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We present an overview of the recent progress that has been made in understanding the origin
of hydrophobic interactions. We discuss the different character of the solvation behavior of apolar
solutes at small and large length scales. We emphasize that the crossover in the solvation behavior
arises from a collective effect, which means that implicit solvent models should be used with care.
We then discuss a recently developed explicit solvent model, in which the solvent is not described
at the atomic level, but rather at the level of a density field. The model is based upon a lattice-gas
model, which describes density fluctuations in the solvent at large length scales, and a Gaussian
model, which describes density fluctuations at smaller length scales. By integrating out the small
length scale field, a Hamiltonian is obtained, which is a function of the binary, large-length scale field
only. This makes it possible to simulate much larger systems than hitherto possible as demonstrated
by the application of the model to the collapse of an ideal hydrophobic polymer. The results show
that the collapse is dominated by the dynamics of the solvent, in particular the formation of a vapor
bubble of critical size. Implications of these findings to the understanding of pressure denaturation
of proteins are discussed.

PACS numbers: 61.20.-p, 61.20.Gy, 68.08.-p, 82.70.Uv, 87.15.Aa

I. INTRODUCTION

Hydrophobic interactions are widely believed to play a
dominant role in the formation of large biological struc-
tures [1,2]. Yet, the mechanism of the hydrophobic effect
is still under debate. The solvation of small apolar species
is well understood [3–6]. However, the attraction between
two such species in water is weak [3,4,6] and probably
not responsible for the stability of biological structures.
On the other hand, strong and long-ranged attractions
have been measured between extended hydrophobic sur-
faces [7,8]. But here, the origin of the effect is still be-
ing discussed. It has been suggested that the interaction
arises from electrostatic fluctuations [9], changes in water
structure [10], bridging (sub)microscopic bubbles [11,12]
and a “drying” transition induced by the hydrophobic
surfaces [13–15].

Recently, Lum, Chandler and Weeks [15] have devel-
oped a theory of hydrophobicity, which suggests that the
nature of the hydrophobic effect precisely arises from
the interplay of density fluctuations at both small and
large length scales. Small apolar species only affect den-
sity fluctuations in water at small length scales. Con-
comitantly, water can only induce a relatively weak and
short-ranged attraction between small hydrophobic ob-
jects. In contrast, large hydrophobic species can affect
density fluctuations at large length scales. At ambient
conditions, water is close to phase coexistence. A suf-
ficiently large hydrophobic object, or more importantly,
an assembly of several small apolar species, can there-
fore induce a depletion of water relative to the bulk den-
sity [16,17]. Recently, it has been demonstrated that this
drying transition can induce a strong attraction between
hydrophobic objects and provide a strong driving force
for protein folding [18].

In this paper, we give an overview of the recent
progress that has been made in understanding the ori-
gin of the hydrophobic effect. In section II we discuss
the statistics of density fluctuations at small and large
length scales. Understanding these fluctuations is impor-
tant, because it does not only provide insight into how
the solvation free energy of solutes scales with their size,
but also which models are needed to describe their sol-
vation behavior. In the next section, we briefly discuss a
recently developed model. In section IV, we see that this
model gives a reasonable prediction of the solvation free
energy of apolar solutes. In particular, it predicts that
in the small length scale regime the solvation free energy
scales with the size of the excluded volume of the solute,
whereas in the large length scale regime it scales with
the area of the excluded volume. The model also shows
that the crossover in the solvation free energy arises from
a collective effect in the solvent. Implicit solvent models
cannot conveniently describe this collective effect. It thus
appears that explicit solvent models are needed. Explicit
atomistic solvent models, however, are computationally
demanding. The model discussed in section III, lays the
foundation for a scheme in which the solvent is not de-
scribed at the atomic level, but rather at the level of a
coarse-grained density field. This scheme, which is dis-
cussed in section V, allows us to simulate the solvent
much more efficiently.

In section VI we discuss the role of attractive inter-
actions between the solutes and the solvent. Most of
the theoretical work on the hydrophobic effect has fo-
cused on the solvation behavior of ideal hydrophobic so-
lutes [15,19,20]. These are objects that exclude solvent
from a certain region in space, but have no attractive
interactions with the solvent. In section VI, however, it
is seen that the presence of weak dispersive interactions
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does not significantly affect the solvation behavior of hy-
drophobic solutes.

Finally, in section VII we apply the scheme discussed
in section V to study the collapse of an ideal hydropho-
bic polymer. The simulations reveal that the dynamics
of the collapse transition is dominated by the dynamics
of the solvent. In particular, the rate limiting step is
the formation of a vapor bubble of critical size. In ad-
dition, we show that during the collapse the chain and
the solvent remain out of equilibrium. Both observations
imply that implicit solvent models should be used with
great care. In the past, a statistical meaningful study of
protein folding using explicit solvent models seemed im-
practical. The current analysis, however, suggests that
such studies become feasible by using a statistical field
model like the one presented in sections III and V.

II. DENSITY FLUCTUATIONS AT SMALL AND

LARGE LENGTH SCALES

A theory of hydrophobicity should be able to correctly
predict the solvation free energy of apolar solutes. The
solvation free energy of a hard sphere, an example of an
ideal hydrophobic object, is given by

∆µ(vex) = −kBT ln[P (N = 0; vex)]. (1)

Here kBT is Boltzmann’s constant times temperature
and P (N ; vex) is the probability of finding N solvent
particles inside a region, of volume vex, from which
the solvent would be excluded by the solute; note that
P (N = 0; vex) corresponds to the insertion probability
of a hard sphere. Computer simulations have revealed
that density fluctuations that are entropic in origin, obey
Gaussian statistics. For the hard-sphere fluid, the dis-
tribution P (N ; vex) (as a function of N) is found to be
almost exactly Gaussian for spherical volumes vex that
have a diameter d up to four times the diameter of the sol-
vent molecules, σ (i.e. hard-sphere diameter) [21]. Con-
ceivably, the distribution functions remain Gaussian for
volumes that are larger than those that could be stud-
ied in the simulations, albeit even larger voids could in-
duce the formation of a solid-fluid like interface if the
fluid is close to freezing. On the other hand, for vol-
umes in SPC/E water at ambient conditions [6] and a
Lennard-Jones liquid close to phase coexistence with the
vapor [22], the distribution P (N ; vex) remains Gaussian
up to approximately d = 1.0 − 2.0σ. For such small
volumes, the occupation statistics is dominated by en-
tropic effects. The solvation free energy of small solutes
is determined by the entropic cost of permitting only
those density fluctuations that do not violate the effect
of the strong forces that are present in the system. In
a simple fluid, these strong forces arise from the repul-
sive interactions between the particles; in water, these
are the hydrogen bond forces. As the occupation statis-
tics is Gaussian for small volumes, the insertion proba-
bility P (N = 0; vex), and hence the solvation free energy

of small solutes, can be obtained from a Gaussian the-
ory. Examples of such Gaussian theories are the Pratt-
Chandler theory of hydrophobicity [3,5] and the theory
of Hummer, Pratt and coworkers [6,23].

For larger volumes the situation changes significantly.
In a simple fluid, the attractive forces between the solvent
molecules no longer cancel each other when the volume
vex is excavated. The unbalanced attractive forces give
rise to an unbalancing potential, which tends to push the
solvent molecules away from the void. For water, a large
excavated volume will drastically disrupt the water struc-
ture. Close proximity of water to the void is energetically
unfavorable, because the hydrogen bond network can no
longer be maintained close to the surface of the void, as
pointed out by Stillinger in 1973 [16]. In both cases, sol-
vent density is depleted near the surface of the void. This
drying transition is a collective effect and can be inter-
preted as a microscopic manifestation of a phase transi-
tion. A Gaussian model cannot support such a transition
as it only describes density fluctuations at microscopic
length scales. For larger solutes, however, coarse-grained
models, such as a Landau-Ginzburg model or a lattice-
gas model, become useful. Such coarse-grained models
describe density fluctuations at length scales larger than
the bulk correlation length and can support phase transi-
tions and sustain gas-liquid interfaces. The essence of our
model, discussed in section III, is to combine a Gaussian
model with a lattice-gas model.

III. THEORY OF SOLVATION

Water at ambient conditions is a cold liquid. A cold
liquid is a fluid that is well below the critical temperature.
For such a cold liquid, the density of the vapor is typically
orders of magnitude lower than that of the liquid. It is
then natural to divide space into a (cubic) grid of cells
and, taking the grid spacing, l, to be on the order of
the bulk correlation length, ξ, describe the states of the
cells by a binary field, ni, where ni = 1 if cell i is filled
with “liquid” and ni = 0 if cell i contains “vapor” [20].
This binary field describes density fluctuations at length
scales larger than the grid spacing and it can support
phase transitions. Density fluctuations at length scales
smaller than the grid spacing are described by a second
field, δρ. This field does not support phase transitions,
but it can describe the microscopic granularity of matter.
As discussed above, we can assume that this field obeys
Gaussian statistics. Hence, the full density ρ(ri) at point
ri is decomposed as:

ρ(ri) = ρlni + δρ(ri), (2)

where ρl is the bulk liquid density.
The partition function for our model is
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Ξ =
∑

{ni}

∫

Dδρ(r) C[{nk} , δρ(r)]

× exp (−βH [{nk} , δρ(r)]) , (3)

where
∫

Dδρ(r) =
∫

ΠiDδρ(ri) denotes the functional in-
tegration over the small length scale field, H [{nk} , δρ(r)]
is the Hamiltonian as a functional of both ni and δρ(r),
and β−1 is Boltzmann’s constant times temperature,
kBT . The quantity C[{nk} , δρ(r)] is a constraint func-
tional. It has unit weight when the field δρ(r) together
with {ni} satisfy whatever constraints are imposed by
strong forces, and it is zero otherwise. Since {ni} and
δρ(r) have greatly different character, the summation and
integration in Eq. (3) do not redundantly count configu-
ration space to any significant degree.

The Hamiltonian of our model is given by the following
expression:

H [{nk} , δρ(r)] = HL[{nk}] − ǫ′
∑

i,j(nni)

∫

dri δρ(ri)
nj − 1

ρll3

+
kBT

2

∑

i,j

∫

dri

∫

dr′j

× δρ(ri) χ−1[ri, r
′
j ; {nk}] δρ(r′j)

+ Hnorm[{nk}]. (4)

In the above expression, HL is the Hamiltonian of a
lattice-gas model. It is given by

HL[{nk}] = −µ
∑

i

ni − ǫ
∑

<i,j>

ninj , (5)

with µ the imposed chemical potential, and ǫ the inter-
action parameter between nearest-neighbour cells. The
lattice-gas model describes density fluctuations at length
scales larger than the grid spacing and it can support
phase transitions. Importantly, the energetic cost of cre-
ating an interface is determined by the value of ǫ.

The term in Eq. 4 that is quadratic in δρ ensures the
Gaussian weight of the small length scale field. In par-
ticular, the response function χ−1[ri, r

′
j ; {nk}] determines

the variance of this field. It depends upon the state of
the large length scale field. If ni = 1 for all i, then
χ−1[ri, r

′
j ; {nk}] reduces to the response function of the

bulk liquid χ−1[ri, r
′
j ; ρl]. In general, we employ the ap-

proximation that δρ(ri) = 0 whenever ni = 0. Thus,
δρ(r) is a Gaussian field, with a weight functional be-
ing that of the bulk liquid, but constrained to be zero
whenever ni = 0 [20].

The second term on the right-hand-side of Eq. 4 is the
term that couples the fluctuations of the field ni with
those of the field δρ(r). As discussed by Lum et al. and
Weeks and coworkers [15,24], for simple fluids the param-
eter ǫ′ is related to the energy density of the bulk liquid.
The last term on the right-hand-side of Eq. 4, Hnorm, is a
renormalization term, which ensures that, if the field δρ

is integrated out in the absence of solutes, the Hamilto-
nian H [{nk}; δρ] reduces to that of the lattice-gas model,
HL[{nk}].

In the presence of a hard sphere, the constraint func-
tional in Eq. 3 is given by

C[{nk}; δρ(r)] =
∏

ri∈vex

δ[niρl + δρ(ri)]. (6)

By exploiting the Fourier representation of delta func-
tions, we can integrate out the field δρ(r). As discussed
in detail in Ref. [20], we then arrive at the following ex-
pression for the Hamiltonian:

H [{nk}] = HL[{nk}]

+ kBT
∑

i,j(occ)

ni [ρlvi + fi] [ρlvj + fj] nj

2σvex

+ kBT ln
√

2πσvex
;

≡ HL[{nk}] + HS [vex; {nk}]. (7)

Here,

fi ≡

∫

ri∈vex

drif(ri) = ni vi ǫ′ κ
ρl

l3

∑

k(nni)

(nk − 1), (8)

with κ the isothermal compressibility, and

σvex
=

∫

vex

dr

∫

vex

dr′χ(r, r′; ρl). (9)

The sum over i, j(occ) is over cells i and j that are occu-
pied by the solute and vi is the volume occupied by the
solute in cell i [20].

The term HS [vex; {nk}] contains all the effects of the
interaction between the ideal hydrophobic solute and the
solvent. We stress that the interaction term solely arises
from the constraint that is imposed upon the allowed
density fluctuations in the solvent. The excess chemical
potential of the solute may be obtained by averaging this
interaction free energy:

β∆µ(vex) = − ln〈exp(−βHS [vex; {nk}]〉L, (10)

where 〈...〉L denotes an ensemble average with the Hamil-
tonian of the lattice gas, HL[{nk}] (see Eq. 5).

IV. SCALING BEHAVIOR OF SOLVATION FREE

ENERGIES

Fig. 1 shows the excess chemical potential of a hard
sphere as a function of its radius, R, in water at ambient
conditions, as predicted by Eqs. 7 and 10. For compar-
ison, we also show the results of a Gaussian model and
the results of a molecular simulation of a hard sphere in
SPC/E water [22].
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FIG. 1. Comparison of the results of the full model, based
on Eq. 7 and Eq. 10, with the predictions of the Gaussian
model, Eq. 12, and the results of a molecular simulation of a
cavity in SPC/E water [17] for the excess chemical potential
per unit area of a hard sphere in water as a function of its size;
the hard sphere excludes water from a spherical volume of ra-
dius R. The horizontal line lies at the value of the surface ten-
sion γ of the vapor-liquid interface of water. The parameters
of the full model are: l = 4.2Å , ǫ = 6.02kBT , ǫ′ = 15.2kBT ,
and µ − µcoex = 5.5 × 10−4kBT . These parameters are cho-
sen such that the surface-tension, the energy density and the
imposed chemical potential of the lattice-gas model matches
the corresponding values of water (see Ref. [20]).

A. Small length scale regime

In the small length scale regime, our model reduces
to a Gaussian model. Small solutes only affect density
fluctuations in the solvent at small length scales. As a
consequence, ni = 1 for nearly all i. With ni = 1 for all i,
HL[{nk}] and Hnorm[{nk}] in Eq. 4 become constants and
thus irrelevant. Further, the response function reduces to
that of the uniform fluid and the term that couples the
density fluctuations of the small and large length scale
field, becomes zero. As such, the Hamiltonian reduces to
that of a Gaussian model [5]:

HG [δρ(r)] =
kBT

2

∫

dr

∫

dr′δρ(r)χ−1(r, r′; ρl)δρ(r′),

(11)

with δρ(r) = ρ(r) − ρl, and the response function
χ−1(r, r′; ρl) being the response function of the uniform
fluid. The Pratt-Chandler theory of hydrophobicity is
based upon such a Gaussian model [3]. Similarly, we can
directly obtain the solvation free energy of a Gaussian
model from Eq. 10. It is given by:

β∆µ(vex) ≃ ρ2
l v

2
ex

/2σvex
+ ln

√

2πσvex
. (12)

This is also the result for the solvation free energy of the
theory of Hummer, Pratt and coworkers [6,23].

Fig. 1 shows that the full model and (thus) the Gaus-
sian model give an excellent prediction for the solvation
free energy of small solutes. The reason, as discussed in
more detail in section II, is that at small length scales,
density fluctuations are highly Gaussian. A second point
to note is that for small solutes, the excess chemical po-
tential scales with the excluded volume of the solute. In
this regime, the excess chemical potential is dominated
by the entropic cost of constraining small length scale
fluctuations, which is proportional to the volume of the
space over which the solvent density fluctuations are con-
strained.

B. Large length scale regime

For solutes larger than R > 4Å, the prediction of the
Gaussian model diverges from both the full model and
the molecular simulation results. The divergence is due
to a cavitation transition in the solvent. This cavitation
transition can be understood as a microscopic liquid-gas
phase transition in the solvent that is induced by the
solute. In order to describe the solvation behavior of large
hydrophobic objects in this “drying” regime, a theory of
solvation should be able to support a liquid-gas phase
transition and capture the enthalpic effects of creating
a gas-liquid interface. The full model discussed in the
previous section is such a model. A Gaussian model,
on the other hand, cannot support a gas-liquid phase
transition, nor sustain a gas-liquid interface, as it is based
upon a density expansion around the uniform fluid.

Fig. 1 shows that in the large length scale regime, the
molecular simulation results for the excess potential are
well described by [17]

∆µ(R)

4πR2
≈

pR

3
+ γ̃(1 −

2δ

R
). (13)

The first term on the right-hand side is the work to ex-
pand a cavity against the external pressure, p. The sec-
ond term on the right-hand side of the above equation
describes the work to form an interface between the so-
lute and the solvent, including a first-order “Tolman”
correction due to the curvature of the interface.

At ambient conditions, the pressure is very small, and
the pV contribution to the free energy is only significant
for extremely large solute volumes. Moreover, as dis-
cussed in detail in Ref. [17], γ̃ is well approximated by
the surface tension of the vapor-liquid interface at coex-
istence. Indeed, for large (but not unphysically large)
solutes, the solvation free energy is dominated by the
work to create a gas-liquid interface.

It is often assumed that the solvation free energy of a
hydrophobic species is proportional to the exposed sur-
face area [25,26]. The molecular simulations, as well as
the theoretical analyses, indicate that for solutes of bi-
ologically relevant size, this is a reasonable assumption
in the drying regime. For small solutes, however, the
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excess chemical potential of a hydrophobic species does
not scale with the area of the interface between the so-
lute and the solvent. Rather, in the small length scale
regime, the excess chemical potential scales with the ex-
cluded volume of the solute. Finally, we point out that
while macroscopic thermodynamic descriptions such as
that underlying Eq. 13 are useful for understanding the
solvation behavior of large solutes (R > 8 − 10 Å), they
are of limited use for describing the solvation behavior
of small solutes. In the small length scale regime, micro-
scopic models, such as the Gaussian model discussed in
the previous section, are required.

V. LANGEVIN DYNAMICS IN ISING SOLVENT

The model discussed in section III can be used to de-
velop a scheme in which only the solutes are treated at
the atomic level; the solvent is described in terms of the
binary, large-length scale density field ni. In this way,
the solvent can be simulated much more efficiently than
using an explicit atomistic solvent model. The scheme is
generally applicable to describe the motion of a collection
of solutes, but here we will confine our attention to the
motion of an ideal hydrophobic polymer consisting of Ns

hard spheres.
Before we discuss the scheme in detail, we point out

that, in practice, it is reasonable to simplify the Hamil-
tonian in Eq. 4 by neglecting the relatively small off-
diagonal elements [18]. This yields the following Hamil-
tonian for the coarse-grained density field:

H(rNs ; {nk}) =
∑

i

(−µ + ∆µex(vi))ni − ǫ
∑

<i,j>

ninj .

(14)

In the above expression, vi =
∑Ns

s=1 vs,i, where vs,i is
the volume that monomer s occupies in cell i and Ns is
indeed the number of monomers with coordinates r

Ns .
Further, ∆µex(vi) is the reversible work to accommodate
a volume vi in the solvent. We have taken ∆µex to be
proportional to the excluded volume:

∆µex(vi) ≈ cvi, (15)

with c = 2.67×108J/m3 = 65kBT/nm3 at room temper-
ature.

From H(rNs ; {nk}), we can construct a free-energy
functional, Ω, for the field {nk} in the mean-field ap-
proximation:

Ω(rNs ; {nk}) =
∑

i

kBT (〈ni〉 ln〈ni〉 + (1 − 〈ni〉) ln(1 − 〈ni〉))

+
∑

i

(−µ + ∆µex(vi)) 〈ni〉 −
ǫ

2

∑

<i,j>

〈ni〉〈nj〉 (16)

We can now construct a Car-Parinello scheme [27,28] to
propagate the solvent. To this end, we define the La-
grangian:

L(rNs ; {nk}) =
1

2

Ns
∑

α=1

M ṙ
2
α − VSS(rNs)

+
1

2

∑

i

m〈ṅi〉
2 − Ω(rNs ; {nk}). (17)

Here VSS(rNs) is the intra-chain potential that describes
the direction interaction between the monomers, M is
the mass of the monomers and m is a fictitious mass
associated with the dynamical variable 〈ni〉. From the
Lagrangian, the following equation-of-motions for the
monomers and the variables 〈ni〉 is obtained:

M r̈α = −∇αL = −∇α[VSS(rNs) + Ω(rNs ; {nk})] (18)

m〈n̈i〉 ≡
∂L

∂〈ni〉
= −

∂Ω(rNs ; {nk})

∂〈ni〉
. (19)

Propagating the solvent field {nk} according to the above
equation-of-motions with a proper choice of both the fic-
titious mass m and the kinetic energy associated with
{〈nk〉}, ensures that the free energy of the solvent is
close to its minimum for each configuration of the poly-
mer [28]. This approach is similar in spirit to the method
employed by Löwen, Madden and Hansen to simulate
counterion screening in colloidal suspensions of polyelec-
trolytes [29]. However, as we will demonstrate below,
we cannot assume that the chain moves slowly on time
scales for which disturbances in the solvent may relax.
As we will see, the collapse of the polymer is driven by
a cavitation transition in the solvent. Such a rare event
cannot be captured by the above Car-Parinello scheme as
nucleation barriers cannot be crossed. This means that,
using a Car-Parinello scheme, the solvent would remain
in its metastable state until it would become unstable.
We therefore developed a novel scheme in which the dy-
namics of the solvent and the chain are treated together.

First, it should be realized that the small length scale
field, δρ, has been integrated out. This means that tra-
jectories are only true to nature on time scales larger than
those required to relax the small length scale field δρ.
This relaxation time is on the order of picoseconds [30],
which implies that the dynamics is diffusive. We thus
constructed a stochastic dynamics scheme. The elemen-
tary step of the algorithm consists of propagating the
polymer for MS Langevin steps in the field of constant
{nk}, followed by a full Glauber sweep [31] over the sol-
vent field {nk}. One Langevin step corresponds to:

rα(t + δts) = rα(t)

+
δts
γ

(−∇α[VSS(rNs) + H(rNs ; {nk})] + δF). (20)

where γ is a friction coefficient, the value of which can be
obtained from the diffusion constant of a single monomer
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in water. The beads also experience a random force δF; it
is the dynamical remnant of the small length-scale field.
In order to obtain a physically meaningful value for Ms,
we have to compare the time step for the propagation of
the polymer, δts, to the time scale that corresponds to a
Glauber sweep over the solvent variables. An estimate for
the latter can be obtained by estimating the correlation
time for a density fluctuation of length scale l: δtl =
1/[D(2π/l)2], where D is the self-diffusion constant of
liquid water. The value of Ms is thus given by Ms =
δtl/δts = 36.

VI. ATTRACTIONS

So far, we have discussed the solvation of ideal hy-
drophobic solutes – objects that have no attractive inter-
actions with the solvent molecules. Naturally, real hy-
drophobic molecules have some affinity for water, and
vice versa, because of the ubiquitous Van der Waals in-
teractions. Huang and Chandler have studied in detail
the effect of weak solute-solvent attractions on the solva-
tion of non-polar molecules in water [32]. Their analysis
was performed using an extension and improved parame-
terization of the theory of Lum, Chandler and Weeks [15].

Huang and Chandler showed that for small solutes, the
presence of attractions has little effect on the solvent den-
sity around the solutes, as has previously been appreci-
ated theoretically [3] and as observed in simulations [33].
The solvation behavior can be understood from the obser-
vation that the attractive forces are very small in compar-
ison with hydrogen bond forces, and their effects can be
estimated by assuming that the water structure around
a hard sphere is unaltered by adding an attraction to wa-
ter. In particular, attractive interactions should produce
a simple additive contribution to the solvation enthalpy,
but no significant effect on the solvation entropy.

For large hydrophobic species, attractions do have a
notable effect. In the case of hard spheres, ie. without
attractions, the solvent density near the surface of the
solute is strongly depleted relative to that in the bulk
liquid. In contrast, in the presence of attractions, the
solvent density near the surface of the solute is close to
that in the bulk liquid (g(R+) ≈ 1.24, where g(r) is the
solvent radial distribution function and R is the radius
of the hydrophobic sphere). This, however, is a result
of the fact that the drying layer is very compressible.
In particular, there is little free-energy cost to move the
vapor-liquid interface. Due to this small energetic cost,
the addition of an attractive potential as weak as that
between alkanes and water is sufficient to draw the drying
layer into contact with the hydrophobic surface.

While drawn into contact with the hydrophobic sur-
face, this interface is distinct from the interface that
surrounds a small hydrophobic solute. The contact val-
ues for g(r) for the large hydrophobic solutes are close
to one, while the small hydrophobic solutes have con-

tact values larger than two. More importantly, as for
ideal hydrophobic objects, the solvation free energy scales
with the size of the excluded volume for smaller solutes,
whereas the solvation free energy scales with the area of
the excluded volume for larger solutes. In addition, the
crossover from the small to the large length scale regime
is around 8−10Å for both the ideal hydrophobic objects
and the hydrophobic solutes that have attractive inter-
actions with the solvent. Thus, the scaling behavior of
the solvation free energy is not affected by the presence
of weak attractions between the solute and the solvent.
We therefore expect that weak dispersion forces will not
have a strong effect on the role of hydrophobic forces in
biological self-assembly.

VII. HYDROPHOBIC POLYMER COLLAPSE

Hydrophobic interactions have long been considered to
play an important role in protein folding. We have per-
formed computer simulations to study the collapse of a
polymer consisting of Ns = 12 hard spheres in water.
Even though this allows us to study the effect of hy-
drophobic interactions on protein folding in perhaps its
most basic form, the conventional approaches will not
work. The theoretical analyses as discussed above, sug-
gest that the hydrophobic effect arises from a collective
effect in the solvent. Implicit solvent models cannot con-
veniently capture this effect. It thus appears that ex-
plicit solvent models are required. Explicit solvent mod-
els, however, are computationally demanding. The anal-
ysis is further complicated by the fact that the crossover
from solvation in the small length scale regime to sol-
vation in the large length scale regime occurs at around
a nanometer. This implies that in order to study the
hydrophobic effect, large system sizes are required. For
the required system sizes, an explicit atomistic model of
water would not be tractable in the simulations. In con-
trast, the scheme discussed in section V makes it possible
to study the polymer collapse in water.

Brute-force simulations, confirmed by the analysis dis-
cussed below, suggest that the collapse transition is a rare
event. We therefore performed transition-path-sampling
simulations [34] to harvest the rare, but representative,
trajectories from the extended coil to the collapsed glob-
ule state. Fig. 2 shows an example of such a trajectory
at room temperature. Initially, the polymer is in the
extended coil state. Then, by some spontaneous fluctua-
tion, the polymer partly collapses. The collapsed section
forms a sufficiently large hydrophobic cluster that a va-
por bubble is nucleated. Finally, the vapor bubble drives
the beads of the polymer together.
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A. Free energy of collapse

Visual inspections of this and similar trajectories sug-
gest that the collapse arises from an interplay between
the size of the polymer and the formation of a bubble.

We therefore mapped out the free-energy landscape as
a function of the squared radius-of-gyration of the poly-
mer, R2

g, and the size of the largest vapor bubble present
in the system, U . A contour plot of the free-energy
landscape is shown in Fig. 3. It is seen that the path
from the coil to the collapsed globule is one where, ini-
tially, the radius-of-gyration decreases, while the size of
the largest vapor bubble is still essentially zero. In this
regime, the solvent still wets the polymer and the free
energy hardly changes. When the radius-of-gyration be-
comes small enough, however, a vapor bubble is formed.
The free energy now sharply increases by some 9kBT ,
until it reaches a saddle-point at (U, R2

g) = (98, 23.5l2).
From here on, the bubble grows spontaneously and drives
all the beads of the polymer together.

A close examination of the free-energy landscape re-
veals that there is a small barrier of some 2kBT at
(U, R2

g) = (6.5, 70.0l2), which separates the coil from
a metastable intermediate. The presence of these two
states arises from a competition between the entropy of
the chain, which favors the fully extended coil state, and
depletion forces, which favor the intermediate state. De-
pletion forces are caused by the reduction in the volume
from which the solutes exclude the solvent, when the so-
lutes come together. The attraction between two small
hydrophobic objects, which cannot induce a drying tran-
sition in the solvent, predominantly arises from this ef-
fect [3,4,6]. However, the free-energy landscape shows
that this driving force is relatively small. The large driv-
ing force for the collapse of the polymer comes from the
drying transition. The free-energy difference between the
fully-collapsed globule and the intermediate is 30kBT ,
whereas the free-energy difference between the interme-
diate and the coil is only a few kBT .

The collapse transition arises from an interplay be-
tween density fluctuations of the solvent at small and
large length scales. In the coil state, the monomers are
well separated and the solvation free energy is dominated
by the entropic cost of constraining small length scale
fluctuations. This cost scales with the size of the ex-
cluded volume and, to a good approximation, is given by
∑

i ∆µex(vi). But when the monomers come together,
this entropic cost is larger than the energetic cost of form-
ing a vapor bubble that envelopes the monomers. As wa-
ter is close to phase coexistence, this cost is dominated by
the work to form an interface, which scales with the area
of the excluded volume. Indeed, it is the crossover in the
scaling behavior of the solvation free energy, as shown in
Fig. 1, which is the origin of the collapse transition.

In order to make the above analysis more quantitative,
we write the free energy of “folding” as:

∆Gfold = ∆Gsolv + ∆Gintra. (21)

a) b)

c) d)

FIG. 2. Four configurations from a trajectory where a 12
unit hydrophobic chain in water goes from the coil to the glob-
ule state. (a) shows a configuration from the equilibrated coil.
The chain remained in configurations like that throughout a
10 ns run at room temperature (T = 0.663ǫ). On a much
longer time scale, about 10−5 s, the chain typically does ex-
hibit a transition from coil to globule. Such events are found
with transition path sampling, equilibrating from an initial
high temperature (T = 0.74ǫ) 10 ns trajectory that exhibited
the transition spontaneously. Three configurations from an
equilibrated 1.5 ns trajectory that exhibits the collapse tran-
sition at room temperature, are shown in (b), (c) and (d),
with that in (c) being a configuration from the transition state
surface. The transparent cubes denote the vapor cells. Those
seen far from the chain are typical spontaneous density fluctu-
ations in bulk liquid water. The size of the simulation box is
397 nm3, corresponding to 42,875 cells. The potential energy
function is given by VSS(rNs )+H(rNs ; {nk}). The latter term
describes the solvent and the interaction between the polymer
and the solvent; it is given by Eq. 14. The parameters are
l = 0.21 nm, µ − µcoex = 2.25 × 10−4kBT , and ǫ = 1.51kBT .
The intra-chain potential, VSS(rNs ), is a function of the po-
sitions of the centers of each of the 12 hydrophobic spheres
(the red particles in the figure). It contains three parts: (1)
steep (essentially hard sphere) repulsions between solute par-
ticles such that their interparticle separations are larger than
σ = 0.72 nm; (2) stiff harmonic potentials bonding adjacent
particles in the hydrophobic chain, 1

2
ks(σ−|rα+1 − rα|)

2, with
ks = 14.1J/m2 ; (3) a bending potential favoring an extended
chain, 1

2
kθθα

2, where θα is the angle between (rα+2 − rα+1)
and (rα+1 − rα), and kθ = 1.85 × 10−20J/rad2. The volumes
vi excluded from water by the chain are dynamic as they
change with changing chain configuration, i.e., vi = vi ({rα}).
Specifically, these volumes are computed by assuming water
molecules have van der Waals radii equal to 0.14nm, and that
the diameter of each hydrophobic unit is σ = 0.72 nm.. That
is, points in the excluded volume, r, are those in the union of
all volumes inscribed by |r − rα| < 0.5 nm, α = 1, 2, ..., Ns.

Here ∆Gsolv is the reversible work to transfer the chain
from its “wet” solvated state to the “dry” state in the va-
por bubble, and ∆Gintra denotes the free-energy change
associated with the internal degrees of freedom of the
polymer (see Fig. 4). In order to estimate ∆Gsolv, we
make the following assumptions: (1) the fully collapsed
globule is confined in a spherical bubble of radius R; (2)
the volume, from which the polymer excludes solvent in
the extended coil state is equal to the volume of the bub-
ble that contains the globule; (3) in the extended coil
state, the solvent wets the polymer and ni = 1 for all i.
We then arrive at the following expression for ∆Gsolv:
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∆Gsolv = 4πR2γ +
4

3
πR3p −

∑

i

∆µex(vi) (22)

= 4πR2γ +
4

3
πR3(p − c), (23)

where γ is the surface tension of the vapor-liquid inter-
face, p is the external pressure and c is given by Eq. 15.
Let us now compare the following numbers. First, from
the measured free-energy difference between the coil and
the globule, ∆Gfold ≈ −30kBT , the radius of the bub-
ble, R ≈ 1.1 nm, and Eqs. 21 and 23, we can obtain
∆Gintra. This yields ∆Gintra ≈ 73kBT . This should be
compared with the respective contributions to ∆Gsolv,

4πR2γ ≈ 258kBT and 4πR3

3 c ≈ 361kBT , which shows
that the contribution of the internal degrees of freedom
of the polymer to the free energy of collapse is rela-
tively small. Indeed, the free energy of collapse of the
hydrophobic polymer is dominated by the solvation free
energy. Further, at ambient conditions p << c, which
shows that the collapse transition is dominated by a com-
petition between the energetic cost of creating a vapor-
liquid interface in the globule and the entropic cost of
maintaining the polymer in the wet state in the coil.

This simple model also allows us to address the exper-
imental observation that a wide range of proteins dena-
ture under pressure. If we assume that (1) the specific
volume of folding is determined primarily by ∆Gsolv and
that (2) the dependence of the surface free energy upon
pressure can be neglected, then we arrive at:

∆vfold ≈
∂∆Gsolv

∂p
≈ V (1 −

∂c

∂p
). (24)

To our knowledge, no values for the dependence of the
solvation free energy upon pressure for hard spheres of
the size used here, have been reported. We therefore
make some drastic assumptions. In order to compute
∂c/∂p we assume that c ≈ k/κT , where k is a constant,
and κ is the isothermal compressibility. With κT ≈ 4.6×
10−10Pa−1 at 1 atmosphere and κT ≈ 3.5 × 10−10Pa−1

at 1000 atmosphere, we arrive at ∂c/∂p ≈ 0.82. This
yields ∆vfold = V (1. − 0.82) ≈ 600cm3/mol. This is in
agreement with the experimental observation that pro-
teins denature under pressure, although values reported
in the literature for proteins of similar size are signifi-
cantly smaller, by about a factor six [35,36].

B. Dynamics of collapse

The free-energy landscape shows that the rate-limiting
step is the formation of a vapor bubble of critical size.
To investigate the extent to which R2

g and U also cor-
rectly describe the dynamics of this nucleation event,
we performed extensive transition-path-sampling simu-
lations on an ensemble of trajectories, each of length
150 ps [18]. A scatter plot of the trajectories is shown
in Fig. 3. To identify the transition state surface, we
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FIG. 3. Contour plot of the free energy landscape for the
collapse of our hydrophobic polymer, computed by Monte
Carlo umbrella sampling [28], using the weight functional
exp

[

−β(VSS(rNs ) + H(rNs ; {nk}))
]

. The curves of constant
free energy are drawn as a function of the squared radius of
gyration of the polymer, R2

g, and the size of the largest bubble
in the system, U . Here we have used the “cluster” criterion
that two vapor cells that are nearest neighbours, belong to the
same bubble; the size of the bubble is given by the number
of vapor cells. Neighboring lines of the free-energy landscape
are separated by 2.5kBT . Superimposed is a scatter plot (in
black) of the harvested 150 ps trajectories going from the coil
to the globule state. The transition states are indicated in
green. The harvesting was performed with transition path
sampling, making 8,400 moves in trajectory space, of which
75% were shooting and 25% were shifting [34]. We find that
the plateau regime of the flux correlation function is reached
after 50-70 ps [40,34] implying that the typical commitment
time for trajectories to pass over the barrier is of the order of
0.1ns. Given this time and the fact that the figure shows the
free energy barrier separating the extended coil and compact
globule states to be about 9kBT, the half life of the extended
chain is about 0.1 ns × exp (9) ≈ 10−5 s.

have identified the configurations on each trajectory from
which newly initiated trajectories have equal probability
of landing in either the coil or globule [34,37]. These con-
figurations are members of the transition-state-ensemble.
We project them onto Fig. 3. First, it is seen that the
ensemble is located close to the saddle-point in the free-
energy landscape. It should also be noted that the transi-
tion state ensemble is slightly tilted in the (U, R2

g) plane.
This shows that the larger the polymer, the larger the
size of the critical vapor bubble that has to be nucle-
ated. However, the scatter of the transition-state ensem-
ble from a line in the (U, R2

g) plane is notable, which
indicates that at least one other variable in addition to
U and R2

g plays a pertinent role in the collapse transition.
It is also noteworthy that the transition paths do not

follow the lowest free-energy path from the metastable
intermediate to the fully collapsed globule (Fig. 3). In
particular, the transition states are not centered around
the saddle point and the dynamical paths do not fol-
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FIG. 4. Sketch of the collapse transition of the hydropho-
bic polymer. The patterned region depicts the solvent, water.
The white region indicates the volume from which the poly-
mer excludes solvent.

low the steepest descend path from the saddle point to
the fully collapsed globule. The reason is that the poly-
mer and the solvent move on different time scales. The
polymer moves on time scales of nanoseconds, while the
solvent moves on time scales of picoseconds. As a result,
when a vapor bubble is nucleated, the chain cannot re-
spond on the time scale at which the bubble is formed.
Only when the bubble has reached a size of around 400,
does the polymer fully collapse into the globule state.

The above observation indicates that free-energy sur-
faces should be interpreted with care. The dynamical
pathways for a transition are not always fully determined
by the underlying free-energy surface. Fig. 3 shows that
other aspects can be important. In fact, when we artifi-
cially force the polymer to move a hundred times faster
with respect to the solvent (i.e. Ms = 3600 instead of
36 – see section V), then the transition paths do follow
the lowest free-energy path from coil to globule. This
clearly demonstrates that the dynamical trajectories are
not only determined by the underlying free-energy sur-
face, but that the natural dynamics of the system, or the
dynamics of the algorithm, can be important as well. It
also means that the transition state ensemble does not
need to coincide with the dividing surface in the free-
energy landscape, which is the surface that yields the
highest transmission coefficient [34].

VIII. CONCLUSIONS

In this paper, we have given an overview of the sol-
vation of hydrophobic solutes. Its character is very dif-
ferent at small and large length scales. At small length
scales, solvation is dominated by entropic effects and the
solvent still wets the surface of the solute, even when
the solute is highly hydrophobic [15,22]. In contrast, at
large length scales, solvation is dominated by enthalpic

effects. In this regime, large apolar species can induce
a cavitation transition in the solvent. More importantly,
in the small length scale regime, the solvation free en-
ergy scales with the volume of the solute, whereas in the
drying regime, the solvation free energy scales with the
exposed area of the solute. This behavior is not only ob-
served for ideal hydrophobic objects, but also for solutes
that have weak dispersive interactions with the solvent.
The crossover behavior of the solvation free energy from
the wetting regime to the drying regime is important,
because it could be of significance to the formation of bi-
ological structures. In most biological systems, the size
of the hydrophobic species is such that individual species
are in the wetting regime, while assemblies of such species
are in the drying regime. In the wetting regime, water
can only induce a relatively weak attraction between two
small apolar species. When several of these species come
together, however, water can induce a strong attraction
between them.

A clear example of this process is given by the col-
lapse of the hydrophobic polymer. The strong driving
force for the collapse of the polymer, is provided by the
cavitation transition in the solvent. Importantly, the
cavitation transition is only induced when a sufficiently
large number of monomers comes together. This means
that implicit solvent models, in which the interactions
between the solutes is described by a sum of two body
terms, cannot describe the cavitation transition. Equally
important, the dynamics of the hydrophobic collapse is
dominated by the dynamics of the solvent, especially the
formation of a vapor bubble near the surface of a nucleat-
ing cluster of hydrophobic monomers. As implicit solvent
models cannot capture the dynamics of the solvent, they
are of limited use in studying the effect of hydrophobic
interactions on the dynamics of biological self-assembly.

The connection between hydrophobic collapse and the
cavitation/drying transition provides a simple explana-
tion for both cold denaturation and pressure denatura-
tion of proteins. The range and the strength of the in-
teractions between the hydrophobic objects in the dry-
ing regime, is smaller when the solvent is moved away
from phase coexistence. Thus, the lowering of temper-
ature and the increase of pressure destabilize hydropho-
bic collapse, because both actions move the solvent away
from phase-coexistence. Finally, we believe that fluores-
cence resonance energy transfer (FRET) experiments [38]
and nuclear magnetic resonance (NMR) spectroscopy [39]
should make it possible to observe the drying transition
in protein folding experimentally.
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