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Living cells are continually exposed to environmental signals that vary in time. These signals
are detected and processed by biochemical networks, which are often highly stochastic. To under-
stand how cells cope with a fluctuating environment, we therefore have to understand how reliably
biochemical networks can transmit time-varying signals. To this end, we must understand both
the noise characteristics and the amplification properties of networks. In this manuscript, we use
information theory to study how reliably signalling cascades employing autoregulation and feedback
can transmit time-varying signals. We calculate the frequency-dependence of the gain-to-noise ratio,
which reflects how reliably a network transmits signals at different frequencies. We find that the
gain-to-noise ratio may differ qualitatively from the power spectrum of the output, showing that
the latter does not directly reflect signaling performance. Moreover, we find that auto-activation
and auto-repression increase and decrease the gain-to-noise ratio for all of frequencies, respectively.
Positive feedback specifically enhances information transmission at low frequencies, while negative
feedback increases signal fidelity at high frequencies. Our analysis not only elucidates the role
of autoregulation and feedback in naturally-occurring biological networks, but also reveals design
principles that can be used for the reliable transmission of time-varying signals in synthetic gene
circuits.

I. INTRODUCTION

Living cells constantly have to respond and adapt to
a changing environment. In some cases, such as in re-
sponse to a changing sugar concentration [1], a cell may
wish to integrate out rapid variations and only respond to
slow variations of the environmental signal, while in other
cases, such as osmo adaptation [2] or bacterial chemotaxis
[3], the cell needs to do the opposite — respond to rapid
but not slow variations (adaptation). Indeed, to under-
stand how cells cope with a fluctuating environment, we
have to understand how cells transduce time-varying sig-
nals. Cells detect, process, and transduce signals via bio-
chemical networks, which are the information processing
devices of life. However, experiments in recent years have
demonstrated that biochemical networks are often highly
stochastic [4, 5]. This raises the question how reliably
biochemical networks can transmit time-varying signals
in the presence of noise.

Interestingly, biochemical networks exploit commonly
recurring architectures [6, 7], such as autoregulation, cas-
cades, and feedback, to process signals. These network
motifs often implement signal amplification in order to
raise the level of the input signal relative to the noise.
Amplification can be characterised by the gain, the fold-
change in the signal amplitude. However, it is important
to recognise that such amplification can not only increase
the levels of the desired signal, but can also amplify the
noise itself. Therefore, to understand the possibilities
and limitations of different network motifs for enhancing
the fidelity of signal transduction, we need to understand
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how both the signal and the noise are propagated through
these motifs. Specifically, information theory indicates
that the reliability of signal transmission is determined
by the ratio of the gain of the network to the total noise
in the output signal — the gain-to-noise ratio. More-
over, to assess how reliably signals of different temporal
characteristics are transduced, we have to understand the
frequency dependence of the gain and the noise. Impor-
tantly, we expect that different network architectures will
affect the frequency-dependence of the gain and the noise
differently, which means that we have to study both these
quantities. In this manuscript, we study the frequency-
dependence of the gain-to-noise ratio for simple cascades,
and for cascades employing autoregulation and feedback.
This allows us to elucidate how autoregulation and feed-
back can shape the frequency range over which signals
can be transduced reliably.

Information theory provides a formalism for quanti-
fying the reliability of information transmission in the
presence of noise [8]. A natural measure for the fidelity
of signal transmission from an input signal S to an output
signal X (the network response) is the mutual informa-
tion between S and X, which is defined as

I(S,X) = H (S)−H (S|X)

= −
∫
dS p (S) log [p (S)]−

(
−
∫
dX p (X)

∫
dS p (S|X) log [p (S|X)]

)
. (1)

Here, p(S) and p(X) are the probability distributions
of possible input and output signals respectively, and
p (S|X) is the conditional probability of S once X is spec-
ified. The mutual information quantifies the reduction in
entropy of (or uncertainty about) the signal after one ob-
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tains knowledge of the network response, averaged over
all possible responses. In other words, I(S,X) is how
much we learn (on average) about S by measuring X.
For a deterministic system, every S leads to a unique X
(we assume no degeneracy). Measuring X thus precisely
specifies S, such that the uncertainty in S after a mea-
surement of X is H(S|X) = 0 and I (S,X) = H (S).
However, in the presence of noise in the network each
input S will lead to a distribution of possible outputs X.
As a result, an observed X can correspond to multiple
S values and I (S,X) ≤ H (S). For completely uncorre-
lated S and X, I(S,X) = 0. By construction, the mutual
information is symmetric, such that I (S,X) = I (X,S).

Recently, the mutual information has been used to
study the reliability of information transmission in bio-
chemical networks [9–12]. However, these studies con-
sidered only the steady-state response of a network to
a distribution of constant input signals, which do not
change on the timescale of the network response. Yet, in
many biological systems, it cannot be assumed that the
input signal is constant on the timescale of the network
response.

Indeed, in many systems the message is encoded in the
temporal dynamics of the input signal. A well-known ex-
ample is bacterial chemotaxis, where the concentration
of the intracellular messenger protein depends not on
the steady-state ligand concentration, but rather on the
change of this concentration in the recent past [13] — the
response of the network thus depends on the history of
the input signal. Moreover, the extracellular signal may
be encoded in the temporal dynamics of the intracellu-
lar signal transduction pathway. An interesting example
is provided by the rat PC-12 system: while stimulation
with a neuronal growth factor gives rise to a sustained
response of the Raf-Mek-Erk pathway, stimulation by an
epidermal growth factor gives rise to a transient response
of this pathway [14]. In all these cases, the message is en-
coded not in the concentration of some chemical species
at a given moment in time, but rather in its concentra-
tion as a function of time. This means that to under-
stand how reliably the network can transmit informa-
tion, we need to know how accurately an input signal as
a function of time — the input trajectory s (t) — can be
mapped onto an output trajectory x (t). We thus need
to understand the mutual information between the two
trajectories, I (s (t) , x (t)).

The ability of a biochemical network to transduce a
time-varying input signal depends on the correlation time
of the input signal and the architecture and response
dynamics of the network. An instructive example is
provided by the chemotaxis network of the bacterium
Escherichia coli. This network employs integral nega-
tive feedback [15], as a result of which the intracellular
messenger protein can adapt to a constant extracellu-
lar ligand concentration. This means that the signalling
network cannot respond to changes in ligand concentra-
tion that occur on time scales longer than the adap-
tation time. At the other end of the frequency spec-

trum, changes in the messenger protein that occur on
time scales shorter than the motor switching time will
be integrated out; indeed, the network cannot respond
reliably to rapidly varying input signals [16]. The ar-
chitecture and the response dynamics of the processing
network thus determines the frequency range over which
signals can be transduced reliably.

Recently, we have applied information theory to bio-
chemical networks and studied the mutual information
between in- and output trajectories, I (s (t) , x (t)) [16].
Here, we apply this framework to study the propaga-
tion of time-varying signals through a number of net-
work motifs—cascades, autoregulation, and feedback. It
is known that for constant signals (or, to be more precise,
signals that do not vary on the time scale of the network
response time), the mutual information decreases as a
function of cascade length [11]. The same also holds true
for time-varying signals. Indeed, the data-processing in-
equality states that in a cascade with n nodes, the in-
formation about the input encoded in the signal at node
i + 1 cannot be greater than the information at node i.
Once lost, information about the input cannot be recov-
ered later in the cascade. Simply increasing the length
of a signalling cascade therefore can never increase the
transmitted information. Conversely, maximising the to-
tal transmitted information cannot be the driving force
behind the evolution of such cascades.

Cascades, however, often employ autoregulation and
feedback, which can be used to shape the response of
the network to signals of different frequencies. Impor-
tantly, autoregulation and feedback affect not only the
frequency-dependent gain, which describes how strongly
an input signal at a particular frequency is amplified
in the absence of any biochemical noise, but also the
frequency-dependence of the noise. While the frequency-
dependence of the gain [17–19] and the noise [20] have
been studied separately, the frequency-dependence of
their ratio, the gain-to-noise ratio, has not. However, it
is the gain-to-noise ratio which determines how reliably
an input signal at a particular frequency can be trans-
mitted [16]. In fact, as we will show, autoregulation and
feedback affect the frequency-dependence of the gain and
the noise differently, which means that it is essential to
study these quantities together.

In this manuscript, we study the frequency-dependent
gain-to-noise ratio using a Gaussian model. In the next
section, we describe this model, and how we can use it
to compute the frequency-dependent gain-to-noise ratio
and the information transmission rate, which is given by
the integral of this ratio over all frequencies [16]. In sec-
tion Results we discuss the frequency-dependent gain-to-
noise ratio of simple cascades, and cascades employing
feedback and autoregulation. Our results highlight the
idea that the output power spectrum is not a direct mea-
sure for the information content of the output signal—
the output power spectrum can differ qualitatively from
the spectrum of the gain-to-noise ratio. We also show
(Fig. 7) that positive regulation tends to increase the
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gain-to-noise ratio, while negative regulation tends to de-
crease it. Moreover, we show that the frequency spectra
of motifs with negative feedback can exhibit windows in
which the gain-to-noise ratio is increased; these motifs
can thus act as band-pass filters for information trans-
mission. Finally, we discuss some of the implications of
our findings and the limitations of our analysis.

II. METHODS

We consider information transmission through a bio-
chemical network from an input signal s (t) to an out-
put signal x (t). The dynamics of the network can be
described mathematically by a set of coupled Langevin
equations [21] for the signal, response and an arbitrary
number of intermediate components vi, in vector form v.
In using the Langevin representation we assume that the
copy number of each component is large such that the
discrete number of molecules can be approximated by a
continuous concentration.

ds

dt
= f+s (s) + f−s (s) + Γ (t) (2a)

dv

dt
= f+

v (s,v, x) − f−v (s,v, x) + ηv (t) (2b)

dx

dt
= f+x (s,v, x) − f−x (s,v, x) + ηx (t) . (2c)

Here, f+i and f−i contain all the reactions involving the
production and degradation of component i, respectively.
f+s and f−s only depend on s, so that we restrict our
analysis to networks that do not feed back onto s it-
self. In these cases, the gain-to-noise ratio is indepen-
dent of the input signal [22], as discussed in more de-
tail below Eqn. 10. Γ (t) is a stochastic driving pro-
cess that serves to define the ensemble of possible in-
put signals. The various noise sources ηi are taken to
be independent and Gaussian-distributed [22–24], such

that 〈ηi (t) ηj (t′)〉 =
〈
|ηi|2

〉
δijδ(t − t′). Here, we note

that the assumption of independent noise sources is only
made to simplify the analysis. (Anti)-correlations be-
tween noise sources can affect noise propagation [22],
and can be included by a straightforward extension of
the present discussion. Furthermore, we assume that〈
|ηi|2

〉
=
〈
f+i
〉

+
〈
f−i
〉

= 2
〈
f+i
〉

and
〈
|Γ|2

〉
= 2 〈f+s 〉

[25], the sum of the production and degradation terms.
We introduce the vector y = (s;v;x) and η =

(Γ,ηv, ηx) and assume the network has a steady state
〈y〉. Linearizing around this steady state we obtain

dỹ

dt
= J|y=〈y〉ỹ + η. (3)

Here ỹi = yi−〈yi〉 is the deviation of the concentration of
component i from its steady-state value, 〈yi〉, and J is the

Jacobian evaluated at the steady state [26]. Jij describes
the response of the component i to small changes in com-
ponent j, while keeping all other components at their
steady-state levels. The diagonal element Jii = −τ−1i is
the relaxation time or dissipative time scale of component
i; it describes the time scale on which component i relaxes
back to its steady-state value after a perturbation. After
linearization, the architecture of the network is encoded
in the structure of the Jacobian matrix (see Fig. 1): the
diagonal terms correspond to autoregulation, the lower
triangular part to downstream (feedforward) regulation
and the upper triangular part to upstream (feedback)
regulation. Since we restrict ourselves to systems with-
out feedback from the network to the signal itself, we
require that all elements on the first row of J are zero
but for Jss.







00Jss

Feed
forward

Linear
cascade

A
utoregulation

Feed
back

FIG. 1. The Jacobian matrix. The entries of the
Jacobian matrix encode the structure of the reaction
network.

We take as our input signal the variations s̃. A linear
system does not change the frequency of the transmit-
ted signal, but only the amplitude and the phase. Since
Eqn. (3) is linear in ỹ, we can calculate exactly the power
spectra of the network components [25],

P = [iωI− J]
−1

Ξ
[
−iωI− JT

]−1
, (4)

where Pij(ω) =
〈
Ỹi(ω)Ỹj(−ω)

〉
is the (cross-)power

spectrum of ỹi and ỹj , Ỹi (ω) is the Fourier transform
of ỹi (t), I is the identity matrix, and Ξ is the noise ma-

trix with entries Ξij = 〈ηi(ω)ηj(−ω)〉 =
〈
|ηi|2

〉
δij . The

power spectrum is a commonly used tool to study time-
varying signals, and describes how the total power of a
signal is distributed over different frequencies. Power at
low frequencies is related to slow variations of the sig-
nal, while power at high frequencies corresponds to rapid
fluctuations. The integral of the power spectrum over all
frequencies equals the total variance of the signal.

The information transmission rate for time-varying sig-
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nals is [27, 28]

lim
T→∞

I (s (t) , x (t))

T
= R (s (t) , x (t))

= − 1

2π

∫ ∞

0

dω ln [1− Φsx(ω)] , (5)

where T is the length of the trajectory and Φsx(ω) is the
coherence function, defined as

Φsx(ω) =
|Psx(ω)|2

Pss(ω)Pxx(ω)
. (6)

Φsx(ω) is a measure of the average correlation between
the in- and output signals in the frequency domain. For
completely independent in- and output signals, Φsx(ω) =
0, while for a noiseless system Φsx(ω) = 1.

The power spectrum of the output signal, Pxx(ω), can
be decomposed as

Pxx(ω) ≡ Σ(ω) +N(ω), (7)

≡ g2(ω)Pss(ω) +N(ω). (8)

Here, Σ(ω) ≡ g2 (ω)Pss(ω) is the transmitted signal,

g2(ω) ≡ |Psx(ω)|2 /P 2
ss(ω) is the frequency-dependent

gain, Pss(ω) is the power spectrum of the input signal
and N(ω) is the frequency-dependent noise. With these
definitions, the coherence function, Eq. 6, can be recast
as

Φsx(ω) =
Σ(ω)

N(ω) + Σ(ω)
, (9)

and the mutual information rate can be rewritten as [16]

R (s (t) , x (t)) =
1

2π

∫ ∞

0

dω ln

[
1 +

g2(ω)

N(ω)
Pss(ω)

]
.

(10)
We see that the information transmission rate depends
on the power spectrum of the input signal, Pss(ω), and
on the gain-to-noise ratio g2(ω)/N(ω).

As discussed in Ref. [22], in a biological system the
reaction that detects the input signal can, depending on
the nature of the detection reaction, introduce significant
correlations between the variations in the input signal
and the intrinsic noise of the reactions that constitute
the processing network. These correlations are a conse-
quence of the molecular character of the components and
are thus unique to biochemical networks. If the detec-
tion reaction does not introduce correlations, then Eqn.
8 is the spectral-addition rule [22]. The noise N(ω) is
then the intrinsic noise of the processing network and
also g2(ω) only depends on properties of the processing
network. On the other hand, if the detection reaction
does introduce correlations, then the output power spec-
trum Pxx(ω) can be written in the form of Eqn. 8, but
then N(ω) and g2(ω) depend not only on characteris-
tics of the processing network, but also on the statistics
of the input signal; conversely, the variations of the in-
put will also be affected by the noise in the processing

network[22]. In what follows below, we assume for sim-
plicity that the spectral-addition rule holds, which means
that the gain, noise and gain-to-noise ratio are indepen-
dent of the input signal, and that the input does not need
to be specified.

Applying the linearization procedure outlined above
may, in general, qualitatively change the dynamics of
the network being considered. However, previous studies
[9, 29] have shown that the Linear Noise Approximation
provides an accurate description of many systems if the
average copy numbers are of order 10 molecules or more.
For the networks considered in this paper we also com-
pared the power spectra calculated in the linear approx-
imation with the results of stochastic simulations per-
formed with Gillespie’s algorithm [30], and again found
good agreement when protein copy numbers are large
(see S1). We therefore expect that the linear analysis
presented in this paper provides an accurate description
of the signalling characteristics of these networks.

III. RESULTS

First we study a simple cascade, where “simple” means
that we consider a cascade where each component only
regulates the activity of the next component in the cas-
cade; a “simple” cascade is thus a cascade without au-
toregulation, feedback or feedfoward. We analyse this
network in detail such that it can serve as an instructive
example of the method described above. In addition, we
will highlight general features of the results which recur
in more complex networks. We then discuss network mo-
tifs including autoregulation and negative feedback loops,
which are commonly observed in biochemical networks.

To understand the effects of autoregulation and feed-
back we will compare information transmission in these
motifs to a corresponding simple cascade with the same
number of components but without the additional regu-
lation. In order to perform such a comparison of different
motifs on an equal footing we constrain the average pro-
duction rate of every component such that these are equal
in the networks under comparison. We argue that from
a biological perspective the rate of protein production is
a more significant constraint on network design than av-
erage protein copy number, since the latter only depends
on the ratio of the synthesis and degradation rate, while
it is the absolute synthesis and degradation rate that
determines the cost of having a protein at a particular
copy number. This constraint also enforces that the noise

strength at each level of the cascade
〈
|ηi|2

〉
= 2

〈
f+i
〉

is

the same in the motifs being compared. When compar-
ing two systems with many parameters, equalising pro-
duction rates is not a sufficient constraint to uniquely
specify all parameter values. To reduce this potential
parameter space we will (unless otherwise stated) hold
constant as many of the network parameters as possible.
For brevity we will only discuss networks in which all reg-
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ulation occurs via the production reactions, with linear
degradation of each component. However, our results are
qualitatively unchanged if we instead consider regulation
via protein degradation.

We characterise information transmission through
these motifs in terms of the gain, noise and gain-to-
noise ratio. Since we assume that the spectral-addition
rule holds [22], these quantities are intrinsic, signal-
independent properties of the network. We also wish
to highlight differences between the information trans-
mission characteristics of the network, as determined by
the gain-to-noise ratio, and the output power spectrum
Pxx(ω), since this is commonly discussed in studies of
signal transmission. Since Pxx(ω) depends not only on
the processing network but also on the input signal (see
Eq. 8), we must therefore specify Pss(ω); for this pur-
pose we assume, for convenience, that the input signal
s(t) is generated via a Poisson birth-death process as in
Eqn. 11a (The simple cascade).

A. The simple cascade

Initially we study a simple cascade with a single in-
termediate component. Extension of the cascade with
more intermediate components is straightforward. The
appropriate reaction scheme is

ds

dt
= ks − µss+ Γ (t) (11a)

dv

dt
= kvs− µvv + ηv (t) (11b)

dx

dt
= kxv − µxx+ ηx (t) . (11c)

We reiterate that we assume that there are no cross cor-
relations in the noise; 〈ηα(t)ηβ(t′)〉 = δαβδ(t − t′) and
〈Γ (t) ηα (t′)〉 = 0. This means that the reactions are of
the type s → s + v and v → v + x, and not s → v and
v → x, respectively; put differently, the firing of a reac-
tion does not consume a molecule of the reactant, and
hence does not affect the fluctuations of the up-stream
component [22]. In the Discussion section, we will briefly
address some of the limitations of this assumption.

Fourier transformation gives

X̃(ω) =

signal︷ ︸︸ ︷
kxkvS̃

(iω + µx) (iω + µv)

+
kxηv(ω)

(iω + µx) (iω + µv)
+

ηx(ω)

iω + µx︸ ︷︷ ︸
noise

. (12)

As indicated, we can identify the components of the out-
put which are due to the input S̃ (“signal”) and compo-
nents which are due to intrinsic noise in the network. We

obtain for the power spectrum of x,

Pxx(ω) =
〈
X̃X̃∗

〉
=

g2(ω)︷ ︸︸ ︷
k2x

(ω2 + µ2
x)

k2v
(ω2 + µ2

v)

Pss(ω)︷ ︸︸ ︷
2ks

(ω2 + µ2
s)

+
k2x

(ω2 + µ2
x)

2kv 〈s〉
(ω2 + µ2

v)︸ ︷︷ ︸
Nv→x(ω)

+
2kx 〈v〉

(ω2 + µ2
x)︸ ︷︷ ︸

Nx(ω)︸ ︷︷ ︸
N(ω)

(13)

Fig. 2A shows the output power spectrum of this net-
work Pxx(ω) (red), as well as its decomposition into the
noise N(ω) (green) and the transmitted signal Σ(ω) =
g2(ω)Pss(ω) (black solid) (see also Eqn. 8). Simple cas-
cades are characterised by a number of “knee” frequencies
(vertical dashed), corresponding to the characteristic re-
laxation rates of the different components of the network
(in this case µs, µv and µx). These knee frequencies are
the inverse of the response times of the components —
e.g. µv = τ−1v .

In order for the processing network to track variations
in the input s on a time scale ω−1, the network should
be able to respond on this time scale. If any component
of the processing network has a longer response time,
this variation in s will be filtered. This filtering can be
observed in the transmitted signal Σ(ω), where at fre-
quencies above the first knee frequency, Σ(ω) scales with
ω−2 and for every consecutive knee frequency, Σ(ω) de-
cays with an additional factor ω−2 (Fig. 2A). In effect
each level of the cascade acts as a low-pass filter, because
the incoming signal is averaged over the protein response
time. Mathematically, the transmitted signal Σ(ω) can
be factored into the input signal Pss(ω) (black dashed),
and the total gain g2(ω) (Fig. 2B, black), which is inde-
pendent of the input signal (because we assume that the
network does not feed back onto s). Moreover, the total
gain of the network is the product of the gain of each
cascade step: g2(ω) = g2s→v(ω)g2v→x(ω); decaying as ω−4

for ω � µv, µx (Fig. 2B). Consequently, the transmitted
signal Σ(ω) decays as ω−6 for ω � µs, µv, µx.

Since we assume that there are no cross-correlations
between the different noise terms, the total noise N(ω)
(green line in Figs. 2A and 2B) is given by the noise-
addition rule [22, 31], which means that N(ω) is sim-
ply given by the sum of two independent contributions,
Nv→x(ω) (Fig. 2B, green dotted) and Nx(ω) (green
dashed) (see Eqn. 13). Here, Nx(ω) is the noise in the
concentration of x that arises from the intrinsic stochas-
ticity in the production and decay events of x; Nx(ω)
would be the total variance in the concentration of x
if v, the input for x, would not vary over time. How-
ever, the upstream component v does vary in time, not
only because it is driven by variations in the input s, but
also because it fluctuates spontaneously due to the noise
in its synthesis and decay events. This noise is propa-
gated to x. Its contribution to the total noise power of
x is Nv→x(ω), which is given by the noise in v, Nv(ω),
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multiplied by how much this noise is amplified at the
level of x, given by g2v→x(ω): Nv→x(ω) = g2v→x(ω)Nv(ω),
where g2v→x = k2x/(ω

2 + µ2
x). The “extrinsic” contri-

bution to the noise in x, Nv→x, decays as ω−4 since
the noise in v, decaying as ω−2, is filtered by the finite
lifetime of the protein x. The “intrinsic” contribution,
Nx(ω), decays as ω−2, meaning that for ω � µv, µx,
N(ω) ≈ Nx(ω). Hence, while the transmitted signal
Σ(ω) decays as ω−6 for ω � µs, µv, µx, the noise N(ω)
decays as ω−2 (Fig. 2B, green solid). As a result, for fre-
quencies ω � µs, µv, µx, the transmitted signal Σ(ω) is
completely obscured by the noise and the output Pxx(ω)
is simply given by the noise N(ω) (Fig. 2A).

Finally, the gain-to-noise ratio (Fig. 2B, red) is

g2(ω)

N(ω)
=

kvkxµv
2 〈s〉 [ω2 + µ2

v + µvkx]
. (14)

This expression shows that the simple cascade effectively
acts as a low-pass filter for information, meaning that it
cannot reliably respond to signals that vary (much) faster
than a characteristic cut-off frequency ω2

c = µv (µv + kx).
We note that the gain-to-noise ratio is independent of µx,
since both the gain and the noise have the same func-
tional dependence on µx. This is a general feature of
the biochemical networks we will study: degradation of
the output species occurs independently of the upstream
components, and therefore provides no additional infor-
mation about the input [16].

B. Autoregulation

In this section we consider direct feedback of a compo-
nent onto its own production, as indicated in Fig. 3A and
4A. Autoregulation is one of the most common forms of
regulation in signalling networks. It is well known that
negative autoregulation speeds up the response time of
components, which can also change the response time of
the complete signalling cascade [32]. Positive autoreg-
ulation slows down the response time and can lead to
bistability [32, 33].

Autoregulation alters only the diagonal entries of the
Jacobian matrix (Fig. 1). This means that the character-
istic timescale for dissipation of small fluctuations — the
response time — changes, which is as expected. For the
steady state of the system to be stable we require that the
diagonal of the Jacobian has only negative terms. Thus
autoregulation cannot qualitatively change the form of
the output power spectrum Pxx(ω). In fact, once lin-
earized, the dynamics of a network with autoregulation
is equivalent to that of a simple cascade with a different
degradation rate. In terms of information transmission,
however, this is not always true, as we shall see below.
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FIG. 2. Typical power spectra for a linear
cascade. A: The power spectra of x and s, Pxx(ω) and
Pss(ω), together with the signal Σ(ω) and noise N(ω)
components of the output, for the two-step cascade
shown in Eqn. 11. B: The frequency-dependent gain
g2(ω), noise N(ω) and gain-to-noise ratio (GNR). Thin
green lines indicate the two noise contributions,
Nv→x(ω) (dotted) and Nx(ω) (dashed). Parameters:
ks = 10, kv = 10, kx = 1, µv = 0.5 and µx = 5. Vertical
lines indicate the degradation rates of the three
components.

1. Autoregulation at the response x does not affect
information transmission

We first consider autoregulation by the network output
x on its own production, as depicted in Fig. 3A. For this
motif the relaxation time of x is given by τx = −J−1xx =[
µx −

〈
∂
∂xf(x)s

〉]−1
, where f(x) describes the effect of

the feedback of x onto its own production (see Eqn. 15
in Fig. 3B) For negative regulation |Jxx| > µx, while
for positive regulation |Jxx| < µx. Negative (positive)
regulation therefore reduces (increases) the response time
of x to changes in s, compared to the equivalent simple
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cascade network for which f(x) =constant. In the output
power spectrum Pxx(ω) this change in timescale appears
as a shift in the knee frequency corresponding to τ−1x . A
corresponding change can also be seen in both the gain
and noise (see Eqn. 16 in Fig. 3C).

However, despite these changes in the response time,
we find that the gain-to-noise ratio for an autoregulatory
network (Eqn. 16c in Fig. 3B) is identical to the gain-to-
noise ratio for a simple (two-component) cascade. The
effect of changing Jxx on the noise and gain is identical
(Eqn. 16a,b in Fig. 3B) and therefore cancels in the gain-
to-noise ratio (as we also saw previously for the effect of
µx in the simple cascade, Eqn. 14). The autoregulation
by x of its own production alters the timing of produc-
tion events. However, our constraint of equal average
production means that the mean rate of this process in
the two cascades is the same. Moreover, in the linearized
regime the production of x is an identical Poissonian pro-
cess in both simple and autoregulated cascades. Hence,
to the extent that the system can be linearized, autoreg-
ulation at the output of a network does not affect in-
formation transmission. It is conceivable that non-linear
effects cause autoregulation of the output component to
affect information transmission, but a comparison of our
analytical results discussed here with results of Gillespie
simulations of the full system, suggest that the lineariza-
tion approximation is surprisingly accurate (see also S1).

2. Positive autoregulation within the cascade increases the
gain-to-noise ratio

In a cascade with autoregulation by an intermediate
component the story is different (Fig. 4A and Eqn. 17 in
Fig. 4B). First, we reiterate that since we compare the
simple cascade and the cascade with autoregulation on
the basis of equal average production and degradation
rates, the noise strengths

〈
η2x
〉

and
〈
η2v
〉

are the same
for both cascades. However, as noted above the effec-
tive relaxation timescale of component v, τv = −J−1vv
(Eqn. 3), decreases with negative autoregulation and in-
creases with positive autoregulation. This again leads
to a reduction (increase) in both the gain (Fig. 4D, top
left) and the noise (Fig. 4D, top right) of the network for
negative (positive) autoregulation, as has been reported
previously [20, 34]. However, unlike the case of autoreg-
ulation of the output x, the gain-to-noise ratio (Fig. 4D,
bottom left) can change as a result.

Negative autoregulation (Fig. 4D, green) leads to a de-
crease in the response time compared to a simple cas-
cade, corresponding to an increase in |Jvv|. This leads
to a decrease in the gain of the autoregulated component
g2s→v(ω) = J2

vs/(ω
2 + J2

vv) at frequencies ω < |Jvv|. Neg-
ative autoregulation therefore tends to suppress slowly
varying signals relative to the simple cascade. Noise
which is introduced upstream of or at the autoregulated
component is filtered by the feedback-modified gain in
exactly the same way as the signal, whereas noise in-

troduced downstream of v is unaffected. Hence negative
autoregulation reduces both the total gain of the net-
work, which is the product of the individual reaction
gains g2(ω) = g2s→v(ω)g2v→x(ω), and the noise trans-
mitted from v to x, Nv→x(ω) = g2v→xNv(ω), relative
to the simple cascade. However, noise in the produc-
tion and degradation of x is unchanged relative to the
simple cascade. Since the total noise (Eqn. 19b in
Fig. 4C) is the sum of independent noise contributions,
N(ω) = Nx(ω)+Nv→x(ω), the total noise decreases by a
smaller factor than the gain, and the gain-to-noise ratio
decreases compared with the simple cascade.

Conversely, positive autoregulation (Fig. 4D, red) in-
creases the relaxation time of v, which increases g2s→v(ω)
at frequencies ω < |Jvv|. We can therefore see that posi-
tive autoregulation amplifies slowly-varying signals. This
leads to an increase in the network gain and the noise that
is propagated from v to x. However, since the noise that
is introduced at x is unchanged, positive autoregulation
at v increases the gain-to-noise ratio compared to the
simple cascade. Fig. 4D shows the comparison between a
simple cascade and cascades with positive (red) and neg-
ative (green) autoregulation. Hornung and Barkai previ-
ously studied transmission of a constant signal with ad-
ditive noise through a deterministic (noiseless) network
[35], and found that positive autoregulation can increase
the signal-to-noise ratio. Our results for time-varying
signals with intrinsic network noise parallel their results.

Given a network with autoregulation, our constraint
of equal production of each network component does not
define a unique “equivalent” simple cascade. That is,
different parameter combinations can be chosen for a
simple cascade which satisfy the production constraint.
The results in the preceding discussion correspond to one
such parameter choice. Specifically, we choose the pro-
duction rate of v in the simple cascade (Eqn. 11) to be
kv = 〈f(v)〉, while taking the same value for µv in both
networks. A consequence of this choice is that the re-
laxation time τv changes between the two cascades, as
discussed above. One can equally well construct a sim-
ple cascade for which the diagonal entries of the Jaco-
bian, Jαα, are equal to those of the autoregulated cas-
cade, so as to hold constant the relaxation time of each
component between the two cascades. This is achieved
by setting the spontaneous degradation rate for v in
Eqn. 11 to be µnew

v = µv −
〈
∂
∂vf(v)s

〉
. By choosing

this new rate, the average protein number 〈v〉 changes
in the simple cascade, and as a result also the average
production of x. To restore equal production of x we
thus also require a rescaling of the kinetic production
rate knewx = kxµ

new
v /µv in the simple cascade (Eqn. 11).

Thus, in this comparison, the diagonal entries of the Ja-
cobian matrices of the autoregulated and simple cascade
are the same, while the off-diagonal entry Jxv = kx differs
between the two.

Compared to a cascade with positive autoregulation,
this new kinetic production rate in the simple cascade
is smaller (knewx < kx). The reduction in Jxv leads to a
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A
s x

B

dx

dt
= f (x) s− µxx+ ηx, (15)

f (x) =
νβ

K + x

{
β = K, negative regulation

β = x, positive regulation

Jxx = −µx + 〈s〉
[
∂f (x)

∂x

]
s.s.

C
g2 =

J2
xs

ω2 + J2
xx

(16a)

N =

〈
|ηx|2

〉
ω2 + J2

xx

(16b)

g2

N
=

J2
xs〈
|ηx|2

〉 (16c)

FIG. 3. Autoregulation of the output component. A: Schematic representation of the negative
autoregulation motif, where s is the input signal and x the output signal, which negatively regulates its own
production. B: The Langevin equations of the network. C: The characteristic equations for the gain, noise and
gain-to-noise ratio (see also section Autoregulation).

uniform decrease in g2v→x(ω) at all frequencies. As de-
scribed above, this affects the signal and also the propa-
gated noise Nv→x(ω) equally, but not the intrinsic noise
at x, Nx(ω). Thus, compared to a cascade with posi-
tive autoregulation, the gain-to-noise ratio is reduced at
all frequencies in the simple cascade, as can be seen in
Fig. 4E (black dotted). Interestingly, the decrease in the
gain-to-noise ratio is most pronounced at high frequen-
cies. This is because the propagated noise Nv→x(ω) only
has a significant contribution at frequencies ω < µnew

v ; at
higher frequencies the total noise is dominated by Nx(ω),
as discussed in section: The simple cascade. Thus at
these higher frequencies, the gain is reduced relative to
the positively-autoregulated cascade, but the noise is not,
and so the change in the gain-to-noise is largest. For net-
works with negative autoregulation, the converse applies:
the gain-to-noise ratio is higher in the simple cascade
at all frequencies, but by a larger factor for ω < µnew

v .
Hence, the effect of positive or negative autoregulation is
qualitatively the same in both parameterizations.

More generally, even if we relax the production con-
straint on each component, and instead require only the
total production in the two cascades to be the same (i.e.,
〈f+v 〉 + 〈f+x 〉 = constant), we see the similar qualitative
behaviour for the gain-to-noise ratio (see Eqn. S1-26-S1-
28). Positively-autoregulated cascades have a larger gain-
to-noise ratio than a simple cascade of the same length,
while for a cascade with negative autoregulation the gain-
to-noise ratio is smaller. For longer cascades drawing
such general conclusions is more difficult. However, if
the majority of parameters are kept the same between
the simple and autoregulated cascades, as in the cases
discussed in detail above, then we again find that posi-
tive autoregulation increases and negative autoregulation

decreases the gain-to-noise ratio. Furthermore, given a
specific simple cascade one can always add positive au-
toregulation to the network in such a way as to achieve
a larger gain-to-noise ratio while maintaining the same
total production cost.

We have here considered only autoregulation via the
production of the intermediate v. However, for autoreg-
ulation via the degradation of v we observe similar results
for the gain-to-noise ratio: if v suppresses its own degra-
dation, the decrease in the effective turn-over rate leads
to a reduction of the noise strength Nv→x(ω), increasing
the gain-to-noise ratio; when v enhances its own degra-
dation rate the transmitted noise is increased, reducing
signalling fidelity.

C. Feedback

Feedback, both positive and negative, corresponds to
the upper-triangular part in the Jacobian of the lin-
earized system (see Fig 1). It is known that negative
feedback allows for adaptation as, for example, in the E.
coli chemotaxis pathway [3, 13, 36]. Feedback can also
shift noise to higher frequencies [20]. We will again con-
sider separately the two cases of feedback by the output
x onto an upstream component and feedback by an in-
termediate component onto a component higher up the
cascade.
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1. Feedback from x does not affect information
transmission

For negative feedback from x to v (Fig. 5A and Eqn. 22
in Fig. 5B), the power spectrum of the response Pxx(ω)
(Fig. 5D, red solid) can have a resonance peak while none
is present in the input signal (black dotted). Surprisingly,
this peak does not correspond to an increase in infor-
mation transmission capabilities at the peak frequency
(ωpeak), since no peak is present in the gain-to-noise ra-
tio (Fig. 5D, red dashed). For positive feedback, no peak
is present in either Pxx(ω) or the gain-to-noise ratio.

For a system with negative feedback from x to v the
gain and noise both show a peak, but these can occur
at different frequencies. We consider first the frequency
dependence of the gain. At low frequencies the negative
feedback leads to destructive interference at v between
the input signal S̃(ω) and the signal that is fed back,

X̃(ω). On the other hand, at high frequencies these two
signals are exactly out of phase, and hence the inter-
ference becomes constructive (since the feedback com-
bines the two signals negatively). However, at frequen-
cies ω � µv, µx the amplitude of the fed-back signal de-
creases, due to averaging over the lifetimes of v and x;
hence, even though the two signals interfere construc-
tively, the significance of this interference decreases. To-
gether, these three effects lead to a maximum in the gain.
This maximum occurs at

ω2
res = −1

2

[
µ2
x + µ2

v + 2JvxJxv
]
, (20)

which depends on the relaxation rates µx, µv and the
coupling (feedback) loop between v and x, JvxJxv. This
timescale corresponds to the imaginary part of the eigen-
values of the Jacobian (see Eqn. S1-39).

The frequency of the peak in the noise depends on the
relative strengths of the two noise sources, ηv and ηx.
The two noise terms are propagated differently through
the network, because ηx originates at the regulator of
the feedback loop, while ηv originates at the regulated
component. We consider two limiting cases. If the total
noise N(ω) (Eqn. 23b in Fig. 5C) is dominated by the
transmitted noise, Nv→x(ω), both the signal Σ(ω) and
the dominant source of noise originate upstream of the
feedback loop. Effectively, therefore, the feedback affects
both the gain and noise of the network similarly. As a
result the peak frequencies of both the noise and the gain
are the same. On the other hand, when the total noise
is dominated by Nx(ω), which is located downstream of
the regulated component v, the feedback loop affects the
signal and noise differently. As a result, the noise that is
fed back has a different frequency profile than the signal,
such that the peaks in the gain and the noise occur at
different frequencies (Fig. 5D, black circles).

One might therefore expect that when Nx(ω) �
Nv→x(ω) a peak in the gain-to-noise ratio is possible.
However, an inspection of the expressions for the gain,
Eqn. 23a, and the noise, Eqn. 23b (both in Fig. 5C),

shows that they have the same denominator, such that
the gain-to-noise ratio is a monotonically decreasing func-
tion of frequency (Eqn. 23c in Fig. 5C). The effect of the
negative feedback is cancelled. Ultimately, this is due to
the fact that the noise in the output x goes back into the
feedback loop, such that the peaks in the gain and the
noise cannot be controlled separately; in the next sec-
tion, we show how this can be done. Furthermore, we
note that the gain-to-noise ratio is again identical to a
simple three-component cascade, as we also saw in the
case of autoregulation of x. We conclude that feedback
from x onto the cascade also has no effect on information
transmission through the network.

This network (Eqn.23 in Fig. 5B) also highlights the
idea that the power spectrum of the output Pxx(ω) may
not be indicative of the information that is transmitted at
different frequencies. We see in Fig. 5D that due to the
negative feedback Pxx(ω) can have a peak at non-zero
frequencies, even if none is present in the input signal.
However, this peak does not correspond to the frequency
at which the signal is transmitted most reliably. Instead,
we can see that the peak is simply due to resonant am-
plification of both the signal and the noise at the charac-
teristic frequency of the negative feedback loop.

It has been suggested [19] that a system where a neg-
ative feedback loop acts on the response component can
have a large peak in the gain, such that signals on spe-
cific timescales can be selected for. If we take in Fig. 5A
not x but v to be the output of the network, we obtain

g2(ω)

N(ω)
=

J2
vs

(
ω2 + µ2

x

)

J2
vx

〈
|ηx|2

〉
+ (ω2 + µ2

x)
〈
|ηv|2

〉 (21)

We observe that the gain-to-noise ratio is a monotoni-
cally increasing function of frequency and does not show
a peak at any specific frequencies. Furthermore we note
that as ω → ∞ the gain-to-noise ratio becomes equal
to the gain-to-noise ratio for the one-step simple cascade
(Jvs/2 〈s〉), since for large ω the noise from the down-
stream component is averaged out. Thus this network
motif has a higher gain-to-noise at all frequencies than
the cascade with x as the output. However, the infor-
mation transmitted at low frequencies is less than if x
were not present. Following the information processing
inequality, the amount of information about s which is
encoded in the dynamics of v is always larger than the
corresponding information in x. By feeding back x to v
we thus do not add more information to the signal, but
essentially add an extra source of noise to the pathway
from s to v. The strength of this noise is highest at fre-
quencies ω < µx, and hence the effect of the feedback is
to obscure the signal at these frequencies. As a result
this motif acts as a high-pass filter for information.
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2. Negative feedback within a cascade can lead to a peak in
the gain-to-noise ratio

In section Autoregulation we saw that the gain-to-noise
ratio is sensitive to the precise position of autoregulation
in a cascade. In this section we therefore study a cas-
cade where the feedback is not from x to v, but between
two intermediate components w and v (see Fig. 6A and
Eqn. 28 in Fig. 6B). This also corresponds to taking the
output of the previous feedback cascade (Fig. 5A) as the
input to another downstream process.

Expressions for the gain, noise and gain-to-noise ratio
are given in Fig. 6C. For positive feedback the gain, noise
and gain-to-noise ratio are once again monotonically de-
creasing with increasing frequency. However, we find that
for a network with strong negative feedback (Hill coeffi-
cient n > 1, see Eqn. S1-54), the gain-to-noise ratio can
have a maximum as a function of frequency at

ω2
peak = −1

2




noise︷ ︸︸ ︷

J2
xw

〈
|ηw|2

〉

〈
|ηx|2

〉 +

resonance(ω2
res)︷ ︸︸ ︷

µ2
v + µ2

w + 2JvwJwv




= −1

2


J2

xw

〈
|ηw|2

〉

〈
|ηx|2

〉 + µ2
v + µ2

w − 2
nµwµv 〈w〉n

Kn + 〈w〉n


 .

(25)

This peak frequency depends on the characteristic reso-
nance frequency of the feedback loop, ωres, which is de-
termined by the interactions between v and w: µv, µw,
Jvw and Jwv. It is additionally dependent on the relative
strengths of the noise introduced into the network at w
and at x.

We can understand the appearance of this peak as
follows. For a network with negative feedback, g2(ω)
(Fig. 6D, bottom right) has a maximum as a function of
frequency at ωres, the characteristic resonance frequency
of the feedback loop. Input signals at this frequency are
amplified by the constructive interference between the
signal transmitted to v from s and the signal which is fed
back from w to v. We note that the resonance frequency
has the same form as Eqn. 20, and depends only on the
interactions between v and w. The behaviour of the noise
power spectrum (Fig. 6D, top right) is more complex. We
consider two limiting cases in which different noise terms
dominate. When the total noise is dominated by noise
introduced at v or w, the noise is processed through the
feedback loop together with the signal. As discussed in
the previous section, N(ω) therefore shows a peak at a
similar frequency to the gain (black line). These two
peaks cancel, and hence the gain-to-noise ratio (Fig. 6D,
top left, black line) is monotonically decreasing with fre-
quency. On the other hand, when the total noise is dom-
inated by Nx(ω) (top right, red line) the noise in the
network is not affected by the feedback loop. Hence no

peak is found in the noise power spectrum. In this limit,
the peak in the gain-to-noise ratio corresponds to the
peak in the gain at ωres (top left, red line).

From these arguments we see that the peak in the gain-
to-noise ratio becomes more pronounced as the relative
contribution of Nx(ω) to the total noise increases. Addi-
tionally, increasing the strength of the negative feedback
by reducingK or increasing n leads to a more pronounced
peak. However, this increase in the relative peak height
comes at the expense of a reduction in the value of the
gain-to-noise ratio at all frequencies.

How does the gain-to-noise ratio of the network with
feedback compare to the corresponding (four-component)
simple cascade? We examine the ratio of the gain-to-
noise for the network with feedback to the gain-to-noise
of the simple cascade,

Gfb(ω) =

[
g2(ω)

N(ω)

]

fb

/

[
g2 (ω)

N(ω)

]

simple

, (26)

and find that (Fig. 6E,F)

Gpos(ω) > 1 if ω2 < µvµw

[
1− n

2

Kn

Kn + 〈w〉n
]
,(27a)

Gneg(ω) > 1 ifω2 > µvµw

[
1 +

n

2

〈w〉n

Kn + 〈w〉n
]
.(27b)

Interestingly, for both types of feedback there is a range
of frequencies over which the gain-to-noise ratio increases
relative to the simple cascade. This contrasts to the re-
sults of section Autoregulation, where we found that au-
toregulation affected the gain-to-noise ratio in the same
way at all frequencies.

This difference can again be understood in terms of
the interference of the two signals arriving at v. As de-
scribed above (and in Eqn.S1-43-S1-44), at low frequen-
cies the signal propagated from s to v and the feedback
signal from w to v are in phase, while at high frequen-
cies the two signals are exactly out of phase. Hence for
a positive feedback loop (Fig. 6E,F; red line) the signals
combine constructively at low frequencies, increasing the
gain, but destructively at high frequencies, decreasing the
gain. Recall that, since we are comparing networks with

equal production, the noise strengths
〈
|ηv|2

〉
,
〈
|ηw|2

〉

and
〈
|ηx|2

〉
are equal in the regulated and simple cas-

cades. In an analogous way to the autoregulation dis-
cussed in section Autoregulation, the presence of feed-
back between w and v affects both the signal and noise
introduced upstream of x, but not noise introduced at
x. Hence, at low frequencies positive feedback ampli-
fies the signal and the noise introduced at the levels of
v and w, but not noise introduced at x. Hence at low
frequencies the gain-to-noise ratio increases relative to
the simple cascade. At high frequencies, however, pos-
itive feedback reduces the gain and the noise upstream
of x, but not the intrinsic noise Nx(ω); consequently,
the gain-to-noise ratio is reduced compared to the sim-
ple cascade. Conversely, a network with negative feed-
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back (Fig. 6E,F;green line) reduces the gain at low fre-
quencies, reducing the gain-to-noise ratio. However, at
high frequencies, the feedback amplifies the signal but
not Nx(ω), leading to an increase in the gain-to-noise
ratio.

From these results we conclude that if a cell is only con-
cerned with low frequency input signals, it is beneficial in
terms of information transmission to add positive feed-
back within the signalling cascade. If the system wishes
to respond specifically to high-frequency signals, negative
feedback can be used to increase the fidelity of transmis-
sion for these signals. Additionally for a strong negative
feedback (n � 1 or K � 〈w〉, see Eqn. S1-61) the gain-
to-noise can have a peak in the regime where signalling is
more reliable than for a simple cascade, allowing the cell
to focus on signals in a particular frequency band. We
note that the negative feedback motifs considered here
do not lead to perfect adaptation to constant input sig-
nals, which is characterised by g2(ω = 0) = 0 and is
necessary for true band-pass behaviour. Perfect adapta-
tion requires that the feedback to be implemented via a
buffer node or side branch [37]. An example of this net-
work architecture is the E. coli chemotaxis pathway [15],
for which the gain-to-noise ratio does indeed indicate a
band-pass for information [16].

IV. DISCUSSION

In this paper we have analysed information transmis-
sion through a number of network motifs, namely cas-
cades, autoregulation and feedback. One of the most
important conclusions of our analysis is that to under-
stand how reliably biochemical networks can transmit
time-varying signals, we have to study the frequency-
dependent gain-to-noise ratio [16]. In particular, the
power spectrum of the output signal may not be a good
measure for how biochemical networks transduce time-
varying input signals. The power spectrum of the out-
put signal depends on the power spectrum of the input
signal, the frequency-dependent gain, and the frequency-
dependent noise. Only the latter two quantities are in-
trinsic properties of the network, provided that the net-
work detects the input via biochemical reactions that do
not affect the statistics of the input signal [22]. Moreover,
we have seen that the power spectrum of the output sig-
nal may differ qualitatively from that of the frequency-
dependent gain-to-noise ratio. A striking example is pro-
vided by the network with negative feedback from the
output component, which shows a peak in the output
signal (see Fig. 5D): while one might be tempted to con-
clude that input signals at this frequency are transduced
most reliably, our analysis shows that this peak in the
output spectrum is simply the result of resonant ampli-
fication of both the input signal and the noise in the
network.

Our analysis leads us to draw the following conclusions
on the effect of autoregulation and feedback on the trans-

mission of time-varying signals: 1) autoregulation of the
output component does not affect the gain-to-noise ra-
tio, and hence does not affect information transmission
(Fig. 3C); 2) positive autoregulation of an intermediate
component increases the gain-to-noise ratio over all fre-
quencies, while negative autoregulation tends to decrease
it over all frequencies (Fig. 4D); 3) negative feedback
from the output component onto an upstream compo-
nent may lead to a peak in the power spectrum of the
output, and those of the gain and the noise; yet, even
though the peaks of gain and the noise can be at differ-
ent frequencies, negative feedback from the output com-
ponent onto an upstream component can not lead to a
peak in the spectrum of the gain-to-noise ratio (Fig. 5D);
4) positive feedback between upstream components en-
hances the gain-to-noise ratio at low frequencies, while
negative feedback increases the gain-to-noise ratio at high
frequencies (Fig. 6F). Further, we note that it is possi-
ble to achieve a peak in the gain-to-noise ratio via nega-
tive feedback between components that are upstream of
the output component (Fig. 6D); however, this comes at
the expense of a reduction in the gain-to-noise ratio for
all frequencies. We also note here that stronger band-
pass filtering of information can be obtained with net-
works employing integral feedback in a side branch[16],
as found in the networks of osmo adaptation [2] or bacte-
rial chemotaxis [15]. Alternatively, band-pass filters for
information transmission can be obtained via feedforward
loops, which we will discuss in a forthcoming publication.

Taken together these results reveal the following de-
sign principles for the use of feedback and autoregula-
tion in signal transduction cascades (see the schematic
drawing Fig. 7). Firstly, feedback and autoregulation
can improve information transmission, but only if they
occur upstream of the dominant source of noise in the
cascade. Feedback or autoregulation downstream of the
dominant noise source affects the gain and the noise sim-
ilarly. Secondly, if signals over the full frequency range
have to be transmitted reliably, positive autoregulation
is advantageous, while if the cell is concerned only with
low- or high-frequency signals, then positive or negative
feedback can be employed.

The approach employed here has a number of limi-
tations. Firstly, we have used the linear-noise approxi-
mation, and the power spectra calculated using this ap-
proximation may deviate from those of the full non-linear
system. We argue that this effect does not significantly
affect our results, since we find excellent agreement be-
tween the power spectra calculated analytically using
the linear-noise approximation and those obtained from
stochastic simulations of the full system (see S1). The
second potential source of inaccuracy is the use of Eqns. 5
and 10, which are exactly only for linear Gaussian sys-
tems. However, the information rate calculated in this
approximation provides a lower bound on the informa-
tion transmission rate of the full system [38].

Another limitation of our analysis is that to reduce the
complexity of the problem, we have assumed that the net-
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works obey the spectral-addition rule [22], meaning that
reactants are not consumed during reaction events. How-
ever, irreversible modifications of a substrate molecule
are common in biochemical networks, and reactions of
this type can significantly change the correlations be-
tween different network components. For instance, in a
cascade of the type X0 → X1 → . . . Xn−1 → Xn, where
in each reaction step the reactant is consumed, corre-
lations of the form 〈ηiηi+1〉 = −k 〈Xi〉 appear between
different noise terms. As a result, for this cascade the
covariance between different components 〈xixj 6=i〉 = 0
[22, 39], and hence the mutual information between in-
stantaneous levels of components Xi and Xj 6=i is zero
[16]. This may suggest that these cascades cannot ef-
fectively transmit information. Yet, the analysis of [16]
indicates that this motif can, in fact, reliably transmit
time-varying signals. It would therefore be of interest to
study the effect of cross-correlations in the noise on the
information transmission in the motifs studied here. We
leave this for future work.

Lastly, how could our predictions be tested experimen-
tally? It is increasingly being recognised that stimulat-
ing biochemical networks with time-varying signals pro-
vides a wealth of information on the dynamics of these
networks [2, 3, 40–43]. These experiments can also be

used to study the reliability by which biochemical net-
works can transmit time-varying signals. By measuring
not only the power spectra of the in- and output signals,
Pss(ω) and Pxx(ω), but also their cross-power spectrum
Psx(ω), one can obtain the frequency-dependent gain

g2(ω) ≡ |Psx(ω)|2 /Pss(ω)2 and the frequency-dependent
noise N(ω) (see Eqn. 8), and hence the gain-to-noise ra-
tio. Stimulating synthetic gene circuits or existing signal
transduction pathways and gene regulation networks of
known architecture with time-varying signals, for exam-
ple using microfluidic devices, would make it possible to
test our predictions on the effect of feedback and autoreg-
ulation on information transmission.
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dv

dt
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dx
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= βv − µxx+ ηx. (17b)
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FIG. 4. A two-step cascade with autoregulation of the intermediate component. A: Cartoon of the
negative autoregulation motif, where the intermediate component v negatively regulates its own production. B: The
Langevin equations describing the network. C: The characteristic equations for the gain g2(ω), noise N(ω) and
gain-to-noise ratio. D: The gain, noise, gain-to-noise ratio (GNR) and output power spectrum Pxx(ω) plotted as a
function of frequency for three different cascades: simple (black), positive autoregulation (red) and negative
autoregulation (green). Negative autoregulation reduces the gain, noise and gain-to-noise ratio. For positive
autoregulation the opposite holds. Positive autoregulation has a smaller knee frequency in the gain-to-noise ratio
than negative autoregulation (see also section Autoregulation). Parameters: ks = 10, kv = 100, kx = 10, µv = 5,
µx = 0.5, K = 〈v〉 and νa = 200, νr = 200. E: The gain-to-noise ratio for a cascade with postive autoregulation (red
line) and two simple cascades (black). Solid: as in D, the degradation rate of the simple cascade equals that of the
cascade with positive autoregulation, µv = µarv . Hence |Jvv| is smaller in the cascade with auto-activation, and the
gain-to-noise ratio is larger at low frequencies. Dotted: In the simple cascade we take µv = Jar

vv, and instead increase
the production rate Jxv. This decreases the gain-to-noise ratio of the simple cascade with respect to the
autoregulated cascade over the full frequency spectrum. Inset: the ratio of the gain-to-noise ratio of the cascade
with positive autoregulation to that of the simple cascade; solid: µv = µarv , dotted µv = Jarvv . The dashed red
vertical line indicates Jarvv , the vertical solid red line µarv , which shows the shift in frequency dependence.
Parameters: ks = 10, kv = 100, kx = 10, µv = 5, µx = 0.5, K = 〈v〉 and ν = 200.
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dv

dt
= f (x) s− µvv + ηv (22a)

dx

dt
= βv − µxx+ ηx, (22b)

where
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Feedback . A: Cartoon of a negative feedback motif, where s is the signal and x the response, and w negatively
regulates v. B: The Langevin equations of this motif. C: The characteristic equations: gain g2(ω), noise N(ω) and
gain-to-noise ratio g2(ω)/N(ω). D: The effect of changing the strength of the intrinsic noise in x, Nx(ω), on the
spectra of the gain, noise, and gain-to-noise ratio of a cascade with negative feedback. Nx(ω) is varied by changing
γ(= Jxw) and µx, in such a way that 〈x〉 remains constant. Lines show: black, γ = 50; green, γ = 10; red, γ = 0.01.
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reduced the gain and noise decrease at frequencies ω < µx, but the noise increases at lower frequencies. The
gain-to-noise ratio decreases at all frequencies. However, the peak in the gain-to-noise ratio becomes more
pronounced. Parameters: ks = 10, β = 10, ν = 330, K = 0.5 〈w〉, n = 5, µv = 10, µw = 10. E: The spectra of the
gain, noise, gain-to-noise ratio, and the output power, Pxx(ω). For small ω, positive feedback (red line) enhances the
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Pxx(ω). Parameters: ks = 10, µw = 10, µv = 10, µx = 0.5, β = 10, γ = 10. For positive feedback: K = 0.5 〈w〉,
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negative feedback motifs (right axis). Parameters: ks = 10, µw = 10, µv = 10, µx = 1, β = 10, γ = 1 and
K = 0.5 〈w〉. For positive feedback: n = 1 and ν = 150. For negative feedback n = 5 and ν = 3300.
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S1-1. S1

All cascades have the following simple (linear) birth-death process for the signal

ds

dt
= ks − µss+ Γ (t) (S1-1)

S1-2. GILLESPIE SIMULATIONS

The linearization used in the derivation can change the characteristics of the frequency response. A linearized
system does not change the frequency of the transmitted signal. However, this may not be the case for a non-linear
system. To study this, we performed Gillespie simulations of the full system. The positive and negative regulation
in our networks arises from Hill-like interactions between components. In the Gillespie simulation we calculated the
propensities for every reaction with identical expressions. For example, in the network with negative feedback from
w to v, we model reactions like Eqn. 1a in 6B as

S
r−→ S + V (S1-2)

where r is

r =
νKns

Kn + wn
. (S1-3)

In these equations the actual copy number w is used, and not 〈w〉, as in the linearized expressions (Eqns. 2a,2b in
Fig. 6C).

The power spectra are calculated using 211 (2048) exponentially distributed frequencies from ω = 10−3 to
ω = 103 and averaged over 24 neighbouring frequencies to obtain a single data point. In total we have 27 data-
points. The length of the simulation is 106 seconds, or a maximum of 109 events. For every run 50 blocks are averaged.

The positive feedback loops considered here display bistability. For the positive feedback loops a constant low level
production is added to drive the system to the stable state with high copy numbers, instead of the stable state where
the copy number equals zero. For the positively autoregulated component this is described by that

dv

dt
= −µvv + ηv +

{
νvs
K+v if v 6= 0
1

1000 if v = 0
(S1-4)

Linearizing this we find that the fluctuations follow

dṽ

dt
= −µv ṽ + ηv −

νK 〈s〉
K + 〈v〉

ṽ +
νK

K + 〈v〉
s̃ (S1-5)

which is equivalent to the linearization of Eqn. 1 in Fig. 4A. The addition of the basal expression therefore drives the
system to a specific steady state, but does not change the dynamic behaviour around this steady state.
For positive feedback within the cascade, the motif is described by

dw

dt
= a+ kwv − µww + ηw. (S1-6)

Taking different values for a = 0.1, 1, 10 does not lead to qualitatively different answers (see Fig. S1-4). Again, the
basal production changes the steady state, but not the dynamical behaviour around the steady state.
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Figure S1-1. The results (circles) of the Gillespie simulations for the linear cascade (Eqn. 11), together with the
results of the linear noise approximation (solid lines) as employed in the main text. Kinetic rates as in figure 2.
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Figure S1-2. A) The results (circles) of the Gillespie simulations for the network with positive autoregulation of v
(Eqn.17 in Fig. 4B) (kinetic rates as in Fig. 4C with positive autoregulation), together with the results of the linear
noise approximation (solid lines) as employed in the main text. To drive the system to the non-zero steady state,
basal production of v is present (Eqn. S1-4). The steady state of the full non-linear Gillespie simulation is slightly
different from the steady state derived from the mathematical expressions for s, v and x. This causes the slight
difference between the results of the linearization and the simulations. B) The results (circles) of the Gillespie
simulations for a network with negative autoregulation on v (Eqn.17 in Fig. 4B). Together with the results of the
linear noise approximation (solid lines) as employed in the main text. Kinetic rates as in Fig. 4D with negative
autoregulation.
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Figure S1-3. The results (circles) of the Gillespie simulations for a network with negative feedback from x to v
(Eqn.22 in Fig. 5B), together with the results of the linear noise approximation (solid lines) as employed in the main
text. Kinetic rates as in Fig. 5D.
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Figure S1-4. The results (circles) of the Gillespie simulations for a network with positive feedback from w to v
(Eqn.28 in Fig. 6B), together with the results of the linear noise approximation (solid lines) as employed in the main
text. Kinetic rates as in Fig. 6D with positive feedback. To drive the system to the non-zero steady state, basal
production of w is present (Eqn. S1-6), A) with a = 0.1, B) with a = 1, C) with a = 10
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Figure S1-5. The results (circles) of the Gillespie simulations for a network with negative feedback from w to v
(Eqn.28 in Fig. 6B), together with the results of the linear noise approximation (solid lines) as employed in the main
text. Kinetic rates as in Fig. 6D with negative feedback.
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S1-3. SIMPLE CASCADE

The one step simple cascade is described by

dx

dt
= kxs−mxx+ ηx (t) (S1-7)

with the following characteristic equations

g2 (ω) =
k2x

ω2 +m2
x

(S1-8a)

N (ω) =

〈
|ηx|2

〉

ω2 +m2
x

(S1-8b)

g2

N
=

k2x〈
|ηx|2

〉 (S1-8c)

Here,
〈
|ηx|2

〉
= kx 〈s〉+mx 〈x〉 = 2kx 〈s〉. The three component simple cascade is described by (compare Eqn. 11)

dv

dt
= kvs−mvv + ηv (t) (S1-9a)

dx

dt
= kxv −mxx+ ηx (t) (S1-9b)

with the following characteristic equations

g2 (ω) =
k2vk

2
x

(ω2 +m2
x) (ω2 +m2

v)
(S1-10a)

N (ω) =
k2x

〈
|ηv|2

〉
+
(
ω2 +m2

v

) 〈
|ηx|2

〉

(ω2 +m2
x) (ω2 +m2

v)
(S1-10b)

g2

N
=

k2vk
2
x

k2x

〈
|ηv|2

〉
+ (ω2 +m2

v)
〈
|ηx|2

〉 (S1-10c)

The simple cascade is used as a reference. For the kinetic rates of the simple cascade we use roman symbol (k and
m). For the kinetic rates of the cascades with feedback regulation we use greek symbols.

S1-4. AUTOREGULATION

A. Autoregulation by x

An elementary network for autoregulation by x onto itself is

dx

dt
= f (x) s− µxx+ ηx (t) ,where (S1-11a)

f (x) s =
νκ

K + x
s

{
κ = K, negative regulation

κ = x, positive regulation
(S1-11b)
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The gain, noise and gain-to-noise for this network are

g2 (ω) =
J2
xs

ω2 + J2
xx

=
1

ω2 +
(
µx − ∂f(〈x〉)

∂〈x〉 〈s〉
)2 f (〈x〉)2 (S1-12a)

N (ω) =

〈
|ηx|2

〉

ω2 + J2
xx

(S1-12b)

g2

N
=

J2
xs〈
|ηx|2

〉 =

(
∂f(〈s〉,〈x〉)

∂〈s〉

)2
〈
|ηx|2

〉 (S1-12c)

For equal average production, as the simple three component cascade, (production rate kx), we chose

〈f (x) s〉 ≡ f (〈x〉) 〈s〉 = kx 〈s〉 (S1-13)

where the first equation expresses the fact that we assume that the average rates can be expressed by the rates at the
deterministic steady state, thus ignoring fluctuations. Thus

kx = Jxs =
∂f (〈s〉 , 〈x〉)

∂ 〈s〉
=

νκ

(K + 〈x〉)
(S1-14)

and
〈
|ηx|2

〉
= 2kx 〈s〉. Expressed in terms of the kinetic rates of the simple cascade, the autoregulated cascade has

the following form

GNR =
k2x

2kx 〈s〉
=

kx
2 〈s〉

(S1-15)

which is identical to Eqn. S1-8c. The power spectrum of x for the autoregulated cascade is

PXX (ω) =
J2
xs

〈
|Γ|2

〉
+
(
ω2 + µ2

s

) 〈
|ηx|2

〉

(ω2 + µ2
s)

(
ω2 +

(
µx − ∂f(〈s〉,〈x〉)

∂〈x〉

)2) (S1-16)

Following a rescaling of the kinetic degradation rate µx, such that µnew
x = µx − Jxx, we observe that the power

spectrum of the simple cascade and the autoregulated cascade agree. This is because the noise term ηx depends on
the mean rate of the production and degradation events. In steady state the average number of production events
equals the average number of degradation events. Since by the rescaling the production is not changed, the noise ηx
is constant. The change in µx → µnew

x will lead to a new steady state value 〈x〉, but not to a different number of
degradation events.

B. Autoregulation by v

For autoregulation of one of the intermediate components the network is

dv

dt
= f (v) s− µvv + ηv (t) (S1-17a)

dx

dt
= βv − µxx+ ηx (t) ,where (S1-17b)

f (v) s =
νκ

K + v
s

{
κ = K, negative regulation

κ = v, positive regulation
(S1-17c)
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The gain and noise for this network are

g2 (ω) =
(JxvJvs)

2

(ω2 + µ2
x) (ω2 + J2

vv)
(S1-18a)

N (ω) =
β2
〈
|ηv|2

〉
+
(
ω2 + J2

vv

) 〈
|ηx|2

〉

(ω2 + µ2
x) (ω2 + J2

vv)
(S1-18b)

where Jvs = f (〈v〉). We equalize the production for v between the autoregulated cascade and the three component
simple cascade (with rates kv and kx) to obtain

kv = Jvs =
νκ

(K + 〈v〉)
(S1-19)

and the gain-to-noise ratio for the autoregulated cascade expressed in terms of the kinetic rates of the simple cascade
(thus using kv, kx and mv,mx where applicable) is

g2

N
=

(JvsJxv)
2

β2
〈
|ηv|2

〉
+ (ω2 + J2

vv)
〈
|ηx|2

〉 =
k2vβ

2

β2
〈
|ηv|2

〉
+

(
ω2 +

(
µ2
v −

∂f(〈s〉,〈v〉)
∂〈v〉

)2)〈
|ηx|2

〉 . (S1-20)

We keep all kinetic rates equal in the autoregulated and simple cascade that do not influence the constraint condition
(Eqn. S1-19) (thus µv = mv and β = kx). We then obtain

g2

N
=

k2vk
2
x

k2x

〈
|ηv|2

〉
+

(
ω2 +

(
m2
v −

∂f(〈s〉,〈v〉)
∂〈v〉

)2)〈
|ηx|2

〉 . (S1-21)

We note that for positive autoregulation |Jvv| < µv while for negative autoregulation |Jvv| > µv. Thus the GNR is
larger for the positively autoregulated than the three component cascade, especially for ω < Jvv. For the negatively
autoregulated cascade the opposite holds.
The constraint does not lead to a unique relation between autoregulated and non-autoregulated cascade. An al-
ternative choice would be a simple three component cascade for which the degradation rate µv is equivalent to the
”effective” degradation rate in the autoregulated cascade. Thus mv = Jarvv . The production of x is then

autoregulated︷︸︸︷
β
kv
µv

=

three component cascade︷ ︸︸ ︷
kx

kv
mv

(S1-22)

Equalizing this leads to

β
kv
µv

= kx
kv
mv

(S1-23)

→ kx = β
mv

µv
, (S1-24)

which leads to

g2

N
=

(
β
µcascv

µv
kv

)2

(
βmvµv

)2 〈
|ηv|2

〉
+
(
ω2 + (mv)

2
)〈
|ηx|2

〉 =
(βkv)

2

β2
〈
|ηv|2

〉
+
(
µv
mv

)2 (
ω2 + (mv)

2
)〈
|ηx|2

〉 (S1-25)

for the GNR of the three component simple cascade. Since for positive feedback mv < µv, the GNR of the positively

autoregulated cascade is larger than that of the simple cascade, especially if ω � mv or ω2 � β2
〈
|ηv|2

〉
.

If we allow for even more differences between the kinetic rates, but require equal production, we obtain the following
equations (we still assume the signal to be identical in both cases)

µv = Cmv and β = Ckx, (S1-26)
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where C is an arbitrary constant. We note that the mean level of v differs between the autoregulated and the simple
cascade

〈v〉ar =
1

C
〈v〉simple

(S1-27)

As a result we derive for the gain-to-noise ratio for the regulated cascade (using Eqns. S1-20, S1-26 and S1-27)

g2

N
=

(Ckxkv)
2

(Ckx)
2
〈
|ηv|2

〉
+

(
ω2 +

(
Cµv − ∂f(〈s〉,〈v〉)

∂〈v〉

)2)〈
|ηx|2

〉

=
(kxkv)

2

(kx)
2
〈
|ηv|2

〉
+

(
ω2

C2 +
(
µv − 1

C
∂f(〈s〉,〈v〉)

∂〈v〉

)2)〈
|ηx|2

〉 (S1-28)

For small ω the conclusions on positive and negative feedback are still valid, but for ω →∞ the ratio of the GNR for
positive feedback and a three component cascade is a function of C. Similar arguments can be made about comparing
negative and positive feedback for ω →∞, where again the ratio of the gain-to-noise ratio’s depends on C.

S1-5. FEEDBACK

A. Feedback from x to v

An elementary system with feedback from x to v is

dv

dt
= f (x) s− µvv + ηv (t) (S1-29a)

dx

dt
= βv − µxx+ ηx (t) , (S1-29b)

where

f (x) s =
νκns

Kn + xn

{
κ = K, negative feedback

κ = x, positive feedback
(S1-30)

For the gain, noise and PXX (ω) we obtain

g2 (ω) =
(Jvsβ)

2

(ω2 + µ2
v) (ω2 + µ2

x) + Jvxβ [Jvxβ + 2 (ω2 − µxµv)]
(S1-31a)

N (ω) =
β2
〈
|ηv|2

〉
+
(
ω2 + µ2

v

) 〈
|ηx|2

〉

(ω2 + µ2
v) (ω2 + µ2

x) + Jvxβ [Jvxβ + 2 (ω2 − µvµx)]
(S1-31b)

PXX (ω) =
(Jvsβ)

2
PSS (ω) + β2

〈
|ηv|2

〉
+
(
ω2 + µ2

v

) 〈
|ηx|2

〉

(ω2 + µ2
v) (ω2 + µ2

x) + Jvxβ [Jvxβ + 2 (ω2 − µvµx)]
, (S1-31c)

where

Jvx =
∂ 〈f (x) s〉
∂ 〈x〉

=

∂
ν 〈κ〉n 〈s〉
Kn + 〈x〉n

∂ 〈x〉
(S1-32)
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We note that the GNR is independent of Jvx. The peak in PXX only exist if Jvx < 0, since

PXX =
(Jvsβ)

2
PSS

(ω2 + µ2
v) (ω2 + µ2

x) + Jvxβ [Jvxβ + 2 (ω2 − µvµx)]
+

+
β2
〈
|ηv|2

〉

(ω2 + µ2
v) (ω2 + µ2

x) + Jvxβ [Jvxβ + 2 (ω2 − µvµx)]
+

+
µ2
v

〈
|ηx|2

〉

(ω2 + µ2
v) (ω2 + µ2

x) + Jvxβ [Jvxβ + 2 (ω2 − µvµx)]
+

+
ω2
〈
|ηx|2

〉

(ω2 + µ2
v) (ω2 + µ2

x) + Jvxβ [Jvxβ + 2 (ω2 − µvµx)]
(S1-33)

which are four monotonic decreasing functions of ω for Jvx > 0. So only for negative feedback a peak can exist in the
power spectrum, gain and noise (since the same argument applies to gain and noise).
The frequency of the maximum of the gain can easily be obtained, since it coincides with the minimum of the
denominator D

D =
(
ω2 + µ2

v

) (
ω2 + µ2

x

)
+ Jvxβ

[
Jvxβ + 2

(
ω2 − µxµv

)]
. (S1-34)

This frequency, where the gain has a maximum, is

ω2
res = −1

2

[
µ2
v + µ2

x + 2Jxvβ
]
, (S1-35)

such that we require µ2
v + µ2

x + 2Jxvβ < 0. As a check we note that D > 0 for ωres so divergence is not possible.
The maximum frequency for the noise is not the minimum of D, due to the ω-dependence in the numerator. If

β2
〈
|ηv|2

〉
�
〈
|ηx|2

〉
, the ω-dependence in the noise is less strong, and the frequency of the peak of the noise shifts

to the frequency of the peak in the gain. Although a peak in PXX can be derived analytically (dPXXdω is 4th order in

ω2), it is not insightful. We note that PXX is the sum of the noise (N) and the signal (Σ), such that if one of these
two dominates in PXX the peak is likely to coalesce with the peak of the dominating term. We also note that the
signal Σ depends on µs, so the peak in PXX is not likely to coincide exactly with the peak in the gain, since the gain
is independent of µs.
Compared with a three component cascade (rates kv, kx) , requiring equal production, we note that

kv =
νκn

Kn + 〈x〉n
(S1-36)

and the three component cascade has an identical GNR as the cascade with regulation.

B. Linear Stability Analysis and Control theory

We now shift gears and use some methods from linear stability analysis to study the biochemical network from a
slightly different perspective. After linearizing, the solution to the linear differential equations for the perturbations
is (ignoring the added noise)

dỹ (t)

dt
= Jỹ (S1-37a)

ỹ (t) = eJtỹ (0) = ReλtLỹ (0) (S1-37b)

Where J is the Jacobian, with eigenvalues λi and right eigenvectors ri. The exponential matrix (eJt) describes the time
dependency, and can decomposed in a matrix with diagonal entries eλi , R with the right eigenvectors (as columns)
and L with the left eigenvectors (as rows). Alternatively, we could write down the solution in terms of the right
eigenvectors

ỹ (t) = c1e
λ1tr1 + . . .+ cne

λntrn (S1-38)
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where c1 . . . cn are weighing coefficients which are obtained by solving for the initial condition. In both expressions
we note that the exponential exponent involves λ. If λ is complex, we can rewrite the exponent as

eλt = e(<λ+i=λ)t = e<λt (cos (=λt) + i sin (=λt)) (S1-39)

and the fluctutations decay (if <λ < 0) with characteristic frequency =λ. For stability we require that µvµx−JxvJvx >
0.
Yet another different method is control theory, which we can use to describe our system. In control theory we describe
a linear system using the convolution of a response function with the input to determine the output. In the fourier
space this becomes multiplication, such that we have (again ignoring noise)

V (ω) = H1 (ω)S (ω) +Xfb (ω) (S1-40a)

Xfb (ω) = G1 (ω)X (ω) (S1-40b)

X (ω) = H2 (ω)V (ω) (S1-40c)

so that the total response function between input and output is

X (ω) =
H1 (ω)H2 (ω)

1−H2 (ω)G1 (ω)
S (ω) (S1-41)

which is, if we take as transfer functions

H1 (ω) =
Jvs

iω + µv
H2 (ω) =

Jxv
iω + µx

G1 (ω) =
γ

iω + µv
(S1-42)

equal to g (ω).
The phase of the gain, which identifies the phase shift between s and x is

∆φ = arctan

(
−ω (µv + µx)

−ω2 − Jxvγ + µvµx

)
(S1-43)

We can now define ωφ

ωφ =
√
µvµx − Jxvγ (S1-44)

which defines the frequency for which the phase difference between x and s shifts by a factor π. Since x is also the
fedback signal, this is the phase difference between the signals in the feedback loop. For negative feedback (γ < 0)
∆φ moves from 0 to π for ω changing from 0 to ∞.

C. Feedback from w to v

For the regulated four component cascade, the network is

dv

dt
=

νκns

Kn + wn
− µvv + ηv (t) (S1-45a)

dw

dt
= βv − µww + ηw (t) (S1-45b)

dx

dt
= γw − µxx+ ηx (t) , (S1-45c)

with κ as before (e.g. Eqn. S1-30). We linearize and obtain

Jvs =
νκn

Kn + 〈w〉n
(S1-46a)
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Jvw =
∂f (〈w〉)
∂ 〈w〉

〈s〉 = − νn 〈w〉nKn 〈s〉
〈w〉 (Kn + 〈w〉n)

2 , (S1-46b)

where the equation S1-46b is for negative feedback (for positive feedback the sign would be positive). The gain and
noise are

g2 (ω) =
J2
vsβ

2γ2

(ω2 + µ2
x)F (ω)

(S1-47a)

N (ω) =
γ2β2

〈
|ηv|2

〉
+ γ2

(
ω2 + µ2

v

) 〈
|ηw|2

〉
+ F (ω)

〈
|ηx|2

〉

(ω2 + µ2
x)F (ω)

(S1-47b)

and

F (ω) = ω4 +
(
µ2
v + µ2

w + 2Jvwβ
)
ω2 + (Jvwβ − µwµv)2 , (S1-48)

where F (ω) is a function of the parameters in the feedback loop only. The GNR is described by C/a (ω), i.e. a
constant divided by a function of ω. For this to have an extremum, the denominator should have an extremum. We
differentiate and obtain

ω2
peak = −1

2


γ2

〈
|ηw|2

〉

〈
|ηx|2

〉 + µ2
v + µ2

w + 2Jvwβ


 . (S1-49)

Since this expression is negative, to have ω2 > 0 we require negative feedback. Explicitly writing JwvJvw, we have
for the requirement that a peak exists

2JwvJvw = 2
νn 〈w〉nKn 〈s〉
〈w〉 (Kn + 〈w〉n)

2 β >


γ2

〈
|ηw|2

〉

〈
|ηx|2

〉 + µ2
v + µ2

w


 (S1-50)

〈w〉 =
β 〈v〉
µw

=
β

µvµw

νKn 〈s〉
Kn + 〈w〉n

(S1-51)

which gives n solutions for 〈w〉 (of which only one is real and positive). If we constrain the production rate of v and

w to be constant - and we assume 〈v〉 = kv〈s〉
mv

- then we obtain

νKn

Kn + 〈w〉n
= kv

and the following expression for Eqn. S1-50

〈w〉 =
β 〈v〉
µw

=
kvβ 〈s〉
µwµv

. (S1-52)

we rewrite the coupling strength Jvw

Jpos
vw =

νn 〈w〉n−1Kn 〈s〉
(Kn + 〈w〉n)

2 =
n 〈s〉 kv
〈w〉

Kn

Kn + 〈w〉n
=
n 〈s〉 kv
〈w〉

(µwµvK)
n

(µwµvK)
n

+ (kvkw 〈s〉)n
(S1-53a)

Jneg
vw = −νn 〈w〉

n−1
Kn 〈s〉

(Kn + 〈w〉n)
2 = −n 〈s〉 kv

〈w〉
〈w〉n

Kn + 〈w〉n
= −n 〈s〉 kv

〈w〉
(kvkw 〈s〉)n

(µwµvK)
n

+ (kvkw 〈s〉)n
(S1-53b)

For K � 〈w〉 positive regulation is maximized and Jpos
vw is maximal, while negative regulation is greatly suppressed

and |Jneg
vw | is minimal. The limit n→∞ is more complicated. If K < 〈w〉, Jneg

vw → −∞, while Jpos
vw →∞ for 〈w〉 < K.

In the opposite scenario’s the limits tend to zero. This is only valid if while changing n, 〈w〉 remains constant, which
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is true due the constraint.
With Eqn. S1-53 we can study ωpeak in more detail and we obtain

2
νn 〈w〉nKn 〈s〉
〈w〉 (Kn + 〈w〉n)

2 β >
(
γµw + µ2

v + µ2
w

)

2kvβn 〈s〉
〈w〉

〈w〉n

Kn + 〈w〉n
>
(
γµw + µ2

v + µ2
w

)

2
〈w〉n

Kn + 〈w〉n
µvµwn >

(
γµw + µ2

v + µ2
w

)
(S1-54)

which, interestingly, only has a solution for n > 1.
The power spectrum of x is

PXX (ω) =
J2
vsβ

2γ2PSS + γ2β2
〈
|ηv|2

〉
+ γ2

(
ω2 + µ2

v

) 〈
|ηw|2

〉
+ F (ω)

〈
|ηx|2

〉

(ω2 + µ2
x)F (ω)

, (S1-55)

which depends on µs through PSS and therefor will have a peak for a different ω than the GNR.
The GNR for the simple four component cascade is

g2 (ω)

N (ω)
=

(kvkwkx)
2

k2x

[
k2w

〈
|ηv|2

〉
+ (ω2 +m2

v)
〈
|ηw|2

〉]
+ (ω2 +m2

v) (ω2 +m2
w)
〈
|ηx|2

〉 =
(kvkwkx)

2

D
(S1-56)

where we chose ν such that

kv =
νκn

Kn + 〈w〉n
(S1-57)

to obtain equal production. We then obtain for the ratio of the GNR of the feedback cascade and a simple cascade

G =
GNRfb

GNRsimple
=

D

D + Jvwβ [Jvwβ + 2 (ω2 − µvµw)]
〈
|ηx|2

〉 (S1-58)

So that the feedback is larger if Jvwβ
[
Jvwβ + 2

(
ω2 − µvµw

)] 〈
|ηx|2

〉
< 0.

The result of this inequality is

Gpos(ω) > 1 if ω2 < µvµw

(
1− n

2

Kn

Kn + 〈w〉n
)
, (S1-59)

Gneg(ω) > 1 ifω2 > µvµw

(
1 +

n

2

〈w〉n

Kn + 〈w〉n
)
. (S1-60)

which are Eqns. 27 from the article. The peak for the negative feedback occurs at ωpeak (Eqn. S1-49). The negative
feedback cascade is larger than the four component simple cascade if ω > ωswitch (Eqns. 27). Thus if ωpeak > ωswitch

the GNR for the negative feedback at the peak is larger than the four component cascade

ω2
peak > µvµw

[
1 +

n

2

(kvβ 〈s〉)n

(µvµwK)
n

+ (kvβ 〈s〉)n
]


γ2

〈
|ηw|2

〉

〈
|ηx|2

〉 + µ2
v + µ2

w + 2Jvwβ


 < −µvµw

[
2 + n

(kvβ 〈s〉)n

(µvµwK)
n

+ (kvβ 〈s〉)n
]

nµvµwM > (µv + µw)
2

+ 2γ2

〈
|ηw|2

〉

〈
|ηx|2

〉 (S1-61)

which is possible for large n and large M = 〈w〉n
〈w〉n+Kn , which indicates that K � 〈w〉, in both cases representing a

strong negative feedback.
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S1-6. COMMENTS ON FIG. 6E

Here we list some additional explanation on Fig. 6E. In this figure, we keep the parameters µv, µw, ν, β (= Jwv)
and K constant, since they dictate the feedback cycle (Eqn. 1 in Fig. 6B). We vary Jxw and µx, so that in this case,
not the average production rate of x is constrained, but the average copy number 〈x〉.
To understand the dependence of the gain, noise and gain-to-noise ratio on γ = Jxw and µx,we note that
g2 ∼ γ2g2s→w/(µ

2
x + ω2) and N ∼ γ2/(µ2

x + ω2)Nv(ω) + γ2/(µ2
x + ω2)Nw(ω) + Nx(ω) , where Nv(ω) and Nw(ω) are

independent of γ and µx and Nx(ω) = 2γ 〈w〉 /(µ2
x + ω2) (with 〈w〉 being independent of γ and µx).

For ω � µx, the contributions of v and w to N(ω) are proportional to γ2/µ2
x, while the contribution of x is given

by Nx(ω) ∝ γ/µ2
x. Hence, for ω � µx, the contributions of v and w to the noise are constant, while the contribution

of x decreases with increasing γ and µx, leading to a decrease of N(ω). Since the gain is constant in this regime, the
gain-to-noise ratio increases with increasing γ and µ for ω � µx. For ω � µx, the gain, and the contributions of v
and w to the noise increase with γ2 while the contribution of x to the noise increases with γ, meaning that also in
this regime the gain-to-noise ratio increases with γ and µx.
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