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1 Introduction

A historical and phenomenological introduction is given to the fields of liquid crystals
and liquid crystalline polymers. Some terminology and molecular architecture are also
discussed. In the last section, we set the work in the thesis in a wider context.

1.1. Liquid Crystals

Many chemical compounds can be in one of three physical states: i.e. the solid,
liquid or gaseous phase. The solid phase traditionally refers to the fact that matter does
not flow when it is subject to a (small) force. The molecules in a crystalline solid are
located on a regular lattice and this order extends beyond many lattice spacings. Gases
and liquids do flow but differ in the sense that gases tend to occupy the available volume
whereas liquids keep their own volume and gather at the bottom of the container. In
both phases, the molecules have no fixed position or orientation and on average there is
no order. Upon cooling from a high temperature phase, the usual phase sequence is gas
- liquid - solid or, sometimes the liquid is skipped, gas - solid.

Liquid crystalline phases are phases with partial order, and in that sense intermediate
between totally ordered crystals and disordered liquids. The first observation of liquid
crystals was made by Friedrich Reinitzer, in 1888, reporting that esters of cholesterol
had two melting points. In between these melting points, the liquid was birefringent. In
the next years, Otto Lehmann described the material as ‘flowing crystals’, ‘crystalline
liquids’ and ‘liquid crystals’ (see e.g. Refs. [1, 2]). Other names which are frequently
used are mesophases or mesomorphic phases and also refer to the intermediate nature of
these phases. Molecules forming these phases are then called mesogens. The most well-
known liquid crystalline (LC) phases are the nematic, the smectic 1 and the cholesteric
phase.

In the nematic phase, the molecules are oriented with respect to a director n̂, but
there is no spatial order and therefore, it is still a fluid. In order to form a nematic
the molecules need to be fairly anisotropic in shape. An example is given in Fig. 1.1
where rodlike molecules form a calamitic nematic (as opposed to disklike molecules
forming a discotic nematic). Opposed to this orientionally ordered fluid phase, we call
the orientionally disordered fluid phase the isotropic phase. A nematic phase flows like
a fluid but is birefringent similar to a crystal. Usually the capital (roman) letter N is
used for the nematic and I for the isotropic phase. The most common nematic phase is

1These names were given by George Friedel in 1922 and are drawn from Greek; nematic refers to
the threadlike defects in these phases and smectic to the soapy appearence it has [3].
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isotropic nematic smectic

Figure 1.1. Liquid crystalline phases for rodlike molecules. On the left the
ordinary isotropic liquid. In the middle the nematic phase and on the right the
smectic A phase. For simplicity the phases have been drawn in a plane.

symmetric around the director n̂ as well as to the interchange n̂ ↔ −n̂, and is called
the uniaxial nematic. A nematic with orientational order with respect to two different
directors is called a biaxial nematic.

The smectic phase consists of layers stacked on top of each other. Within each
layer the molecules are spatially disordered but do have orientational ordering. Rodlike
molecules can have a smectic phase, as is shown in Fig. 1.1. Also amphiphilic molecules
can form such a phase, where the hydrophobic (water-hating) parts form layers, driving
out the water to in between these layers where the hydrophylic (water-loving) parts are
located. In these systems, one usually speaks of a lamellar phase. There exist many
different types of smectic phases due to differences in preferred orientation with respect
to the layer normal or ordered bond orientations within the layers. The simplest one,
in Fig. 1.1, is called smectic A (SmA) and has the preferred orientation parallel to the
layer normal and the layers are two dimensional liquids.

The last LC phase we mention is the cholesteric phase for rodlike molecules (see
Fig. 1.2). Locally this phase is like the uniaxial nematic. However, due to a small chiral
interaction between the molecules, the rods tend to tilt their long axes a little with
respect to each other. This results in a helical director field where the molecules in the
planes perpendicular to the helical axis all have the same orientation. The periodicity of
this helix is very much larger than the dimensions of the individual molecules. The name
cholesterics is due to the fact that this phase was first found in esters of cholesterol.

Most low-molecular weight liquid crystals are thermotropic. This means they show
LC phase transitions as a function of temperature. The transition from crystal to liquid
crystal is the melting point and the transition from liquid crystal to isotropic liquid is
called the clearing point (where the sample becomes optically clear). A typical example is
p-octyl-p’-cyanobiphenyl (usually called 8CB) which has both a nematic and a smectic
phase (see Fig. 1.3). The ‘8’ in 8CB refers to the length of the (carbon) tail, and
correspondingly the versions with other lengths are called 5CB, 6CB etc. A series of
such molecules (with increasing tail length) is called a homologous series. Many phase
diagrams consist of transition temperatures versus tail lengths. In general, longer tails
stabilize the smectic phase and therefore destabilize the nematic. Another interesting
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ẑ

Figure 1.2. The cholesteric phase for chiral rodlike molecules. The preferred
orientation rotates clockwise when we move in the direction of ẑ. Within the
planes perpendicular to ẑ, all rods have the same preferred direction. The
planes themselves are only drawn as a guide to the eye, so the cholesteric is still
a fluid.

property is that homologous series usually show an odd-even effect; i.e. the transition
temperatures of the even-numbered tail lengths are on average a bit higher/lower than
those of the odd tail lengths. In the phase diagrams this appears as a zigzag curve. Vast
amounts of thermotropic liquid crystals were synthesized and characterized by Daniel
Vorländer in the beginning of the 20’th century [4].

Another class of liquid crystals is called lyotropic. In lyotropic systems the molecules
are in solution and have LC phase transitions as a function of concentration. Suspensions
of anisotropic colloids and the already mentioned amphiphilic molecules in water are
lyotropic systems. A well-known example of a lyotropic liquid crystal is a concentrated
solution of the Tobacco Mosaic Virus (TMV) [5]. TMV particles appear as rods with
lengths of 300 nm and diameters of 18 nm and it shows a nematic as well as a smectic
phase. These virus particles are extremely monodisperse (unlike synthesized colloids)
and serve as an excellent model system as they interact approximately as hard bodies. 2

Solutions of TMV particles were already studied by Bernal et. al. in the 1930’s [6]
By far most molecular theories for LC behaviour concern the nematic phase and the

isotropic-to-nematic transition. In 1949, Onsager proposed a theory for LC behaviour [7].
He aimed to describe colloidal suspensions like TMV solutions, modelling the colloids
as rigid cylinders with hard-body interactions. Using the second virial approximation
and approximate solutions, he basically introduced, explored and solved it all in a single
paper [7]. Additionally, he showed that this description is exact in the isotropic phase for
extremely elongated rods. Another theory was proposed by Flory, who used his lattice
model for the case of rigid rods [8] and Maier and Saupe used a mean-field model where
the particles interact via a potential proportional to the second Legendre polynomial [9].

2In fact the interaction potential is a very steep repulsive potential due to screened Coulomb
interactions.
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CN

Figure 1.3. The molecule 8CB. It has a nematic as well as a smectic phase.
The two phenyl rings form the mesogen and the aliphatic chain on the left is
the more flexible tail.

Zwanzig used hard rods with 3 discrete orientations [10]. The theories of Onsager and
Zwanzig use density as a parameter and could be considered to be of lyotropic nature,
where the other ones use temperature and describe therefore thermotropic systems. In
many cases this difference is only formal as for instance the Onsager and Maier-Saupe
theory give equivalent results when density is identified with 1/Temperature. Most other
molecular theories for LC behaviour are extensions of the above.

Computer simulations have become an important tool in the field of liquid crystals.
The nematic behaviour in fluids of hard anisotropic particles was studied by Vieillard-
Baron [11] and Frenkel and Mulder [12] (see also Ref. [13]). Bolhuis and Frenkel com-
puted the full phase diagram of hard spherocylinders in Ref. [14] (which could be used
as a model system for TMV particles). Simulations have also been performed on Maier-
Saupelike systems; Lebwohl and Lasher connected the Maier-Saupe rods to a lattice [15]
and Luckhurst and coworkers used freely moving rods (see Chap. 3 in Ref. [16]). In
ending this section, we mention some literature we used. Books on the physics of (ther-
motropic) liquid crystals are Refs. [17, 18, 19]. An extensive collection of contributions
on the molecular origin of liquid crystals is given in Ref. [16]. Statistical mechanics of
liquid crystals is treated in Ref. [20] and hard-particle fluids are the subject of Ref. [13].

1.2. Liquid Crystalline Polymers

Polymers are long molecules consisting of many monomers chemically linked to each
other. Polymers are abundant in nature and especially in biological systems. Also,
many different ways of synthesis are known and large quantities of polymers are being
produced in industry. Their main interest lies in the intrinsic mechanical properties
and their possible modification through inclusion of groups with different chemical or
physical properties. Cooperation of or competition between such groups gives rise to new
phenomena and resultingly, whole new fields of science and industrial applications [21].

LC ordering is believed to play a role in some processes involving biological polymers
like DNA and microtubules. Also, the previously mentioned virus particles like TMV can
be considered biopolymers and show LC behaviour in concentrated solutions. Contrary
to these biopolymers, which are lyotropic, most polymers synthesized in laboratories are
thermotropic liquid crystals. These thermotropic polymers exist in roughly three classes;
in the first case, the stiff main chains themselves act as liquid crystal formers. The other
two use mesogens incorporated in the polymer, connected with more flexible parts called
spacers. These polymers come in two flavours, those with mesogens in the main chain
and those with side chains containing them. Presently, there are also combinations of
the last two.

The first to systematically study the effect of increasing molecule length on the LC
phase behaviour was probably Vorländer [4]. In 1923, he synthesized poly(p-benzamide)
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and concluded that the melting temperature was too high as the polymer burned before
it was reached. In general, linking LC groups (like benzene rings) rigidly together should
provide a stable LC phase as the molecules become more and more anisotropic. Indeed,
the clearing temperature does increase with increasing molecule length. However, also
the melting temperature shoots up for these long rigid polymers. And although generally
the melting temperature increases less than the clearing temperature, thus stabilizing
the LC phases, still both become very quickly so high that the molecules decompose
before they can melt.

One way to get around this is flexibility. The first successfull LC polymers (LCP’s)
were polypeptides and were investigated in an effort to develop synthetic silk. In
1956, Robinson reported about birefringency in solutions of poly-γ-benzyl-L-glutamate
(PBLG) concluding that these were LC phases [22]. PBLG molecules consist of rather
stiff main chains, i.e. stiff enough to allow for liquid crystallinity, but flexible enough
to be manageable at moderate temperatures. Eventually these investigations led to the
development of high-tensile strength fibers like Kevlar [23]. However, the importance of
the liquid crystallinity in these systems was not fully recognized until the 1980’s.

Other ways of manipulating the molecular architecture to increase the stability of
LC phases is by frustrating the crystalline phase, and thus bringing down the melting
temperature. Jackson and coworkers synthesized aromatic polyesters which were not pe-
riodic along the chain [24]. This random copolymerization proved to be a powerfull way
to prevent crystallization and several commercially available polymers use this concept
(see in Ref. [1]). Introducing kinks or side groups can also reduce the melting tempera-
ture considerably, where usually the LC tendency is not so much affected. Sometimes,
the crystalline phase disappears altogether and instead anisotropic glass phases appear.

It was attempted for some time to use flexible polymers and laterally attach the
chemical groups responsible for the LC behaviour in low-molecular weight liquid crystals.
These first side chain polymers, however, were unsuccessful as the entropic (coillike)
tendency of the polymer proved to be stronger than the LC tendency of the side chains.
Also, direct linkage of these groups to the polymer sterically frustrated the orientational
and spatial freedom these groups need to have. This was solved when the spacer concept
was introduced by Finkelmann and coworkers [25]. Instead of direct linkage, they used
an aliphatic chain (spacer consisting of CH2’s) to decouple the mesogens from the flexible
polymer (backbone). This discovery really boosted the field and later the spacer concept
was also used in main chain polymers [26].

If we want to compare low molecular weight LC’s and LCP’s, there are a few things
we should bear in mind. In general, there is a strong reduction in entropy when meso-
gens are incorporated in polymers. As a result, the same mesogens order stronger when
embedded in polymers compared to when they are isolated (e.g. nematic mesogens yield
smectic polymers). Another characteristic of polymers is that due to the way of syn-
thesizing (e.g. polymerization reactions), one will always obtain a mixture of polymers
with many different lengths. The degree of polydispersity may have quite some effect
on the phase diagram. An indication for the degree of polydispersity is given by the
ratio Mw/Mn, where Mw is the weight average molecular weight and Mn is the number
average molecular weight. In Chap. 3 in Ref. [27] and in Refs. [28, 29, 30, 31], this is dis-
cussed using the example of the polyacrylate poly(4-(5-acryloyloxypent-1-yloxyphenyl)-
4’-butoyloxybenzoate) (or shorter, PABB-5) (see Fig. 1.4). Fairly monodisperse melts
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Figure 1.4. A monomer of the molecule PABB-5. The square brackets in
the upper left part refer to the fact that here the neighbouring monomers con-
nect. For long polymers (n>100), monodisperse melts of PABB-5 have various
nematic and smectic phases. The phenyl rings form the mesogen, the aliphatic
chain connecting the rings to the polymer is the spacer and the polymer is called
the backbone. Right of the mesogen, there is a small aliphatic tail.

of this polymer (Mw/Mn ≈ 1.2) show a phase sequence I - N - SmA - RN - SmF, where
RN is a reentrant nematic and SmF is a kind of smectic phase. Wider distributions
(Mw/Mn ≈ 2.9) just show I - N - SmF.

Most molecular theories for LCP’s start from the theories for low molecular weight
LC’s and then include flexibility. Khokhlov and Semenov use impenetrable wormlike
chains and this yields an excluded volume interaction similar to Onsager’s [32, 33].
They derived a new expression for the conformational entropy which includes the flex-
ibility of the molecule. Warner and coworkers use wormlike chains with Maier-Saupe
interactions [34]. Keeping only the leading terms, they are able to calculate radii of
gyration in the nematic phase. There are some more extensions (also to the case of side
chain polymers), but these we will discuss in the appropriate chapters. There are no
simulations of genuinely long LCP’s as these systems are too large for the present gener-
ation computers. In ending this section, we mention a paper by Holyst and Oswald [35]
which is a review of some basic models for LCP’s. Ref. [2] is a historical review of the
development of LCP systems.

1.3. Flexible Theories for Flexible Molecules

Relatively a lot of work has been done on the nematic ordering in melts of wormlike
chains. Wormlike chains are linear and are completely symmetric along the chain; i.e.
every part of the chain is identical to every other part. This simplicity is the reason why
wormlike chains are an interesting model system. Also, the nematic phase is usually
considered as it is by far the most easy phase to treat theoretically. And moreover,
experimentally, it is a very common phase and phenomena occurring in other LC phases
can often be understood (partially) by first studying the nematic.

However, as we argued earlier, a realistic LC polymer is often not a plain repetition of
some simple monomer. These consist of rigid mesogens connected with flexible spacers
which can again be located in side chains or embedded in the main chain. There are
very little theories explicitly considering these geometries. And the ones which do,
treat these objects on the mean-field level so all possibly important correlations between
the various parts of the molecules are lost. In this thesis, we develop a formalism for
nematic ordering in LCP’s, where the explicit geometries are considered and in which
the interactions within the molecules are taken into account exactly.
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As we stated at the end of the previous section, Khokhlov and Semenov (KS) have
created a formalism for nematic ordering in hard wormlike chains [32, 33]. Their formal-
ism is capable of including correlations within the polymers and they conclude, using a
scaling argument, that for long polymers in the nematic the order in the middle is twice
as large as at the ends [33]. However, for the rest they mainly considered very long
‘semiflexible’ chains for which these contributions from within the chain do not show
and seem averaged out, like in a mean field treatment (which they are not). Only later,
in Ref. [36], Chen solved KS’s equations numerically and computed the distribution of
order along the wormlike chain.

Kayser and Raveché showed that in the context of Onsager’s original model, the ne-
matic solution branches off from the isotropic solution [37]. They were able to construct
the nematic solution perturbatively starting from this bifurcation point and showed that
it connects to the globally stable solution further away. The strength of this method
is that the bifurcation density gives a good indication of the nematic coexistence den-
sity and that the bifurcation analysis can be performed analytically. KS have applied a
bifurcation analysis for the wormlike chains and mention the result in Ref. [33].

In this thesis, we start from a more fundamental level and consider a chain as being
built up of rodlike segments. For these objects, we develop a density functional for-
malism, with a firm theoretical foundation for the various terms in the functional and
the approximations needed. Next, we can define an appropriate limit, which transforms
the segmented chains into wormlike chains. This limit can be taken at virtually every
point in the analysis and reduces our formalism to that of KS. Apart from the above, we
find the segmented chain formalism conceptually easier to start with. The bifurcation
analysis of Kayser and Raveché is readily generalized and numerical work becomes more
straightforward as the chains are already discrete. This is the subject of Chap. 3.

Most importantly, the segmented chain formalism is generalizable to systems with
a more complicated geometry in a straightforward way. This generalization is rather
direct because in considering segmented chains, one can write the equations in a coupled
way, for every segment seperately. Considering different-sized segments or branched
chains boils down to changing only a few of the contributions in these equations in
a straightforward fashion. It is in this sense that the theories we are considering are
flexible, explaining the title, flexible theories for flexible molecules. After the analysis
is performed and the results are obtained it is then still possible to apply the wormlike
chain limit.

In Chap. 2, we discuss some technical background needed to appreciate this thesis.
The rest of the thesis is organized in two parts. In the first part, we consider polymers
consisting of only one type of segment and are consequently homogeneous along the
chain: hence, homopolymers. Chap. 3 is about chains of cylindrically symmetric or uni-
axial segments and in Chap. 4 the segments are biaxial. In the second part, the polymers
can be built up from different types of segments and we call them heteropolymers. Also,
we include the possibility of branching within the chains. In Chap. 5, we consider very
general segmented and possibly branched heteropolymers. Main chain LCP’s are the
subject of Chap. 6 and side chain LCP’s are considered in Chap. 7.

The only liquid crystalline phase, we consider throughout this thesis is the nematic.
This is mainly because the theories we use for flexible molecules are tractable in the
nematic, and moreover, being the ‘first’ liquid crystalline phase, bifurcation analysis of
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the trivial isotropic solution can be performed. Positionally ordered phases for flexible
molecules are notoriously more difficult. Whereas in fluid phases, orientational correla-
tions along the polymer sustain for length scales on the order of the persistence length,
in inhomogeneous phases, the spatial correlations usually travel much further. Further-
more, the intuitively useful concept of excluded volume can not be used anymore in
inhomogeneous phases.

Most experimental liquid crystalline polymer systems are thermotropic, meaning that
they show liquid crystalline phase behaviour as a function of temperaure. In this thesis,
all theories are formulated in terms of the density, which would make them lyotropic
theories. Although an essential difference in experimental systems, when considering
these theories, it is usually a detail. Mean field theories, like that of Maier-Saupe, using
the temperature as a control parameter, have the same formal structure as DFT in the
Onsager approximation using the density. The density and the inverse of the temperature
play similar roles, and often phase diagrams can be qualitatively ‘translated’ between
lyotropic and thermotropic by replacing one with the inverse of the other. However,
when other degrees of freedom are also considered, one has to take caution in making
this translation. In Chap. 7, this point is addressed in order to compare the nematic
behaviour of Onsagerlike side chain LCP’s considered in this thesis and Maier-Saupelike
side chain LCP’s considered elsewhere.



2 Theoretical Background

In this chapter, we give a technical introduction to the fields of thermodynamics
and statistical mechanics. The density functional formulation of statistical mechanics
is discussed and bifurcation analysis is introduced as a tool to study symmetry-breaking
transitions. Finally, we briefly discuss Onsager’s model for liquid crystals and introduce
the concept of wormlike chains.

2.1. Thermodynamics

2.1.1. General Principles. Thermodynamics is designed in accordance with our
experience; it is a phenomenological theory. It is also inherently macroscopic, meaning
that it makes no statements on microscopic properties and in turn assumes that there
is no explicit appearence of the molecular character of matter. In that sense, it applies
to almost everything in the world around us, and is probably the most general physical
theory. This generality is, in a way, also its weakness; thermodynamics does not give
new fundamental laws, it merely relates properties of matter and sets limits as to what
can happen. There is just one catch; thermodynamics describes systems which are in
equilibrium. This seems a strong restriction as not many systems in the world around
us are in thermodynamic equilibium. Still, the success of thermodynamics as a physical
theory justifies the assumption that in practice an operational form of equilibrium can
be reached for most systems [38, 39, 40]. The approach, we take here, largely follows
Callen [38].

The formulation of thermodynamics starts with a few postulates which are drawn
directly from experiments and use the macroscopic character of the considered systems.

(1) A thermodynamic equilibrium state of a system is, macroscopically, completely
characterized by the internal energy U , and the other extensive parameters 1

(like the volume V , the mole numbers N1, N2, · · · , Nr of the chemical compo-
nents, etc.).

(2) The entropy S of a system is a (continuous, differentiable) function of the exten-
sive parameters S(U, V,N1, etc.), and these extensive parameters assume values
that maximize the entropy within the constraints set to the system.

These two postulates are usually called the first and second law of thermodynamics,
respectively. Although seemingly simple, their implications are huge and most of ther-
modynamics can be constructed using these statements. We are now in a position to

1A thermodynamic parameter is extensive when it scales linearly with the size of the system.
Intensive parameters do not scale with the size of the system.

9
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construct the quantities,

T =
(
∂U
∂S

)
V,N1,etc.

P = −
(
∂U
∂V

)
S,N1,etc.

µ1 =
(
∂U
∂N1

)
S,V,etc.

etc. (2.1)

where T is defined as the temperature, P as the pressure and µ as a chemical poten-
tial and these are all intensive. Defined in this way, these quantities agree with our
intuitive concepts of temperature and pressure. The role of the internal energy U as a
thermodynamic potential is ensured by an additional postulate that T > 0 (see again
Ref. [38]) and with U = U(S, V,N1, etc.), Eqs. 2.1 are called equations of state. The two
formulations, using either the energy U , or the entropy S, as potential are completely
equivalent. However, the energy formulation is the most common and is what we also
use. Another important implication of T > 0 is that the principle of maximum entropy
(2nd law) is equivalent to a principle of minimum energy. The entropy S, as a ther-
modynamic parameter is extensive as well. Therefore, often the energy of a system is
written in terms of that of one mole of a certain compound,

U(S, V,N1, N2, etc.) =N1U(S/N1, V/N1, 1, N2/N1, etc.)

=N1u(s, v, x2, etc.).

So, the dependence of one extensive parameter can be scaled out, which makes sense as
thermodynamics is scale invariant.

2.1.2. Thermodynamic Potentials. In most cases, it is not so natural to charac-
terize a system in terms of extensive parameters. For instance, consider a system with
one component, which is in thermal contact with the “outside world” but is for the
rest isolated from it. The outside world has a constant temperature T0, and imposes
this through the thermal contact to the system. Then, the thermodynamic state of our
system would be determined by the extensive parameters S, V,N , and the additional
constraint T (S, V,N) = T0. In such a case, it is easier to use a formulation where T
would be a parameter instead of its conjugate extensive parameter S (which is allowed
to fluctuate due to the flow of heat). This can be done by taking the Legendre transform
of U ,

F = U − TS. (2.3)

Eliminating U and S by using U = U(S, V,N) and T = ∂U/∂S yields F = F (T, V,N).
The new potential F is called the Helmholtz potential and contains the same informa-
tion as U(S, V,N). Conveniently, the principle of minimum energy translates directly,
and the values of any unconstrained internal parameters assume values which minimize
the Helmholtz free energy, given T = T0. These Legendre transformations can be per-
formed with respect to other parameters as well, yielding a whole set of thermodynamic
potentials and corresponding minimum principles. Each of these potentials has a corre-
sponding system, to which applied, it shows its full advantage. Here we mention only
the grand canonical potential,

Ξ = U − TS − µN, (2.4)

with Ξ = Ξ(T, V, µ). The grand canonical potential is minimized when the system is in
thermal contact with the outside world as well as that it can exchange matter with it.



2.1. THERMODYNAMICS 11

The constraints are: T = T0 and µ = µ0. This potential plays a central role in density
functional theory (Sec. 2.3).

2.1.3. Stability. In order to investigate the stability of thermodynamic systems,
we turn again to the principle of minimum energy. It can be formulated as follows,

dU = 0 and d2U > 0, (2.5)

with U = U(S, V,N1, etc.). The first condition ensures the energy is an extremum and
the second that it is a minimum. Because of the positive curvature in all directions, the
energy is said to be a convex function of its external parameters. However, the effect
of the Legendre transformation is that the thermodynamic potentials obtain negative
curvature with respect to their intensive parameters, i.e. they are concave with respect
to them. So, in case of the Helmholtz potential, for a one-component system, this means(

∂2F
∂T 2

)
V,N
≤ 0

(
∂2F
∂V 2

)
T,N
≥ 0

(
∂2F
∂N2

)
T,V
≥ 0. (2.6)

(To not complicate things too much, we do not mention the “combined” stability crite-
rion for V and N here.) In practice, however, when one uses the Helmholtz potential,
the system is in thermal contact with the outside world, which has a fixed temperature
T = T0. Consequently, we are only concerned with the convexity of the free energy
surface in the direction of the extensive parameters.

2.1.4. Phase Transitions. We proceed in considering the one-component system
of the previous subsection. One might argue that the two other (external) parameters
V,N are also fixed, as there is no mechanical or chemical contact with the outside
world. However, it can happen that the free energy surface F (T0, V,N) becomes locally
nonconvex as a function V and N , like for instance in Fig. 2.1. Then, this nonconvexity is
cancelled by the system by dividing into two subsystems; this is called phase separation.
These subsystems are not separated by any wall, so matter can flow between them, and
they can exchange volume. They are characterized by V1, N1 and V2, N2 respectively,
and have both the same temperature T0 as they are both in thermal contact with the
outside world. The incentive for this division is that the new free energy F ′, which is a
sum of that of the two subsystems, is lower than the original one,

F ′(T0, V,N) = F (T0, V1, N1) + F (T0, V2, N2) < F (T0, V,N), (2.7)

with of course N = N1 +N2 and V = V1 + V2 (with T0, V,N fixed by the experimenter,
there are two free parameters). If we use molar quantities, f ′ = F ′/N and fi = F/Ni

(i = 1, 2), and rewrite a little bit,

f ′(T0, ρ) = x1f1(T0, ρ1) + x2f2(T0, ρ2), (2.8)

with densities, ρ = N/V , ρi = Ni/Vi and mole fractions xi = Ni/N . Then, the con-
straints are x1 +x2 = 1 and x1/ρ1 +x2/ρ2 = 1/ρ. From Fig. 2.1, it is easy to see that this
“linear combination” of two subsystems lowers the total free energy of the system and as
such, cancels the nonconvexity of the free energy surface. This construction, presented
in Fig. 2.1, is called the common tangent construction or Maxwell construction, and the
densities, ρ1 and ρ2, are found by solving the following (two) equations

∂f(T0, ρ)

∂ρ

∣∣∣∣
ρ=ρ1

=
∂f(T0, ρ)

∂ρ

∣∣∣∣
ρ=ρ2

=
f(T0, ρ2)− f(T0, ρ1)

ρ2 − ρ1

. (2.9)
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Figure 2.1. An example of a nonconvex free energy surface: ABCDEFG. In
between B and F, the system will divide into two subsystems in order to make
the free energy convex: ABFG (following the dashed curve). The points B and
F are the binodal points and C and E are the spinodal points. The dashed line
is the common tangent of B and F. The parts AB and FG are globally stable,
BC and EF are metastable and CDE is unstable.

Having determined these densities, ρ1 and ρ2, x1 and x2 can be obtained from the
constraints. Locating the common tangents, in this way, is equivalent to imposing that
the pressures and the chemical potentials of both subsystems be equal,

P (T0, ρ1) = P (T0, ρ2) and µ(T0, ρ1) = µ(T0, ρ2), (2.10)

which are, in the Helmholtz representation, given by

P (T0, ρ) = −
(
∂F

∂V

)
T0,N

= ρ2

(
∂f

∂ρ

)
T0

(2.11)

µ(T0, ρ) =

(
∂F

∂N

)
T0,V

= f(T0, ρ) + ρ

(
∂f

∂ρ

)
T0

. (2.12)

These last remarks are of course, physically, more intuitive. The two subsystems do
not have any barrier between them, so they can freely exchange matter and volume.
Therefore, equal pressures and chemical potentials seem a necessary (and sufficient)
condition. As was already stated, it is fully equivalent with constructing the common
tangents.

The situation, we have just sketched above, is a very well known scenario for phase
separation. The archetype system is the van der Waals fluid which can phase separate
into a high-density fluid (liquid) and a low-density fluid (gas). The phase transition is
first order as the density has a discontinuous jump at the transition. The densities ρ1

and ρ2, of the two coexisting phases are called coexistence or binodal densities. And,
as we already saw, between these densities, the “global” convexity of the free energy
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surface is lost. However, locally the surface can still be convex, (∂2f/∂ρ2)T0
> 0 (as can

be checked from Fig. 2.1). The densities where(
∂2f

∂ρ2

)
T0

= 0, (2.13)

are called the spinodal densities, and in between the second derivative is negative. So,
between the binodal densities, the phase is globally unstable, but between the spinodal
densities, even local stability is lost. Physically, it is usually said that one can overcom-
press the system, beyond the lower binodal density and still, the system can remain in
the original phase. This is because a “critical” fluctuation is needed to drive the phase
transition. However, when the spinodal density is approached the critical fluctuation
needed goes to zero, and inevitably, phase separation sets in.

Finally, we note that Fig. 2.1) is typical for phase separation where the two phases
have the same symmetry (like for instance the gas-liquid coexistence in the van der Waals
fluid). If by some means, we would be able to change the temperature of the outside
world, we would find that the coexistence region is not constant in size. Increasing the
temperature, it would shrink until, at some temperature, it would disappear. Beyond, for
higher temperatures, the free energy surface has no nonconvex parts. The point where
the coexistence region has “zero size” is called the critical point, characterized by Tc, ρc.
At the critical point, binodal and spinodal points meet, so (∂2f/∂ρ2)T0

(Tc, ρc) = 0.
This is a common feature for phases with the same symmetry. Phases with different
symmetry do not have a critical point.

2.2. Statistical Mechanics

2.2.1. General Remarks. Thermodynamics is concerned with macroscopic sys-
tems. In equilibrium, these systems can be descibed by only a few parameters, and
other thermodynamic quantities can be expressed in terms of these parameters. How-
ever, thermodynamics just states that they exist, but does not provide the explicit
relations between them. For instance, the equations of state Eqs. 2.1, will surely be
different for different chemical substances, but that can not be obtained from thermody-
namic theory. These relations have to be measured in experiments, or other ingredients
or theories are needed to supply them. From this point of view, it is worthwile to go
more “fundamental” and consider the composition of macroscopic systems. Microscop-
ically, all matter is made up of small particles called molecules. Different substances
consist of different types of molecules and the macroscopic appearence of a substance
results from the collective behavior of a large number of the consisting molecules. If
we know the properties of the individual molecules and how they interact, it should, in
principle, be possible to connect those to the macroscopic properties of the substance.
This bridge between the microscopic and the macroscopic world is formed by statistical
mechanics [41, 42, 43].

From a classical-mechanical point of view, the state of a molecule is described by
its “coordinates” q and the conjugate momentum p. The coordinates of a molecule
contain the position, and possibly the orientation and even other (internal) degrees
of freedom, like for instance for composed molecules, orientations of the independent
components. The quantity p contains the conjugates of q and, therefore, has the same
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dimension, which we set to be 3 + d (3 for the position coordinates, and d for the
rest). Then, the microscopic state, or microstate, of the whole system is described
by the collection of coordinates and momenta of all N molecules, ΓN = {qN ,pN},
with qN = {q1,q2, · · · ,qN} and pN = {p1,p2, · · · ,pN}. The energy of a particular
microstate is equal to the Hamiltonian of the system, U = H(ΓN). The equations of
motion of all particles can be obtained from the Hamiltonian, yielding, in principle, all
the past and future of the system. However, it needs no comment that these will be
impossible to solve, so we do not proceed.

In case of a single-component system the microstate ΓN is described by 2(3 + d)N
parameters, whereas we saw in the previous section, the thermodynamical state is de-
scribed by 3 parameters (i.e. U, V,N). Inevitably, many microstates correspond to one
and the same macroscopic state. This leads to the following assumption, which forms
the foundation of (classical) statistical mechanics.

For a macroscopic system in equilibrium, any microstate satisfying the
macroscopic conditions is equally likely.

This is often called the postulate of equal a priori probability. For the closed single-
component system (which is called a microcanonical ensemble in statistical physics),
the above postulate simply means that all microstates with energy H(ΓN) = U are
equally likely and those with H(ΓN) 6= U do not occur. The postulate of equal a priori
probability implies that the system spends as much time in every accessible microstate.
It is therefore likely to find the system in a macroscopic state corresponding to the largest
number of microstates. This allows a rather direct connection of the number of accessible
microstates to the thermodynamic entropy, and of the above postulate to the second law
of thermodynamics. The first law of thermodynamics is taken to be a consequence of
conservation of energy on the microscopic scale, following from (quantum) mechanics.

2.2.2. The Canonical Ensemble. In the previous section, we considered a system
which was in thermal contact with the outside world and was therefore characterized by
parameters T, V,N (in case of only one component). In statistical physics, such a system
is called a canonical ensemble. Because of the constant temperature, energy is allowed
to fluctuate and in principle all microstates ΓN contribute to the macroscopic system.
However, it can be shown that high-energy microstates are less likely than low-energy
ones, and that the probability scales with exp[−H(ΓN)/kBT ]. The constant kB is called
the Boltzmann constant and sets the energy scale. We are now in the position to sum
over all possible microstates, weighted with their probability,

Q(T, V,N) =

∫
dΓN

N !h(3+d)N
exp[−βBH(ΓN)], (2.14)

with dΓN = dqNdpN = dq1 · · · dqNdp1 · · · dpN and βB = 1/kBT . Q is the canonical
partition function. The constant h is introduced in order to make Q dimensionless. Its
origin lies in quantum mechanics and it has to be identified with Planck’s constant. The
factor 1/N ! is also nonclassical and is due to the indistinguishibility of the molecules.
The partition function is related to the Helmholtz free energy,

F (T, V,N) = −kBT logQ(T, V,N), (2.15)
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and contains therefore all thermodynamic information of the system. In the canon-
ical ensemble, the partition function Q is the central quantity as it bridges the gap
from microstates to macroscopic states. For other ensembles, which characterized by
other thermodynamic parameters, similar partition functions can be formulated. It is,
however, still a formidable job to do the integration and there are only few (mostly
one-dimensional) systems for which it can be performed exactly.

We proceed with a partial evaluation of the canonical partition function. The Hamil-
tonian can be written as the sum of a kinetic and a potential part,

H(ΓN) = Upot(q
N) + Ukin(pN). (2.16)

The kinetic energy has contributions from the linear momentum of the molecules and
possible other modes (like angular momentum). For now, we concentrate on the linear
momentum, and the kinetic energy is quadratic its components.

Ukin =
N∑
i=1

pi · pi
2m

. (2.17)

Then, every integration over pi are 3 Gaussian integrals, yielding a total factor

Λ3 =

(
h√

2πmkBT

)3

, (2.18)

in which m is the mass of the molecule. The quantity Λ is the de Broglie thermal
wavelength. The kinetic energy contained in the other modes typically contribute similar
factors, i.e. for one component of the angular momentum, Λσ = h/(

√
2πIσkBT ) with Iσ

a principal moment of inertia, around axis σ (see the appendix in Ref. [13]). Collecting
these contributions, we define a quantity VT called the thermal volume of the molecule,

VT = Λ3
∏
ν

Λν (2.19)

where the index ν runs over the d “other” degrees of freedom. Λ has the dimension of
length and the Λν are dimensionless. An important thing to realize is that VT scales
with T−(3+d)/2 2. Putting this back in Eq. 2.14, we obtain

Q(T, V,N) =
1

N !VNT

∫
dqN exp[−βBUpot(q

N)]. (2.20)

where the integrations over momentum space are all contained in the factor 1/VNT . Using
the Stirling approximation, log n! = n log n−n for large n, we write down the free energy
by combining Eqs. 2.15 and 2.20,

F (T, V,N) = NkBT (log (ρVT )− 1)−kBT log

∫
dqN

V N
exp[−βBUpot(q

N)], (2.21)

with ρ = N/V the number density.

2Obviously, for molecules with an infinite number of degrees of freedom (like the wormlike chains
of Sec. 2.6) this approach breaks down because d → ∞. However, this is only a real problem when
one is considering the actual temperature dependence, computing for instance the specific heat. In this
thesis, we use a fixed temperature and then we can discard the (constant) term log

∏
ν Λν .
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In ending this subsection, we consider a system of noninteracting (ideal) molecules,
Upot = 0. The integral in Eq. 2.20 is trivial, and the partition function becomes

Qideal(T, V,N) =
wNV N

N !VNT
, (2.22)

where W = wV =
∫
dq. The volume V is due to the spatial integrations and the factor

w comes from the integrations over the other degrees of freedom. The “ideal” free energy
is

Fideal(T, V,N) = NkBT (log (ρVT/w)− 1) . (2.23)

2.2.3. The Virial Expansion. The central effort in statistical mechanics goes to
performing the partition sum Eq. 2.20, for nontrivial interactions, Upot 6= constant,
between the molecules. This can be done analytically only for a few (mainly one dimen-
sional) systems. In all other cases, some kind of approximation or perturbation theory
has to be employed. For systems where the density is low, like gases, sometimes an
expansion in powers of the density is used where the series is cut off beyond a certain
power. This expansion is called the virial expansion and the coefficients are virial coeffi-
cients. In this thesis, we are concerned with very elongated molecules. In isotropic fluids
of these molecules, it is not so much the density which is low but the virial coefficients
which decrease rapidly with increasing order. For these systems, the virial expansion is
a convenient starting point for an analysis.

For simplicity, we start by assuming that there is no external field and that possible
internal degrees of freedom have all the same energy. In the next section, these can be
reimplemented in a natural way. The molecules under consideration interact pair-wise,
so the potential energy becomes

Upot(q
N) =

∑
i<j

upot(qi,qj), (2.24)

where upot(q,q
′) is the interaction energy of two molecules with coordinates q and q′

and the summation runs over all i, j with 1 ≤ i < j ≤ N . Next, we define the Mayer
function,

φM(q,q′) = exp[−βBupot(q,q
′)]− 1. (2.25)

The Mayer function is short ranged as it goes to zero when the molecules are far apart
(because upot vanishes for large distances). From this observation, we consider the
expansion of the integrand exp[−βBUpot(q

N)], in Mayer functions,

exp[−βBUpot(q
N)] =

∏
i<j

(1 + φM(qi,qj)) .

= 1 +
∑
i<j

φM(qi,qj) +
∑

i<j;i′<j′

(i,j) 6=(i′,j′)

φM(qi,qj)φM(qi′ ,qj′) + · · · (2.26)

Putting this expansion in the free energy Eq. 2.21, and rearranging quite a bit, we obtain
what is called the virial expansion of the free energy,

F (T, V,N) = NkBT
(
log (ρVT )− 1 +B2ρ+ 1

2
B3ρ

2 + · · ·
)
, (2.27)
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where the series expansion log(1 + x) = x − 1
2
x2 + · · · is used. The second and third

virial coefficients are given by

B2 = − 1

2V w2

∫
dqdq′φM(q,q′), (2.28)

B3 = − 1

3V w3

∫
dqdq′dq′′φM(q,q′)φM(q,q′′)φM(q′,q′′). (2.29)

We have not given any more terms in Eq. 2.27 and the corresponding virial coefficients,
as they quickly become much more elaborate. Going from Eqs. 2.21 and 2.26 to 2.27, 2.28
and 2.29 is far from trivial and we do not go into this. However, it involves extensive
rearranging of the terms and recognizing that many of them are the same. Most integrals
can be expressed in terms of a few “irreducible” ones. These irreducible integrals appear
in the virial coefficients. The second and the third virial coefficient contain only one
integral, but higher order coefficients very quickly contain many more (for instance, the
fourth contains 3). Physically, each of the integrals in the nth virial coefficient Bn,
corresponds to a contribution of n particles interacting simultaneously in a certain way.

We make a few more remarks on the virial expansion as given in Eqs. 2.27 to 2.29.
Every n’th virial coefficient consists of n integrals over q. However, making use of a
coordinate transformation, one finds that one of them is trivial, yielding a factor wV .
This factor V then cancels with the factor 1/V in front of every coefficient. Consequently,
every virial coefficient is intensive and the free energy Eq. 2.27, is well-defined and
extensive. The factors w−n in front of the integrals are due to the fact that the molecules
have other than spatial degrees of freedom. In this formulation, Eqs. 2.27, the n’th virial
coefficient corresponds to the (n − 1)’th power of ρ, yielding terms Bnρ

n−1. However,
the virial series is originally defined for the equation of state (pressure). Taking the
derivative (see Eq. 2.11) of the free energy, virial terms Bnρ

n appear, where the nth
virial coefficient corresponds to nth power of the density.

Cutting off the virial expansion beyond the nth virial coefficient, we obtain the nth
virial approximation. In this thesis, we will be concerned with only the second virial
approximation. A problem with above equations is that implicitly, it has been assumed
that there is no ordering of the molecules whatsoever. Therefore, the approach using
the virial series is only valid in the homogeneous isotropic fluid phase. This issue will
be addressed in Sec.2.3.

2.2.4. Hard Particles. The reason we could perform the virial expansion is be-
cause the Mayer function is short-ranged. In this thesis we consider impenetrable or
hard particles which have an extremely short-ranged pair-potential,

upot(q,q
′) =

{
∞ if overlap
0 if no overlap

, (2.30)

and therefore, so does the Mayer function,

φM(q,q′) =

{
−1 if overlap
0 if no overlap

. (2.31)

Then, the virial coefficients get a very intuitive meaning; the second probes if two
particles are overlapping, the third if three are overlapping simultaneously etc. Fur-
thermore, if we use that the Mayer function is invariant to translations, φM(q,q′) =
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φM(r− r′,Ω,Ω′), with Ω the ‘other’ degrees of freedom, we can define what is called the
excluded volume of two molecules

E(Ω,Ω′) = −
∫
drφM(r,Ω,Ω′) (2.32)

and the second virial coefficient becomes

B2 =
1

2w2

∫
dΩdΩ′E(Ω,Ω′). (2.33)

The excluded volume plays a central role in fluid phases of hard particles as we will see
later.

Another property of hard particle systems, we address here, is that there is no energy
scale. Because, temperature does not appear in Eq. 2.30, all virial coefficients are also
independent of temperature and therefore, entropic in nature. From Eq. 2.27, we observe
that all terms scale linearly with T and this can therefore be scaled out, yielding βBF .
Note, there is still a temperature dependence in VT , but this term only shifts the zero
of energy and has therefore no effect.

2.3. Density Functional Theory

In this thesis, we are interested in systems of molecules which can undergo phase
transitions. However, phase transitions are not included in statistical mechanics as it
is formulated in the previous section. The reason is rather subtle and basically due
to the fact that the Hamiltonian of our system is invariant to global translations and
rotations. Only in the so-called thermodynamic limit (N, V, U → ∞ with their ratios
finite) statistical mechanics yields full thermodynamics, and true phase transitions and
spontaneous symmetry breaking can occur. One can get around this by, for instance,
including infinitesimal fields of some symmetry in the Hamiltonian, thus loosing its
translational and orientational invariance, but this is rather tedious [44]. Another more
natural approach is called density functional theory (DFT) and is the subject of this
section [44, 45]. We roughly follow Ref. [13].

DFT reformulates classical statistical mechanics in terms of the single-molecule dis-
tribution function (SDF),

ρ(1)(q) =

∫
dqN

∑N
i=1 δ(q− qi) exp[−βBUpot(q

N)]∫
dqN exp[−βBUpot(qN)]

. (2.34)

The sum runs over all particles and the delta functions are used to allow the averaging.
Note that the SDF is normalized,∫

dqρ(1)(q) = N (2.35)

Then, DFT asserts that there exists a functional Ξ[ρ(1)] which has the following proper-
ties

(1) For all single-particle distribution functions ρ(1)(q), the following inequality

Ξ[ρ(1)] ≥ Ξ[ρ
(1)
eq ] holds, with ρ

(1)
eq (q) the equilibrium distribution.

(2) For the equilibrium distribution, the functional Ξ[ρ
(1)
eq ] = Ξeq, where Ξeq is the

equilibrium value of the grand canonical potential.
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Conveniently, this can immediately be recognized as a variational principle for obtaining
the equilibrium distributions and the thermodynamic grand canonical potential. Also,
it is a rather pleasant surprise that the formulation is in terms of SDF and not the full
N -particle distribution function. In fact, it can be shown, that there is a one-to-one
correspondence between these two, so the equations, fully describing the system, can
be written in terms of the SDF. In turn, from the SDF, it can be directly observed in
which way the system is ordered and what are the symmetries of the phase. There is
one major drawback and that is that DFT proves the existence of such a functional, but
does not supply it 3.

Before turning to this, we explore the formal structure of the theory a bit more.
Recalling the thermodynamic relation, Ξ = F −µN , we proceed by defining a functional
F [ρ(1)],

F [ρ(1)] = Ξ[ρ(1)] + µ

∫
dqρ(1)(q), (2.36)

which we call, in anticipation, the Helmholtz free energy functional. The ideal part of
free energy functional is rather straightforwardly proposed,

βBF [ρ(1)] =

∫
dqρ(1)(q)

(
log
(
ρ(1)(q)VT

)
− 1
)

+ βBFsingle[ρ
(1)] + βBFexcess[ρ

(1)].

(2.37)

Two extra unspecified contributions have been included as well. The second term on
the right side is the internal energy of a molecule or the single-particle free energy. This
can be due to internal degrees of freedom with different potential energies (which we
promised to reinsert) or due to an external field acting on the molecules. In both cases,
this term has the following structure

βBFsingle[ρ
(1)] = βB

∫
dqρ(1)(q)Usingle(q) (2.38)

The last term in Eq. 2.37 is the excess free energy and governs the interactions between
the molecules. This term is the hard part to obtain knowledge about and, as we did in
the formulation of statistical mechanics in the previous section, we will have to resort
additional approximations or conjectures to treat the intermolecular interactions. In
this thesis, we use the second virial approximation,

βBFexcess[ρ
(1)] = −1

2

∫
dqdq′ρ(1)(q)ρ(1)(q′)φM(q,q′) (2.39)

This term is a direct generalization of the second virial coefficient, Eq. 2.28, in the previ-
ous section. In his paper [7] on fluids of hard rods undergoing a transition from isotropic
to orientationally ordered (nematic), Onsager already used a free energy functional con-
taining the ideal term of Eq. 2.37 and the latter generalized second virial coefficient.
He obtained these by considering the fluid as a mixture of rods with fixed orientations,
long before the actual formulation of DFT. Onsager also argued, that the second virial
approximation is exact for very long hard rods in the isotropic fluid phase. We will come
back to this in Sec. 2.5.

3It is easily seen that there is never just one functional but a whole family of functionals, as the
only requirement is that they need to be the same in their minimum.
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Formulating a variational principle the terms of functional derivatives,

0 =
δΞ[ρ(1)]

δρ(1)(q)

∣∣∣∣
ρ(1)=ρ

(1)
eq

=
δF [ρ(1)]

δρ(1)(q)

∣∣∣∣
ρ(1)=ρ

(1)
eq

− µ, (2.40)

where the chemical potential µ acts as Lagrange multiplier. From this, we see imme-

diately that F [ρ
(1)
eq ] = Feq, which ensures the generating role of F in the canonical

ensemble. Performing the variation of Eq. 2.37, we obtain

ρ(1)(q) =
1

VT
eβBµ exp

(
−βBUsingle(q)− βB

δFexcess[ρ
(1)]

δρ(1)(q)

)
, (2.41)

where now, µ has to be determined using the normalization condition, Eq. 2.35. Also
using the second virial approximation Eq. 2.39,

ρ(1)(q) = N
exp

(
−βBUsingle(q) +

∫
dq′φM(q,q′)ρ(1)(q′)

)∫
dq exp

(
−βBUsingle(q) +

∫
dq′φM(q,q′)ρ(1)(q′)

) . (2.42)

This nonlinear integral equation supplies the distributions for which the functional is
stationary. Needless, to say that this equation is still, generally, not solvable. In the

simplified case that Usingle = 0, we can find the trivial isotropic fluid distribution, ρ
(1)
iso =

ρ/w. When, Usingle 6= 0, the isotropic solution will still exist but it depends on Usingle

and sometimes more approximations are needed to get it in closed form. For polymers,
this is one of the topics of Chap. 3. In the next chapter, we present how low symmetry
solutions branch off high symmetry solutions in the above formalism.

2.4. Bifurcation Analysis

As stated before, it may be very difficult, if not impossible to solve the stationarity
equation Eq. 2.42, and obtain a full solution in a certain phase. However, many phase
transitions involve a breaking of symmetry. For instance, in case of a system of spherical
particles, clearly the fluid phase has different symmetry than the crystalline phase. In the
fluid phase there is full translational symmetry, whereas in the crystal only translations
which map the lattice on itself do not change the system. In the above case, the fluid is
the high-symmetry solution and the crystal is the low-symmetry solution. Often (not in
the above case though), symmetry breaking phase transitions involve a bifurcation point.
At the bifurcation point a low-symmetry solution branches off from the high-symmetry
one. If the high-symmetry or parent solution is known, one can look for solutions with
a lower symmetry in its neighbourhood by means of a perturbation analysis. This study
of the bifurcation point and its direct surroundings is bifurcation analysis. The phase
transitions considered in this thesis (from an isotropic to a nematic fluid) are very well
accessible to a bifurcation analysis, and we consequently use it frequently. In this section,
we show the basic principles but do not go into details too much as this is done in the
appropriate chapters.

We start with a perturbed SDF of the form,

ρ(1)(q) = ρ
(1)
0 (q) + ερ

(1)
1 (q). (2.43)

The infinitesimal parameter ε is arbitrary, ρ
(1)
0 (q) is the parent solution and ρ

(1)
1 (q) has

lower symmetry and is the bifurcating solution. In principle, Eq. 2.43 is an expansion
in increasing powers of ε, but (for now) we are only interested in the first order. Due to
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the normalizations,
∫
dqρ(1)(q) =

∫
dqρ

(1)
0 (q) = N , and we have

∫
dqρ

(1)
1 (q) = 0. Also,

we require them to be perpendicular,
∫
dqρ

(1)
1 (q)ρ

(1)
0 (q) = 0. Inserting Eq. 2.43 in 2.42,

we linearize the exponent,

exp

[
−βUsingle(q) +

∫
dq′ρ(1)(q′)φM(q,q′)

]
=

exp

[
−βUsingle(q) +

∫
dq′ρ

(1)
0 (q′)φM(q,q′)

](
1 + ε

∫
dq′ρ

(1)
1 (q′)φM(q,q′)

)
.

(2.44)

Using this in the nominator as well as in the denominator, we obtain in first order of ε
(the zeroth order is trivial),

ρ
(1)
1 (q) = ρ

(1)
0 (q)

∫
dq′ρ

(1)
1 (q′)φM(q,q′)

− 1

N0

ρ
(1)
0 (q)

∫
dq′dq′′ρ

(1)
0 (q′)ρ

(1)
1 (q′′)φM(q′,q′′), (2.45)

where the second term on the right side enforces the normalization. However, in all
relevant cases, this last terms vanishes in the thermodynamic limit, yielding

ρ
(1)
1 (q) = ρ

(1)
0 (q)

∫
dq′ρ

(1)
1 (q′)φM(q,q′) (2.46)

This last equation does not seem to depend on Usingle anymore, but that is misleading

as the parent solution ρ
(1)
0 will generally depend on Usingle. And of course, the parent

solution still has to satisfy Eq. 2.42 and can be hard to obtain.
In practice, there is a control parameter driving the phase transition. We have been

building up the formalism around the virial expansion which is a series in the density.
We therefore consider

ρ(1)(q) = ρf(q), (2.47)

where ρ, as usual, is the number density, and f is a differently normalized version of the
SDF, V −1

∫
dqf(q) = 1 (do not confuse this f here with the free energy per molecule

in Sec. 2.1). Expanding also ρ and f in terms of ε, in the usual way,

f(q) = f0(q) + εf1(q)

ρ = ρ0 + ερ1
(2.48)

we can make the identifications, ρ
(1)
0 (q) = ρ0f0(q) and ρ

(1)
1 (q) = ρ0f1(q) + ρ1f0(q) =

ρ0f1(q), because ρ
(1)
0 (q) is perpendicular to ρ

(1)
1 (q). Substituting this into Eq. 2.46, we

obtain

f1(q) = ρ0f0(q)

∫
dq′f1(q′)φM(q,q′). (2.49)

This last equation is usually called the bifurcation equation. It is an generalized linear
eigenvalue equation, which it may not appear at first, but which becomes clear after the
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transformations

g(q) = f1(q)
/√

f0(q)

K(q,q′) = φM(q,q′)
√
f0(q)f0(q′)

(2.50)

yielding

g(q) = ρ0

∫
dq′g(q′)K(q,q′). (2.51)

Given that we know the parent solution f0(q), Eq. 2.49 can be solved for ρ0. Usu-
ally, there is a whole family of solutions f1(q), satisfying Eq. 2.49 corresponding to an
infinitely increasing number of different ρ0. The ‘physical’ bifurcation density is then
determined to be the lowest of those ρ0.

So far, we have only performed the bifurcation analysis to first order in ε. And
Eq. 2.49 gives us the bifurcation density ρ0 and all degenerate eigenfunctions hl(q) (if
there are) corresponding to this density. However, it does not supply us with the exact
linear combination of these eigenfunctions, f1(q) =

∑
l clhl(q). Nor does it yield the

‘direction’ of bifurcation, ρ1. This quantity ρ1 can be shown to relate to the cubic
terms in a Landau expansion of the free energy in terms of the order parameters. As
is wellknown, a nonzero cubic term in the Landau exansion usually gives rise to a first-
order phase transition. Similarly, ρ1 6= 0 is characteristic for a first-order transition.
If ρ1 = 0, this might indicate a continuous phase transition (although it may still be
found to correspond to a first-order phase transition). To find the value of ρ1 and the
coefficients cl, we need to include the second order ε2, in the bifurcation analysis. And
in case we find that ρ1 = 0, we even need to include the next order ε3, to find the cl and
ρ2. Solving the bifurcation equations in this way, one by one, order by order, may allow
a construction of the bifurcating solution quite far away from the actual bifurcation
point. In fact, in their landmark paper, Kayser and Raveché did so for the case of the
isotropic-to-nematic transition of the Onsager model [37]. The treatment we have given
above draws freely on Mulder [46, 47] We have not given the second order bifurcation
analysis here, but we do so in Chap. 5, for a system of branched heteropolymers.

We make a few more comments of quite general character, illustrated in the case of
the Onsager model (see Fig. 2.2 and next section). At the bifurcation point, the parent
phase changes stability. This means that in the space of order parameters it changes
from being a minimum to being a saddle point. And at the bifurcation point, the second
derivative of the free energy with respect to (some of) the order parameters is zero and
as such we can call the bifurcation point a spinodal point (see Fig. 2.2). So, coming from
the low-density phase, the bifurcation density is the highest possible density to which
we might be able to compress the system. There is also a spinodal point corresponding
to expansion of the high-density phase; in Fig. 2.2 this is depicted.

In this section, we have discussed the tool of bifurcation analysis to study symmetry-
breaking phase transitions. Having knowledge of the so-called parent solution, we only
need to solve a relatively simple (linear) equation to get some properties of the bifurcat-
ing phase and the transition. These properties include the bifurcation density ρ0, the
‘direction’ of bifurcation ρ1 and the infinitesimal eigenfunction f1(q) (if one proceeds as
far as the second-order bifurcation equation). The requirement that we need to know
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Figure 2.2. Generic plot of the isotropic and nematic solutions for the On-
sager model. The curve DFG is the isotropic solution and ABEFH is the ne-
matic solution. Full parts of the curve are (meta)stable, Dashed-dotted parts
are unstable, the dashed part is the common tangent. Point F is the bifurcation
point. The isotropic solution is stable for low densities, DF and unstable for
high densities, FG. At the bifurcation point F, the nematic solution branches off
and has two arms. The physical nematic solution FEBA, is first unstable, then
metastable and beyond B, stable. The other nematic solution FH is metastable
and unphysical. Points E and F can be considered spinodal points, and B and
C are the binodal points.

the parent solution is in practice the most restrictive one, as this solution still has to
satisfy Eq. 2.42. Therefore, often, the analysis is applied to phases which branch off
the (isotropic) fluid solution, where f0(q) is trivial, or rather straightforward to obtain
(approximately).

2.5. Hard Rods and the Nematic Phase

In this section we briefly review one of the standard models of liquid crystals: the
Onsager model. The kind of systems we are concerned with in this thesis are similar to
Onsager’s original model.

In 1949, Onsager published a monumental paper on the isotropic-to-nematic transi-
tion in a system of slender hard rods [7]. A generic plot of the free energy solutions is
given in Fig. 2.2. Many of the results have been generated (approximately) by Onsager
himself. The model, henceforth referred to as Onsager model, describes the hard rods
as having a length l and a width d, where l � d. The coordinates of the rods are
specified by a position r and an orientation ω̂, so q = (r, ω̂). There is no internal energy
associated with a single particle, so Usingle(q) = 0 and Onsager used the second virial ap-
proximation. Consequently, from Eq. 2.42, the SDF in the isotropic fluid phase becomes
ρ(1) = ρ/4π, where w =

∫
dω̂ = 4π. Considering two fluid phases, ρ(1)(q) = ρf(ω̂), the
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n̂
ω̂

θ
1 2

Figure 2.3. Onsager rods. Left, one rod is characterized by its orientation
ω̂, pointing along the long axis. In the nematic phase, the distribution function
is only a function of the angle θ between ω̂ and the nematic director n̂. Right,
a schematic drawing of the excluded volume between two rods. Picking up rod
2 at the white dot and moving it around space, we see that it (the white dot)
can not enter the box due to the presence of rod 1.

excess free energy becomes

βBFexcess =
1

2
Nρ

∫
dω̂dω̂′f(ω̂)f(ω̂′)E(ω̂, ω̂′), (2.52)

and the relevant quantity is the excluded volume between two rods

E(ω̂, ω̂′) = 2l2d| sin γ(ω̂, ω̂′)| (2.53)

where γ(ω̂, ω̂′) is the plane angle between ω̂ and ω̂′ (see Fig. 2.3, right). Increasing
the density ρ, the system will go into a nematic phase, where the rods are ordered
orientationally with respect to a certain direction n̂ (and the integral in Eq. 2.52 is lower
than in the isotropic phase). Around n̂, there is cylindrical symmetry and the SDF is
function of only one polar angle, f(ω̂) = f(θ) with cos θ = n̂ · ω̂ (see Fig. 2.3, left). The
phase is also up-down symmetric, and consequently, the SDF f(θ) can be expanded in
even Legendre polynomials, P2n(cos θ). The weigthed average over the second Legendre
polynomial

〈P2〉 =
1

2

∫ 1

−1

d cos θP2(cos θ)f(θ) (2.54)

is used as order parameter. The phase transition is first-order and the coexistence
densities are ρiso(πl2d/4) = 3.290 and ρnem(πl2d/4) = 4.191 with the order parameter
at the phase transition being 〈P2〉nem = 0.7922. The bifurcation analysis has been
performed by Kayser and Raveché [37]. The bifurcation density is ρ0(πl2d/4) = 4
and the eigenfunction is P2(cos θ). The first-order character of the phase transition is
confirmed by ρ1(πl2d/4) = −4/7. Onsager showed that in the limit of l → ∞, d → 0
and l2d finite, and in the isotropic phase, the second virial approximation is exact. In
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s = 0

ω̂(s)
s

s = L

Figure 2.4. A wormlike chain.

fact he used geometrical arguments to show that the third virial coefficient scales as

Biso
3

(Biso
2 )2

∼ d

l
log

l

d
. (2.55)

Note that in the above limit of infinitely slender rods, there are no free parameters in
this model. From hereon, we sometimes refer to the second virial approximation as the
Onsager approximation. A good and quite extensive review of the Onsager model is
given in Ref. [48].

2.6. The Wormlike Chain Model

There exist many different models for polymers, ranging from random walks on a lat-
tice to ‘real’ atomic level descriptions used in simulation packages. Evidently, it depends
very much on the type of physical phenomenon under study which (specific) polymer
properties need to be included. The type of liquid crystalline transitions we are inter-
ested in, require anisotropic interactions between the polymers. Consequently, we need
to consider polymers, which, apart from the total or contour length, are also character-
ized by a finite and more or less rigid ‘segment’ length. A natural and frequently used
candidate is the so-called wormlike chain model which is due to Kratky and Porod [49].
The wormlike chain concept plays a central role in this thesis, and in this section, we
discuss some of its properties [50, 51].

The wormlike chain can be viewed as a continuous curve in space. Its coordinates
q, are specified fully by its position R and its orientations {ω̂(s)} at every position
s ∈ [0, L] along the chain (see Fig. 2.4). An additional length scale is introduced as the
length over which, on average, the chain looses its orientation. This is the persistence
length P , and is defined through

〈ω̂(s) · ω̂(s′)〉 = exp[−|s− s′|/P ], (2.56)
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in which the average 〈 〉 is over all (weighted) conformations of an isolated wormlike
chain (no external field). From the above formula it can be shown that

P = 〈ω̂(s) ·
∫ ∞
s

ds′ω̂(s′)〉, (2.57)

where one should note that the upper integration limit is ∞ instead of L. Often, this
is taken to be the definition of persistence length. Defining the end-to-end distance of a
wormlike chain,

r0,L =

∫ L

0

ds′ω̂(s′), (2.58)

we can identify the persistence length as half of the average projection of ω̂(s) on the
end-to-end distance for infinitely long polymers,

P =
1

2
lim
L→∞
〈ω̂(0) · r−L/2,L/2〉. (2.59)

For wormlike chains, the mean-square end-to-end distance is

〈r2
0,L〉 = 2LP

(
1− P

L
(1− exp[−L/P ])

)
(2.60)

In case of long chains, L� P , the above expression goes to 2LP , which is the Gaussian
chain result, and for very short chains, L � P , the answer is L2 conform the rigid
rod result. Another quantity which is often used concerning polymers is the so-called
radius of gyration, which is defined as the average distance of all parts of the polymer
to its center of mass. For long chains it is typically 6 times as small as the mean-square
end-to-end distance.

In our formulation, q = (r, {ω̂(s)}) and
∫
dq =

∫
dr
∫
d{ω̂(s)} is a path integration.

In order for the wormlike chain not to bend on length scales of the order of the persistence
length, we need the following internal energy

βBUsingle(q) =
1

2
P

∫ L

0

ds

(
∂ω̂(s)

∂s

)2

(2.61)

with the weighted average

〈A(q)〉 =

∫
dqA(q) exp[−βBUsingle(q)]∫
dq exp[−βBUsingle(q)]

. (2.62)

Together, Eqs. 2.61 and 2.62 yield again Eq. 2.56. Also, as we are interested in liq-
uid crystalline polymer phases, we need to specify how these wormlike chains interact.
Assuming them to be impenetrable, we set the width equal to d. Consequently, our
wormlike chains are described by three model parameters; L, P and d where we require
that L, P � d.

Although a wormlike chain is naturally characterized in terms of its persistence
length, the concept of persistence length does not exclusively apply to wormlike chains.
In fact in Chap. 3, we calculate the persistence length for segmented chains. Therefore,
we consider a persistent chain to be any chain for which a persistence length can be
defined. With wormlike chains, we refer to molecules which can be represented by
a continuous curve through space. Note, that in this definition also a rigid rod is a
wormlike chain (which makes sense as this is the limit, L � P ). Often, people use the
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term semiflexible polymers, referring to polymers with L � P � d. We will not use
this, as this limit L� P is not at all necessary in our analysis.

Other concepts are drawn sometimes from other polymer models. A Kuhn chain is
defined as a freely jointed chain of NK rigid segments, with lengths lK . The mean-square
end-to-end distance of a Kuhn chain is NK l

2
K . Kuhn chains are used by stating that

for a very long polymer an equivalent Kuhn chain can be defined in such a way that
〈r2

0,L〉 = NK l
2
K . In this way, for very long polymers one can use the concept of effective

Kuhn segment length and its number in the chain. In case of very long wormlike chains,
we have 2LP = NK l

2
K and consequently, P = lK/2. In this thesis, we do not use the

concept of Kuhn lengths. It may be rather confusing as we are considering segmented
chains with bending potentials between the segments. These segments are not related
in any way to the Kuhn segments.

The persistence length of a wormlike chain has been defined for an isolated chain.
However, the systems we are considering in this thesis consist of many interacting poly-
mers. Still, in the isotropic fluid phase the effective field is constant and not dependent
on the coordinates q. Consequently, this has no effect on the chain average, and the
wormlike chain is well characterized by its persistence length. On the other hand, in
the nematic phase, there is an anisotropic field and the persistence length, defined in
the isotropic phase, will not be the correct length scale over which the chain looses its
orientational correlation. In this respect, we mention that for high-density nematics,
even an extra length scale appears, which is the deflection length due to Odijk [52] 4.
Whereas in the nematic the persistence length is larger than in the isotropic phase, the
deflection length is considerably smaller than the persistence length. Both these (addi-
tional) length scales are not considered in this thesis. The most important tool, we use,
is bifurcation analysis and investigates the stability of the isotropic phase. The ‘bare’
persistence length should still be the appropriate length scale in this case.

4The deflection length is the length scale on which the chain is on average deflected by its neighbors.
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3 Uniaxial Polymers

The concept of segmented chains is introduced. We derive the stationarity equations
and identify the approximations needed. The wormlike chain limit can be applied at
various stages in the description. Bifurcation as well as numerical techniques are used
to obtain the phase behaviour. An advantage of segmented chains is the rather direct
generalization to branched heteropolymers.

3.1. Introduction

It is by now well established that excluded volume effects in non-spherically shaped
particles can drive phase transitions towards liquid crystalline phases [13]. Long flexible
molecules with mutual steric interactions are in that sense no exception. It is only the
internal degrees of freedom of these molecules which considerably complicate the mech-
anism of liquid crystalline ordering. In the 1980’s Khokhlov and Semenov (henceforth
addressed as KS) published a seminal series of papers on the isotropic-to-nematic (I-N)
transition in a system of semiflexible molecules [32, 33]. Semiflexible molecules are linear
chains in which the persistence length, i.e. the length over which the chain looses its ori-
entational memory, is typically much bigger than the width of the chain but also, much
smaller than the total length of the molecule. The chains of KS are wormlike objects
with flexibility distributed along them continuously. Their main result is the derivation
of the conformational entropy of these chains as a functional of partial partition func-
tions of the chain [33]. From this the thermodynamical behaviour of these systems can
be derived, most prominently their phase behaviour. Ever since, this theory is widely
used to describe the phase behaviour of long persistent molecules like e.g. DNA.

In spite of its intuitive appeal and its succes in dealing with the phenomenology of the
I-N transition in liquid crystalline polymers, the KS approach does have some drawbacks.
First, the excluded volume interaction term in the free energy is introduced by heuristic
analogy with the Onsager theory, giving little insight into the various approximations
that enter the theory and, hence, on its regime of validity. Secondly, focussing as it does
on chemically homogeneous chains with continuously distributed flexibility, the theory
is less well generalizable to situations in which molecules are composed of chemically
different parts, with e.g. varying degrees of stiffness, as is the rule in real world liquid
crystalline materials. Therefore, most extensions to the KS approach that dealt with
composite molecules have taken the indirect route of “glueing together” rigid segments
with persistent spacers, or “tacking on” rigid side chains to persistent backbones. Finally,
working with continuous objects does not present an obvious computational advantage.

31
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In fact, the various phase diagrams derived from the theory were invariably in limits
where the distribution of local order along the molecules i.e. the finite size effects were
negligible. Detailed consideration of these effects, as first performed by Chen [36], require
involved numerical work, ultimately relying on discretisation of the continuous equations.
Our aim in this work is to develop a flexible formalism for describing orientational
ordering in non-rigid, elongated molecules that addresses (at least partially) all three
drawbacks discussed above.

We do this by starting from a fully discrete description of our molecules. These
consist of elongated hard uniaxial segments connected end-to-end to form chains. Flexi-
bility is introduced through (tunable) bending potentials between neighbouring segments
meeting at a joint. Through a series of explicit approximations a density functional the-
ory is constructed for systems composed of such chains. The resultant theory is by
construction generalizable to heteropolymeric, and even non-linear, branched, molecular
morphologies, possibly composed of axially symmetric segments. These generalizations
will be undertaken in later chapters. In this chapter we focus on the basic idea as
applied to linear, homopolymeric chains of uniaxially symmetric segments, and the re-
lationship with the KS formalism. We first show that the formal solution to the theory
can be mapped onto the problem of a single chain in a (self-consistently determined)
effective orientational potential, that acts equally on all segments. This essentially one-
dimensional statistical system can be cast into a variational framework, involving sets
of local (to each segment) “fields”, along the lines of the Cluster Variation Method [53],
well-known in the area of discrete spin systems. We then show that the passage to chains
with continuous flexibility, implemented by applying the so-called Wormlike Chain Limit
(WCL) to the reduced free-energy functional obtained in the previous step, directly leads
to the KS functional, thus rederiving it “from below”. In the results sections we further
illustrate the utility of our “discrete” approach. A first investigation of the I-N transition
is made through a bifurcation analysis around the spinodal density, which can be carried
out fully analytically. Several new results are obtained, which can be mapped onto the
continuous chain case a posteriori by applying the WCL. Finally, we perform numerical
calculations to determine the actual location and characteristics of the thermodynamic
transition. Although readily able to tackle a wide range of molecular flexibilities, we can
again, compare directly with the continuous case by taking appropriate values of our
parameters, showing that a suitably chosen discrete chain model can provide an accurate
“physical” discretisation of the continuous model.

3.2. Formalism

3.2.1. Definition of the Model. Consider a fluid of N chains in a volume V . Each
chain consists of M cylindrically symmetric rodlike segments labelled with a number m,
running from 1 to M . The segments have length l and diameter d with l � d. The
orientation of each segment is specified by a unit vector ω̂m, which points along the
long axis of the segment towards the next segment. The configuration of a single chain
is denoted by ξ and is specified by the location R of the free end of the first segment
and the conformation Ω = (ω̂1, ω̂2, · · · , ω̂M). With these definitions the position of the
starting point of the m’th segment is given by rm = R + l

∑m−1
k=1 ω̂k.
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Figure 3.1. A segmented chain.

The most convenient formalism for describing anisotropic fluids is density functional
theory (DFT). Within DFT, the free energy of a fluid of chains is formulated in terms
of the single particle (=chain) configuration distribution function ρ(1)(ξ) [45],

βBF
[
ρ(1)
]

= βBFideal[ρ
(1)] + βBFsingle-chain[ρ(1)] + βBFexcess[ρ

(1)]

=

∫
dξρ(1)(ξ)

[
log
(
VTρ

(1)(ξ)
)
− 1
]

+ βB

∫
dξρ(1)(ξ)U(ξ) + βBFexcess[ρ

(1)].

(3.1)

where the three terms denote respectively the ideal contribution, the single particle con-
tribution stemming from intrachain interactions or the interaction with an external field
and finally the excess free energy due to interactions between the particles. The inte-
grals are over the single-chain configuration space (dξ = dRdΩ) and ρ(1)(ξ) is normalized
to the total number of particles

∫
ρ(1)(ξ)dξ = N . The factor βB denotes the standard

dimensionless inverse temperature (kBT )−1 in which kB is Boltzmann’s constant and
T the temperature. The ‘thermal volume’ VT is a product of the de Broglie thermal
wavelengths of the chains [43].

In the following we will focus on spatially homogeneous phases, so we assume the
single-chain configuration distribution function to be independent of R. This means
we can write ρ(1)(ξ) = ρf(Ω), with ρ = N/V the (homogeneous) number density of
the chains. The remaining part f(Ω) we call the conformational distribution function
(CDF) and it is normalized to unity,

∫
f(Ω)dΩ = 1.

To turn the DFT formalism sketched above into an actual model we need to specify
the components of the functional in more detail. We start with the single-chain contri-
bution. We assume there is no external field present, so we focus on the contribution
due to the internal energy of the chains. We wish to endow the chains with a tunable
degree of flexibility. The simplest mechanism for this is to assume a bending potential
operative between neighbouring segments of the chain, i.e.

U(Ω) =
M−1∑
m=1

u(ω̂m, ω̂m+1). (3.2)

Such an intrachain potential of course does not describe more elaborate effects like
rotational-isomeric states, but that is in keeping with our interpretation of the segments
representing larger stiff subunits of real chains. More importantly it neglects steric
self-interactions between segments located on the same chain, an approximation we
nevertheless adopt without further justification. For our purposes it is sufficient to
consider a simple bending potential of a generic type which favours the fully stretched
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conformation,

u(ω̂m, ω̂m+1) = −Jω̂m · ω̂m+1, (3.3)

in which J is the strength of the interaction.
We assume that the segments of the chains are hard bodies. Chains will thus interact

pairwise with a potential v(ξ, ξ′) which is infinite when the chains are in an overlapping
configuration and zero otherwise. This chain-chain interaction potential is just a sum
over pairwise hard interactions between the segments of the chains

v(ξ, ξ′) =
M∑

m,m′=1

vm,m′ (ω̂m, ω̂
′
m′ , rm,m′) (3.4)

where rm,m′ = rm − rm′ = R − R′ + l
∑m

i=1 ω̂i − l
∑m′

i′=1 ω̂i′ . In principle we can now
expand the excess free energy into a virial series. The chain-chain Mayer function is
simply given by,

Φ(ξ, ξ′) ≡ exp(−βBv(ξ, ξ′))− 1 =

{
−1 if overlap

0 if no overlap
. (3.5)

In his landmark paper [7] Onsager already argued that in an isotropic system of hard
rods with infinite length-to-width ratio all virial coefficients with order higher than 2 are
vanishingly small. Although for chains, whose conformations, especially in the isotropic
phase, deviate strongly from being straight, this assumption may not be justified, we
assume that we can approximate the excess free energy by just the second virial term

βBFexcess[ρ
(1)] = −1

2

∫ ∫
dξdξ′ρ(1)(ξ)ρ(1)(ξ′)Φ(ξ, ξ′). (3.6)

This is the so-called second virial or Onsager approximation. Due to translational invari-
ance the Mayer function only depends on the relative position of two chains r = R−R′.
Consequently in the spatially homogeneous phases we are considering here we can per-
form the spatial integrations to obtain

βBFexcess[f ] =
1

2
Nρ

∫ ∫
dΩdΩ′f (Ω) f (Ω′) E(Ω,Ω′) (3.7)

where the excluded volume E as a function of the conformations of the two chains is
defined by,

E(Ω,Ω′) = −
∫
drΦ(Ω,Ω′, r). (3.8)

The chain-chain Mayer function (and the excluded volume as a consequence) is a com-
plicated function of the conformations of both chains. However, using Eq. (3.4) we can
expand Φ in terms of the segment-segment Mayer functions φm,m′ = e−βBvm,m′ − 1

Φ =
∏
m,m′

(1 + φm,m′)− 1

=
∑
m,m′

φm,m′ +
∑

(m1,m′1) 6=

∑
(m2,m′2)

φm1,m′1
φm2,m′2

+ · · · , (3.9)

where for brevity we have dropped all the function arguments. In this series, the first
term on the right counts only the independent segment-segment overlaps. The second



3.2. FORMALISM 35

term takes into account the fact that two different pairs of segments can overlap simul-
taneously and so on. If the rods are very slender, as we assume in our model, multiple
segment overlaps should be rare for fixed relative conformations. We therefore neglect all
terms in Eq. (3.9) except the first. The upshot is that the chain-chain excluded volume
is approximated by the sum

E(Ω,Ω′) =
∑
m,m′

e(ω̂m, ω̂
′
m′) (3.10)

over the segment-segment excluded volumes

e(ω̂m, ω̂
′
m′) = −

∫
drm,m′φm,m′(ω̂m, ω̂

′
m′ , rm,m′) = 2l2d sin γ(ω̂m, ω̂

′
m′), (3.11)

in which γ(ω̂m, ω̂
′
m′) is the planar angle between ω̂m and ω̂′m′ .

Having fixed the details of the interactions between segments within the same chain
and in different chains, we resubstitute them in the free energy. Also performing the
(remaining) spatial integrations and dividing by N , we obtain the free energy per chain
as a functional of the CDF,

βBF [f ]

N
= log (ρVT) +

∫
dΩf(Ω) [log f(Ω)− 1] + βB

∫
dΩf(Ω)U(Ω)

+
1

2
ρ

∫
dΩdΩ′f(Ω)f(Ω′)E(Ω,Ω′), (3.12)

in which U and E are defined by Eqs. (3.2) and (3.10) respectively.
In thermodynamic equilibrium, the free energy reaches a minimum and the functional

is stationary. Therefore, we consider the variation of Eq. 3.12 with respect to the CDF,

δ

δf(Ω)

βBF
N
− βBµ = 0 (3.13)

with the chemical potential µ playing the role of Lagrange multiplier needed to enforce
normalization. Eliminating µ from Eq. 5.2 yields the stationarity equation,

f(Ω) = Q−1[f ] exp

[
−βBU(Ω)− ρ

∫
dΩ′f(Ω′)E(Ω,Ω′)

]
(3.14)

in which Q is the factor due to normalization,

Q[f ] =

∫
dΩ exp

[
−βBU(Ω)− ρ

∫
dΩ′f(Ω′)E(Ω,Ω′)

]
. (3.15)

Next, we define the n-segment distribution function by integrating over the ‘other’
degrees of freedom,

f
(n)
i1,··· ,in(ω̂i1 , · · · , ω̂in) =

∫ ∏
m6=i1,··· ,in

dω̂mf(Ω), (3.16)

in which {i1, · · · , in} is a subset of {1, · · · ,M}. Obviously, f
(M)
1,··· ,M is the CDF, and the

functions f
(1)
m we call the single-segment orientational distribution functions (SDF’s).

Usually, we drop the upper index and write fm for the SDF of the mth segment.
It is obvious that all n-segment distribution functions are normalized according to∫ ∏

m=i1,··· ,in dω̂mf
(n)
i1,··· ,in(ω̂i1 , · · · , ω̂in) = 1. Inserting the details of the interactions
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(Eqs. 3.2 and 3.10) and using the projection Eq. 3.16, the stationarity equation Eq. 3.14
splits into a set of equations; one for each segment (m = 1, · · · ,M),

fm(ω̂m) = Q−1

∫ ∏
k 6=m

dω̂k

×
M−1∏
k=1

w(ω̂k, ω̂k+1)
M∏
k=1

exp

[
− η

M

M∑
k′=1

∫
dω̂′k′fk′(ω̂

′
k′) sin γ(ω̂k, ω̂

′
k′)

]
. (3.17)

In order to ease notation, we have introduced the Boltzmann weight for the successive
segment-segment interaction,

w(ω̂k, ω̂k+1) = e−βBu(ω̂k,ω̂k+1), (3.18)

and a dimensionless segment density

η = 2Mρl2d (3.19)

(=‘segment density’, Mρ × ‘maximum excluded volume of two segments’, 2l2d).
In ending this section, for clarity, we briefly list the approximations needed to arrive

at Eqs. 3.17. Three approximations have been made: first, the second virial approxi-
mation has been used, not taking into account simultaneous interactions between three
or more polymers. Second, the full chain-chain Mayer function has been approximated
as the sum of all the segment-segment Mayer functions, discarding simultaneous inter-
actions of two or more pairs of segments on these two chains. Third, the energy within
a chain has been taken to be of a simple local bending type, meaning that interactions
between remote parts on the same chain are not considered.

3.2.2. A Single Chain in an External Field. Although the stationarity equa-
tions Eq. (3.17) form a closed set involving only the SDF’s it is not possible to formulate
the free energy of the system as a functional of the same. In this section, however, we will
show that both the conformational entropy and the interaction terms of the free energy
functional can be decomposed in terms of the SDF’s in combination with the two-particle

distribution functions of nearest neighbour segments f
(2)
m,m+1 (from Eq. 3.16). The re-

sult is a well-founded variational theory with the free energy in terms of the variational

variables fm and f
(2)
m,m+1. We can even go one step further and express the free energy

fully in terms of sets of local functions. The SDF’s are mere simple products of these
functions. Apart from the intrinsic advantage of employing a variational theory and
the fact that the free energy can be expressed in terms of these local functions, there is
another important reason for presenting this approach. In the next section, we will show
how the Khokhlov and Semenov theory for nematic polymers is obtained from applying
the ‘wormlike chain limit’ to the resulting free energy of this section.

As a first step in this programme, we reformulate the stationarity equations, writing
them as

fm(ω̂m) = Q−1

∫ ∏
k 6=m

dω̂k

M−1∏
k=1

w(ω̂k, ω̂k+1)
M∏
k=1

exp [−βBH(ω̂k)] , (3.20)
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where we define an effective field

βBH(ω̂m) =
η

M

M∑
m′=1

∫
dω̂′m′fm′(ω̂

′
m′) sin γ(ω̂m, ω̂

′
m′), (3.21)

which acts equally on all segments. Conceptually this splits the stationarity equations
in two parts: (I) the problem of a single chain of which all the segments are subjected to
the same external effective field (Eq. 3.20) and (II) this effective field in turn then needs
to be determined selfconsistently on in terms of the SDF’s of all the segments (Eq. 3.21).
This is exactly the type of scenario one would get using a mean field approximation,
with the total mean field given by H(Ω) =

∑
mH(ω̂m). In fact, in Ref. [54] an identical

free energy is derived from a mean field theory for a system of chains with an effective
pair potential between the chains.

We now focus on the problem of a single chain in an external (conformational) field.
The free energy in terms of the CDF is

βBF0[f ] =

∫
dΩf(Ω) [log f(Ω)− 1] + βB

∫
dΩf(Ω) [U(Ω) +H(Ω)] , (3.22)

in which all symbols stand for the same quantities as in the previous section. Considering
Eq. 3.16, it is clear that we can rewrite the contribution of the intramolecular energy and
that of the external field in Eq. 3.22 (i.e the second) completely in terms of the SDF’s

–f
(1)
m – and the nearest neighbour segment–segment distribution functions –f

(2)
m,m+1–. At

first sight such a decomposition does not appear to be possible for the first term, the
orientational entropy. However, using the fact that the chain is linear and that there
are only nearest neighbour interactions along it, it is possible to also decompose the
first integral of Eq. 3.22 in a similar way. Consider to that end a chain of which the
orientation ω̂m of the m’th segment is kept fixed. Then, because of the fact that the
chain effectively decouples in two independent parts, the conditional probability density
of finding a chain with fixed m’th segment factorizes as follows

f
(M−1)
1,··· ,m−1,m+1,··· ,M(ω̂1, · · · , ω̂m−1, ω̂m+1, · · · , ω̂M |ω̂m) =

f
(m−1)
1,··· ,m−1(ω̂1, · · · , ω̂m−1|ω̂m)f

(M−m)
m+1,··· ,M(ω̂m+1, · · · , ω̂M |ω̂m).

Using the standard formula relating the conditional probability for an event A given B
to the probability of the combined event A ∪B (see e.g. Ref. [55]),

P (A|B) = P (A ∪B)/P (B), (3.23)

we obtain,

f(Ω) =
f

(m)
1,··· ,m(ω̂1, · · · , ω̂m)f

(M−m+1)
m,··· ,M (ω̂m, · · · , ω̂M)

f
(1)
m (ω̂m)

. (3.24)

We now have an expression for the CDF in terms of the unconditional distribution
functions of parts of the chain (one could say that these are the CDF’s of the subchains
1, · · · ,m and m, · · · ,M). Proceeding, and applying the same process recursively on
the remaining distribution functions until all interior segments have been exhausted, we
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arrive at the result

f(Ω) =

∏M−1
m=1 f

(2)
m,m+1(ω̂m, ω̂m+1)∏M−1
m=2 f

(1)
m (ω̂m)

. (3.25)

We have thus expressed the CDF completely in terms of the SDF’s and the nearest-
neighbour 2-segment distribution functions. From hereon, we will drop the upper indices
and refer to the fm,m+1’s as the pair distribution functions (PDF’s). We can now rewrite
the orientational entropy and thus the free energy (Eq. 3.22) as a functional of the PDF’s
and the SDF’s,

βBF0[fm,m+1, fm] =

M−1∑
m=1

∫
dω̂mω̂m+1fm,m+1(ω̂m, ω̂m+1) [log fm,m+1(ω̂m, ω̂m+1) + βBu(ω̂m, ω̂m+1)]

−
M−1∑
m=2

∫
dω̂mfm(ω̂m) log fm(ω̂m) + βB

M∑
m=1

∫
dω̂mfm(ω̂m)H(ω̂m). (3.26)

This decomposition of the entropy, specifically for the one-dimensional Ising system,
was first discussed by Woodbury [56]. It is at the same time an illustration of the fact
that the cluster variation method, most generally formulated by Morita [53], is exact for
one-dimensional systems with nearest-neighbour interactions when the bonds are chosen
as conserved clusters.

In order to obtain the equilibrium distributions, we must vary the functional Eq.
(3.26) with respect to the PDF’s and the SDF’s to locate the stationary distributions.
As usual, we require these distribution functions to be normalized,∫

dω̂mfm(ω̂m) = 1,∫
dω̂mω̂m+1fm,m+1(ω̂m, ω̂m+1) = 1,

(3.27)

but this time, we also have to make sure that they are mutually consistent,∫
dω̂mfm,m+1(ω̂m, ω̂m+1) = fm+1(ω̂m+1),∫
dω̂m+1fm,m+1(ω̂m, ω̂m+1) = fm(ω̂m).

(3.28)

The implementation of the normalization constraints is straightforward, i.e. we add to
the functional Lagrange terms of the type

Nm = νm
∫
dω̂mfm(ω̂m),

Nm,m+1 = νm,m+1

∫
dω̂mω̂m+1fm,m+1(ω̂m, ω̂m+1).

(3.29)

The Lagrange terms enforcing compatibility are a bit more complicated,

C(+)
m,m+1 =

∫
dω̂mξ

(+)
m (ω̂m)

{∫
dω̂m+1fm,m+1(ω̂m, ω̂m+1)− fm(ω̂m)

}
,

C(−)
m,m+1 =

∫
dω̂m+1ξ

(−)
m+1(ω̂m+1)

{∫
dω̂mfm,m+1(ω̂m, ω̂m+1)− fm+1(ω̂m+1)

}
.

(3.30)

The quantities ξ
(±)
m are as yet unknown fields acting as continuous Lagrange multipliers.

Defining q
(±)
m (ω̂m) = exp(βBH(ω̂m) − ξ

(±)
m (ω̂m)) and changing constants, Zm = e1−νm
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and Zm,m+1 = e1+νm,m+1 , variation to the SDF’s and the PDF’s yields the following
equilibrium distributions

fm(ω̂m) = Z−1
m q(+)

m (ω̂m)e−βBH(ω̂m)q(−)
m (ω̂m)

fm,m+1(ω̂m, ω̂m+1) =

Z−1
m,m+1q

(+)
m (ω̂m)e−βBH(ω̂m)w(ω̂m, ω̂m+1)e−βBH(ω̂m+1)q

(−)
m+1(ω̂m+1).

(3.31)

Next, application of the normalization constraints (Eqs. 3.27) is straightforward and
gives expressions for the normalization constants Zm and Zm,m+1,

Zm =

∫
dω̂mq

(+)
m (ω̂m)e−βBH(ω̂m)q(−)

m (ω̂m)

Zm,m+1 =

∫
dω̂mdω̂m,m+1

q(+)
m (ω̂m)e−βBH(ω̂m)w(ω̂m, ω̂m+1)e−βBH(ω̂m+1)q

(−)
m+1(ω̂m+1).

(3.32)

Forcing the stationarity equations to be mutually consistent (Eqs. 3.28) yields relations

between the q
(±)
m -functions,

q(±)
m (ω̂m) =

Zm
Zm,m∓1

∫
dω̂m∓1w(ω̂m, ω̂m∓1)e−βBH(ω̂m∓1)q

(±)
m∓1(ω̂m∓1). (3.33)

The functions on the ends, q
(+)
1 and q

(−)
M , turn out to be constant and can be choosen

freely, so we set them both equal to one.
In retrospect, the most striking aspect of these stationarity equations is the appear-

ance of the new quantities q
(+)
m and q

(−)
m . These emerge from the process of variation as

some unknown fields enforcing compatibility. However, we now recognize (apart from
the normalization constants) these fields as being the partition functions of parts of the

chain, i.e. q
(+)
m (ω̂m) is the partition function of a chain of m segments under the condition

that the m’th segment has orientation ω̂m. Hence, the functions q
(+)
m and q

(−)
m are called

the forward and backward partial partition functions respectively. In Eqs. 3.31, these
partial partition functions represent the contributions due to orientational coupling with
the lower (< m) and upper (> m) parts of the chain. In this context, it makes sense

that q
(+)
1 and q

(−)
M are constant, consistent with the ends of the chain being free. The

appearence of the normalization factors in the right side of Eq. 3.33 is a consequence of
the variation. However, considering the definitions of the SDF’s, which are the physi-
cally relevant quantities in this system, it becomes clear that these constants are in fact
quite arbitrary and can easily be scaled away.

In concluding this section, we resubstitute the stationarity equations (Eqs. 3.31) in
the free energy Eq. 3.26.The result is an expression for the free energy as a functional

solely of the local q
(±)
m -functions

βBF0[q(±)
m ] =

M−1∑
m=2

logZm[q(±)
m ]−

M−1∑
m=1

logZm,m+1[q(+)
m , q

(−)
m+1]

+

∫
dω̂1f1(ω̂1) log q

(+)
1 (ω̂1) +

∫
dω̂MfM(ω̂M) log q

(−)
M (ω̂M). (3.34)
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The normalization factors are given by Eqs. 3.32 and the end-SDF’s f1 and fM have to
be replaced by the appropriate expressions from Eqs. 3.31. Variation of this functional

to the q
(±)
m ’s yields the recurrence relations Eqs. 3.33. As there are no constraints to

the partial partition functions, no Lagrange terms are needed. In the next section, we
will use this free energy (Eq. 3.34) to derive the Khokhlov and Semenov free energy for
continuously flexible nematic polymers.

3.2.3. The Wormlike Chain Limit. In the 1980’s, an impressive series of papers
was published by Khokhlov and Semenov (KS) on liquid crystalline ordering in fluids
of wormlike chains (Ref. [32, 33, 57] and references therein). A wormlike chain can
be regarded as an elastic contour in three-dimensional space with flexibility distributed
continuously along it (Ref. [49, 50, 48]). The main result of KS is the derivation of the
orientational entropy of these chains as a functional of two fields (continuous analogues

of the q
(±)
m -functions we introduced in the previous section). In this section, we rederive

the KS free energy for nematic wormlike polymers by transforming our discrete Onsager
chains into these wormlike objects. The transformation itself is called the ‘wormlike
chain limit’ (WCL) and consists of taking the following three limits simultaneously – (i)
l→ 0; the length of the segments goes to zero (ii) M →∞; the number of segments goes
to infinity and (iii) βBJ →∞; the chain locally becomes infinitely stiff – while keeping
the total length, Ml, and the bending energy per segment, βBJ/M , constant.

The natural length scale (apart from the total length) to characterize wormlike chains
is the so-called persistence length. This is the distance along the chain over which it
loses its orientational correlation. In case of the Onsager chains, the (bare) persistence
length P is defined as one half of the average projection of the unit vector ω̂m on the
end-to-end distance rM − r0 , in the limit of an infinitely long isolated polymer (and m
infinitely far from both ends) [50]. With the average over the isolated chain defined by,

〈g〉w =

∫ ∏M
k=1 dω̂k g ({ω̂k})

∏M−1
k=1 w(ω̂k, ω̂k+1)∫ ∏M

k=1 dω̂k
∏M−1

k=1 w(ω̂k, ω̂k+1)
(3.35)

the persistence length becomes,

P ≡ 1
2

lim
m,M→∞

〈ω̂m · (rM − r0)〉w

= 1
2
l〈ω̂m · ω̂m〉w + l

∞∑
k=m+1

〈ω̂m · ω̂k〉w

= 1
2
l + l

∞∑
k=m+1

〈(ω̂m · ω̂k−1)(ω̂k · ω̂k−1) + (ω̂m × ω̂k−1) · (ω̂k × ω̂k−1)〉w

= 1
2
l + l

∞∑
k=m+1

〈(ω̂m · ω̂m+1) · · · (ω̂k−2 · ω̂k−1)(ω̂k−1 · ω̂k)〉w,

(3.36)

where we have repeatedly used the identity for unit vectors û · û′ = (û · v̂)(û′ · v̂) + (û×
v̂) · (û′ × v̂), with v̂ a third (arbitrary) unit vector, and the fact that 〈(ω̂k′ × ω̂k−1) ·
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(ω̂k × ω̂k−1)〉w = 0 for all k′ < k − 1. So, the persistence length becomes

P = 1
2
l + l

∞∑
k=1

(〈cos θ〉w)k = 1
2
l
βBJ + βBJ coth βBJ − 1

βBJ − βBJ coth βBJ + 1
, (3.37)

On taking the WCL we find that P → lβBJ = Ml × βBJ/M is a well defined constant.
The wormlike chain is thus defined by its persistence length P and its total length L,
or equivalently its effective number of segments M̄ = L/P . The label of an individual
segment along the chain has now become a continuous parameter m̄ = m

M
M̄ = m

βBJ

which runs from 0 to M̄ .In the following we will also employ an appropriately rescaled
definition of the segment density η̄ = 2M̄ρP 2d = βBJη (cf. Eq. (3.19)). We follow the
convention that quantities related to the wormlike chain are denoted by an overbar.

To that end, we first determine how various ingredients of the theory behave in the
WCL, and in doing so we define their continuous (wormlike) analogues. The first step

is to rewrite the partial partion functions in terms of the continuous field q
(±)
m (ω̂) →

q̄(±)(m̄, ω̂) (with the arrow denoting the WCL throughout). The effective fields become
much smaller (because of the rescaling of the segment length l), and are in leading order
of (βBJ)−1 given by,

βBHm(ω̂)→ (βBJ)−1βBH̄(ω̂) = (βBJ)−1 η̄

M̄

∫ M̄

0

dm̄′
∫
dω̂′ sin γ(ω̂, ω̂′)f̄(m̄′, ω̂′),

(3.38)

in which
∑M

m=1 → βBJ
∫ M̄

0
dm̄. As the fields q

(±)
m retain their magnitude in the WCL,

it is clear from Eq. (3.31), that the explicit dependence of SDF on the effective field
vanishes, as exp (−βBH(ω̂)) → 1 + O((βBJ)−1). However, the effective field will still
contribute indirectly through the q̄(±)’s, as will be shown shown further on. So, the SDF
at point m̄ along the wormlike chain is given by,

f̄(m̄, ω̂) = q̄(+)(m̄, ω̂)q̄(−)(m̄, ω̂)/Z̄(m̄), (3.39)

and normalized in the usual way, Z̄(m̄) =
∫
dω̂q̄(+)(m̄, ω̂)q̄(−)(m̄, ω̂). Next, we also need

the difference between two neighbouring q
(±)
m -functions,(

q
(±)
m+1(ω̂)− q(±)

m (ω̂)
)
→ (βBJ)−1∂q̄

(±)

∂m̄
(m̄, ω̂), (3.40)

and finally the action of the flexibility weight on an arbitrary function g,∫
dω̂′w (ω̂, ω̂′) g(ω̂′)→ w0

(
1 + 1

2
(βBJ)−1 ∆ω̂

)
g(ω̂), (3.41)

in which ∆ω̂ is the Laplace operator on a sphere and w0 = 4π sinhβBJ
βBJ

is the zeroth

Legendre coefficient of w (see Eq. (3.52)), and a divergent function of βBJ . An explicit
proof, in our opinion often alluded to, but never actually presented in the literature, of
Eq. (3.41), employing spherical coordinates is given in the Appendix.

Having assembled all the necessary components, we return to the free energy Eq. (3.34),
and consider the normalization constants in terms of which it was formulated (Eq. 3.32).



42 3. UNIAXIAL POLYMERS

These we need to expand to first order in (βBJ)−1 because the leading terms will turn
out to cancel,

Zm → Z̄(m̄)

[
1− (βBJ)−1

∫
dω̂f̄(m̄, ω̂)βBH̄(ω̂)

]
. (3.42)

Zm,m+1 → w0Z̄(m̄)

[
1 + (βBJ)−1Z̄−1(m̄)

∫
dω̂
(

1
2
q̄(+)(m̄, ω̂)∆ω̂ q̄

(−)(m̄, ω̂) (3.43)

+q̄(+)(m̄, ω̂)
∂q̄(−)

∂m̄
(m̄, ω̂)− 2q̄(+)(m̄, ω̂)βBH̄(ω̂)q̄(−)(m̄, ω̂)

)]
.

Combining the two summations in Eq. (3.34) into single one,

−
M−1∑
m=1

logZm,m+1 +
M−1∑
m=2

logZm =

−
M−1∑
m=1

log
(
Zm,m+1/

√
ZmZm+1

)
− 1

2
(logZ1 + logZM) (3.44)

immediately shows that the overall factors Z̄(m̄) in front of Eqs. (3.42) and (3.43)
drop out, and extra boundary terms appear. Collecting the above and substituting in
Eq. (3.34), we obtain an expression for the free energy of a single wormlike chain in an
external field,

βBF̄0

[
q̄(±)

]
=

∫ M̄

0

dm̄

∫
dω̂f̄(m̄, ω̂)βBH̄(ω̂)

− 1
2

∫ M̄

0

dm̄

∫
dω̂Z̄−1(m̄)

(
q̄(+)(m̄, ω̂)∆ω̂ q̄

(−)(m̄, ω̂) + 2q̄(+)(m̄, ω̂)
∂q̄(−)

∂m̄
(m̄, ω̂)

)
+

∫
dω̂

(
f̄(0, ω̂) log

q̄(+)(0, ω̂)√
Z̄(0)

+ f̄(M̄, ω̂) log
q̄(−)(M̄, ω̂)√

Z̄(M̄)

)
, (3.45)

in which we have left out the (diverging) constant term −βBJM̄ logw0. Finally, to
clean up, we can symmetrize the Laplace term by partial integration, and the derivative
to m̄ by considering the symmetry in the fields: q̄(+)(m̄, ω̂) = q̄(−)(M̄ − m̄, ω̂), which
is due to the chain being symmetric in + and − direction, and change to variables,
ψ(±)(m̄, ω̂) = q̄(±)(m̄, ω̂)/

√
Z̄(m̄). This leads to

βBF̄0

[
ψ(±)

]
=

1
2

∫ M̄

0

dm̄

∫
dω̂

(
∇ω̂ψ

(+)(m̄, ω̂) · ∇ω̂ψ
(−)(m̄, ω̂) + ψ(−)(m̄, ω̂)

∂ψ(+)

∂m̄
(m̄, ω̂)

−ψ(+)(m̄, ω̂)
∂ψ(−)

∂m̄
(m̄, ω̂)

)
+

∫ M̄

0

dm̄

∫
dω̂f̄(m̄, ω̂)βBH̄(ω̂)

+

∫
dω̂
(
f̄(0, ω̂) logψ(+)(0, ω̂) + f̄(M̄, ω̂) logψ(−)(M̄, ω̂)

)
, (3.46)
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in which the orientational distribution function now equals f̄ = ψ(+)ψ(−). Apart from the
external field, this is exactly the KS result for the free energy [33]. The only difference
is the factor 1

2
in front of the term with the derivatives, which is due to the fact that

we use the persistence length P as our unit of length rather than the Kuhn length 2P
employed by KS.

As in the previous section, we can directly apply a variation principle to the free
energy Eq. (3.46) in terms of the fields ψ(∓). To ensure that f̄ is normalized at every
point along the chain we add a Lagrange term,∫ M̄

0

dm̄λ(m̄)

∫
dω̂ψ(+)(m̄, ω̂)ψ(−)(m̄, ω̂), (3.47)

in which λ(m̄) is the continuous Lagrange multiplier. This variation yields the diffusion
equation,

±∂ψ̄
(±)

∂m̄
(m̄, ω̂) = 1

2
∆ω̂ψ̄

(±)(m̄, ω̂)− βBH̄′(m̄, ω̂)ψ̄(±)(m̄, ω̂), (3.48)

with the parameter m̄ playing the role of time, and ∆ω̂ the Laplace operator on a sphere.
The primed effective fields have to be determined selfconsistently,

βBH̄′(m̄, ω̂) = λ(m̄) +
η̄

M̄

∫ M̄

0

dm̄′
∫
dω̂′ sin γ(ω̂, ω̂′)f̄(m̄′, ω̂′), (3.49)

and λ(m̄) is tuned to achieve the normalization. Variation with respect to the terminal
fields ψ(+)(0, ω̂) and ψ(−)(M̄, ω̂) yields that both are constant. Of course, Eq. (3.48) can
also be obtained by direct application of the WCL on the recurrence relation Eq. (3.33).

3.3. Results

3.3.1. Bifurcation Analysis. We are now in a position to apply the formal results
of the previous sections to adress the description of the isotropic to nematic (I-N) transi-
tion in our sytem. In the next section, we numerically compute solutions which minimize
the free energy and so determine the coexistence densities and the degree of ordering at
the transition. In the present section, we will use a linear stability analysis to analyti-
cally determine the location of the I-N bifurcation (spinodal) density. At the bifurcation
point a nematic solution to the stationarity equation branches off from the isotropic so-
lution, which changes stability there; for densities lower than the bifurcation density it is
(meta)stable, for higher densities unstable. Consequently, close to the bifurcation point,
the solutions to the stationarity equation can be written as the isotropic solution with
small nematic perturbations [37]. Then, the (lowest) density for which such perturbed
distributions are solutions to the stationarity equations is the bifurcation density.

Before we start however, we have to choose a convenient order parameter to distin-
guish between the isotropic and the nematic phases. Both the segments and the phases
we consider have azimuthal symmetry. This means that the SDF’s can be written as
a function of only one polar angle θ (or cos θ), measured with respect to some nematic
director n̂. Consequently, we expand the SDF’s in series of Legendre polynomials,

fm(ω̂m · n̂) =
∞∑
n=0

2n+ 1

4π
a(m)
n Pn(ω̂m · n̂), (3.50)
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in which the coefficients are given by

a(m)
n =

∫
dω̂fm(ω̂ · n̂)Pn(ω̂ · n̂), (3.51)

Clearly, a
(m)
0 = 1, because of the normalization of fm, and due to the up-down symmetry

of the segments and the phase (fm is invariant under θ ↔ π − θ), all a
(m)
n = 0 for odd

n. Consequently, the lowest nonzero coefficient different in the isotropic and nematic

phase is a
(m)
2 . We choose this set of coefficients a

(m)
2 to be our order parameters. These

coefficients, which are of course the well-known Maier-Saupe order parameters for the
segments, are 0 in the isotropic phase, and between 0 and 1 when there is orientational
ordering in the direction of the nematic axis. Frequently, we will also use the average

order parameter of the chain a2 = (1/M)
∑M

m=1 a
(m)
2 .

The results are presented more easily by defining the following invariant expansions
as well, [

w(ω̂ · n̂)
sin θ(ω̂, n̂)

]
=
∞∑
n=0

2n+ 1

4π

[
wn
sn

]
Pn(ω̂ · n̂), (3.52)

in which the coefficients are given by similar relations as for the SDF’s (Eq. 3.51). Both
sn and wn can be expressed completely in analytical terms [58]. For the bifurcation
analysis we will only need

w0 = 4π sinh βBJ/βBJ s0 = π2

w2 = 4π ((1 + 3/(βBJ)2) sinh βBJ/βBJ − 3 cosh βBJ/(βBJ)2) s2 = −π2/8.

(3.53)

Also, the coefficients sn = 0 for odd values of n.
In the isotropic phase, the SDF’s are simply constant, so due to normalization,

fm(θm) = 1/4π. It is easily checked that the isotropic distribution is a solution to the
stationarity equations Eqs. (3.17) for every density η. At higher densities, however,
the isotropic phase is unstable and the system will favour an orientationally ordered
phase. The density at which the isotropic solution becomes absolutely unstable (and
the nematic solution branches off) can be found by investigating the stability of small
nematic perturbations added to the isotropic distributions. That is, we assume the
SDF’s to have the form,

fm(ω̂m · n̂) =
1

4π
+ εmP2(ω̂m · n̂), (3.54)

in which εm are a set of infinitesimally small parameters. Substituting these SDF’s in
Eqs. (3.17), yields

1

4π
+ εmP2(ω̂m · n̂) =

1

4π

∫ ∏
j 6=m

dω̂j

×
M−1∏
j=1

w(ω̂j · ω̂j+1)

w0

M∏
k=1

exp

[
− η

M

M∑
k′=1

εk′

∫
dω̂′k′P2(ω̂′k′ · n̂) sin γ(ω̂k, ω̂

′
k′)

]
,

(3.55)
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in which γ is the planar angle between ω̂k and ω̂′k′ , sin γ(ω̂k, ω̂
′
k′) = |ω̂k × ω̂′k′| =√

1− (ω̂k · ω̂′k′)
2. We now apply the addition theorem to the Legendre function P2(ω̂′k′ ·n̂)

to express it in terms of spherical harmonics with polar vector ω̂k

P2(ω̂′k′ · n̂) =
4π

5

2∑
m=−2

Y ∗2,m (ω̂′k′|ω̂k)Y2,m (n̂|ω̂k) . (3.56)

As sin γ(ω̂k, ω̂
′
k′) only depends on (ω̂k · ω̂′k′) it is orthogonal to any spherical harmonic

Y2,m (ω̂′k′|ω̂k) with m 6= 0. Consequently,

− η

M

M∑
k′=1

εk′

∫
dω̂′k′P2(ω̂′k′ · n̂) sin γ(ω̂k, ω̂

′
k′) = −ηs2

M

(
M∑
k′=1

εk′

)
P2(ω̂k · n̂) (3.57)

Linearizing the exponential with respect to the (small) εm and subtracting the isotropic
contribution 1/4π, Eq. (3.55) becomes to first order in εm

εmP2(ω̂m · n̂) = − ηs2

4πM

(
M∑
k′=1

εk′

)∫ ∏
j 6=m

dω̂j

M−1∏
j=1

w(ω̂j · ω̂j+1)

w0

M∑
k=1

P2(ω̂k · n̂).

(3.58)

The right hand side of this equation can be interpreted as the sum over the contributions

due to orientational perturbations of the form
(∑M

k′=1 εk′
)
P2(ω̂k · n̂) operating on each

single segment in turn. Focus for a moment on a term with k < m. The integration
over the flexibility Boltzmann weights for j < k, as well as those for j ≥ m + 1 are
trivially performed, and yield a factor w0/w0 = 1 each. The effect of the remaining
integrations is to ”pass on” the orientational perturbation at the k’th segment to the
(k+1)’th segment and so on until the target segment m is reached. The first integration
is given by∫

dω̂k
w(ω̂k · ω̂k+1)

w0

P2(ω̂k · n̂) =
w2

w0

P2(ω̂k+1 · n̂), (3.59)

where we again employed the addition theorem for P2(ω̂k · n̂). Clearly the following steps
are similar, each step picking up an additional factor w2/w0. The total factor picked
up on reaching segment m is (w2/w0)m−k. By the same token for k > m, we pick up a
factor (w2/w0)k−m = (w2/w0)|m−k|. Substituting these results in Eq. (3.58), we obtain

εmP2(ω̂m · n̂) = − ηs2

4πM

(
M∑
k′=1

εk′

)
M∑
k=1

(
w2

w0

)|m−k|
P2(ω̂m · n̂). (3.60)

Next, we cancel the P2’s, substitute s2 = −π2/8, define σ = w2/w0 and perform the
summation over k. This yields

εm =
ηπ

32M

1 + σ − σm − σM−m+1

1− σ

M∑
k′=1

εk′ . (3.61)

The new parameter σ serves as a convenient measure of the chain stiffness since it ranges
from 0 in absence of intrachain interactions to 1 in case of βBJ → ∞ (see Eqs. 3.53).
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Summing both sides over m, we can drop the sum over εm, and obtain an expression for
the bifurcation density,

η∗ =
32

π

(
1

M

M∑
m=1

1 + σ − σm − σM−m+1

1− σ

)−1

=
32

π

(
1 + σ

1− σ
− 2σ

M

1− σM

(1− σ)2

)−1

.

(3.62)

Let us check a few limiting cases, and compare with the known results on the bifurcation
density for hard rods in the Onsager approximation following Ref. [37] (who use the
density c = ηπ/8). For M = 1, we have a single hard rod and find η∗π/8 = 4. When
σ = 1, we effectively have rigid rods of length L = Ml yielding a bifurcation density,
Mη∗π/8 = π(Ml)2dρ∗/4 = 4, where ρ is the chain density. Finally, for very floppy chains
with σ = 0 the bifurcation density is the same as for unconnected rods, η∗π/8 = 4.

In the previous section, we showed that one of the strengths of our model is the
fact that the KS-theory can be recovered by applying the WCL. We illustrate this
here on the level of the bifurcation results. In the WCL, the σ-parameter behaves as
σ → 1− 3(βBJ)−1, so the bifurcation density becomes

η̄∗ =
48

π

(
1− 1− e−3M̄

3M̄

)−1

, (3.63)

which is the result given by KS in Ref. [33]. In the limit of very long wormlike chains,
η̄∗ = 48/π. Another interesting case is the rigid rod limit, M̄ → 0, where we need to
rescale the density, η̄∗M̄ = 2ρ∗L2d→ (32/π)(1 + M̄ +O(M̄2)).

From Eqs. (3.50) and (3.54), we see that the nematic perturbations εm are propor-

tional to the order parameters a
(m)
2 . And although these perturbations are very small,

Eq. (3.61) readily yields the distribution of relative order along the chain. Applying the
WCL to Eq. (3.61), we obtain a normalized expression for the order distribution along
a wormlike chain,

ε̄(m̄)

〈ε̄(m̄)〉
=

3

2

(
(1− e−3m̄) + (1− e−3(M̄−m̄))

)
1−

(
1− e−3M̄

)
/3M̄

, (3.64)

with εm → ε̄(m̄) and 〈ε̄(m̄)〉 = 1
M̄

∫ M̄
0
dm̄ε̄(m̄). So, for instance, the ratio of the order

in the middle of the chain to that at the chain ends is given by

ε̄(1
2
M̄)

ε̄(0)
=

2

1 + e−
3
2
M̄
. (3.65)

This means that, already at the bifurcation point, the middle of the chain is more
strongly ordered than the ends. For very long chains (M̄ → ∞) this factor is exactly
equal to 2. The heuristic explanation is that for very long chains the middle feels an
equal orientational ”pull” from both sides of the chain, whereas the ends feels the same
effect but only from one side. This was first discussed by KS in Ref. [33] using a more
general argument.
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Figure 3.2. Order along a segmented chain of M = 20 segments and coupling
constant βBJ = 4 (so P ≈ M/βBJ = 5). The full curve is the real order
a

(m)
2,nem at the phase transition, ηnem = 3.205. The dashed curve is the rescaled

order at the bifurcation point η∗ = 4.218. The bifurcating order εm/
∑

k εk
(from Eq. 3.61) normally has average 1, but has been rescaled here to the same
average order as at the phase transition a2,nem = 0.495. The fact that the two
profiles nearly overlap suggests that the relative order profile at the bifurcation
point gives a good estimate for the real order profile at the transition. Absolute
values of the average order at the transition can not be obtained from bifurcation
analysis. The numerical order profile at the phase transition is calculated in
the next section and also given in Fig. 3.4(right).

3.3.2. Numerical Analysis. In the previous section, we determined the location
of the I-N bifurcation (spinodal) density. However, for a system like this, with a first-
order I-N phase transition, the densities characterizing the coexistence between two
stable thermodynamic phases are the coexistence (binodal) densities ηiso and ηnem. In
the coexistence region, the system phase seperates into an isotropic and a nematic part
of respective (coexistence) densities. The order parameters in the nematic part of the

coexisting phases are denoted by a2,nem and a
(m)
2,nem. In this section, we numerically

calculate the coexistence densities and the order parameters at the phase transition for
a range of chain stiffnesses and various values of the chain lengths.

For a given density, we numerically calculate the equilibrium distributions analogue
to Ref. [59], i.e. we solve the stationarity equations (Eqs. 3.17) iteratively by means
of repeated numerical integrations. To that end, we perform all integrations over φ in
advance and the remaining (θ-)integrations numerically on a grid. The external field is
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given by

βBH(θ) = η

∫ π

0

dθ′ sin θ′K(θ, θ′)fav(θ′) (3.66)

in which

K(θ, θ′) =

∫ 2π

0

dφ sin γ(ω̂, ω̂′) =

∫ 2π

0

dφ

√
1− (cos θ cos θ′ + sin θ sin θ′ cosφ)2

(3.67)

and with fav(θ) = (1/M)
∑M

m′=1 fm′(θ) the average SDF in the chain. The kernel K(θ, θ′)
has to be computed numerically only once (on a square θ-grid) and can be used every
iteration cycle again. The (M − 1) flexibility integrations become,

qm+1(θ) =

∫ π

0

dθ′ sin θ′W (θ, θ′)e−βBH(θ′)qm(θ′) (3.68)

with of course q1 = 1. Here, the kernel W (θ, θ′) is given by

W (θ, θ′) =

∫ 2π

0

dφw(ω̂, ω̂′) =

∫ 2π

0

dφ exp [βBJ (cos θ cos θ′ + sin θ sin θ′ cosφ)]

= 2π exp [βBJ cos θ cos θ′] I0 (βBJ sin θ sin θ′) , (3.69)

with I0 the modified Bessel function of zeroth order. In Eq. 3.68, we have dropped the

superscript ± because due to symmetry (q
(+)
m (θ) = q

(−)
M−m+1(θ)) we only need to compute

one of the two. The SDF’s are then given by

fm(θ) = Q−1qm(θ)e−βBH(θ)qM−m+1(θ), (3.70)

with,

Q = 2π

∫ π

0

dθqm(θ)e−βBH(θ)qM−m+1(θ). (3.71)

The normalization constant Q is of course the same for all m. Then, going through
Eqs. 3.66 to 3.71 and using the SDF’s from Eq. 3.70 as input for Eq. 3.66, we have
a closed (iterative) loop. Using extreme nematic distributions (normalized delta peaks
around θ = 0) as a seed, this iteration will converge to the nematic solutions of the
stationarity equations, if they exist for the density selected. In the isotropic phase,
fm = 1/4π and consequently βBHiso(η) = πη/4 and Qiso(η) = 4πwM−1

0 exp[−πηM/4].
Then, having computed equilibrium distributions for a given density, we also want to

calculate the free energy of the two phases. In section 3.2.1 we found that we could not
a priori derive an expression for the free energy solely in terms of the SDF’s. However,
we can use the equilibrium distributions themselves (having already computed them),
and resubstitute them in the the free energy (Eq. 3.14 in 3.12). This yields

βBF (eq)(ρ)

N
= − log

∫
dΩ exp

[
−βBU(Ω)− ρ

∫
dΩ′f (eq)(Ω′)E(Ω,Ω′)

]
+ log (ρVT)− 1− 1

2
ρ

∫
dΩdΩ′f (eq)(Ω)f (eq)(Ω′)E(Ω,Ω′), (3.72)
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where we have added superscripts to denote the equilibrium character. We can then
numerically compute the free energy by using the (equilibrium) results from the above
iterative procedure for a particular density

βBF (eq)(η)

N
=

log η − logQ(eq)(η)− η

2M

M∑
m,m′=1

∫ ∫
dω̂dω̂′f (eq)

m (ω̂)f
(eq)
m′ (ω̂′) sin γ(ω̂, ω̂′)

= log η − logQ(eq)(η)− πηM
∫ π

0

dθ sin θ

∫ π

0

dθ′ sin θ′f (eq)
av (θ)f (eq)

av (θ′)K(θ, θ′),

(3.73)

where we have also dropped the (irrelevant) constant term log (VT/2l
2dM) − 1. In the

isotropic phase, this free energy reduces to

βBF (eq)
iso (η)/N = log(η/4π)− (M − 1) logw0 + πηM/8. (3.74)

Two phases in coexistence need to be in mechanical and chemical equilibrium. Conse-
quently, we derive expressions for pressure P and chemical potential µ, using Eq. 3.72,

βBP (ρ) = −
(
∂βBF (eq)

∂V

)
N

= ρ2∂(βBF (eq)/N)

∂ρ
(3.75)

= ρ+ 1
2
ρ2

∫
dΩdΩ′f (eq)(Ω)f (eq)(Ω′)E(Ω,Ω′),

βBµ(ρ) =

(
∂βBF (eq)

∂N

)
V

=
βBF (eq)

N
+ ρ

∂(βBF (eq)/N)

∂ρ
(3.76)

= log (ρVT)− log

∫
dΩ exp

[
−βBU(Ω)− ρ

∫
dΩ′f (eq)(Ω′)E(Ω,Ω′)

]
.

In simplified terms, these are

(2l2dM)βBP (η) =

η + πη2M

∫ π

0

dθ sin θ

∫ π

0

dθ′ sin θ′f (eq)
av (θ)f (eq)

av (θ′)K(θ, θ′), (3.77)

βBµ(η) = log η − logQ(eq)(η). (3.78)

in which we have multiplied the pressure with 2l2dM in order to make it dimensionless.
Further, we have dropped a term log (VT/2l

2dM) in the chemical potential. In the
isotropic phase these expressions reduce to

(2l2dM)βBPiso(η) = η + πη2M/8, (3.79)

βBµiso(η) = log(η/4π)− (M − 1) logw0 + πηM/4. (3.80)

Then, the conditions for coexistence are

P (ηnem) = Piso(ηiso) and µ(ηnem) = µiso(ηiso), (3.81)

which are two equations with two unknown variables. Numerical rootfinding methods
can then be used to find the solution with ηnem 6= ηiso. Geometrically, this corresponds
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Figure 3.3. Results for the I-N transition of chains with M = 10 segments,
and a comparison with the results of Chen [36]. Chen uses a ‘flexibility param-
eter’ α which we have set equal to M/2βBJ (in fact, α is defined as the total
length over the Kuhn length). In the left graph, we have plotted the order pa-
rameter at the phase transition a2,nem and the relative width of the coexistence
region ηnem/ηiso − 1, both as a function of the stiffness parameter, βBJ . The
full curves are the present work, and the dashed-dotted are due to Chen. In the
right graph, we have given the transition densities as a function of βBJ . The
full curves are the coexistence densities, ηnem and ηiso, the dotted curve is the
bifurcation density, η∗ and the dashed-dotted is the result for ηiso due to Chen.
To compare, the rigid rod results can be found in the text.

to finding the so-called common tangents (which cancel the non-convexity of the free
energy surface).

We determined the coexistence densities ηiso and ηnem and the order parameter at the
phase transition for a range of coupling strengths J and chain lengths M . Some results
are plotted in Fig. 3.3. For wormlike chains similar figures are calculated by Chen [36].
Here, we only compare these quantities for a chain of M = 10 segments with Chen’s
results (Fig. 3.3), because the effect is qualitatively the same for other chain lengths.
We have also plotted the bifurcation density as a function of the coupling (Eq. 3.62),
to show the relation with the coexistence densities. Clearly, there are two regimes,
one (for high βBJ) where the segmented chains give quite accurately the same results
as wormlike chains and a regime (for low βBJ) where the results are quite different.
We will discuss this illustrated by the βBJ-dependence of a2,nem (Fig. 3.3, left). We
start from infinite stiffness (so on the left side of the plot, where we have effectively a
system of rigid rods of length Ml ⇒ a2,nem = 0.7922, πηiso/32 = 0.8225/M = 0.08225
and πηnem/32 = 1.048/M = 0.1048 [48, 60]) Decreasing J , the chains become more
flexible and this allows them to postpone the I-N phase transition to higher densities
(Fig. 3.3, right) and simultaneously they can assume a more disordered state at the phase
transition. This results in a decrease of the order parameter in exactly the same way as
for the wormlike chains. Decreasing the coupling even further, however, the dependence
reaches a minimum and then goes up again, whereas for the wormlike chains it stays down
(actually, it goes slightly up). Apparently, segmented chains, with segments of length
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Figure 3.4. Order parameter at the phase transition a2,nem, vs. stiffness
βBJ , for various values of M (left) and order parameter a2, as a function of
chain label m for various values of the density η (right). In the left graph, the
full curves are the present work, for M = 2, M = 10 and M = 100, and the
dashed-dotted are due to Chen where Chen’s flexibility parameter α is set equal
to M/2βBJ (for M = 2, M = 10 and M = 100, Chen’s curves are all the same
but shifted with respect to each other due to the logarithm of the x-axis). In
the right graph, the order along the chain is plotted for a chain with M = 20
and βBJ = 4 (so P ≈ M/βBJ = 5). The segments are discrete and located at
the integer values, 1,2, etc. the full lines are connecting them. The lower curve
is for density η = ηnem = 3.205, the one above that for η = 4.224, the next for
η = 7.280 and the upper for η = 15.43. The lower curve is also given in Fig. 3.2
and compared with the bifurcation result.

l, without coupling (βBJ = 0) behave more or less the same as a fluid of independent
rods of length l. (Actually, there is a small difference due to the fact that the ideal gas
term in the free energy is different.) Wormlike chains, however, do not have a segmented
character and can in principle be made infinitely flexible (M̄ → ∞). Summarizing, for
high values of βBJ , segmented chains behave much like wormlike chains. In this regime,
the segmented character does not show, as many segments act as one persistence length.
Furthermore, the persistence length scales linearly with βBJ so a direct identification
with wormlike chains is possible. Below some treshold value of βBJ (we come back to
this later), the segmented character of the chains shows and the results differ from the
wormlike chains. Also, for low βBJ , the persistence length of segmented chains does not
scale simply linear with βBJ (see Eq. 3.37).

In order to study the question when a segmented chain does behave like a wormlike
chain, we have plotted some more dependences in Fig. 3.4 (left), for various values of M .
We find that for chains of many segments, like M = 100, the dividing line between the
two regimes lies at about βBJ = 10 as it does for chains of M = 10 segments. However,
shorter chains, with M < 10, show a divergence from the wormlike behaviour already
at higher βBJ > 10 (for M = 2, this dividing line lies at about βBJ = 100). Therefore,
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we propose the following ‘rule of thumb’,

βBJ = 10 if M ≥ 10
βBJ = −20M + 210 if M < 10

. (3.82)

We will use this rule in Chap. 7, where we numerically study I-N behaviour of side chain
LCP’s. It is of course always possible to use a more accurate estimate, which we do in
Chap. 7 as well, but there we explicitly mention it.

Finally, in Fig. 3.4 (right), we give order profiles of a chain in the nematic phase.
Starting at the phase transition, the average order is still quite low and the chain end
effects are visible to a length scale of about the persistence length. Increasing the
density, the nematic field gets stronger, and the average order goes up. At the same
time, influences due to chain stiffness become less pronounced, and the order profile
becomes more flat. This is because the nematic field scales linearly with the density
whereas the stiffness of the chain is independent of it.

3.4. Conclusion

We have presented a DFT approach to nematic ordering in liquid crystalline polymers
which are modelled by uniaxial segmented chains. The approximations, we make, are
formulated explicitly and are basically: the use of the second virial approximation (1),
we allow only nearest-neighbor interactions within the chains (2) and we assume that
two chains interact with only one ‘interaction site’ at a time (3). The problem is formally
equivalent to that of a single chain in an effective field, allowing us to use techniques
developed in the field of discrete spin systems. Wormlike chains are a limiting case of
our segmented chains and the Khokhlov and Semenov free energy for nematic polymers
can be obtained from our formulation by applying the ‘wormlike chain limit’. The I-N
transition for the segmented chains is located by means of a bifurcation analysis of the
spinodal point, and by numerically locating the coexistence points.

The main advantage in working with segmented chains is the rather direct general-
ization to heterochains (consisting of different types of segments) and chains with various
branches. We use the segmented chain approach to main chain polymers and side chain
polymers, in Part 2 of this thesis. Secondly, the wormlike chain limit can be applied at
virtually any stage of the analysis, i.e. directly to the free energy functional but also to
the results of the bifurcation analysis. Even the numerical results show a rather clear
regime where segmented chains behave as wormlike chains. This allows us to use the
concept of segmented chains ‘all the way’ and interprete the results at the end in terms
of wormlike chains. This property will also be used in Part 2.

Appendix

When coupling constant J , in case of nearest neighbour bending potential (Eq. 3.3)
becomes very large (i.e. in the wormlike chain limit in section 3.2.3) the typical angles
between successive segments in the chains become very small. In this appendix, we show
the limiting behaviour of the flexibility integration in case of βBJ →∞ (Eq. 3.41) to be

w−1
0

∫
dω̂′w(ω̂, ω̂′)g(ω̂′)→

(
1 + 1

2
(βBJ)−1 ∆ω̂

)
g(ω̂), (3.83)
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with ∆ω̂ the Laplace operator on a sphere, w0 the first Legendre coefficient of w(ω̂, ω̂′) =
exp (βBJω̂ · ω̂′) (see Eq. 3.52) and g(ω̂) a sufficiently smooth function (in our case:

exp(−βBH(ω̂))q
(±)
m (ω̂)).

Rather than focus on the specific bending potential of our model, we prove that the
property in question holds for any weight function that is symmetric and sufficiently
peaked around a preferred direction. Consider thereto a function ψε,ẑ(ω̂) on the unit
sphere, whose definition involves a parameter ε and a preferred axis denoted by the unit
vector ẑ, that satisfies the following conditions:

(1) It is normalized:

∫
dω̂ψε,ẑ(ω̂) = 1

(2) It is invariant under rotations Rẑ(γ) over an arbitrary angle γ around the pre-
ferred axis ẑ: ψε,ẑ(Rẑ(γ)ω̂) = ψε,ẑ(ω̂)

(3) For small values, the parameter ε measures the second moment of ψε,ẑ(ω̂) with
respect to deviations in polar angle from the preferred axis: limε↓0 ε

−1
∫
dω̂ψε,ẑ(ω̂)

×θ2 = 1 with θ and the angle between ẑ and ω̂.

We now prove that:

lim
ε↓0

ε−1

{∫
dω̂ψε,ẑ(ω̂)g(ω̂)− g(ẑ)

}
= 1

4
∆ẑg(ẑ) (3.84)

for g sufficiently smooth.
First, we expand the function g in spherical harmonics with ẑ as the polar axis,

g(ω̂) =
∞∑
n=0

n∑
m=−n

gn,mYn,m(ω̂|ẑ), (3.85)

The spherical harmonics are explicitly given by

Yn,m(ω̂|ẑ) = (−1)m
[

2n+ 1

4π

(n−m)!

(n+m)!

]1/2

eimφPm
n (cos θ) m ≥ 0,

Yn,−m = (−1)m Y ∗n,m

where the polar angle is defined through cos θ = ω̂ · ẑ and the azimuthal angle φ is
defined with respect to an arbitrary axis x̂⊥ẑ. Using this expansion we can write∫

dω̂ψε,ẑ(ω̂)g(ω̂) =
∞∑
n=0

n∑
m=−n

gn,m

∫
dω̂ψε,ẑ(ω̂)Yn,m(ω̂|ẑ). (3.86)

By condition 2. above on ψε,ẑ we have for arbitrary γ∫
dω̂ψε,ẑ(ω̂)Yn,m(ω̂|ẑ) =

∫
dω̂ψε,ẑ(Rẑ(γ)ω̂)Yn,m(ω̂|ẑ) =∫

dω̂′ψε,ẑ(ω̂
′)Yn,m(R−1

ẑ (γ)ω̂′|ẑ) = e−imγ
∫
dω̂′ψε,ẑ(ω̂

′)Yn,m(ω̂′|ẑ), (3.87)

so that ∫
dω̂ψε,ẑ(ω̂)Yn,m(ω̂|ẑ) = δm,0

√
2n+ 1

4π

∫
dω̂ψε,ẑ(ω̂)Pn(ω̂ · ẑ). (3.88)
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Next, we exploit the fact that for small ε the angle θ between ω̂ and ẑ is very small. In
that limit the Legendre polynomials have the form Pn(cos θ) = 1 + αnθ

2 +O(θ4). From
the recursive equality for Legendre polynomials ([58], 8.914),

(n+ 1)Pn+1(cos θ)− (2n+ 1) cos θPn(cos θ) + nPn−1(cos θ) = 0 (3.89)

it is straightforward to prove that αn = −1
4
n(n+ 1). We also recall the identity

δm,0 =

√
4π

2n+ 1
Yn,m(ẑ|ẑ), (3.90)

which leads to the result∫
dω̂ψε,ẑ(ω̂)Yn,m(ω̂|ẑ) =

{
1− 1

4
n(n+ 1)ε+O

(
ε2
)}

Yn,m(ẑ|ẑ)

= Yn,m(ẑ|ẑ) +
1

4
ε∆ẑYn,m(ẑ|ẑ) + O

(
ε2
)

(3.91)

where we used the fact that the spherical harmonics are eigenfunctions of the spherical
Laplacian. Insertion into Eq. (3.86) and resumming the expansion then directly leads
to the desired result∫

dω̂ψε,ẑ(ω̂)g(ω̂) = g(ẑ) +
1

4
ε∆ẑg(ẑ) +O(ε2) (3.92)

We now make the identification of w−1
0 w(ω̂, ẑ) with ψε,ẑ(ω̂) and of the small pa-

rameter ε with 2(βBJ)−1 (as 〈θ2〉w ≈ 2(βBJ)−1). Ignoring the higher order terms then
immediately yields Eq. (3.83).



4 Biaxial Polymers

We construct a theory for nematic ordering in a fluid of biaxial polymers. This
is a combination of the theory for wormlike polymers (by Khokhlov and Semenov) and
the theory for biaxial particles (by Mulder). We use the approach of segmented chains
developed in Chapter 3. The I-N bifurcation density is computed as a function of 4 model
parameters.

4.1. Introduction

Model fluids of hard particles of great anisotropy (length � width) are seen to have
an isotropic-to-nematic (I-N) phase transition on increasing density [7]. In most cases,
it suffices to use hard rods with cylindrical symmetry around their long axis and as a
consequence, the resulting nematic phase is uniaxial (UN), which means it is symmetric
around the nematic director. To investigate more realistic situations, one could choose
to drop the cylindrical symmetry of the molecules, and study the effect of ‘molecular
biaxiality’ on the phase behaviour. Biaxial particles are in principle capable of forming
a biaxial nematic phase (BN, with two nematic directors), where the long axis of a
molecule orders with respect to one and a short axis with respect to another director.
For rods with small biaxiality, the system still prefers the UN phase and the BN phase
is postponed to high densities (where it is usually preceded by a spatially ordered phase
like a smectic). Opposed to rods, which have one long axis and two short axes, disks
have two long axes and one short axis. A fluid of disks also prefers the UN phase, with
the essential difference that the short axis of a disk orders with respect to the nematic
director. If we start with a rod and continuously deform it into a disk (by increasing one
of the two shorter axes until it is as large as the long axis), we find that the preferred
nematic phase changes from UN (with ordering of the long axis) to UN (with ordering
of the short axis). Somewhere in between (halfway this process), where the ordering of
long and short axes is equally strong, we expect to find a direct transition to the biaxial
nematic.

The BN phase was first predicted by Freiser [61], in 1970, who considered the Maier-
Saupe model for biaxial molecules using an extra (biaxial) order parameter. Later,
Alben [62] used a Landau approach and calculated (what now seems to be) the general
phase behaviour as a function of molecule asymmetry. He established that there is an
intermediate particle-shape (between rodlike and disklike) where the system undergoes a
second-order transition from I to BN. Straley [63] was the first to use the full set of four
order parameters to describe BN behaviour. In the eighties, Mulder used bifurcation

55
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analysis [64, 65] to solve Onsager’s model for a specific kind of long biaxial particles,
called spheroplatelets. Monte Carlo simulations on systems of biaxial molecules were
done by Allen [66] confirming the general phase diagram predicted by Refs. [62, 63].
Sarman [67] found a BN by computing diffusion coefficients and autocorrelation functions
in fluids of biaxial particles, using molecular dynamics simulations.

The first experimental observation of a biaxial phase was reported in 1980, by Yu
and Saupe [68], in a system of micelle-forming amphiphiles. More work and claims
followed, on similar amphiphilic systems as well as on thermotropic liquid crystals. A
question which complicates the analysis of micellar systems is the ability of the micelles
to deform, which may have a pronounced effect on the phase diagram [69]. In case of
thermotropic liquid crystals at least some of the initial claims for low-molecular weight
systems have been called into doubt later [70, 71] and the search continues [72]. For
liquid crystalline polymers, BN phases have been reported [73, 74], but also here, the
evidence is weak [27].

Parallel to the above, a lot of effort has gone into finding the BN phase in mixtures
of rods and disks. Putting few rods in a UN of disks will cause the rods to order
perpendicular to the director, and vice versa, in a UN of rods, few disks also order
perpendicular to the director. For intermediate concentrations, a BN phase can form,
although demixing into two coexisting nematic phases (one rod-rich and one disk-rich)
can interfere. Experimentally, no BN phase in these systems has been reported yet.
Some references are [75, 76, 77, 78].

Summarizing, the biaxial nematic phase is far from a common phenomenon. Al-
though both theory and simulations predict its existence in fluids of biaxial molecules
as well as mixtures of rods and disks, experimental confirmation of these results has
proven extremely hard. Some systems of sidechain LC polymers seem to exhibit some
degree of (local) biaxial ordering [73, 74]. Side chain polymers consist of a backbone
and side chains hinged more or less perpendicular to it. These side chains can have an
orientational coupling with neighbouring sidechains causing the polymers to be effec-
tively lath-like (biaxial). For long backboned polymers, flexibility of the laths (bending,
twisting) can have a pronounced effect on the phase behaviour. The interplay between
molecular flexibility and biaxiality is the topic of this chapter.

We construct an Onsager-like theory for orientational ordering in a fluid of impenetra-
ble biaxial (lath-like) but (somewhat) flexible polymers. The resulting theory is a com-
bination of Khokhlov and Semenov’s theory for nematic order in wormlike chains [32, 33]
and Mulder’s analysis of fluids of long platelets [64]. The approach we use is similar to
that of chapter 3; i.e. we start with segmented chains which have flexibility located at
the joints (Sec. 4.2) and later take the limit where the segments become very small, their
number and the joint stiffnesses very large, thus obtaining continuously flexible chains
(Sec. 4.3). Using bifurcation analysis, we calculate the I-N bifurcation density. We focus
on biaxialities comparable to the thickness of the polymer, for which the resulting phase
is always uniaxial. The resulting theory for continuously flexible polymers (which we call
ribbonlike polymers) has 4 (dimensionless) model parameters: the effective biaxiality of
the polymer ∆/d and three persistence lengths, corresponding to one twisting P1,2/L
and two bending modes P1,3/L, P2,3/L.
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Figure 4.1. A biaxial segment.

4.2. Segmented Biaxial Chains

4.2.1. The Model. We consider a fluid of N interacting chains in a volume V .
The chains are discrete and consist of M segments and every segment has a label m ∈
{1 · · ·M}. The segments are modeled as platelets which have dimensions d, d+ ∆ and l
with d,∆� l (see Fig. 4.1) and are connected to their neighbours with the sides of their
smallest surfaces (i.e. with dimensions d, d + ∆, see Fig. 4.2). The total length of the
chain is L = Ml. Every segment has a (û, v̂, ŵ)-frame attached to it, with û pointing
along the d-side, v̂ along the (d + ∆)-side and ŵ along the l-side. The orientation of
segment m is Ωm and is uniquely described in terms of the Euler angles (αm, βm, γm)
with respect to the lab-fixed frame (x̂, ŷ, ẑ). The Euler angles can be visualized as three
successive rotations around axes of the segment-fixed frame, with two successive axes
not around the same axis, and starting from the situation where (ûm, v̂m, ŵm) = (x̂, ŷ, ẑ).
In our case, we take the first and the third rotation, αm and γm, around the ŵm-axis and
the second, βm, around the v̂m-axis, and positive when the rotation is counterclockwise
(which is the same as in Refs. [79, 80]). Finally, αm, γm ∈ [0, 2π] and βm ∈ [0, π]. The
conformation of each chain is Ω and is specified by all orientations of the individual
segments, Ω = {Ω1, · · · ,ΩM}.

Within each chain, we assume there is a conformation-dependent energy U(Ω) which
is high when the conformation is rather bended or twisted (or both) and low when it is
not. To this end, we assume a potential between successive segments, u,

U(Ω) =
M−1∑
m=1

u(Ωm,Ωm+1), (4.1)
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Figure 4.2. A chain of biaxial segments.

which opposes bending and twisting in a generic fashion,

u(Ω,Ω′) =− J1û · û′ − J2v̂ · v̂′ − J3ŵ · ŵ′

=− J1(cosα cos β cos γ − sinα sin γ)

− J2(cosα cos γ − cos β sinα sin γ)− J3 cos β. (4.2)

in which (Ω)−1Ω′ = Ω̃ = (α, β, γ) is the Cartesian rotation to go from the unprimed
to the primed frame and is represented by a matrix. The parameters J1, J2 and J3 are
the coupling parameters between the corresponding unit vectors of the two segments.
An important feature of the potential is that for small angles the interaction is locally
harmonic (we will use this later).

In interaction with other chains, we model the molecules as being hard objects, so
the potential is infinity when the chains overlap, and zero when they do not. Using
the second virial approximation and considering only spatially homogeneous phases, the
quantity which is most suitable of describing the interaction is the volume which a chain
cannot enter due to the presence of another. This is the excluded volume, E(Ω,Ω′), and
is a function of the conformations of both chains. This excluded volume between two
chains, we approximate as being the sum of excluded volumes of the segments of which
they are composed,

E(Ω,Ω′) =
M∑

m,m′=1

e(Ωm,Ω
′
m′). (4.3)

The last approximation is discussed to some extend in Chap. 3. The excluded volume
between two platelets (which the segments are) is calculated by Mulder (see Ref. [64])
and is (in leading order of l2)

e(Ω,Ω′) = 2l2d

[√
1− (ŵ · ŵ′)2 +

∆

2d
(|ŵ · û′|+ |û · ŵ′|)

]
= 2l2d sin β

[
1 +

∆

2d
(| cosα|+ | cos γ|)

]
. (4.4)

Here, again, (Ω)−1Ω′ = Ω̃ = (α, β, γ). From the excluded volume, we see that if the
segments have no biaxiality and ∆ = 0, we just have ordinary Onsager rods (although
the successive-segment potential, Eq. 4.2, still includes bending as well as twisting). The
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other limit, where d = 0 and ∆ remains finite, is new and the segments correspond to
infinitely thin platelets.

4.2.2. The Stationarity Equation. The free energy functional for a fluid of hard
molecules in the second virial approximation with no spatial order is given by (see
Chap. 3),

βBF [f ]

N
= log (ρVT) +

∫
dΩf(Ω) [log f(Ω)− 1] + βB

∫
dΩf(Ω)U(Ω)

+ 1
2
ρ

∫
dΩdΩ′f(Ω)f(Ω′)E(Ω,Ω′). (4.5)

βB = 1/kBT is the Boltzmann factor, with T the temperature and kB Boltzmann’s
constant. ρ = N/V is the number density of chains and VT the “thermal volume”. The
function f(Ω) is the conformational distribution function (CDF) and is the normalized
probability (

∫
dΩf(Ω) = 1) of finding a chain with conformation Ω. Further,

∫
dΩ =∫

dΩ1 · · · dΩM and
∫
dΩ =

∫ 2π

0
dα
∫ π

0
dβ sin β

∫ 2π

0
dγ. In the isotropic phase, the second

virial approximation (or Onsager approximation) is exact when l � d,∆ with l2d and
l2∆ finite.

In thermodynamic equilibrium, the free energy reaches a minimum and the functional
is stationary. Therefore, we consider the variation of Eq. 4.5 with respect to the CDF,

δ

δf(Ω)

βBF
N
− βBµ = 0 (4.6)

with the chemical potential µ playing the role of Lagrange multiplier needed to enforce
normalization. Eliminating µ from Eq. 5.2 yields the stationarity equation,

f(Ω) = Z−1[f ] exp

[
−βBU(Ω)− ρ

∫
dΩ′f(Ω′)E(Ω,Ω′)

]
(4.7)

in which Z is the factor due to normalization,

Z[f ] =

∫
dΩ exp

[
−βBU(Ω)− ρ

∫
dΩ′f(Ω′)E(Ω,Ω′)

]
. (4.8)

The single-segment orientational distribution function (ODF) of the mth segment
can be defined by integrating the conformational distribution function over all degrees
of freedom but the mth,

fm(Ωm) =

∫ ∏
k 6=m

dΩkf(Ω). (4.9)

The ODF is normalized in the same way,
∫
dΩmfm(Ωm) = 1. Inserting the expressions

for U and E (Eqs. 4.1 to 4.4) in Eq. 4.7 and using Eq. 4.9, yields a set of stationarity
equations,

fm(Ωm) = Z−1

∫ ∏
k 6=m

dΩk

×
M−1∏
k=1

w(Ωk,Ωk+1)
M∏
k=1

exp

[
−ρ

M∑
k′=1

∫
dΩ′k′e(Ωk,Ω

′
k′)fk′(Ω

′
k′)

]
, (4.10)
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in which

w(Ωk,Ωk+1) = exp [−βBu(Ωk,Ωk+1)] . (4.11)

In the analysis we present in here, we will only need the average ODF (with respect to

the whole chain), f (av)(Ω) = 1
M

∑M
m=1 fm(Ω). Then, the stationarity equations become

f (av)(Ω) =
1

MZ

M∑
m=1

∫ M∏
k=1

dΩkδ(Ω− Ωm)

×
M−1∏
k=1

w(Ωk,Ωk+1)
M∏
k=1

exp

[
−ρM

∫
dΩ′e(Ωk,Ω

′)f (av)(Ω′)

]
, (4.12)

in which δ(Ω− Ωm) is the Dirac delta function.

It is straightforward to show that the isotropic distribution, f
(av)
iso = 1/8π2, is always

a solution to Eq. 4.12,

ρM

∫
dΩ′e(Ωk,Ω

′)f
(av)
iso =

ρMe0,0
0

8π2
(4.13)

and

Ziso = 8π2
(
w0,0

0

)M−1
exp[−ρM2e0,0

0 /8π2]. (4.14)

Here, e0,0
0 and w0,0

0 are
∫
dΩe(Ω) and

∫
dΩw(Ω), respectively (as we will see again next

subsection).

4.2.3. Symmetries, Expansions and Order Parameters. In general, any func-
tion of the Euler angles Ω = (α, β, γ) can be expanded in the rotation matrix elements
Dni,j(Ω) (we use labels n, i, j because l and m are used elsewhere). In case of the mean
ODF, this becomes

f (av)(Ω) =
∞∑
n=0

n∑
i,j=−n

2n+ 1

8π2
ai,jn Dni,j(Ω), (4.15)

and the coefficients are given by

ai,jn =

∫
dΩf (av)(Ω)

(
Dni,j(Ω)

)∗
. (4.16)

The asterisk refers to the complex conjugate and for a list of the properties of these
matrix elements and the relations between them, we refer to Ref. [80]. Next, we in-
vestigate the symmetries present in this system, as these will simplify the analysis fol-
lowing. The phase we are interested in, the nematic phase, has inversion symmetry
(symmetry operation I) as well as symmetry with respect to the elements of the rota-
tion group D2 = {1, Rx̂(π), Rŷ(π), Rẑ(π)} in which the operations Rσ(π) are rotations
of π around the σ-axis. This means that if g ∈ I ⊗D2 = D2h, the ODF’s are invariant
under the operation of g in the following way: f(Ω) = f(gΩ). The same symmetry
holds for the segments of the chain, i.e. the platelets are also invariant under the op-
eration g ∈ D2h; f(Ω) = f(Ωg). Using these symmetries, it is not difficult to show
that only the elements Dni,j for which n, i, j are even contribute and that furthermore
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ai,jn = a−i,jn = ai,−jn = a−i,−jn . Having observed these symmetries, we proceed by combin-
ing the Dni,j-functions and define

Qn
i,j =

(
1
2

√
2
)2+δi,0+δj,0 (

Dni,j +Dn−i,j +Dni,−j +Dn−i,−j
)
. (4.17)

The factor 1
2

√
2 is to obtain correct normalization and the δi,j are Kronecker delta

functions. Eq. 4.15 can then be written as

f (av)(Ω) =
∞∑
n=0

n∑
i,j=0

2n+ 1

8π2
qi,jn Q

n
i,j(Ω), (4.18)

with all n, i, j only assuming even (positive) values. Similar to Eq. 4.16, the coefficients
become

qi,jn =

∫
dΩf (av)(Ω)Qn

i,j(Ω). (4.19)

The Qn
i,j-functions satisfy the orthogonality conditions,∫

dΩQn
i,j(Ω)Qn′

i′,j′(Ω) =
8π2

2n+ 1
δn,n′δi,i′δj,j′ . (4.20)

as well as being a closed set under composite rotations Ω′−1Ω (first Ω′−1 and then Ω) in
the sense that∫

dΩ′Qn
i,j(Ω

′)Qn′

i′,j′(Ω
′−1Ω) =

8π2

2n+ 1
δn,n′δj,i′Q

n
i,j′(Ω). (4.21)

The excluded volume of two platelets has the same symmetry as the ODF (for with
g, g′ ∈ D2h, it holds that e(Ω′−1Ω) = e(g′−1Ω′−1Ωg)). This yields the following expansion

e(Ω) =
∞∑
n=0

n∑
i,j=0

2n+ 1

8π2
ei,jn Q

n
i,j(Ω), (4.22)

with again only even (and positive) n, i, j contributing and a similar relation as Eq. 4.19
for the coefficients. Moreover, the excluded volume has an extra symmetry (with respect
to the ODF) due to the invariance under the interchange of two particles: ei,jn = ej,in .
In the bifurcation analysis, which is the topic of the next subsection, we will need the
following integral,∫

dΩ′e(Ω′−1Ω)Qn
i,j(Ω

′) =
n∑

j′=0

ej,j
′

n Qn
i,j′(Ω), (4.23)

which can be derived by combining Eqs. 4.21 and 4.22.
The Boltzmann factor w of two successive segments in the chain has lower symmetry

than the excluded volume. It is polar, and as a consequence, there is no inversion
symmetry and it is not invariant under the D2-rotations. The symmetries, which are
present, are invariance under (α, β, γ)→ (−α, β,−γ), (α, β, γ)→ (γ, β, α) and exchange
of the two particles, (α, β, γ) → (−γ,−β,−α). Consequently, in the expansion of w,
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w−i,−jn = wi,jn , wi,jn = wj,in and only terms with even i+ j contribute,

w(Ω) =
∞∑
n=0

2n+ 1

8π2

n∑
i=−n

n∑
j=0

(1
2
)δj,0wi,jn

(
Dni,j(Ω) +Dn−i,−j(Ω)

)
. (4.24)

The coefficients wi,jn are given by a relation similar to Eq. 4.16. In the bifurcation
analysis, which is the subject of the next subsection, we need the following integral, 1∫

dΩw(Ω′−1Ω)Qn
i,j(Ω

′) =
n∑

j′=0

W j,j′

n Qn
i,j′(Ω), (4.25)

in which the coefficients W j,j′
n are given by

W j,j′

n =

∫
dΩw(Ω)Qn

j,j′(Ω). (4.26)

These coefficients are also zero for odd j + j′. The relation between the two coefficients
wi,jn and W i,j

n is

W i,j
n =

(
1
2

√
2
)δi,0+δj,0 (

wi,jn + w−i,jn

)
. (4.27)

In concluding this subsection, we introduce the order parameters necessary to distin-
guish between the isotropic and the nematic phases. Straley [63] and Mulder [64] have
shown that for biaxial particles it is necessary and sufficient to use four order param-
eters. Then, it makes sense to use the lowest order coefficients in the ODF expansion
different in the isotropic and the nematic phase (of which there are four). These are

qi,j2 =

∫
dΩf (av)(Ω)Q2

i,j(Ω), (4.28)

in which both i and j can be 0 or 2. These are also the order parameters Straley and
Mulder use. In order to be complete, we list the Q2-functions here

Q2
0,0(Ω) = 1

2
(3(ẑ · ŵ)2 − 1) = 1

2
(3 cos2 β − 1),

Q2
2,0(Ω) = 1

2

√
3
(
(ŷ · ŵ)2 − (x̂ · ŵ)2

)
= 1

2

√
3 sin2 β cos 2α,

Q2
0,2(Ω) = 1

2

√
3
(
(ẑ · v̂)2 − (ẑ · û)2

)
= 1

2

√
3 sin2 β cos 2γ,

Q2
2,2(Ω) = 1

2

(
(x̂ · û)2 − (ŷ · û)2 + (ŷ · v̂)2 − (x̂ · v̂)2

)
= 1

2
(1 + cos2 β) cos 2α cos 2γ − cos β sin 2α sin 2γ. (4.29)

In the isotropic phase all order parameters are identically zero. In the uniaxial nematic
phase, the order parameters q0,0

2 and q0,2
2 are non-zero whereas the other two, q2,0

2 and
q2,2

2 , are zero (due to the fact that the x̂- and ŷ-axes are equivalent). In the biaxial
nematic phase all four order parameters are non-zero.

1Eq. 4.25 has been derived using
∫
dΩ′Dni,j(Ω′)Dn

′

i′,j′(Ω
′−1Ω) = 8π2

2n+1δn,n′δj,i′D
n
i,j′(Ω) We would

like the reader to note that although w itself cannot be expanded in Qni,j ’s, it does map Qni,j onto
{Qni,0, Qni,2, · · · , Qni,n} (when it is used as an integration kernel, Eq. 4.25).
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4.2.4. Bifurcation Analysis. In this subsection, we will use a linear stability anal-
ysis to analytically determine the I-N bifurcation density. At the bifurcation point, the
nematic solution branches off the isotropic one which becomes thereafter (for higher
densities) unstable (Refs.[37, 65]). Consequently, the bifurcation (or spinodal) density
can be found by substituting in the stationarity equation the isotropic solution with
small nematic perturbations. Then, one can linearize the equation around the isotropic
distribution (assuming these nematic perturbations to be small) and so obtain a linear
eigenvalue equation. The (lowest) density for which this eigenvalue equation can be
solved is the bifurcation density.

The isotropic distribution with nematic perturbations is simply

f (av)(Ω) =
1

8π2
+ εχ(Ω), (4.30)

in which ε is an infinitesimally small parameter and the function χ is normalized (nec-
essarily) as follows:

∫
dΩχ(Ω) = 0. Inserting Eq. 4.30 in the stationarity equation

Eq. 4.12, and linearizing with respect to ε, to zeroth order we re-obtain the isotropic
results (below Eq. 4.12). To first order in ε, we get

χ(Ω) = − ρ

8π2

M∑
m,m′=1

∫ M∏
k=1

dΩkδ(Ω− Ωm)

×
M−1∏
k=1

w(Ωk,Ωk+1)

w0,0
0

∫
dΩ′e(Ωm′ ,Ω

′)χ(Ω′). (4.31)

This (rather messy looking) linear integral equation is the bifurcation equation. On
the basis of previous results, concerning Onsager rods, we expect the system to become
unstable for the first time with respect to the n = 2-mode,

χ(Ω) =
∑

i,j∈{0,2}

5

8π2
qi,j2 Q

2
i,j(Ω). (4.32)

Substitution of this in Eq. 4.31 leaves us with a chain of integrals to be evaluated. The
first one is performed using Eq. 4.23,∫

dΩ′e(Ω′−1Ωm′)χ(Ω′) =
∑
i,j,s

5

8π2
qi,j2 e

j,s
2 Q2

i,s(Ωm′), (4.33)

and the summation is over all i, j, s ∈ {0, 2}. The integrals with w as a kernel act as a
chain in that they “pass on” the perturbation χ at segment m′ to segment m. Suppose
for now that m > m′. Then, we are left with m−m′ w-integrals and they are all of the
type of Eq. 4.25. The first one yields∫

dΩm′
w(Ω−1

m′Ωm′+1)

w0,0
0

∫
dΩ′e(Ω′−1Ωm′)χ(Ω′) =

∑
i,j,s,t

5

8π2
qi,j2 e

j,s
2

W s,t
2

w0,0
0

Q2
i,t(Ωm′+1)

(4.34)

From the symmetry analysis in the preceding subsection, we know that the elements
W s,t

2 are non-zero when s+ t is even. Recalling from Eq. 4.33 that s only assumes even
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values, this must also be the case for t. So, again the summation is over i, j, s, t ∈ {0, 2}.
In order to obtain a more convenient notation, we define

σs,t2 = W s,t
2 /w0,0

0 , (4.35)

and

qi2 =

[
qi,02

qi,22

]
and Q2

i (Ω) =

[
Q2
i,0(Ω)

Q2
i,2(Ω)

]
. (4.36)

Then, we can rewrite Eq. 4.34,∫
dΩm′

w(Ω−1
m′Ωm′+1)

w0,0
0

∫
dΩ′e(Ω′−1Ωm′)χ(Ω′) =∑

i∈{0,2}

5

8π2

(
qi2
)T

e2σ2Q
2
i (Ωm′+1), (4.37)

where e2 and σ2 are 2× 2-matrices with corresponding elements, and the superscript T
refers to the transposed vector. Applying the w-integration recursively until we reach
the mth segment, we obtain∫ m−1∏

k=m′

dΩk

m−1∏
k=m′

w(Ω−1
k Ωk+1)

w0,0
0

∫
dΩ′e(Ω′−1Ωm′)χ(Ω′) =

∑
i∈{0,2}

5

8π2

(
qi2
)T

e2σ
m−m′
2 Q2

i (Ωm). (4.38)

The case for m < m′ obviously works the same, so m−m′ has to be replaced by |m−m′|.
Further, the other (M − |m − m′| − 1) w-integrations all simply yield W 0,0

0 /w0,0
0 = 1

(because W 0,0
0 = w0,0

0 ). So, substituting these results in Eq. 4.31 yields

χ(Ω) = − ρ

8π2

∑
i∈{0,2}

5

8π2

(
qi2
)T

e2

(
M∑

m,m′=1

σ
|m−m′|
2

)
Q2
i (Ω). (4.39)

Using the relation for the coefficients, qi
′

2 =
∫
dΩχ(Ω)Q2

i′(Ω), Eq. 4.39 reduces to the
following eigenvalue equation,(

qi
′

2

)T
[

8π2

ρ
+ e2

(
M∑

m,m′=1

σ
|m−m′|
2

)]
= 0, (4.40)

in which the dependence on the index i′ is only apparent, as the two problems (for both
i′) are identical. Taking the transposed of the eigenvalue equation, we obtain a more
customary form (drop the index i′),[

8π2

ρ
+

(
M∑

m,m′=1

σ
|m−m′|
2

)
e2

]
q2 = 0. (4.41)

Defining the 2× 2-matrix α2 as follows,

α2 =

(
1

M

M∑
m,m′=1

σ
|m−m′|
2

)
e2 =

[
1 + σ2

1− σ2

− 2σ2

M

1− σM2
(1− σ2)2

]
e2, (4.42)
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we can immediately write down the solution to Eq. 4.41,

ρ±M

8π2
= − (2 det(α2))−1

(
tr(α2)±

√
tr2(α2)− 4 det(α2)

)
, (4.43)

and the eigenvector corresponding to ρ± is q2 =

(
1
v±

)
, with

v± = (2α
(1,2)
2 )−1

(
α

(2,2)
2 − α(1,1)

2 ∓
√

tr2(α2)− 4 det(α2)

)
, (4.44)

in which tr(α2) and det(α2) are the trace and determinant of α2 respectively and α
(i,j)
2

is the (i, j)’th element of α2. The unsual way of writing the matrix multiplication
(as a division) in Eq. 4.42 is done to make the connection with Eq. 3.62 in Chap. 3.
As (1− σ2)−1 commutes with σ2, this does not introduce a duality. Before we can
determine which of the two densities is the lower, we need to evaluate the elements of
e2. We use the same hard platelets as Mulder uses in [64], so we give the matrix e2 here
without further comment and only refer to this paper,

e2 = 2l2ds2

[
1− 2∆

πd

√
3 2∆
πd√

3 2∆
πd

0

]
, (4.45)

with s2 = (2π)2
∫ π

0
dβ sin2 βP2(cos β) = −π3/4. For M = 1, α2 = e2 and then it is clear

that both the determinant and the trace are negative and ρ+ is the only positive of the
two solutions. Consequently, the bifurcation density becomes

ρ∗M

8π2
= − (2 det(α2))−1

(
tr(α2) +

√
tr2(α2)− 4 det(α2)

)
, (4.46)

and the eigenvector, q2,∗ =

(
1
v∗

)
, with

v∗ = (2α
(1,2)
2 )−1

(
α

(2,2)
2 − α(1,1)

2 −
√

tr2(α2)− 4 det(α2)

)
. (4.47)

The elements of σ2 cannot be calculated analytically, and therefore, we calculate as-
ymptotic expressions for the σi,j2 in the appendix. For two out of three kµ’s large (in
which kµ = βBJµ and µ ∈ {1, 2, 3}), to the first orders in 1/kµ, this yields

σ0,0
2 = 1 +

3

2

(
− 1

k1 + k3

− 1

k2 + k3

)
,

σ0,2
2 = σ2,0

2 =
1

2

√
3

(
1

k1 + k3

− 1

k2 + k3

)
(4.48)

σ2,2
2 = 1− 2

k1 + k2

− 1

2(k1 + k3)
− 1

2(k2 + k3)

These expressions will be used in the next section, where we consider ‘ribbonlike’ chains.
The limiting case that k1 = k2 = 0 and ∆ = 0, the bifurcation density reduces to

ρ∗M2l2d =
32

π

(
1 + σ

1− σ
− 2σ

M

1− σM

(1− σ)2

)−1

, (4.49)
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ẑ

ŵ

v̂

û

d+ ∆
d

l
ẑ

ŵ

û
v̂

d+ ∆d

l

Figure 4.3. In a uniaxial nematic phase, the long (ŵ-) axes of the segments
orders with respect to the nematic director, ẑ. The degree of ordering is mea-
sured by the nematic order parameter, q0,0

2 . With the segments being biaxial
however, there will in general also be a difference in the ordering of û and v̂ with
respect to ẑ. The degree of nonequivalence of these two axis is measured by a
second (uniaxial) order parameter, q0,2

2 . From the excluded volume (Eq. 4.4),
we can see that the situation for γ ≈ π/2, 3π/2 (left) is preferred over γ ≈ 0, π
(right) ⇒ q0,2

2 < 0.

with σ = σ0,0
2 = 1 + 3/k2

3 − 3 coth(k3)/k3. This is the bifurcation density for a gas of
chains of hard rods with only bending (and no twisting) interactions within the chain,
as was calculated in Chap. 3 (Eq. 3.62).

At Eq. 4.40, we saw that bifurcation equation split in two identical problems, whose
eigenvectors must be the same, up to a constant factor. Therefore, the bifurcating
function χ has the following form

χ(Ω) = Q2
0,0(Ω) + v∗Q

2
0,2(Ω) + κ

(
Q2

2,0(Ω) + v∗Q
2
2,2(Ω)

)
, (4.50)

with κ the constant factor. In principle, this κ has to be determined (and more) from the
“second order” bifurcation equation (see Ref. [65]). However, we are only considering
moderate biaxialities (∆ of the order of d) so the nematic phase is always uniaxial,
f (av)(β, γ), and κ = 0. q2

0,0 is the usual uniaxial nematic (Maier Saupe) order parameter
concerning ordering of the long axes (ŵ) of the molecules with respect to the nematic
director ẑ. In case of biaxial objects, however, the nonequivalence of the short axes
(û and v̂) will result in a different ordering with respect to ẑ as well, hence q2

0,2. For

our system we always find q2
0,2 < 0, which means that there is a maximum in the ODF

around γ = π/2 and 3π/2 (corresponding to v̂ being in the plane spanned by ẑ and ŵ,
see Fig. 4.3).
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4.3. Ribbonlike Chains

4.3.1. The Ribbonlike Chain Limit. A concept playing an important role in
polymer physics is that of the wormlike chain, first introduced by Kratky and Porod [49].
The connection to LC polymers was made by Khokhlov and Semenov [32, 33]. KS’s main
result is the derivation of the conformational entropy of the wormlike chain. In Chap. 3,
we rederived these results by using the concept of a segmented chain model, and applying
the so-called ‘wormlike chain limit’ (WCL). In this section, we generalize the results for
wormlike chains (which are (locally) cylindrically symmetric) to continuously flexible
biaxial polymers, or ribbonlike chains. This is done by using the results of the previous
section (for segmented biaxial chains) in a limit. This limit, we will call the ribbonlike
chain limit (RCL) in analogy with the WCL. In our system, the RCL is (remember
kµ = βBJµ)

l→ 0, M →∞, kµ →∞, (4.51)

while the following ratios stay finite,

Pµ = kµl, M̄µ = M/kµ. (4.52)

Note that these three different coupling constants βBJµ give rise to three different length
scales; the persistence lengths Pµ. The M̄µ = L/Pµ are the number of persistence lengths
in the chain. Each of these lengths corresponds to the orientational persistence of one of
the axes û, v̂ and ŵ, i.e. µ ∈ {1, 2, 3} (where it has to be remembered from Eq. 4.2 that
1 corresponds to û, 2 to v̂ and 3 to ŵ). However, bending or torquing a chain always
affects two axes (e.g. rotating the chain locally around the ŵ-axis changes both the û-
and the v̂-axis). Therefore it makes sense to define

Pµ,ν = Pµ + Pν , M̄µ,ν = M̄µM̄ν

M̄µ+M̄ν
and µ < ν (4.53)

where it still holds that L = M̄µ,νPµ,ν . Note that there are only three length scales Pµ,ν .
Then, physically, each of the three length scales Pµ,ν corresponds to persistence of a
certain bending/twisting mode, i.e. (2,3) and (1,3) correspond to bending (respectively,
around û- and v̂-axis) and (1,2) to twisting (around ŵ-axis). Moreover, we also define

P = P1 + P2 + P3 and M̄ = M̄1M̄2M̄3

M̄1M̄2+M̄1M̄3+M̄2M̄3
, (4.54)

so instead of a discrete m we now have a continuous m̄ running along the ribbonlike
chain, from 0 to M̄ ; m̄ = m

M
M̄ . Note that here too, L = M̄P

A ribbonlike chain, as defined above, is characterized by 6 model parameters: i.e.
total length L, thickness d, width d+ ∆ and the three Pµ. However, using dimensionless
quantities, we can reduce them to 4: ∆/d and the three L/Pµ = M̄µ. Doing this, also
the density needs to be rescaled with a volume factor (with for instance P 2d). Naively,
if one considers a ribbonlike object consisting homogeneously of a certain material, one
would expect to even loose another model parameter. Instead of having 3 parameters
M̄µ, one might argue that one of them is redundant as it is fixed by the other two and
the geometry of the cross-section of the polymer. 2 On the other hand, chemical units

2In Ref. [81], this is explained in terms of two moduli: the modulus of pure shear Kps and the
modulus of hydrodynamic compression Khc.
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do not have a straightforward relation between dimensions and rigidity. We have not
investigated this further.

Finally, in concluding this subsection, we mention another type of continuously flexi-
ble biaxial chain, which is closer related to the wormlike chain than the ribbonlike chain
is. In order to obtain ribbonlike chains we had to take the limit where all kµ become
large in a way that kµ/M stays finite. If now instead, we take the limit where k3 →∞
and k1, k2 → 0 such that M/k3,Mk1,Mk2 stay finite. Then, this case corresponds to
a wormlike chain (the k3-direction is very stiff) with nonzero torsion energy (Mk1 and
Mk2 are nonzero), i.e. a weakly biaxial wormlike chain. In order to get the wormlike
chain results from this weakly biaxial wormlike chain, we then have to take the limit
Mk1,Mk2 → 0. This means that the wormlike chain limit for the biaxial chains studied
in this chapter is not well-defined. We do not go into this case any further, but we
encounter this furtheron and therefore we mention it.

4.3.2. The Stationarity Equation. In this subsection, we will rewrite the sta-
tionarity equations 4.10 in the RCL. To that end, we first introduce another notation in
which to express Eqs. 4.10. We define

ψm+1(Ω) =

∫
dΩ′

w(Ω,Ω′)

w0,0
0

exp [−βBH(Ω′)]ψm(Ω′) (4.55)

with for notational purposes, rewritten as a field on a segment,

βBH(Ω) = ρ
M∑
k′=1

∫
dΩ′e(Ω,Ω′)fk′(Ω

′), (4.56)

and finally, Z ′ = Z/
(
w0,0

0

)M−1
and ψ1 = 1/

√
Z ′. Then, in this notation (Eq. 4.10), the

ODF becomes

fm(Ω) = ψm(Ω) exp [−βBH(Ω)]ψM−m+1(Ω). (4.57)

Eqs. 4.55 to 4.57 together form the (selfconsistent) stationarity equations. We have
introduced the ψ-functions for notational purposes, but from Eq. 4.55 (recurrently for-
mulated), one can see that they also serve as the (renormalized) partition functions of

parts of the chain; i.e.
√
Z ′ψm(Ω) exp [−βBH(Ω)] is the partition function of a chain of

m segments with the orientation of the mth segment fixed to Ω.
In the RCL, some quantities have to be rescaled. We choose the factor M̄/M in

which to expand and then only keep the lowest-order (relevant) terms. The arrow, →,
we use to denote the RCL. The ODF and the ψ-functions do not have to be rescaled,

fm(Ω)→ f̄(m̄,Ω) ψm(Ω)→ ψ̄(m̄,Ω), (4.58)

where generally, we use a bar over a symbol to indicate the RCL. It still holds that∫
dΩf̄(m̄,Ω) = 1. The excluded volume between two segments rescales as follows,

e(Ω)→
(
M̄

M

)2

ē(Ω) =

(
M̄

M

)2

2P 2d sin β

[
1 +

∆

2d
(| cosα|+ | cos γ|)

]
, (4.59)

and therefore, the field becomes (with
∑

m′ → (M/M̄)
∫
dm̄′)

βBH(Ω)→
(
M̄

M

)
βBH̄(Ω) =

(
M̄

M

)
ρ

∫ M̄

0

dk̄′
∫
dΩ′ē(Ω,Ω′)f̄(k̄′,Ω′). (4.60)
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From Eq. 4.60, we can see that the field on a segment goes to zero in the RCL (because
the segment length l goes to zero), and therefore

exp [−βBH(Ω)]→ 1−
(
M̄

M

)
βBH̄(Ω), (4.61)

so, in the RCL,

f̄(m̄,Ω) = ψ̄(m̄,Ω)ψ̄(M̄ − m̄,Ω). (4.62)

Next,

ψm+1(Ω)− ψm(Ω)→
(
M̄

M

)
∂ψ̄

∂m̄
(m̄,Ω), (4.63)

and we prove in the appendix that(∫
dΩ′

w(Ω′−1Ω)

w0,0
0

ψm(Ω′)

)
− ψm(Ω)→

− 1
2

(
M̄

M

)(
M̄2,3

M̄
L2
û +

M̄1,3

M̄
L2
v̂ +

M̄1,2

M̄
L2
ŵ

)
ψ̄(m̄,Ω), (4.64)

with L the angular momentum operator of the classical rigid rotator,

L =

 Lû
Lv̂
Lŵ

 =
√
−1

 cosα cot β ∂
∂α

+ sinα ∂
∂β
− cosα

sinβ
∂
∂γ

sinα cot β ∂
∂α
− cosα ∂

∂β
− sinα

sinβ
∂
∂γ

− ∂
∂α

 , (4.65)

where we have used
√
−1 for the imaginary unit, because i is used elsewhere. Combining

Eqs. 4.61, 4.63 and 4.64 with Eq. 4.55, we get

∂ψ̄

∂m̄
(m̄,Ω) = −1

2

(
M̄2,3

M̄
L2
û +

M̄1,3

M̄
L2
v̂ +

M̄1,2

M̄
L2
ŵ

)
ψ̄(m̄,Ω)− βBH̄(Ω)ψ̄(m̄,Ω).

(4.66)

Eq. 4.66 is a generalized diffusion equation with m̄ playing the role of time. With Z → Z̄,

the “initial” condition is ψ̄(m̄ = 0) = 1/
√
Z̄. Eq. 4.66 together with Eqs. 4.60 and 4.62

form the (selfconsistent) stationarity equations in the RCL. The analogy with wormlike
chains is evident; i.e. for wormlike chains (see Ref. [33] and Chap. 3), the unit vector
along tangent to the polymer (in our case ŵ) diffuses on a unit sphere with diffusion
constant 1/(persistence length). For the ribbonlike chains, the axis system (û, v̂, ŵ)
diffuses on a four-dimensional counterpart of a sphere, with three different diffusion
constants.

Defining L̃ = diag
(√

M̄2,3/M̄,
√
M̄1,3/M̄,

√
M̄1,2/M̄

)
L, Eq. 4.66 becomes

∂ψ̄

∂m̄
(m̄,Ω) = −1

2
L̃2ψ̄(m̄,Ω)− βBH̄(Ω)ψ̄(m̄,Ω). (4.67)

Although the analogy with wormlike polymers is clear, it seems nontrivial to make the
connection between the equations describing these two systems. Making the system of
ribbonlike polymers more ‘wormlike’ by taking the limit ∆ = 0 and M1 = M2 �M3 one
sees from Eq. 4.66 that the term with Lŵ dominates on small length scales of P1 or P2

(corresponding to diffusion of û and v̂). The diffusion of the vector ŵ itself takes place
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on a much larger length scale, i.e. P3. This is again an appearence of the fact that the
wormlike chain limit is ill-defined for biaxial chains.

4.3.3. The Free Energy. Without further comment, we now give the free energy
of a fluid of ribbonlike polymers in a nematic field, in a symmetric form,

βF̄ [ψ(±)] =

− 1
2

∫ M̄

0

dm̄

∫
dΩ

(
L̃ψ(+)(m̄,Ω) · L̃ψ(−)(m̄,Ω) + ψ(+)(m̄,Ω)

∂ψ(−)

∂m̄
(m̄,Ω)

− ψ(−)(m̄,Ω)
∂ψ(+)

∂m̄
(m̄,Ω)

)
+

∫ M̄

0

dm̄

∫
dΩf̄(m̄,Ω)βBH̄(Ω)

+

∫
dΩ
(
f̄(0,Ω) logψ(+)(0,Ω) + f̄(M̄,Ω) logψ(−)(M̄,Ω)

)
. (4.68)

Here, ψ(+)(m̄,Ω) = ψ(m̄,Ω), ψ(−)(m̄,Ω) = ψ(M̄ − m̄,Ω) and f̄(m̄,Ω) = ψ(+)(m̄,Ω)
×ψ(−)(m̄,Ω). The derivation of Eq. 4.68 is similar to that of the free energy of a fluid of

wormlike polymers in Chap. 3, with the only difference that ∇2 is replaced by −L̃2. Its
form compares directly with the free energy KS derived in Ref. [33]. This free energy 4.68
also serves as a functional; i.e. variation to ψ(±) again yields Eq. 4.67.

4.3.4. Bifurcation Results. The I-N bifurcation density of these ribbonlike poly-
mers, we calculate not by performing a bifurcation analysis of Eq. 4.66, but by applying
the RCL directly to the results for discrete biaxial chains (Eqs. 4.42 to 4.48). First, we
rewrite σ2 as follows

σ2 = 1− 3

M
M, (4.69)

which defines the 2 × 2-matrix M, and 1 is the (two-dimensional) unit matrix. In the
RCL, only terms to first order in 1/kµ contribute, so M becomes (from Eq. 4.48),

M→ M̄ =

[
1
2
(M̄1,3 + M̄2,3) 1

6

√
3(M̄2,3 − M̄1,3)

1
6

√
3(M̄2,3 − M̄1,3) 2

3
M̄1,2 + 1

6
(M̄1,3 + M̄2,3)

]
. (4.70)

The matrix e2 becomes in the RCL,

M2e2 → ē2 = 2L2ds2

[
1− 2∆

πd

√
3 2∆
πd√

3 2∆
πd

0

]
. (4.71)

Then, using the the mathematical identity limn→∞ (1 + x/n)n = exp(x), the matrix α2

becomes in the RCL

Mα2 → ᾱ2 =
2

3M̄

(
1− 1− exp(−3M̄)

3M̄

)
ē2, (4.72)

in which the matrix exp(A) is defined as 1 + A + 1
2
A2 + . . ., and 1/M̄ is the regular

inverse of M̄. For numerical purposes this is a very unpractical expression, as we have
to compute an infinite matrix summation and multiplication. Consequently, we want to
write M̄ in the following form,

M̄ = λ+E+ + λ−E−, (4.73)
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with E± = v±⊗v± the matrices generated by the external products of the eigenvectors
v± corresponding to eigenvalues λ±. Then, we get for the expression,

2

3M̄

(
1− 1− exp(−3M̄)

3M̄

)
=
∑
τ=±

2

3λτ

(
1− 1− exp(−3λτ )

3λτ

)
Eτ (4.74)

The eigenvalues of M̄ are

λ± =
1

3

(
M̄1,2 + M̄1,3 + M̄2,3

)
± 1

6

√
2Λ, (4.75)

with

Λ =
√

(M̄1,2 − M̄1,3)2 + (M̄1,2 − M̄2,3)2 + (M̄1,3 − M̄2,3)2 (4.76)

and the corresponding eigenvectors,

v± =
1

C±

(
2M̄1,2 − M̄1,3 − M̄2,3 ∓

√
2Λ√

3(M̄1,3 − M̄2,3)

)
, (4.77)

with normalization factors,

C± = 2

√
Λ(Λ± 1

2

√
2(M̄1,3 + M̄2,3 − 2M̄1,2)). (4.78)

Then, finally, the RCL bifurcation density is

ρ∗M̄

8π2
= − (2 det(ᾱ2))−1

(
tr(ᾱ2) +

√
tr2(ᾱ2)− 4 det(ᾱ2)

)
, (4.79)

and the eigenvector, q∗2 =

(
1
v∗

)
, with

v∗ = (2ᾱ
(1,2)
2 )−1

(
ᾱ

(2,2)
2 − ᾱ(1,1)

2 −
√

tr2(ᾱ2)− 4 det(ᾱ2)

)
. (4.80)

Eqs. 4.71 to 4.79 together, yield the I-N bifurcation density ρ∗M̄ of a fluid of ribbonlike
polymers and can be calculated analytically. The bifurcation density in the RCL is
dependent on four quantities; i.e. the biaxiality of the polymer (∆/d), and the number
of persistence lengths of the three vectors Pµ/L = 1/M̄µ. All other dependences can be
scaled out.

In many ways, the matrix M̄ is symmetric with respect to the M̄µ, i.e. one can see
that clearly from the determinant, the trace and as a consequence, from the eigenvalues.
Indeed, in deriving M̄ it is nowhere used that one direction (û,v̂ or ŵ) is special with
respect to the others. The reason that M̄ is not fully symmetric is due to the fact that
the Q-functions are formulated with respect to a specific coordinate system and this
causes the ‘symmetry’ breaking. The fact that the bifurcation density is dependent in
a different way to M̄3 on one hand and M̄1 and M̄2 on the other, is due to the excluded
volume matrix ē2.

It has already been mentioned before, that effectively the bifurcation density depends
only on 4 quantities (∆/d, M̄µ). That is because a volume factor can be scaled out of the
excluded volume matrix and used in the bifurcation density so it becomes dimensionless.
In analogy to rods in the Onsager approximation, it makes sense to express this volume
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Figure 4.4. The bifurcation density vs. biaxiality of the molecule. Four
curves, starting from a rigid biaxial particle (bottom curve, M̄1 = M̄2 = M̄3 =
0), the flexibility of all bending directions (û, v̂, ŵ) is increased simultaneously.
From the bottom curve upward, M̄1 = M̄2 = M̄3 = 0, 0.1, 0.5 and 1., respec-
tively. The density is scaled with BL = π

4L
2d which is the same as Mulder used,

and the bottom curve is the same as Fig. 6 (Ref. [64]).

factor as (effective segment length)2d, where the effective segment length is the persis-
tence length of ŵ. In general, this segment length will be of the order P = P1 +P2 +P3

yielding a dimensionless density, ρP 2d. However if for instance P1 � P2, P3, then the
persistence length (in the direction of ŵ) is much smaller than P and it is more ap-
propriate to use P2,3 = P2 + P3, so ρP 2

2,3d. Finally, if the resulting effective segment
length is larger than the total length of the chain, one should use L to scale, and the
dimensionless density becomes ρL2d.

On the level of the bifurcation analysis, one limiting case of the ribbonlike polymer is
readily taken. Biaxial particles as studied by Mulder in Ref. [64] can be viewed as very
stiff biaxial polymers. Taking the limit of all M̄µ → 0, then α → e2 and the problem
reduces to that of Mulder of biaxial particles of dimensions L, d+ ∆, d .

It has already been mentioned that wormlike chains are in a sense an ill-defined
limiting case of ribbonlike chains. However, on the level of bifurcation analysis, we can
get around the problem by taking the limits in a convenient order. If we first put ∆ = 0
and M̄1 = M̄2, the matrices e2 and M̄ reduce to

ē2 = 2L2ds2

[
1 0
0 0

]
and M̄ =

[
M̄1,3 0

0 1
3
M̄1 + 1

3
M̄1,3

]
. (4.81)

If we then let M̄1 → ∞, so M̄1,3 = M̄3/(1 + M̄3/M̄1) → M̄3 and the diverging 2,2-
element of M̄ has no effect as both matrices are diagonal. The resulting bifurcation
density corresponds to KS’s result [33], and our result in Chap. 3.

We have plotted some dependences of the bifurcation density to the model parameters
in Figs. 4.4 to 4.5. We don’t compare with experiments, but merely want to show what
the model (in combination with bifurcation theory) is capable of, as well as exploring
its features a bit. Figs. 4.4 and 4.5 are interesting because of the contact we can make
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Figure 4.5. The bifurcation density vs. flexibility of ŵ-direction (which is
M3). Four graphs with no biaxiality, ∆/d = 0, starting (effectively) from the
wormlike chain (bottom curve, M̄1 = M̄2 � M̄3) and decreasing M̄1 = M̄2

simultaneously (i.e. increasing the importance of torsion). From the bottom
curve upward, M̄1 = M̄2 = 100000, 100, 10 and 1, respectively. The lower curve
is the same as in Fig. 1 in Ref. [33]. The density is scaled with MB = π

2MP 2d

which is the same scaling used by KS in Ref. [33]. This scaling is not very
appropriate for log M̄3 < 0 for then L < P .

with previous work. In Fig. 4.4, the bottom curve is the biaxiality-dependence of the
bifurcation density of a single (rigid) segment, previously calculated by Mulder [64].
The other curves are obtained by introducing some flexibility in this segment. Fig. 4.5
reproduces KS’s result (bottom curve) for the dependence of the bifurcation density on
the number of persistence lengths in the wormlike polymer [33]. The other curves are
obtained with nonzero torque.

In Fig. 4.6, we have calculated a few curves to study the effect of asymmetry in
the bending directions. We have set M̄2 = 0, so the v̂-direction is completely stiff.
Consequently, the chain is only allowed to bend in the plane perpendicular to v̂. When
M̄1 and M̄3 are small (top curve) there is not much difference with Fig. 4.4, but when
M̄1 and M̄3 increase, the shape of the curve changes and in case of the lower curve, a
maximum appears. At present, it is not totally clear to us what causes the maximum
although it is real. It may have to do with the fact that by increasing ∆, the nematic
order parameter q2

0,2 (measuring the nonequivalence between the û- and v̂-axes) goes very
quickly from 0 to substantial negative values. In this way, in the nematic the entropy of
the chain is quite reduced compared to when ∆� 1. As a result, the system postpones
the I-N transition to higher densities. At some point, increasing ∆ simply means adding
material to the molecules and that does not affect q2

0,2 anymore, so the curve reaches a
maximum and goes down. In any case, the system is rather unphysical as one would not
easily expect a chain with such unequivalent bending directions.
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Figure 4.6. The bifurcation density vs. biaxiality of the molecule, in
which the v̂-direction is set completely stiff, M̄2 = 0. Four curves with in-
creasing asymmetry in flexibility of bending directions. From the top curve
down, M̄1 = M̄3 = 2, 3, 5 and 10, respectively. The density is scaled with
M1,3B1,3 = π

2M1,3P
2
1,3d. For large asymmetry, a maximum appears (bottom

curve).

4.4. Conclusion and Discussion

In this chapter, we developed a theory for nematic ordering in a fluid of biaxial
polymers. The biaxial polymers are modeled as chains of platelet-like segments with a
bending/twisting potential between them. Nematic ordering in a fluid of platelets has
been considered earlier by Mulder [64]. We have taken the segmented-chain approach
used earlier in Chap. 3 and calculated the I-N bifurcation density. The ribbonlike chain
limit has been applied to these segmented chains, thus obtaining continuously flexible
chains, characterized by 4 model parameters. The resulting theory can be viewed as a
combination of Refs. [33, 64] for wormlike chains and platelets respectively.

We have chosen, in the present chapter, to consider small biaxialities ∆, where the
phase transition is always I-UN. In principle, the analysis holds as well for P � ∆� d
(or equivalently, d = 0 and ∆ finite), as long as P 2∆ remains finite (so the Onsager
approximation still holds). In that case, we are in a regime where one would expect a

second-order transition I-BN (the condition for this is ∆ ∼
√
Pd, see Ref. [65]). It would

be interesting to perform a second-order bifurcation analysis, to find the combinations
of parameter values for which the system has this transition. In general, flexibility might
have a pronounced influence on the stability of the biaxial nematic, and especially with
respect to the uniaxial nematic, one would expect flexibility to destabilize the biaxial
phase.

For the chain of biaxial segments, we have considered in this chapter, we used a
nearest-neighbour bending/twisting potential which was symmetric with respect to the
interchange of the two segments (Eq. 4.2). It is fairly straightforward to introduce
chirality in this system. By simply adding a term ε(û · v̂′ − û′ · v̂) to Eq. 4.2 (where
ε is small, and the unprimed vectors refer to segment m and the primed to m + 1),
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one obtains a biaxial chain whose equilibrium conformation is twisted. A fluid of these
twisted biaxial chains is expected to have a transition from isotropic to chiral nematic
(CN, or cholesteric) instead of UN. However, as a CN phase is spatially modulated,
this would complicate a lot the present analysis, where homogeneity of the phases is an
essential condition. In the RCL, additionally, ε→ 0 and Mε should stay finite in order
not to loose the twist. We are not aware of much work relating the geometric origin of
molecular chirality to cholesteric phase behaviour [45]. In general, many biopolymers,
like e.g. DNA and virus particles, are twisted and (somewhat) flexible and these twisted
ribbonlike chains could be a useful model.

Appendices

Appendix A: From symmetries to expansion coefficients. In this part of the
appendix, we will show for the flexibility interaction how to obtain relations between
the expansion coefficients after having identified the symmetries of the interaction. In
case of the ODF and the excluded volume expansion, the procedure is analogue and
already discussed in Ref. [64] (also for particles and phases with the same symmetries as
here). As was already mentioned the symmetries of the flexibility interaction (Eqs. 4.2
and 4.11) are

• invariance under (α, β, γ)→ (−α, β,−γ); operator A1

• invariance under (α, β, γ)→ (γ, β, α); operator A2

• particle exchange symmetry, Ω = (α, β, γ) → Ω−1 = (−γ,−β,−α); exchange
operator E

And the effect of these operations on the matrix elements (see Ref. [80]) Dlm,n(Ω),

Dlm,n(A1Ω) = (−1)m−nDl−m,−n(Ω), (4.82)

Dlm,n(A2Ω) = (−1)m−nDln,m(Ω), (4.83)

Dlm,n(EΩ) = (−1)n−mDl−n,−m(Ω). (4.84)

The resulting relations between the flexibility coefficients are then

w−m,−nl =

∫
dΩw(Ω)Dl−m,−n(Ω) =

∫
d(A1Ω)w(A1Ω)Dl−m,−n(A1Ω) =

= (−1)n−m
∫
dΩw(Ω)Dlm,n(Ω) = (−1)n−mwm,nl (4.85)

wn,ml =

∫
dΩw(Ω)Dln,m(Ω) = (−1)n−mwm,nl (4.86)

w−n,−ml =

∫
dΩw(Ω)Dl−n,−m(Ω) = (−1)m−nwm,nl . (4.87)

Combining these relations, we reach the conclusion that m+n are even and also wm,nl =
w−m,−nl and wm,nl = wn,ml . Finally, we want the reader to note that all symmetries
found here, hold directly for the interaction itself. In case of e.g. the excluded volume
interaction, the symmetries which were found, hold for the particles. Consequently, in
that case, e.g. both e((Rx(π))−1Ω′−1Ω) = e(Rx(π)Ω′−1Ω) and e(Ω′−1ΩRx(π)) must be
considered separately, and will yield different symmetry relations.
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Appendix B: The coefficients W p,q
2 . In this appendix, we calculate asymptotic

expressions for the flexibility coefficients W 0,0
0 and W p,q

2 in the limit of stiff interactions
(two out of three ki’s large, with ki = βBJµ, for µ ∈ {1, 2, 3}). First, we will derive

expressions of the coefficients W p,q
2 in terms of W 0,0

0 and derivatives of W 0,0
0 with respect

to the kµ’s. Next, we will calculate W 0,0
0 for high values of the coupling parameters

kµ. To that end, we first rewrite the Boltzmann factor for the flexibility interaction
w(α, β, γ) in terms of the coordinates (x, y, β) = (α + γ, α− γ, β),

w(x, y, β) = exp
[
k3 cos β + k̃(1 + cos β) cos x+ k̃′(1− cos β) cos y

]
, (4.88)

with k̃ = 1
2
(k1 + k2) and k̃′ = 1

2
(k2 − k1). In terms of these new coordinates, the

Q2-functions become (Eqs. 4.29),

Q2
0,0(x, y, β) = 1

2
(3 cos2 β − 1),

Q2
0,2(x, y, β) +Q2

2,0(x, y, β) =
√

3 sin2 β cosx cos y

Q2
2,2(x, y, β) = 1

2
(1 + cos2 β)(cos2 y − sin2 x)− cos β(cos2 y − cos2 x). (4.89)

in which Q2
0,2 and Q2

2,0 have been added because of the symmetry of w with respect

to interchange of α and γ. Further, in principle,
∫ π
−π dα

∫ π
−π dγ = 1

2

∫ 2π

−2π
dx
∫ 2π−|x|
|x|−2π

dy,

but due to invariance of all integrands, i.e. w and the Q2-functions, with respect to
x ↔ 2π − x and y ↔ 2π − y, we just get

∫ π
−π dα

∫ π
−π dγ =

∫ π
−π dx

∫ π
−π dy, in which an

extra factor 2 cancels with the 1
2
. Next, it is straightforward though time-consuming to

show that

∂2w

∂k2
1

=
(

1
2
Q2

2,2 − 1
6

√
3(Q2

0,2 +Q2
2,0) + 1

6
Q2

0,0 + 1
3

)
w,

∂2w

∂k2
2

=
(

1
2
Q2

2,2 + 1
6

√
3(Q2

0,2 +Q2
2,0) + 1

6
Q2

0,0 + 1
3

)
w, (4.90)

∂2w

∂k2
3

=
(

2
3
Q2

0,0 + 1
3

)
w.

And consequently, integrating both sides of Eqs. 4.90 (
∫
dΩ) and rearranging a bit, this

yields

W 0,0
2 =

(
3

2

∂2

∂k2
3

− 1

2

)
W 0,0

0 ,

W 0,2
2 = W 2,0

2 =
1

2

√
3

(
∂2

∂k2
2

− ∂2

∂k2
1

)
W 0,0

0 , (4.91)

W 2,2
2 =

(
∂2

∂k2
1

+
∂2

∂k2
2

− 1

2

∂2

∂k2
3

− 1

2

)
W 0,0

0 .

Therefore, we only have to compute an expression for W 0,0
0 and this then gives us auto-

matically expressions for the W p,q
0 .

Let’s first look at some symmetries of W 0,0
0 . Looking at Eq. 4.2, we see that in the

flexiblity interaction all dimensions are equivalent (i.e. there is no information on the
geometry of the particles etc.). Consequently, integrating over all orientations Ω, it does
not matter anymore wether it was k3 connected to the ŵ-direction or k1. This means that
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W 0,0
0 is invariant under interchange of kµ’s mutually. So we can just state that from now

on in this appendix, we assume k1 ≤ k2 ≤ k3, which is without loss of generality. Then,
there are four asymptotic regions in which we can try to evaluate W 0,0

0 : k1, k2, k3 � 1;
k2, k3 � 1 � k1; k3 � 1 � k1, k2 and 1 � k1, k2, k3. In practice, however, there are
only two, and it is enough to assume that two kµ’s are very large (i.e. k2 and k3) or very
small (i.e. k1 and k2). In this appendix, we will only consider the case of k2, k3 � 1,
which is of most interest to us. If k2, k3 � 1, it means that all three particle-fixed axes
are strongly correlated with that of its nearest neighbours (it suffices to fix two axis to
also fix the third). And therefore, this means that (in terms of (x, y, β)) that x, β � 1,
but that y can still be large. The difference between the two Euler angles α and γ can
be large as long as final orientation is very close to the initial (when α ≈ −γ ⇒ x � 1
but y 6� 1). Consequently, we can write

w(x, y, β) = ek3+2k̃ exp
[
−1

2
(k3 + k̃)β2 − k̃x2 + 1

2
k̃′β2 cos y

]
×
(

1 + 1
24

(k3 + k̃)β4 + 1
4
k̃β2x2 + 1

12
k̃x4 − 1

24
k̃′β4 cos y +O(6)

)
, (4.92)

in which O(6) are terms of order 6 and higher. Naively, one would say that for very stiff
interactions, you need only two (very small) angles, i.e. a polar, β, and an azimuthal, x.
The fact that y still appears in Eq. 4.92 is due to that for the interaction it matters at
which azimuthal angle the polar angle is applied. We will now integrate Eq. 4.92 over
x, y and β (dropping the order-symbol). First the y-integration,∫ π

−π
dy w(x, y, β) = 2πek3+2k̃ exp

[
−1

2
(k3 + k̃)β2 − k̃x2

]
×
((

1 + 1
24

(k3 + k̃)β4 + 1
4
k̃β2x2 + 1

12
k̃x4
)
I0(1

2
k̃β2)− 1

24
k̃′β4I1(1

2
k̃β2)

)
.

(4.93)

The functions I0 and I1 are the modified Bessel functions of zeroth and first order
respectively. For the integration over x, we replace the integration boundaries [−π, π]
with [−∞,∞]. Then,∫ ∞

−∞
dx

∫ π

−π
dy w(x, y, β) = 2π

√
π

k̃
ek3+2k̃ exp

[
−1

2
(k3 + k̃)β2

]
×
((

1 + 1
24

(k3 + k̃)β4 + 1
8
β2 + 1

16
(k̃)−1

)
I0(1

2
k̃β2)− 1

24
k̃′β4I1(1

2
k̃β2)

)
. (4.94)

The error introduced in
∫∞
−∞ dxx

ne−k̃x
2

by this approximation is largest for n = 0, and
is of leading order∫ ∞

−∞
dxe−k̃x

2 −
∫ π

−π
dxe−k̃x

2

=

√
π

k̃
erfc(π

√
k̃)→ e−π

2k̃

πk̃
, (4.95)

which goes to zero much faster than any power of 1/k̃. The function erfc is the comple-
mentary error function [82]. For the last integration, we again replace the integration
boundaries (which is allowed through a similar argument as Eq. 4.95), [0, π] → [0,∞].



78 4. BIAXIAL POLYMERS

Then, the β-integration yields∫ ∞
0

dβ
(
β − 1

6
β3
) ∫ ∞
−∞

dx

∫ π

−π
dy w(x, y, β) =

2π
√
πek3+2k̃√

k̃((k3 + k̃)2 − k̃′2)

(
1 +

1

16

(
1

k̃
+

2

k3 + k̃ + k̃′
+

2

k3 + k̃ − k̃′

))
, (4.96)

in which we have dropped higher order terms (of order 1/k2
µ). Resubstituting, k̃ =

1
2
(k1 +k2) and k̃′ = 1

2
(k2−k1), we get an asymptotic expression for W 0,0

0 until first order
in 1/kµ,

W 0,0
0 =

(2π)3/2ek1+k2+k3√
(k1 + k2)(k1 + k3)(k2 + k3)

×
(

1 +
1

8

(
1

k1 + k2

+
1

k1 + k3

+
1

k2 + k3

))
. (4.97)

Of course, the same can be done with more terms in Eq. 4.92. Clearly, W 0,0
0 is symmetric

in all three kµ’s. The second derivative of W 0,0
0 to any kµ (let’s say k1) is then given by

∂2W 0,0
0

∂k2
1

=
(2π)3/2ek1+k2+k3√

(k1 + k2)(k1 + k3)(k2 + k3)

×
(

1 +
1

8

(
1

k2 + k3

− 7

k1 + k2

− 7

k1 + k3

))
. (4.98)

and to first order in 1/kµ the quotient of Eqs. 4.97 and 4.98,

1

W 0,0
0

∂2W 0,0
0

∂k2
1

= 1− 1

k1 + k2

− 1

k1 + k3

(4.99)

Very straightforward, this yields for the coefficients σp,q2

σ0,0
2 = 1− 3

2

(
1

k1 + k3

+
1

k2 + k3

)
,

σ0,2
2 = σ2,0

2 =
1

2

√
3

(
1

k1 + k3

− 1

k2 + k3

)
, (4.100)

σ2,2
2 = 1− 2

k1 + k2

− 1

2(k1 + k3)
− 1

2(k2 + k3)
.

Appendix C: w(Ω) in the RCL. In this appendix, we prove that for any function
g(Ω) the integration with kernel w(Ω) (given by Eq. 4.2 and 4.11) has the following
limiting behaviour in the RCL(∫

dΩ′
w(Ω′−1Ω)

w0,0
0

g(Ω′)

)
− g(Ω)→

− 1
2

(
M̄

M

)(
M̄2,3

M̄
L2
û +

M̄1,3

M̄
L2
v̂ +

M̄1,2

M̄
L2
ŵ

)
g(Ω), (4.101)

with L the angular momentum operator of the classical rigid rotator given by Eq. 4.65.
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First, we assume that g(Ω) is ‘smooth’ enough so that it can be expanded in Dni,j,

g(Ω) =
∞∑
n=0

n∑
i,j=−n

2n+ 1

8π2
gi,jn Dni,j(Ω) (4.102)

Defining O = (0, 0, 0), so that w(Ω′−1O) = w(Ω′−1) = w(Ω′), then∫
dΩ′

w(Ω′)

w0,0
0

g(Ω′) =
∞∑
n=0

n∑
i,j=−n

2n+ 1

8π2
gi,jn

∫
dΩ′

w(Ω′)

w0,0
0

Dni,j(Ω′). (4.103)

In the RCL, w(Ω) is very peaked around (β, α + γ) = (0, 0) and therefore, we expect
only contributions to the integral of Dni,j with β and x(= α + γ) small. Furthermore,
w(Ω) is even in (β, x), so odd powers in either of them drop out. Expanding the matrix
elements in terms of small (β, x) the only Dni,j with even orders of 2 and lower are

Dni,i(Ω) = 1− 1
4
n(n+ 1)β2 + 1

4
i2β2 − 1

2
i2x2, (4.104)

Dni+2,i(Ω) = 1
8

√
An,iβ

2 cos y,

Dni−2,i(Ω) = 1
8

√
A′n,iβ

2 cos y,

with y = α − γ (we will see later that we do not need orders higher than 2). The
dummies An,i and A′n,i are

An,i = (n+ i+ 2)(n+ i+ 1)(n− i)(n− i− 1)

A′n,i = (n+ i)(n+ i− 1)(n− i+ 2)(n− i+ 1). (4.105)

So, using this knowledge in Eq. 4.103 we obtain∫
dΩ′

w(Ω′)

w0,0
0

g(Ω′) =
∞∑
n=0

2n+ 1

8π2

{
n∑

i=−n

gi,in

∫
dΩ′

w(Ω′)

w0,0
0

Dni,i(Ω′)

n−2∑
i=−n

gi+2,i
n

∫
dΩ′

w(Ω′)

w0,0
0

Dni+2,i(Ω
′) +

n∑
i=−n+2

gi−2,i
n

∫
dΩ′

w(Ω′)

w0,0
0

Dni−2,i(Ω
′)

}
.

(4.106)

For two out of three kµ large (see Eq. 4.48) these integrals equal∫
dΩ

w(Ω)

w0,0
0

Dni,i(Ω) =

1 + (1
4
i2 − 1

4
n(n+ 1))

(
1

k1 + k3

+
1

k2 + k3

)
− 1

2
i2

1

k1 + k2

,∫
dΩ

w(Ω)

w0,0
0

Dni+2,i(Ω) = 1
8

√
An,i

(
1

k1 + k3

− 1

k2 + k3

)
, (4.107)∫

dΩ
w(Ω)

w0,0
0

Dni−2,i(Ω) = 1
8

√
A′n,i

(
1

k1 + k3

− 1

k2 + k3

)
,
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Stating that gi,jn = 0 for |i|, |j| > n and realizing that Dni,j(O) = δi,j, we can rewrite
Eq. 4.106 as follows∫

dΩ′
w(Ω′)

w0,0
0

g(Ω′) =
∞∑
n=0

2n+ 1

8π2

×

{
n∑

i,j=−n

gi,jn

(
1 + (1

4
i2 − 1

4
n(n+ 1))

(
1

k1 + k3

+
1

k2 + k3

)
− 1

2
i2

1

k1 + k2

)

+
n+2∑

i,j=−n−2

1
8

(
gi+2,j
n

√
An,i + gi−2,j

n

√
A′n,i

)( 1

k1 + k3

− 1

k2 + k3

)}
Dni,j(O).

(4.108)

Next, Dni,j(Ω) are eigenfunctions of the following operators,

L2Dni,j(Ω) = n(n+ 1)Dni,j(Ω),

LŵDni,j(Ω) = iDni,j(Ω), (4.109)

L∗±Dni,j(Ω) =
√
n(n+ 1)− i(i± 1)Dni±1,j(Ω),

with L the angular momentum operator, given by Eq. 4.65, L2 = L2
û + L2

v̂ + L2
ŵ and

L± = Lû ±
√
−1Lv̂ (i is already being used). From Eq. 4.109, we can derive

(L∗−)2Dni+2,j(Ω) =
√
An,iDni,j(Ω), (4.110)

(L∗+)2Dni−2,j(Ω) =
√
A′n,iDni,j(Ω).

Inserting these results (Eqs. 4.109 and 4.110) in Eq. 4.108 and resubstituting Eq. 4.102
with Ω = O we obtain,∫

dΩ′
w(Ω′)

w0,0
0

g(Ω′) =

(
1 + 1

4

(
1

k1 + k3

+
1

k2 + k3

)
(L2

ŵ − L2)

−1
2

1

k1 + k2

L2
ŵ + 1

8

(
1

k1 + k3

− 1

k2 + k3

)(
L2

+ + L2
−
))

g(O). (4.111)

Rearranging a bit and applying the RCL on Eq. 4.111, we obtain the required result

M

(∫
dΩ′

w(Ω′)

w0,0
0

g(Ω′)− g(O)

)
→ −1

2

(
M̄2,3L

2
û + M̄1,3L

2
v̂ + M̄1,2L

2
ŵ

)
g(O),

(4.112)

which is the same as Eq. 4.101.
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5 Branched Heterochains

An isotropic-to-nematic (I-N) bifurcation analysis is performed for monodisperse flu-
ids of (very generally) branched heterochains. Heterochains consist of various types of
segments. The main result is the derivation of a matrix whose most negative eigenvalue
corresponds to the bifurcation density.

5.1. Introduction

Rodlike particles in solution can show liquid crystalline phase behaviour. In many
ways, the simplest liquid crystalline phase transition is that between the isotropic (ori-
entationally disordered) and the nematic (orientationally ordered) fluid. In 1949, it was
shown by Onsager that model fluids of long impenetrable rods undergo an isotropic-to-
nematic (I-N) transition on increasing density [7]. The driving quantity is the average
excluded volume of two rods, which is large in the isotropic and smaller in the nematic
phase. Onsager wrote down the non-linear integral equation describing the system, in
which the excluded volume acts as kernel. It proved impossible to solve the problem
exactly in the nematic phase, and Onsager himself solved it approximately by using trial
functions [7], a route which was followed later by Straley [83] and Odijk [52]. Others
used truncated expansions in Legendre polynomials [84, 60] and in Refs. [59, 85], the
original equations of Onsager are numerically solved on a grid using an iteration scheme.
An important contribution concerning Onsager’s model is that by Kayser and Raveché
in 1978 [37]. They observed that the low-symmetry nematic solutions bifurcate from
the high-symmetry isotropic solutions. Using the symmetry of the kernel and linearizing
around the isotropic solution, they located the bifurcation density and constructed the
(initially unstable) nematic branch which connects to the stable nematic solution. A
strength of this analysis is that the bifurcation density was obtained in closed form.

Parallel to and following the above efforts of solving the original model of On-
sager, there have been investigations to the effect of particle shape, flexibility, bi- and
polydispersity, charges on the rods and long-range attractions between rods (see e.g.
Refs. [13, 48]). In Refs. [64, 65], Mulder extended the bifurcation analysis of Kayser and
Raveché [37] to biaxial particles, showing that for specific particle dimensions a biaxial
nematic phase is favored over a uniaxial nematic. (Biaxial objects are not cylindrically
symmetric, as opposed to uniaxial objects.) Khokhlov and Semenov (KS) considered a
fluid of impenetrable wormlike polymers [32, 33]. The interactions between the poly-
mers were treated much the same as Onsager, but the conformational entropy of these
wormlike polymers is very different from the orientational entropy of rigid rods. They

83
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themselves solved the equations using Onsager’s trial function and complete numeri-
cal solutions were obtained only later by Chen [36]. KS also mention the analytical
bifurcation result for wormlike polymers [33].

In previous chapters, we considered chains of cylindrically symmetric rods (Chap. 3)
and biaxial rods (Chap. 4). In both cases, we performed bifurcation analysis and in both
cases we considered the results in the limit of continuous flexibility, i.e. wormlike chains
(Chap. 3, same as KS) and ribbonlike chains (Chap. 4, new). In the present chapter,
we extend the I-N bifurcation analysis to a much more general class of monodisperse
fluids of chains of cylindrically symmetric rodlike segments. The chains are allowed to be
branched and the segments can have various dimensions, hence branched heterochains. It
is for the first time that polymers with such a general geometry are considered. We take
into account the interactions within the polymer exactly and the interactions between
polymers on a mean field level. Our main result will be the derivation of a matrix,
depending on model parameters, whose most negative eigenvalue corresponds to the
bifurcation density. The elements of the corresponding eigenvector represent the relative
degree of order of the segments at the bifurcation. The symmetry of the nematic phase
is usually uniaxial and the phase transition first-order. The results of this chapter will
be used in the following chapters where we consider specifically main chain and side
chain liquid crystalline polymers.

The rest of the chapter is organized as follows. In Sec. 5.2, we present the model
(including approximations), the free energy functional and we derive the stationarity
equations. A more compact notation is introduced in Sec. 5.3 where we also define
operators we need in the following sections. Sec. 5.4 deals with the symmetries of the
phases and the segments, the order parameters and the (Legendre) coefficients needed.
The bifurcation analysis is the topic of Sec. 5.5 and in the last section we conclude and
review the results (Sec. 5.6).

5.2. General Model and Formalism

The system under consideration is a monodisperse fluid of N (possibly) branched
chains in a volume V . The chains are discrete and consist of M cylindrically symmetric
rod-like segments of R different types τp (so p ∈ {1, · · · , R}) with dimensions lτp and dτp
(and lτp � dτp). Segments on different chains are assumed to be impenetrable to each
other, so the excluded volume of two chains is the relevant quantity (see Chap. 3). Every
segment is labeled by m (so m ∈ {1, · · · ,M}) and its orientation is described by a single
unit vector ω̂m pointing along the long axis. The conformation of a chain is specified by
the orientations of all segments, Ω = (ω̂1, · · · , ω̂M). Note that the labeling of segments
in a branched chain is not straightforward (see Fig. 5.1). A segment is characterized by
its label and its type, as this specifies the interactions with other segments both within
and outside the chain. However, not to complicate the notation straight away by using
everywhere a label as well as a type specification, we will use just the label and assume
it implicitly contains the type specification as well. So, suppose segment m is of type
τp, then we write lm instead of lτp referring to its length. And for the ODF (Eq. 5.8), we

write fm(ω̂m) instead of f
(τp)
m (ω̂m). Only later, we average over all segments of a certain

type.
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Figure 5.1. A branched heterochain of rodlike segments. The example of
labeling is added to show that, in case of branched chains, segments with non-
consecutive labels can be nearest neighbours (like 2 and 7).

In Chap. 3, we showed that the free energy F of a monodisperse fluid of hard chains
in the second virial approximation and without spatial order is given by

βBF [f ]

N
= log (ρVT) +

∫
dΩf(Ω) [log f(Ω)− 1] + βB

∫
dΩf(Ω)U(Ω)

+ 1
2
ρ

∫
dΩdΩ′f(Ω)f(Ω′)E(Ω,Ω′). (5.1)

βB = 1/kBT is the Boltzmann factor, ρ = N/V the number density, VT the “thermal
volume”. The quantity U(Ω) is the internal energy as a function of the conformation Ω
and E(Ω,Ω′) is the volume excluded of two chains with conformations Ω and Ω′. The
function f(Ω) is the conformational distribution function (CDF) and is the normalized
probability (

∫
dΩf(Ω) = 1) of finding a chain with conformation Ω. And for the integral

representation, we use
∫
dΩ =

∫
dω̂1 · · · dω̂M .

In thermodynamic equilibrium, the free energy reaches a minimum and the functional
is stationary. Therefore, we consider the variation of Eq. 5.1 with respect to the CDF,

δ

δf(Ω)

βBF
N
− βBµ = 0 (5.2)

with the chemical potential µ playing the role of Lagrange multiplier needed to enforce
normalization. Eliminating µ from Eq. 5.2 yields the stationarity equation,

f(Ω) = Q−1[f ] exp

[
−βBU(Ω)− ρ

∫
dΩ′f(Ω′)E(Ω,Ω′)

]
(5.3)

in which Q is the factor due to normalization,

Q[f ] =

∫
dΩ exp

[
−βBU(Ω)− ρ

∫
dΩ′f(Ω′)E(Ω,Ω′)

]
. (5.4)
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We now turn to more details in the description. As in Chap. 3, we approximate the
excluded volume E(Ω,Ω′) between two chains with the sum of their segment-segment
excluded volumes,

E(Ω,Ω′) =
M∑

m,m′=1

Em,m′(ω̂m, ω̂′m′), (5.5)

and allowing for different kinds of segments (differing in length l and width d),

Em,m′(ω̂m, ω̂′m′) = Vm,m′ sin γ(ω̂m, ω̂
′
m′) = lmlm′(dm + dm′) sin γ(ω̂m, ω̂

′
m′), (5.6)

where γ(ω̂m, ω̂
′
m′) is the plane angle between ω̂m and ω̂′m′ . The dimensions lm and dm

are the length and width respectively of segment m and the volume Vm,m′ is defined by
Eq. 5.6. Note that the excluded volume between two segments, Em,m′ , is uniaxial, as it

only depends on a polar angle, sin γ(ω̂m, ω̂
′
m′) =

√
1− (ω̂m · ω̂m′)2. Following Chap. 3,

we assume here too that within a chain the segments only interact via their nearest
neighbours m,m′,

U(Ω) =
∑

(m,m′)

um,m′(ω̂m, ω̂m′), (5.7)

where
∑

(m,m′) is the sum over all nearest neighbours (m,m′) in the chain (with (m,m′) =

(m′,m), so every pair is only counted once). Eq. 5.7 does not take into account interac-
tions within a chain which skip a number of segments (see Chap. 3). Although, we do
not further specify um,m′ in this chapter, we assume it is uniaxial um,m′(ω̂m · ω̂m′) as well
as symmetric, um,m′ = um′,m. This is not necessary for the analysis, but it does apply
to all cases we are interested in (see Chaps. 6 and 7).

Inserting these expressions for U and E in Eq. 5.3 and defining the single-segment
orientational distribution function (ODF),

fm(ω̂m) =
∏
k 6=m

dω̂kf(Ω), (5.8)

yields a set of stationarity equations,

fm(ω̂m) = Q−1

∫ ∏
k 6=m

dω̂k
∏

(k,k′)

wk,k′(ω̂k, ω̂k′)
M∏
k=1

exp[−βBHk(ω̂k)], (5.9)

where
∏

k 6=m is a product over all k in the chain but the m’th segment. In this equation,

the factors wk,k′(ω̂k, ω̂k′) = exp[−βBuk,k′(ω̂k, ω̂k′)] are the flexibility interactions between
nearest neighbours, and Hk(ω̂k) is the external effective field on the k’th segment de-
pending selfconsistently on the ODF’s,

βBHk(ω̂k) = ρ
M∑
k′=1

Vk,k′

∫
dω̂′ sin γ(ω̂k, ω̂

′)fk′(ω̂
′). (5.10)
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5.3. A Change of Notation

In this subsection, we will introduce a more compact notation to formulate the
stationarity equations in the previous section. The notation we present is an extension
of the one used by Mulder in Ref. [65]. We will first concentrate on Eqs. 5.9 and 5.10.
The space of real integrable functions of orientation ω̂ is called Lω̂. With g, h ∈ Lω̂, the
inner product in this space is

〈g, h〉 =

∫
dω̂g(ω̂)h(ω̂). (5.11)

And every element of Lω̂ can be interpreted as an linear operator on Lω̂ as well,

g[h](ω̂) =

∫
dω̂′g(ω̂′ · ω̂)h(ω̂′). (5.12)

We define an operator for the external field, Em,m′ ,

Kk,k′ [g](ω̂) = Vk,k′

∫
dω̂′ sin γ(ω̂ · ω̂′)g(ω̂′). (5.13)

Writing this even shorter, Kk,k′ [g] = Kk,k′ [g](ω̂) and in case of a labeled ω̂k′ , Kk,k′ [g]k′ =
Kk,k′ [g](ω̂k′). Similarly, we write gk = gk(ω̂) and gk|k = gk(ω̂k). In the same way, the
operator for the flexibility interaction becomes,

wk,k′ [g] =

∫
dω̂′ exp[−βBuk,k′(ω̂ · ω̂′)]g(ω̂′). (5.14)

Both Kk,k′ and wk,k′ are again elements of Lω̂. Note that both are also Hermitian,

〈g,Kk,k′ [h]〉 = 〈Kk,k′ [g], h〉 . (5.15)

Next, we define the operator Wm acting on functions G ∈ LMω̂ and mapping them on
Lω̂,

Wm[[G|1,··· ,M ]] =

∫ M∏
k=1

dω̂kδ(ω̂ − ω̂m)
∏

(k,k′)

wk,k′(ω̂k · ω̂k′)G(ω̂1, · · · , ω̂M). (5.16)

We have used double brackets to distinguish it from operators acting on Lω̂. Thus, the
stationarity equations (Eqs. 5.9 and 5.10) in the new notation are

fm =
Wm

[[∏M
k=1 exp

(
−ρ
∑M

k′=1 Kk,k′ [fk′ ]k

)]]
〈

1,Wm

[[∏M
k=1 exp

(
−ρ
∑M

k′=1 Kk,k′ [fk′ ]k

)]]〉 . (5.17)

In the bifurcation analysis, we will also need the action of Wm on a function g ∈ Lω̂
at segment m; g|m, and even on two functions g, h ∈ Lω̂ at different segments m and
m′; g|m and h|m′ . In the first case, Eq. 5.16 reduces to

Wm[[g|m′ ]] =

∫ M∏
k=1

dω̂kδ(ω̂ − ω̂m)
∏

(k,k′)

wk,k′(ω̂k · ω̂k′)g(ω̂m′)

= Wm,m′ [g], (5.18)

which defines the operator Wm,m′ . Clearly, Wm,m′ is defined as being an operator and
therefore not an element of Lω̂. The branched chains under consideration do not have
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loops, i.e. between an arbitrary pair of segments m,m′ there exists one and only
one non-selfoverlapping path along the chain. We call the collection of all pairs of
nearest neighbour segments (k, k′) between m and m′ (which are generally not near-
est neighbours) the path Pm,m′ . For example, in Fig. 5.1, P6,10 = {(6, 5), (5, 4), (4, 3),
(3, 2), (2, 7), (7, 8), (8, 9), (9, 10)}. As (k, k′) = (k′, k), notice that Pm,m′ = Pm′,m. So,

Wm,m′ [g] =
(
wm,mP−1

[· · ·wm2,m1 [wm1,m′ [g]]]
) ∏

(k,k′) 6∈Pm,m′

wk,k′ [1]



=

 P−1∑
i=0

(mi,mi+1)∈Pm,m′

(
wmi+1,mi

)
[g]


 ∏

(k,k′) 6∈Pm,m′

wk,k′ [1]

 , (5.19)

where we say that P has P elements, m0 = m′ and mP = m. The sequence of wmi+1,mi ’s
is not important, as they commute 1. Consequently, it holds that Wm,m′ = Wm′,m and
Wm,m′ is Hermitian, 〈g,Wm,m′ [h]〉 = 〈Wm′,m[g], h〉 = 〈Wm,m′ [g], h〉. Further, Wm,m′ [1] =∏

(k,k′) wk,k′ [1] = W (0) and Wm,m/W
(0) is the identity operator.

The action of Wm on two functions at two different segments,

Wm[[g|m′h|m′′ ]] =

∫ M∏
k=1

dω̂kδ(ω̂ − ω̂m)
∏

(k,k′)

wk,k′(ω̂k · ω̂k′)g(ω̂m′)h(ω̂m′′)

= Wm,m′,m′′ [g, h], (5.20)

which defines the operator Wm,m′,m′′ . Note that the index m′, belongs to the argument g
and the index m′′ to h. Clearly, we have to switch both if we switch one, Wm,m′,m′′ [g, h] =
Wm,m′′,m′ [h, g]. Conveniently, we can decompose Wm,m′,m′′ in terms of Wm,m′ ’s. There
are three different cases (see Fig. 5.2). First, m′ and m′′ are on different ‘sides’ of m (i.e.⋂

(Pm,m′ ,Pm,m′′) = ∅),

Wm,m′,m′′ [g, h] =
(
W (0)

)−1
Wm,m′ [g]Wm,m′′ [h]. (5.21)

Second, m′ is between m and m′′ (or vice versa) (i.e.
⋂

(Pm,m′ ,Pm,m′′) = Pm,m′), then,

Wm,m′,m′′ [g, h] =
(
W (0)

)−1
Wm,m′ [gWm′,m′′ [h]]. (5.22)

These previous two occur also for linear chains. The last one is specific for branched
chains; m′ and m′′ are on different branches (with respect to m) (i.e.

⋂
(Pm,m′ ,Pm,m′′) =

Pm,m̃, where m̃ is the segment where the two branches join (again, with respect to m)).
So,

Wm,m′,m′′ [g, h] =
(
W (0)

)−2
Wm,m̃[Wm̃,m′ [g]Wm̃,m′′ [h]]. (5.23)

This segment m̃ has a special role in the last decomposition; it is always a ‘joint’, i.e. a
segment where three or more arms meet. Arriving at this point, however, we see that we
can generalize even further; also for the first two cases we can define a m̃. In the first case,
m̃ = m, and if we use this in Eq. 5.23, we see that it reduces to Eq. 5.21. In the second
case, m̃ = m′ (or m′′) and again, Eq. 5.23 reduces to Eq. 5.22. The conclusion then is

1In our case, all wk,k′(ω̂) are uniaxially symmetric and that is why they commute.
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mm′ m′′

m

m′

m′′

m

m̃

m′′

m′

I

II

III

Figure 5.2. The three different cases of the operator Wm,m′,m′′ (see text). m
in between m′ and m′′ (I), m′ in between m and m′′ (II) and m, m′ and m′′, all
on different branches, coming together at joint m̃ (III).

that for every triplet m,m′,m′′ we can find one and only one m̃ for which Wm,m′,m′′ is
always given by Eq. 5.23. It is straightforward to derive some properties. For instance,
g1, g2, g3 ∈ Lω̂,

〈g1,Wm,m′,m′′ [g2, g3]〉 =
(
W (0)

)−2 〈Wm̃,m[g1],Wm̃,m′ [g2]Wm̃,m′′ [g3]〉. (5.24)

Further, Wm,m′,m′′ [g, 1] = Wm,m′ [g].

5.4. Symmetries, Expansions and Order Parameters

In this section, we analyze what are the possible phases and what order parameters
are needed. All segments are uniaxial and therefore they are described by a single unit
vector ω̂. As we are considering fluidlike phases, we can have at most orientational
ordering with respect to all three lab-fixed axes, (x̂, ŷ, ẑ). One of these axes can be
written in terms of the other two, e.g. x̂ = ŷ × ẑ, so that for every segment we need
at least two order parameters. A nematic phase with cylindrical symmetry has two
equivalent axes, and one order parameter suffices. This nematic is called a uniaxial
nematic. In case there is no cylindrical symmetry, there is ordering with respect to all
three (or equivalently, two) axes and we are dealing with a biaxial nematic.
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Next, we will quantify our statements. The ODF is a function of one unit vector
ω̂ = (θ, φ), and thus it can be expanded in spherical harmonics,

fm(ω̂) =
∞∑
j=0

j∑
i=−j

a(j,i)
m Y i

j (ω̂), (5.25)

with the coefficients,

a(j,i)
m = 〈fm, Y i

j

∗〉. (5.26)

The possible biaxial phases which can occur are assumed to have inversion symmetry
(inversion I of the phase does not affect properties) and D2-symmetry (invariant under
the D2-operations, D2 = {1, Rx̂(π), Rŷ(π), Rẑ(π)}, with Rσ(π) a rotation of π around
axis σ). The symmetry group of the phase is then, D2h(= I ⊗ D2). This means that

in the expansion 5.25 only terms with even j and i contribute and that a
(j,i)
m = a

(j,−i)
m .

Defining ∆j,i-functions,

∆j,i(ω̂) =
(

1
2

√
2
)1+δi,0

√
4π

2j + 1

(
Y i
j (ω̂) + Y −ij (ω̂)

)
(5.27)

(normalized such that
∫
dω̂∆j,i(ω̂)∆j′,i′(ω̂) = 4π

2j+1
δj,j′δi,i′) the ODF-expansion becomes

fm(ω̂) =
∞∑
j=0

j∑
i=0

2j + 1

4π
ã(j,i)
m ∆j,i(ω̂), (5.28)

with both i and j even. The coefficients are then given by

ã(j,i)
m = 〈fm,∆j,i〉. (5.29)

Due to normalization of fm, ã
(0,0)
m = 1. In the isotropic phase, all other coefficients

are zero, whereas in the nematic phase, these are nonzero. The lowest-order coefficients
different in the isotropic and the nematic phases are those with j = 2. The ∆2,i-functions
are

∆2,0 = 1
2

[
3(ω̂ · ẑ)2 − 1

]
, (5.30)

∆2,2 = 1
2

√
3
[
(ω̂ · ŷ)2 − (ω̂ · x̂)2

]
, (5.31)

(they can of course be rewritten as the following relation holds, (ω̂·ẑ)2+(ω̂·ŷ)2+(ω̂·x̂)2 =
1) In terms of spherical coordinates they are

∆2,0 = 1
2

[
3 cos2 θ − 1

]
, (5.32)

∆2,2 = 1
2

√
3
[
cos 2φ sin2 θ

]
. (5.33)

The j = 2-coefficients of fm we choose as our order parameters, so

Sm = ã(2,0)
m = 〈fm,∆2,0〉 (5.34)

Bm = ã(2,2)
m = 〈fm,∆2,2〉. (5.35)

Sm is the usual Maier-Saupe order parameter for uniaxial nematics, with ẑ the (main)
nematic director. ŷ defines a second director with respect to which the system can order,
i.e. into a biaxial nematic phase. The biaxial order parameter Bm is zero in the isotropic
and uniaxial nematic phases and nonzero in the biaxial nematic.
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Next, we will also need the expansions of wk,k′ and Kk,k′ . Both have uniaxial sym-
metry, so(

wk,k′(ω̂ · ω̂′)
Kk,k′(ω̂ · ω̂′)

)
=
∞∑
j=0

2j + 1

4π

(
w

(j)
k,k′

K
(j)
k,k′

)
Pj(ω̂ · ω̂′). (5.36)

From Eq. 5.13, it is also clear that Kk,k′ is also symmetric under exchanging ω̂ with −ω̂
(and ω̂′ with −ω̂′), so K

(j)
k,k′ = 0 for odd j. Using Pj(ω̂ · ω̂′) =

∑j
i=−j

4π
2j+1

Y i
j (ω̂)Y −ij (ω̂′)

it follows that

Pj′ [∆j,i](ω̂) =
4π

2j + 1
∆j,i(ω̂), (5.37)

where we have used Pj′ as an operator. Consequently,(
wk,k′
Kk,k′

)
[∆j,i] =

(
w

(j)
k,k′

K
(j)
k,k′

)
∆j,i. (5.38)

And applying this to Eq. 5.19 we obtain

Wm,m′ [∆j,i] =


P−1∏
i = 0

(mi,mi+1) ∈ Pm,m′

w(j)
mi+1,mi


 ∏

(k,k′) 6∈Pm,m′

w
(0)
k,k′

∆j,i (5.39)

= W
(j)
m,m′∆j,i,

which defines the “coefficients” W
(j)
m,m′ (these are not Legendre coefficients!). From this

we see that for our choice of uniaxial wk,k′ , it does not matter in which direction the
path is traveled; all wk,k′ commute with each other. Finally, we will need the following
inner products

〈∆j,i,∆j′,i′∆j′′,i′′〉 = 4π
(

1
2

√
2
)1−δ0,ii′i′′

(
j j′ j′′

i τ ′i′ τ ′′i′′

)(
j j′ j′′

0 0 0

)
, (5.40)

in which the round brackets denote the Wigner 3-j symbols. τ ′ and τ ′′ are freely chosen
from {−1, 1} in order to get i+ τ ′i′+ τ ′′i′′ = 0 and j+ j′+ j′′ is even (if these conditions
are not fullfilled, 〈∆j,i,∆j′,i′∆j′′,i′′〉 = 0). So, summarizing,

〈∆j,i, Km,m′ [∆j′,i′ ]〉 =K
(j)
m,m′δj,j′δi,i′ , (5.41)

〈∆j,i,Wm,m′ [∆j′,i′ ]〉 =W
(j)
m,m′δj,j′δi,i′ , (5.42)

and

〈∆j,i,Wm,m′,m′′ [∆j′,i′ ,∆j′′,i′′ ]〉 =

= 4π
(

1
2

√
2
)1−δ0,ii′i′′

W
(j,j′,j′′)
m,m′,m′′

(
j j′ j′′

i τ ′i′ τ ′′i′′

)(
j j′ j′′

0 0 0

)
= 4π

(
1
2

√
2
)1−δ0,ii′i′′

W
(j)
m̃,mW

(j′)
m̃,m′W

(j′′)
m̃,m′′

(
j j′ j′′

i τ ′i′ τ ′′i′′

)(
j j′ j′′

0 0 0

)
,

(5.43)
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in which m̃ is the segment corresponding to the triplet m,m′,m′′ (see between Eqs. 5.23

and 5.24). Here, we have defined the “coefficients” W
(j,j′,j′′)
m,m′,m′′ . The relevant nonzero 3-j

symbols for our analysis are(
2 2 2
0 0 0

)
= −

(
2 2 2
0 2 −2

)
= −

√
2

35
. (5.44)

5.5. Bifurcation Analysis

5.5.1. Bifurcation Analysis: Segment Labels. In this subsection, we determine
the properties of the point in the phase diagram where a nematic solution branches off
the isotropic one; the bifurcation point. At every density ρ, the isotropic distributions
(fk,0 = 1/4π) are solutions to the stationarity equations. At low densities these are
(meta)stable, whereas at high densities they are unstable. The density at which the
isotropic solution changes stability, is called the bifurcation density and a new non-
isotropic (nematic) solution appears. In order to find the properties of the bifurcation
point, we proceed by constructing solutions which are isotropic with small (infinitesi-
mal) nematic perturbations. The perturbations are characterized by a single (arbitrary)
parameter ε and the solutions are expanded in the following way,

fk = fk,0 + εfk,1 + ε2fk,2 + · · ·
ρ = ρ0 + ερ1 + ε2ρ2 + · · · . (5.45)

These expansions are inserted in Eqs. 5.17, and terms of equal order in ε will be equated.
We first expand

∏
k

exp

(
−ρ
∑
k′

Kk,k′ [fk′ ]k

)
=

exp

(
−
(
ρ0 + ερ1 + ε2ρ2

)∑
k,k′

Kk,k′ [fk′,0]k

){
1− ερ0

∑
k,k′

Kk,k′ [fk′,1]k

−ε2

ρ1

∑
k,k′

Kk,k′ [fk′,1]k + ρ0

∑
k,k′

Kk,k′ [fk′,2]k −
1
2
ρ2

0

(∑
k,k′

Kk,k′ [fk′,1]k

)2
 .

(5.46)

Now, fk,0 = 1/4π so the exponential factor in front is a constant. The operation of Wm

on Eqs. 5.46,

Wm

[[∏
k

exp

(
−ρ
∑
k′

Kk,k′ [fk′ ]k

)]]
= exp

(
− 1

4π
(ρ0 + ερ1

+ε2ρ2

)∑
k,k′

Kk,k′ [1]

){
W (0) − ερ0

∑
k

Wm,k

[∑
k′

Kk,k′ [fk′,1]

]
+
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−ε2

(
ρ1

∑
k

Wm,k

[∑
k′

Kk,k′ [fk′,1]

]
+ ρ0

∑
k

Wm,k

[∑
k′

Kk,k′ [fk′,2]

]

−1
2
ρ2

0

∑
k,l

Wm,k,l

[∑
k′

Kk,k′ [fk′,1] ,
∑
l′

Kl,l′ [fl′,1]

])}
. (5.47)

Due to the normalization, the exponential prefactor disappears. Further, we have
〈1, fk,n〉 = 0 for n > 0. We now equate the equal orders in ε. The zeroth order is
trivial, the first order bifurcation equations are

fm,1 = − ρ0

4πW (0)

∑
k

Wm,k

[∑
k′

Kk,k′ [fk′,1]

]
, (5.48)

and to second order in ε,

fm,2 =

−
(
4πW (0)

)−1

{
ρ0

∑
k

Wm,k

[∑
k′

Kk,k′ [fk′,2]

]
+ ρ1

∑
k

Wm,k

[∑
k′

Kk,k′ [fk′,1]

]

− 1

2
ρ2

0

(∑
k,l

Wm,k,l

[∑
k′

Kk,k′ [fk′,1] ,
∑
l′

Kl,l′ [fl′,1]

]

− 1

4π

〈
1,
∑
k,l

Wm,k,l

[∑
k′

Kk,k′ [fk′,1] ,
∑
l′

Kl,l′ [fl′,1]

]〉)}
. (5.49)

We concentrate for a moment on the first order bifurcation equation, Eq. 5.48. Both
Kk,k′ and Wm,k have such a form that they do not mix the various vectors in solution
space; i.e. both of them map ∆j,i on ∆j,i for every j, i. And also, the eigenvalues
(see Eqs. 5.38) are only dependent on the j-mode. Consequently, fk,1 must be a linear
combination of harmonics of only a single j,

fk,1 =
∑
i

c
(j,i)
k,1 ∆j,i, (5.50)

where the c
(j,i)
k,1 are coefficients. Then, on the basis of experience and the form of the

excluded volume operator (Eq. 5.13, i.e. with a single broad minimum for total alignment
of the two particles and no other minima, see Ref. [65]) we expect the system to become
unstable first with respect to the j = 2-mode 2. So,

fk,1 = c
(2,0)
k,1 ∆2,0 + c

(2,2)
k,1 ∆2,2. (5.51)

Substituting this in Eqs. 5.48 and 5.49 and taking the inner product with ∆2,i, we get
two equations for the first order (for i = 0 and i = 2),

c
(2,i)
m,1 = − ρ0

4πW (0)

∑
k

W
(2)
m,k

∑
k′

K
(2)
k,k′c

(2,i)
k′,1 , (5.52)

2In principle, it still matters what form the wk,k′ have, but we assume that it does not affect this
statement.
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and also two for the second order,

c
(2,i)
m,2 +

(
4πW (0)

)−1

{∑
k

W
(2)
m,k

∑
k′

K
(2)
k,k′

(
ρ0c

(2,i)
k′,2 + ρ1c

(2,i)
k′,1

)
+

1

2
ρ2

0

∑
k,l

W
(2,2,2)
m,k,l

∑
k′

K
(2)
k,k′

∑
l′

K
(2)
l,l′ 〈fk′,1fl′,1,∆2,i〉

}
= 0, (5.53)

with

〈fk′,1fl′,1,∆2,0〉 = −4π
2

35

(
c

(2,0)
k′,1 c

(2,0)
l′,1 − c

(2,2)
k′,1 c

(2,2)
l′,1

)
〈fk′,1fl′,1,∆2,2〉 = 4π

2

35

(
c

(2,0)
k′,1 c

(2,2)
l′,1 + c

(2,2)
k′,1 c

(2,0)
l′,1

)
.

The constant normalization term drops out because its inner product with ∆2,i is zero.
Turning again to the first-order bifurcation equation, Eq. 5.52, we can make one final step
on this level. We have obtained two eigenvalue equations, for i = 0, 2. However, in both
cases the eigenvalue (corresponding to ρ0) is the same and so is the matrix. Therefore,
we conclude that the two problems must be the same and so are the eigenvectors, up

to a multiplicative constant, c
(2,2)
k′,1 = µc

(2,0)
k′,1 = µck′,1, where we drop the superscript from

now on. So the two first-order bifurcation equations reduce to one,

cm,1 = − ρ0

4πW (0)

∑
k

W
(2)
m,k

∑
k′

K
(2)
k,k′ck′,1. (5.54)

The problem with this linear eigenvalue equation is that it is too big. cm,1 is a vector of
dimension M which is very large in general. Therefore, in the next subsection, we will
average over all segments of a certain type.

5.5.2. Bifurcation Analysis: Type Averages. In this subsection, we will refor-
mulate the bifurcation analysis in terms of the types, where previously, we have done
that in terms of segment labels. The reason for this is that the number of types R is typ-
ically much smaller than M , reducing the bifurcation equation from a M -dimensional to
a R-dimensional problem. With R being 2 in case of main chain polymers (Chap. 6) or
3 in case of side chain polymers (Chap. 7) the bifurcation equation should be tractable.

We first define the average ODF of a certain type,

fτp(ω̂) =
1

Mτp

∑
k∈τp

fk(ω̂). (5.55)

Consequently, a similar equation holds for the coefficients,

c(j,i)
τp,n =

1

Mτp

∑
k∈τp

c
(j,i)
k,n . (5.56)

Turning again to the first-order bifurcation equation, Eq. 5.54, we proceed by recognizing

that the quantity K
(2)
k,k′ is the same for all k ∈ τq and k′ ∈ τq′ . Consequently, we can
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write ∑
k′

K
(2)
k,k′ck′,1 =

∑
q′

∑
k′∈τq′

K
(2)
k,k′ck′,1

=
1

Mτq

∑
q′

MτqMτq′
K

(2)
k,k′

1

Mτq′

∑
k′∈τq′

ck′,1

=
1

Mτq

∑
q′

K(2)
τq ,τq′

cτq′ ,1 (5.57)

where we have defined K
(2)
τq ,τq′ = MτqMτq′

K
(2)
k,k′ for k ∈ τq and k′ ∈ τq′ . Defining also

W (2)
τp,τp′

=
1

MτpMτp′

∑
k∈τp

∑
k′∈τp′

W
(2)
k,k′ , (5.58)

W (2,2,2)
τp,τp′ ,τp′′

=
1

MτpMτp′
Mτp′′

∑
k∈τp

∑
k′∈τp′

∑
k′′∈τp′′

W
(2,2,2)
k,k′,k′′ . (5.59)

we can write for the first-order bifurcation equation (combining Eqs. 5.56, 5.57 and 5.58
with Eq. 5.54),

cτp,1 = − ρ0

4πW (0)

∑
q

W (2)
τp,τq

∑
q′

K(2)
τq ,τq′

cτq′ ,1, (5.60)

In the same way, Eqs. 5.53 can be written in terms of these ‘type-specific’ quantities.
We give them without further details, for i = 0,

c
(2,0)
τp,2 −

ρ1

ρ0

cτp,1 +
(
4πW (0)

)−1

{
ρ0

∑
q

W (2)
τp,τq

∑
q′

K(2)
τq ,τq′

c
(2,0)
τq′ ,2

−2π
2

35
ρ2

0

(
1− µ2

)∑
q,r

W (2,2,2)
τp,τq ,τr

∑
q′

K(2)
τq ,τq′

cτq′ ,1
∑
r′

K(2)
τr,τr′

cτr′ ,1

}
= 0, (5.61)

and for i = 2,

c
(2,2)
τp,2 −

ρ1µ

ρ0

cτp,1 +
(
4πW (0)

)−1

{
ρ0

∑
q

W (2)
τp,τq

∑
q′

K(2)
τq ,τq′

c
(2,2)
τq′ ,2

+4π
2

35
ρ2

0µ
∑
q,r

W (2,2,2)
τp,τq ,τr

∑
q′

K(2)
τq ,τq′

cτq′ ,1
∑
r′

K(2)
τr,τr′

cτr′ ,1

}
= 0, (5.62)

where we have substituted〈
fτq′ ,1fτr′ ,1,∆2,0

〉
= −4π

2

35

(
1− µ2

)
cτq′ ,1cτr′ ,1〈

fτq′ ,1fτr′ ,1,∆2,2

〉
= 4π

2

35
2µcτq′ ,1cτr′ ,1.
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We have also used Eq. 5.60 and the fact that c
(2,2)
τp,1 = µc

(2,0)
τp,1 = µcτp,1. This can be

expressed more compact in terms of matrices, so the first order equation,

c1 = − ρ0

4πW (0)
W(2) ·K(2) · c1, (5.63)

and the second order for i = 0,

c
(2,0)
2 − ρ1

ρ0

c1 +
(
4πW (0)

)−1
{
ρ0W

(2) ·K(2) · c(2,0)
2

−2π
2

35
ρ2

0

(
1− µ2

)
W(2,2,2) :

(
K(2) · c1

)2
}

= 0, (5.64)

and for i = 2,

c
(2,2)
2 − ρ1µ

ρ0

c1 +
(
4πW (0)

)−1
{
ρ0W

(2) ·K(2) · c(2,2)
2

+4π
2

35
ρ2

0µW(2,2,2) :
(
K(2) · c1

)2
}

= 0. (5.65)

The dot product refers to ordinary matrix multiplication. The notation “ : ” refers

to contraction with respect to two indices, and we have written
(
K(2) · c1

)2
instead of(

K(2) · c1

)
⊗
(
K(2) · c1

)
. At this point, we want to emphasize that the bold face symbols

refer to the type-specific quantities and consequently have dimensions R (for vectors),
R×R (for matrices) or R×R×R (for W(2,2,2)).

Again, we first consider the first-order bifurcation equations. Eq. 5.63 is an R × R
matrix eigenvalue equation where we suppose that R is reasonably small, so it is solvable.
The eigenvalues of (W (0))−1W(2) ·K(2), we call λp and the corresponding eigenvectors vp.
We assume that the eigenvalues are labelled in increasing order, i.e. p = 1 corresponds
to the most negative, and p = R to the most positive one. The physical argument,
we then use is that the eigenvalue which corresponds to the lowest (positive) density is
selected, i.e. λ1 and therefore c1 = v1. Consequently,

f1 = v1(∆2,0 + µ∆2,2), ρ0 = −4π

λ1
. (5.66)

The coefficient µ has to be obtained from the second order bifurcation equations. The
dual eigenvector c̄1 at the same eigenvalue is generally not the same as c1 as (W (0))−1W(2)·
K(2) is not Hermitian. We normalize as follows, c̄∗1 · c1 = 1 (the asterisk as superscript
refers to the comlex conjugate of the vector).

Turning now to the second order equations, we assume that it is the case that
(W (0))−1W(2) ·K(2) is diagonizable 3. When the matrix is diagonizable, the set of eigen-
vectors vp form a complete (though generally not orthogonal) basis in R-dimensional
space. (In case of Hermitian matrices, an orthogonal set is obtained.) The dual eigenvec-
tors wp (or left eigenvectors, as opposed to the normal right eigenvectors) are generally
not the same as vp (again only in case of Hermitian matrices, wp = vp). An interesting
property is that although v∗p is not necessarily orthogonal to other vp′ , this does hold

3If a matrix is not diagonizable, there are eigenvalues with degeneracy greater than the dimension
of their corresponding eigenspace, and a Jordan form is the best one can get. We do not consider this
case here.
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for w∗p, i.e. w∗p⊥vp′ if λp 6= λp′ . (In case of degenerate eigenvalues we can construct the
(dual) eigenvectors in such a way that the above still holds.) Further, we assume they
are normalized in the following way, w∗p · vp = 1 and note that c̄1 = w1. Consequently,

we can expand the vectors c
(2,i)
2 (for i = 0, 2) in terms of the complete set vp,

c
(2,i)
2 =

∑
p

α(2,i)
p vp, (5.67)

and the coefficients α
(2,i)
p ,

α(2,i)
p = w∗p · c

(2,i)
2 . (5.68)

So,

(W (0))−1W(2) ·K(2) · c(2,i)
2 =

∑
p

λpα
(2,i)
p vp. (5.69)

Taking the inner product of Eqs. 5.64 and 5.65 with c̄∗1 and remembering that ρ0 =
−4π/λ1, we then get for i = 0,

ρ1

ρ0

+
1

2

2

35
ρ2

0

(
1− µ2

) (
W (0)

)−1
(
c̄1 ·W(2,2,2) :

(
K(2) · c1

)2
)

= 0, (5.70)

and for i = 2,

ρ1µ

ρ0

− 2

35
ρ2

0µ
(
W (0)

)−1
(
c̄1 ·W(2,2,2) :

(
K(2) · c1

)2
)

= 0. (5.71)

These are two equations, with two unknown variables, ρ1 and µ, which can be solved;

µ = 0 or µ = ±
√

3, (5.72)

and

ρ1 =
2

35
ρ3

0

(
W (0)

)−1
(
c̄1 ·W(2,2,2) :

(
K(2) · c1

)2
)
6= 0. (5.73)

If (c̄1 ·W(2,2,2) :
(
K(2) · c1

)2
) = 0, then, ρ1 = 0, and µ has to be determined from the

next-order bifurcation equations (third), but will generally not be as in Eqs. 5.72. Using
Eq. 5.72 in Eqs. 5.64 and 5.65, it follows that the two second order bifurcation equations

are also the same (like the first order), hence c
(2,2)
2 = νc

(2,0)
2 = νc2, with ν a prefactor.

The other (R−1) (independent) equations (inner products of w∗p with Eqs. 5.64 or 5.65)

yield the components α
(2,0)
p = αp except for p = 1. If needed, the α1 and ν can be

determined from the next order bifurcation equations. When ρ1 = 0, the vectors c
(2,0)
2

and c
(2,2)
2 will generally be different. Physically, all values of µ in Eqs. 5.72 correspond

to a uniaxial nematic phase (substitute µ in Eqs. 5.66). When ρ1 = 0, µ is generally
different and the resulting phase is a biaxial nematic which has lower symmetry. We
review the results more extensively in the next section.
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5.6. Conclusion

As was stated, the eigenvalue λ1 corresponding to the lowest (positive) density yields
the physical solution. The components of the corresponding eigenvector, c1, represent
the relative order of the various types (infinitesimally small at the bifurcation point).
However, in principle c1, as well as −c1 solve the equations. One sign corresponds
to ordering parallel to the nematic director n̂ (which is the physical solution) and the
other to ordering perpendicular to n̂ (which has to be discarded on basis of physical
arguments). The sign can be found by realizing that the field (on segments of any type)

must have a minimum for ω̂ = n̂, and therefore, it must hold that
∑R

q=1 K
(2)
τp,τq · cτq ,1 ≤ 0

for all p.
The three solutions for µ (Eq. 5.72), all correspond to uniaxial ordering, although

with respect to different axes (ẑ, ŷ or x̂) (as can be easily checked from Eq. 5.66). In
general, the phase transition is first order, because ρ1 6= 0. When ρ1 = 0, µ has to be
determined from the next-order bifurcation equations. In that case, the nematic phase
is generally biaxial and the phase transition second order. The latter is only expected
to happen, when there are two or more components, preferring different axes of ordering
(i.e. chains with joints where two (or more) branches are perpendicularly connected).
In case of uniaxial ordering, we can state without loss of generality (choosing the ẑ as
the nematic director),

f1 = c1P2, ρ0 = −4π

λ1
. (5.74)

The eigenvector c1 yields the relative average order of each of the R components.
However, different segments of some type, can still have different order, depending on
where they are in the chain. For instance, segment k of type τp is likely to have a
different order than segment k′ of type τp if its neighbouring segments are different. If
we want to know the differences in ordering for segments of the same type τp, we need
the vector ck,1 instead of cτp,1. Their relation is given by Eq. 5.56. Then, considering
Eq. 5.60, if we do not average over the last label m, we obtain

cm,1 = − ρ0

4πW (0)

∑
q

W (2)
m,τq

∑
q′

K(2)
τq ,τq′

cτq′ ,1, (5.75)

with the M ×R-matrix,

W (2)
m,τq =

1

Mτq

∑
k∈τq

W
(2)
m,k. (5.76)

So, when, the (R-dimensional) eigenvector c1 (with elements cτp,1) is obtained from the
bifurcation analysis, one can calculate the (M -dimensional) eigenvector cm,1 as well. The

‘only’ extra quantity, we need to know is the matrix W
(2)
m,τq .

In ending this chapter, we want to summarize the results. Using the approach of
segmented chains, we have written down the equations for orientational ordering in
a monodisperse fluid of (very generally) branched heteropolymers. The segments are
hard bodies, and within the polymer, bending interactions between successive segments
are included. We have derived the equations describing the system’s behaviour at the
isotropic-to-nematic bifurcation point. The central quantity is the matrix (W (0))−1W(2) ·
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K(2), whose most negative eigenvalue, λ1, corresponds to the bifurcation density, ρ0 =
−4π/λ1. The corresponding eigenvector c1 represents the average order distribution over
the various types. The bifurcating order of individual segments can also be computed.
The matrix K(2) is usually quite straightforward to compute, but (W (0))−1W(2) can be
more tedious. In general, the bifurcating phase is uniaxial and the phase transition first

order, but in case the quantity (c̄1 ·W(2,2,2) :
(
K(2) · c1

)2
) is zero, the phase transition is

second order to a biaxial nematic (although, to be sure, the next-order equations need
to be solved). These general results are used in the chapters following this one, applied
to more specific systems, like main chain and side chain polymers.





6 Main Chain LC Polymers

The isotropic-to-nematic bifurcation analysis is applied to main chain liquid crys-
talline (LC) polymers. We compute the bifurcation density and the bifurcating order
along the polymer as a function of 4 model parameters.

6.1. Introduction

Mesogenic molecules are capable of forming LC (or mesomorphic) phases as a func-
tion of temperature or concentration, in which case they are thermotropic or lyotropic,
respectively. Incorporating these mesogenic groups in polymers in the right way, they
may keep their LC behaviour, like e.g. field orientability and birefringence. From an
applied perspective, these ‘liquid crystalline polymers’ (LCP’s) have some additional
interesting properties, compared to low-molecular weight LC’s. The polymer character
may render the material effectively solid, allowing it to be formable into films or fibers
without the need to contain it in a cell – chemical cross links may be added to stabilize.
The resulting long time constants make these materials interesting for optical data stor-
age. Furthermore, the glass temperature is increased and crystallinity is usually totally
suppressed, so the LC state can even be frozen in. Other advantages are the prevention
of demixing of the various components and the possibility to incorporate even other
kinds of groups (with e.g. fluorescent properties) in the polymers as well. There are
roughly two kinds of LCP’s containing mesogenic groups; those, where they are located
within the polymers, are called main chain LCP’s, and those, which have side chains
containing them, are referred to as side chain LCP’s – although there are also combina-
tions of both. Some books on the structure, properties and applications of LCP’s are
Refs. [1, 26, 86, 87]. In this chapter, we focus on main chain polymers; side chain LCP’s
are the subject of the next chapter.

Already in 1923, Vorländer studied the effect of increasing molecular length in melts
of benzene rings para linked through ester groups, and noted the increasing transition
temperatures [4]. Synthesizing a polymer of these units, poly(p-benzamide), he found
that it did not melt but instead it charred, concluding that very long molecules might
be liquid crystalline but that practical problems interfere, i.e. unmeltable in this case.
In 1956, Robinson reported on the structure and phase equilibria of poly(γ-benzyl-
L-glutamate) [22]. These first LCP’s were polymers in solution where the stiff main
chains themselves acted as LC formers. They were investigated to develop synthetic silk,
eventually leading to the development of high-tensile strength fibers like Kevlar [23] –
although the importance of their LC nature to these fibers was not fully recognized

101
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Figure 6.1. A few units of a main chain LC polymer.

until the 80’s. The successfull introduction of applications based on low-molecular
weight LC’s, like LC displays, in the 60’s and 70’s, lead to an exploding interest in
LCP’s. Substantial progress was made by Jackson and Kuhfuss, who synthesized ran-
dom copolyesters, thus bringing down the melting temperature considerably [24]. And
later, the importance of the spacer concept, first applied in side chain LCP’s, made its
way to main chain LCP’s, allowing the incorporation of real mesogens. At present, all LC
phases found for low molecular weight LC’s (and more) have been found for LCP’s and
the field is as large as ever. Some popular topics are chirality and (anti)ferroelectricity
in LCP’s, elastomers and dendrimers.

Pioneering work in the understanding of LC behavior in rodlike molecules was done
by Onsager [7], Flory [8] and Maier and Saupe [9]. However, flexibility of the molecules
is a key ingredient in describing LC behavior of polymers. Theories modeling main
chain LCP’s as wormlike chains, which have flexibility distributed homogeneously along
the chain, date mostly from the 80’s [33, 34, 52]. Khokhlov and Semenov derived an
expression for the conformational entropy of wormlike chains in terms of distribution
functions [32, 33]. Warner and coworkers used expansions in spheroidal wave func-
tions [34, 88]. In the beginning of the 90’s, some theories for main chain LCP’s were
formulated using as an ingredient the actual geometry of the molecules, i.e. having stiffer
and more flexible parts [89, 90, 91, 92] – although there had been earlier attempts by
Khokhlov and coworkers (see Ref. [93] and references therein). Simulations of genuine
long polymer systems have not been performed, simply because the systems are too
big. There are some reports for shorter molecules, consisting of linked hard spheres [94],
somewhat flexible spherocylinders [95] and mesogens separated by spacers [96].

In this chapter, we consider main chain LC polymers consisting of rodlike mesogens
and wormlike spacers. These main chain LCP’s are described by 4 or, in case they are
infinitely long, 3 parameters. We formulate the isotropic-to-nematic (I-N) bifurcation
analysis developed in Chap. 5 for this system, so the interaction between two polymers is
their mutual excluded volume, and we use the Onsager approximation. The bifurcation
analysis takes into account the interactions within the chain in an exact fashion. The
results are analytical expressions for the I-N bifurcation density and relative bifurcating
order along the chain as a function of model parameters. We compare our results with
the Maier-Saupelike theories of Yurasova and coworkers [89, 90, 91] and Wang and
Warner [92].
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Figure 6.2. A unit of a main chain LC polymer.

6.2. Model Parameters

The main chain polymers, we consider, consist of N repeating units. Every unit
consists of a mesogen and a bit of spacer on each side (see Figs. 6.1 and 6.2). We use
the segmented-chain approach of the previous chapter. In that language, we have two
types of segments, and R = 2. The mesogens (type τ2 = M) have dimensions lM and dM

and their total number in the polymer is MM = NMM = N (MM = 1 is the number of
mesogens in a unit). The number of spacer segments (type τ1 = S) in one unit is MS,
so their total number is MS = NMS. The spacer segments have dimensions lS and dS.
Suppose for simplicity thatMS is even, so every unit consists of 1

2
MS spacer segments,

a mesogen segment and again 1
2
MS spacer segments, see Fig. 6.2. The segment label is

m (or k) and runs along the chain; m ∈ {1, · · · ,M}, with M = N (MS + 1) the total
number of segments. Every (n(MS + 1)− 1

2
MS)’th segment (with n the label of a unit)

is a mesogen, all the others are spacer segments. Often, we also use the label m within
a unit, so then m ∈ {−1

2
MS, · · · , 1

2
MS}. It should be clear from the context, what the

range of m is.
We recall the excluded volume between two segments m and m′ on different polymers

is

Em,m′(ω̂, ω̂′) = lτplτp′ (dτp + dτp′ )| sin γ(ω̂, ω̂′)|, (6.1)

where m ∈ τp and m′ ∈ τp′ . Between nearest-neighbour segments within a polymer,
we use the same potential as in Chap. 3, as it is locally harmonic in case of mutual
alignment,

um,m+1(ω̂, ω̂′) = −JSω̂ · ω̂′. (6.2)

We assume this potential between the spacer segments, but, to curb the number of
parameters, also between the spacer and the mesogen segments.

In order to loose an extra model parameter, we use (lateron) the wormlike chain limit
(WCL) for the spacers. Since Khokhlov and Semenov [33], the wormlike chain concept
is quite popular as a model for main chain LC polymers. However, here we assume the
mesogens to be liquid crystalline and not so much the wormlike spacers, which act (only)
to decouple the mesogens. The WCL for the spacers is given by

lS → 0, βBJS →∞, MS →∞, (6.3)

with the following combinations remaining constant,

PS = βBJSlS M̄S =MS/βBJS. (6.4)
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-

WCL

Figure 6.3. The wormlike chain limit

The quantities PS and M̄S are the persistence length of the spacer and the number of
persistence lengths in one spacer, respectively. The label becomes continuously as well,
m̄ = (m/M)M̄ (and therefore m → ∞). In general, a bar over a quantity refers to the
WCL.

Another way to reduce the number of parameters is by assuming the polymer to be
infinitely long. Due to translational symmetry along the chain, every unit is the same
as its neighbour (and there are no free end effects). One has to take care to rescale the
density as well,

N →∞, ρ→ 0 with ρN finite, (6.5)

where, obviously, ρN is the unit number density (whereas ρ is the polymer number
density). This limit, we call the infinite polymer limit (IPL). We will explicitly state
when this limit is used or not (furtheron, we will also investigate the effect of increasing
chain lengths).

Using the scale invariance of the system, we define dimensionless quantities to reduce
the number of effective parameters even more. The dimensions of the mesogens are the
most logical choice to use as a standard, as these are not subject to either the WCL or
the IPL, so

P̃S = PS/lM and d̃S = dS/dM, (6.6)

and the dimensionless unit density

η = 2l2MdMρN . (6.7)

The main chain polymers in the WCL and using dimensionless quantities are de-
scribed by 4 or, also using the IPL, 3 model parameters, i.e. P̃S, d̃S, M̄S and, in case
of finite polymer lengths, N . In physical situations, d̃S will usually be smaller than one.
In fact, we will use frequently the case that d̃S = 0. It is instructive, because there
are no contributions from the SS interactions (there is no excluded volume between two
zero-thickness spacers). However, note that the MS excluded volume is not zero, so the
zero-thickness spacers still contribute (Eq. 6.1).

The nematic phase in this system of polymers is uniaxial. All components in the
polymer favour parallel ordering, and there is no molecular mechanism which can oppose
this. Therefore, we need only the uniaxial nematic order parameters, one for every
component,

S(τp) = 〈fτp , P2〉 (6.8)

We are also interested in the order along the polymer,

Sm = 〈fm, P2〉, (6.9)
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which is related with Eq. 6.8 through S(τp) = 1
Mτp

∑
m∈τp Sm. In the following, as we did

just here, we usually write things in the segmented chain approach (with discrete labels
etc.) and specifically state when the WCL or the IPL is applied.

6.3. Bifurcation Details

In this section, we evaluate the matrices K(2) and W(2)/W (0), which are needed to
solve the first-order bifurcation equation (Eq. 5.63). First, we consider the segmented
chains, and then, the WCL and the IPL are applied. The results of the bifurcation
analysis are the subject of the next section.

To be complete, we give again the bifurcation equation,

c = − ρ0

4πW (0)
W(2)K(2)c, (6.10)

where the lowest positive value for ρ0 equals the (physical) bifurcation density ρ∗. The
2 elements of the bifurcating vector c∗ yield the relative bifurcating order of the compo-
nents. The 2× 2-matrix K(2) is has the following elements (Eqs. 5.13 and 5.36),

Kτp,τp′
= s2N 2MτplτpMτp′

lτp′ (dτp + dτp′ ). (6.11)

Of course, MM = 1 and s2 = −π2/8 is the second Legendre coefficient of | sin γ|. We
normalize K(2) with respect to its lower right element, κ = (s2N 22l2MdM)−1K(2). In the
WCL, we obtain

κ̄ =

[
M̄2

SP̃
2
S d̃S M̄SP̃S

1
2
(1 + d̃S)

M̄SP̃S
1
2
(1 + d̃S) 1

]
. (6.12)

Note that there is no N -dependence in κ̄.
Next, we caculate the elements of the 2 × 2-matrix W(2)/W (0). From Eq. 6.2, we

know that all interactions between nearest-neighbour segments are the same. Therefore,
between two segments m and m′, we get simply (see Eq. 5.39)

W
(2)
m,m′

W (0)
= σ|m−m

′| (6.13)

with σ = w(2)/w(0). The coefficients w(j) are the jth Legendre coefficients of w(cos θ) =
exp[βJSω̂ · ω̂′], and θ the angle between ω̂ and ω̂′. Consequently, the expression for the
elements of W(2)/W (0) (see Eq. 5.58),

W
(2)
τp,τp′

W (0)
=

1

MτpMτp′

∑
m∈τp

∑
m′∈τp′

σ|m−m
′|, (6.14)

with both τp and τp′ being either S or M. At this point, we define α = NW(2)/W (0), in
order to have a compact notation, and also, to rescale it with N because the elements of
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W(2)/W (0) diverge in the IPL. Consequently, the expressions for the elements of α are

αS,S =
N

N 2M2
S

N (MS+1)∑
m,m′=1

σ|m−m
′| − αS,M + αM,S

MS

− αM,M

M2
S

(6.15)

αS,M = αM,S =
N

N 2MS

N (MS+1)∑
m=1

N∑
n=1

σ|m−(n(MS+1)− 1
2
MS)| − αM,M

MS

(6.16)

αM,M =
N
N 2

N∑
n,n′=1

σ|n−n
′|(MS+1) (6.17)

where we have (partly) expressed the elements in a recurrent fashion. We note that all
sums above can be performed analytically. However, we are mainly interested in the
results in the WCL and therefore proceed directly. In the WCL, σ becomes (to first
order in 1/βJ)

σ =

∫ 1

−1
dxP2(x) exp[βJx]∫ 1

−1
dx exp[βJx]

→ 1− 3(βJ)−1, (6.18)

and therefore

σMS →
(
1− 3(βJ)−1

)βJM̄S = exp
[
−3M̄S

]
, (6.19)

where we have used limn→∞(1 + x
n
)n = ex. As an example, we evaluate the summation

in Eq. 6.17 (over n and n′),

1

N

N∑
n,n′=1

σ|n−n
′|(MS+1) → 1

N

N∑
n,n′=1

e−3M̄S|n−n′|

=
1 + e−3M̄S

1− e−3M̄S

(
1− 2e−3M̄S

N
1− e−3NM̄S

1− e−6M̄S

)
. (6.20)

For the summations over m, we note that these become integrals in the WCL,

1

NMS

N (MS+1)∑
m=1

→ 1

NM̄S

∫ NM̄S

0

dm̄, (6.21)

and finally, the contributions due to αM,M in Eq. 6.16 and those due to αM,M and αS,M in
Eq. 6.15 go to zero in WCL. Skipping the rest of the integral evaluations, we immediately
move on to the results, and Eqs. 6.15 to 6.17 become, in the WCL,

ᾱS,S =
2

3M̄S

(
1− 1− e−3NM̄S

3NM̄S

)
(6.22)

ᾱS,M = ᾱM,S =
2

3M̄S

(
1− e−

3
2
M̄S

N
1− e−3NM̄S

1− e−3M̄S

)
(6.23)

ᾱM,M =
1 + e−3M̄S

1− e−3M̄S

(
1− 2e−3M̄S

N
1− e−3NM̄S

1− e−6M̄S

)
(6.24)
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For infinitely long polymers (IPL), it is clear which terms drop out, and the matrix ᾱ
becomes

ᾱ =

[
2

3M̄S

2
3M̄S

2
3M̄S

1+e−3M̄S

1−e−3M̄S

]
(6.25)

In terms of these new matrices κ̄ and ᾱ the bifurcation equation is

c̄ = −η0s2

4π
ᾱκ̄c̄. (6.26)

As the problem is 2-dimensional, it has solutions

−η0s2

4π
=
πη0

32
= 2

/(
tr(ᾱκ̄)±

√
tr2(ᾱκ̄)− 4 det(ᾱκ̄)

)
, (6.27)

with tr and det being the trace and determinant of matrices respectively. tr(ᾱκ̄) is
always larger than zero; det(ᾱκ̄) can be both positive and negative. (It can be checked
as well that tr2(ᾱκ̄) ≥ 4 det(ᾱκ̄) for this system, so that the eigenvalues are real.)
Consequently, the physical bifurcation density is given by

η∗ =
64

π

/(
tr(ᾱκ̄) +

√
tr2(ᾱκ̄)− 4 det(ᾱκ̄)

)
, (6.28)

and, putting the mesogen order to one, c̄∗ =

(
c̄S,∗
1

)
, we get for the average order of

the spacers,

c̄S,∗ = (2(ᾱκ̄)(2,1))−1

(
(ᾱκ̄)(1,1) − (ᾱκ̄)(2,2) +

√
tr2(ᾱκ̄)− 4 det(ᾱκ̄)

)
, (6.29)

with (ᾱκ̄)(i,j) being the (i, j)’th element of the matrix ᾱκ̄.
The bifurcating order along the polymer, is given by the M -dimensional (primed)

vector c′ (see Eqs. 5.75 and 5.76),

c′ = − ρ0

4πW (0)
W(2)′K(2)c, (6.30)

and the (primed) M × 2-matrix W(2)′ is given by

W
(2)
m,τp′

′

W (0)
=

1

Mτp′

∑
m′∈τp′

σ|m−m
′|. (6.31)

Also in this case, we define α′ = NW(2)′/W (0). In the WCL, the discrete segment
label m becomes continuous and the elements of α′ behave as α′m,τp′ → ᾱ′τp,τp′ (m̄), where

m, m̄ ∈ τp. So, in the WCL, also ᾱ′ is a 2× 2-matrix, differing from ᾱ that its elements
depend on m̄. Note that, because m̄ ∈ τp, ᾱ′τp,τp′ (m̄) is not symmetrical. The evaluation

of ᾱ′ is similar to that of ᾱ, so we give them without further comment,

ᾱ′S,S(m̄, n) =
1

3M̄S

(
2− e−3(m̄+(n− 1

2
)M̄S) − e−3((N−n+ 1

2
)M̄S−m̄)

)
(6.32)
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Figure 6.4. The I-N bifurcation density (left) and the relative bifurcating
order of the spacers (right) as a function of spacer length, M̄S, for various
values of the polymer length, N . The parameters are P̃S = 0.3 and d̃S = 0.
For the left figure, from the top curve to the bottom, the polymer length is,
respectively, N = 1, N = 2, N = 4 and N =∞. For the right figure, this is the
same, except that N increases from bottom to top. It can be checked that at
M̄S = 0, η∗ = 32/πN (the rigid rod result). The average order of the mesogens
is set equal to 1.

ᾱ′S,M(m̄, n) = e−3|m̄| + e−3(M̄S+m̄) 1− e−3(n−1)M̄S

1− e−3M̄S

+ e−3(M̄S−m̄) 1− e−3(N−n)M̄S

1− e−3M̄S
(6.33)

ᾱ′M,S(n) =
1

3M̄S

(
2− e−3(n− 1

2
)M̄S − e−3(N−n+ 1

2
)M̄S

)
(6.34)

ᾱ′M,M(n) =
1 + e−3M̄S − e−3nM̄S − e−3(N−n+1)M̄S

1− e−3M̄S
(6.35)

In Eqs. 6.32 to 6.35, n denotes the unit-dependence, and therefore, the label m̄ stays
within the unit, m̄ ∈ [−1

2
M̄S,

1
2
M̄S]. In case of infinite polymer lengths, both N and

n (and their difference, N − n) go to infinity, and it is clear which terms in Eqs. 6.32
to 6.35 drop out. In all cases it holds that

ᾱ =
1

NM̄S

N∑
n=1

∫ 1
2
M̄S

− 1
2
M̄S

dm̄ᾱ′(m̄, n). (6.36)

So, having solved the eigenvalue problem, Eq. 6.26, for η∗ and c̄∗, one can compute the
order along the polymer,

c̄′∗ =

(
c̄′S,∗(m̄, n)
c̄′M,∗(n)

)
= −η∗s2

4π
ᾱ′(m̄, n)κ̄c̄∗ (6.37)

where, again, we emphasize that m̄ ∈ [−1
2
M̄S,

1
2
M̄S] and n ∈ {1, · · · ,N}.

Finally, in ending this section, we want to mention a few limiting cases of our system
for which we know the results (at least, on the level of the bifurcation analysis). In case
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Figure 6.5. The dependence of the bifurcation density (left) and the relative
bifurcating order of the spacers (right) on the length of the polymer, N . The
parameters are P̃S = 0.3, d̃S = 0. and M̄S = 1. The magnitude of the vertical
axes depends quite critically on the spacer length M̄S (i.e. much larger for
small M̄S and vice versa). The order of the mesogens is set equal to 1.

of zero-length spacers (by putting P̃S = 0), the polymers reduce to chains of mesogens,
coupled via a zero-size hinge and a coupling constant exp(−3M̄S). Then, the bifurcation
density is given by Eq. 3.62 in Chap. 3 in which σ = exp(−3M̄S). Another case of zero-
length spacers is obtained when M̄S = 0, and the polymers reduce (effectively) to long
rods of length N lM (i.e. the original Onsager model). Then, the bifurcation density is
the result due to Kayser and Raveché, η∗ = 32/πN [37]. This result, we also mention in
the next section, where we plot the dependence of the bifurcation density on the spacer
length M̄S. The last limiting case is a bit less accessible. The wormlike chain result
can be obtained by setting PS � lM, or lM → 0 (zero-size mesogens). This means, we
have to rescale the density η in terms of PS instead of lM. Realizing this, also this last
result is checked in a straightforward fashion, and the bifurcation density becomes as in
Eq. 3.63.

6.4. Bifurcation Results

The analytical results, we have obtained in the previous section, will be plotted and
discussed in the present. We investigate the dependence of the bifurcation density and
spacer order on some of the model parameters. Usually, we vary the spacer length, M̄S,
as this is experimentally the most accessible parameter. We also look at the effect of
increasing chain length, N . The bifurcating order along the polymer will also be plotted,
both for infinitely long chains (where we plot just one unit) and for finite lengths. The

other parameters are usually set as follows: P̃S = 0.3 and d̃S = 0. We don’t aim to
describe a real system, but just focus on the features of this approach.

In Fig. 6.4 (left), we have plotted the bifurcation density for various values of the
polymer length, N = {1, 2, 4,∞} (from top curve to bottom, respectively). On the
right, in Fig. 6.4, we have given the average order of the spacer at bifurcation, for the
same values of N , with the difference that N increases from the bottom curve to the
top.



110 6. MAIN CHAIN LC POLYMERS

0.02 0.04 0.06 0.08 0.1

0.99

0.992

0.994

0.996

0.998

1

0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

1

c̄′S,∗ c̄′S,∗

m̄ m̄

c′S,∗

m̄
2 4 6 8 10

0.2

0.4

0.6

0.8

1
Figure 6.6. Order along the spacers
for infinitely long polymers (N → ∞,
and only one spacer is shown). The
parameters are P̃S = 0.3, d̃S = 0. and
M̄S = 0.1 (top left), M̄S = 1. (top
right) and M̄S = 10. (bottom left).
The label m̄ ∈ [0,M̄S], and the meso-
gens are located at m̄ = 0 and M̄S.
The mesogens have order equal to 1.

When M̄S = 0, the chain is nothing more than a sequence of N tightly connected
mesogens of length lM, or equivalently, one long mesogen of length N lM. Consequently,
η∗(M̄S = 0) = 32/πN and c̄S,∗(M̄S = 0) = 1. Increasing the spacer length, M̄S,
the mesogens become more disconnected from each other, and the bifurcation density
goes up. (Except for N = 1, because there is only one mesogen per molecule. Here
increasing the spacer length just increases the dimensions of the molecule and as a result
the bifurcation density goes down.) When the spacer length roughly exceeds 1 to 3, the
mesogens are totally decoupled and there is no N -dependence any more. Going to very
large spacer lengths, we are effectively only increasing the dimensions of the molecules
and, therefore, M̄S-dependence of η∗ slowly goes down (hardly visible in Fig. 6.4, but

this effect is somewhat more pronounced for d̃ 6= 0). The average order (Fig. 6.4 (right))
of the spacers decreases with increasing M̄S, as the mesogen concentration gets diluted
more and more and the resulting orientational field (external as well as within the chain)
decreases.

In Fig. 6.5, the dependence of the bifurcation density and the spacer order on the
length of the polymer is plotted for a single value of M̄S. At this spacer length (M̄S = 1),
there is still some orientational coupling between the mesogens. Consequently, increasing
the chain length decreases the bifurcation density (and increases the spacer order). This
effect is much stronger for lower M̄S and much weaker for higher M̄S.

The order along infinitely long polymers is plotted in Fig. 6.6. The upper left (very
short spacers) and lower left plots (very long spacers) are extreme cases, the upper right
is for spacers of intermediate lengths. Starting with the very long spacers (lower left),
we see that the spacer order at the mesogens (at m̄ = 0) is the same as the mesogen
order but then moving away, it ‘relaxes’ to a plateau. For intermediate lengths, the same
happens except that it is hard to identify the relaxed part, as the relaxation tales seem
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to touch (this is based on the shape and the vertical scale). For small lengths, the shape
of the order dependence is the same as for intermediate lengths but the scale is much
smaller. In this case the mesogens are so close that the spacers can not relax to their
plateau value.

In Fig. 6.7, we have plotted the order along a polymer of N = 13 units. Three
different spacer lengths have been used and chosen such that it shows nicely the effect of
the finite length of the polymer on the order distribution along it. In general, for linear
polymers it is a well-known result that in the nematic phase, the order at the ends is
lower than in the middle. In case of the top plot, the spacers are quite short, and the
influence of the ends propagates several units (about 5 or 6) to the middle of the chain.
As a result the spacers in between are ordered almost equally strong as the mesogens
they are connected with. In the middle plot, the spacers are longer, and therefore, the
number of units that ‘feel’ the ends is smaller (2 to 3). Simultaneously, the spacers can
keep a more disordered conformation. In the bottom plot, the spacers are again longer
and the above effects are even more pronounced.

6.5. Conclusion and Discussion

We have applied the segmented-chain approach, developed in the previous chapter, to
the case of main chain LC polymers. The geometry of these polymers is explicitly taken
into account; i.e. consisting of mesogenic blocks connected by more flexible spacers. We
have applied the wormlike chain limit to the spacers. The resulting model has 3 model
parameters (i.e. M̄S, P̃S and d̃S), for infinitely long polymers or 4 (i.e. plusN ), in case of
polymers of finite lengths. We have treated the intra-molecular interactions exactly, and
using bifurcation analysis, obtained analytical information on the I-N phase transition.
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Figure 6.7. Order along the chain for a finite-length polymer, N = 13. The
black dots are the mesogens and the lines are the spacers. The parameters are
P̃S = 0.3, d̃S = 0. and M̄S = 0.2 (previous page, top), M̄S = 0.5 (previous page,
bottom) and M̄S = 1. (here). The label m̄ ∈ [0,NM̄S], the mesogens (black
dots) are located at m̄ = (n− 1

2)M̄S with n ∈ {1, · · · ,N} and the average order
of the mesogens is 1.

One of the most important results is the dependence of the bifurcation density on the
spacer length (M̄S), which shows a huge increase in density for small spacer lengths,
confirming the experimental finding that spacers decouple the mesogens Another nice
result is the relative order profile along the (finite-length) polymers.

In three papers by Yurasova et. al. [89, 90, 91], a Maier-Saupe theory (using tem-
perature) is used to describe the same system (although, in Ref. [91], also the mesogens
have some flexibility). They use the spherical approximation to analytically compute the
partition function for infinitely long polymers and the resulting theory has 4 parameters,
which is one more than ours. The reason for these extra parameters is that in case of
excluded volumes, the dimensions of the polymer totally fix the interactions, whereas in
case of Maier-Saupelike theories, more parameters are needed to fix them. Among other
results, they plot the dependence of the transition temperature on spacer length, and
find a minimum. This is similar to what we find; i.e. a maximum in the density as a
function of spacer length (see Fig. 6.4). In both cases (theirs and ours), the extremum
has a steep side, on the small-spacer side, and a shallow one, on the large-spacer side.
A somewhat unphysical result they obtain is that for large spacer lengths, the order
parameter at the phase transition of the spacers is larger than that of the mesogens.
This suggests that, in that case, the spacers are driving the transition and one should
pay attention to the physical validity of the theory.

Wang and Warner [92] also use a Maier-Saupe theory with 4 parameters to describe
the same system of infinitely long polymers. They write down an exact formulation
(concerning the intra-molecular degrees of freedom) of the partition function and then
use an expansion in terms of spheroidal wavefunctions of which they keep only the
‘ground state’ contribution. In the resulting stationarity equations, contributions appear
which are due to the fact that the components are embedded in a polymer (in a way,
this is a first-order correction to Maier-Saupe mean field theory). Also there, a strong
decrease of transition temperature is found for small spacer lengths.
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As we do for side chain polymers in the next chapter, it is possible to write down
and solve numerically the stationarity equations for main chain polymers in the nematic
phase. However, concerning nematic phases, something other than that the ordering
becomes gradually stronger with density is not expected, and therefore, we have not
performed these calculations. Random copolymers are polymers in which the mesogens
and the spacers do not have constant lengths. There are, for instance, two different
lengths which they can have, and these alternate in a random fashion along the chain.
This can be incorporated in the present theory. However, the interesting effect concern-
ing random copolymers is that they reduce crystalline tendencies and enhance glassy
behaviour. This lies far outside the scope of the present approach.

On the other hand, inhomogeneous ordering (i.e. a smectic) is expected to take place
at some density. In terms of modeling, however, this is hard to include, as spatial
coupling between remote parts of the polymer can not be discarded. We want to make
a few more remarks on this. A mixture of thick and thin hard rods tend to demix (even
in the isotropic phase) as they have an unfavourable interaction [97]. This demixing
tendency of the components might help to stabilize the smectic phase in systems of
main chain LC polymers. Although on the other hand, the system has to pay for the
reduction of entropy by confining the spacers to inbetween the layers. In experimental
situations, where systems of block copolymers show microphase separation, both blocks
usually have some flexibility and consist of several (or many more) persistence lengths. In
this way, in the microseparated phase, the blocks can still retain a considerable amount
of entropy within the microseparated domains. Therefore, it would be very interesting to
see how microphase separation emerges in systems of hard wormlike block copolymers
(without any other but the steric interactions) and competes with ordinary nematic
ordering. Bifurcation analysis may be a useful tool.





7 Side Chain LC Polymers

We study orientational ordering in a fluid of side chain liquid crystalline (LC) poly-
mers. The interchain interactions are considered in a mean field (Onsager) approxi-
mation, but the intrachain interactions are described exactly. We find no nematic-to-
nematic phase transitions, in contrast with earlier predictions by Warner and cowork-
ers [98, 99].

7.1. Introduction

Side chain LC polymers are polymers with side chains containing mesogenic or LC
forming groups. The polymer is referred to as the backbone and the LC forming groups
as the mesogens. In Chap. 6, we have given a more extensive introduction to the history
and (possible) applications of LC polymers (LCP’s) in general. Here, we will only
make a few more comments, specific for the case of side chain LCP’s. In the 1970’s,
the field of LC’s and LCP’s was rapidly growing. However, systematic investigations
started only after Ringsdorf, Finkelmann and coworkers, in 1978, recognized that, in
order to form LC phases, spacers were needed to decouple the mesogenic groups from
the backbones [25, 100, 101]. Before, mesogens were directly linked to the backbone,
yielding, apart from a few cases, only glasses with some optical anisotropy. Above
the glass transition polymers tend to adopt a coillike conformation, maximizing their
entropy. In case of direct linkage, the motions of the mesogens and the backbone are
strongly coupled, and the LC tendency of the mesogens has to compete with the coillike
tendency of the backbone. Moreover, the mesogens can not freely rotate as they are
so tightly connected to the backbone that they experience steric hindrance. Inserting a
flexible aliphatic spacer between the mesogens and the backbone solves these problems,
decoupling the orientation and (partly) the position of the mesogen from the backbone.
The introduction of the spacer concept marked the beginning of the development of
many new compounds. Remarkably, the spacer concept found its way to the field of
main chain LCP’s, only later, where before, predominantly stiff-chain polymers were
used [102]. Still, at present, side chain LCP’s seem to be more popular than main chain
LCP’s, which is probably due to the fact that spacers are more effective in the case of
side chain LCP’s. In side chain LCP’s, spacers really decouple the mesogens from the
backbone, whereas in main chain LCP’s, the mesogens are merely decoupled from each
other, but are still embedded in the polymer. Some books on (side chain) LCP’s are
Refs. [1, 26, 86, 87, 103] and some more recent and more specific reports on the relation
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Figure 7.1. A few units of a side chain polymer

between molecular structure and LC phase behaviour for some specific compounds are
Refs. [30, 104, 105, 106, 107].

There are not many theories for LC ordering in side chain LCP’s. Khokhlov and
coworkers used a variant of Flory’s lattice method [93, 108]. A more serious approach
has been taken by Warner and coworkers [98, 99]. They used side chain LCP’s consisting
of a wormlike backbone with rigid mesogenic groups hinged perpendicularly on it. All
interactions between the various components (backbone, side chains) were modeled in a
mean field (Maier-Saupe) way and as such, there were only effective fields on the com-
ponents and no field contributions acting directly within the polymer. The main results
were phase diagrams (temperature vs. relative fraction of side chains) featuring three
uniaxial nematic phases and first order nematic-to-nematic phase transitions. Biaxial
phases have been included as well in Ref. [109]. In Ref. [110], Renz and Warner argue
that layer hopping is an essential feature of side chain LCP’s in the smectic phase. We
are not aware of other molecular statistical theories or simulations relating molecular
parameters of side chain LCP’s to the bulk LC phase behaviour.

In this chapter, we consider side chain LC polymers consisting of a backbone and,
on regular distances, mesogens connected to the backbone via flexible spacers. The
backbone is thought to be infinitely long, so we do not have to deal with end effects, and
a side chain LCP is described effectively by 6 model parameters. We assume that two
polymers interact through their mutual excluded volume, allowing us to use the Onsager
approximation. Increasing the density, the mesogens go from the isotropic to a nematic
phase. Due to the perpendicular hinge of the spacer to the backbone, a backbone
can assume an oblate or a prolate conformation in the nematic phase, depending on
the stiffness of the spacer. We use the isotropic-to-nematic (I-N) bifurcation analysis,
developed in Chap. 5, for this system. The I-N bifurcation density and bifurcating
order along the backbone and spacers are obtained in analytical form. We also calculate
numerically the distribution functions on a grid. As a result, we locate the exact phase
transition as well as obtain the behaviour of the system for higher densities, in the
nematic phase. We find no nematic-to-nematic phase transitions. We compare our
results with those of Warner and coworkers [98, 99] and end with an outlook.



7.2. GENERAL REMARKS 117

Backbone (B)

Spacer (S)

Mesogen (M)

mB = 1
1
2
(MB + 1) MB

mS = 1

MS

Figure 7.2. A unit of a side chain polymer

7.2. General Remarks

7.2.1. Model Parameters. We will assume that the polymers consist of N re-
peating units. Every unit consists of a piece of backbone (beingMB type-B segments),
a rather flexible spacer (MS type-S segments) and a mesogen (1 type-M segment). For
simplicity (although not necessary), we assume thatMB is odd and that the first segment
of the spacer is connected to the middle of the backbone piece, i.e. the 1

2
(MB +1)th seg-

ment. See also Figs. 7.1 and 7.2. Note that MB = NMB, MS = NMS and MM = N ,
where the roman M ’s denote the number of segments in the whole polymer and the
gothicM’s the number of segments in a unit. The dimensions of the backbone segments
are lB and dB, for the spacer segments they are lS and dS, and for the mesogens: lM and
dM. Further, in the language of Chap. 5, the number of different types is R = 3, and we
put {τ1, τ2, τ3} = {B, S,M}. For the nearest neighbour bending potential we use

uB,B(ω̂, ω̂′) = −JBω̂ · ω̂′

uB,S(ω̂, ω̂′) =

{
0 if ω̂ · ω̂′ = 0
∞ if ω̂ · ω̂′ 6= 0

uS,S(ω̂, ω̂′) = −JSω̂ · ω̂′ (7.1)

uS,M(ω̂, ω̂′) = −JSω̂ · ω̂′,

with the BS-potential forcing (at least locally) perpendicular orientations of backbone
and side chain and thus providing the mechanism for the competition in the nematic
ordering of these two components. In order not to introduce many more model parame-
ters, we have chosen to use a rigid form (no bending) for uB,S and to use JS also for uS,M.
This will not influence the results. As was stated in Chap. 5, the interactions between
segments on different chains are described via their mutual excluded volume, Eq. 5.6.
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Figure 7.3. The wormlike chain limit

Thus, the total number of model parameters we have is 11: the dimensions of the 3
segments (lB, dB, lS, dS, lM and dM), two coupling constants (JB and JS), the number of
segments in the backbone and the spacer per unit (MB andMS) and finally, the number
of repeating units (N ).

7.2.2. The Wormlike Chain Limit. In order to reduce the number of model
parameters we will apply, at some point in the analysis furtheron, the so-called wormlike
chain limit (WCL) to the backbone and spacers. Furthermore, since Khokhlov and
Semenov [32, 33], the wormlike chain concept (introduced by Kratky and Porod [49]) is
widely used to model nematic ordering in somewhat flexible molecules. Going from our
system of segmented chains to continuously flexible chains, the WCL can be formulated
as follows,

lB → 0, βJB →∞, MB →∞
lS → 0, βJS →∞, MS →∞

(7.2)

where the following products and ratios stay finite,

PB = βJBlB M̄B =MB/βJB

PS = βJSlS M̄S =MS/βJS
. (7.3)

The WCL for segmented chains is discussed extensively in Chapter 3. The quantities
Pτp are persistence lengths of type τp and M̄τp the number of persistence lengths in one
repeating unit. In general, when quantities appear with a bar over them, they refer to
the fact that the WCL has been taken. By applying the WCL to the backbone and
the spacers (and making them continuously flexible) we loose two model parameters:
lB, JB,MB → PB,M̄B and lS, JS,MS → PS,M̄S. The physical results are expected to
stay the same.

7.2.3. Other Considerations. We can proceed simplifying the system (and loos-
ing another model parameter) by assuming the backbone is infinitely long. In this way,
every unit finds itself in the ‘middle’ of the polymer since the influence of the free ends
of the backbone is zero. This, we call the infinite backbone limit (IBL),

N →∞ ρ→ 0 with ρN finite, (7.4)

where the density ρ has to go to zero in order to have a finite unit density ρN . This
limit allows us to consider (effectively) only a single unit, as every unit in the chain is
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Figure 7.4. The isotropic phase

exactly the same as its neighbour. Note, however, although there are no ‘free end effects’
(and all units are effectively the same), that within a unit, the orientational distribution

functions (ODF’s, see Eq. 5.8) will generally still vary; i.e. we expect f
(B)
m=1(ω̂) (on the

backbone, between two spacer hinges) and f
(B)

m= 1
2

(M̄+1)
(ω̂) (on the backbone, on a spacer

hinge) to be different in the nematic phase.
Finally, as our system is scale-invariant we can use dimensionless length scales and

effectively drop two more parameters. The mesogens are the largest segments (they are
the liquid-crystal formers) and are not subject to the WCL, and therefore, we choose to
measure the other length scales in units of lM and dM. So,

P̃τp = Pτp/lM and d̃τp = dτp/lM , (7.5)

with τp ∈ {B, S} and the tilde denoting dimensionless quantities. We define a dimen-
sionless unit density, by rescaling as follows

η = 2l2MdMρN . (7.6)

Using the above two limits and the scale-invariance, we reduce the number of model
parameters to 6: P̃B, d̃B and M̄B for the backbone, and P̃S, d̃S and M̄S for the spacers.
Although 6 is still a large number, if we want to explore all of parameter space, it is
a significant reduction compared to 11. In practical physical situations, though, it will
generally hold that 0 < d̃B, d̃S < 1. A case we find instructive and frequently use is
obtained by setting d̃B = d̃S = 0 and P̃B = P̃S, leaving only three model parameters. In
this case, where backbone and spacers have zero thickness, the BB, BS and SS excluded
volumes are zero, but the BM, SM and MM are not. The interesting phases (topic of
the next subsection) will still be there.

7.2.4. Nematic Phases and Order Parameters. We restrict ourselves to uni-
axial phases. Biaxial nematic phases would be expected in side chain polymers with
mesogens in the side chains as well as the backbone. In this last case, the competition
(for nematic ordering) between the backbone and the side chains could result in a biaxial
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Figure 7.5. The oblate and prolate nematic phases

nematic. However, we are considering side chain polymers with only mesogens in the
side chains and therefore expect uniaxial nematics. As the side chain polymers consist
of three components, we have three order parameters for uniaxial nematics,

S(τp) = 〈fτp , P2〉, (7.7)

with τp ∈ {B, S,M}.
At low unit densities η, the side chain polymers are in the isotropic phase and all order

parameters are zero, S(τp) = 0. On increasing the density, at some point, the mesogens
will order with respect to a direction n̂, S(M) > 0. As a result, the backbone and the
spacers (experiencing the orientational field) will order as well. It then depends on the
model parameters what happens. In case of short stiff spacers (and small M̄B as well),
the backbone is forced to orientations perpendicular to n̂, hence S(B) < 0 and S(S) > 0.
In case of longer (more flexible) spacers (and/or M̄B large), the spacers can bend, and
the backbone can order parallel to n̂ as well, S(B), S(S) > 0. So, there is a competition
between the backbone (which can lower its average excluded volume with the mesogens
by organizing parallel) and the spacers (which can lower their average internal energy
by assuming a more straight conformation). The nematic phase for which S(M), S(S) > 0
and S(B) < 0, we call oblate nematic (ON) (because the backbone has on average an
oblate conformation) and to the phase where S(M), S(S), S(B) > 0, we refer to as prolate
nematic (PN). 1 For even higher densities, the excluded volume becomes more and more
important, and a system in the ON phase is expected to have a transition to the PN
phase.

1The qualifications oblate and prolate refer to the shape of the backbone coil, and as such to the
radius of gyration of the coil in different directions. The connection between the average backbone
order parameter, S(B), and the shape of the backbone coil is not a trivial one, and should, in principle,
be investigated further. However, there is a rough correspondence between the two, and we proceed
bearing this in mind. In Ref. [34], radii of gyration are considered for wormlike chains in Maier-Saupe
effective fields.
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It has already been mentioned in the previous subsection that, in a nematic phase,
the ODF’s will generally vary along the backbone and the spacers. For a point on the
backbone, it depends wether or not there is the branch of a spacer closeby. And on a
spacer, it matters a lot being close to the mesogen (stronger ordered) or to the backbone
(weaker ordered). Consequently, we are also interested in the m-dependence of S(B) and
S(S),

S
(τp)
m = 〈fm, P2〉 with m ∈ τp, (7.8)

and τp ∈ {B, S}.

7.3. Bifurcation Analysis

7.3.1. Technical Details. The first-order bifurcation equation for a system of
branched heteropolymers is given by Eq. 5.63. In this subsection, we will solve this
equation for the case of side chain polymers. To that end, we proceed by evaluating the
matrix elements of K(2) and W(2)/W (0). As our side chain polymers consist of 3 compo-
nents, both K(2) and W(2)/W (0) are 3×3-matrices. We start with the segmented chains
(using all 11 model parameters) and gradually work our way towards the 6-parameter
formulation. We specifically state when we apply the WCL, the IBL or when we start
using dimensionless quantities.

For all combinations (p, p′), the excluded volume interactions have the following form
(Eq. 5.6),

Eτp,τp′ (ω̂, ω̂
′) = MτpMτp′

Vτp,τp′ | sin γ(ω̂, ω̂′)|, (7.9)

and therefore (from Eqs 5.13 and 5.36),

K(2)
τp,τp′

= s2N 2MτpMτp′
Vτp,τp′

= s2N 2MτplτpMτp′
lτp′ (dτp + dτp′ ), (7.10)

with MM = 1 and s2 = −π2/8 the second Legendre coefficient of sin γ. Defining the

dimensionless matrix κ = (s2N 22l2MdM)
−1

K(2), and applying the WCL, we obtain

κ̄τp,τp′ = M̄τpP̃τpM̄τp′
P̃τp′

1
2
(d̃τp + d̃τp′ ),

κ̄τp,M = κ̄M,τp = M̄τpP̃τp
1
2
(1 + d̃τp), (7.11)

κ̄M,M = 1,

with τp, τp′ ∈ {B, S}. There is no N -dependence in κ, so the IBL has no effect.

In order to calculate the matrix elements W
(2)
τp,τp′/W

(0) we first define

στp,τp′ = w(2)
τp,τp′

/w(0)
τp,τp′

, (7.12)

where w
(j)
τp,τp′ is the jth Legendre coefficient of wτp,τp′ (ω̂) = exp[−βuτp,τp′ (ω̂)]. Then,

between two segments, m and m′ we have (Eq. 5.39)

W
(2)
m,m′

W (0)
=

∏
(k, k′) ∈ Pm,m′

and k ∈ τp k′ ∈ τp′

w
(2)
τp,τp′

w
(0)
τp,τp′

=
∏

(k, k′) ∈ Pm,m′
and k ∈ τp k′ ∈ τp′

στp,τp′ (7.13)
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where the product is over all pairs (k, k′) which are nearest neighbours lying on the
non-selfoverlapping path, Pm,m′ , between m and m′ (see Chap. 5 above Eq. 5.19). The
quantity σ depends on the types where k and k′ belong to. Then, the matrix elements
are (Eq. 5.58)

W
(2)
τp,τp′

W (0)
=

1

MτpMτp′

∑
m∈τp m′∈τp′

W
(2)
m,m′

W (0)
(7.14)

=
1

MτpMτp′

∑
m∈τp m′∈τp′

∏
(k, k′) ∈ Pm,m′

and k ∈ τp k′ ∈ τp′

στp,τp′

This last formula is basically a recapitulation of section 5. Defining the matrix α =

NW (2)
τp,τp′/W

(0), we can write down the expression for the side chain polymers,

αB,B =
N
M2

B

MB∑
k,k′=1

σ
|k−k′|
B,B , (7.15)

αB,S =
N

MBMS

N∑
n,n′=1

MB∑
k=1

MS∑
k′=1

σ
|(n−n′)MB+k− 1

2
(MB+1)|

B,B σB,Sσ
k′−1
S,S , (7.16)

αB,M =
N

MBN

N∑
n,n′=1

MB∑
k=1

σ
|(n−n′)MB+k− 1

2
(MB+1)|

B,B σB,Sσ
MS−1
S,S σS,M, (7.17)

αS,S =
N
M2

S

N
MS∑
k,k′=1

σ
|k−k′|
S,S +

N∑
n, n′ = 1
n 6= n′

MS∑
k,k′=1

σk−1
S,S σB,Sσ

|n−n′|MB

B,B σB,Sσ
k′−1
S,S

 ,

(7.18)

αS,M =
N

MSN

(
N
MS∑
k=1

σMS−k
S,S σS,M

+
N∑

n, n′ = 1
n 6= n′

MS∑
k=1

σk−1
S,S σB,Sσ

|n−n′|MB

B,B σB,Sσ
MS−1
S,S σS,M

 , (7.19)

αM,M =
N
N 2

N +
N∑

n, n′ = 1
n 6= n′

σS,Mσ
MS−1
S,S σB,Sσ

|n−n′|MB

B,B σB,Sσ
MS−1
S,S σS,M

 . (7.20)

The matrix α is symmetric, so we have only given the elements above the diagonal.
The indices n, n′ are used to sum over units, and the indices k, k′ are used to sum over
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segments within a unit. At this point, we note that all the sums above can be performed
analytically. However, we are interested in the WCL and IBL, so we do not bother
computing these sums, and proceed directly. The στp,τp′ ’s we need, become in the WCL

(to first order),

σB,B =

∫ 1

−1
dxP2(x) exp[βJBx]∫ 1

−1
dx exp[βJBx]

→ 1− 3 (βJB)−1,

σS,S → 1− 3 (βJS)−1 ,

σB,S =

∫ 1

−1

dxP2(x)δ(x) = −1
2
, (7.21)

σS,M → 1,

where we anticipate that we only need the zeroth order for σS,M. Next, we evaluate
(parts of) sums appearing in Eqs. 7.15 to 7.20. First, a power of στp,τp becomes in the
WCL,

σ
Mτp
τp,τp =

(
1− 3

(
βJτp

)−1
)βJτpM̄τp

→ exp
[
−3M̄τp

]
, (7.22)

with τp ∈ {B, S} and where we have used limn→∞(1 + x
n
)n = exp[x]. The summation

over n and n′ becomes

1

N

N∑
n, n′ = 1
n 6= n′

σ
Mτp |n−n′|
τp,τp → 1

N

N∑
n, n′ = 1
n 6= n′

e−3M̄τp |n−n′|

=
2e−3M̄τp

1− e−3M̄τp

(
1− 1

N
1− e−3NM̄τp

1− e−3M̄τp

)
. (7.23)

In the WCL, the backbone and the spacers are continuous, and the summations over
k and k′ (n.b. not the summations over n and n′) have to be replaced by integrations.
Roughly, there are two types of integrations (k̄τp = k/βJτp), i.e.

1

Mτp

Mτp∑
k=1

σkτp,τp →
1

M̄τp

∫ M̄τp

0

dk̄τpe
−3k̄τp =

1

3M̄τp

(
1− e−3M̄τp

)
(7.24)

1

M2
τp

Mτp∑
k,k′=1

σ|k−k
′|

τp,τp →
1

M̄2
τp

∫ M̄τp

0

dk̄τp

∫ M̄τp

0

dk̄′τpe
−3|k̄τp−k̄′τp |

=
2

3M̄τp

(
1− 1− e−3M̄τp

3M̄τp

)
. (7.25)

Using these results in Eqs. 7.15 to 7.20, we obtain (in the WCL)

ᾱB,B =
2

3M̄B

(
1− 1− e−3NM̄B

3NM̄B

)
, (7.26)
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ᾱB,S = − 1

3M̄B

(
1− e−3M̄S

3M̄S

){
1− 1

N
e−

3
2
M̄B

1− e−3NM̄B

1− e−3M̄B

}
, (7.27)

ᾱB,M = −e−3M̄S

3M̄B

{
1− 1

N
e−

3
2
M̄B

1− e−3NM̄B

1− e−3M̄B

}
, (7.28)

ᾱS,S =
2

3M̄S

(
1− 1− e−3M̄S

3M̄S

)
+

+
1

2

(
1− e−3M̄S

3M̄S

)2
e−3M̄B

1− e−3M̄B

(
1− 1

N
1− e−3NM̄B

1− e−3M̄B

)
, (7.29)

ᾱS,M =
1− e−3M̄S

3M̄S

{
1 +

1

2
e−3M̄S

e−3M̄B

1− e−3M̄B

(
1− 1

N
1− e−3NM̄B

1− e−3M̄B

)}
(7.30)

ᾱM,M = 1 +
1

2
e−6M̄S

e−3M̄B

1− e−3M̄B

(
1− 1

N
1− e−3NM̄B

1− e−3M̄B

)
. (7.31)

Applying the IBL, it is clear which terms drop out,

ᾱB,B =
2

3M̄B

, (7.32)

ᾱB,S = − 1

3M̄B

(
1− e−3M̄S

3M̄S

)
, (7.33)

ᾱB,M = −e−3M̄S

3M̄B

, (7.34)

ᾱS,S =
2

3M̄S

(
1− 1− e−3M̄S

3M̄S

)
+

1

2

(
1− e−3M̄S

3M̄S

)2
e−3M̄B

1− e−3M̄B
, (7.35)

ᾱS,M =
1− e−3M̄S

3M̄S

(
1 +

1

2
e−3M̄S

e−3M̄B

1− e−3M̄B

)
, (7.36)

ᾱM,M = 1 +
1

2
e−6M̄S

e−3M̄B

1− e−3M̄B
, (7.37)

with ᾱ symmetrical.
In terms of the new matrices, κ̄ and ᾱ, and the dimensionless unit density, η, the

first-order bifurcation equation (Eq. 5.63) becomes

c1 = −η0s2

4π
ᾱκ̄c1. (7.38)

This is a 3× 3-matrix eigenvalue problem and therefore soluble. Calling the eigenvalues
of the combined matrix ᾱκ̄, λ, then the bifurcation density η0 is

η0 = −4π/s2λ = 32/πλ, (7.39)
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where the largest positive λ, we call λ∗, corresponds to the smallest (and thus physical;
I-N) bifurcation density, η∗

2. In fact, it is easy to check that det(κ̄) = 0, so there are
only two nonzero eigenvalues. The eigenvector c∗ corresponding to this λ∗ yields relative
bifurcating order. Normalizing c∗ such that its third element equals one, cM,∗ = 1, the
first two elements equal the average order of the backbone and the spacers in units of
that of the mesogens.

In the last part of this subsection, we evaluate the elements of the matrix α′m,τq =

NW (2)
m,τq/W

(0) (with m ∈ τp), which allows us to calculate the order along the backbone
and the spacer (Eqs. 5.75 and 5.76). In the WCL, this matrix behaves as, α′m,τq →
ᾱ′τp,τq(m̄τp), as the m-dependence becomes continuous. And whereas α′m,τq is a M ×
3-matrix, ᾱ′τp,τq(m̄τp) is just a 3 × 3-matrix (with m̄B- and m̄S-dependence though).

Note that ᾱ′(m̄B, m̄S) (with elements ᾱ′τp,τq(m̄τp)) is not symmetrical. The evaluation

of ᾱ′τp,τq(m̄τp) runs along the same lines as Eqs. 7.32 to 7.37 and therefore we give them

without further comment (in the WCL as well as the IBL),

ᾱ′B,B = ᾱB,B, (7.40)

ᾱ′B,S(m̄B) = −1

2

(
1− e−3M̄S

3M̄S

){
e−3|m̄B− 1

2
M̄B|+

+
(

e3(m̄B− 1
2
M̄B) + e−3(m̄B− 1

2
M̄B)

) e−3M̄B

1− e−3M̄B

}
, (7.41)

ᾱ′B,M(m̄B) = −1

2
e−3M̄B

{
e−3|m̄B− 1

2
M̄B|+

+
(

e3(m̄B− 1
2
M̄B) + e−3(m̄B− 1

2
M̄B)
) e−3M̄B

1− e−3M̄B

}
, (7.42)

ᾱ′S,B(m̄S) = − 1

3M̄B

e−3m̄S , (7.43)

ᾱ′S,S(m̄S) =
1

3M̄S

(
2− e−3m̄S − e−3(M̄S−m̄S)+

+
1

2
e−3m̄S

(
1− e−3M̄S

) e−3M̄B

1− e−3M̄B

)
, (7.44)

ᾱ′S,M(m̄S) = e−3(M̄S−m̄S) +
1

2
e−3M̄S−3m̄S

e−3M̄B

1− e−3M̄B
, (7.45)

ᾱ′M,B = ᾱM,B, (7.46)

ᾱ′M,S = ᾱM,S, (7.47)

ᾱ′M,M = ᾱM,M. (7.48)

2Note the difference with Chap. 5 where the most negative eigenvalue of (W (0))−1W(2) · K(2)

corresponds to the physical bifurcation density. The reason is that (W (0))−1W(2) ·K(2) and ᾱκ̄ have
opposite sign.
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The variables m̄B and m̄S are defined within a unit and thus run from 0 to M̄B and
from 0 to M̄S respectively. Obviously, there is no m̄-dependence in the ᾱ′M,τp

, as there
is only one mesogen in a unit. Also, ᾱ′B,B has no m̄B-dependence, because, the backbone
is infinitely long. It can be checked quickly that integrating ᾱ′ over m̄B and m̄S yields
ᾱ, so,

ᾱ =
1

M̄BM̄S

∫ M̄B

0

dm̄B

∫ M̄S

0

dm̄Sᾱ
′(m̄B, m̄S). (7.49)

So, having solved the eigenvalue problem, Eq. 7.38, for η∗ and c∗, we can calculate the
vector c′∗(m̄B, m̄S),

c′∗(m̄B, m̄S) =

 c′B,∗(m̄B)
c′S,∗(m̄S)

1

 = −η∗s2

4π
ᾱ′(m̄B, m̄S)κ̄c∗, (7.50)

normalized with c′M,∗ = 1. The component c′B,∗(m̄B) is the order along the backbone,
and c′S,∗(m̄S) the order along the spacer (in units of the mesogen order).

7.3.2. Results. In this subsection, we present and discuss the results for the bifur-
cation analysis for side chain polymers. The subsection consists of three parts. First, we
present some results on determining which combination of model parameters yields zero
(average) backbone order at bifurcation. Next, we plot some dependences of η∗ and c∗
on model parameters and finally, we also plot the order along the backbone and spacer,
c′∗(m̄B, m̄S). The model parameters, we usually allow to vary are M̄S and sometimes
M̄B as these parameters are most easily experimentally accessible. The other param-
eters are usually set as follows: d̃B = d̃S = 0 and P̃B = P̃S = 0.3. We do not aim to
describe a ‘real’ system, but only want to explore the features of this approach.

The combination of model parameters, for which the backbone has zero average order
at the bifurcation, can be found with

cB,∗ = 0. (7.51)

To analytically solve this equation (containing all 6 parameters), is impossible as it has
a transcendental structure, i.e. it is a combination of e−3M̄S , M̄S and powers of them
(the same goes for M̄B). The cause for this is that the backbone as well as the spacers
act in two ways; firstly, through the stiffness, they couple orientations on different parts
of the chain (yielding factors like e−3M̄S and e−3M̄B), but on the other hand, they also
contribute to the external field because they have dimensions themselves (giving factors
M̄S and M̄B). It is rather straightforward, however, to construct a numerical scheme to
find the roots of Eq. 7.51. (Although, in its simplified form, according to Mathematica,
Eq. 7.51 covers about two pages.) This, we have done and the results are presented in
Fig. 7.6.

We can solve Eq. 7.51, analytically, when we put P̃S = 0. In this way, the spacer
has no dimensions (it does not matter what value d̃S has) and does not enter into the
external field. As M̄S 6= 0, this means that the mesogens are directly hinged on the
backbone with e−3M̄S acting as an orientational coupling parameter (large M̄S, small

coupling and vice versa). Also putting d̃B = 0, we get a very simple relation between
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Figure 7.6. Combinations of M̄B and M̄S for which the system has zero
backbone order at bifurcation. The parameters are: d̃B = d̃S = 0, P̃B = 0.3 and
P̃S = 0. (lower curve) P̃S = 0.1 (middle curve) P̃S = 0.3 (upper curve). The
lower curve is the analytical result, Eq. 7.52 and the other two are obtained
by numerically finding the root of Eq. 7.51. For each curve, the system has
negative backbone order when (M̄S,M̄B) is below it, and positive when above.

the remaining parameters,

M̄BP̃B = e−3M̄S . (7.52)

So basically, when the mesogen-backbone coupling, e−3M̄S , equals the backbone distance
between two spacers, the average backbone order at bifurcation is zero (for these side
chain polymers without spacers). If M̄BP̃B > 1, there is no spacer length, M̄S, for which
this order is zero (see Fig. 7.6).

Some general remarks on Fig. 7.6 can be made. For combinations (M̄S,M̄B) above
the curve, the system becomes unstable with respect to the PN phase, and below, with
respect to the ON phase. The (M̄S,M̄B)-graph is monotonic decreasing; i.e. when the
spacers are longer, the backbone is more decoupled from the mesogen and is therefore
more likely to order parallel to the field. And finally, the longer the spacers are, the more
important are the associated excluded volume effects, so as M̄S increases the deviations
from the analytical result, Eq. 7.52, increase as well (and this is again stronger for larger
P̃S, obviously).

In Figs. 7.7(a) to (d), we have plotted the I-N bifurcation density, η∗, (left) and
the components of the bifurcating eigenvector, c∗, (right) as a function of the spacer
length M̄S. The four figures correspond to an increasing spacer separation, M̄B =
{0.1, 0.4, 1., 5.}. The parameter values are not representative but chosen to obtain some
variation in the graphs.
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In Fig. 7.7(a), the length of the backbone is very small. Then, for M̄S small, a meso-
gen is strongly coupled to the next mesogens (being so ‘close’ via spacer and backbone).
The I-N transition will therefore be at low densities, due to the rigidity of the molecule.
Increasing the spacer length, the mesogens become more disconnected and the transition
is postponed to higher densities. At some spacer length, the mesogens are effectively de-
coupled, and increasing the spacer length further, is just increasing the dimensions of the
molecule. This results in decrease of the I-N bifurcation density after passing through
a maximum (this effect is better visible in Fig. 7.7(b)). For larger backbone lengths,
M̄B, the mesogens are already disconnected for M̄S = 0 and the M̄S-dependence of η∗
is monotonically decreasing (Figs. 7.7(c) and (d)).

The M̄S-dependences of the components of c∗ is roughly the same for all four cases,
Figs. 7.7(a) to (d). The normalization is such that cM,∗ = 1 for all parameters. For
small M̄S, the order of the spacers is close to that of the mesogens (because a spacer
is very short, all of it is close to a mesogen). The order of the backbone is very low
(often negative, corresponding to ON) because the coupling with the mesogen is strong.
Increasing the spacer length decouples the backbone and the spacers (on average) from
the mesogens, and they can order themselves more with respect to the (infinitesimal)
external field. For the spacers, this means that cS,∗ decreases and for the backbone, cB,∗
increases (and it passes through zero at some M̄S, if it was negative).

In Figs. 7.8 and 7.9, we have plotted the bifurcating order along the backbone and
spacer, respectively, for various lengths. Again, the parameter values are choses such
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Figure 7.7. Four pairs of figures (a to d) showing the I-N bifurcation density
(left) and the relative order of the components (right) as a function of spacer
length, M̄S, for various values of the spacer separation, M̄B. The parameters
are: d̃B = d̃S = 0, P̃B = P̃S = 0.3 and M̄B = 0.1 (a), M̄B = 0.4 (b), M̄B = 1.
(c) and M̄B = 5. (d). The order of the backbone (cB,∗) and the spacers (cS,∗)
is measured in terms of that of the mesogens (cM,∗) which is set equal to one
everywhere. For comparison, the bifurcation density of a gas of free mesogens
is 32/π ≈ 10.186.

that there is some variation in the graphs and do not correspond to realistic cases. The
unit is the bifurcating mesogen order, cM,∗ = 1.

In Fig. 7.8, we have distiguished three cases of different backbones: very short (upper
left), very long (lower left) and intermediate (upper right). If the backbone would be
completely disconnected from the spacers and mesogens, it would only experience the
external field, and would respond by ordering with respect to it. The case which comes
closest to this is when the backbone is large (Fig. 7.8, lower left). In this case, the
parts of the backbone in between the spacer hinges hardly experience the effects of the
spacers, and therefore order as if they were disconnected. The parts where the spacers
are connected to, are affected by the spacers and one can see an (exponential) relaxation
of the spacer influence on the backbone while going away from the hinge. For shorter
backbones, this relaxation is already less pronounced (Fig. 7.8, upper right) and for very
short values of M̄B (Fig. 7.8, upper left), there is basically no relaxation (although the
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der within the backbone at bifurcation. The
parameters are d̃B = d̃S = 0, P̃B = P̃S = 0.3,
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M̄B = 1. (upper right) and M̄B = 10. (lower
left). The mesogen order is again used as the
unit, cM,∗ = 1. In the upper right plot, the
average backbone order cB,∗ is small because
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slope is zero halfway between two hinges, but this is due to symmetry). The claim that
there is almost no relaxation in the upper left figure of Fig. 7.8 is strengthened by the
fact that the vertical scale is much smaller than those of the other two figures. From
the upper right figure, it is now clear as well, that an average zero backbone order does
not mean that the whole backbone has zero order, but that the negative order of the
backbone at the hinges cancels with the positive order of the parts in between the hinges.

In Fig. 7.9, we have again distinguished three cases: long, short and intermediate
spacer lengths. For all three cases, the mesogen is attached at m̄S = M̄S and therefore,
c′S,∗(M̄S) = 1. The arguments run along the same lines as those for the backbone.
Disconnected spacers (disconnected from backbone and mesogens) would only experience
the external field and would order with respect to that. Again, this is most clear for
long spacer lengths (Fig. 7.9, lower left). The middles of the spacers are effectively
disconnected from backbone and mesogens. The ends are strongly affected and going
towards the middle, there is a (exponential) relaxation. For shorter spacer lengths, the
relaxed part of the spacer disappears (Fig. 7.9, upper graphs).

7.4. Numerical Analysis

7.4.1. Numerical Details. Bifurcation analysis gives only information on quan-
tities at the bifurcation point. However, we are also interested in equilibrium distri-
butions, at high density, far away from the I-N phase transition. Also, the quantities
characterizing the actual phase transition (coexistence densities, absolute values of the
order parameters) can not be obtained from bifurcation analysis. Consquently, we have
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numerically solved the stationarity equations. The numerical analysis is the subject of
this subsection, and the results are presented in the next.

The numerical analysis is performed for segmented side chain polymers, as the seg-
ment label m is already a discrete parameter (in the WCL, m̄ would have to be dis-
cretized again). Also, in Chap. 3, we have presented numerical results for segmented
linear homochains (not branched and only one type of segment) and for large values of
the coupling parameters, βJ > 10− 100 (and M > 10), the results were very similar to
the results for wormlike chains. At the end of this subsection, we briefly comment on
how we interprete the results for segmented chains, and ‘translate’ them to the WCL.

Much of the analysis is very similar as the numerical section of Chap. 3. Therefore,
in the following, we only list the basic equations, the symmetries and the algorithms,
and for more details we refer to Chap. 3. First, we recast the stationarity equations
(Eqs. 5.9 and 5.10) in a slightly different form,

fm(ω̂) = Q−1e−βHm(ω̂)
∏
m′

qm,m′(ω̂) (7.53)

with

βHm(ω̂) = η
M∑

m′=1

Vm,m′

2l2MdM

∫
dω̂′ sin γ(ω̂, ω̂′)fm′(ω̂

′), (7.54)

qm,m′(ω̂) =

∫
dω̂′wm,m′(ω̂, ω̂

′)e−βHm′ (ω̂
′)
∏

m′′ 6=m

qm′,m′′(ω̂
′). (7.55)
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In this form, one readily sees that the ODF has various contributions: one due to the
external field, βHm, and a few more due to the fact that the segment is in a chain
and has neighbours with which it is orientationally coupled. The orientational ‘field’,
segment m experiences due to nearest neighbour m′ is denoted by qm,m′(ω̂). If m and
m′ are not nearest neighbours, then qm,m′ = 1. Most segments have two neighbours,
so the product in Eq. 7.54 contains two (relevant) factors. Only a few segments have
more or less neighbours (i.e. the mesogens have one and the backbone segments at the
hinges have three). The qm,m′ on segment m are defined recurrently in Eq. 7.55 in terms
of the qm′,m′′ on segment m′. In principle, for every repeating unit of the side chain
polymer, there are 2(MB +MS + 1) qm,m′-functions. However, due to the symmetry of
the backbone, qm,m−1 = qMB−m+1,MB−m+2, the number of qm,m′-functions is reduced to
2(MS + 1) +MB.

The side chain polymers have cylindrical symmetric segments and as we are only
considering uniaxial nematic phases, every distribution function (and field) is effectively
only a function of a single polar angle, fm(θ), qm,m′(θ) and βHm(θ). Azimuthal inte-
grations (over φ) can be performed or absorbed in the integration kernel (see Chap. 3).
Furthermore, the nematic phases are up-down symmetric, so fm, qm,m′ and βHm are
invariant to θ ↔ θ − π.

To compute the ODF’s, we use an iterative algorithm similar to that of Ref. [59],
which we also used in Chap. 3. The iterative loop consists of using the ODF’s to calculate
the fields, βHm and qm,m′ , which are, in turn, used to calculate the ODF’s (Eqs. 7.53
to 7.55). Starting from extreme nematic distributions (fm(θ) = δ(θ)), this iteration
process converges to the nematic solution (if that exists for the chosen density). We
call this loop the fm-loop. In order to get results consistent with the IBL, we have to
evaluate the 2(MS + 1) +MB qm,m′-functions over and over again (within every single
iteration step of the fm-loop) until their (normalized) θ-dependence does not change
anymore. This loop of reevaluating the qm,m′-functions, we call the qm,m′-loop. Note
that the qm,m′-loop is located within the fm-loop 3.

Coexistence values of the densities can be computed by equating the pressures and
chemical potentials in the isotropic and nematic phases (or equivalently, finding the
common tangents of the free energy in both phases),

P (ηnem) = P (ηiso)
µ(ηnem) = µ(ηiso)

. (7.56)

The free energy can be computed by using the mean field expression,

βF
NN

= − log Q̃− 1
2
η

∑
m,m′∈unit

Vm,m′

2l2MdM

∫ ∫
dω̂dω̂′| sin γ(ω̂, ω̂′)|fm(ω̂)fm′(ω̂

′).

(7.57)

3The qm,m′ -loop refers to the fact that we start with q1,0 = 1 (the flexibility field on the end of
the chain!) Then, we evaluate q2,1, next q3,2 etc. until we reach qM̄B+1,M̄B

, which is set equal to q1,0

(next unit). Then, the whole thing is done again. This is the qm,m′ -loop and is performed over and
over again until the difference between q1,0 and the next q1,0 is below some threshold. Then we are in
the ‘middle’ of the polymer.
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Q̃ is the partition function of the unit (in the IBL) and in the second part of the right-
hand side, the sum is taken over all m,m′ in the unit. The most striking in Eq. 7.57
is the absence of the ideal gas term, but this drops out in the IBL; i.e. (log ρ)/N goes
to zero. The partition function of the unit, Q̃, can be computed by realising that the
qm,m′-functions are (constrained) partition functions themselves; i.e. e−βHm(ω̂)qm,m′(ω̂) is
the partition function of the chain starting from m in the direction of m′ (and everything
beyond m′) with the orientation of segment m constrained. Consequently,

log Q̃ = lim
IBL

(
logQ(N ) − logQ(N−1)

)
(7.58)

with Q(N ) =
∫
dω̂e−βHMB

(ω̂)qMB,MB−1(ω̂) the partition function of a polymer with N
units. If we normalize qMB,MB−1 in such a way that

∫
dω̂e−βHMB

(ω̂)qMB,MB−1(ω̂) = 1 (so

Q(N−1) = 1), and then use one more step in the qm,m′-loop, to compute qMB,MB−1, we
have

log Q̃ =

∫
dω̂e−βHMB

(ω̂)qMB,MB−1(ω̂). (7.59)

Knowing this, we can also normalize qMB,MB−1 every iteration step in the qm,m′-loop, so
it does not diverge in the IBL (as we do not needs its absolute value anyway).

The pressure and the chemical potential are

βP (2l2MdM) = 1
2
η2

∑
m,m′∈unit

Vm,m′

2l2MdM

∫ ∫
dω̂dω̂′| sin γ(ω̂, ω̂′)|fm(ω̂)fm′(ω̂

′) (7.60)

βµ = − log Q̃. (7.61)

In concluding this subsection, we make a few comments on how to interprete the
results for segmented chains in terms of wormlike chains. In Chap. 3, we learned that
there are basically two regimes; in the first one, for chains of more than 10 segments, the
coupling βJ needed to be 10 or larger in order to get (approximate) wormlike chains.
The second regime is when the number of segments is smaller than 10; in that case,
for βJ = 10 the segmented character of the chains is too pronounced and we needed to
go to higher values of βJ to ‘cover’ for this. In this chapter (for the backbone and the
spacers), we used, as a rule of thumb,

βJ ≈ 10 if M ≥ 10
βJ ≥ −20M + 210 if M < 10

. (7.62)

The results were found to be satisfying; higher values of βJ showed only a variation on
the order of a few percent in the phase diagrams (see next subsection).

7.4.2. Results. There are two regimes for the density, we focus on in this subsec-
tion. First, there is the I-N transition which takes place at low densities. We numerically
determine the properties of this transition and compare with the bifurcation results. On
the other hand, for higher densities, the excluded volume (which scales with the den-
sity) becomes more important relative to the internal stiffness of the polymer (which is
independent of density). It is expected that this changes the degree of ordering of the
various components, both absolutely as well as relatively.

In Fig. 7.10, we have plotted the average order parameters of the three components
as a function of density for a side chain polymer with rather short spacers and backbones
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Figure 7.10. Order of the components as a function of density on two den-
sity scales. The parameters are M̄B = 0.4, M̄S = 0.2, P̃B = P̃S = 0.3 and
d̃B = d̃S = 0. (where we have used 41 and 21 segments for the backbone and
spacer, respectively, with coupling parameters: βJB = βJS ≈ 100 and dimen-
sions lB = lS ≈ 0.003). Left, the I-N coexistence region, with the filled squares
the coexistence points and the filled circle the bifurcation point. The crosses
represent the relative order at the bifurcation point, where the bifurcating meso-
gen order is set equal to the mesogen order at coexistence. Right, the order for
larger scales of the density. Note the logarithmic scale of the density.

(M̄B = 0.4 and M̄S = 0.2). On the left, for small densities; the I-N transition, and on
the right the large-density dependence. Also, at five representative values of the density,
we have plotted the full order parameter dependence along the spacers and backbone
(Fig. 7.11). At the I-N transition, the backbone orders perpendicular to the mesogens,
due to the strong coupling via the short spacers (see Fig. 7.11, curves a). Increasing
the density, initially, the mesogens order stronger, and due to the short spacers, the
backbone is forced even more in the plane perpendicular to the nematic director. In
Fig. 7.10 (right), S(B) goes down briefly after the I-N transition and in Fig. 7.11, curve
b (left), the order at the hinge has decreased, although, between the hinges the order
has increased. With the mesogens ordering, the spacers follow and also S(S) increases
strongly (see Fig. 7.11, curve b (right)). On increasing the density further, the excluded
volume interactions become more important, and parallel backbone ordering is favored
over perpendicular; hence S(B) reaches a minimum and goes up (see Fig. 7.11, curve
c and d (left)). At η ≈ 90.1, the average order is zero, S(B) = 0 (separating ON and
PN), and curve c in Fig. 7.11 (left) is the order along the backbone at this density. To
allow the backbone to order parallel, the spacers are forced to assume a more bended
conformation, resulting in S(S) going down (see Fig. 7.11, curve c and d (right)). Finally,
for very high densities stiffness of the components become even less important relative
to excluded volume interactions, and as a result, the bending of spacers and backbone
becomes more local (closer to the hinge) and the (average) order parameters of the
backbone and the spacers (S(S) as well as S(B)) go up (see Fig. 7.11, curve e).

The behaviour found in Figs. 7.10 and 7.11 for these specific side chain polymers,
is found quite generally for all side chain polymers. There is a low-density regime,
dominated by the stiffness of the polymers, and a high-density regime where the excluded
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Figure 7.11. Order along the backbone (left) and spacer (right) for various
densities. The parameters are the same as in Fig. 7.10: M̄B = 0.4, M̄S = 0.2,
P̃B = P̃S = 0.3 and d̃B = d̃S = 0. (where we have used 41 and 21 segments for the
backbone and spacer, respectively, with coupling parameters: βJB = βJS ≈ 100
and dimensions lB = lS ≈ 0.003). The densities are η = ηnem ≈ 9.7 (a),
η = 40 (b), η = ηON−PN ≈ 90.1 (c), η = 400 (d) and η = 5000 (e). Although
components are discrete, we have still chosen to use m̄B and m̄S. Finally, we
note that S(S)(0.2) = S(M).

volumes are the most important interactions. In Figs. 7.10 and 7.11, this behaviour is
quite pronounced as we have chosen values of the spacer length M̄S and spacer separation
M̄B for which the two regimes are more or less ‘separated’. Especially on the spacer,
the separated and combined effects of stiffness and excluded volume are well visible
(Fig. 7.11). Finally, it has to be noted that this behaviour occurs for different orders of
magnitude of the density; the I-N phase transition occurs for densities of the order of
10, the transition from stiffness-dominated to excluded volume-dominated at orders of
100 and the real ‘high-density’ behaviour only sets in for densities of the order of 1000
(that’s why it is so hard to get this all in one plot). However, in most experimental
cases, the nematic does not range over more than one order of magnitude of the density
(or temperature) and then another phase, usually a smectic, sets in.

To compute the behaviour in Figs. 7.10 and 7.11, we have used a rather good ap-
proximation for the wormlike spacers and backbone. From Chap. 3, we know that for
values of βJ ≈ 100 and M > 10 segments, there is effectively no difference in the phase
behaviour of segmented and the equivalent wormlike chains. Based on using varying de-
grees of approximation, we conclude that the expected magnitude of the error is within
1%. Only for very high densities (i.e. Fig. 7.11, curve e), where the discrete character
of the components shows, we expect larger deviations.

Fig. 7.12 is the phase diagram, where we have plotted the I-N coexistence densities
against the spacer length (left). The bifurcation density follows nicely the nematic
coexistence density, and in general, we find that their difference never becomes greater
than 5-10%. The point in the phase diagram where the nematic bifurcates with zero
backbone order (filled circle) is fairly close to the point where there is zero backbone
order at coexistence (where the dotted curve hits the full curve). The analytical result
of Eq. 7.52 (filled diamond) is a bit farther away. On the right, the density scale is
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Figure 7.12. The phase diagram for side chain polymers; density vs. length
of the spacer M̄S. Both plots are the same, but have different density scales.
The parameters are M̄B = 0.4, P̃B = P̃S = 0.3 and d̃B = d̃S = 0. In determining
the discretized parameters, we have used the ‘rule of thumb’ discussed in the
last paragraph of subsection 7.4. Left, the full curves are the I-N coexistence
densities, the striped curve is the bifurcation density and the dotted curve is
the density where S(B) = 0; i.e. the line separating the ON and PN phases.
The filled circle is the bifurcation density where cB,∗ = 0 and the filled diamond
is the analytical result of Eq. 7.52 (where M̄S = −1

3 ln(M̄BP̃B) ≈ 0.707). To
give an idea, the bifurcation density of a gas of free mesogens is 32/π ≈ 10.186.
Right, the density scale is larger in order to plot the ON-PN separation curve.
Note that this curve does not mark a phase transition between ON and PN.

much larger in order to show the density, where S(B) = 0 (separating the ON and PN
phases). Here, we state that we found no phase transition between ON and PN. No order
parameter (or its derivative) becomes discontinuous at this point. In fact, we have not
found any nematic-to-nematic phase transitions in systems of these side chain polymers
for any of the model parameters. We come back to this in the next subsection, where we
present some arguments why this is so. Finally, in computing Fig. 7.12, we have used
the ‘rule of thumb’, Eq. 7.62, presented in the last paragraph of the previous subsection.
This means that for different spacer lengths M̄S, we have used different parameter values
forMS, βJS and lS. The accuracy is less than what is used for Figs 7.10 and 7.11. Still,
comparing it with some checks of higher accuracy, we found a difference of a few percent
and on average larger for larger M̄S. Further, the slight “wiggles” in the coexistence
densities for M̄S > 1 are due to this changing of parameter values.

7.5. Conclusion and Discussion

7.5.1. No Nematic-to-Nematic Phase Transitions. In this subsection, we ar-
gue that there are no nematic-to-nematic (N-N) phase transitions in this system of side
chain polymers.

Transitions between phases of the same symmetry require a van der Waals-like loop.
Such a loop can be located by finding the spinodal points,

∂P

∂ρ
= 0. (7.63)
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However, as the backbone of the side chain polymers is infinitely long, there is no ideal-
gas contribution in the free energy. From Eq. 7.60, it can be easily seen that as a
result

∂P

∂η
= 1

2
ηP. (7.64)

So, the prescription that the first derivative of the pressure to the density must be zero
leads to the prescription that the pressure itself must be zero. From Eq. 7.60, it can be
directly seen that this will never happen for nonzero densities (both fm and | sin γ| are
always positive). From these considerations, we conclude that there are no N-N phase
transitions.

Moreover, for finite-length backbones, we only expect an additional ideal-gas contri-
bution. And although Eq. 7.64 is no longer valid, the effect of the ideal-gas term will
be an additional positive constant (to Eq. 7.64). This would mean that the above argu-
ment can be extended to finite-length backbones. The argument also seems to hold for
other systems with the same equations, like the main chain LC polymers of the previous
chapter.

7.5.2. Comparison with Other Work. In Refs. [98, 99], N-N phase transitions
are found in systems of side chain polymers. Warner and coworkers (WWRW) use a
Maier-Saupelike theory (using temperature) to describe the interactions between side
chain polymers consisting of a wormlike backbone and rigid mesogens hinged onto the
backbone on regular distances (no spacers present!). The Maier-Saupe interactions be-
tween the components favour parallel ordering of the components. The stiffness inter-
action between side chains and backbone, via the hinge, is treated on a mean field level
(Maier-Saupe) as well, and favours perpendicular ordering. The resulting theory uses
4 model parameters of which one is the effective cross coupling between backbone and
side chains (containing both the regular Maier-Saupe external field cotribution and the
stiffness contribution via the hinge). WWRW focussed on a general exploration of this
model, using universal functions and area rules, to determine the phase behaviour. On
decreasing the temperature from the isotropic phase, at some point, one component
(say, the side chains) will go into the nematic phase, imposing some kind of order onto
the backbone (oblate or prolate, depending on the effective cross coupling). Decreasing
the temperature further, the point is reached where the other component (backbone)
undergoes a transition as well; i.e. from the weakly ordered (oblate or prolate) nematic
to a highly ordered (prolate) nematic. There is a critical point (for some value of the
effective cross coupling) associated with this N-N transition and within the model this
phenomenon is equivalent to the N-N transition of simple Maier-Saupe rods in a (small)
external field. And consequently, this N-N transition is due to the self interaction of the
backbones and not due to the cross interaction between backbones and side chains.

In the present theory, as well as that of WWRW, the intermolecular interactions are of
the mean-field type; Onsager approximation and Maier-Saupe interactions, respectively.
The large difference concerns the stiffness interactions within the polymers, which we
take into account in an exact fashion. Also, as an ingredient, we use the actual geometry
of the spacers, which couple the orientations of backbone and mesogens through their
stiffness, but also act as a component in their own right (i.e. excluding volume for
mesogens etc.). The spacer geometry is exactly the reason why our theory has 2 model
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parameters more than WWRW. From a global point of view, the results are roughly the
same; both theories find the phase sequence I-ON-PN (in case of mesogen ordering, and
appropriate model parameters). As was already mentioned, the big difference is that
WWRW find N-N phase transitions. The rigorous thermodynamical argument why this
not happens in the present model is the proof of the nonexistence of spinodal points in
the previous subsection. For the rest, it seems hard to exactly pin down what precise
difference between these models causes these differences in phase behaviour, but we list a
few possible arguments in the following. The first reason may be the difference in scaling
in our theory; the effective field due to the excluded volumes scales with the density and
stiffness interactions within the polymer do not depend on density. On increasing the
density, the excluded volume interactions become gradually more and more important
than the stiffness interactions, allowing the backbone (possibly) to continuously adjust
its conformation. Another essential difference between the two theories, is that N-N
transition, in case of WWRW, is due to the self interaction of components, while in our
model, it is due to the cross interaction. To explain this, in case of side chain ordering, the
WWRW-backbones go from oblate to prolate to minimize the backbone-backbone (BB)
interaction, where in the present theory the mean field due to the backbone-mesogen
(BM) interaction is always larger than the BB one and it is this (cross) interaction which
drives the transition.

In conclusion, there are three main differences between the present approach and
that of WWRW and which may contribute to the difference in phase behaviour. First,
in the WWRW-approach, the intrachain and the extrachain interactions scale in the
same way with temperature whereas in our approach they scale differently with the
density. Second, in case of our approach, the dimensions of the components totally fix
the (excluded volume) interactions. As a result, the BB can never be larger than the BM
interactions. In mean field theories, like that of WWRW, these interactions are governed
by effective parameters, which can be chosen freely. This might give unphysical results.
Third, the fact that we treat the internal degrees of freedom of the polymer in an exact
way, does (by itself) not seem to give better results. It does, however, allow us to see how
the nematic ordering of the various components (and along them) originates. Finally,
we are not aware of (first-order) N-N transitions in experimental LCP systems [102].

7.5.3. Conclusion and Outlook. We analyzed nematic ordering in a monodis-
perse fluid of side chain LCP’s. We took into account the explicit geometry of these
polymers (having spacers of nonzero dimensions) and intrachain interactions were con-
sidered exactly. Using the results of Chap. 5, we calculated the I-N bifurcation density
and bifurcating order of the components (B, S and M). The backbone orders paral-
lel (prolate) or perpendicular (oblate) with respect to the mesogens, depending on the
length of the spacers. Numerically, we computed the dependence of the order of the
various components on the density. On increasing the density, we found a continu-
ous transition (not a phase transition) from oblate (or weakly prolate) ordering of the
backbone to strong prolate ordering. Order along the backbone and spacers has been
determined as well, showing nicely the competition between the external (mean) field
and intrachain constraints due to stiffness. We have also computed the phase diagram
(density vs. spacer length). Our results were compared with the results of Warner and
coworkers.
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In constructing our theory, we have used the segmented-chain approach, developed
in Chap. 3, and there we stated that three kinds of approximations were used. First,
we have left out contributions from three polymers interacting simultaneously (second
virial approximation), second, two polymers having more than one “interaction site” are
not taken into account, and finally, a polymer interacting with itself is also left out (e.g.
overlap between different parts of the same chain). As we are considering infinitely long
polymers, one could argue that the errors made due to the approximations are not small.
However, in the limit of PB, PS, lM � dB, dS, dM, all three approximations are expected
to be very good (Chap. 3). Second, for more realistic ratios of persistence lengths and
thicknesses, it is hard to estimate, what is the effect of each of the approximations.
Naively, we would say that these ‘extra’ (double or self-) overlaps are only expected to
matter if the segments involved are within a few persistence lengths along the chain
(so orientational correlation is not yet lost). In other cases, when these things happen
far away from each other, we would only expect a correction to the magnitude of the
mean field, and not to its form, and this would mean that the physics would not change.
However, we have not investigated this. In this respect, we would like to mention
Ref. [111], where some of this is considered for an isolated side chain polymer.

Experimentally, side chain LCP’s are famous for forming smectic (Sm) phases. Ne-
matic side chain LCP’s must have short spacers, short mesogens and a rather flexible
backbone, otherwise they are smectic [1]. An argument due to Finkelmann is that
mesogenic monomers which form nematics (usually) form smectics when incorporated
in polymers and monomers which are not liquid crystalline yield nematic polymers. This
suggests that the smectic phase is expected to interfere with large parts of our phase
diagrams, where we computed its nematic behaviour. Also, side chain LCP systems
are thought to be able to form biaxial nematic (BN) phases. Obviously, we have not
considered either of these phases. It should not be too difficult to perform a bifurcation
analysis or even a numerical analysis of the BN (in principle, we can use the same equa-
tions). In fact, Warner and coworkers have already performed this in the context of their
model [109]. The Sm phase, being much more interesting from an experimental point
of view, however, is expected to be more problematic. In the present analysis, there is
a central role for the excluded volume, which is a result of integrating out the spatial
degrees of freedom. Considering Sm phases, this integration can not be performed and
the spatial dependence remains in the distribution funtions. An additional problem is
that spatial correlations (unlike orientational correlations) travel much further along the
polymer. In the context of the same (Maier-Saupe based) model, Warner and Renz have
given an analysis of side chain polymers in the Sm phase, arguing that layer hopping
hopping is an essential phenomenon [110].
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Summary

In this thesis we investigate the influence of molecular flexibility on liquid crystalline
phase behaviour. To this end, we develop a segmented chain formalism, which deals
with flexibility in a generic way. The segments are hard rodlike bodies and interact as
such with the segments of other chains. This interaction is treated in the second virial or
Onsager approximation. Within a chain, segments have an orientational coupling with
their nearest neighbours, favouring mutual alignment. A limit can be defined to go from
segmented to continuously flexible or wormlike chains. We study the nematic phase and
the isotropic-to-nematic phase transition. The theoretical tools used are bifurcation and
numerical techniques. The intrachain degrees of freedom are taken into account in an
exact fashion.

Chap. 1 is the introduction. We discuss some phenomenology and terminology of
liquid crystals and liquid crystalline polymers. Also, a brief historical overview is given
regarding some experiments, molecular architecture, modelling and simulations. The
connection with the work in this thesis is established.

The technical background is the subject of Chap. 2. Some foundations of thermo-
dynamics and statistical mechanics are introduced. Also, we discuss a few more specific
topics concerning the thermodynamics of phase transitions and the virial expansion of
the free energy, which we need in this thesis. Density functional theory is an alternative
formulation of statistical mechanics and able to deal with phase transitions in a natural
way. Solutions of lower symmetry often branch off from solutions of higher symme-
try when some control parameter is varied. This is called bifurcation and we discuss
some properties of the bifurcation point and how it can be located. At the end of the
chapter, we discuss two basic models relevant for this thesis; i) the Onsager model for
orientational ordering in a fluid of long hard rods and ii) the wormlike chain model for
polymers.

The rest of the thesis is divided in two parts. In the first part, polymers consisting
of linear associations of a single kind of monomer are considered. These are called
(linear) homopolymers and Chaps. 3 and 4 deal with these objects. Polymers consisting
of various kinds of segments are called heteropolymers. Heteropolymers are the topic
of Part 2 being Chaps. 5 to 7. In this second part, we also include the possibility of
branched molecular topologies.

In Chap. 3, we consider chains of cylindrically symmetric rodlike segments. From
first principles we build up a density functional formalism. Three approximations are
made; we neglect i) interactions between three or more chains simultaneously (Onsager
approximation), ii) simultaneous interactions between two chains involving more than
one pair of segments and iii) interactions between parts of the same chain which are not
nearest neighbours. The resultant density functional description is equivalent to that of a
single chain in a self-consistent effective field. The theory of nematic wormlike polymers
of Khokhlov and Semenov is obtained as a limiting case [33]. For the segmented chains,
we perform bifurcation and numerical analysis. We compare the results to those for
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wormlike chains and find a regime for which segmented chains behave approximately as
wormlike chains.

Real polymers are never cylindrically symmetric. Therefore in Chap. 4, we study
chains consisting of biaxial segments. We perform a bifurcation analysis of the isotropic-
to-nematic transition. As for the uniaxial chains, we can define a limit in which the
biaxial chains become continuously flexible. This limit we call the ribbonlike chain
limit. A ribbonlike chain is characterized by 4 dimensionless model parameters. The
stationarity equations and the free energy for ribbonlike chains are derived analogous to
Chap. 3. Some interesting aspects of this system are still left to explore; the effect of
flexibility on the stability of the biaxial nematic phase might be quite pronounced and
a slightly twisted biaxial chain provides a molecular geometry for a cholesteric phase.

The first chapter of Part 2 is Chap. 5. In this chapter, we consider a monodisperse
fluid of branched heterochains. We do not specify the molecules and allow for many
different types of segments, an unspecified sequence along the chain and an arbitrary
degree of branching. We extend the segmented chain formalism to these general ob-
jects and perform the isotropic-to-nematic bifurcation analysis. The main result is the
derivation of a matrix whose most negative eigenvalue corresponds to the bifurcation
density.

The general formalism developed in Chap. 5, is applied to main chain polymers in
Chap. 6. Main chain liquid crystalline polymers are linear polymers consisting of rigid
mesogens alternating with more flexible spacers. These mesogens are the “liquid crystal
formers”. Our (finite-length) main chain polymers are described by 4 model parameters.
We compute the bifurcation density and bifurcating order along the chain for various
spacer lengths. For small spacer lengths the bifurcation density shows a huge increase
confirming the experimental finding that spacers decouple the mesogens.

In Chap. 7, we consider side chain liquid crystalline polymers. A side chain polymer
consists of a polymer backbone and mesogens which are laterally attached to the back-
bone via spacers. For infinitely long backbones 6 dimensionless model parameters are
needed for these polymers. In the nematic phase the backbone can order parallel to the
mesogens (in a prolate conformation) or perpendicular (in an oblate conformation). In
the prolate nematic the excluded volume of backbones and mesogens is minimized, but
the spacers are on average bent which is an unfavourable conformation. Vice versa, in
the oblate nematic the spacers are straight which is more favourable but the backbone-
mesogen excluded volume is large. We locate the isotropic-to-nematic transition and
compute some properties using the bifurcation analysis of Chap. 5 and a numerical
scheme similar to the one used in Chap. 3. The same numerical scheme is also used to
compute the nematic behaviour for higher densities. The usual phase sequence upon
compression is isotropic - oblate - prolate or directly isotropic - prolate. Moreover we
find that the transition between oblate and prolate is not a phase transition in contrast
with earlier work by Warner et. al. [98, 99].



Samenvatting

Een proefschrift is over het algemeen het resultaat van vier jaar noeste arbeid, gepropt
in boekje van amper 100 tot 150 bladzijden. In die vier jaar heeft de promovendus zich
naar het front van de wetenschap gewerkt en daar geprobeerd een klein stapje vooruit
te zetten. Deze beeldspraak suggereert al dat een proefschrift hoogst specialistisch en
technisch van karakter is. Dit proefschrift is daarop geen uitzondering en omdat de
rest van het boekje voor veel mensen onleesbaar is of zo overkomt, neem ik in deze
samenvatting de ruimte om wat uit te wijden.

Op school leren we dat er drie verschijningsvormen zijn waarin stoffen voorkomen;
vast, vloeibaar en gasvormig. De vaste fase wordt gekenmerkt door het feit een object
elastisch vervormbaar. Dus als je ertegenaan duwt zal het een klein beetje vervormen,
maar als je ermee stopt, zal het zijn oorspronkelijke vorm weer aannemen. Er is dus
een soort van ‘herinnering’ in het materiaal aanwezig en het kan krachten genereren
die de vervorming weer teniet doen. Een vloeistof kan dat niet. Als je een kracht op
een vloeistof uitoefent stroomt het in de richting van de kracht. (Als je bijvoorbeeld
een emmer water scheef houdt doet de zwaartekracht zijn werk en loopt het water
eruit.) Toch zijn er ook overeenkomsten tussen vaste en vloeibare materialen. Gelijke
hoeveelheden zijn vaak ongeveer even zwaar; ze hebben ongeveer dezelfde dichtheid.
Daarin verschillen gassen weer van de vorige twee. Gassen stromen als vloeistoffen,
maar zijn veel ijler.

Figuur 8.13. De drie bekende fasen voor bolvormige moleculen die elkaar op
korte afstand sterk afstoten en op lange afstanden en licht aantrekken. Links
het gas, midden de vloeistof en rechts het kristal.

Natuurlijk stellen schoolboekjes de wereld wat simpeler voor dan die in werkelijkheid
is. Het blijkt dat materie is opgebouwd uit moleculen. Moleculen zijn de kleinste deeltjes
van een stof die nog steeds de eigenschappen van die stof bezitten. Simpele stoffen zoals
argon voldoen aan het bovenstaande profiel en hebben een gasvormige, een vloeibare en
een vaste fase (zie Fig. 8.13). Op dit hele kleine niveau zitten de argon atomen netjes op
een rooster in geval van de vaste fase, en bewegen ze kriskras door elkaar in de vloeibare
fase. De gasvormige fase lijkt op dit niveau op de vloeistof, behalve dan dat de atomen
gemiddeld veel verder van elkaar verwijderd zijn. Door de temperatuur of de druk te
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veranderen kan een stof van de ene in de andere fase overgaan. Gaan we bijvoorbeeld
van hoge naar lage temperatuur, dan komen we voor argon de volgende fase-overgangen
tegen; gas - vloeibaar en vloeibaar - vast. Soms ontbreekt de vloeistoffase en vinden we
alleen gas - vast.

Argon heeft deze drie fasen omdat de atomen bij benadering bolvormig zijn, ze
elkaar sterk afstoten op korte afstanden en elkaar een klein beetje aantrekken op lange
afstanden. De meeste stoffen bestaan echter niet uit ‘simpele’ bolvormige atomen, maar
uit moleculen die op hun beurt uit vele atomen kunnen bestaan. Als deze een nogal
onbuigzame langwerpige vorm hebben (laten we zeggen staafachtig) dan kunnen er meer
fasen voorkomen dan alleen gas, vloeibaar en vast. Namelijk, in de vloeibare toestand
bewegen ook deze ‘staafjes’ kriskras door elkaar, maar nu is het ook belangrijk dat
hun richtingen compleet willekeurig zijn. Zowel de posities als de richtingen van de
moleculen zijn dus ongeordend. Andersom, in de vaste toestand zitten de staafjes ook
hier op een rooster, maar nu moeten ze ook allemaal dezelfde kant opwijzen. De posities
en de richtingen van de moleculen zijn dus beiden geordend. Nu kan het gebeuren
dat deze moleculen tussen de totaal geordende vaste fase en de totaal ongeordende
vloeibare fase, fasen hebben met gedeeltelijke ordening. Dit zijn vloeibaar kristallijne
fasen. In Fig. 8.14 zijn er een paar getekend voor staafachtige moleculen. De fase
waarbij de staafjes ongeveer dezelfde richting opwijzen maar niet op regelmatige afstand
van elkaar zitten (en dus nog kriskras door elkaar heen bewegen), heet de nematische
fase. De nematische fase is dus eigenlijk een vloeistof met een voorkeursrichting. Om
de eerdergenoemde vloeistoffase zonder voorkeursrichting aan te duiden, gebruikt men
meestal isotrope fase. Isotroop slaat op het feit dat deze fase er in alle richtingen
hetzelfde uitziet. De fase waarin de staafjes ongeveer dezelfde richting opwijzen en ook
nog in lagen zitten is de smectische fase. Het dient wel benadrukt te worden dat binnen
in de smectische lagen de staafjes nog steeds niet op regelmatige afstand van elkaar
zitten en kriskras door elkaar bewegen. De smectische fase bestaat dus als het ware uit
vloeibare lagen die op elkaar zijn gestapeld.

isotroop nematisch smectisch kristallijn

Figuur 8.14. De vloeibaar kristallijne fasen voor staafjes. Links de isotrope
vloeistoffase en rechts het kristal. Daartussenin vinden we de nematische fase
en de smectische fase.

Het drijvende principe achter deze vloeibaar kristallijne ordening is de ‘langwerpige’
interactie die deze moleculen met elkaar hebben. Als je bijvoorbeeld lucifers in een lu-
ciferdoosje doet, kun je in het begin de lucifers nog op alle mogelijke manieren kwijt. Het
maakt dan niet uit of ze toevallig haaks op elkaar liggen of niet. Als je echter doorgaat
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met het vullen van het doosje, kom je op een punt dat deze willekeurige stapeling te
veel ruimte inneemt. Er passen veel meer lucifers in het doosje als je ze netjes parallel
aan elkaar legt. Eenzelfde soort proces zorgt ook voor de vloeibaar kristallijne ordening.
Een verschil is dat moleculen altijd bewegen, en op een bepaald moment zelf ‘ontdekken’
dat parallelle ordening voordeliger is.

Een interessante eigenschap die vloeibaar kristallijne fasen hebben is dat licht in
verschillende richtingen in verschillende mate wordt doorgelaten. Dat komt door de
voorkeursrichting die deze fasen hebben. Van deze eigenschap wordt gebruik gemaakt in
beeldschermen die zijn gebaseerd op vloeibare kristallen (LCD’s, liquid crystal displays).
Iedereen kent wel de horloges of rekenmachines met de zwarte cijfers op de grijsachtige
achtergrond. In de traditionele LCD’s zit een dun plakje van een gedraaide nemati-
sche fase tussen twee speciale glasplaatjes (polarisatoren). Er wordt licht op geschenen
en deze gedraaide nematische fase draait de ‘trillingsrichting’ van het licht en de glas-
platen laten het licht door. Dit is de grijsachtige achtergrond. Door een electrisch
veld over het plakje te zetten verandert de voorkeursrichting van het vloeibare kristal.
De trillingsrichting van het licht wordt niet meer gedraaid en de glasplaatjes laten het
licht niet meer door. Dit zijn de zwarte cijfers. Een voorbeeld van een molecuul dat
vloeibaar kristallijne fasen bezit is getekend in Fig. 1.3 in hoofdstuk 1. Overigens gaat
dit proefschrift niet over enigerlei toepassingen, maar enkel over systemen die vanuit
fundamenteel wetenschappelijk oogpunt interessant zijn.

Sinds de jaren zeventig is het ook mogelijk om de vloeibaar kristallijne groepen in
polymeermoleculen op te nemen. Polymeren zijn erg lange ketens van atomen (het
kunnen er duizenden zijn). Deze ‘vloeibaar kristallijne polymeren’ combineren de eigen-
schappen van vloeibare kristallen en polymeren. Ze hebben nog steeds de vloeibaar
kristallijne fasen maar polymeren zijn mechanisch sterker en ook makkelijk verwerkbaar
(je kunt er bijvoorbeeld plastic van maken). Deze combinatie maken vloeibaar kristal-
lijne polymeren erg interessant voor industriële toepassingen en er wordt dan ook veel
onderzoek naar gedaan. Een schematische voorstelling van twee soorten vloeibaar kris-
tallijne polymeren zijn gegeven in Fig. 8.15. De dikkere stukken heten mesogenen en
stellen de vloeibaar kristallijne groepen voor. De dunnere flexibele stukken zijn de poly-
meergedeelten. Ruwweg zijn er twee soorten; polymeren met groepen in de hoofdketen
en polymeren die zijketens hebben waar ze in zitten.

Figuur 8.15. Twee schematische voorbeelden van vloeibaar kristallijne poly-
meren. Slechts een paar herhalende ‘eenheden’ zijn getekend. Links de hoofd-
ketenpolymeren en rechts de zijketenpolymeren.

Er bestaan een aantal theorieën voor vloeibaar kristallijne ordening van staafachtige
moleculen. Deze spitsen zich grotendeels toe op de nematische fase en de overgang
van de isotrope naar de nematische fase omdat dit het makkelijkst te beschrijven is.
In sommige gevallen worden deze moleculen gemodelleerd als onbuigzame staafjes die
vloeibaar kristallijne fase-overgangen hebben door het luciferprincipe van drie alinea’s
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eerder. Vloeibaar kristallijne polymeermoleculen zijn lange flexibele objecten waar op
bepaalde punten wat dikkere stijve stukken in zitten die de vloeibaar kristallijne fasen
veroorzaken (zie Fig. 8.15). Hier voldoen die staafachtige modellen dus niet meer, om-
dat de flexibiliteit een essentieel onderdeel is van het systeem. Modellen voor deze
laatste systemen nemen de hoofdketens veelal als flexibele wormachtige objecten (rechts
in Fig. 8.16, de wormachtige keten is een bekend model in de polymeerfysica). De
vloeibaar kristallijne ordening wordt dan veroorzaakt door ‘effectieve’ segmenten (een
stuk van de keten dat gemiddeld redelijk recht is), die als staafjes fungeren. Sommige
modellen gaan nog een stapje verder en houden zelfs rekening met de expliciete geome-
trie van de moleculen (dus welke stukken dik, dun, stijf of minder stijf zijn). In dit
laatste geval, echter, worden de directe verbindingen binnen het polymeer niet meer
exact meegenomen, maar als een ‘gemiddeld veld’ dat op de verschillende componenten
werkt; een behoorlijk sterke benadering.

De titel van dit proefschrift is “Flexibele Theorieën voor Flexibele Moleculen”. En
zoals al gezegd gaat het over vloeibaar kristallijne polymeren, waarbij de buigzaamheid
of flexibiliteit een niet te verwaarlozen effect heeft op het fasegedrag. Het formalisme,
dat gëıntroduceerd wordt, houdt rekening met de de geometrie van de polymeren maar
ook de bijdragen van binnen het polymeer kunnen ermee exact worden uitgerekend. Dit
formalisme kan gemakkelijk aangepast worden voor de verschillende soorten polymeren
(bijvoorbeeld de twee in Fig. 8.15). In die zin zijn deze theorieën dus plooibaar of
flexibel te noemen en dit verklaart de keuze voor deze titel. In het laatste stuk van deze
samenvatting bespreek ik de hoofdstukken kort een voor een.

Hoofdstuk 1 is de inleiding en daar wordt een kort overzicht gegeven van wat eigen-
schappen van vloeibare kristallen en vloeibaar kristallijne polymeren. Er worden wat
historische achtergronden, experimenten, theorieën en simulaties besproken en de con-
tekst van het werk in dit proefschrift wordt er weergegeven. Hoofdstuk 2 behandelt
de technische achtergrond voor dit proefschrift. Dit zijn redelijk bekende resultaten en
worden hier even netjes op een rijtje gezet. De rest van het proefschrift is in twee gedeel-
ten gesplitst. Hoofdstukken 3 and 4 gaan over polymeren die uit één soort onderdeel
bestaan; homopolymeren. En in hoofdstukken 5 tot en met 7 mogen de onderdelen van
verschillende soorten en maten zijn. Hier mogen de ketens ook vertakt zijn.

≈

Figuur 8.16. Een gesegmenteerde keten lijkt bij vele kleine sterk gekoppelde
segmenten veel op een wormachtige keten
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Hoofdstuk 3 gaat over ketens die uit segmenten bestaan. Deze segmenten worden
gemodelleerd als harde staafjes. Binnen in een keten zijn twee opeenvolgende segmenten
gekoppeld met hun richtingen. Deze koppeling is zo dat het voordeliger is voor twee
buurstaafjes om ongeveer dezelfde richting op te wijzen en minder voordelig om erg
verschillende richtingen te hebben. Het kost dus moeite om deze ketens te buigen. Voor
deze gesegmenteerde ketens wordt een formalisme met een stevige theoretische fundering
opgeschreven. Er kan precies gëıdentificeerd worden waar wat voor benaderingen nodig
zijn. Deze gesegmenteerde ketens hebben voor lage dichtheid een isotrope fase, en voor
hogere dichtheid een nematische fase. Deze fase-overgang wordt gelocaliseerd met behulp
van theoretische technieken. Als deze gesegmenteerde ketens beschouwd worden in het
geval dat deze zijn opgebouwd uit heel veel kleine korte staafjes die sterk gekoppeld zijn
met hun buren lijken de gesegmenteerde ketens erg op wormachtige ketens (zie Fig. 8.16).
Zoals al gezegd zijn dez wormachtige ketens een bekend model voor polymeren.

De benadering van hoofdstuk 3 wordt in hoofdstuk 4 uitgebreid. Hier worden de
segmenten niet als staafjes maar als plaatjes gemodelleerd. Plaatjes zijn veel gecom-
pliceerder omdat deze meer ‘vrijheidsgraden’ hebben. Voor staafjes voldoet het namelijk
om één richting te specificeren, terwijl je voor plaatjes twee richtingen nodig hebt.
Ketens van deze plaatjes kunnen ook op meer verschillende manieren vervormen. Er zijn
namelijk twee verschillende manieren van buiging en je kunt de keten ook verdraaien
(torderen).

Hoofdstuk 5 is een erg technisch hoofdstuk waar het formalisme van hoofdstuk 3
wordt uitgebreid voor polymeren die uit willekeurig veel verschillende soorten staafjes
kunnen bestaan (dik of dun en lang of kort) en die staafjes mogen elke willekeurige
volgorde in de keten hebben. Verder mag de keten vertakt zijn en ook hier worden
geen specifieke eisen aan gesteld. De resultaten van dit hoofdstuk worden gebruikt in
de volgende twee.

Hoofdstuk 6 gaat over hoofdketenpolymeren (links in Fig.8.15). In de nematische
fase zijn de richtingen van de mesogenen (de dikke stukken) sterk geordend terwijl de
flexibele verbindingsstukken nog een behoorlijke graad van ongeordendheid vertonen. De
fase-overgang wordt gelocaliseerd en ook wordt de afhankelijkheid van de lengte van het
verbindingsstuk berekend. Ook de relatieve orde langs het polymeer wordt uitgerekend
en dit levert mooie plaatjes op (zie Figuren 6.7).

Figuur 8.17. De twee
situaties voor de nemati-
sche fase van zijketenpoly-
meren. Links richten de
hoofdketens zich haaks op
de mesogenen en rechts
parallel.

In het laatste hoofdstuk worden de zijketenpolymeren beschouwd (rechts in Fig. 8.15).
Bij deze moleculen vormt het polymeer een soort van ruggegraat waaraan zijketens
hangen. In deze zijketens zitten de mesogenen en die zijn weer met zo’n verbind-
ingsstukje aan de hoofdketen verbonden. Het interessante van deze moleculen is dat
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er een competitie kan ontstaan tussen de verschillende componenten. In de nematische
fase zijn de mesogenen weer sterk geordend. Met de hoofdketen kunnen dan twee din-
gen gebeuren. Als het verbindingsstukje heel kort is zal het over het algemeen niet zo
flexibel zijn en dat betekent dat de hoofdketen gemiddeld haaks staat op de mesogenen.
Als het verbindingsstukje lang is, is het wat flexibeler en zal het kunnen buigen zodat
de hoofdketens zich parallel aan de mesogenen kunnen richten (dit is voordeliger vol-
gens het luciferprincipe). Deze twee situaties zijn schematisch weergegeven in Fig. 8.17.
Afhankelijk dus van de lengte van het verbindingsstukje zal het systeen dus voor paral-
lelle of loodrechte hoofdketens kiezen. Hierbij dient te worden opgemerkt dat voor hoge
dichtheden de parallelle situatie altijd wint omdat het luciferprincipe belangrijker wordt
bij hogere dichtheden. Andere onderzoekers hebben een fase-overgang gevonden van
de loodrechte hoofdketens naar de parallelle. In dit proefschrift wordt echter een heel
gelijkmatige overgang gevonden. De reden is dat die andere onderzoekers een simpeler
model hanteerden dat deze fase-overgang toeliet.



Nawoord

Op deze plaats wil ik een paar mensen bedanken die direct of indirect hebben bijgedragen
tot dit proefschrift. Allereerst mijn begeleider en op de valreep ook promotor Bela
Mulder. Bela heeft een stijl van wetenschap beoefenen waarbij de natuurkundige neiging
tot conceptueel denken hand in hand gaat met een wiskundig strenge benadering. Deze
stijl spreekt mij zeer aan. Zijn enthousiasme en didactische kwaliteiten hebben mij zeer
gemotiveerd en geholpen de afgelopen viereneenhalf jaar. Ik ben Bela ook als persoon
zeer gaan waarderen en ik dank hem voor het vertrouwen dat hij in mij heeft gehouden,
ook toen het even wat minder ging.

Daan Frenkel wil ik bedanken voor het feit dat hij mijn promotor wilde zijn. Zijn
interesse tijdens de werkbesprekingen heb ik als zeer prikkelend ervaren. Verder bedank
ik hem voor het mede scheppen van het onderzoeksklimaat in onze groepen waarbij
hoogwaardige wetenschap en een ontspannen sociale omgang ongehinderd samengaan.

In de lente van 2000 heb ik met veel plezier twee maanden doorgebracht in Cleve-
land aan Case Western Reserve University. Hiervoor wil ik Philip Taylor en zijn groep
bedanken. De stimulerende werkbesprekingen die we daar hadden over uiteenlopende
onderwerpen hebben me geholpen in het zelfstandig leren inslaan van nieuw richtingen.

De werksfeer op Amolf en meer specifiek in onze (inmiddels zeer grote) koffiegroep
is geweldig. Veel collega’s hebben me geholpen met mijn (computer)problemen, nooit
zelfingenomen en altijd vrijblijvend, zodat ik nooit een aarzeling voelde mijn (soms
domme) vragen te stellen. De goede sfeer werd bevestigd en versterkt door het kwartiertje
darten dat we gedurende drie jaar deden, ’s middags na de lunch in ‘Villa Frenkelhof’.
Niet zelden stonden we met meer dan tien mensen in het kleine keukentje en vlogen de
darts ons om de oren. Ieder nieuw groepslid kon binnen twee weken volwaardig mee in
het spelletje ‘Killer’, waarin de zwakkeren het vaak wonnen van de sterkeren. Buiten
werktijd werd er vaak iets georganiseerd; ’s avonds samen eten, een spelletje bij iemand
thuis, naar de film of gewoon naar de kroeg. Ook denk ik met plezier terug aan de con-
ferenties in Lunteren waar we met velen naartoe gingen. Verder zorgden het zaalvoetbal
en de personeelsvereniging voor wat afleiding van de wetenschap.

Bastiaan de Geeter bedank ik voor zijn steun en interesse. Met nagenoeg dagelijkse
e-mailtjes en zeer regelmatige bezoekjes hielden we elkaar op de hoogte en hielpen we
elkaar door incidentele dipjes heen. Sander Pronk kwam ongeveer tegelijk met mij op
Amolf en ik heb het gevoel dat onze (wetenschappelijke) volwassenwording ongeveer
gelijk op ging. Ook bedank ik Bastiaan en Sander omdat ze mijn paranimfen willen zijn.

Tot slot bedank ik mijn ouders omdat ze een rustpunt zijn waar ik altijd op kan
terugvallen. En Céline ben ik veel verschuldigd voor haar steun, de dingen die ze me
heeft geleerd en de prachtige omslag die ze heeft gemaakt.
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integraalbeschrijving voor de ééndimensionale Diracvergelijking, onder leiding van prof.
dr. F. W. Wiegel. Sinds mei 1997 ben ik als onderzoeker in opleiding verbonden aan het
FOM-Instituut voor Atoom- en Molecuulfysica. Het onderzoek werd uitgevoerd onder
begeleiding van prof. dr. B. M. Mulder en staat beschreven in dit proefschrift. Tijdens
deze periode ben ik gedurende twee maanden te gast geweest bij prof. dr. P. L. Taylor
aan Case Western Reserve University in Cleveland, Ohio in de Verenigde Staten.

155


