amorphous targets

is developed. The theory is based on a balance equation which can be written for
the function p(T,n,E) which gives the probability density for a projectile with initial
kinetic energy E and direction of motion n to come to rest at the point with vectorial
coordinate T from the point of entrance as origin. It is possnble to derive from this
equation a recursion relation between the quantities PI(E) with different values of
the indices n and £ . These quantities are linear combinations of moments of the
penetration depth and of the projection of the total distance, reached by the pro-
jectile on the plane perpendicular to its initial d'rechon of motion . The pene-
tration depth is the projection of the total distance on n if m is normal to the

target surface.

From this recursion relation all p (E) withnZ2 £ and n +£ even can be calculated
and from these the moments of all orders of the penetrohon depth can be found.

These moments have been calculated for the case of ¥ Kr-ions of various energies
on amorphous Al,O; and a cumulative distribution function has been constructed
with the help of them, The theoretical results are compared with the experimental
ones obtained by Domey and co-workers and the agreement is found to be satisfactory.

In Chapter Il we consider the average number of recoils in a specified low-energy
interval which occur in the collision cascade in single- or polycrystalline material,
caused by an incoming projectile whose energy is supposed to be much greater than
that of the recoils whose number is calculated. The calculation is performed for the
cases that the projectile has the same mass and a different mass as the target atoms.
It turns out that both cases give the same result, We have also calculated the vari-
ance of the recoil number. Also we have calculated the average sum of the momenta
of all recoils in the energy interval considered.
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In Chapter IV the spatial extension of the collision cascade is considered. With a
method, analogous to the one used in Chapter Il, the moments of the depth beneath
the surface where recoils of a given energy are created, are calculated. This also
had been done for the cases of the projectile having the same and a different mass
as the target atoms.

In Chapter V some further details of the theoretical results are given. The ratio be-
tween the average depth of the penetration of the projectile and the average depth
of the created damage is given for different power potentials and compared with an
effective hard-sphere model. The same ratio is given for the second-order moments.
Also are given the ratios between the variance of the penetration depths for different
ratios between the masses of projectiles and target atoms for the case that s = 2, and
for the equal mass case fors =1, 13, 2, 3 and 4.

The same ratios are given for the depth of the radiation damage created by the pro-
jectiles. These ratios are also compared with the hard-sphere model.

Then some theoretical results are compared with some experimental ones. Except in
the case of the bombardment of a thin film, the agreement turns out to be satisfactory.

LI
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SAMENVATTING

In dit proefschrift wordt een theoretische behandeling gegeven van de indringdiepte
van projectielen met kinetische energie in het keV-gebied, die binnendringen in
amorf materiaal en van de botsingscascades tussen targetatomen die door deze pro-
jectielen veroorzaakt worden. In dit laatste geval is het targetmateriaal één- of
polykristallijn verondersteld.

In hoofdstuk | geven wij een kort overzicht van voorafgaand werk, op dit gebied
verricht door andere auteurs en geven wij tevens de vorm van de wisselwerkings-
potentiaal en van de differentigle werkzame doorsnede waarop de berekeningen in
de volgende hoofdstukken gebaseerd zijn. Deze potentiaal is evenredig met r™°,
waarbij r de interatomaire afstand is en s ligt tussen 2 en 4 en de bijbehorende
differentiele werkzame doorsnede wordt gegeven door

wect gl

waarin C een evenredigheidsfactor is, E de initigle kinetische energie en T de ener-
gie-overdracht in de botsing.

In hoofdstuk Il wordt een theorie ontwikkeld over de indringdiepten van projectielen
in amorf materiaal. Deze theorie is gebaseerd op een balansvergelijking, die kan
worden opgeschreven voor de functie p(_r'ﬁ'E) die voor een projectiel met initiéle
kinetische energie E en bewegingsrichting i} de wacrschl|n|||khexdsd|chfhe|d re-
presenteert om tot rust te komen in het punt met codrdinaatvector T van het punt
van binnenkomst in het target als corsprong. Het is mogelijk om uit deze vergelij-
king een recursiebetrekking of te leiden tussen de grootheden pz(E) met verschil-
lende waarden van de indices n en £. Deze grootheden zijn lineaire combinaties
van momenten van de indringdiepte en van de projectie van de totale afstand, afge-
legd door het projectiel op een vlak, loodrecht op de initiéle bewegingsrichting_n'
De indringdiepte is de projectie van de totale afstand op 1, als |ooc|rechf op het
oppervlak van het target staat. Uit deze recursiebetrekking kunnen alle pg(E) met
n= g enn+£ even berekend worden en hieruit weer de momenten van alle ordes
van de indringdiepte. Deze momenten zijn berekend voor het geval van 85 Kr-ionen
met verschillende energieén die binnendringen in amorf aluminiumoxyde (Al, O;),
en een geintegreerde verdelingsfunctie is geconstrueerd met behulp hiervan. De
theoretische resultaten zijn vergeleken met experimentele, verkregen door Domey
en medewerkers en de overeenstemming is bevredigend.

In hoofdstuk Il beschouwen wij het gemiddelde aantal recoils in een gespecificeerd
lage energie interval, die voorkomen in de botsingscascade in één- of polykristallijn
materiaal, veroorzackt door een projectiel waarvan de beginenergie verondersteld
wordt veel groter te zijn dan die van de recoils waarvan het aantal berekend word,
De berekening is verricht voor de gevallen dat de massa van het projectiel gelijk

en ongelijk is aan die van de targetafomen. Beide gevallen geven hetzelfde resul -
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taat. Ook de variantie van dit aantal is berekend. Verder is berekend de gemiddel-
de som van de impulsen van alle recoils in het beschouwde energie-interval.,

In hoofdstuk IV wordt de ruimtelijke vitbreiding van de botsingscascade beschouwd.
Met een methode, analoog aan die van hoofdstuk I, worden de momenten berekend
van de diepte beneden het oppervlak waar recoils van gegeven energie worden ge-
cregerd, Ook dit is gedaan voor de gevallen dat het projectiel zowel gelijke als
ongelijke massa heeft als de targetatomen.

In hoofdstuk V worden enkele verdere bijzonderheden van de theoretische resulta-
ten gegeven. De verhouding van de gemiddelde indringdiepte en de gemiddelde
diepte van de gecregerde beschadiging wordt gegeven voor verschillende machtspo-
tentialen en vergeleken met een effectief harde bollenmodel. Ook worden gegeven
de verhoudingen van de variantie van de indringdiepte en het quadraat van de ge-
middelde indringdiepte voor verschillende verhoudingen van de massa's van het
projectiel en de targetatomen in het geval dat s = 2 en voor het geval van gelijke
massa's voor de s-waarden 1, 13, 2, 3 en 4, Dezelfde verhoudingen worden gegeven
voor de diepte van de veroorzackte beschadiging. Deze verhoudingen worden ook
met die van het harde-bollenmodel vergeleken.

Hierna worden enkele theoretische resultaten vergeleken met die van enkele ex-
perimenten. Behalve in het geval van het bombardement van een dunne laag blijkt
de overeenstemming bevredigend.

*k Kk %
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