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Abstract: We demonstrate a method for fully characterizing diffuse
transport of light in a statistically anisotropic opaque material. Our tech-
nique provides a simple means of determining all parameters governing
anisotropic diffusion. Anisotropy in the diffusion constant, the mean
free path, and the extrapolation length are, for the first time, determined
independently. These results show that the anisotropic diffusion model is
effective for modeling transport in anisotropic samples, providing that the
light is allowed to travel several times the transport mean free path from the
source.
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1. Introduction

There is a wide range of opaque materials that show long range anisotropic optical transport.
Even though these materials randomize the information in the incoming beam due to multiple
scattering, the resulting transport is anisotropic. For example, a focused beam on one side of a
slab of such a material may result in an ellipsoidal pattern on the opposite side. This kind of
anisotropic diffusion has been observed in, for example, aligned nematic liquid crystals [1, 2],
human and animal tissue (including bone [3], muscle [4], teeth [5], skin [6], arterial walls [7],
and blood cells under shear [8]), and porous semiconductors [9, 10] to name a few.

In principle, the observed anisotropy may occur for several reasons. One common situation
(i.e. in many tissue and tissue-like samples) is that non-spherically symmetric scatterers in the
sample are statistically correlated in their alignment resulting in an angle dependent transport
mean free path [11, 12]. However even spherically symmetric or randomly oriented scatterers
may result in anisotropic transport if they are dispersed in a birefringent background [12]. In
this case, the energy velocity may be anisotropic. In complex materials such as liquid crystals
and strongly scattering porous semiconductors [9] both the energy velocity and the mean free
path may, theoretically, be anisotropic [11].

Despite the prevalence of anisotropic opaque materials and their importance in biomedical
imaging, display technology, and photonics, a number of fundamental parameters that describe
anisotropic diffusion have yet to be measured. Up until now, only the anisotropy in the diffu-
sion constant tensor has been measured. There are potentially two reasons for this fact. One
reason is that the difference between the diffusion tensor and the mean free path has not been
well understood. While it has been understood for some time that both the mean free path and
energy velocity may be angle dependent quantities and that these two quantities combined de-
termine the anisotropic diffusion constant tensor [13, 14], it has only recently been shown that
these quantities are themselves tensors [12, 15]. The second potential reason is that it has been
difficult to perform the necessary measurements to determine the mean free path with different
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sample orientations. The standard measurement of the mean free path is total transmission of
light in a slab or wedge geometry [16]. Proper interpretation of such measurements requires
separate measurements of the angular dependence of light escaping the sample, the so-called
escape function, which is used to determine the extrapolation length [17, 18]. Not all anisotropic
samples easily conform to a slab or wedge geometry, especially when several orientations of
the anisotropy are required, or can be easily sliced and reoriented. Furthermore, the extrapo-
lation length is likely to itself be anisotropic. These facts make total transmission and escape
function measurements difficult or impossible. Given these difficulties, it would therefore be
useful to combine the proper anisotropic samples with an appropriate measurement technique
for performing transmission measurements with different incoming and outgoing directions to
probe each axis of the anisotropy.

Theoretically, the problem of anisotropic optical diffusion has been modeled analytically
using anisotropic random walk models [19] and radiative transfer approaches [11, 20, 12],
and numerically using Monte Carlo simulations [20, 21]. There have been several points of
contention in the theoretical discussion of anisotropic diffuse light. For example, the efficacy
of the diffusion model itself has been recently called into question, with the proposition that
only Monte Carlo simulations of the radiative transport equations provide useful models of
anisotropic multiple scattering [21]. It has also been questioned whether the diffusion constant
ratio itself can be measured by any static measurement, it being a dynamic quantity [2].

In this paper we fully characterize anisotropic diffusion in one sample using a relatively new
imaging technique and an easily available simple model (phantom) sample. This is achieved
by focusing a source beam on one side a slab of the material and imaging on a perpendicular
side, a technique recently analyzed and applied to isotropic samples [22]. By repeating this
measurement in two different orientations, we are able to separately determine, for the first
time, the anisotropy in the extrapolation length, the transport mean free path, and the diffusion
constant. These measurements also show that the diffusion theory is an extremely useful model
for characterizing details of anisotropic light diffusion. We expect our approach to be useful for
characterizing anisotropic light transport in a wide variety of important materials.

2. Theory

In the experimental geometry, shown in Fig. 1, a continuous wave light beam is focused on
one side of an opaque rectangular parallelepiped. This side will be referred to as the input side.
Diffuse light scattered out of the sample from a side perpendicular to the input side creates an
image. This will be referred to as the image plane. The distance of the beam to the image plane
is L. The dimensions of the sample are d, w1, and w2 where the image plane dimensions are
w1 ×w2 and the input plane dimensions are d×w2.

The diffuse light is assumed to propagate through the sample in the steady state limit with
no measurable absorption [23] according to the diffusion equation [11, 12]:

S(x,y,z, l̄,L) = �· D̄ ·�U(x,y,z), (1)

where U is the energy density, D̄ is the anisotropic diffusion tensor, S is the function describing
the source of diffuse light, and l̄ is the anisotropic mean free path tensor. We assume the sym-
metry of the sample to be such that the diffusion and mean free path tensors are diagonalized
in the sample coordinate system. I.e.

D̄ =

⎛
⎝

Dxx 0 0
0 Dyy 0
0 0 Dzz

⎞
⎠ (2)
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Fig. 1. Cartoon of the imaging geometry. A beam is weakly focused on one (input) side
of the sample. The emitted light is imaged on a side perpendicular to the input side (the
image plane). The focus point is a distance L from the image plane. The focus spot size is
much smaller than L, justifying a point source approximation. The sample is chosen such
that w1,w2 � L, i.e. the slab is effectively semi-infinite in the image plane.

and

l̄ =

⎛
⎝

lxx 0 0
0 lyy 0
0 0 lzz

⎞
⎠ . (3)

To describe the source function S, we reason as follows. Due to the weak focus, the incoming
light can be thought of as a narrow collimated beam. This produces a source of diffuse light
that is best described by a narrow cylinder that exponentially decays along the propagation
direction. In the interest of deriving a simple analytical solution, following an approach used
for isotropic materials, the exponentially decaying source beam of finite width is replace by
a Dirac-delta function positioned a distance of l yy inside the material [25]. Following these
assumptions and referring to the coordinate system given in Fig. 1 the source function may be
defined as:

S(x,y,z, lyy,L) = S0δ (x)δ (y− lyy)δ (z−L). (4)

We choose boundary conditions in which the energy density goes to zero one so-called ex-
trapolation length ex,y,z from the boundary [17, 18], where the subscripts refer to the axis per-
pendicular to the exiting surface. The extrapolation length extends the effective sample dimen-
sions. Thus, for example, the distance from the delta function source to the extrapolated zero
position of the energy density parallel to the x-z plane is l yy + ey.

By rescaling the parameters x′ = (Dyy/Dxx)
1/2 x, y′ = y + ey, z′ = (Dyy/Dzz)

1/2 (z+ ez),
L′ = (Dyy/Dzz)

1/2 (L+ ez), and D′ = (Dxx/Dzz)
1/2, the anisotropic diffusion equation can be

rewritten as an isotropic diffusion equation:

S(x′,y′,z′, l̄,L′) = D′Δ′U(x′,y′,z′), (5)

with the boundary conditions U = 0 at x ′ = ±∞, y′ = 0,+∞, and z′ = 0,+∞.
The flux I(x,y,0) through the z = 0 surface for light governed by Eq. 5 has been solved

analytically by Kienle in his treatment of isotropic media [24].
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We have calculated that for the anisotropic case, assuming the common simplifying condi-
tions of l ′/L′ � 1, ey/L′ � 1 , L/d � 1, and L/w1,2 � 1, the flux through the z = 0 surface
may be approximated as:

I(x,y,0) =
3
π

S0 (L+ ez)(lyy + ey)Dyy (DxxDzz)−1/2 y× (6)

((
Dxx

Dyy

)
x2 +(y+ ey)2 +

(
Dzz

Dyy

)
L2
)−5/2

. (7)

I(x,y,0) may be integrated over the image plane to yield the total intensity exiting the side
of the sample:

Itot =
∫ +∞

−∞
dy
∫ ∞

0
I(x,y,0)dx =

(
2
π

S0

√
Dzz

Dyy

)
lyy + ey

L+ ez
. (8)

The total escaping intensity is proportional to (lyy + ey)/(L+ ez). This result is similar to the
result for total transmission through an optically thick infinite slab, which is a well known
measurement for determining the mean free path from a series of the sample of different thick-
nesses [16]. Two substantial advantages of the measurements of the mean free path described
here is that they can be performed on a single sample and the sample may be anisotropic.

To fit the experimental data, Eq. 6, can be rewritten as

I(x,y,0) = Ay
(
(βx)2 +(y+ ey)

2 +L′2
)−5/2

(9)

where β = (Dxx/Dyy)
1/2 and A = 3

π S0 (L+ ez) (lyy + ey)Dyy (DxxDzz)
−1/2. Thus the four in-

dependent parameters A, β ,ey ,and L′ define the measured image completely. After fitting an
image, Itot is calculated from the four parameters analytically. The parameters I tot , β ,ey ,and L′
describe qualitatively different aspects of the image, namely the overall intensity, the rescaling
factor in the x− y plane, the I = 0 line of the function (at y = −e y, outside of the image), and
the extent (size) of the image, respectively. It should be emphasized that e y can be determined
directly from the fit with no assumptions about the surface reflectitivity and no knowledge of
the incoming intensity, a considerable advantage over escape function measurements [26, 22].

In the experiment described, measurements were taken with two different sample orienta-
tions, one rotated 90◦ about the z axis with respect to the other (see Fig. 1). We refer to the
orientation with the beam entering along the fast axis of diffusion as the parallel orientation
and the orientation with the beam along the slow axis of diffusion as the perpendicular orienta-
tion with parameters along these beam axes subscripted with the symbols ‖ and ⊥ respectively.
Thus for example, D‖ > D⊥. The symmetry of the scatterers is such that the sample may be
assumed to be uniaxial, therefore the parameters D‖,⊥, l‖,⊥, and e‖,⊥ will be sufficient to fully
characterize the sample.

Since the incoming beam intensity, which determines S0, and Dzz, are the same for both
orientations, the ratio of the plots of Itot vs. L+ ezwill yield

m ≡
√

D‖
D⊥

l⊥ + e⊥
l‖ + e‖

. (10)

The limit of validity of the approximation L � d is pushed at the largest depth measured in
the experiments presented here for which L = 0.45d. However the approximation of an infinite
sample is nearly valid, even at these depths, affecting the value of β by several percent and the
total intensity by 10%. At L = 0.25d, the approximation is nearly perfect. For the measurements
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Fig. 2. Porous plastic fiber sample (Porex). The scale bar to the lower left is 1 mm. The
inset shows a magnified view of the same sample with a scale bar of 100 μm. From this
SEM, it is clear that the fiber orientations are both highly correlated and highly connected.

of total intensity in this paper it is sufficient to make a second order correction in L/d for the
larger values of L, using the function f (L/d) = (4(L/d)2 −1)/(4(L/d)2−3) , where

Itot( f inite) = Itot f (L/d) (11)

3. Experiment

The anisotropic model system was chosen taking into account several important considerations.
The sample should be statistically anisotropic with a substantial degree of randomness to pro-
duce opaqueness when viewed from all directions. The sample should be uniform in structure
to insure reproducible measurements on separate parts of the sample and to support the assump-
tion of position independent parameters. Finally, the sample should be easy to obtain for use in
future measurements.

One anisotropic phantom sample has been previously produced, a randomly oriented collec-
tion of parallel wax fibers in a solid cube of resin [27]. However we wanted a more strongly
scattering sample. Furthermore, we wanted no scattering from the background material, and
scatterers that did not extend directly through the entire slab, to avoid issues of long range light
guiding [27].

One sample that meets our requirements is a PET/PE (Polyester/Polyethylene) porous fiber
slab from Porex Corporation. These samples are used in exacting filter applications and come in
a variety of densities and fiber diameters. For our measurements, we chose a fiber diameters of
10 μm and a density of 0.37 g/cm3, as listed by the manufacturer. This corresponds to a volume
fraction of polymer of roughly 30% or less, depending on the exact density of the polymer
(which was unknown).

Scanning electron microscopy (SEM) photos of the samples reveal a statistically aligned fiber
structure with a substantial degree of randomness (Fig. 2.) The fibers are highly interconnected,
reducing the probability of light guiding through a single fiber. The SEM also reveals large air
voids between the fibers suggesting a low volume fraction of fibers.

The slab dimensions used were w1 ×w2 = (12×42) mm2 and (42×12) mm2 for the beam
oriented parallel and perpendicular to the fibers respectively. For both ordinations, d = 5 mm.

The light source used was a supercontinuum broadband laser (Fianium Femptopower 1060,
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20 MHz) attenuated with neutral density filters and with a bandpass filter (Thorlabs FB650-10)
producing a collimated beam at 650 nm with a wide enough band width (10 nm FWHM) to
eliminate speckle when imaging. A fraction of the beam intensity was split off to a reference
detector to allow for normalization for changes in input beam intensity. The beam was focused
to a beam spot of ∼ 50 μm onto on the input side sample (Fig. 1). The sample was mounted
on a two-axis translation stage so that several locations on the sample could be probed for each
value of L, via translation along the x axis, in order to determine the measurement statistics.
The value of L was adjusted by hand in 250 μm increments. The light escaping the image plane
was imaged using peltier-cooled CCD (Andor iXon DV885JCS) equipped with a short range (3
cm) camera lens. By varying the the input beam intensity as well as the exposure time a wide
dynamic range of measurements could be detected, allowing for a wide range of L values to be
measured. Iso-intensity plots of these images are shown in Fig. 3 for orientations of the sample
with the fibers parallel and perpendicular to the incoming beam.

The incoming light was linearly polarized. However the images were found to be independent
of both the incoming and outgoing polarization of light for these samples. For this reason, we
will not refer further to polarization effects.

Once collected, the images were analyzed using a 2d nonlinear least squares fitting routine
written in Matlab. Each image was fit to Eq. 9, floating the parameters, A, β ,e y ,and L′, from
which Itot was calculated. An examples of the data and fit for a single value of L can be seen in
Fig. 3. The overlap of the fit with the data is excellent.

Repeated fitting for all values of L yielded values for the parameters for all thicknesses. This
process allowed us to determine the validity of the diffusion approximation as function of L.

A second simple measurement of the mean free path was also performed. Total transmission
of light in the two different orientations of the slab were performed using the same light source
and an integrating sphere on the outgoing (opposite) side of the sample. We used the technique
described previously on isotropic porous gallium phosphide samples [28] using one thickness
for each orientation.

Different samples were cut from the same material to achieve an infinite slab geometry, i.e.
the width of the sample (i.e. the dimensions defining the plane perpendicular to the incoming
beam) was large compared to the thickness. The slab dimensions used were (12×12) mm 2

with thicknesses of 5 mm and 2.5 mm for the incoming beam parallel and perpendicular to the
fibers respectively.

4. Results

For all images taken with values of L > 0.75 mm, the data is in strong agreement with the
diffusion model. Fig. 3 shows an iso-intensity plot for the data and the fit to the diffusion model
for both the parallel and perpendicular orientations for one sample thickness (L = 2.0 mm). Fig.
4 is a 1d slice of the same data along the y axis at the x = 0 (source) position. Both of these
representations convey the high quality of the fit. The residual is zero over the entire area of the
fit showing only a random deviation due to surface roughness of the sample. Remarkably, the
fit extends even to distances near the edge shorter than the mean free path.

There are three qualitative features in these two plots worth pointing out that indicate the
effects of the three parameters D̄, l̄, and ey on the data and fit. 1) The anisotropy in the contours,
lengthened for both orientations along the direction of the fibers, indicates the anisotropy in the
diffusion constant tensor, i.e. D‖ > D⊥. 2) The integrated intensity with the input beam parallel
to the fibers is higher, indicating the anisotropy of the mean free path tensor along this direction,
i.e. l‖ > l⊥. 3) The data and fit extend off of the edge of the sample, into the y < 0 region (i.e.
the lower intensity contours in Fig. 3 are not closed but come to an abrupt end at the edge of
the sample, and the function in Fig. 4(inset) clearly has a y < 0 intercept) indicating the effect
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Fig. 3. Iso-intensity lines for a single measured image (thin lines) and for a fit (thick lines)
to Eq. 9 with L = 2.0 mm for the parallel (top) and perpendicular (bottom) orientations of
the beam with respect to the fibers. The fiber orientation for both plots is indicated by the
double-sided arrow. The same scales are used for both axes and both plots to depict the
distortion introduced by the anisotropy depending of the sample orientation. The contour
lines delineate steps of 0.5, from 0.5 to 3.5 in the top plot, and from 0.2 to 2.7 in the
bottom plot in units that are arbitrary in overall scale but consistent from measurement to
measurement. The strong sample anisotropy in the diffusion constants is qualitatively clear.
Furthermore, the extension of the data and fit over the edge (i.e. the fact that some of the
low intensity contours are not closed but come to an abrupt end at the edge of the sample)
indicates the effect of the extrapolation length and suggests a method for its measurement.
The excellent overlap of the fit on the data indicates that the diffusion model describes the
light propagation for this value of L.
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Fig. 4. Data and residuals (open symbols) and fits (solid lines), showing the intensity with
the incoming beam parallel (circles) and perpendicular (triangles) to the fibers along the x =
0 line. I.e. this is the intensity measured along the line parallel to the incoming beam. The
inset shows the narrow range of data near the input edge of the sample (y = 0), showing the
negative values of the I = 0 intercept of the fit. This intercept is the extrapolation length. The
much larger intercept for the parallel orientation clearly indicates the larger extrapolation
length at this input surface.

of the extrapolation length at the input plane, which is larger along the direction parallel to the
fibers, i.e. e‖ > e⊥.

Quantitative results for the diffusion model can be found by analyzing the fit parameters
as a function of L. These are plotted in Fig. 5 for all values of L measured. Multiple points
at each value of L indicate multiple measurements at different translations in the x direction.
The reproducibility of these measurements for sufficiently large values of L is evident from the
overlap of multiple data points.

As seen in these plots, the values of β‖,⊥ and e‖,⊥ plateau at thicknesses greater than L > Lmin

where Lmin = 0.75 mm. For values of L ≤ Lmin, it is likely that a non-diffuse contribution from
the incoming beam is still present that is not accounted for by the diffusion model. This result
suggests a useful length scale for applicability of the diffusion approximation.

The values of the parameters β‖,⊥ and e‖,⊥are taken from the plots in Fig. 5a and Fig. 5b
by averaging the results for L > 0.75 mm. The uncertainty is the standard deviation of the data
points. The values for β‖, 1/β‖, and β⊥at L > 0.75 are 1.84± .04, 0.54± .01 and 0.53± .02
respectively. These values are consistent, to within the experimental uncertainty, to the simple
relation 1/β‖ = β⊥, and yield a value of D⊥/D‖ = 0.28± .01. The values for the extrapolation
lengths e‖ and e⊥ are (0.34± .04) mm and (0.10± .01) mm respectively. Note that the ratio of
the extrapolation lengths is e⊥/e‖ = 0.29± .03.

The relative values of the mean free paths can be determined from Fig. 5c. The data is fit to
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Fig. 5. Parameters determined by fitting to the images for each value of L for the two sample
orientations. The open and closed circles were measured with the incoming beam parallel
and perpendicular to the sample respectively. The diffusion model becomes consistent at
values of L of larger than 0.75 mm, thus the fits were performed on these data points. The
average values values of β‖,⊥ and e‖,⊥ were computed with L > 0.75 mm as shown by the
horizontal line in plots (a) and (b). In the plot (c) the data was fit to Eq. 11, which is nearly
linear for the values of L measured.
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Eq. 11 using the measured value d = 5 mm and the value for e z = e⊥ = (0.10± .01) mm
D⊥/D‖ = 0.28± .01 determined from Fig. 5b. This yields the ratio (l⊥ + e⊥)/

(
l‖ + e‖

)
=

0.28± .03. Inserting the values of e‖ and e⊥ gives l⊥ = (0.28±0.03)l‖ ± 0.01 mm, which,
assuming that the mean free paths are not anomolously small, gives l⊥/l‖ = 0.28 to within
10%.

The total transmission measurements yielded l⊥ + e⊥ = (0.25±0.02) mm and l‖ + e‖ =
(0.93±0.04) mm, yielding (l⊥ + e⊥)/

(
l‖ + e‖

)
= 0.27± .03. Combining these results with

the results for the extrapolation lengths gives l⊥ = 0.15±0.02 mm l‖ = (0.59±0.06) mm and
l⊥/l‖ = (0.25±0.03). These results are fully consistent with those using the imaging approach.
Furthermore they allow us to express Lmin in term of the mean free path, namely, Lmin = 5l⊥ =
1.3l‖.

5. Discussion

We have determined the anisotropy in the diffusion constant, extrapolation length, and mean
free path for an anisotropic phantom system. The high quality of the fits indicates that the
diffusion model describes the propagation of light in these materials well.

The ratio of the quantities determined is highly suggestive. Specifically, we have found ex-
perimentally for one type of sample that

D⊥/D‖ = e⊥/e‖ = l⊥/l‖, (12)

using independent measurements for each. Therefore, for this sample,

v⊥
v‖

= 1.0. (13)

The uncertainty on these ratios is roughly 10%. Eq. 12 suggests that the extrapolation length is
proportional to the transport mean free path, as is true in the isotropic case [26]. The isotropic
result for the energy velocity in Eq. 13 is reasonable for this material, since the mean free path
is large compared to the wavelength, and there is little birefringence in the material.

It has been noted previously that the values of the diffusion constant and energy velocity
cannot be determined from any static (single frequency, continuous wave) measurement [2].
Our results are consistent with this statement since we make no claim to having measured the
absolute values of these quantities, but rather the dimensionless ratios.

The consistent results justify, to a degree, the assumption that the effective source can be
modeled as a point source at a depth that is proportional to the anisotropic mean free path
in the sample. However more detailed theory and experiment are required to fully justify this
assumption.

The theory developed here assumes that the microscopic symmetry of the sample is aligned
with walls of the parallelepiped section. Samples in which the internal symmetry of the sample
is not aligned with the parallelepiped will show asymmetric surface images. Such cases may
also, in theory, be treated with the anisotropic diffusion equation [12]. Experimental verification
of such an approach is an interesting future challenge.

Having validated our approach to characterizing transport in anisotropic materials, it would
be extremely interesting to perform similar measurements on systems, such as microporous
semiconductors, semiconductor nanowires, or liquid crystals, in which the energy velocity is
likely not to be isotropic [2, 11].
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