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In many stochastic simulations of biochemical reaction networks, it is desirable to “coarse grain” the
reaction set, removing fast reactions while retaining the correct system dynamics. Various
coarse-graining methods have been proposed, but it remains unclear which methods are reliable and
which reactions can safely be eliminated. We address these issues for a model gene regulatory
network that is particularly sensitive to dynamical fluctuations: a bistable genetic switch. We remove
protein-DNA and/or protein-protein association-dissociation reactions from the reaction set using
various coarse-graining strategies. We determine the effects on the steady-state probability
distribution function and on the rate of fluctuation-driven switch flipping transitions. We find that
protein-protein interactions may be safely eliminated from the reaction set, but protein-DNA
interactions may not. We also find that it is important to use the chemical master equation rather than
macroscopic rate equations to compute effective propensity functions for the coarse-grained
reactions. © 2008 American Institute of Physics. �DOI: 10.1063/1.2821957�

I. INTRODUCTION

Biochemical reaction networks control how living cells
function. Computer simulations provide a valuable tool for
understanding how complex biochemical network architec-
ture is connected to cellular function. A popular method for
simulating biochemical networks is the “stochastic simula-
tion algorithm” �SSA� which was introduced in this field by
Gillespie.1,2 For many reaction networks, however, SSA
simulations are prohibitively expensive because of “time-
scale separation”: the reaction set contains some reactions
which occur much more frequently than others. For every
“slow” reaction event, many “fast” reaction events have to be
simulated. This problem has led to the development of vari-
ous methods for coarse graining the reaction set3–10—that is,
eliminating the fast reactions and simulating only the slow
reactions. Key issues are which fast reactions can safely be
eliminated, and how this should be done, so as not to disturb
the original dynamics. In this paper, we address these issues
for a biochemical network which is especially sensitive to
dynamical fluctuations: a bistable genetic switch. Because of
its sensitivity, this model provides a useful test system for
assessing how to coarse grain biochemical networks. We ex-
pect our conclusions to be valid for a wide range of bio-
chemical networks where fluctuation-driven processes are
important.

The SSA is a kinetic Monte Carlo method which gener-
ates trajectories for the numbers of molecules of each chemi-

cal species in the reacting system. The molecular discrete-
ness of the reacting species is included, and the method
includes stochastic fluctuations in the numbers of molecules,
assuming that each reaction is a Poisson process. It is as-
sumed that the system is well stirred—i.e., the spatial distri-
bution of the components is ignored �alternative methods
that do include spatial effects have recently been
developed11–14�. The SSA generates trajectories that are con-
sistent with the chemical master equation and it has been
widely applied in the field of biochemical networks. A de-
tailed explanation of the method can be found in Refs. 1 and
2. We note that some authors include a factor of 2 in the
definition of propensities for second order reactions. We
choose not to use this factor of 2.

The SSA becomes inefficient when some of the reaction
channels �“the fast reactions”� have much higher propensities
than others �“slow reactions”�—this is known as the time-
scale separation problem, and several methods for dealing
with it have been proposed. In all cases, the first step is to
identify which reactions are fast and which are slow. The
criterion is generally that fast reactions should reach a steady
state faster than the waiting time between slow reaction
events. The slow reactions are generally simulated using the
SSA, while the various methods differ in their treatment of
the fast reactions. In one class of methods, the fast reactions
are propagated using the deterministic or chemical Langevin
equation,3,4,15,16 or via the � leap method;7,17 these schemes
require that the species in the fast reactions are present in
large copy numbers. In another class of methods, which we
consider here, the temporal evolution of the fast reactions is
given by the chemical master equation. Because these algo-
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rithms take account of molecular discreteness, they do not
require the species in the fast reactions to be present in large
copy numbers.4–6,8–10,18,19 These schemes are discussed in
more detail in Sec. III.

In this paper, we compare various coarse-graining strat-
egies using a bistable genetic switch. Bistable genetic
switches are excellent model systems for testing the accuracy
of coarse-graining schemes. The reason is that the spontane-
ous flipping from one stable state to the other is driven by
fluctuations—bistable switches are thus particularly sensitive
to random fluctuations and hence to coarse graining, which
tends to remove fluctuations from the system. Moreover,
these switches exhibit dynamics over a wide range of time
scales, making them ideal for testing the assumption of time-
scale separation that underlies all coarse-graining schemes.
The dimerization of proteins and the binding of dimers to the
DNA occur on relatively fast time scales of seconds to min-
utes, while the synthesis and degradation of proteins occur
on relatively slow time scales of tens of minutes or longer.
Another important time scale is given by the duration of the
switching trajectories, which involve a combination of DNA
binding, dimerization, and protein production and decay
events. Genetic switches also show dynamics on an even
longer time scale, which is the waiting time between switch
flipping events. Since dimerization and DNA binding occur
on much faster time scales than the inverse switching rate,
one might expect that these reactions could be integrated out
without affecting the switching dynamics. On the other hand,
previous work has shown that DNA binding fluctuations can
actually drive the flipping of genetic switches.20,21 It is thus
unclear whether these reactions can safely be eliminated in
simulations of genetic switches.

We investigate the consequences of integrating out
dimerization and DNA binding for the switching dynamics
of a genetic toggle switch that consists of two genes that
mutually repress each other. A simple mathematical model of
such a toggle switch has been studied by several
groups.20,22–27 Using the SSA in combination with the re-
cently developed “forward flux sampling” �FFS� method for
rare event simulations,20,28,29 we compute the steady-state
distributions of all species and the rate at which the network
undergoes spontaneous fluctuation-driven flips between its
two stable states. We use these quantities as measures for the
accuracy of various coarse-graining strategies for eliminating
both DNA binding and dimerization; the strategies differ in
whether the deterministic macroscopic rate equations or the
stochastic chemical master equation is used to compute av-
erages over the fast reactions.

Our results show that it is essential to use the chemical
master equation approach rather than the macroscopic rate
equation. This is perhaps not surprising, since the DNA and
proteins are present in low copy numbers. In addition, we
find that the steady-state distributions are quite robust in in-
tegrating out dimerization and protein-DNA binding; in par-
ticular, the location and the shape of the peaks of the bimodal
steady-state distributions are hardly affected by eliminating
these fast reactions from the reaction set. In contrast, coarse
graining the dimerization and DNA binding reactions can

have a dramatic effect on the flipping rate. These results can
be understood by noting that the steady-state distribution is
predominantly due to the dynamics within the basins of at-
traction corresponding to the stable states. Within these ba-
sins, the time scales of DNA binding and dimerization are
typically much faster than those of protein production and
degradation; the time-scale separation requirement is thus
satisfied most of the time. In contrast, the switching rate is
determined by how the system leaves a basin of attraction.
This relies on rare fluctuations of the fast reactions: in order
for the switch to flip, the minority species has to dimerize
and subsequently bind to the DNA target site. Indeed, as we
discuss in more detail in a forthcoming paper,30 during the
flipping trajectories, the dynamics of DNA binding and
dimerization typically do not relax to a steady state. Thus,
the reliability of a particular coarse-graining scheme strongly
depends on the quantities one is interested in: equilibrium
properties will typically show a low sensitivity to approxi-
mation procedures, whereas for fluctuation-driven properties,
small errors will be amplified, leading to incorrect results.

In the next section, we describe the model genetic
switch. In Sec. III, we give background information on the
various coarse-graining schemes, and in Sec. IV, we discuss
these in the context of the model switch. In Sec. V, we
present results on the accuracy of the various coarse-graining
procedures, using the stationary distribution and the switch-
ing rates as readouts, and their computational speedup. We
end with a discussion on the implications of our findings for
the simulations of complex biochemical networks.

II. THE MODEL GENETIC SWITCH

The model bistable genetic switch is shown schemati-
cally in Fig. 1 and the set of reactions is listed in Table
I.22,24,25

As shown in Fig. 1, two genes A and B are transcribed in
divergent directions under the control of a single DNA op-
erator region O, which contains one binding site. Coding
region A encodes protein A, while coding region B encodes
protein B. Both proteins A and B are transcription factors,
which, upon homodimerization, are able to bind to the op-
erator sequence O. When A2 is bound at O, the transcription
of B is blocked �A2 is a repressor for B�; while, conversely,
when B2 is bound at O, the transcription of A is blocked �B2

is a repressor for A�. When neither A2 nor B2 is bound at O,
both A and B are transcribed at the same average rate kprod.
Protein monomers are also removed from the system with
rate �, modeling active degradation processes as well as di-
lution due to cell growth. For convenience in this model

FIG. 1. Pictorial representation of our model switch, corresponding to Table
I. Two divergently transcribed genes A and B are under the control of a
single regulatory binding site O. Proteins A and B both form homodimers,
each of which can bind to O and block transcription of the other gene.
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system, we use the rather high value �=0.3kprod, correspond-
ing to the case where removal from the cell is dominated by
active degradation. In our model, we assume that all the
steps leading to production of a protein molecule �transcrip-
tion, translation, and protein folding� can be modeled as a
single Poisson process with rate constant kprod. The system is
symmetric on exchanging A and B.

For this model system, bistability has been demonstrated
using a mean field analysis and with simulations.25 In one
stable state, a large number of A proteins are present; this
ensures that the operator O is mostly bound by A2, keeping
B repressed. Conversely, in the other stable state, B proteins
are abundant, so that O is mostly bound by B2, and A re-
mains repressed. Previous work has demonstrated that, when
simulated stochastically with appropriate parameters, the
system makes occasional random flipping transitions be-
tween these two stable states,25 as in Fig. 2. In our simula-
tions, we use the inverse of the production rate kprod

−1 as the
unit of time; typical values for this rate are in the order of
10−3–10−4 s−1. We assume that the cell volume V remains
constant. For simplicity, we use a value V=1, and define our
rate constants in appropriate units. We choose a “baseline”
set of parameters in the region of parameter space where the
system has previously been found to be bistable: kf

=5kprodV, kb=5kprod �so that KD
d =kd /kf =1 /V�, kon=5kprod,

koff=kprod �so that KD
b =koff /kon=1 / �5V��, and �=0.3kprod.

This model system is loosely based on the bacteriophage
lambda genetic switch.31 For the phage lambda proteins cro

and cI, assuming diffusion-limited protein-DNA association
and using Refs. 32 and 33, kon�5–10kprod. For cI and cro
dimer formation, using Refs. 32 and 34, kf �50–100kprod.
Protein degradation rates are much lower for phage lambda
�of the order of ��0.1–0.01kprod� than for our model sys-
tem.

Throughout this paper, we represent the number of mol-
ecules of chemical species X which is present in the cell by
nX. Later in the paper, we will need to characterize the
switching process by an “order parameter,” which we denote
�. A natural choice is the difference between the total num-
bers of the two proteins in the cell: ��nA+2nA2

+2nOA2
− �nB+2nB2

+2nOB2
�. Figure 2 shows � plotted as a function

of time for a simulation of this reaction set using the SSA.
Bistable behavior is indeed observed: the system spends
most of its time in one of the two stable states with occa-
sional transitions between states. The average duration of a
flipping transition event is much shorter than the average
“waiting time” between the flipping transitions.

III. DYNAMICAL COARSE GRAINING: BACKGROUND

Dynamical coarse-graining schemes begin by splitting
the reaction set into fast and slow reactions, as described in
Sec. I. The slow reactions are generally simulated using the
SSA. The fast reactions are approximated in ways that differ
for different methods. In this paper, we only consider ap-
proaches in which the fast reactions are removed entirely
from the reaction set by assuming that they relax to a steady
state faster than the waiting time between slow reactions.
Effective propensities for the slow reactions are computed as
averages over the steady-state distribution, obtained from the
chemical master equation for the fast reactions.

The key step is the determination of the effective pro-
pensity functions āj

s�ns ,nf� for the slow reactions in the
coarse-grained reaction scheme. These depend on the copy
numbers ns of the “slow species” �those that are only af-
fected by the slow reactions� and nf of the “fast species”
�those that are affected by both the fast and the slow reac-
tions�. The effective propensities are given by

āj
s�nf,ns� = �

nf�

P��nf��nf,ns�aj
s�nf�,ns� , �1�

where aj
s denotes the propensity function for a given slow

reaction j and P��nf� �nf ,ns� is the probability of obtaining a
given copy number nf� for the fast species, at the end of a
very long simulation of the fast reaction set only, starting
from state space point �nf ,ns�. These effective propensities
are designed to give the same flux along the slow reaction

TABLE I. Reactions and propensity functions for the model genetic switch.

Reaction Propensity Reaction Propensity

Dimerization A+A�A2 kfnA�nA−1�, kbnA2
B+B�B2 kfnB�nB−1�, kbnB2

�a�
DNA binding O+A2�OA2 konnOnA2

, koffnOA2
O+B2�OB2 konnOnB2

, koffnOB2
�b�

Production O→O+A kprodnO O→O+B kprodnO �c�
Production OA2→OA2+A kprodnOA2

OB2→OB2+B kprodnOB2
�d�

Degradation A→� �nA B→� �nB �e�

FIG. 2. Typical simulation trajectory for the model switch, with baseline
parameters except for � which is replaced by �=0.45kprod. The total num-
bers of A and B molecules fluctuate around two stable states, one rich in A
and the other rich in B. Transitions between these states are rapid, yet
infrequent.
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channel, on average, as in the full system. In essence, it is
assumed that in the full simulation, for any configuration ns

of the slow species, the fast species reach a “quasi-steady-
state,” with probability distribution function P�nf �ns�, on a
time scale that is much faster than the waiting time before
the next slow reaction. In practice, the effective propensity
functions in Eq. �1� can be obtained by performing short
SSA simulations of the fast reactions at fixed copy numbers
of the slow species.9,10 Alternatively, one may solve the
chemical master equation for the fast reactions analytically
or numerically,5,6,8 which is the approach we employ here.

It is important to discuss the definition of the “fast vari-
ables” �nf in Eq. �1�� and “slow variables” �ns�.

5,8,35 In the
work of Cao et al.,8 the slow variables are the copy numbers
of those species which are unaffected by the fast reactions,
while the fast variables can be changed by both fast and slow
reactions. During the coarse-grained simulation, only the
slow reactions are simulated, and one has the option of
propagating in time either both the fast and the slow vari-
ables or just the slow variables. Bundschuh et al.5 describe a
slightly different method for eliminating both the fast reac-
tions and the fast variables from the simulation scheme.
Here, as in the work of Cao et al., the fast variables are the
copy numbers of all species which are affected by the fast
reactions. The slow variables, however, are made up of the
copy numbers of species which are unchanged by the fast
reactions, as well as combinations of the fast variables.
These combinations are chosen so that they are unchanged
by the fast reactions. For example, for a fast reaction set
2A�A2, an appropriate slow variable would be nǍ=nA

+2nA2
. The original slow reaction set is then rewritten in

terms of these new slow variables. This eliminates all the fast
species from the slow reaction set and the simulation pro-
ceeds by simulating only the slow variables. This is the strat-
egy which we adopt in this paper.

IV. COARSE GRAINING FOR THE MODEL GENETIC
SWITCH

Stochastic simulations of the model genetic switch have
characteristic features that depend on the time scale over
which we observe the simulation. In a timeframe of about
0.2kprod

−1 , we will observe mainly protein-protein association
and dissociation events �typical time scale �nA�nA−1�kf�−1

and �nA2
kb�−1, respectively�, as well as protein-operator asso-

ciation and dissociation �typical time scale �nA2
kon�−1 and

�koff�−1�. If we extend our observation “window” to a time-
frame of about 4kprod

−1 , we also observe protein production
and degradation �typical time scale �kprod�−1� and �−1

�3kprod
−1 �. In a much longer timeframe, we observe flipping

events between the two stable states. It is these flipping
events that are the phenomenon of interest—yet for each
“interesting” switch flipping event, very many “less interest-
ing” association and dissociation events need to be simu-
lated. This is an example of time-scale separation, which we
seek to overcome by coarse graining, eliminating the protein-
protein and/or protein-DNA association and dissociation re-
actions from the simulation scheme.

To coarse grain the model genetic switch, we divide the

full reaction set �Table I� into fast and slow reactions. We
will consider three cases: �i� protein-protein association and
dissociation reactions ��a� in Table I� are fast, �ii� protein-
DNA association and dissociation reactions ��b� in Table I�
are fast, and �iii� both reactions �a� and �b� are fast. For each
of these cases, we define fast and slow variables. The fast
variables are the copy numbers nf of species which are af-
fected by the fast reactions. The slow variables ns are either
the copy numbers of species unaffected by the fast reactions
or linear combinations of fast variables which are unchanged
by any of the fast reactions, e.g., nǍ=nA+2nA2

. To accom-
pany these slow variables, we define slow species. These
may represent either single chemical species or combinations

of species. For example, species Ǎ represents an A molecule
which is in either monomer or dimer form. We then rewrite
the slow reaction set in terms of the new slow species, and
carry out a simulation using Gillespie’s SSA, with effective
propensities given by Eq. �1�. For this system, only the first
moment of P��nf� �nf ,ns� is required. This can be obtained by
solving the chemical master equation for the fast reactions at
fixed value of the slow variables. Alternatively, one may ap-
proximate to the macroscopic rate equations for the fast re-
actions. A summary of the various coarse-graining methods
used in the paper is given in Table II. Table II also lists the
coarse-grained reaction sets, and gives formulas for the ef-
fective propensity functions. The notation 	X
slow variables

method de-
notes the first moment �average� of the steady-state probabil-
ity distribution function P��nf� �nf ,ns�, the superscript
denoting whether the master equation or macroscopic rate
equation is used to find the average, and the subscript indi-
cating which slow variables the average depends on.

A. Coarse-graining protein-DNA binding

We first remove the protein-DNA association and disso-
ciation reactions

O + A2 � OA2, O + B2 � OB2 �2�

from the original reaction scheme �Table I�. We denote this
approach “eliminating operator �EO� state fluctuations.” In
our coarse-grained simulation, the system will still experi-
ence fluctuations due to protein-protein association and dis-
sociation, protein production, and protein decay, but not
those due to the binding and unbinding of molecules to the
DNA.

The fast species, which are affected by reactions �2�, are

A2, B2, OA2, OB2, and O. The slow species are A, B, Â2,

and B̂2, where A and B are simply the protein monomers—

these are unchanged by the fast reactions �2�—and Â2 and B̂2

are new species, such that

nÂ2
= nA2

+ nOA2
,

�3�
nB̂2

= nB2
+ nOB2

.

nÂ2
and nB̂2

are simply the total numbers of dimers in the
system—including both free and DNA-bound dimers. The
new, coarse-grained, reaction set is given in Table II, to-
gether with the effective propensities. As the operator O has
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been removed from the scheme, protein production has be-
come a simple birth process, in which a monomer appears
from “nowhere.” The propensity for this birth of a monomer
�say, A� takes into account the “lost” reactions—it reflects
the probability, in the full reaction scheme, of finding the
promoter O in one of the states O and OA2 that are able to
produce A. The protein-protein interactions ��a� in Table I�
have been changed to reflect the fact that free dimers A2

have been replaced by the new species Â2. Two monomers

can now reversibly associate to generate a molecule of Â2,

while the reaction representing dissociation of free dimers to
monomers has an effective propensity that depends on the
average number of free dimers that would be present in the
full reaction scheme for a given value nÂ2

of total dimers.
Protein degradation ��e� in Table I� remains unchanged since
these reactions affect only monomers.

To evaluate the effective propensities listed in Table II,
we require the averages 	nO+nOA2


Â2,B̂2
, 	nO+nOB2


Â2,B̂2
,

	nA2

Â2,B̂2

, and 	nB2

Â2,B̂2

. These depend on both slow species

Â2 and B̂2 because the two operator binding reactions are

TABLE II. Summary of coarse-graining schemes for the original reaction set �Table I�: eliminating operator binding �EO�, eliminating dimerization reactions
using the macroscopic rate equation �ED1� or the master equation �ED2�, and eliminating both dimerization and operator binding using the macroscopic rate
equation �EO-ED1� or the master equation �EO-ED2�. For each coarse-graining scheme, the coarse-grained reaction set is indicated together with the
propensity function for each reaction. We also give definitions of the new slow variables for each scheme.

Name Reaction Propensity Method
Coarse-grained

variable Definition

EO �→A kprod	nO+nOA2



Â2,B̂2

RE Rate equation Â2
nÂ2

=nA2
+nOA2

�→B kprod	nO+nOB2



Â2,B̂2

RE
B̂2

nB̂2
=nB2

+nOB2

A+A� Â2 konnA�nA−1�, koff	nA2



Â2,B̂2

RE

B+B� B̂2 konnB�nB−1�, koff	nB2



Â2,B̂2

RE

A→� �nA

B→� �nB

ED1 O+2Ǎ�OA2 kon	nA2



Ǎ

RE
, koffnOA2

Rate equation Ǎ nǍ=nA+2nA2

O+2B̌�OB2 kon	nB2



B̌

RE
, koffnOB2

B̌ nB̌=nB+2nB2

O→O+Ǎ kprodnO

O→O+B̌ kprodnO

OA2→OA2+Ǎ kprodnOA2

OB2→OB2+B̌ kprodnOB2

Ǎ→� �	nA

Ǎ

RE

B̌→� �	nB

B̌

RE

ED2 O+2Ǎ�OA2 kon	nA2



Ǎ

ME
, koffnOA2

Master equation Ǎ nǍ=nA+2nA2

O+2B̌�OB2 kon	nB2



B̌

ME
, koffnOB2

B̌ nB̌=nB+2nB2

O→O+Ǎ kprodnO

O→O+B̌ kprodnO

OA2→OA2+Ǎ kprodnOA2

OB2→OB2+B̌ kprodnOB2

Ǎ→� �	nA

Ǎ

ME

B̌→� �	nB

B̌

ME

EO-ED1 �→ Ã kprod	nO+nOA2



Ã,B̃

RE Rate equation Ã nÃ=nA+2nA2
+2nOA2

�→ B̃ kprod	nO+nOB2



Ã,B̃

RE
B̃ nB̃=nB+2nB2

+2nOB2

Ã→� �	nA

Ã,B̃

RE

B̃→� �	nB

Ã,B̃

RE

EO-ED2 �→ Ã kprod	nO+nOA2



Ã,B̃

ME Master equation Ã nÃ=nA+2nA2
+2nOA2

�→ B̃ kprod	nO+nOB2



Ã,B̃

ME
B̃ nB̃=nB+2nB2

+2nOB2

Ã→� �	nA

Ã,B̃

ME

B̃→� �	nB

Ã,B̃

ME
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coupled. This arises from the competition between A2 and B2

for the same binding site. In this particular case, as shown in
Appendix A, solving the master equation for the fast reac-
tions �2� and approximating them by the corresponding mac-
roscopic rate equations give the same result, so we consider
only the rate equation approach. Solving for the steady state
of Eq. �2�, we obtain

KD
b 	nOA2



Â2,B̂2

RE
= 	nO


Â2,B̂2

RE
· 	nA2



Â2,B̂2

RE
,

�4�
KD

b 	nOB2



Â2,B̂2

RE
= 	nO


Â2,B̂2

RE
· 	nB2



Â2,B̂2

RE
.

Combining this with the fact that in our scheme there is only
one DNA copy:

nO + nOA2
+ nOB2

= 1, �5�

we obtain

aA,eff = kprod	nO + nOA2



Â2,B̂2

RE

= kprod

1 + �KD
b �−1	nA2



Â2,B̂2

RE

1 + �KD
b �−1�	nA2



Â2,B̂2

RE
+ 	nB2



Â2,B̂2

RE �
, �6�

and similarly for aB,eff. To find 	nA2



Â2,B̂2

RE
and 	nB2



Â2,B̂2

RE
in

Eq. �6�, we combine relations �4� and �5� with

nÂ2
= nA2

+ nOA2
,

�7�
nB̂2

= nB2
+ nOB2

.

Numerical solution techniques are required here, and we
have used the Newton-Raphson method.36

B. Coarse-graining protein-protein binding

We now remove instead the protein-protein association
and dissociation reactions

A + A � A2,

�8�
B + B � B2

from our original reaction scheme �Table I�. We denote this
approach “eliminating dimerization �ED�.” These interac-
tions are particularly attractive candidates for coarse grain-
ing, since they tend to consume a large fraction of the com-
putational effort when there are significant numbers of free
monomers and dimers in the system.

The fast species—those whose number is affected by
reactions �8�—are A, A2, B, and B2. The slow species, which
will remain in our coarse-grained reaction scheme, are O,
OA2, and OB2—species from the original scheme which are
not affected by reactions �8�—together with two new spe-

cies, ǎ and B̌, defined by

nǍ � nA + 2nA2
,

�9�
nB̌ � nB + 2nB2

.

These new species Ǎ and B̌ are combinations of the fast
species whose number remains unchanged by the fast reac-
tions ��a� in Table I�. The new, coarse-grained, reaction set
with the corresponding propensity functions is given in Table
II. The protein production reactions ��c� and �d� in Table I�
now produce the new species Ǎ and B̌. In the original reac-
tion set �Table I�, the protein degradation reactions �e� af-
fected only monomers. The corresponding reaction in the

new reaction set removes a molecule of the new species Ǎ

and B̌ from the system, but with an effective propensity that
depends on the average number of monomers that would be
obtained by a simulation of the fast reactions at fixed nǍ or
nB̌. Similarly, reactions �b� in the original set, corresponding
to the association and dissociation of dimers with the DNA,
have been replaced by the association/dissociation of two

units of Ǎ or B̌ to O, with an effective propensity propor-
tional to the average number of dimers given by the fast
reaction set for fixed nǍ or nB̌. Here, the averages required
for the effective propensity functions depend on only one

slow variable—either Ǎ or B̌ but not both—in contrast to
method EO, where the averages depend on both slow vari-
ables. This is because the two reactions �8� are not coupled to
each other: dimerization of A has no direct effect on the
dimerization propensity of B and vice versa.

We shall test two alternative approaches to the computa-
tion of the averages 	nA
Ǎ, 	nA2


Ǎ, 	nB
B̌, and 	nB2

B̌ in Table

II. In the first approach, which we denote ED1, we make the
approximation that these averages correspond to the steady-
state solutions of the macroscopic rate equations correspond-
ing to Eq. �8�:

kb	nA2

Ǎ − kf	nA


Ǎ

2
= 0,

�10�
kb	nB2


B̌ − kf	nB

B̌

2
= 0,

so that

KD
d 	nA2


Ǎ = 	nA

Ǎ

2
,

�11�
KD

d 	nB2

B̌ = 	nB


B̌

2
.

Relations �11� can be used together with the definitions �9� to
give

	nA

Ǎ

RE
= KD

d ��8nǍ/KD
d + 1 − 1�/4,

�12�
	nB


B̌

RE
= KD

d ��8nB̆/KD
d + 1 − 1�/4.

The average numbers of dimers 	nA2

Ǎ and 	nB2


B̌ are given
in this approximation by combining Eq. �12� with Eq. �11�.
Method ED1 is expected to give incorrect results when nǍ or
nB̌ is small, since the macroscopic rate equation approxima-
tion breaks down in this limit. This is expected to be a seri-
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ous problem because for our genetic switch model, both nǍ

and nB̌ will be small at the crucial moments when the switch
is in the process of flipping between the two steady states.25

Alternatively, one may solve the master equation correspond-
ing to the eliminated reactions �8� to compute the averages.
We denote this approach ED2. Numerical solution of this
master equation, as described in Appendix B, results in the
probability distribution functions p�nA �nǍ�, p�nA2

�nǍ�,
p�nB �nB̌�, and p�nB2

�nB̌� for the fast variables for given val-

ues of Ǎ and B̌. These can be used to find 	nA

Ǎ

ME
, 	nA2



Ǎ

ME
,

	nB

B̌

ME
, and 	nB2



B̌

ME
. These averages are then substituted into

the expressions given in Table II to obtain effective propen-
sities for the coarse-grained SSA simulation. We note that the
effective propensity functions for methods ED1 and ED2 in
Table II are identical. The only difference between the two
schemes is the way in which the required averages are ob-
tained: using a macroscopic rate equation approximation
�ED1� or by numerical solution of the master equation
�ED2�.

C. Coarse-graining protein-DNA and protein-protein
binding

We now eliminate both protein-DNA interactions �Eq.
�2�� and protein-protein interactions �Eq. �8��. We will be left
with a coarse-grained scheme in which the only fluctuations
are due to protein production and degradation. Our “fast re-
actions” are then Eqs. �2� and �8�, and our fast species,
whose number is changed by the fast reactions, are, in fact,
all the species in the original scheme: O, OA2, OB2, A, A2,

B, and B2. Our only slow species, Ã and B̃, are then combi-
nations of the fast species whose number is unchanged in
any of the fast reactions:

nÃ � nA + 2nA2
+ 2nOA2

,

�13�
nB̃ � nB + 2nB2

+ 2nOB2
.

nÃ and nB̃ correspond to the total number of A and B mol-
ecules in the system. On removal of reactions �2� and �8�, our
coarse-grained reaction scheme, given in Table III under the
labels EO-ED1 and EO-ED2, consists simply of a pair of

birth-death processes for species Ã and B̃. The effects of the
lost fast reactions are incorporated via effective rate con-
stants that account for the average number of the relevant
fast species expected in a simulation of the fast reaction set
for fixed numbers of the slow species. As in the EO coarse-
graining scheme, but not in the ED schemes, the averages

here depend on both slow species, since the fast reactions for
A and B are coupled by the shared DNA binding sites.

As for the ED schemes, we consider two alternative
ways of obtaining the necessary averages 	nO
Ã,B̃, 	nA
Ã,B̃,
	nA2


Ã,B̃, 	nOA2

Ã,B̃, 	nB
Ã,B̃, 	nB2


Ã,B̃, and 	nOB2

Ã,B̃. Firstly,

in approach EO-ED1, we approximate these averages by the
steady-state solutions of the macroscopic rate equations cor-
responding to the fast reactions �2� and �8�. Following the
same steps as in the previous two sections �applying Eqs. �4�
and �10��, we arrive at

	nÃ

Ã,B̃

RE
= 	nA


Ã,B̃

RE
+ 2�KD

d �−1�	nA

Ã,B̃

RE �2

+
2�KD

d �−1�KD
b �−1�	nA


Ã,B̃

RE �2

1 + �KD
d KD

b �−1��	nA

Ã,B̃

RE �2 + �	nB

Ã,B̃

RE �2�
,

�14�
	nB̃


Ã,B̃

RE
= 	nB


Ã,B̃

RE
+ 2�KD

d �−1�	nB

Ã,B̃

RE �2

+
2�KD

d �−1�KD
b �−1�	nB


Ã,B̃

RE �2

1 + �KD
d KD

b �−1��	nA

Ã,B̃

RE �2 + �	nB

Ã,B̃

RE �2�
,

which can be combined with relations �13� and inverted
numerically36 to give 	nA


Ã,B̃

RE
and 	nB


Ã,B̃

RE
. The other averages

required in Table II are obtained using relations �4�, �5�, and
�11�. Approach EO-ED1 is approximate, since it assumes
that the average numbers of molecules that would be pro-
duced by long stochastic simulations of the fast reaction set
are given by the steady-state solutions of the corresponding
macroscopic rate equations. This approximation is avoided in
approach EO-ED2, in which we calculate the averages of the
fast variables A, A2, OA2, B, B2, OB2, and O from the mas-
ter equation corresponding to the coupled reactions �2� and
�8�. This is difficult to do directly �as in scheme ED2�, so we
use simulations. We carry out a series of short preliminary
simulations, using the SSA, of reactions �2� and �8� for fixed
values of nÃ and nB̃. The reaction scheme for these prelimi-
nary simulations is given in Table III.

From these, we compute the averages required for the
effective propensities

aA,eff = kprod�	nO + nOA2



Ã,B̃

ME � �15�

and

�A,eff = �	nA

Ã,B̃

ME
. �16�

These propensities are stored in a lookup table which is re-
ferred to during the coarse-grained simulations of the slow
variables.

V. RESULTS

We now-assess the performance of the various coarse-
graining approaches, in terms of how accurately they repro-
duce the behavior of the full system, and how much they
speed up the simulations. Key features of the behavior of this
system are its bimodal steady-state probability distribution

TABLE III. Reaction scheme for the preliminary simulations to compute the
effective propensity functions given in Eqs. �15� and �16� for scheme EO-
ED2.

Reaction Propensity Reaction Propensity

A+A�A2 kfnA�nA−1�, kbnA2
B+B�B2 kfnB�nB−1�, kbnB2

O+A2�OA2 konnOnA2
, koffnOA2 O+B2�OB2 konnOnB2

, koffnOB2
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function and its spontaneous flips between the two stable
states. We assess how well the coarse-grained simulations
reproduce the bimodal probability distribution for the differ-
ence � in total number between the A and B proteins:

� = nA + 2nA2
+ 2nOA2

− �nB + 2nB2
+ 2nOB2

� . �17�

We also test how well the various schemes reproduce the rate
of fluctuation-induced switching between the A- and B-rich
states, which we measure using the FFS rare event simula-
tion method.20,28,29 We compare our results to SSA simula-
tions of the full reaction set �Table I� which we denote
“original reaction network” �ORN�. The coarse-graining
schemes are based on the assumption that the fast reactions
are indeed fast compared to the slow reactions. We therefore
expect their accuracy to improve as the rate constants for the
fast reactions increase. We will see that the accuracy also
depends on which reactions we choose to be fast and how we
compute the averages needed for the propensity functions.
We end with a discussion on the computational performances
of the different methods.

A. Steady-state probability distribution

We now compute the steady-state probability distribu-
tion function ���� for the difference � between the total
numbers of A and B proteins, as given by Eq. �17�. We ex-
pect ���� to have two peaks around the known stable steady
states �= �27 �see Ref. 25�, and a “valley” around the un-
stable steady state �=0. To compute ����, we carry out a
long SSA simulation, during which we compile a histogram
for the probability of finding the system at each � value. This
procedure is repeated for all the coarse-grained simulation
schemes in Table II. However, it is hard to achieve good
sampling of ���� in the valley region close to �=0, where
the system is very unlikely to be found. In this region we use
the FFS method to compute ���� more accurately.37 This
method will be described briefly in the following section and
in Appendix C. Its use for computing steady-state probability
distributions is described in Ref. 37. Results are shown in
Fig. 3 for the baseline parameter set given in Sec. II. As
expected, ���� is clearly bimodal and shows symmetric
peaks flanking a valley at �=0. The locations of the peaks
and valley correspond to the stable and unstable solutions of
a mean field analysis25 of the switch. Comparing the results
for the different coarse-graining schemes in Fig. 3, we see
that they all appear to reproduce ���� quite well, giving the
correct position, height, and width of the peaks. Inset A mag-
nifies the left probability peak, showing that the only meth-
ods displaying a small systematic error are ED1 and EO-
ED1, i.e., the coarse-graining schemes relying on the
solutions of the macroscopic rate equation. In general, we
can conclude that all the methods reproduce ���� rather well
in the peak regions. However, when we investigate in more
detail the results for the valley region around �=0, clear
differences are observed between the coarse-graining meth-
ods. Inset B of Fig. 3 shows on a logarithmic scale the results

for ���� in this region, generated using the FFS method. All
the coarse-graining methods deviate from the results of the
full reaction network �ORN�. The apparent effect of remov-
ing dimerization �ED1/ED2� is to shift the minimum up in
probability, with the macroscopic rate equation approach
�ED1� having a stronger effect. Removing operator state
fluctuations �EO� has the opposite effect, shifting the mini-
mum down in probability. Methods EO-ED1 and EO-ED2
appear to show a combination of these two effects. Although
these deviations from the ORN results are small, they will
turn out to be rather important for the dynamical switching
behavior to be discussed in the next section. However, if one
is only interested in the steady-state distribution, the choice
of the particular coarse-graining method does not appear to
be crucial.

B. Rate of stochastic switch flipping

In many cases, fluctuation-driven dynamical properties
are an important output of a simulation of a biochemical
network. This is especially true for genetic switches, where a
key characteristic is the rate of flipping between stable states
�as shown in Fig. 2 for the model genetic switch�. When
simulating these systems, one requires not only an accurate
representation of the steady-state distribution but also of the
dynamical behavior of the system. We now test whether the
various coarse-graining methods are able to reproduce the
correct rate of stochastic flipping of the model switch. This is
a particularly stringent test, since this fluctuation-driven pro-
cess is likely to be highly sensitive to the accuracy with
which dynamical fluctuations are reproduced in the different
schemes.

To measure the rate kAB of stochastic switch flipping, we
use the FFS method,20,28 which allows the calculation of rate
constants and the sampling of transition paths for rare events
in stochastic dynamical systems. Because rare events �such
as switch flipping� happen infrequently, standard simulations
have difficulty in achieving good statistical sampling. In

FIG. 3. Probability distribution ���� as a function of the order parameter �.
Inset A zooms in on the left peaks and shows how all the methods are able
to reproduce the positions and heights of the peaks. Inset B shows, on a
logarithmic scale, deviations between the different coarse-graining schemes
and the original network for the region around �=0. FFS was used to
sample ���� in this region.
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FFS, simulation pathways corresponding to the rare events
are generated efficiently via a series of interfaces, defined by
a parameter �, separating the initial and final states. At the
same time, the rate constant is calculated from the probabili-
ties of reaching adjacent interfaces. FFS is described in more
detail in Appendix C and in Refs. 20 and 28. The method can
also be used to obtain the steady-state probability distribu-
tion as a function of the � parameter, as in inset B of Fig. 3.37

Figure 4 shows the switch flipping rate kAB as a function
of the dimer-DNA association rate kon. The dimer-DNA dis-
sociation rate is adjusted to keep KD

d =1. The other param-
eters are fixed at kf =5kprod, �=0.3kprod, and KD

b =1 /5. For
the full reaction network �ORN; solid line�, the flipping rate
decreases as DNA binding becomes faster, reaching a plateau
for very fast �kon�500kprod� operator association/
dissociation. The switch is more stable when operator
binding/unbinding is rapid, suggesting that fluctuations in
these reactions play an important role in switch flipping. For
the EO method, in which protein-DNA association/
dissociation reactions are lost, the flipping rate does not de-
pend on kon �since only the equilibrium constant KD

b features
in this method and this is kept constant�. As expected, the
flipping rate for the EO method corresponds to the ORN
result in the limit of large kon. When we coarse grain over
protein-protein interactions �ED1 and ED2�, our results are
very dependent on whether the macroscopic rate equations or
the master equation is used to compute propensity functions.
For the rate equation approach �ED1�, the decrease in kAB

with kon is reproduced, but the switch is almost an order of
magnitude less stable than for the full reaction set. However,
when the chemical master equation is used to compute the
propensities, the results are remarkably accurate—the ED2
approach gives switch flipping rates in good agreement with
the full reaction set. The two methods EO-ED1 and EO-ED2,
which coarse grain over both DNA binding and dimerization
reactions, also show this behavior: for EO-ED1, where the

rate equation approximation is used, the switch flipping rate
is similarly almost an order of magnitude too high, whereas
for EO-ED2, where the master equation is used, kAB is indis-
tinguishable from that given by method EO �where dimeriza-
tion is simulated explicitly�. These results show that dimer-
DNA binding plays an important role in switch flipping for
association/dissociation rates in the physiological range and
that, for reliable coarse graining, effective propensities need
to be computed with the master equation rather than the mac-
roscopic rate equation approximation.

Figure 5 shows the equivalent result when the monomer-
monomer association rate kf is varied, adjusting kb so that
KD

d =1. The other parameters are kon=5kprod, �=0.3kprod, and
KD

b =1 /5. For the full reaction set �ORN�, kAB increases with
kf: as the dimerization reactions become faster, the switch
becomes less stable. This is in contrast to the behavior ob-
served in Fig. 4. It appears that switch flipping is hindered by
fluctuations in the monomer-dimer reactions. This apparently
somewhat counterintuitive result can perhaps be explained as
follows: protein is produced in the monomer form. To flip the
switch, it needs to dimerize and bind to the operator. If
dimerization is slow, the monomer may be degraded before it
has a chance to dimerize, and in this case it does not con-
tribute to flipping the switch. On the other hand, if dimeriza-
tion is fast, then every monomer that is produced makes a
contribution to the dimer pool and can potentially bind to the
operator, leading to switch flipping. The EO approach �elimi-
nating dimer-DNA binding� shows the same increase in kAB

with kf, but underestimates the value of kAB by about an
order of magnitude. This supports our view that fluctuations
in operator binding are important for switch flipping. On
eliminating dimerization fluctuations �ED1 and ED2�, we ob-
serve the same problem with the macroscopic rate equation
approximation as in Fig. 4—ED1 produces a flipping rate
that is too high, while ED2, where the master equation is
used, gives good agreement with the full reaction set �ORN�

FIG. 4. Switch flipping rate kAB as a function of the dimer-DNA association
rate kon, adjusting koff so that the equilibrium constant for DNA binding
remains unchanged. The switch is more stable when operator binding/
unbinding is rapid, suggesting that fluctuations in these reactions play an
important role in the switch flipping. Methods that remove these reactions
give a straight line in the figure; among those, only methods EO and EO-
ED2 are able to capture the asymptotic behavior of the curve for kon→�.
Method ED2 always gives a good approximation of the rate, while ED1
consistently overestimates it by about one order of magnitude.

FIG. 5. Switch flipping rate kAB as a function of the protein-protein asso-
ciation rate kf, adjusting kb so that the equilibrium constant for dimerization
remains unchanged. For the full reaction set, the switching rate increases
with the rate of dimerization. The EO curve consistently underestimates the
rate by approximately an order of magnitude. The methods that remove the
dimerization reactions give a constant horizontal line. Among them, only
methods EO-ED1 and EO give good results for high kf, although for EO-
ED1 we suspect this arises from a lucky cancellation of errors.
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in the high kf limit. When both protein-protein and protein-
DNA association/dissociation reactions are eliminated,
method EO-ED2 gives results in agreement with EO in the
high kf limit. Method EO-ED1 gives unexpectedly good re-
sults, in fairly close agreement with ED2 and ORN. How-
ever, given that we expect removing DNA binding to reduce
the rate constant, while using the macroscopic rate equation
approximation increases it, this is likely to be just a lucky
cancellation of errors for this particular parameter set. Figure
5 therefore demonstrates that fluctuations in the monomer-
monomer association/dissociation reactions actually disfavor
switch flipping. Moreover, as for Fig. 4, we see that the
macroscopic rate equation approximation is not reliable for
predicting switch flipping rates, while coarse graining over
the dimerization reactions using the master equation ap-
proach �ED2� becomes reliable when kf �5kprod �for this pa-
rameter set�.

We have also tested the various coarse-graining ap-
proaches for the case where both protein-protein and protein-
DNA association/dissociation reactions are fast �kf

=100kprod, kon=100kprod�. In this case, as expected, methods
EO, ED2, and EO-ED2 all give flipping rates in agreement
with the full reaction set �ORN�, while ED1 and EO-ED1 do
not. This indicates once again that in general the macro-
scopic rate equation approach is not suitable for computing
switching rates.

C. Computational Performance

We measure the computational speedup gained by the
various coarse-graining approximations. Of course, this de-
pends on the values that we choose for the rate constants.
Table IV shows the CPU time, in seconds �on an AMD Ath-
lon 1600+ processor�, required for a simulation run of length
105kprod

−1 for various values of the rate constants kon for
protein-DNA binding and kf for dimerization. In all cases,
koff and kb are adjusted so as to keep the equilibrium con-
stants KD

d and KD
b fixed. Considering the full reaction net-

work �ORN�—top row in the table—we observe that the
CPU time is much more sensitive to the dimerization rate
than to the protein-DNA binding rate. This confirms that the
SSA mostly executes monomer-monomer association and

dimer dissociation reactions, even when kon is much greater
than kf. This is because the propensity for dimerization de-
pends on �roughly� the square of the number of free mono-
mers, which is generally quite large. Protein-protein
association/dissociation is therefore the performance bottle-
neck for this system. Bearing this in mind, it is not surprising
that when we consider the next row in Table IV, we see that
removing protein-DNA association and dissociation reac-
tions �EO� is only useful when the rate constants for these
reactions are exceedingly large. Eliminating the protein-
protein association and dissociation reactions �ED1 and
ED2� results in a dramatic speedup compared to the ORN
case �rows 3 and 4�. This speedup is most impressive when
the dimerization rate is high. There is no significant differ-
ence in CPU time between the ED1 and ED2 methods, as
solving the dimerization master equation can be done ana-
lytically and takes only a negligible time. When we eliminate
both protein-DNA and protein-protein association and disso-
ciation �bottom two rows in Table IV�, we obtain a further
factor of 2–25 increase in speed. Again, there is no signifi-
cant difference in CPU time between methods EO-ED1 and
EO-ED2. In this case, the solution of the master equation in
method EO-ED2 is done numerically, and it can take up to a
few hours. However, this procedure is performed in a sepa-
rate simulation and the results are stored in a lookup table, to
be used for all the simulations of the switch. Therefore, we
do not include the time needed to generate this table in Table
IV. We conclude that, in the physiological parameter range,
some computational speedup can be obtained by removing
protein-DNA binding reactions; however, much more com-
puter time can be saved by coarse-graining protein-protein
association and dissociation reactions.

VI. DISCUSSION

Understanding cellular control systems will require the
study of very complex biochemical reaction networks. Com-
puter simulations clearly have an important contribution to
make in this area, since they can provide quantitative under-
standing of how biochemical networks work. It is clear that
in many cases �including gene regulation�, stochastic simu-
lations are required. However, the more complex the bio-
chemical network is, the more computationally expensive it
is to simulate. Eliminating fast reactions will be essential for
simulating biochemical networks of the scale and complexity
that is relevant for biological cells. It is therefore very im-
portant to understand how this can be done reliably, while
preserving the correct dynamical features of the full reaction
network. In this paper, we have made a systematic study of
the computational speedup and accuracy of a range of
coarse-graining schemes for a model gene regulatory net-
work. All gene regulatory networks involve protein-protein
and protein-DNA interactions. These tend to be rapid in com-
parison to protein production �transcription, translation, and
folding� and removal from the cell �active degradation and
dilution due to growth and division�. We try to address the

TABLE IV. CPU time �in seconds� required to simulate the system for
tsim=105kprod

−1 for different parameter sets. Simulations were performed on an
AMD Athlon 1600+ processor. The dissociation rates were scaled such that
the equilibrium constants for dimerization and operator binding were kept
constant at KD

d =1 / �5V� and KD
b =1 /V.

kf =5
kon=5

kf =100
kon=5

kf =5
kon=100

kf =100
kon=100

ORN 5.81 113 5.55 118
EO 5.25 103 5.08 70.7
ED1 0.18 0.19 1.94 1.94
ED2 0.18 0.19 1.92 1.91
EO-ED1 0.085 0.082 0.081 0.081
EO-ED2 0.083 0.082 0.081 0.084
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general question of what the consequences are of eliminating
protein-protein or protein-DNA association and dissociation
reactions from stochastic simulations of gene regulatory net-
works. We use as our case study a bistable genetic switch,
since this gives us a very sensitive readout, in the form of the
switch flipping rate, of the accuracy with which dynamical
fluctuations are reproduced by the various coarse-graining
schemes. We hope that our results will prove relevant to
simulations of real genetic switches and gene regulatory net-
works in general.

To coarse grain the reaction scheme for the model ge-
netic switch, within the context of Gillespie’s SSA, we have
used the approach described by Bundschuh et al.5 Here, the
reaction set is divided into fast and slow reactions. Chemical
species whose number is changed by the fast reactions are
designated fast. A set of slow chemical species is con-
structed, which consists of original species that were unaf-
fected by the fast reactions, together with new species,
formed from linear combinations of the fast species, such
that their number is unaffected by the fast reactions. The
slow reactions are then rewritten in terms of the set of slow
species, with effective propensity functions that depend on
averages �and in some cases variances� of the fast reaction
set, for fixed numbers of molecules of the slow species.
These averages may be obtained by explicit or numerical
solution of the chemical master equation for the fast reac-
tions. Alternatively, one may make the approximation that
the averages are well represented by the steady-state solu-
tions of the corresponding macroscopic rate equations for the
fast reactions. In either case, having computed the effective
propensity functions, one simply implements the SSA for the
slow reaction set, propagating the set of slow variables, using
these effective propensities.

For the model genetic switch, we investigated the effects
of eliminating protein-protein association/dissociation reac-
tions, and/or protein-DNA association/dissociation reactions,
from the full reaction set. We also compared the macroscopic
rate equation approximation to the master equation approach
for computing the effective propensities. Using all the
coarse-graining schemes, we computed the steady-state prob-
ability distribution as well as spontaneous switch flipping
rates. We found that all the coarse-graining methods gave
good agreement with the full reaction network for the steady-
state probability distribution, although small deviations were
observed around the unstable steady state. However, dra-
matic differences were observed in the switch flipping rates
computed using the different coarse-graining schemes.
Elimination of protein-DNA association/dissociation in-
creased the stability of the switch �but agreed with the full
reaction set in the fast reaction limit�. In contrast, elimination
of protein-protein association/dissociation decreased the sta-
bility of the switch �again, agreeing with the full reaction set
in the fast reaction limit�. However, over most of the range of
parameters tested, protein-protein association/dissociation re-
actions can be eliminated with minimal effect on switching
rates and with the advantage of an impressive computational
speedup. This result is likely to prove very useful when
simulating complex and computationally expensive net-

works. The implications of these observations for the physics
of the switching mechanism for this model switch will be
investigated in a future publication.30

We also observed that the macroscopic rate equation ap-
proximation does not produce reliable switching rates, even
though the steady-state probability distribution is reasonably
well reproduced. Typically, switching rates computed using
the macroscopic rate equation approximation are an order of
magnitude too high, even in the limit of fast reactions. In
contrast, when the chemical master equation is used to com-
pute the effective propensities, results are in excellent agree-
ment with the full reaction set for fast reaction rates. These
results serve as a warning that care must be taken in how
coarse graining is applied. As an example, the lysogeny-lysis
switch of bacteriophage lambda is extremely stable to
fluctuations,38,39 a fact that computational modeling �using
macroscopic approximations� has thus far been unable satis-
factorily to explain.39,40 In such a case, careful coarse grain-
ing is crucially important.

Our results show that under certain biologically relevant
conditions fast reactions can be eliminated while preserving
the correct dynamical characteristics of the system, even
when highly sensitive fluctuation-driven quantities such as
switch flipping rates are considered. This is very encouraging
for the simulation of more complex reaction networks, and it
would be interesting to apply these approaches to more com-
plicated genetic switches, and also for other gene regulatory
networks where dynamical fluctuations are important. We
hope that this work will be of use as a “tutorial” in designing
and implementing coarse-graining schemes and that it may
aid in pointing the way to accurate and efficient coarse-
grained simulations of a wide variety of interesting and im-
portant biochemical networks.
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APPENDIX A: SOLVING THE OPERATOR BINDING
MASTER EQUATION

In the EO approach, instead of solving the macroscopic
rate equation for operator binding, one can solve the corre-
sponding chemical master equation. However, as the opera-
tor states can be present only in copy number 0 or 1, the state
space is extremely limited, and the solution of the master
equation coincides with the solution for the rate
equation—as we demonstrate here.

The master equation for reactions �b� in Table I is the
following:
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�

�t
p�nA2

,nB2
� = − p�nA2

,nB2
��konnOnA2

+ konnOnB2
� − p�nA2

,nB2
��koffnOA2

+ koffnOB2
� + p�nA2
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�koff�nOA2

+ 1�
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�kon�nO + 1��nA2
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+ 1�kon�nO + 1��nB2
− 1� .

�A1�

Only three states are possible: �O=1,A2,B2�, �OA2=1, A2

−1,B2�, and �OB2=1,A2, B2−1�. This greatly simplifies Eq.
�A1�:

p�nA2
,nB2

�kon�nA2
+ nA2

�

= p�nA2
− 1,nB2

�koff + p�nA2
,nB2

− 1�koff,

p�nA2
,nB2

− 1� = p�nA2
,nB2

�konnB2
, �A2�

p�nA2
− 1,nB2

� = p�nA2
,nB2

�konnA2
.

The solutions of Eq. �A2� can be easily computed:

	nO

Â2,B̂2

ME
= p�nA2

,nB2
� =

1

1 + �KD
b �−1�nA2

+ nB2
�

,

	nOA2
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RE
= p�nA2

,nB2
− 1� =

�KD
b �−1nB2

1 + �KD
b �−1�nA2

+ nB2
�

.

APPENDIX B: SOLVING THE DIMERIZATION MASTER
EQUATION

Following the approach described in Ref. 5, the master
equation for the reaction X+X�X2, with rate constants kf

for association and kb for dissociation, with system volume
V, and given a total number or monomers+dimers nXT

,
where nXT

=nX+2nX2
, is the following:

�

�t
p�nX2

�nXT
� = kb�nX2

+ 1�p�nX2
+ 1�nXT

�

− � kf�nXT
− 2nX2

��nXT
− 2nX2

− 1�

2V
+ kbnX2



�p�nX2

�nXT
�

+
kf�nXT

− 2nX2
+ 2��nXT

− 2nX2
+ 1�

2V

�p�nX2
− 1�nXT

� . �B1�

Equation �B1� can be solved numerically in steady state
�starting from an initial guess nX2

=0� to obtain the exact
probability distribution for the number of dimers nX2

for a
given total number nXT

of monomers+dimers. The probabil-

ity distribution for the monomer number can be trivially ob-
tained from the dimer distribution noting that p�nX �nXT

�
=nXT

−2p�nX2
�nXT

�. Equation �B1� is solved for a range of
values of nXT

; results are stored in lookup tables, which are
later used to compute effective propensities for the coarse-
grained simulations.

APPENDIX C: FORWARD FLUX SAMPLING

FFS �Refs. 20, 28, and 29� is a method for sampling
spontaneous transitions between two regions in phase spaces
A and B, and for computing the rate constant for such tran-
sitions. A and B are defined by an order parameter �, such
that �	�A in A and ���B in B. A series of nonintersecting
surfaces �0 , . . . ,�n are defined in phase space, such that �0

=�A and �n=�B, and such that any path from A to B must
cross each interface, without reaching �i+1 before �i. The

transition rate kAB from A to B is the average flux 
̄A,n of
trajectories reaching B from A. This can be decomposed in
the following way, as first proposed in Ref. 41:

kAB = 
̄A,n = 
̄A,0P��n��0� = 
̄A,0�
i=0

n−1

P��i+1��i� . �C1�

Here, 
̄A,0 is the average flux of trajectories leaving A in the
direction of B and P��n ��0� is the probability that a trajec-
tory that crosses �0 in the direction of B will eventually
reach B before returning to A. On the right-hand side,
P��i+1 ��i� is the probability that a trajectory which reaches
�i, having come from A, will reach �i+1 before returning to
A. In Eq. �C1�, the flux of trajectories from A to B is split
into the flux across the first interface �0, multiplied by the
probability of getting from that interface to B, without re-
turning to A. This last term is then factorized in a product of
conditional probabilities of reaching the next interface �be-
fore returning to A�, having arrived at a particular interface
from A. We note that this does not imply a Markov
approximation.28

The flux 
̄A,0 is obtained by running a simulation of the
system in the “basin of attraction” of A and counting how
many times the trajectory in phase space crosses �0 coming
from A. At the same time, one generates a collection of phase
space points that correspond to the moments that the trajec-
tory reached �0, moving in the direction of B. This collection
of points is then used as the starting point for a calculation of
P��1 ��0�. A point from the collection is chosen at random
and used to initiate a new trajectory, which is continued until
either A or �1 is reached. If �1 is reached, the trial is desig-
nated a “success.” This is repeated many times, generating
an estimate for P��1 ��0� �the number of successes divided
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by the total number of trials�, plus a new collection of points
at �1 that are the end points of the successful trial runs. This
collection of points is used to initiate trial runs to �2, gener-
ating an estimate for P��2 ��1� and a new collection at �2,
etc. FFS also allows sampling of the trajectories correspond-
ing to the transition �the transition path ensemble� by tracing
back to A paths that eventually arrive in B. Further details on
FFS are given in Refs. 20 and 28. The use of FFS to compute
stationary probability distributions is demonstrated in
Ref. 37.
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