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ABSTRACT We present a detailed analysis, based on the forward flux sampling simulation method, of the switching dynamics
and stability of two models of genetic toggle switches, consisting of two mutually repressing genes encoding transcription factors
(TFs); in one model (the exclusive switch), the two transcription factors mutually exclude each other’s binding, while in the other
model (general switch), the two TFs can bind simultaneously to the shared operator region. We assess the role of two pairs of
reactions that influence the stability of these switches: TF-TF homodimerization and TF-DNA association/dissociation. In both
cases, the switch flipping rate increases with the rate of TF dimerization, while it decreases with the rate of TF-operator binding.
We factorize the flipping rate k into the product of the probability r(q*) of finding the system at the dividing surface (separatrix)
between the two stable states, and a kinetic prefactor R. In the case of the exclusive switch, the rate of TF-operator binding
affects both r(q*) and R, while the rate of TF dimerization affects only R. The general switch displays a higher flipping rate than
the exclusive switch, and both TF-operator binding and TF dimerization affect k, R, and r(q*). To elucidate this, we analyze the
transition state ensemble. For the exclusive switch, the transition state ensemble is strongly affected by the rate of TF-operator
binding, but unaffected by varying the rate of TF-TF binding. Thus, varying the rate of TF-operator binding can drastically change
the pathway of switching, while changing the rate of dimerization changes the switching rate without altering the mechanism. The
switching pathways of the general switch are highly robust to changes in the rate constants of both TF-operator and TF-TF
binding, even though these rate constants do affect the flipping rate; this feature is unique for nonequilibrium systems.

INTRODUCTION

Biochemical networks with multiple stable states are omni-

present in living cells. Multistability can provide cellular

memory, it can enhance the sharpness of the response to intra-

and extracellular signals, it can make the cell robust against

biochemical noise, and it allows cells to differentiate into

distinct cell types. Although a multistable biochemical net-

work can flip between alternative states due to random fluc-

tuations (i.e., noise), in many cases the states are very stable,

and the network typically only switches from one state to the

next under the influence of an external signal (1). A key

question, therefore, in understanding multistable biochemical

networks is what controls the stability of the steady states. To

answer this question, we have to elucidate the pathways of

switching between steady states. Switching events are, how-

ever, intrinsically difficult to study experimentally, because

the switching event itself can be much faster than the typical

lifetime of the steady state. Computer simulations are

a valuable tool for studying biochemical networks, especially

for rare processes such as switching. However, precisely

because such events are rare, special techniques are required

to simulate them. One such technique is forward flux sam-

pling (FFS) (2–4), and in this article, we use FFS in combi-

nation with committor distributions to analyze in detail the

effect of two important sources of fluctuations—transcription

factor dimerization and transcription factor-DNA binding—

on the flipping rate and switching pathways of two models of

bistable genetic toggle switches. We hope that this analysis

may serve as a paradigm for studying multistable biochemical

networks as well as other rare events in nonequilibrium

systems.

If a biochemical network is bistable, with two stable states

A and B, respectively, then it will show a bimodal steady-

state probability distribution, r(q), of some order parameter

q. This order parameter can be the concentration of a species,

or a combination of the concentrations of a number of spe-

cies. It is usually interpreted as a reaction coordinate that

measures the progress of the reaction from state A to B.

Recently, such bimodal distributions have been measured

experimentally for biochemical networks (5–7). These dis-

tributions are potentially useful, because they are linked to

the rate of switching from one state to the other. In particular,

we have recently shown (8) that not only for equilibrium

systems, but also for systems that are out of equilibrium such

as biochemical networks, the rate of switching from state A to

state B, kAB, can be written as the product of two factors:

kAB ¼ Rrðq�Þ: (1)

Here, q* denotes the location of the dividing surface, the

separatrix (8,9), which separates the two states A and B. The

above relation is useful because it shows that the rate of

switching from one steady state to the next is given by the

probability r(q*) of being at the dividing surface, times a

kinetic prefactor R that describes the average flux of trajec-

tories crossing the dividing surface. However, while the rate

constant kAB does not depend on the choice of the order

parameter q as long as it connects states A and B, both r(q*)
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and R do depend on the choice of q. If q is the true reaction

coordinate that accurately describes the switching process,

then q* corresponds to the transition state and r(q*) and R
provide accurate measures for the probability of being at the

transition state and the flux of trajectories leaving the tran-

sition state for state B (10). A key issue in analyzing rare

events in general is therefore identifying the reaction coor-

dinate q that accurately describes the progress of the transition.

FFS can be used to compute kAB, r(q*), R, and to generate

members of the transition path ensemble (2–4, 11). To

identify the reaction coordinate, the transition paths can be

analyzed using committor distributions; this approach is

commonly applied in the field of soft-condensed matter

physics (10), and we have recently demonstrated how it can

be used to analyze the transition pathways of biochemical

switches (2). Each configuration x of our system has a

commitment probability or committor, PB(x). This is the

probability that a trajectory, fired at random from that con-

figuration, will reach state B before state A. Given PB(x), we

can define the transition state ensemble (TSE) (12), which is

the collection of configurations along the reaction pathways

which have committor value PB(x) ¼ 0.5. We can extract

TSE configurations from our switching pathways by com-

puting committor values for all the points along the pathways

and selecting those points (several per path) with PB ¼ 0.5.

We then try to find an order parameter (or combination of

order parameters) that accurately describes these TSE con-

figurations. To test likely order parameters, one can compute

the probability distribution for the order parameter for the

TSE configurations (2,10). Poorly chosen order parameters

will show a broad or even bimodal distribution (13), while

good order parameters will show a narrow distribution of

values in the TSE.

In this article, we apply FFS to study two different models

of genetic toggle switches, consisting of two genes A and B

that mutually repress each other (2,8,14–20). The genes en-

code transcription factors (TFs) A and B, respectively. These

can form homodimers, in which form they can bind to a

regulatory region of the DNA (represented by an operator site

O) and regulate transcription. The dimer A2 represses the

transcription of B when bound to O and vice versa (see Fig.

1). In the first model, called the exclusive switch (8,17), the

dimers of the two species are not allowed to simultaneously

bind to the operator; in the second model, called the general

switch, the operator can bind both types of homodimers at the

same time (8,17). Both switches have one stable state in

which A is abundant, and B scarce, and another stable state in

which B is abundant and A scarce. We simulate the switch

using the Gillespie algorithm (21), in combination with FFS.

The Gillespie algorithm is a widely used and efficient kinetic

Monte Carlo scheme (22) for chemical reactions, which

generates trajectories in correspondence with the chemical

master equation.

Switching events are driven by random fluctuations. Key

fluctuation sources in this network are TF-TF and TF-DNA

association and dissociation reactions. By varying the rates of

these reactions, while keeping their equilibrium constants

fixed, we can vary independently the timescales and hence

the correlation times of these fluctuations. The correlation

times of fluctuations are important, since they determine the

extent to which the fluctuations propagate in the network

(23–25).

We therefore begin by calculating how the stability of both

switches varies with the rate of TF-TF association and dis-

sociation (dimerization), and with the rate of TF-operator

association and dissociation (operator binding). We vary the

association and dissociation rates together, keeping their ratio

(i.e., the equilibrium constant) unchanged. The switching rate

is strongly affected: for both models, kAB decreases as the rate

of operator binding increases, and increases as the rate of

dimerization increases. Analyzing the effects on r(q*) and R,

we find that the two models behave differently: for the ex-

clusive switch, the rate of operator binding changes both

r(q*) and R, while the rate of dimerization affects only R; for

the general switch, the rate of dimerization affects both r(q*)

and R, while the rate of operator binding predominantly

changes r(q*).

We then show that the effect of TF-TF and TF-DNA

fluctuations on k, R, and r(q*) can be understood by eluci-

dating the switching mechanism using committor distribu-

tions. We find that for the exclusive switch the difference in

total copy number of the two species is not a complete re-

action coordinate: the state of the operator is also an important

factor in determining the committor value (2). In contrast, we

find little evidence that dimerization is an important ingre-

dient of the reaction coordinate. This explains why the rate of

operator binding affects both the probability of being at the

separatrix and the kinetic prefactor, while dimerization only

affects the kinetic prefactor. For the general switch, the sit-

uation is markedly different: the switching mechanism is

highly robust to changes in both the rate of operator binding

and the rate of dimerization. Hence, changing these rate

constants does not change the route the switching pathways

take in state space, yet does affect the flipping rate. This is a

FIGURE 1 Pictorial representation of the model switch, corresponding to

the reaction schemes in Eqs. 2a–f. Two divergently-transcribed genes are

under the control of a shared regulatory binding site on the DNA (the oper-

ator site O). Proteins A and B can bind, in homodimer form, to the operator.

Each TF acts to block the production of the other species. In the exclusive

switch, only one type of TF can bind at any given time (meaning that the

production of both species can never be suppressed), whereas, in the general

switch, both types of TF can bind (in which case the production of both

species is repressed).
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manifestation of the fact that this is a nonequilibrium sys-

tem—in an equilibrium system the switching rate cannot be

changed without changing the switching pathways. The

general implication of this observation is that to understand

the stability of biochemical switches, we need to understand

not only the composition of the transition state ensemble, but

also the dynamics of the transition paths.

In the next section, we describe the model genetic switches

in more detail. In the subsequent section, we briefly discuss

the FFS technique. We then present the results on the

switching rate, the kinetic prefactor, and the probability of

being at the separatrix for both models, showing how they

depend on the rates of operator binding and of dimerization.

In the next sections, we discuss switching pathways and re-

action coordinates first for the exclusive switch, and then for

the general switch. We end with a discussion of the impli-

cations of our findings for the modeling of multistable bio-

chemical networks and the study of rare events in other

nonequilibrium systems.

MODELS: THE EXCLUSIVE AND THE
GENERAL SWITCH

We consider a genetic toggle switch consisting of two genes,

each of which represses the other (2,8,14,17,18,26). A switch

of this kind has been constructed and shown to be bistable in

E. coli (5). We study both the general switch and the exclu-

sive switch, introduced by one of us (8,17). The general

switch is represented by the following set of reactions

(2,8,17):

A 1 A ���! ���kf

kb

A2; B 1 B ���! ���kf

kb

B2; (2a)

O 1 A2
���! ���kon

koff

OA2; O 1 B2
���! ���kon

koff

OB2; (2b)

OA2 1 B2
���! ���kon

koff

OA2B2; OB2 1 A2
���! ���kon

koff

OA2B2; (2c)

O /
kprod

O 1 A; O /
kprod

O 1 B; (2d)

OA2 /
kprod

OA2 1 A; OB2 /
kprod

OB2 1 B; (2e)

A /
m

B; B /
m

B: (2f)

In this reaction scheme, O represents a DNA regulatory

sequence adjacent to two divergently transcribed genes A and

B. These code, respectively, for proteins A and B, as shown

in Fig. 1. Genes A and B can each randomly produce proteins

with the same rate, but whether they do so depends on the

state of the operator O. Proteins A and B can each form a

homodimer that can bind to the operator. When an A2 dimer

is bound to O, the production of B is blocked, and likewise,

when a B2 dimer is bound to O, the production of A is

blocked. When both dimers are bound to the operator, no

protein can be produced. Proteins can also vanish (in the

monomer form), modeling degradation and dilution in a cell.

This model can be modified by removing reactions in Eq. 2c:

in this case, transcription factors mutually exclude each

other’s binding to the operator. We refer to the switch

described by the whole set of chemical reactions in Eqs.

2a–f as the general switch; the exclusive switch consists of

the same set of reactions, except for reactions in Eq. 2c.

We have assumed in this model that transcription, trans-

lation, and protein folding can be modeled as single Poisson

processes, neglecting the many substeps that lead to the

production of a protein. Warren and ten Wolde (8) discuss the

effects of both shot noise and fluctuations in the number of

proteins produced per mRNA transcript on the switch sta-

bility. We also note here that while mean-field analysis pre-

dicts that cooperative binding of the transcription factors to

the DNA is essential for bistability (26), it has recently been

demonstrated that bistability can be achieved without coop-

erative binding when the discrete nature of the reactants is

taken into account (18).

We choose k�1
prod as the unit of time for our simulations, and

we use the volume of the system, V, as the unit of volume. In

this article, we will use the following baseline set of param-

eters: kf¼ 5 kprodV, kb¼ 5 kprod (so that Kd
D ¼ kb=kf ¼ 1=V),

kon¼ 5 kprodV, koff¼ kprod (so that Kb
D ¼ koff=kon ¼ 1=ð5VÞ),

and m ¼ 0.3 kprod. These parameters are chosen to be repre-

sentative of typical cellular values, as discussed in the last

section. For simplicity, the model switches are completely

symmetrical; rate constants for equivalent reactions involv-

ing A and B are the same. The mean field analysis performed

in Warren and ten Wolde (8) demonstrates analytically for

both systems the existence of three fixed points for the pa-

rameter values listed above: two symmetrical stable states,

one rich in A and the other rich in B, separated by one un-

stable state where the total number of A equals the total

number of B. This implies that the system can be considered a

truly bistable switch. However, while this analysis indicates

the regions in parameter space where the system is bistable, it

cannot predict the switch stability nor elucidate the switching

pathways. For this reason, we carry out stochastic Kinetic

Monte Carlo simulations using the Gillespie algorithm

(21,22). In previous work, we have shown that the switch

stability depends strongly on the mean copy number of

species A and B (17), which is given by the ratio of the

protein production and decay rates, kprod/m. In this article, we

investigate its dependence on the other parameters kf, kb, kon,

and koff, which govern key sources of fluctuations in the

network—TF-TF and TF-DNA association and dissociation

reactions.

METHOD: FORWARD FLUX SAMPLING

Conventional simulation methods are ineffective for studying

rare events such as the flipping of biochemical switches,

because the vast majority of the computational effort is spent

in simulating the uninteresting waiting times in between the

events. For this reason, specialized methods are required, and
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we have recently developed the forward flux sampling (FFS)

technique (2–4). FFS is well suited to simulating biochemical

networks, since, unlike most other rare event methods (27), it

can be used for out-of-equilibrium systems. In this article, we

use FFS to calculate rate constants, transition paths, and

stationary probability distribution functions for the model

genetic switch.

To obtain the rate constant kAB for a rare transition be-

tween two states A and B, FFS exploits the fact that (in steady

state) kAB can be written as the product of two factors:

kAB ¼ FAPAB: (3)

Here, FA is the number of trajectories that leave state A per

unit time, while PAB is the conditional probability that these

trajectories subsequently reach state B without returning to

A. An order parameter l must be chosen, which defines states

A and B: if l , l0 the system is in state A, while it is in state

B if l . ln. The parameter l is then used to further define a

series of nonintersecting interfaces fl1; . . . ; ln�1g;with li ,

li11, such that any trajectory from A to B has to cross all the

interfaces fl0; . . . ; lng; without reaching li11 before it has

crossed li. The conditional probability PAB can be written as

PAB ¼
Yn�1

i¼0

Pðli11jliÞ; (4)

where P(li11jli) is the conditional probability that a trajec-

tory that comes from A and has crossed li for the first time,

will subsequently reach li11 before returning to A. The

factorization of the rate constant kAB described in Eqs. 3 and

4 was first derived in van Erp et al. (28). Several different

algorithms can be used to calculate FA, P(li11jli) and to

obtain transition paths; in this article, we have used the

original scheme (2,3). Briefly, one first performs a conven-

tional (i.e., brute-force) simulation to compute FA, which is

the number of times that the trajectory crosses l0, coming

from l , l0, divided by the total simulation time. When one

of these crossings occurs, the configuration of the system is

stored, so that this simulation run generates not only an

estimate for FA, but also a collection of points at interface l0.

In the next stage, one chooses a point at random from this

collection, and fires off a new trajectory from this point,

which is continued until the system either reaches the next

interface l1 or returns to state A. If l1 is reached, the system

configuration at l1 is stored in a new collection. This pro-

cedure is repeated a number of times until a sufficiently large

number of points at the next interface have been generated.

An estimate for P(l1jl0) is obtained from the number of trials

which reached l1, divided by the total number of trials fired

from l0. Starting from the new collection of points at l1, one

then repeats this whole procedure to drive the system to l2,

and so on. Eventually, the system reaches state B, upon

which the rate constant can be calculated from Eqs. 3 and 4.

Furthermore, a (correctly weighted) collection of trajectories

corresponding to the transition (i.e., transition paths) can be

obtained by tracing back those trial paths that arrive in B to

their origin in A.

We have recently shown (11) that this procedure can be

used to generate not only the rate constant and transition

paths, but also the stationary distribution r(q), as a function

of a chosen order parameter (or parameters) q. This is ach-

ieved by continuously updating a histogram in the parameter

q during the trial run procedure, as described in Valeriani

et al. (11). To obtain r(q), histograms for the forward (A /
B) and backward (B / A) transition must be combined.

However, since our model switch is symmetric, the two

histograms are identical in this case. The parameter q does not

have to be the same as l, although in this article we have

chosen q ¼ l.

In FFS, a series of interfaces are used to drive the system

over a barrier, in a ratchetlike manner. The efficiency of the

method of course depends on the choice of the order pa-

rameter l, the positioning of the interfaces, number of trials,

etc. (4). However, it is important to note that l does not have

to be the true reaction coordinate for the transition. The

choice of l does not impose any bias on the system dy-

namics: transition paths are free to follow any possible path

between states A and B. The choice of l should not affect the

computed rate constant, transition paths or r(q). Furthermore,

the FFS method does not make a Markovian assumption

about the transition paths, or any assumptions about the

distribution of state points at the interfaces fl0, ���, lng: each

point at interface i lies on a true dynamical path which

originates in the initial state A. This turns out to be essential

for the model genetic switch.

For the FFS calculations presented in this article, we have

chosen as l parameter the difference between the total copy

numbers of the two proteins: l [ nA – nB, with nX [ NX1

2NX2
1 2NOX2

the total copy number of species X¼ A or B in

the exclusive switch and nX [ NX 1 2NX2
1 2NOX2

1 2NOA2B2

the total copy number of species X ¼ A or B in the general

switch.

RESULTS

Key sources of fluctuations in this reaction network are TF-

TF and TF-DNA association and dissociation reactions. We

can vary the influence of these fluctuations on the network

dynamics by changing the rate constants for association and

dissociation, keeping the equilibrium constant (the ratio of

association and dissociation rate constants) fixed, so that the

macroscopic dynamics of the system remain unchanged.

When these reactions are fast, fluctuations are short-lived on

the timescale of the slower protein production and degrada-

tion reactions, so that the effect of a fluctuation is lost over

just a few production/degradation reactions. However, for

slow association-dissociation reactions, fluctuations in, for

example, the ratio of monomers to dimers, can persist over

the timescale of a series of production/decay reactions, and

thus have a strong influence on the dynamics of the whole
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network. In what follows, we first discuss the effects of

varying the rates of operator binding and dimerization on the

switching rate for both genetic switch models, and then, to

elucidate these effects, we separately discuss the switching

pathways for the two cases.

Switching rates

Fig. 2, A and B, shows the flipping rate kAB for the exclusive

switch as a function of the dimerization rate kf and the op-

erator binding rate kon, respectively (keeping the dissociation

constants constant). The results for the general switch are

shown in Fig. 3, A and B. It is clear that for both switches the

two sources of fluctuation have very different effects on the

stability: while kAB increases with the rate of dimerization

(Fig. 3 A), it decreases with the rate of operator binding (Fig.

2 B). Thus, fluctuations in the TF-DNA association/dissoci-

ation reactions tend to destabilize the switch, whereas,

counterintuitively, fluctuations in the TF-TF association/

dissociation reactions increase the switch stability.

To understand the origin of these effects, we factorize the

flipping rate kAB into the product of the probability of finding

the system at the dividing surface r(q*) and a kinetic pre-

factor R, as in Eq. 1. Fig. 4 shows the steady-state probability

distribution r(l) of finding the system at a particular value of

the order parameter l, for different values of the dimerization

and operator binding rate: Fig. 4 A refers to the exclusive

switch and Fig. 4 B to the general switch. These distributions

were computed using FFS, as described in Method: Forward

Flux Sampling and Valeriani et al. (11).

We first note that both distributions exhibit peaks at l�6

27, corresponding to the two stable states. Secondly, the lo-

cations of the two stable states and the shape of the stationary

distributions are fairly insensitive to both the rate of dimer-

ization and the rate of operator binding. However, at ;l ¼ 0

the distributions, especially that of the general switch, are

much more sensitive to changes in the rate constants. Inter-

estingly, the probability of finding the system at the value l¼
0 is markedly differently for the two models: while for the

exclusive switch r(l) exhibits a minimum, representing an

unstable steady state for the system, in the case of the general

switch, the probability distribution has a local maximum,

indicating the presence of a metastable steady state (8,18).

Finally, we note that for an equilibrium system, fluctuations

do not influence the stationary distribution function: the

FIGURE 2 (A and B) Switching rate kAB for the exclusive switch as a

function of the dimerization rate kf (A) and the rate of operator binding kon

(B). Dissociation rates are scaled such that the equilibrium constants remain

constant: kd
D ¼ kb=kf ¼ 1=V and kb

D ¼ koff=kon ¼ 1=ð5VÞ. Panels C and D

show the probability r(q*) of being at the dividing surface, as a function of kf

(C) and kon (D). Panels E and F show the kinetic prefactor, as defined by Eq.

1, as a function of kf (E) and kon (F).

FIGURE 3 (A and B) Switching rate kAB for the general switch as a

function of the dimerization rate kf (A) and the rate of operator binding kon

(B). Dissociation rates are scaled such that the equilibrium constants remain

constant: kd
D ¼ kb=kf ¼ 1=V and kb

D ¼ koff=kon ¼ 1=ð5VÞ. Panels C and D

show the probability r(q*) of being at the dividing surface, as a function of kf

(C) and kon (D). Panels E and F show the kinetic prefactor, as defined by Eq.

1, as a function of kf (E) and kon (F).

FIGURE 4 Probability distribution as a function of the order parameter

l ¼ nA – nB, with nX the total copy number of species X, for the exclusive

switch (A) and for the general switch (B). The distributions are obtained with

FFS calculations (11), for three different sets of parameters.
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effect of kf and kon on r(q) is a clear characteristic of the

nonequilibrium nature of the dynamics in this system.

From the distribution r(q), we compute the probability of

being at the minimum of the curve, r(q*). For the exclusive

switch, this point corresponds to the dividing surface r(l ¼
0); we show in Fig. 2, C and D, how this quantity varies with

kf and kon, respectively. In the case of the general switch, the

transition happens through the metastable state at l ¼ 0.

However, the rate-limiting step for the flipping is to get to the

minimum of r(l), which is now located at l � 6 5. There-

fore, for the general switch, r(q*) was computed for q*¼ l¼
5; it is shown in Fig. 3, C and D. By combining r(q*) with Eq.

1, we compute the kinetic prefactor R, shown in Fig. 2, E and

F, and Fig. 3, E and F, for the exclusive and general switches,

respectively.

We observe that, for the exclusive switch, r(q*) depends

upon the operator binding rate (Fig. 2 D), but not upon the

rate of dimerization (Fig. 2 C), while for the general switch,

r(q*) depends upon both rate constants (Fig. 3, C and D). In

both models, the kinetic prefactor R increases with the rate of

dimerization (Figs. 2 E and 3 E), while it decreases with the

rate of operator binding (albeit much less so in the general

switch; Figs. 2 F and 3 F). One might expect that a change in

r(q*) reflects a change in the location of the switching

pathways in state space. This would suggest that in the

general switch, the switching pathways depend upon both the

rate of dimerization and the rate of operator binding, while for

the exclusive switch the switching mechanism does depend

upon the rate of operator binding, but not on the rate of di-

merization. While the conclusion for the exclusive switch is

correct, that for the general switch is not, as we discuss in the

next two sections.

Switching pathways—exclusive switch

To understand the effects of the operator binding and di-

merization fluctuations on the switching rate, we would like

to determine what the true reaction coordinate is for the

switching process and whether it involves these fluctuations.

To do this, we need to examine the transition paths for

switching, which are also generated by FFS. We will focus on

three sets of parameters:

1. The base-line set, with operator binding rate kon ¼ 5

kprodV and dimerization rate kf ¼ 5 kprodV.

2. A set with slow dimerization, kf ¼ 0.1 kprodV and kon ¼ 5

kprodV.

3. A set with fast operator binding, kon ¼ 500 kprodV and

kf ¼ 5 kprodV.

As above, in all cases the dissociation rates are scaled

such that the equilibrium constants remain constant: Kd
D ¼

kb=kf ¼ 1=V and Kb
D ¼ koff=kon ¼ 1=ð5VÞ. In this section,

we discuss the exclusive switch, while the next section fo-

cuses on the general switch.

To analyze the progress of the system as it flips from one

state to the other, we have averaged the switching trajectories

in the PB ensemble. The committor PB(x) is the probability

that a trajectory propagated at random from configuration x
reaches state B before state A. The PB ensemble is formed by

those configurations x that have the same value of PB;

ÆQðxÞæPB
thus denotes the average of a quantity Q(x) in the

ensemble of configurations x with the same value of PB.

Given an ensemble of switching paths obtained with FFS, we

can harvest configurations x with the same value of PB. In-

deed, each transition path has at least one configuration for

every value of PB. The term PB(x) can be used to characterize

the progress of the transition from A to B—in a sense, it is the

true reaction coordinate and our task is to identify coordinates

that characterize PB. However, its evaluation is computa-

tionally very expensive. We have computed PB for config-

urations in the transition paths that were generated using FFS,

by firing 100 test trajectories from each configuration. The

average paths in the PB ensemble are rather noisy, precisely

because PB is a stochastic quantity that has to be estimated by

a computationally demanding procedure.

Fig. 5 A shows the average switching pathways for the

exclusive switch in the nA, nB plane, where nA and nB are the

total copy numbers of species A and B, respectively (nA ¼
NA 1 2NA2

1 2NOA2
for the exclusive switch and nA ¼ NA 1

2NA2
1 2NOA2

1 2NOA2B2
for the general switch; similarly for

FIGURE 5 Switching paths projected onto the nA, nB

surface, for three different sets of parameters. (A) Paths

averaged in the PB ensemble for the exclusive switch,

where nA and nB are averaged over configurations with the

same value of PB, where nX is the total copy number of

species X. The forward paths, corresponding to transitions

from A to B, are shown with solid lines, while the reverse

transitions, from B to A, are shown with dashed lines. (B)

Switching paths for the general switch. In this projection,

the paths are highly insensitive to variations in parameters.

The hypersurface l ¼ 0 is crossed with a lower total

number of A- and B-molecules.
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B). Paths are shown for both the A / B (solid lines) and B /
A (dashed lines) transitions. Considering the red and black

lines in Fig. 5 A, we see that the dimerization rate kf has little

effect on the switching pathways (at least in this represen-

tation), whereas, on considering the green and black lines, it

is clear that the operator binding rate kon does strongly in-

fluence the switching pathways, especially in the region of

the dividing surface, where nA ¼ nB: the pathways shift to

lower values of nA and nB when kon is increased.

Since it appears from Fig. 5 A that the state of the operator

is likely to play an important role in the switching mecha-

nism, we plot in Fig. 6 A the probability that the operator is

bound by a B2 dimer, ÆNOB2
æ as a function of l. Comparing

the solid black and red lines, we see that changing the rate of

dimerization has indeed little effect on the transition paths. In

contrast, a comparison of the black and green solid lines

shows that changing the rate of operator binding has a strong

effect on the switching pathways. This indicates that operator

state fluctuations play an important role in switch flipping

(2,9)—so that the reaction coordinate depends not only on the

difference in the number of protein molecules, l, but also on

which protein is bound to the operator.

This fact is further illustrated in Fig. 7, which shows his-

tograms for configurations in the TSE of the transition from A

to B; members of the TSE are points along the transition

paths for which PB¼ 0.5. Each panel in Fig. 7 corresponds to

a different parameter set—the baseline parameter set in the

center, slow dimerization on the left, and fast operator

binding on the right. In each case, we divide the collection of

TSE configurations according to the state of the operator. For

each operator state, we plot histograms for the l-coordinate,

in such a way that the area under a histogram corresponds to

the total number of TSE points with that operator state. The

histograms are color-coded according to operator state.

Considering first the central panel of the upper row (baseline

parameter set), we see that the green histogram (OA2) is

shifted toward smaller values of l than the red histogram

(OB2)— i.e., the state of the operator and l are correlated in

the TSE. This means that if a B-dimer is bound to the oper-

ator, then, on average, the number of A-molecules has to

exceed the number of B-molecules to have the same value of

PB, and vice versa. We also see that the area under the OB2

histogram is larger than that under the OA2 histogram—

indicating that the TSE has predominantly B2 bound to the

operator, even though the switch is symmetric. Turning next

to the right panel—rapid operator association and dis-

sociation—we see that again the OA2 histogram is shifted

toward smaller values of l relative to the OB2. However, in

this case, the areas under the two histograms are approxi-

mately equal. Thus, increasing the rate of operator binding

appears to have caused the transition state for switch flip-

ping to become symmetric in A and B. The left panel shows

the results for slow dimerization, kf ¼ 0.1. This plot is vir-

tually indistinguishable from the baseline parameter results,

indicating that changing the dimerization rate has little effect

on the transition state ensemble, as suggested by Fig. 6 A.

These results unambiguously demonstrate that, for the exclu-

sive switch, fluctuations arising from TF-DNA association-

dissociation reactions are central to the flipping mechanism,

while those arising from TF-TF association-dissociation re-

actions have little effect on the flipping mechanism, although

they can influence the dynamics of the flipping trajectories

and hence the switching rate.

Drawing together the observations of Figs. 2, 4 A, 5 A, 6 A,

and 7, we can now understand the dependence of the ex-

clusive switch flipping rate on the rate of operator binding

(Fig. 2 B). In the limit of slow operator binding and unbinding

(2,9), the binding of the minority species to the operator

strongly enhances the flipping of the switch: when the mi-

nority species happens to bind the operator, it will stay on the

FIGURE 6 (A) Exclusive switch: probability that a B2

dimer is bound to the operator, ÆNOB2
æ; as a function of PB

for three different sets of parameters. The solid lines

correspond to the transition from A to B, while the dashed

lines corresponds to the reverse transition from B to A. (B)

General switch: operator occupancies during the transition

from A to B and vice versa (the empty state O is not shown

since it is always scarcely occupied), for the baseline

parameter set; the results for the other parameter sets are

indistinguishable.
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DNA for a relatively long time, thus blocking the synthesis of

the majority species and allowing the production of the mi-

nority species. In this limit, the system can reach the dividing

surface with relatively few production/degradation events.

As the rate of operator binding and unbinding is increased,

each transition involves many operator binding/unbinding

events, and consequently proteins of both species are pro-

duced and decay during the transition process. Here, the state

of the operator is increasingly slaved to the difference in the

total number of A- and B-molecules, l. In the adiabatic limit

of fast operator binding, the probability that a molecule of

type A or B is bound to the operator is completely determined

by l (9). In this limit, the dividing surface is located at l � 0

and ÆNOA2
æ � ÆNOB2

æ; to reach the separatrix, the system has

to wait for a series of fluctuations in the birth and decay of

both species that lead to nA � nB. This implies that the total

number of copies of A and B at the dividing surface decreases

as the rate of operator binding increases (Fig. 5 A). Because a

series of production/decay events are required to reach the

separatrix, the probability r(q*) is decreased as the rate of

operator binding increases (Fig. 2 D). In addition, having

reached the separatrix, the system requires more production/

decay events to take it to the B-state. This increases the

probability that it will recross the separatrix and eventually

return to A instead of contributing to B—resulting in a de-

crease in the kinetic prefactor R in Fig. 2 F.

Figs. 5–7 suggest that the rate of dimerization only has a

marginal effect on the switching pathways. However, our

view of the switching pathways naturally depends on the

representation in which we choose to plot them. We have

investigated many representations to see whether the rate of

dimerization could affect the switching pathways. Perhaps the

most important one is the average number of dimers ÆNB2
æ as a

function of ÆNB(NB – 1)æ. However, also in this representation

the rate of dimerization only has a very minor effect on the

switching pathways; in fact, near the top of the dividing sur-

face, the dimerization reaction is in steady state (data not

shown). This supports our conclusion that dimerization af-

fects the rate at which the transition paths traverse state space

(and hence R), but not the route they take (and thus not r(q*)).

The effect of TF-TF association/dissociation fluctuations

on the dynamics of the trajectories can perhaps be understood

by considering that to start a switching event from one stable

state to the other, two copies of the minority species must be

produced. They must then dimerize and bind to the operator,

to shut down production of the majority species. If the di-

merization rate is comparable to the degradation rate, it be-

comes increasingly probable that copies of the minority

species, once produced, are removed from the system before

they can form a dimer. Thus, decreasing the dimerization rate

actually reduces the chance that the switch can flip. This

effect is truly dynamical in origin. We note that it is also

fundamentally different from enhanced switch stability via

cooperativity due to nonlinear degradation (29).

Lastly, while operator binding is an equilibrium reaction, it

couples to reactions that are out of equilibrium, such as

protein production and decay. As a result, the dynamics of

operator binding can lead the exclusive switch to behavior

that is unique for nonequilibrium systems. This can be seen

by comparing the forward paths from A to B with the

backward paths from B to A in Fig. 6 A. When the rate of

operator binding is fast, the forward and backward paths

essentially coincide. This situation differs markedly for the

system with the base-line parameter set and for the system

with slow dimerization: although the switch is symmetric on

interchanging A and B, the transition path ensemble for the

transition from A to B does not coincide with that from B to A

(2). This is a manifestation of the fact that this switch is a

nonequilibrium system: for equilibrium systems that obey

detailed balance and microscopic reversibility, the forward

and backward paths must necessarily coincide. The fact that

the forward and backward paths do not coincide also means

FIGURE 7 The probability r(l) for the transition state

ensemble (PB ¼ 0.5) for the transition from A to B, where

l ¼ nA – nB. (Top row, A) Exclusive switch. (Bottom row,

B) General switch. The probability r(l) is split into color-

coded contributions from the three operator states; the area

under each histogram gives the probability ÆNOXæ that the

operator is bound to species X (the three areas thus sum to

unity). The left panels correspond to the system with slow

dimerization kf ¼ 0.1; the middle panels correspond to the

system with the base-line parameters; the panels on the

right corresponds to the system with fast operator binding

kon ¼ 500.
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that the switching paths do not follow the path of highest

steady-state phase space density, which, for equilibrium

systems, would correspond to the lowest free-energy path:

Since this system is symmetric, this lowest-free energy path

is symmetric on interchanging species A and B, while Fig.

6 A shows that the dynamical switching trajectories are not

(unless operator binding is fast). This also means that for this

system it is essential not to make the Markovian assumption

of memory loss, which underlies path sampling schemes such

as Milestoning (30) and PPTIS (31).

Switching pathways—general switch

We now turn our attention to the switching pathways for the

general switch, again obtained with FFS. Fig. 5 B shows for

the three different parameter sets the switching trajectories as

averaged in the PB ensemble and projected onto the nA, nB

plane. As for the exclusive switch, the forward and backward

paths do not coincide, which, as mentioned above, reflects the

fact that the genetic switch is a nonequilibrium system.

However, in many other respects the pathways of the general

switch differ markedly from those of the exclusive switch.

Firstly, the switching trajectories of the general switch cross

the dividing surface l ¼ 0 at very low values of nA and

nB—on average, there is only one dimer of each species at the

transition surface. Moreover, the paths display a sharp de-

viation when they reach the dividing surface. Lastly, paths

obtained for different values of the rate constants essentially

coincide (the black, red, and green lines overlap). This last

observation suggests that the transition paths are rather in-

sensitive to variations in the rate constants of dimerization

and operator binding, an observation that should be con-

trasted with the observation that both r(q*) and R do depend

upon the magnitude of those rate constants (see Fig. 3).

Fig. 6 B shows the state of the operator for every value of l

during the transition, for the baseline parameter set (the

curves for the other parameter sets are virtually indistin-

guishable). Initially, when the system is still in the basin of

attraction of the stable state A, the operator is mostly in state

OA2. However, as the system leaves this basin, the state of

the operator rapidly becomes dominated by OA2B2. Indeed,

this operator state, which is absent in the exclusive switch,

plays a pivotal role in flipping the general switch. Its occu-

pancy peaks at l��5, corresponding to the top of the barrier

that separates the stable state A at l ¼ �27 from the meta-

stable state at l ¼ 0. Here, at l ¼ 0, the occupation statistics

of the operator is given by the equilibrium distribution

[OA2]:[OB2]:[OA2B2], with [OA2] ¼ [OB2]. As Fig. 7 B
shows, the transition state ensemble coincides with the

metastable state at ;l¼ 0, and in this ensemble the operator

is predominantly in state [OA2B2]. As the system leaves the

metastable state toward the B-state, the state of the operator

progressively moves toward [OB2].

We are now able to explain the process of flipping the

general switch. When a dimer of the minority species is

produced, it immediately binds to the operator and drives it in

the state OA2B2. In this state, the production of both proteins

is suppressed, and the system is depleted of almost all its

components (17,18). The approach to the transition state is

then driven mostly by a decrease of the majority species via

protein decay rather than an increase of the minority species

via protein production, as in the exclusive switch; this is the

reason why the general switch crosses the diving surface at

lower values of nA and nB than the exclusive switch. Im-

portantly, if one of the two dimers leaves the operator, it can

immediately rebind, thereby restoring the previous situation

and allowing the transition to continue. By contrast, if the

minority species leaves the operator in the exclusive switch,

then most likely the majority species will bind the operator,

thereby blocking further progress of the transition. This ex-

plains why both the pathways and the rate of flipping are

much more sensitive to the rate of operator binding in the

exclusive switch than in the general switch.

The presence of the state OA2B2 also underlies the meta-

stability of the general switch at l ¼ 0 (Fig. 4 B). As long as

both species are present in the system, the state OA2B2 is the

most stable operator state, and in this state no proteins can be

produced. As a consequence, a small fluctuation in l away

from l ¼ 0 via the unbinding of, say, dimer A leading to the

production of protein B, is not sufficient to flip the switch:

most likely the dimer will rebind the operator, blocking

further production of B; only when the dimer A dissociates

and one of its monomers is degraded will the system commit

itself to the stable-state B. The probability that the dimer is

degraded before it rebinds the operator increases as the rate of

dimer dissociation increases; this is the origin of the increase

of kAB, R, and r(q*) with increasing dimerization rate kf for

low kf seen in Fig. 3. Finally, we note that the discrete

character of the components in combination with their low

copy number is important (32,33): flipping the switch away

from the metastable state at l¼ 0 requires the unbinding and

subsequent degradation of essentially one molecule. The

metastability is indeed absent in a mean-field continuum

analysis that ignores the discrete nature of the components.

DISCUSSION

In this article, we have analyzed the stability and switch

flipping dynamics of two types of bistable genetic toggle

switches, as a function of the rates of transcription factor

dimerization and operator binding. This allows us to assess

the influence of two key sources of fluctuations in the net-

work on the overall system behavior.

We have varied the rate constants of the TF-TF and TF-

DNA association/dissociation reactions over greater than

three orders of magnitude (see Figs. 2 and 3). This reflects the

wide range of observed rate constants for cellular biochem-

ical reactions. For instance, in prokaryotic cells, the inverse

rate of protein production, k�1
prod; is in the range of seconds to

minutes (34). Since the size of a typical prokaryote is ;1 mm3
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(based on E. coli), this corresponds to kprodV ¼ 10�2 –

10 nM�1/min. The rate of monomer-monomer association,

kf, is ;10�2 – 10�1 nM�1/min, while the dimer dissociation

rate is ;kd ¼ 10�2 – 103/min, corresponding to dissociation

constants in the range kd
D ¼ 0 – 102 nM (29). This means

that kf ¼ 10�2 – 10 kprodV. Figs. 2 A and 3 A show that the

switching rate kAB is fairly insensitive to changes in the di-

merization rate when kf . kprodV, but is highly sensitive to

dimerization rate for kf , kprodV. This shows that the rate of

dimerization can strongly affect the network stability under

biologically relevant conditions. Rate constants for protein-

DNA association/dissociation are observed to vary over a

similarly broad range (34). Figs. 2 B and 3 B demonstrate that

this variation can have a marked effect on flipping rates for

multistable networks in living cells.

The steady-state phase space density in the region of the

stable states is very robust to every parameter change (Fig. 4).

Yet, changing the rate constants does strongly affect the

switching between these states. Factorizing the switching rate

into the probability r(q*) of finding the system at the dividing

surface, and a kinetic prefactor R, we find different results for

the two versions of the switch: while for the exclusive switch

dimerization affects the switching rate predominantly via the

kinetic prefactor, for the general switch it affects both the

kinetic prefactor and the probability of being at the separatrix;

on the other hand, operator binding affects the flipping rate of

the exclusive switch both via R and r(q*), whereas the effects

on the flipping rate of the general switch are exerted pre-

dominantly through a modification of its steady-state distri-

bution near the separatrix.

These results can be understood by analyzing the transition

paths and the transition state ensemble (TSE). This shows

that, in the case of the exclusive switch, changes in the op-

erator binding rate strongly affect the properties of the TSE,

while the dimerization rate has little effect on the TSE. We

conclude that, for the exclusive switch, operator binding

fluctuations play a crucial part in the reaction coordinate,

while dimerization fluctuations can affect the dynamics of the

transition but have little effect on the route that it takes in

phase space. The case of the general switch is rather different:

here, the presence of the sterile, doubly-bound state OA2B2

makes the flipping pathways rather insensitive to both sour-

ces of fluctuations, even though the latter do affect the flip-

ping rate. The resolution of this paradox lies in the fact that

the switch is a nonequilibrium system: in contrast to equi-

librium systems that obey detailed balance and microscopic

reversibility, in nonequilibrium systems the forward and

backward transition paths can form a cycle, as observed here;

changing microscopic transition rates (i.e., reaction rate

constants) can then change the stationary distribution r(q)

and the flipping rate, even though the location of the transi-

tion paths in state space is unaltered. Protein-protein and

protein-DNA association and dissociation reactions are a

common feature of a wide range of biological control net-

works. We therefore hope that our results will be useful to

understand the factors governing stability in multistable bi-

ochemical networks in general.

Genetic switch flipping is an example of a nonequilibrium

rare event. Rather few studies have been made of rare events

in nonequilibrium systems, but a variety of simulation and

analytical approaches have been developed to analyze rare

events in equilibrium systems. Here, it is often assumed that

one coordinate, the reaction coordinate, is slow, while the

other degrees of freedom are fast. In this case, the transition

can be modeled by assuming that the reaction coordinate

evolves according to a Langevin equation, while the other

degrees of freedom play the role of friction. Although the

concept of free energy is not applicable to nonequilibrium

systems, one can nevertheless define a barrier that corre-

sponds to the maximum of�log r(q), as we do in this article.

The results presented here show that that barrier crossing in

the model toggle switch differs fundamentally from this

classical scenario. For the genetic switch, the reaction coor-

dinate consists of at least two parameters, namely the dif-

ference in total copy number of species A and B and the state

of the operator (2). Moreover, these coordinates evolve on

comparable timescales—the operator state fluctuates on

timescales similar to those of protein production and decay;

in addition, their dynamics mix in a nonequilibrium fashion

(9)—the degradation and production of proteins are non-

equilibrium processes. This hampers the application of

standard theoretical tools to model barrier crossings (9). New

theoretical approaches may be required to model such rare

events in nonequilibrium systems.

The authors are grateful to Patrick Warren for many valuable discussions.

This work is part of the research program of the ‘‘Stichting voor Funda-

menteel Onderzoek der Materie (FOM)’’, which is financially supported by

the ‘‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)’’.

R.J.A. is funded by the Royal Society of Edinburgh.

REFERENCES

1. Ptashne, M., and A. Gann. 2002. Genes and Signals. Cold Spring
Harbor Laboratory Press, New York.

2. Allen, R. J., P. B. Warren, and P. R. Ten Wolde. 2005. Sampling rare
switching events in biochemical networks. Phys. Rev. Lett. 94:018104.

3. Allen, R. J., D. Frenkel, and P. R. ten Wolde. 2006. Simulating rare
events in equilibrium or non-equilibrium stochastic systems. J. Chem.
Phys. 124:024102.

4. Allen, R. J., D. Frenkel, and P. R. ten Wolde. 2006. Forward flux
sampling-type schemes for simulating rare events: efficiency analysis.
J. Chem. Phys. 124:194111.

5. Gardner, T. S., C. R. Cantor, and J. J. Collins. 2000. Construction of a
genetic toggle switch in Escherichia coli. Nature. 403:339.

6. Ozbudak, E. M., M. Thattai, H. N. Lim, B. I. Shraiman, and A. van
Oudenaarden. 2004. Multistability in the lactose utilization network of
Escherichia coli. Nature. 427:737–740.

7. Acar, M., A. Becksei, and A. van Oudenaarden. 2005. Enhancement
of cellular memory by reducing stochastic transitions. Nature. 435:
228–232.

8. Warren, P. B., and P. R. ten Wolde. 2005. Chemical models of genetic
toggle switches. J. Phys. Chem. B. 109:6812–6823.

3422 Morelli et al.

Biophysical Journal 94(9) 3413–3423



9. Walczak, A. M., J. N. Onuchic, and P. G. Wolynes. 2005. Absolute
rate theories of epigenetic stability. Proc. Natl. Acad. Sci. USA.
102:18926–18931.

10. Bolhuis, P. G., C. Dellago, and D. Chandler. 2000. Reaction coordi-
nates of biomolecular isomerization. Proc. Natl. Acad. Sci. USA.
97:5877–5882.

11. Valeriani, C., R. J. Allen, M. J. Morelli, D. Frenkel, and P. Rein ten
Wolde. 2007. Computing stationary distributions in equilibrium and
nonequilibrium systems with forward flux sampling. J. Chem. Phys.
127:114109.

12. Dellago, C., P. G. Bolhuis, and P. L. Geissler. 2002. Transition path
sampling. Adv. Chem. Phys. 123:1–78.

13. Geissler, P. G., C. Dellago, and D. Chandler. 1999. Kinetic pathways
of ion pair dissociation in water. J. Phys. Chem. B. 103:3706–3710.

14. Kepler, T. B., and T. C. Elston. 2001. Stochasticity in transcriptional
regulation: origins, consequences, and mathematical representations.
Biophys. J. 81:3116–3136.

15. Aurell, E., S. Brown, J. Johanson, and K. Sneppen. 2002. Stability
puzzles in phage l. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
65:051914.

16. Zhu, X.-M., L. Yin, L. Hood, and P. Ao. 2004. Robustness, stability
and efficiency of phage l genetic switch: dynamical structure analysis.
J. Phys. Chem. B. 2:785–817.

17. Warren, P. B., and P. R. ten Wolde. 2004. Enhancement of the stability
of genetic switches by overlapping upstream regulatory domains. Phys.
Rev. Lett. 92:128101.

18. Lipshtat, A., A. Loinge, N. Q. Balaban, and O. Biham. 2006. Ge-
netic toggle switch without cooperative binding. Phys. Rev. Lett. 96:
188101.

19. Ushikubo, T., W. Inoue, M. Yoda, and M. Sasai. 2006. Testing the
transition state theory in stochastic dynamics of a genetic switch.
Chem. Phys. Lett. 430:139–143.

20. Loinge, A., A. Lipshtat, N. Q. Balaban, and O. Biham. 2007.
Stochastic simulations of genetic switches. Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 75:021904.

21. Gillespie, D. T. 1977. Exact stochastic simulation of coupled chemical
reactions. J. Phys. Chem. 81:2340–2361.

22. Bortz, A. B., M. H. Kalos, and J. L. Lebowitz. 1975. A new algorithm
for Monte Carlo simulation of Ising spin systems. J. Comput. Phys.
17:10–18.

23. Paulsson, J. 2005. Models of stochastic gene expression. Phys. Life
Rev. 2:157–175.

24. Shibata, T., and K. Fujimoto. 2005. Noisy signal amplification in ultra-
sensitive signal transduction. Proc. Natl. Acad. Sci. USA. 102:331–336.
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