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Abstract

The freezing transition of hard spheres has been well described by vari-

ous versions of density-functional theory (DFT). These theories should possess

the close-packed crystal as a special limit, which represents an extreme testing

ground for the quality of such liquid-state based theories. We therefore study

the predictions of DFT for the structure and thermodynamics of the hard-

sphere crystal in this limit. We examine the Ramakrishnan-Yussouff (RY)

approximation and two variants of the fundamental-measure theory (FMT)

developed by Rosenfeld and coworkers. We allow for general shapes of the den-

sity peaks, going beyond the common Gaussian approximation. In all cases

we find that, upon approaching close packing, the peak width vanishes pro-

portionally to the free distance a between the particles and the free energy

depends logarithmically on a. However, different peak shapes and next-to-

leading contributions to the free energy result from the different approximate

functionals. For the RY theory, within the Gaussian approximation, we es-

tablish that the crystalline solutions form a closed loop with a stable and an

unstable branch both connected to the close-packing point at a = 0, consis-

tent with the absence of a liquid-solid spinodal. That version of FMT that has

previously been applied to freezing, predicts asymptotically step-like density

profiles confined to the cells of self-consistent cell theory. But a recently sug-

gested improved version which employs tensor weighted densities yields wider

and almost Gaussian peaks which are shown to be in very good agreement

with computer simulations.
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I. INTRODUCTION

Some twenty years ago Alexander and McTague applied the formalism of Landau theory
to the freezing transition of atomic materials [1]. Using symmetry arguments they suggested
that a bcc crystal should be the universally favored crystal structure, independent of in-
teraction details. This theory attempts to describe the solid as a small, spatially periodic
perturbation of a liquid. In a recent paper [2] we argued that such an approach should only
be valid near the liquid-solid spinodal, at which the liquid state becomes locally unstable.
The position of the spinodal is determined by the Fourier transform of the liquid direct
correlation function c̃, and is given by the smallest density ρ for which the equation

ρ c̃(ρ, k) = 1 (1)

has a solution. Moreover, the perturbative approach does not apply to the local minima of
the free energy in order-parameter space, which correspond to metastable or stable crystals,
but rather to its saddle points. For the latter we confirmed universal behavior near the
spinodal, which may have implications for nucleation [2].

The hard-sphere fluid has become the canonical model for freezing, since it captures in
the most simple form the dominant packing effects while attractive interactions are believed
to play only a secondary role. The best current theories for hard-sphere freezing are various
versions of density-functional theory (DFT) [3–7]. Usually they are explicitely constructed
to reproduce the Percus-Yevick approximation cPY for the hard-sphere direct correlation
function. In Fig. 1 we show the values of c̃PY (ρ, k) evaluated at the wave number kmax(ρ)
corresponding to the maximum at a given density ρ. One finds that there is no solution to
Eq. (1) at physical densities ρ below the space filling density 6/πσ−3 where σ is the particle
diameter (at and beyond this limit cPY is not defined). This implies that those DFTs do
not exhibit a liquid-solid spinodal at all. Therefore the saddle point solution branch of the
stationarity equation derived from the density functional cannot connect to the liquid branch
when the bulk density is increased. On the other hand, hard-core systems are characterized
by a close-packing density as the maximum possible density of a given crystal structure. Upon
approaching this limit a suitably defined crystalline order parameter, e.g., the inverse width
of the density peaks, will diverge along the stable (minimum) branch. One may surmise
that that is also true along the saddle point branch. Thus an alternative scenario to the
bifurcation of a crystalline solution from the liquid at a spinodal point as discussed in
Ref. [2], are two solid solution branches smoothly connected to each other at low densities
which diverge at close packing and are completely isolated from the liquid. In order to test
this hypothesis in the present work we examine the close-packing limit in detail using DFTs
that have previously been applied to the low-density solid near the phase transition.

Clearly, the strong localization of the particles in this limit provides an extreme case for
such liquid-state based theories. Hence it is a good testing ground for assessing the qualities
of different approximations. In contrast to most DFT studies of the hard-sphere solid we do
not restrict the shape of the density peaks to Gaussians, but allow for general spherically
symmetric peaks. This is especially interesting for the completely anharmonic hard-sphere
crystal for which there is no a priori argument to justify Gaussians, even for small amplitude
particle oscillations.

2



The starting point of density-functional theory is the free energy functional of the inho-
mogeneous particle density ρ(r) with the general form

F [ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)]. (2)

The ideal gas contribution is given by [β = 1/(kBT )]

βFid[ρ(r)] =

∫

d3rρ(r)[ln ρ(r)λ3 − 1] (3)

with the thermal de Broglie wavelength λ. While the excess part Fex is not known exactly, a
large number of approximate forms have been suggested and applied to various problems in
the last decades [3–7]. As we do not strive for completeness we will consider only two repre-
sentative variants in this paper: the Ramakrishnan-Yussouff functional [8,9] which is one of
the first and simplest approximations that have been studied, and the fundamental measure
functional developed by Rosenfeld and coworkers [10,11] which at the present is believed to
provide the best theoretical description of the hard-sphere fluid. From a given functional
the equilibrium density distribution at a given bulk density ρb is obtained by minimization
under the constraint V −1

∫

d3ρ(r) = ρb. The value of the functional at its minimum is the
actual free energy of the system. For both functionals we performed numerical calculations
at a series of bulk densities as well as an analytical analysis of the close-packing limit which
enables us to determine the asymptotic density profile and free energy.

II. RAMAKRISHNAN-YUSSOUFF THEORY

A. Density functional and equilibrium profiles

The Ramakrishnan-Yussouff functional follows from a density expansion of Fex around
the homogeneous state truncated at the quadratic term:

βFex/V = βfex(ρb) −
1

2V

∫

d3rd3r′(ρ(r) − ρb)(ρ(r′) − ρb)c(ρ̄, |r− r′|). (4)

Here fex is the free energy density and c the direct correlation function (DCF) of the hard-
sphere liquid at an effective density ρ̄, both of which are commonly approximated by the
analytically known solutions of the Percus-Yevick integral equation. In a solid the density
consists of a sum of identical peaks centered at the lattice sites R:

ρ(r) =
∑

R

ρ∆(r − R). (5)

Throughout this paper it is assumed that the peaks are normalized

∫

d3rρ∆(r) = 1 (6)

and that the nearest-neighbour distance Rnn in the lattice is determined by the bulk density,
Rnn/σ = (ρcp/ρb)

1/3 where σ is the particle diameter and ρcp is the maximum possible
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density. In order to reduce the dimensionality of the integrations we moreover assume that
ρ∆ is spherically symmetric. Deviations from this symmetry exist [12,13], but are small
especially near close packing [14]. However, in contrast to most solid phase calculations
which assume ρ∆ to be Gaussian here we do not restrict its shape.

By insertion of Eq. (5) in Eq. (4) one obtains

βFex/V = βfex(ρb) +
1

2
ρ2

b c̃(ρ̄, k = 0) − 1

2
ρb

∑

R

∫

drr2

∫

dr′r′
2
ρ∆(r)ρ∆(r′)w(r, r′, R)

(7)

where c̃ is the Fourier transformed DCF and the integral kernel is given by

w(r, r′, R) = 2π

∫ 2π

0

dφ12

∫ 1

−1

d cos θ

∫ 1

−1

d cos θ′

× c(ρ̄, (r2 + r′
2
+ R2 + 2rR cos θ − 2r′R cos θ′ − 2rr′ cos γ)1/2). (8)

The angles θ, θ′, and γ are those between r and R, r′ and R, and r and r′, respectively, and
cos γ = cos θ cos θ′ + cos φ12 sin θ sin θ′. The contribution from R = 0 simplifies to

w(r, r′, 0) =
8π2

rr′

∫ r+r′

|r−r′|

dr12r12c(ρ̄, r12). (9)

Without loss of generality one may restrict the domain of ρ∆ to the Wigner-Seitz cell, so
that the ideal contribution to the functional can be written as

βFid/V = 4πρb

∫

drr2ρ∆(r)[ln ρ∆(r)λ3 − 1]. (10)

By minimizing and taking into account the normalization Eq. (6) one finds the stationarity
equation

ρ∆(r) =
exp[ 1

4π

∑

R

∫

dr′r′2ρ∆(r′)w(r, r′, R)]

4π
∫

drr2 exp[ 1
4π

∑

R

∫

dr′r′2ρ∆(r′)w(r, r′, R)]
. (11)

The Percus-Yevick approximation for the hard-sphere DCF has the simple form

c(ρ̄, r) =
(

c0(ρ̄) + c1(ρ̄)r + c3(ρ̄)r3
)

Θ(σ − r). (12)

The density-dependence of the coefficients ci can for example be found in Ref. [15]. In the
present context its most important feature is the cutoff at the particle diameter which leads to
w(r, r′, R) = 0 for R−r−r′ > σ. Hence for the strongly peaked profiles in high density solids
only the first shell of lattice vectors (|R| = Rnn) and the term with R = 0 must be taken into
account. We have calculated w(r, r′, Rnn) by numerical integration using the trapezoidal rule
with 503 mesh points, while an analytical expression for w(r, r′, 0) was derived from Eq. (9).
The stationarity equation is then discretized in r and solved by iteration. An underrelaxation
scheme

ρ(n+1) = ωρ(n)
new + (1 − ω)ρ(n) (13)
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proved helpful to ensure convergence. Here ρ(n) is the profile after the n-th iteration and
ρ

(n)
new is the right hand side of Eq. (11) calculated from ρ(n). A typical value of the constant

ω was 0.2.
The resulting profiles are shown in Fig. 2. Their width scales with the free distance a =

Rnn −σ that a sphere can move into the direction to its neighbour if the latter is kept fixed.
The profile shapes approach a limiting form discussed below. Their most striking property is
the occurrence of a maximum at intermediate distances r. This unphysical behavior vanishes
in the close-packing limit. The DCF has been evaluated at the bulk density, ρ̄ = ρb. This most
obvious choice has the disadvantage that the solid has a higher free energy than the liquid at
all densities, as already pointed out in Ref. [16]. In the earliest DFT work the density of the
coexisting liquid has been used instead, but that is not very reasonable when high density
solids are considered. Other schemes to select a density ρ̄ of an “effective liquid” have been
proposed Ref. [16,17,4], which always imply ρ̄ < ρb. Figure 3 shows density profiles obtained
with an arbitrarily chosen value ρ̄∗ = ρ̄σ3 = 0.95 which is close to the freezing density.
Now the maximum does not occur and the convergence to the limiting shape is faster. The
profiles are considerably flatter at small r than a Gaussian of the same width.

B. Close-packing limit

The results shown in Figs. 2 and 3 clearly demonstrate that, in spite of contrary claims
[18,19], simple density-functional theories based on the Percus-Yevick DCF do exhibit a
well-defined close-packing limit at which the peak width goes to zero. We will analyze this
limit in more detail in the following. Let us assume that for small a = Rnn − σ the profile
behaves as

ρ∆(r) =
1

∆3
ρ0

( r

∆

)

(14)

with a width ∆ = a/α where ∆, a → 0 with α fixed. We shall show that the stationarity
equation has a solution consistent with these assumptions. The ideal free energy in this limit
becomes (with N = ρbV and s = r/∆)

βFid/N = 4π

∫ ∞

0

dss2ρ0(s) [ln ρ0(s) − 3 ln(∆/λ) − 1] . (15)

The relevant contributions to Fex are

w(r = s∆, r′ = s′∆, 0) = 16π2c(ρ̄, 0) + O(∆) (16)

and

w(r = s∆, r′ = s′∆, Rnn) = 2π

∫ 2π

0

dφ12

∫ 1

−1

dx

∫ 1

−1

dx′c(ρ̄, σ[1 + ∆/σ(α + sx − s′x′) + O(∆2)])

= 4π2c(ρ̄, σ)w̃(s, s′, α) + O(∆) (17)

where
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w̃(s, s′, α) =
1

ss′

∫ s

−s

ds3

∫ s′

−s′
ds′3Θ(s′3 − s3 − α)

=















0, s′ + s < α
(s + s′ − α)2/(2ss′), s′ + s > α,−α < s′ − s < α
2(1 − α/s′), s′ − s > α
2(1 − α/s), s′ − s < −α

(18)

Thus we finally have in leading order in ∆

βFex/N = −2π2Nnnc(ρ̄, σ)

∫ ∞

0

dss2

∫ ∞

0

ds′s′
2
ρ0(s)ρ0(s

′)w̃(s, s′, α) + const = Φ + const
(19)

where Nnn denotes the number of nearest neighbours.
The total free energy can now be minimized in two different ways. First, one can restrict

to profiles of a fixed shape ρ0(s), e.g., Gaussians, and differentiate only with respect to the
scaled width α for fixed a which gives

3 = −α
∂Φ

∂α
(20)

Due to the form of w(s, s′, α) for α → ∞ one has Φ → 0 and thus the right hand side of
Eq. (20) also decays. On the other hand, for α → 0 Φ tends to a positive constant (since
c(ρ̄, σ) is negative), thus its derivative will be negative for sufficiently well behaved ρ0(s).
Therefore the right hand side of Eq. (20) is zero both at α = 0 and α = ∞ and positive
in between which implies a maximum at a finite value of α. This can be explicitely checked
for Gaussians (ρ0(s) = π−3/2 exp(−s2)) and step functions (ρ0(s) = 3/(4π)Θ(1 − s)) for
which the integrals in Eq. (19) yield 1

2
(1 − erf(α/

√
2)) and 1

2
− 3

5
α + 1

4
α3 − 3

32
α4 + 1

320
α5.

Depending on the height of this maximum Eq. (20) has zero or two solutions. In the first
case there are no stationary points with vanishing peak width at ρb = ρcp. This is the case
for the “Onsager solid” discussed in Ref. [2] which belongs to the same class of approximate
functionals, but with c(ρ̄, r) replaced by its low-density limit −Θ(σ− r). If −c(ρ̄, σ) is larger
(e.g., cPY (ρfcc

cp , σ) = −20.345) the solution with smaller α corresponds to a saddle point
and the solution with larger α to the stable solid minimum. We emphasize that the widths
∆ = a/α for both solutions tend to zero for ρb → ρcp. In Fig. 4 we display the results
obtained for fcc and bcc solids, employing Gaussian profiles and ρ̄ = ρb (fcc: ρ∗

cp =
√

2,

Nnn = 12; bcc: ρ∗
cp = 3

√
3/4, Nnn = 8). We also include numerical solutions of ∂F/∂∆ = 0

for the nonasymptotic functional discussed above, evaluated for Gaussians. They approach
the asymptotics quite slowly, especially for the saddle points. At low densities both branches
are connected at an inflection point below which no solidlike solutions exist.

Alternatively one can differentiate the asymptotic functional in Eqs. (15) and (19) with
respect to the profile ρ0(s). Here one may set α = 1 without loss of generality. This leads to
the Euler Lagrange equation

ρ0(s) =
exp[πNnnc(ρ̄, σ)

∫ ∞

0
ds′s′2ρ0(s

′)w̃(s, s′, 1)]

4π
∫ ∞

0
ds s2 exp[πNnnc(ρ̄, σ)

∫ ∞

0
ds′s′2ρ0(s′)w̃(s, s′, 1)]

. (21)

Its solutions, which represent the asymptotic profile shape, obviously only depend on the
value of c at r = σ, because near close packing the distance between two interacting particles
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is always very close to σ. The resulting shapes, shown in Figs. 2 and 3, are rather flat close
to the lattice site and decay strongly around r/a = 0.6, so they are definitely non-Gaussian.

The iteration never converged to a second solution that would repesent the saddle point,
even when started from the Gaussian saddle point discussed above. It has been conjectured
in a DFT study of the isotropic-nematic transition of hard rods [20] that in general the
saddle point is not accessible by iteration because it corresponds to an unstable fixed point
(see also Ref. [21]).

We mention a subtle point in connection with Eq. (21). Due to the form of w̃ the right
hand side goes to a constant for s ≫ 1, which means that no normalized solution on [0,∞)
can exist. However, as mentioned above, one may restrict to functions with a finite support
(e.g., r < Rnn/2, i.e., s < Rnn/(2a)). For the numerical program indeed a much lower
cutoff was used. In principle the solution now depends on the cutoff, but in practice this
dependence is extremely weak because the constant approached for large s is of the order of
exp(1

2
Nnnc(ρ̄, σ)) ≃ 10−53 so that the contributions from the tail of ρ0(s) are neglegible for

any reasonable value of the cutoff. Similar remarks apply to Eq. (11).
The free energy of the solid is determined by inserting the calculated equilibrium profiles

into the density functional. Its asymptotic behaviour is given by

βF/N = −3 ln a + f0 + O(a). (22)

The leading logarithmic contribution stems from Fid and is in accordance with the result of
free volume theory [22] and cell theory [23,24]. It has been proven exact for parallel hard
cubes [25] and for finite hard-sphere systems [26] and is generally believed to be exact also in
the thermodynamic limit. The various theories differ in their prediction for the constant f0.
In the Ramakrishnan-Yussouff approach (with ρ̄ = ρb) for an fcc solid we obtain f0 = 21.7
which is far above the molecular dynamics result f0 = −1.493 [27]. As shown in Fig. 5
the asymptotic form is approached quite slowly, i.e., the higher order terms in Eq. (22)
are important up to high densities (which probably will also produce a bad equation of
state). The free energies from the full minimization are only slightly below those for the best
Gaussian profile (Fig. 5).

III. FUNDAMENTAL-MEASURE THEORY

A. Density functional

Fundamental measure theory at present represents the best available DFT for strongly
inhomogeneous hard-sphere fluids. In contrast to most previous approaches it does not de-
pend on the direct correlation function as an input, but rather reproduces the Percus-Yevick
correlation function as an output of the theory in the homogeneous limit. While the originial
expressions [10] gave a divergent excess free energy for strongly localized particles, a recent
empirical modification proved suitable also for the description of the freezing transition [11].
We will call this version FMT1. Another new approximation has recently been suggested
by Tarazona and Rosenfeld [28] based on more fundamental grounds. They presented a new
derivation of FMT by enforcing the functional to reduce to exactly known expressions in the
zero- and one-dimensional limit. They obtained a more complicated expression for one of
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the excess free energy contributions that cannot be expressed in terms of weighted densities
and also does not reduce to the Percus-Yevick free energy in the homogeneous limit. They
also suggested a simplification by rescaling a certain expansion of this exact expression,
which we adopt as FMT2. Due to its construction we expect FMT2 to provide a better
description of the high-density crystal in which the individual particles are confined to quasi
zero-dimensional cages formed by their neighbors.

For a one-component hard-sphere fluid in three dimensions the fundamental-measure
functional has the form

βFex[ρ(r)] =

∫

d3r
3

∑

i=1

φi(nα(r)) (23)

where the functions φi depend only on the weighted densities

nα(r) =

∫

d3r′ρ(r)wα(r− r′) (24)

In FMT1 only two independent scalar and one vectorial weight functions occur:

w3(r) = Θ(
σ

2
− r), w2(r) = δ(

σ

2
− r), wV 2(r) =

r

r
δ(

σ

2
− r), (25)

for FMT2 a tensor weight function is necessary:

ŵij(r) =
rirj

r2
δ(

σ

2
− r) (26)

The expressions for the excess free energy density are:

φ1 = − n2

πσ2
ln(1 − n3), (27)

φ2 =
n2

2 − n2
V 2

2πσ(1 − n3)
, (28)

φFMT1
3 =

(n2
2 − n2

V 2)
3

24πn3
2(1 − n3)2

, (29)

φFMT2
3 =

9

8π

det n̂

(1 − n3)2
(30)

The density ansatz Eq. (5) induces a corresponding form for the weighted densities:

nα(r) =
∑

R

n
(α)
∆ (r − R) (31)

with

n
(α)
∆ (r) =

∫

d3r′ρ∆(r′)wα(r− r′). (32)

If ρ∆ is spherically symmetric the calculation of the weighted densities reduces to one-
dimensional integrations:
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n
(3)
∆ (r) =

π

r

∫ r+σ/2

|r−σ/2|

dr′r′
(

σ2

4
− (r − r′)2

)

ρ∆(r′) + Θ
(σ

2
− r

)

4π

∫ σ/2−r

0

dr′r′
2
ρ∆(r′) (33)

n
(2)
∆ (r) =

πσ

r

∫ r+σ/2

|r−σ/2|

dr′r′ρ∆(r′) (34)

n
(V 2)
∆ (r) =

r

r

π

r2

∫ r+σ/2

|r−σ/2|

dr′r′
(

r2 − r′
2
+

σ2

4

)

ρ∆(r′). (35)

In this case the matrix n̂∆(r) [defined by n̂(r) =
∑

R
n̂∆(r−R)] is diagonal in any coordinate

system aligned with r. An explicit calculation yields the eigenvalues

n
(11)
∆ (r) = n

(22)
∆ (r) =

π

2r3

∫ r+σ/2

|σ/2−r|

dr′r′
(

4r2r′
2 − (

σ2

4
− r′

2 − r2)2

)

ρ∆(r′) (36)

and

n
(33)
∆ (r) =

π

r3

∫ r+σ/2

|σ/2−r|

dr′r′
(

σ2

4
− r′

2
+ r2

)2

ρ∆(r′). (37)

Note that Tr n̂∆(r) = n
(2)
∆ (r). As ρ∆ is a strongly peaked function of width ∆ the weighted

densities n
(2)
∆ (r), n

(V 2)
∆ (r), and n̂∆(r) have appreciable values only for |r − σ/2| . ∆ while

n
(3)
∆ (r) tends to 1 for much smaller r and to 0 for much larger r. Thus for small ∆ at any

point r in a solid at most two terms contribute appreciably to the sum in Eq. (31).
We only consider fcc solids. By exploiting the crystal symmetry the integration in Eq. (23)

can be restricted to a simplex corresponding to 1/48 of the unit cell. In a coordinate system
aligned with the conventional cubic unit cell its vertices are

(0, 0, 0), Rnn(
1√
2
, 0, 0), Rnn(

1

2
√

2
,

1

2
√

2
, 0), Rnn(

1

2
√

2
,

1

2
√

2
,

1

2
√

2
).

(38)

It will be helpful to distinguish between the region A, that is “affected” by only one lattice
site, and the region B affected by two sites, i.e. the set of those points whose distance to two
sites differs from σ/2 by a length of order ∆. As depicted in Fig. 6 region B consists of lens
shaped sets around the midpoints between neighboring sites. Here the integrands φi(nα(r))
do not depend on the azimuthal angle around the line joining the sites, thus only a two-
dimensional numerical integration over cylindrical coordinates ρ′ and z′ must be performed.
In order to compute the full n̂ in region B the contribution from one of the sites must be
transformed to the coordinate system determined by the direction to the other site. This is
accomplished by a rotation around an axis perpendicular to this direction by the angle γ
given by

cos γ =
r+ · r−
r+r−

=
ρ′2 + z′2 − R2

nn/4

[(ρ′2 + (z′ + Rnn/2)2)(ρ′2 + (z′ − Rnn/2)2)]
1/2

(39)

Since in region A nα(r) depends only on the distance to the nearest lattice site the cor-
responding integration can even be reduced to one dimension after the angular factors
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stemming from the shape of the simplex have been worked out analytically. In practice
a sufficiently large cutoff ∆ (typically ∆ ≃ 2a) was chosen beyond which ρ∆(r) is assumed
to be zero, and the integrals over A and B were calculated separately. This approach proved
to be much faster and more accurate than a straightforward 2d integration over the whole
simplex, because then the integrand is essentially zero in large parts of the integration region.

B. Equilibrium profiles

In order to determine the equilibrium density profile under the constraint of spherical
symmetry the functional derivatives of Fex are calculated. We first write

δβFex

δρ∆(r)
=

∫

d3r′
∑

i,α

∂φi

∂nα

δnα(r′)

δρ∆(r)
(40)

and

δnα(r′)

δρ∆(r)
=

δ

δρ∆(r)

∑

R

n
(α)
∆ (r′ − R) =

∑

R

δn
(α)
∆ (d)

δρ∆(r)

∣

∣

∣

∣

∣

d=r′−R

. (41)

For n
(3)
∆ (d) the second term in Eq. (33) is rewritten as Θ(σ/2 − d)(1 −

∫ ∞

σ/2−d
dr′r′2ρ∆(r′))

which leads to

δn
(3)
∆

δρ∆(r)
=

[

πr

d

(

σ2

4
− (r − d)2

)

− 4πr2Θ(
σ

2
− d)

]

Θ(|d − σ

2
| − r) (42)

where we assumed that always r < σ/2 + d. Furthermore one finds

δn
(2)
∆ (d)

δρ∆(r)
=

πσr

d
Θ(|d − σ

2
| − r) (43)

δn
(V 2)
∆ (d)

δρ∆(r)
= d

πr

d3

(

d2 − r2 +
σ2

4

)

Θ(|d − σ

2
| − r). (44)

For the tensor weighted density straightforward calculation leads to a similar but more
lengthy expression. The partial derivatives ∂φi/∂nα are easily obtained from Eqs. (27)–(29).
The functional derivative can now be computed by inserting Eqs. (42)–(44) into Eq. (41)
and that into Eq. (40). For the integration over r′ in Eq. (40) we adopt a similar scheme as
for the functional itself. Due to the step functions in Eqs. (42)–(44) in region A the cutoff
∆ can be replaced by the distance r for which the derivative is evaluated. In region B two
terms from the lattice sum contribute. Because the integrand is nonanalytic at the lines
where one of the distances d equals σ/2 − r, σ/2, or σ/2 + r we partitioned the integration
region B appropriately for the numerical integration. Together with the ideal free energy
Eq. (10) one readily obtains the stationarity equation

ρ∆(r) =
exp[− 1

4πr2

δβFex/N
δρ∆(r)

]

4π
∫

dr′r′2 exp[− 1
4πr′2

δβFex/N
δρ∆(r′)

]
. (45)

10



Again a mesh is introduced for ρ∆(r) and the weighted densities are calculated by the trape-
zoidal rule with linear interpolation between the mesh points. More sophisticated numerical
integration routines are used for the integration over r′ in Eq. (40) for regions A and B, and
Eq. (45) is iterated until the maximum relative change in ρ∆(r) is less than 10−5.

The resulting profiles for FMT1 are displayed in Fig. 7. They are almost constant at
small r and then decrease steeper around r = a/2, increasingly fast upon approaching the
close-packing limit. In the next section we show that the limiting shape indeed is a simple
step function. The profiles for FMT2 shown in Fig. 8 exhibit a much smoother, Gaussian-like
decay and their width, measured, e.g., by 〈r2〉 =

∫

d3r r2ρ∆(r), on the scale a is considerably
larger than for both the RY and FMT1 functionals. Clearly, again the absolute width goes
to zero linearly with a, as expected in the close-packing limit.

C. Close-packing limit

As for the Ramakrishnan-Yussouff functional we assume that asymptotically the density
profile has the form Eq. (14) with ∆ = a = σδ. We have seen that in the important range
the argument of the weighted densities is close to σ/2. Therefore we set r/σ = 1/2 + tδ and

determine the leading contributions to n
(α)
∆ (r) for small δ and fixed t:

n
(3)
∆ (t) =

∞
∑

i=0

n3i(t)δ
i = 2π

[

2Θ(−t)

∫ −t

0

dss2ρ0(s)

+

∫ ∞

|t|

dssρ0(s)
(

(s − t) + δ(t2 − s2) + 2δ2t(s2 − t2) + · · ·
)

]

(46)

n
(2)
∆ (t) =

1

σ

∞
∑

i=0

n2i(t)δ
i−1

=
2π

σδ

∫ ∞

|t|

dssρ0(s)
(

1 − 2tδ + 4t2δ2 + · · ·
)

(47)

n
(V 2)
∆ (r̂, t) = r̂

2π

σδ

∫ ∞

|t|

dssρ0(s)
(

1 − 2tδ + (6t2 − 2s2)δ2 + · · ·
)

(48)

n
(11)
∆ (t) = 4πδ

∫ ∞

|t|

dssρ0(s)
(

s2 − t2 + · · ·
)

(49)

n
(33)
∆ (t) =

2π

δ

∫ ∞

|t|

dssρ0(s)
(

1 − 2tδ + 4(2t2 − s2)δ2 + · · ·
)

(50)

where the caret denotes a unit a vector. Since for any ρ0(s) the first two terms in the

expansions of n
(2)
∆ and |n(V 2)

∆ | are identical one has n2
2 − n2

V 2 = O(δ0) in region A. On the
other hand, in region B the contributions to nV 2 from the two lattice sites have almost
opposite directions so that n2

2 − n2
V 2 ∼ δ−2 there. For FMT2 we find det n̂ ∼ δ in both

regions, because, due to the quadratic dependence of wij(r) on the components of r, the two
contributions do not cancel each other in region B. Taking into account that the volumes
of A and B are proportional to δ and δ2, respectively, we can estimate the order of the
individual free energy contributions Φi = N−1

∫

d3rφi(nα(r)):

11



A B
Φ1 δ0 δ
Φ2 δ δ0

ΦFMT1
3 δ4 δ−1

ΦFMT2
3 δ2 δ3

Thus at this point a qualitative difference between the two approximations arises, as
different terms become dominant in the close-packing limit. We first discuss FMT1, for
which Φ3B is the leading term. In a cylindrical coordinate system (z′, ρ′, φ′), centered at the
midpoint between two sites and with its axis directed towards (see Fig. 6) one of them, the

distances r± to the sites, which occur as the argument of the weighted densities n
(α)
∆ , are

r± =
[

ρ′2 + (z′ ± Rnn/2)2
]1/2

. (51)

In the scaled coordinates ρ = ρ′2/(δσ2) and z = z′/(δσ) one has t± = 1/2+ρ±z +O(δ) and

n2
2 − n2

V 2 =
4

δ2
n20(t+)n20(t−) + · · · (52)

which finally yields

ΦFMT1
3B ≃ 32

δ

∫ ∞

0

dρ

∫ ∞

0

dz

(

n20(t+)n20(t−)

n20(t+) + n20(t−)

)3
1

(1 − n30(t+) − n30(t−))2
. (53)

Since n30(t) ∈ [0, 1] and n20(t) ≥ 0 this expression is positive. It attains its minimum value
zero for all profiles ρ0(s) that have a strict cutoff at s = 1/2 so that region B is empty. In
this restricted class of profiles the dominant contributions are Φ1A and Fid. The former can
be written as

Φ1A = −
∫ 1/2

−1/2

dt n20(t) ln(1 − n30(t)) + O(δ). (54)

But the fact that n20(t) = −∂n30/∂t implies Φ1A = 1 + O(δ) for all profiles. Since here the
peaks around different sites are independent of each other, this result is consistent with the
extensively discussed 0D limit of the fundamental-measure functional [11,28]: For density
profiles ρ∆(r) constrained to a volume that cannot hold more than one particle the exact
excess free energy is βFex = 1 if

∫

d3rρ∆(r) = 1. One of the merits of the present theory is
that this limit is almost exactly fulfilled [11]. At last we are left with the ideal free energy
Eq. (15) as the only relevant O(δ0) term, which, naturally, favors an evenly distributed
density:

ρ0(s) →
6

π
Θ(

1

2
− s). (55)

This finding implies that the usually assumed Gaussian peaks represent a particularly
bad approximation in this case. Indeed, in the Appendix we show that the width ∆ of the
best Gaussian is asymptotically related to the free distance a by a ∼ ∆

√

ln(−∆) which
means that the ratio ∆/a tends to zero, albeit very slowly. The intuitive reason is that the

12



tail of the Gaussian profile leads to an unfavorable free energy contribution Φ3B that can
only be kept small if the tail increasingly “retracts”.

Actually the above arguments for the asymptotic step function shape in FMT1 can be
generalized to nonspherical profiles. Starting from

ρ∆(r) =
1

∆3
ρ0(r/∆) (56)

and setting again s = r/∆, ∆ = σδ = a, and |r|/σ = 1/2 + tδ one has

n
(3)
∆ (r̂, t) =

∫

d3s Θ(r̂s − t − δ(t2 − 2tr̂s + s2))ρ0(s). (57)

Expanding for small δ gives

n
(3)
∆ (r̂, t) =

∫

d3s Θ(r̂s − t)ρ0(s) + O(δ). (58)

Analogously we find

n
(2)
∆ (r̂, t) =

∫

d3sρ0(s)

[

1

δ
δ(r̂s − t) − (t2 − 2tr̂s + s2)δ′(r̂s − t) + O(δ)

]

(59)

and, using n
(V 2)
∆ (r) = −∇n

(3)
∆ (r),

n
(2)
∆ (r̂, t) =

∫

d3sρ0(s)

[

1

δ
r̂δ(r̂s − t) − r̂(t2 − 2tr̂s + s2)δ′(r̂s − t)

− 2(s− (r̂s)r̂)δ(r̂s − t) + O(δ)

]

. (60)

Since the last term in this equation is perpendicular to r̂ the combination n2
2 − n2

V 2 is
still of order δ0 in region A. If in region B the same coordinates (z, ρ, φ′) as before are
used and the vectors to the nearest lattice sites are denoted by r±, the fact that r̂+r̂− =
−1 + O(δ) yields n2

2 − n2
V 2 = O(δ−2). Thus, in summary all estimates for the individual

terms given in the table above remain valid. Again the dominant term Φ3B is positive and
minimized by cutoff profiles. As the leading terms of the scalar weighted densities are related
by n20(r̂, t) = −∂n30(r̂, t)/∂t the contribution Φ1A in leading order is still independent of the
profile. The ideal term now enforces ρ∆(r) to be constant in the maximum allowed region
C that is compatible with B = ∅. It can be constructed by shifting the bounding planes of
the Wigner-Seitz cell inward by σ/2 (see Fig. 9). A given point r in C contributes to the
weighted densities at r′ only if |r − r′| ≤ σ/2. By construction all such r′ lie within the
Wigner-Seitz cell and thus cannot be “reached” from any r in the cell C’ around another
site, which means that B is indeed empty. However if a point P outside of C were added
the distance to its mirror point P’ with respect to the closest Wigner-Seitz boundary plane
would be less than σ so that elements of B would lie on their joining line (see Fig. 9). The
cell C constructed here is identical to that of the self-consistent cell theory [23]. Its volume
for an fcc solid is a3/

√
2.
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We now turn to the second approximation (FMT2) for which Φ2B and Fid are the domi-
nant contributions. (Remember that Φ1A is independent of ρ0(s) in leading order.) Analogous
to Eq. (53) we have, up to higher orders in δ,

Φ2B ≃ 24

∫ ∞

0

dρ

∫ ∞

0

dz
n20(t+)n20(t−)

1 − n30(t+) − n30(t−)
(61)

with t± = 1/2 + ρ ± z. The corresponding stationarity equation is

ρ0(s) =
exp

(

− 1
4πs2

δΦ2B

δρ0(s)

)

4π
∫ ∞

0
ds′s′ exp

(

− 1
4πs′2

δΦ2B

δρ0(s′)

) . (62)

The functional derivative is calculated as in Sect. III B. The resulting asymptotic profile
shown in Fig. 8 is close to those obtained for finite densities using the full functional. It is
almost, but not exactly Gaussian.

The asymptotic free energy of the fundamental-measure theory also has the form Eq. (22).
In FMT1 one has f0 = 1

2
ln 2 = 0.3466. Under the constraint of spherical symmetry this is

replaced by f0 = ln(6/π) = 0.6470, both of which are much closer to the correct value
than the Ramakrishnan-Yussouff theory. Results for finite distance from close packing are
given in Fig. 5 and agree, probably by accident, rather well with the computer simulations.
The approach to the asymptotic law is quite slow. On the other hand for FMT2 not only
the profiles but also the free energies (Fig. 5) approach their asymptotic limit faster in this
version of the theory. The value of the constant in Eq. (22) is found to be f0 = −1.527 in
very good agreement with the MD results. However, in view of the relatively large change
in f0 due to nonsphericity of the profiles as observed for FMT1, this may well be fortuitous.
We did not consider nonspherical profiles in FMT2.

D. Saddle point

In view of the discussion in the introduction it would be interesting also to keep track of
the saddle point between the liquid and the solid state when close packing is approached.
Unfortunately, again one is plagued by the fact that the iteration of the stationarity equa-
tion does not converge to a second solution. Furthermore the arguments of the asymptotic
analysis do not apply to the saddle point because they essentially involve a minimization in
two steps. Hence one must revert to parametrizations of the density with a few parameters.
For Gaussians and step functions the saddle point occurs at a width ∆ proportional to a2/3

in FMT1 and to a1/2 in FMT2. However, a priori there is no reason to assume that at the
saddle point the profile has a similar shape as at the minimum. We also tried profiles of
the forms ρ∆(r) ∼ exp(−(r/∆)n) and ρ∆(r) ∼ (1 + r/∆)−n and found numerically that in
both cases the free energy at the maximum with respect to ∆ decreases with decreasing n,
down to the lowest feasible values of n. This suggests that the actual saddle point profile
may decay very slowly, while within these restricted classes of profiles a true saddle point at
a nondegenerate profile seems not to exist.
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IV. MONTE CARLO SIMULATIONS

Although an extensive computer simulation study of the density distribution in hard-
sphere crystals has been carried out before [14], no useful results for the radial distribution
function have been published. In order to assess the quality of the various theories we
therefore undertook a small Monte Carlo (MC) simulation ourselves. In an NVT ensemble
of 83 spheres in an fcc arrangement we measured the distribution of the particles’ distance
r from their equilibrium sites. We corrected for the movement of these sites due to shifts
in the center of mass. Measurements were taken over 2 · 106 MC steps per particle for
two bulk densities. The results are plotted in Fig. 10 on a logarithmic scale versus (r/a)2

and compared to the various DFT calculations. The quantitative agreement is excellent for
FMT2. The profiles are close to Gaussians but decay faster at large distance than a Gaussian
fitted to the small distance part. The dependence of the scaled profiles on bulk density is
rather small in the examined range, but still qualitatively reproduced by the theory. The
actual width of the profiles will increase with increasing particle number [14], but we did not
attempt to correct for finite size effects. In Ref. [14] it was found that in the thermodynamic

limit for high densities the width behaves as 〈r2〉1/2
/a = 1.098 ± 0.004, again in almost

perfect agreement with FMT2, for which 〈r2〉1/2
/a = 1.025. This means that FMT2 is the

first DFT which yields the correct value of the Lindemann parameter.

V. SUMMARY AND DISCUSSION

In summary, we have analyzed the close-packing limit of the hard-sphere crystal using
three versions of DFT. All of them predict a peak width ∆ that vanishes proportional to the
free distance a and yields a logarihmic term in the free energy (see Eq. (22)) stemming from
the ideal gas entropy. Numerically this has been observed before, for Gaussian peaks, in
two other DFTs, the generalized liquid approximation (GELA) and the modified weighted
density approximation (MWDA) [29]. For the latter, however, it was found later that the
solutions correspond to “unphysical” branches [30]. The relative performance of the different
theories can be judged from the profile shape obtained by free minimization. RY gives too
narrow profiles with an unphysical maximum if the bulk density is used as the expansion
point (Fig. 2). The shape and width are also wrong for other expansion points (Fig. 3).
FMT1 predicts asymptotically steplike profiles confined to the cells of cell theory (Fig. 7).
Only the FMT2 profiles (Fig. 8) are in quantitative agreement with simulations at high
densities (Fig. 10). In spite of the anharmonicity of the hard-sphere crystal they are close
to Gaussians. Similarly the results for the next-to-leading free energy contribution improve
from RY to FMT1 to FMT2 (Fig. 5), the two FMT versions being much closer to the
correct result than RY. This could have been expected from the way the RY approximation
is constructed: A density expansion around a liquid state certainly is difficult to justify for
the highly ordered high-density crystal.

If one restricts the profiles to a fixed shape saddle points of the free energy are found
at widths decaying ∼ ax with xRY = 1, xFMT1 = 2/3, and xFMT2 = 1/2. Insofar the
global scenario for the crystalline solutions proposed in the introduction is comfirmed (see
also Fig. 4). However, as detailed in Sec. IIID, in larger classes of functions the saddle
point remains elusive. We remark that the saddle point is a property closely connected to
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the mean-field type free energy functional and, e.g., is not directly accessible by computer
simulations.

Comparing the two variants of FMT we see that the structure in the close-packing
limit is sensitive to subtle differences between DFT approximations and thus might be a
guiding line in the construction of better FMT-like functionals. Besides our FMT1 some
other approximations for φ3 have been suggested in Ref. [11] which are all of the form

φ3 =
n3

2

(1 − n3)2
f(ξ) with ξ = |ξ| =

∣

∣

∣

∣

nV 2

n2

∣

∣

∣

∣

. (63)

The power of n2 is determined by dimensional arguments and the function f can only
depend on the absolute value of ξ because of the isotropy of space. From Eqs. (47) and
(48) we have ξ = 1 + O(δ2) in region A. In order not to spoil the correct leading order
for a quasi-zero-dimensional situation as given by Φ1A one has the additional requirement
f(ξ → 1) ∼ (1−ξ)n with n ≥ 2, which implies Φ3A ∼ δ2n−2. But in region B ξ varies between
zero and one so that always Φ3B ∼ δ−1. The function f must be nonnegative in this range,
otherwise the functional would not be bounded from below [this happened in the original
FMT [10] for which f(ξ) = (1/3 − ξ2)/(8π)]. Then the argument of Sec. IIIC runs through
and the asymptotic profiles will always be step functions. We conclude that an improved
description of the high density solid is not possible within FMT if only the scalar and vector
weighted densities are used, the tensor weight function of FMT2 is inevitable. On the other
hand in FMT2 the behavior near close packing is exclusively determined by φ2 so that no
conditions on the precise form of φ3 can be deduced.
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APPENDIX A: GAUSSIAN PEAKS IN FMT1

For Gaussian density peaks ρ0(s) = π−3/2e−s2

the leading contributions to the weighted
densities are (see Eqs. (46)–(48))

n30(t) =
1

2
(1 − erf(t)) n20(t) =

1√
π

e−t2 (A1)

and for a width ∆ = a/(2α) the dominant excess free energy contribution is (see Eq. (53))

Φ3B =
32

π3/2

σ

∆

∫ ∞

0

dρ

∫ ∞

0

dz
[

e(ρ+α+z)2 + e(ρ+α−z)2
]−3

×
[

1

2
erf(ρ + α + z) +

1

2
erf(ρ + α − z)

]−2

+ O(∆0). (A2)
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In order that Fex does not become too large for a → 0 we expect α → ∞. In this limit the
substitutions ρ′ = ρα and z′ = zα yield

Φ3B =
1

12
√

π

σ

∆

exp(−3α2)

α2
. (A3)

Now we can add

βFid/N = −3

2
ln π(∆/λ)2 − 5

2
(A4)

and minimize with respect to ∆ which gives

σ

∆

1

2
√

π
exp(−3

4

a2

∆2
) = 3. (A5)

This equation indeed has a solution with ∆/a → 0 for a → 0; solved for a one has

a =
2∆√

3

[

− ln

(

6
√

π
∆

σ

)]1/2

(A6)

which demonstrates that ∆/a decays only very slowly. Nevertheless this decay is at variance
with the physical expectation ∆/a → const which is well supported by computer simulations
[14], and, as shown in the main text, is also fulfilled within the present theory if allowance
is made for more general profile shapes.
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FIGURES

FIG. 1. The left-hand side of Eq. (1) for the hard-sphere direct correlation function in the Per-

cus-Yevick approximation. The wave number kmax(ρ) corresponds to the maximum of cPY (ρ, k) at

a given density ρ = ρ∗σ−3. The curve lies below unity for all admissable densities ρ∗ < 6/π = 1.910,

i.e., for packing fractions η = ρ∗π/6 < 1, which means that there is no liquid-solid spinodal. The

close-packing limit occurs at ρ∗ =
√

2.

FIG. 2. Density profiles in a high density fcc crystal calculated from Ramakrishnan-Yussouff

DFT. Note that the distance r from the lattice site and the density are scaled by the free distance

a = Rnn − σ, which varies over 2.5 orders of magnitude in this density range.

FIG. 3. The same as Fig. 2 but using ρ̄∗ = 0.95 as the density argument of the DCF. In this

case the profiles are monotonic.

FIG. 4. Widths ∆ corresponding to minima (lower branches) and saddle points (upper

branches) of the Ramakrishnan-Yussouf functional restricted to Gaussian profiles for fcc and bcc

solids. The asymptotic linear behavior indicated by the dashed lines was calculated from Eq. (21).

FIG. 5. Free energies per particle of high density solids from the Ramakrishnan-Yussouff, the

two versions of fundamental-measure DFT, and from molecular dynamics [27]. The de Broglie wave

length has been set to the particle diameter. The asymptotic behavior indicated by the dotted lines

is logarithmic in the free distance a (see Eq. (22)) in all cases.

FIG. 6. The space between two nearest-neighbor sites (black dots) in a crystal. The radii of

the spheres is σ/2 ± O(∆) where ∆ is the width of the (spherical) density peaks. The weighted

densities in region A are only influenced from one site while in B both sites contribute. In the

remaining space the excess free energy densities φi are neglible.

FIG. 7. Density profiles obtained from the fundamental-measure theory FMT1.

FIG. 8. Density profiles obtained from the improved fundamental-measure theory FMT2.

FIG. 9. Illustration of the cells C for which the fundamental measure theory predicts a constant

density (a 2d analogon of the 3d crystal is drawn). The circular arcs and their straight connection

limit the set of points whose distance to C is smaller than σ/2, i.e. the region A. The point P

cannot belong to C because otherwise P’ would belong to C’ and some points in between would

have distances smaller than σ/2 from both C and C’, i.e. region B would be nonempty.
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FIG. 10. Comparison of the density profiles from Monte-Carlo simulation and the den-

sity-functional theory FMT2 for two bulk densities. A Gaussian profile would correspond to a

straight line in this plot.
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